influence of electrical process parameters

Upload: siddy777

Post on 02-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Influence of Electrical Process Parameters

    1/8

    Review

    A review on inuence of electrical process

    parameters in EDM process

    T. Muthuramalingam a,*, B. Mohan b

    aDepartment

    of

    Production

    Technology,

    M.I.T.

    Campus,

    Anna

    University,

    Chennai,

    IndiabDepartment

    of

    Mechanical

    Engineering,

    CEG

    Campus,

    Anna

    University,

    Chennai,

    India

    1. Introduction

    Electrical discharge machining (EDM), otherwise known as

    thermal

    erosion

    process,

    is

    one

    of

    the

    non-conventional

    machining processes, where tool and workpiece do not come

    into contact with each other during the machining process. The

    progression of events constituting the process of material

    erosion

    from

    the

    work

    surfaces

    by

    an

    electrical

    discharge

    machining

    can

    be

    explained

    in

    the

    following

    way.

    If

    an

    appropriate voltage is developed across the tool electrode

    (normally cathode) and the workpiece (normally anode), the

    breakdown of dielectric medium between them happens due to

    the growth of a strong electrostatic eld. Owing to the electric

    eld, electrons are emitted from the cathode toward the anode

    on

    the

    electrode

    surfaces

    having

    the

    shortest

    distance

    between

    them. These electrons impinge on the dielectric molecules of

    the

    insulating

    medium,

    breaking

    these

    dielectric

    uid

    mole-

    cules into positive ions and electrons. These secondary

    electrons travel along on the same ionization path. This event

    causes an increase in the electric eld strength across the work

    surfaces

    and

    liberates

    a

    large

    number

    of

    electrons.

    It

    creates

    an

    ionized

    column

    in

    the

    shortest

    spark

    gap

    between

    the

    tool

    electrode and the workpiece, thereby decreasing the resistance

    of the uid column and causing an electrical discharge in the

    shortest distance point between the tool and the workpiece. The

    a r ch i ve s o f c i vi l a n d m e ch a ni c al e n gi n ee r in g x x x ( 2 01 4 ) x x x x xx

    a

    r

    t

    i

    c

    l

    e

    i

    n

    f

    o

    Article history:

    Received 12 July 2013

    Accepted 16 February 2014

    Available online xxx

    Keywords:

    EDM

    EWR

    Discharge

    MRR

    Surface

    a

    b

    s

    t

    r

    a

    c

    t

    Since the thermal energy produced in electrical discharge machining process is due to the

    appliedelectrical energy, it is veryimportant to enhance theelectrical processparameters to

    improve theprocess efciency. Thepresent study discusses about havingan overview of the

    EDM process, modeling of processparameters, and inuence of process parameters such as

    input electrical variables, pulse shape, anddischargeenergy onperformance measures such

    as material removal rate, surface roughness and electrode wear rate. This study also

    discusses about controlling the electrical process parameters, and empirical relationships

    between processparameters and optimization of process parameters in EDM process. From

    the review results, it has been observed that the efcacy of the machining process can be

    improved by electrical process parameters, and only less attention has been given for

    enhancing such parameters.

    # 2014 Politechnika Wrocawska. Published by Elsevier Urban & Partner Sp. z o.o. All

    rights reserved.

    * Corresponding author. Tel.: +91 9994872013; fax: +91 4422232403.

    E-mail addresses: [email protected], [email protected] (T. Muthuramalingam), [email protected] (B. Mohan).

    ACME-201; No. of Pages 8

    Please cite this article in press as: T. Muthuramalingam, B. Mohan, A review on inuence of electrical process parameters in EDM process,Archives of Civil and Mechanical Engineering (2014), http://dx.doi.org/10.1016/j.acme.2014.02.009

    Available online at www.sciencedirect.com

    ScienceDirect

    journal homepage: http://www.elsevier.com/locate/acme

    http://dx.doi.org/10.1016/j.acme.2014.02.009

    1644-9665/# 2014 Politechnika Wrocawska. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

    http://dx.doi.org/10.1016/j.acme.2014.02.009mailto:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.acme.2014.02.009http://www.sciencedirect.com/science/journal/16449665http://www.elsevier.com/locate/acmehttp://dx.doi.org/10.1016/j.acme.2014.02.009http://dx.doi.org/10.1016/j.acme.2014.02.009http://www.elsevier.com/locate/acmehttp://www.sciencedirect.com/science/journal/16449665http://dx.doi.org/10.1016/j.acme.2014.02.009mailto:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.acme.2014.02.009
  • 8/10/2019 Influence of Electrical Process Parameters

    2/8

    enormous thermal energy melts and vaporizes the materialfrom

    the

    workpiece,

    which

    creates

    a

    small

    crater

    over

    the

    work

    surface. There happened a collapse of the ionized column with

    the termination of the electrical energy by means of the

    switching circuit and then surrounding dielectric uid occupies

    its

    place.

    The

    melted

    debris

    is

    removed

    by

    the

    ushing

    process.

    The conduction of dielectric medium can be determined by the

    current,

    duration

    and

    pulse energy

    [1].

    Fig.

    1

    explains

    the

    formation of ionized column in the shortest distance of work

    surfaces using the EDM process [1].

    2. State of art in EDM process

    Since the electrical discharge machining process is of with

    non-linear

    nature,

    it

    requires

    a

    lot

    of

    improvements

    on

    it.

    Many authors have discussed about the research works for

    improving process efciency of the EDM process. The funda-

    mentals of EDM process mechanism and research works

    carried out from the inception to the development of the die-

    sinking EDM process within the past decade have been

    discussed

    by

    Ho

    and

    Newman

    [2]. It

    has

    been

    reported

    and

    discussed

    about

    the

    EDM

    researches

    relating

    to

    improve

    the

    process performance measures, optimizing the process vari-

    ables, and monitoring and control of the sparking process.

    Abbas et al. presented the recent research trends to improve

    the performance characteristics involved in all the aspects ofelectrical discharge machining process. They discussed about

    the need for controlling the process parameters to enhance the

    machining process efciency of the EDM process [3]. The

    development of new technologies for improving the surface

    quality of workpiece is a signicant research area in EDM

    process.

    Kumar

    et

    al.

    presented

    a

    review

    on

    the

    phenomenon

    of surface modication by EDM and future trends of its

    applications [4]. It has been observed that most of the research

    works concentrated on surface modication using the powder

    mixed

    dielectric

    medium

    in

    EDM

    process.

    The

    study

    of

    the

    impact of the electrical process parameters on surface

    modication of the workpiece has been taken up by very

    few researchers.

    3. Enhancing the performance of pulsegenerator

    Since the electrical energy is supplied to the EDM process

    informing the DC pulses, the pulse generator needs to be

    upgraded

    to

    improve

    the

    performance

    measures

    in

    the

    machining process. The lower energy pulses enhance thesurface nish of the workpiece whereas the higher energy

    pulses improve the material removal rate.

    Jahan

    et

    al.

    conducted

    a

    detailed

    experimental

    investiga-

    tion

    to

    nd

    out

    the

    inuence

    of

    major

    operating

    parameters

    on

    surface quality of tungsten carbide with both transistor and

    RC-type generators in EDM process [5]. It has been proved that

    RC pulse generator has produced a smoother surface nish

    than the transistor pulse generator due to its lower discharge

    energy

    distribution

    over

    the

    surface

    of

    tungsten

    carbide.

    Han

    et

    al.

    designed

    and

    developed

    a

    modied

    transistor

    pulse

    generator with pulse frequency of 1 MHz to produce higher

    material removal rate than the RC pulse generator in the

    electrical discharge machining process [6]. They found that thetransistor

    pulse

    generator

    has

    provided

    two

    or

    three

    times

    higher machining speed than the conventional RC pulse

    generator while machining tungsten workpiece with brass

    electrode.

    A

    pulse

    generator

    based

    on

    xed

    pulse

    width

    modulation

    has been developed by Yan and Liu to generate the high

    frequency

    4.4

    MHz

    and

    short

    duration

    pulse

    control

    signals

    to

    reduce surface roughness of the workpiece tungsten carbide in

    the EDM process [7]. From the experimental results, it has been

    observed that the very low discharge energy pulse applied

    between

    tool

    and

    electrode

    has

    improved

    the

    surface

    quality

    of

    workpiece during the machining process. Yan and Chiang

    discussed about the development and application of a newpower supply in wire electrical discharge machining process

    [8].

    A transistor-controlled power supply composed of a low

    energy discharge circuit has been designed to provide the

    functions of high frequency and lower energy pulse control.

    The experimental results have shown that the low peak

    current has been resulted in better surface nish in EDM

    process.

    Muthuramalingam

    and

    Mohan

    discussed

    about

    effect

    of

    uniform

    distribution

    for

    improving

    the

    surface

    quality

    using

    iso current pulse generator in EDM process [9]. Fig. 2 shows the

    surface quality of workpiece made by three different pulse

    generators. It has been observed that the iso current pulse

    generator could produce better surface nish than theconventional pulse generators such as RC pulse generator

    and transistor pulse generator.

    Han et al. designed and developed a new transistor type

    pulse generator with high frequency response to produce

    higher erosion rate of the workpiece in the electrical discharge

    machining

    process

    [10]. From

    the

    experimental

    results,

    it

    has

    been observed that the modied transistor pulse generator has

    produced 24 times higher material removal rate than the RC

    pulse generator in the EDM process. Yan and Lai presented the

    development

    of

    a

    ne-nish

    power

    supply

    with

    high

    frequen-

    cy in EDM process [11]. This power supply has been composed

    with full bridge circuit, two snubber circuits and a pulse control

    circuit. It has been found that the proposed power supply has

    Fig. 1 Basic mechanism involved in EDM.

    a rc h iv es o f c i vi l a n d m e ch an i ca l e n gi ne e ri n g x xx ( 2 01 4 ) x xx x x x2

    ACME-201; No. of Pages 8

    Please cite this article in press as: T. Muthuramalingam, B. Mohan, A review on inuence of electrical process parameters in EDM process,Archives of Civil and Mechanical Engineering (2014), http://dx.doi.org/10.1016/j.acme.2014.02.009

    http://dx.doi.org/10.1016/j.acme.2014.02.009http://dx.doi.org/10.1016/j.acme.2014.02.009
  • 8/10/2019 Influence of Electrical Process Parameters

    3/8

    produced

    lower

    discharge

    energy

    and

    thus

    contributed

    to

    lower surface roughness. Muthuramalingam and Mohan

    developed a semiconductor based pulse switching circuit to

    produce lower energy discharge pulses during nishing levelof

    the

    process

    for

    enhancing

    the

    EDM

    performance

    character-

    istics [12]. Casanueva et al. attempted to establish a new EDM

    impulse generator based on high frequency switched DC-to-

    DC series-parallel resonant converter [13]. It has been claimed

    that

    the

    capacitance

    effect

    has

    affected

    the

    overall

    impedance

    of the EDM arrangement and thus altered the machining

    characteristics

    of

    EDM

    process.

    4. Inuence of pulse shape on performancemeasures

    Studying the variation of the EDM process response char-acteristics due to change in shape of the generated pulse is one

    of

    the

    research

    aspects

    in

    the

    EDM

    process.

    The

    discharge

    pulse shape affects the average spark energy which is

    delivered on the surface. Since the machining characteristics

    in EDM process depend on the electrical energy, the pulse

    shape which has an effect on the machining characteristics

    such as material removal rate, surface quality and electrode

    wear

    rate

    as

    shown

    in

    Fig.

    3.

    The

    effects

    of

    the

    voltage

    excitation

    of

    the

    pre-ignition

    spark pulse on the performance measures such as material

    removal rate, electrode wear rate and average surface

    roughness have been discussed by Ghoreishi and Tabari

    [14]. Based on the results, it is clear that applying voltageexcitation of the pulse has produced an effective pulse which

    in turn increased material erosion and surface quality. The

    inuence of the current impulse on machining tungsten

    carbide

    and

    SKD

    die

    steel

    with

    electrolytic

    copper

    tool

    electrode in the EDM process has been investigated by Tsai

    and Lu [15]. From the experimental results, it has been found

    that the material removal rate and tool wear rate have beenaffected

    by

    the

    energy

    density.

    Muthuramalingam

    and

    Mohan

    discussed about inuence of discharge current impulse on the

    performance measures in EDM process [16].

    Son et al. investigated the inuences of electrical pulse

    condition

    on

    the

    machining

    characteristics

    in

    the

    EDM

    process

    [17]. It has been found that the duration of pulse considerably

    affects

    the

    machining

    characteristics

    such

    as

    material

    removal

    rate, tool wear rate and surface accuracy. It has also been

    realized that the shorter EDM pulse could be efcient to make a

    precision part. Liu et al. described the inuence of the EDM

    discharge

    pulse

    shape

    on

    the

    machining

    characteristics

    such

    as material removal mechanism of Si3N4TiN [18]. The surface

    texture of machined workpiece has been investigated withdifferent form of discharge pulse such as relaxation and iso

    current

    pulse.

    It

    has

    been

    proved

    that

    uniform

    discharge

    energy has produced good surface topography.Janardhan and

    Samuel analyzed the effect of machining parameters on

    material removal rate and average surface roughness using

    the pulse train data acquired at the spark gap with the help of

    MATLAB software package [19]. It has been observed that the

    material

    erosion

    rate

    has

    been

    increased

    with

    decrease

    in

    the

    pulse

    off

    time

    in

    EDM

    process.

    Yeo

    et

    al.

    proposed

    a

    new

    pulse

    discriminating technique for monitoring electrical discharge

    machining process [20]. This system has employed the current

    pulse as the main detecting parameter as it has been

    considered to be a better representation of the spark energyinside the plasma channel as compared to the voltage. There

    should be less arcing effect to enhance the surface nish for an

    ideal EDM process. Muthuramalingam and Mohan discussed

    and proved that the uniform duration pulse shape for the

    discharging phenomenon in EDM process has improved the

    surface

    quality

    of

    the

    workpiece

    with

    less

    arcing

    effect

    [21].

    5. Inuence of electrical process parameterson

    performance

    measures

    There are many research works that have been conducted to

    nd the inuence of process parameters especially electrical

    Fig. 2 Surface topography of machined surface using different pulse generators.

    Fig. 3 Relation between pulse shape and machining

    characteristics in EDM process.

    a rc h iv e s o f c i vi l a nd m ec h an ic a l e ng i ne e ri n g x xx ( 2 01 4 ) x x x xx x 3

    ACME-201; No. of Pages 8

    Please cite this article in press as: T. Muthuramalingam, B. Mohan, A review on inuence of electrical process parameters in EDM process,Archives of Civil and Mechanical Engineering (2014), http://dx.doi.org/10.1016/j.acme.2014.02.009

    http://dx.doi.org/10.1016/j.acme.2014.02.009http://dx.doi.org/10.1016/j.acme.2014.02.009
  • 8/10/2019 Influence of Electrical Process Parameters

    4/8

    process parameters on EDM process. Most of the researchworks

    reveal

    that

    the

    discharge

    current

    and

    machining

    time

    have the most inuencing nature on the EDM performance

    measures. Fig. 4 shows the SEM images of EDM surface while

    machining AISI 202 stainless steel with tungsten carbide tool

    electrode.

    Gostimirovic et al. investigated the effects of electrical

    process

    parameters

    on

    the

    performances

    of

    die-sinking

    electrical discharge machining process with RC pulse generator

    while machining manganese-vanadium tool steel workpiece

    using graphite tool electrode. They found that the discharge

    current

    and

    pulse duration

    have

    highly

    inuenced

    the

    material

    removal rate of the EDM process [22]. Mohan et al. analyzed the

    effect of EDM process parameters such as electrode material,polarity, pulseduration, current and rotation of the electrode on

    the

    material

    removal

    rate,tool

    wear

    rate

    and

    surface

    roughness

    [23]. It has been found that the material removal rate and tool

    wear rate have been increased with the discharge current during

    machining process. Nowicki et al. analyzed the effects

    individual electrical discharge on the crater volume of the

    workpiece in EDM process [24]. They found that the crater

    surface

    exhibits

    strong

    interaction

    with

    the

    electrical

    discharge

    spark.

    Mohan

    et

    al.

    investigated

    the

    surface

    roughness

    of

    the

    SiC/6025Al composite surface using electrical discharge ma-

    chining process with brass as the tool electrode [25]. From the

    experimental results, it has been observed that increasing peak

    current has resulted in higher surface roughness during themachining process.

    Seo et al. discussed about the drilling process of a

    functionally graded 1535 vol.% of silicon carbide particulate

    reinforced Al359 metal matrix composite byelectrical discharge

    machining process to assess the machinability and workpiece

    quality

    [26].

    It

    has

    been

    observed

    that

    the

    peak

    current

    and

    pulse

    on time have increased the material removal rate. It has also

    been reported that increase in percentage SiC particles has

    increased the material removal rate and electrode wear rate.

    Puertas

    et

    al.carried

    out

    a

    study

    on

    the

    inuence

    of

    the

    factors

    of

    current intensity, pulse time and duty cycle over the material

    removal rate, surface quality and electrode wear rate [27]. They

    modeled the relationship between the input parameters and

    response

    parameters

    in

    the

    die-sinking

    EDM

    process

    using

    response surface methodology. It has been concluded that the

    lower values of the current intensity and the machining time

    have to be used in order to obtain a good surface nish. The use

    of the dimensional analysis for investigating the effects of the

    electrical and the physical parameters on the material removal

    rate

    of

    a

    die-sinking

    EDM

    process

    has

    been

    described

    by

    Yahya

    and Manning [28]. From the experimental results, it has beenfound that the material removal rate has been increased with

    discharge current, gap voltage and pulse on time.

    Huang

    et

    al. made

    an

    attempt

    to

    unveil

    the

    inuence

    of

    the

    process

    parameters

    on

    the

    machining

    performances

    in

    the

    EDM

    process [29]. It has been found that the pulse on time and spark

    gap have the most signicant nature to affect the performance

    measures such as surface roughness and white layer depth

    using numerical analysis. Kuppan et al. reported about the

    experimental

    investigation

    of

    small

    deep

    hole

    drillingof

    Inconel

    718

    with

    electrolytic

    copper

    tool

    electrode

    using

    the

    electrical

    discharge machining process [30]. The experimental results

    have shown that the material removal rate has been increased

    with the increase in the peak current and duty factor. Patel et al.investigated

    the

    feasibility

    of

    fabricating

    micro holes in

    SiCpAl

    composites using electrical discharge machining with a rotary

    tube electrode [31]. They have investigated the material removal

    rate, electrode wear rate and hole tapper as the responses for the

    study.

    The

    experimental

    results

    have

    revealed

    that

    pulse on

    duration has signicantly affected the response characteristics

    involved

    in

    EDM

    process.

    Pelicer

    et

    al.

    focused

    on

    investigating

    the inuence of EDM process parameters and electrode

    geometry on feature micro accuracy on tool steel for mold

    fabrication purposes [32]. A set of designed experiments with

    varying

    process

    parameters

    such

    as

    pulse current,

    open

    voltage

    and pulse duration have been carried out in H13 steel using

    different shaped copper electrodes. It has been concluded thatthe triangular shaped electrode would produce highly inef-

    cient

    output,

    since

    the

    fast

    wearing

    nature

    of

    the

    electrode

    edges. Wang et al. carried out a series of experiments to

    investigate the impacts of machining polarity, electrode

    rotation speed and nominal capacitance on the material

    removal rate and tool wear rate with poly crystalline diamond

    [33]. It has been demonstrated that favorable machining

    performance

    of

    EDM

    process

    on

    the

    workpiece

    could

    be

    achieved

    in

    tool

    with

    negative

    polarity

    as

    compared

    to

    the

    positive polarity.

    Tosun et al. presented an investigation on the effect and

    optimization of machining parameters on kerf and material

    removal rate in wire EDM process with Taguchi method [34].Theexperimental studies have been conducted under varyingpulse

    duration, gap voltage, wire speed and ushing pressure with

    AISI 4140 steel as workpiece material. Based on the ANOVA

    method, the high effective parameter on both kerf and material

    removal rate has been found as pulseduration.Ji et al. presented

    a

    new

    process

    of

    machining

    SiC

    ceramics

    using electrical

    discharge milling process [35]. The effects of tool polarity, pulse

    duration, voltage and peak current on the process performances

    such as material removal rate, electrode wear rate and surface

    roughness

    have

    been

    investigated.

    It

    has

    been

    found

    that

    the

    negative polarity tool electrode with longer pulse duration has

    produced high material removal rate and surface roughness.

    Rebelo et al. presented an experimental study on the effect of

    Fig.

    4

    SEM

    images

    of

    surface

    using

    EDM

    process.

    a rc h iv es o f c i vi l a n d m e ch an i ca l e n gi ne e ri n g x xx ( 2 01 4 ) x xx x x x4

    ACME-201; No. of Pages 8

    Please cite this article in press as: T. Muthuramalingam, B. Mohan, A review on inuence of electrical process parameters in EDM process,Archives of Civil and Mechanical Engineering (2014), http://dx.doi.org/10.1016/j.acme.2014.02.009

    http://dx.doi.org/10.1016/j.acme.2014.02.009http://dx.doi.org/10.1016/j.acme.2014.02.009
  • 8/10/2019 Influence of Electrical Process Parameters

    5/8

    electric

    discharge

    machining

    parameters

    on

    material

    removal

    rate and surface quality with high strength copperberyllium

    alloys [36]. They found that the plasma diameter has been

    decreased with pulseduration and discharge current during the

    machining process.

    Yu et al. examined the use of electrical discharge machin-

    ing

    on

    machining

    poly-crystalline

    silicon

    [37]. The

    effects

    of

    different WEDM process parameters on machining character-istics have been explored. From the experimental results, it

    has been indicated that the pulse on time has the great

    inuence

    on

    the

    cutting

    speed

    in

    Wire

    EDM

    process.

    Batish

    et

    al.

    investigated

    the

    effect

    of

    process

    parameters

    and

    mechanism of material deposition in electric discharge

    machining on surface properties of EN31, H11 and high carbon

    high chromium die steel materials [38]. It has been discussed

    about material transfer mechanism involved in EDM process.

    It

    has

    been

    found

    that

    die

    steels

    have

    been

    machined

    effectively

    with

    copper

    tool

    electrode

    using

    EDM

    process.

    Patel et al. presented a detailed experimental investigation of

    machining characteristics such as surface integrity and

    material removal mechanisms of advanced ceramic compos-ite

    Al2O3SiCwTiC with EDM process [39]. It has been

    concluded that the surface roughness and material removal

    rate have been increased with pulse duration in EDM process.

    6. Inuence of discharge energy onperformance measures

    In view of the fact that when the discharge energy is converted

    into the thermal energy to melt and vaporize the material in

    EDM

    process,

    it

    is

    unavoidable

    to

    discuss

    the

    inuence

    of

    the

    pulse energy on the machining characteristics in such a

    process.Jahan et al. conducted an experimental investigation with

    the

    view

    of

    obtaining

    ne

    surface

    nish

    in

    die-sinking

    EDM

    process of tungsten carbide using different tool electrodes

    such as tungsten, copper tungsten and silver tungsten [40]. It

    has been found that the surface nish has been inuenced by

    the discharge energy during machining process. It has been

    realized that the lower discharge energy has produced good

    surface

    nish.

    Yeo

    et

    al.

    discussed

    about

    the

    machining

    of

    zirconium

    based

    bulk

    metallic

    glass

    by

    EDM

    process

    with

    different tool electrodes such as copper, brass and tungsten

    rod electrode [41]. The experimental results have shown

    that the usage of lower input energy has produced the

    lower surface roughness and electrode tool wear. Khanraet al. investigated the inuence of energy input on the

    workpiece surface during the machining in the EDM process.

    In this experimental investigation, a well-polished mild steel

    (C 0.18%) plate has been used for machining byEDM [42]. It has

    been observed that the energy input has inuenced the debris

    particle

    size

    in

    the

    EDM

    process.

    Popa et al. showed the importance of optimizing the

    process parameters that could inuence the quality of the EDM

    process [43]. They formulated the equation of crater depth in

    terms

    of

    discharge

    energy

    in

    EDM

    process.

    From

    the

    relation,

    it

    has been observed that the crater depth has been increased

    with the discharge current owing through the workpiece and

    tool electrode. Kojima et al. described about the spectroscopic

    measurement

    of

    arc

    plasma

    diameter

    in

    EDM

    [44]. They

    found

    that the arc plasma has been increased with increasing

    discharge current. It has been veried that crater diameter and

    depth decrease with increasing gap width due to the increased

    plasma diameter. The arc plasma diameter has been increased

    with increasing spark gap and thus claried the reason for

    lower

    material

    removal

    rate

    and

    smoother

    surface

    nish

    with

    longer spark gap. Wong et al. developed a single spark pulsegenerator using resistancecapacitance arrangement to study

    the erosion characteristics in the EDM process from the crater

    size

    [45].

    The

    volume

    and

    size

    of

    the

    craters

    have

    been

    found

    to

    be

    more consistent at lower energy discharge sparks than the

    higher energy discharge sparks. The higher energy pulse leads

    to the micro surface crack on the work surface. Guu et al.

    aimed to investigate the machining characteristics of manga-

    nesezinc ferrite magnetic materials using electrical discharge

    machining

    process

    [46]. The

    experimental

    results

    have

    indicated that the morphology of debris revealed the mecha-

    nism of material removal. It has been observed that the better

    machined surface has been obtained by setting processparameters

    at

    low

    pulse

    energy.

    Nowicki

    et

    al.

    made

    an

    attempt to machine supercial layer of the workpiece using

    brush EDM process by modifying the spark energy [47]. The

    theoretical modeling of the EDM process based upon the heat

    transfer

    equations

    has

    been

    established

    by

    Singh

    [48]. In

    the

    study, the input energy equation has been developed as a

    function

    of

    pulse

    duration,

    current,

    polarity

    of

    electrode

    and

    properties of the workpiece and tool electrodes. This model

    has been helpful to calculate the optimal process parameters

    for obtaining optimum discharge energy.

    7.

    Monitoring

    and

    control

    of

    the

    EDM

    process

    The

    EDM

    process

    parameters

    have

    to

    be

    monitored

    during

    the

    machining process so that the controlling of those parameters

    can be done to obtain the required response parameters. The

    main action of monitoring and controlling the process is to

    observe and measure process parameters to reduce the

    deviation of performance measures from the expected level.

    An

    adaptive

    control

    system

    for

    process

    monitoring,

    identication

    and

    control

    in

    the

    wire

    electrical

    discharge

    machining process has been developed by Yan [49]. It has been

    realized that the wire breaking has been controlled by

    adjustment of pulse interval of each pulse cycle of supply.

    Caydas et al. developed an adaptive neuro-fuzzy inferencesystem model for the prediction of the surface roughness of

    machined surface using wire EDM process as a function of

    process parameters such as open circuit voltage, pulse

    duration and wire feed rate [50]. From the experimental

    results, it has been found that the proposed control system has

    improved

    the

    surface

    quality

    in

    EDM

    process.

    Yilmaz et al. introduced a used friendly intelligent system

    based on the knowledge of the skilled operators for the

    selection of the EDM process parameters for machining AISI

    4340

    stainless

    steel

    [51]. The

    system

    has

    been

    provided

    with

    a

    compact selection tool based on expert rules and enabled an

    unskilled user to select necessary parameters which lead to

    lower electrode wear rate and better surface quality. Zhou and

    a rc h iv e s o f c i vi l a nd m ec h an ic a l e ng i ne e ri n g x xx ( 2 01 4 ) x x x xx x 5

    ACME-201; No. of Pages 8

    Please cite this article in press as: T. Muthuramalingam, B. Mohan, A review on inuence of electrical process parameters in EDM process,Archives of Civil and Mechanical Engineering (2014), http://dx.doi.org/10.1016/j.acme.2014.02.009

    http://dx.doi.org/10.1016/j.acme.2014.02.009http://dx.doi.org/10.1016/j.acme.2014.02.009
  • 8/10/2019 Influence of Electrical Process Parameters

    6/8

    Han

    developed

    an

    adaptive

    control

    system

    which

    directly

    and

    automatically has regulated the tool down time for improving

    the process performance in EDM process [52]. It has been

    observed that this adaptive system would improve the

    machining rate, due to the automatic adjustment of spark

    gap. Yan and Chien developed a new pulse discriminating and

    control

    system

    for

    process

    monitoring

    in

    EDM

    process

    [53].The

    effects of pulse interval, machining feed rate and workpiece onthe variation of the proportion of normal spark, arc and short

    circuit in the total spark have been discussed. The experimen-

    tal

    results

    have

    indicated

    that

    the

    developed

    control

    system

    has

    signicantly

    reduced

    the

    arc

    discharge

    in

    EDM

    process

    to

    achieve stable machining.

    Chang designed a proportional derivative controller of the

    spark gap between an electrode and a workpiece to analyze the

    non-linearity involved in EDM process [54]. They concluded

    that

    this

    non-linearity

    has

    reduced

    the

    effective

    discharge

    in

    electrical

    discharge

    machining

    process.

    Behrens

    and

    Ginzel

    proposed a neuro-fuzzy based gap width controller for a highly

    efcient removal mechanism in EDM process [55]. The

    experimental results have indicated that the proposedcontroller

    has

    enhanced

    EDM

    process

    to

    achieve

    the

    better

    surface nish of workpiece. Kao and Shih monitored the

    discharge current in electrical discharge machining using high

    speed data acquisition with high frequency response [56].

    From

    the

    experimental

    results,

    it

    has

    been

    found

    that

    decrease

    in air gap between tool and workpiece has improved the

    material

    removal

    rate

    in

    EDM

    process.

    Tong et al. designed an experimental system with a macro/

    micro dual feed spindle to improve the machining perfor-

    mance of servo scanning micro EDM process, which utilized an

    ultrasonic

    linear

    motor

    as

    the

    macro

    drive

    and

    a

    piezoelectric

    actuator as micro feeding mechanism [57]. Based on LabVIEW

    software package, a real time control system has beendeveloped to control coordinately the dual-feed spindle to

    drive

    the

    tool

    electrode.

    Fenggou

    and

    Dayong

    presented

    a

    method to automatically determine and optimize the process

    parameters on the EDM sinking process with the application of

    articial neural network [58]. The experimental results have

    proved that automatic determination of current value would

    be the efcient method on improving EDM performance.

    8. Modeling of EDM process parameters

    The process parameters modeling helps to analyze the

    inuence process parameters on the machining character-istics in any of the machining process. This section is

    discussed about the mathematical modeling of process

    parameters and simulation models in the EDM process.

    8.1.

    Theoretical

    modeling

    of

    EDM

    process

    Since the two electrical conductors such as tool electrode and

    workpiece are separated by a dielectric medium, the EDM

    arrangement can be modeled as a capacitor. Liu et al.

    constructed

    a

    plate

    capacitor

    model

    for

    electrical

    discharge

    machining process [59]. The correlation actions of process

    parameters and energy distribution have been discussed

    based on the eld electron emission theory. It has been

    observed

    that

    machining

    time

    plays

    a

    major

    role

    to

    improve

    the process efciency. Das andJoshi developed a comprehen-

    sive mathematical model to predict the spark erosion rate

    involved in EDM process [60]. They found that the plasma

    current and plasma radius have been increased with pulse

    duration. Salonitis et al. developed the thermal based model

    for

    the

    determination

    of

    the

    material

    removal

    rate

    and

    average

    surface roughness achieved as a function of the processparameters in the EDM process [61]. Spadlo et al. developed a

    thermo model for brush electrical discharge alloying process

    [62].

    It

    has

    been

    realized

    that

    material

    removal

    depends

    on

    the

    discharge

    current

    pulse

    owing

    through

    the

    dielectric

    medi-

    um.

    8.2.

    Optimization

    of

    EDM

    process

    Most

    of

    the

    research

    works

    have

    been

    carried

    out

    to

    optimize

    the

    electrical

    process

    parameters

    in

    EDM

    process.

    Marafona

    and Wykes described an investigation into the optimization of

    material removal rate in the electric discharge machining

    process with copper tungsten tool electrode [63]. From theexperimental

    results,

    it

    has

    been

    proved

    that

    large

    current

    intensity would result in higher material removal rate.

    Matoorian et al. presented the application of the Taguchi

    robust design methods to optimize the precision and accuracy

    of

    the

    EDM

    process

    for

    machining

    of

    precise

    cylindrical

    forms

    on hard and difcult-to-machine materials [64]. They found

    that

    the

    current

    intensity

    of

    the

    EDM

    process

    affects

    the

    material removal rate greatly. Muthuramalingam and Mohan

    developed Taguchi-DEAR methodology based optimization of

    electrical process parameters [65]. Tzeng and Chen described

    about

    the

    application

    of

    the

    fuzzy

    logic

    analysis

    coupled

    with

    Taguchi methods to optimize the precision and accuracy of the

    high speed electrical discharge machining process [66]. Themost important factors affecting the precision and accuracy of

    the

    high

    speed

    EDM

    process

    have

    been

    identied

    as

    duty

    cycle

    and peak current. Kuriakose and Shunmugam developed a

    multiple regression model to represent relationship between

    the input and output process variables [67]. They have done

    the multi objective optimization method based on non-

    dominated sorting genetic algorithm to optimize the EDM

    process

    parameters.

    9. Conclusion

    The present study discussed about the review of contributionof electrical process parameters for efcient EDM process in

    various aspects such as state of art, inuence of the discharge

    energy, modeling of EDM process parameters, pulse genera-

    tors, pulse shape, monitoring the parameters and optimiza-

    tion of EDM process parameters. The review has been carried

    out

    in

    all

    aspects

    and

    types

    of

    EDM

    process

    such

    as

    die-sinking

    EDM, wire EDM and micro EDM. The following conclusions can

    be mainly made based on the literatures:

    (i)

    Most

    of

    the

    literatures

    have

    discussed

    about

    inuence

    of

    process parameters on the performance measures,

    modeling and optimization of process parameters in-

    volved in the electro erosion process.

    a rc h iv es o f c i vi l a n d m e ch an i ca l e n gi ne e ri n g x xx ( 2 01 4 ) x xx x x x6

    ACME-201; No. of Pages 8

    Please cite this article in press as: T. Muthuramalingam, B. Mohan, A review on inuence of electrical process parameters in EDM process,Archives of Civil and Mechanical Engineering (2014), http://dx.doi.org/10.1016/j.acme.2014.02.009

    http://dx.doi.org/10.1016/j.acme.2014.02.009http://dx.doi.org/10.1016/j.acme.2014.02.009
  • 8/10/2019 Influence of Electrical Process Parameters

    7/8

    (ii)

    It

    has

    been

    found

    that

    peak

    current

    and

    pulse

    duration

    are

    dominating the performance measures in EDM process.

    (iii) It has been observed that only less attention has been

    given for enhancing the electrical process parameters in

    EDM process in terms of pulse modication, monitoring

    and adaptive controlling of the process parameters.

    (iv)

    It

    has

    also

    been

    observed

    that

    only

    very

    few

    literatures

    are

    available describing the hybrid modern manufacturingtechniques such as electro chemical discharge machining

    (ECDM).

    r e f e r e n c e s

    [1] E.C. Jameson, Electrical Discharge Machining, rst ed.,

    Society of Manufacturing Engineers, Michigan, 2001.

    [2] K.H. Ho, S.T. Newman, State of the art electrical discharge

    machining (EDM), International Journal of Machine Tools and

    Manufacture 43 (2003) 12871300.

    [3] N.M. Abbas, D.G. Solomon, M. Fuad Bahari, A review on

    current research trends in electrical discharge machining,International Journal of Machine Tools and Manufacture 47

    (2007) 12141228.

    [4] S. Kumar, R. Singh, T.P. Singh, B.L. Sethi, Surface modication

    by electrical discharge machining: a review, Journal of

    Materials Processing Technology 209 (2009) 36753687.

    [5] M.P. Jahan, Y.S. Wong, M. Rahman, A study on the ne-nish

    die-sinking micro EDM of tungsten carbide using different

    electrode materials, Journal of Materials Processing

    Technology 209 (2009) 39563967.

    [6] F. Han, L. Chen, D. Yu, X. Zhou, Basic study on pulse

    generator for micro EDM, International Journal of Advanced

    Manufacturing Technology 33 (2007) 474479.

    [7] M.T. Yan, Y.T. Liu, Design analysis and experimental study of

    a high frequency power supply fornish cut of wire EDM,

    International Journal of Machine Tools and Manufacture 49(2009) 793796.

    [8] M.T. Yan, T.L. Chiang, Design and experimental study of a

    power supply for micro wire EDM, International Journal of

    Advanced Manufacturing Technology 40 (2009) 11111117.

    [9] T. Muthuramalingam, B. Mohan, Enhancing the surface

    quality process by iso pulse generator in EDM process,

    Advanced Materials Research 622/623 (2013) 375380.

    [10] F. Han, S. Wachi, M. Kunieda, Improvement of machining

    characteristics of micro-EDM using transistor type iso pulse

    generator and servo feed control, Precision Engineering 28

    (2004) 378385.

    [11] M.T. Yan, Y.P. Lai, Surface quality improvement of wire-EDM

    using a ne-nish power supply, International Journal of

    Machine Tools and Manufacture 47 (2007) 16861694.

    [12] T. Muthuramalingam, B. Mohan, Design and fabrication ofcontrol system based iso pulse generator for electrical

    discharge machining, International Journal of Mechatronics

    and Manufacturing Systems 6 (2013) 133143.

    [13] R. Casanueva, F.J. Azcondo, S. Bracho, Series-parallel

    resonant converter for an EDM power supply, Journal of

    Materials Processing Technology 149 (2004) 172177.

    [14] M. Ghoreishi, C. Tabari, Investigation into the effect of

    voltage excitation of pre-ignition spark pulse on the electro-

    discharge machining process, Materials and Manufacturing

    Processes 22 (2007) 833841.

    [15] Y.Y. Tsai, C.T. Lu, Inuence of current impulse on machining

    characteristics in EDM, Journal of Mechanical Science and

    Technology 21 (2007) 16171621.

    [16] T. Muthuramalingam, B. Mohan, Inuence of discharge

    current pulse on machinability in electrical discharge

    machining, Materials and Manufacturing Processes 28

    (2013) 375380.

    [17] S.M. Son, H.S. Lim, A.S. Kumar, M. Rahman, Inuences of

    pulsed power conditionon themachiningproperties in micro

    EDM, Journal of Materials Processing Technology 190 (2007)

    7376.

    [18] K. Liu, D. Reynaerts, B. Lauwers, Inuence of the pulse shape

    on the EDM performance of Si3N4TiN ceramic composite,

    CIRP Annals

    Manufacturing Technology 58 (2009) 217220.

    [19] V. Janardhan, G.L. Samuel, Pulse train data analysis to

    investigate the effect of machining parameters on the

    performance of wire electro discharge turning process,

    International Journal of Machine Tools and Manufacture 50

    (2010) 775788.

    [20] S.H. Yeo, E. Aligiri, P.C. Tan, H. Zarepour, A new pulse

    discriminating system for micro-EDM, Materials and

    Manufacturing Processes 24 (2009) 12971305.

    [21] T. Muthuramalingam,B. Mohan, Experimental

    investigationof

    iso energy pulse generator on performance measures in EDM,

    Materials and Manufacturing Processes 28 (2013)

    11371142.

    [22] M. Gostimirovic, P. Kovac, B. Skoric, M. Sekulic, Effect of

    electrical process parameters on the machining performance

    in EDM, Indian Journal of Engineering and Materials Sciences

    18 (2012) 411415.

    [23] B. Mohan, A. Rajadurai, K.G. Satyanarayana, Effect of SiC and

    rotation of electrode on electric discharge machining of Al

    SiC composite, Journal of Materials Processing Technology

    124 (2002) 297304.

    [24] B. Nowicki, A. Dmowska, A.P. Lejtas, Morphology of traces

    made by individual electric discharge in the EDM, Advances

    in Manufacturing Science and Technology 33 (2009) 524.

    [25] B. Mohan, A. Rajadurai, K.G. Satyanarayana, Electric

    discharge machining of AlSiC metal matrix composites

    using rotary tube electrode, Journal of Materials Processing

    Technology 153/154 (2004) 978985.

    [26] Y.W. Seo, D. Kim, M. Ramulu, Electrical discharge machining

    of functionally graded 1535vol% SiCp/Al composites,

    Materials and Manufacturing Processes 21 (2006) 479487.

    [27] I. Puertas, C.J . Luis, L. Alvarez, Analysis of the inuence ofEDM parameters on surface quality, MRR and EW of WC-Co,

    Journal of Materials Processing Technology 153/154 (2004)

    10261032.

    [28] A. Yahya, C.D. Manning, Determination of material removal

    rate of an electro discharge machine using dimensional

    analysis, Journal of Physics D: Applied Physics 37 (2004)

    14671471.

    [29] J.T. Huang, Y.S. Liao, W.J. Hsue, Determination of nish-

    cutting operation number and machining parameters setting

    in wire electrical discharge machining, Journal of Materials

    Processing Technology 87 (1999) 6981.

    [30] P. Kuppan, A. Rajadurai, S. Narayanan, Inuence of EDM

    process parameters in deep hole drilling of Inconel 718,

    International Journal of Advanced Manufacturing Technology

    38 (2008) 7484.

    [31] K.M. Patel, P.M. Pandey, P.V. Rao, Understanding the role of

    weight percentage and size of silicon carbide particulate

    reinforcement on electro-discharge machining of aluminium

    based composites, Materials and Manufacturing Processes 23

    (2008) 665673.

    [32] N. Pelicer, J. Ciurana, T. Ozel, Inuence of process parameters

    and electrode geometry on feature micro-accuracy in electro

    discharge machining of tool

    steel,Materials

    and Manufacturing

    Processes 24 (2009) 12821289.

    [33] D. Wang, W.S. Zhao, L. Gu, X.M. Kang, A study on micro hole

    machining of poly crystalline diamond by micro- electrical

    discharge machining, Journal of Materials Processing

    Technology 211 (2011) 311.

    [34] N. Tosun, C. Cogun, G. Tosun, A study on kerf and material

    removal rate in wire electrical discharge machining based on

    a rc h iv e s o f c i vi l a nd m ec h an ic a l e ng i ne e ri n g x xx ( 2 01 4 ) x x x xx x 7

    ACME-201; No. of Pages 8

    Please cite this article in press as: T. Muthuramalingam, B. Mohan, A review on inuence of electrical process parameters in EDM process,Archives of Civil and Mechanical Engineering (2014), http://dx.doi.org/10.1016/j.acme.2014.02.009

    http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0005http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0005http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0005http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0005http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0010http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0010http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0010http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0010http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0010http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0015http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0015http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0015http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0015http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0015http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0015http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0020http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0020http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0020http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0020http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0020http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0020http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0020http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0030http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0030http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0030http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0030http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0030http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0035http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0035http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0035http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0035http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0035http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0035http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0035http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0035http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0040http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0040http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0040http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0040http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0040http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0045http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0045http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0045http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0045http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0045http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0050http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0050http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0050http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0050http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0050http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0050http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0055http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0055http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0055http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0055http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0055http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0055http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0055http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0055http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0055http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0060http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0060http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0060http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0060http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0060http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0060http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0065http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0065http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0065http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0065http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0065http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0070http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0070http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0070http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0070http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0070http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0070http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0075http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0075http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0075http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0075http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0075http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0075http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0075http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0080http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0080http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0080http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0080http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0080http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0080http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0080http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0080http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0085http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0085http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0085http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0085http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0085http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0085http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0085http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0085http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0095http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0095http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0095http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0095http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0095http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0095http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0095http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0100http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0100http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0100http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0100http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0100http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0105http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0105http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0105http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0105http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0105http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0105http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0105http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0105http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0105http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0110http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0110http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0110http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0110http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0110http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0110http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0115http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0115http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0115http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0115http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0115http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0115http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0115http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0120http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0120http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0120http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0120http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0120http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0125http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0125http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0125http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0125http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0125http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0125http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0125http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0125http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0135http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0135http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0135http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0135http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0135http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0135http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0135http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0135http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0140http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0140http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0140http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0140http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0140http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0140http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0145http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0145http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0145http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0145http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0145http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0145http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0145http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0145http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0165http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0165http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0165http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0165http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0165http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0165http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0170http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0170http://dx.doi.org/10.1016/j.acme.2014.02.009http://dx.doi.org/10.1016/j.acme.2014.02.009http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0170http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0170http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0165http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0165http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0165http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0165http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0160http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0155http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0150http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0145http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0145http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0145http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0145http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0140http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0140http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0140http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0140http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0135http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0135http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0135http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0135http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0130http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0125http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0125http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0125http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0125http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0120http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0120http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0120http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0115http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0115http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0115http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0115http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0110http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0110http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0110http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0110http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0105http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0105http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0105http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0100http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0100http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0100http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0095http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0095http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0095http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0095http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0095http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0090http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0085http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0085http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0085http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0085http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0080http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0080http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0080http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0080http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0075http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0075http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0075http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0070http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0070http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0070http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0070http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0065http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0065http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0065http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0060http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0060http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0060http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0060http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0055http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0055http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0055http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0050http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0050http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0050http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0050http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0045http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0045http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0045http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0040http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0040http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0040http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0035http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0035http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0035http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0035http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0030http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0030http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0030http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0025http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0020http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0020http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0020http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0015http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0015http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0015http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0015http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0010http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0010http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0010http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0005http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0005
  • 8/10/2019 Influence of Electrical Process Parameters

    8/8

    Taguchi method, Journal of Materials Processing Technology

    152 (2004) 316322.

    [35] R. Ji, Y.H. Liu, Y.Z. Zhang, B.O. Cai , X.P. Li, High speed end

    electric discharge milling of silicon carbide ceramics,

    Materials and Manufacturing Processes 26 (2011) 10501058.

    [36] J.C. Rebelo, A.M. Dias, R. Mesquita, P. Vassalo, M. Santos, An

    experimental study on electro-discahrge machining and

    polishing of high strength copperberyllium alloys, Journal

    of Materials Processing Technology 103 (2000) 389397.

    [37] P.H. Yu, H.K. Lee, Y.X. Lin, S.J. Qin, Machining characteristics

    of poly crystalline silicon by wire electrical discharge

    machining, Materials and Manufacturing Processes 26

    (2011) 14431450.

    [38] A. Batish, A. Bhattacharya, V.K. Singla, G. Singh, Study of

    material transfer mechanism in die steels using powder

    mixed electric discharge machining, Materials and

    Manufacturing Processes 27 (2012) 449456.

    [39] K.M. Patel, P.M. Pandey, P.V. Rao, Surface integrity and

    material removal mechanisms associated with the EDM of

    Al2O3ceramic composite, International Journal of Refractory

    Metals and Hard Materials 27 (2009) 892899.

    [40] M.P. Jahan, Y.S. Wong, M. Rahman, A study on the quality

    micro-hole machining of tungsten carbide by micro-EDM

    process using transistor and RC-type pulse generator, Journalof Materials Processing Technology 209 (2009) 17061716.

    [41] S.H. Yeo, P.C. Tan, E. Aligiri, S.B. Tor, N.H. Loh, Processing of

    zirconium based bulk metallic glass using micro electrical

    discharge machining, Materials and Manufacturing Processes

    24 (2009) 12421248.

    [42] A.K. Khanra, L.C. Pathak, M.M. Godkhindi, Micro analysis of

    debris formed during electrical discharge machining, Journal

    of Materials Science 42 (2007) 872877.

    [43] M.S. Popa, G. Contiu, G. Pop, P. Dan, New technologies and

    applications of EDM process, The International Journal of

    Material Forming 2 (2009) 633636.

    [44] A. Kojima, W. Natsu, M. Kunieda, Spectroscopic

    measurement of arc plasma diameter in EDM, CIRP Annals

    Manufacturing Technology 57 (2008) 203207.

    [45] Y.S. Wong, M. Rahman, H.S. Lim, H. Han, N. Ravi,Investigation of micro-EDM material removal characteristics

    using single RC-pulse discharges, Journal of Materials

    Processing Technology 140 (2003) 303307.

    [46] Y.H. Guu, K.L. Tsai, L.K. Chen, An experimental study on

    electrical discharge machining of manganesezinc ferrite

    magnetic material, Materials and Manufacturing Processes 22

    (2007) 6670.

    [47] B. B. Nowicki, R. Pierzynowski, S. Spadlo, The supercial layer

    of parts machined by brush electro discharge mechanical

    machining (BEDMM), Proceedings of the Institution of

    Mechanical Engineers Part B: Journal of Engineering

    Manufacture 218 (2004) 18.

    [48] H. Singh, Experimental study of distribution of energy during

    EDM process for utilization in thermal models, International

    Journal of Heat and Mass Transfer 55 (2012) 50535064.

    [49] M.T. Yan, An adaptive control system with self organizing

    fuzzy sliding mode control strategy for micro wire EDM

    machine, International Journal of Advanced Manufacturing

    Technology 50 (2010) 315328.

    [50] U. Caydas, A. Hascalik, Modeling and analysis of electrode

    wear and white layer thickness in die-sinking EDM process

    through response surface methodology, International Journal

    of Advanced Manufacturing Technology 38 (2008) 11481156.

    [51] O. Yilmaz, O. Eyercioglu, N.N.Z. Gindy, A user friendly fuzzy

    based system for the selection of electro discharge

    machining process parameters, Journal of Materials

    Processing Technology 172 (2006) 363371.

    [52] M. Zhou, F. Han, Adaptive control for EDM process with a self

    tuning regulator, International Journal of Machine Tools and

    Manufacture 49 (2009) 462469.

    [53] M.T. Yan, H.T. Chien, Monitoring and control of the micro

    wire-EDM process, International Journal of Machine Tools

    and Manufacture 47 (2007) 148157.

    [54] X.F. Chang, Mixed H2/H1 optimization approachto gapcontrol

    on EDM, Control Engineering

    Practice 13 (2005)

    95104.

    [55] A. Behrens, J. Ginzel, Neuro-fuzzy processes control system

    for sinking EDM, Journal of Manufacturing Processes 5 (2003)

    3339.

    [56] C.C. Kao, A.J. Shih, Sub-nano second monitoring of micro-

    hole electrical discharge machining pulses and modeling of

    discharge ringing, International Journal of Machine Tools and

    Manufacture 46 (2006) 19962008.

    [57] H. Tong, Y. Li, Y. Wang, D. Yu, Servo scanning 3D micro-EDM

    based on macro/micro dual feed machine, International

    Journal of Machine Tools and Manufacture 48 (2008) 858869.

    [58] C. Fenggou, Y. Dayong, The study of high ef ciency and

    intelligent optimization system in EDM sinking process,

    Journal of Materials Processing Technology 149 (2004) 8387.

    [59] S. Liu, Y. Huang, Y. Li, A plate capacitor model of the EDM

    process based on the eld emission theory, International

    Journal of Machine Tools and Manufacture 51 (2011) 653659.

    [60] S. Das, S.S. Joshi, Modelling of spark erosion rate in micro

    wire-EDM, International Journal of Advanced Manufacturing

    Technology 48 (2010) 581596.

    [61] K. Salonitis, A. Stournaras, P. Stavropoulos, G. Chryssolouris,

    Thermal modeling of the material removal rate and surface

    roughness for die-sinking EDM, International Journal of

    Advanced Manufacturing Technology 40 (2009) 316323.

    [62] S. Spadlo, J. Kozak, P. Mlynarczyk, Mathematical modelling of

    the electrical discharge mechanical alloying process,Procedia CIRP 6 (2013) 423427.

    [63] J. Marafona, C. Wykes, A new method of optimizing material

    removal rate using EDM with copper tungsten electrodes,

    International Journal of Machine Tools and Manufacture 40

    (2000) 153164.

    [64] P. Matoorian, S. Sulaiman, M.M.H.M. Ahmed, An

    experimental study for optimization of electrical discharge

    turning process, Journal of Materials Processing Technology

    204 (2008) 350356.

    [65] T. Muthuramalingam, B. Mohan, Multi

    response optimization

    of electrical process parameterson machining characteristics

    in EDM using Taguchi-DEAR methodology, Journal of

    Engineering Technology 3 (2013) 5760.

    [66] Y.F.

    Tzeng, F.C. Chen, Multi objective optimisation of high

    speed electrical discharge machining process using Taguchifuzzy based approach, Materials and Design 28 (2007)

    11591168.

    [67] S. Kuriakose, M.S. Shunmugam, Multi-objective optimization

    of wire-electrical discharge machining process by non-

    dominated sorting genetic algorithm, Journal of Materials

    Processing Technology 170 (2005) 133141.

    a rc h iv es o f c i vi l a n d m e ch an i ca l e n gi ne e ri n g x xx ( 2 01 4 ) x xx x x x8

    ACME-201; No. of Pages 8

    Please cite this article in press as: T. Muthuramalingam, B. Mohan, A review on inuence of electrical process parameters in EDM process,hi f i il d h i l i i ( ) h //d d i / /j

    http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0170http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0170http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0170http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0170http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0175http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0175http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0175http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0175http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0175http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0175http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0175http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0180http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0180http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0180http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0180http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0180http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0180http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0180http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0180http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0185http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0185http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0185http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0185http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0185http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0185http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0190http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0190http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0190http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0190http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0190http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0190http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0195http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0195http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0195http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0195http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0195http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0195http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0195http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0195http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0195http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0195http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0200http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0200http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0200http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0200http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0200http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0200http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0205http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0205http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0205http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0205http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0205http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0205http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0210http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0210http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0210http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0210http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0210http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0215http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0215http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0215http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0215http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0215http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0220http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0220http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0220http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0220http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0220http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0220http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0225http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0225http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0225http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0225http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0225http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0225http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0230http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0230http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0230http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0230http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0230http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0230http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0230http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0230http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0230http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0230http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0235http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0235http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0235http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0235http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0235http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0235http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0235http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0235http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0235http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0240http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0240http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0240http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0240http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0240http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0245http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0245http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0245http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0245http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0245http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0245http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0250http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0250http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0250http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0250http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0250http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0250http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0255http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0255http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0255http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0255http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0255http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0255http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0260http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0260http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0260http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0260http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0260http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0265http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0265http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0265http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0265http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0265http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0270http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0270http://refhub.elsevier.com/S1644-9665(14)00046-6/sbref0270http://refhub.elsevier.com/S1644-9665(14)00046-6