informe de mecanica de fluidos

27
INTRODUCCION En mecánica de fluidos, un flujo se clasifica en compresible e incompresible, dependiendo del nivel de variación de la densidad del fluido durante ese flujo. La incompresibilidad es una aproximación y se dice que el flujo es incompresible si la densidad permanece aproximadamente constante a lo largo de todo el flujo. Por lo tanto, el volumen de todas las porciones del fluido permanece inalterado sobre el curso de su movimiento cuando el flujo o el fluido es incompresible. En esencia, las densidades de los líquidos son constantes y así el flujo de ellos es típicamente incompresible.

Upload: adler-huaranga-vega

Post on 28-Oct-2015

547 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Informe de Mecanica de Fluidos

INTRODUCCION

En mecánica de fluidos, un flujo se clasifica en compresible e incompresible, dependiendo

del nivel de variación de la densidad del fluido durante ese flujo. La incompresibilidad es

una aproximación y se dice que el flujo es incompresible si la densidad permanece

aproximadamente constante a lo largo de todo el flujo. Por lo tanto, el volumen de todas las

porciones del fluido permanece inalterado sobre el curso de su movimiento cuando el flujo

o el fluido es incompresible. En esencia, las densidades de los líquidos son constantes y así

el flujo de ellos es típicamente incompresible.

Page 2: Informe de Mecanica de Fluidos

CINEMATICA VISUALIZACION DE FLUJOS

MESA DE ANALOGICAS DE STOKES

I. OBJETIVOS

Reconocer mediante la prueba de laboratorio en un flujo uniforme,

introduciendo algunas figuras geométricas que representan barreras que

rompen el flujo: ¿ En qué zonas se producen mayor socavación y que

figuras generan trayectoria uniforme del flujo, es decir no alteran el flujo?.

Visualizar las líneas de corriente de un fluido a través de la introducción de

un colorante en el fluido uniforme.

II. MARCO TEORICO

El movimiento de los fluidos puede clasificarse de muchas maneras, según

diferentes criterios y según sus diferentes características, este puede ser:

a. Flujo turbulento: Este tipo de flujo es el que más se presenta en la práctica

de ingeniería. En este tipo de flujo las partículas del fluido se mueven en

trayectorias erráticas, es decir, en trayectorias muy irregulares sin seguir un

orden establecido, ocasionando la transferencia de cantidad de movimiento

de una porción de fluido a otra, de modo similar a la transferencia de

cantidad de movimiento molecular pero a una escala mayor.

En este tipo de flujo, las partículas del fluido pueden tener tamaños que van

desde muy pequeñas, del orden de unos cuantos millares de moléculas, hasta

las muy grandes, del orden de millares de pies cúbicos en un gran remolino

dentro de un río o en una ráfaga de viento.

Cuando se compara un flujo turbulento con uno que no lo es, en igualdad de

condiciones, se puede encontrar que en la turbulencia se desarrollan mayores

esfuerzos cortantes en los fluidos, al igual que las pérdidas de energía

mecánica, que a su vez varían con la primera potencia de la velocidad.

Page 3: Informe de Mecanica de Fluidos

La ecuación para el flujo turbulento se puede escribir de una forma análoga

a la ley de Newton de la viscosidad:

donde:

h : viscosidad aparente, es factor que depende del movimiento del fluido y

de su densidad.

En situaciones reales, tanto la viscosidad como la turbulencia contribuyen al

esfuerzo cortante:

En donde se necesita recurrir a la experimentación para determinar este tipo

de escurrimiento.

Factores que hacen que un flujo se torne turbulento:

La alta rugosidad superficial de la superficie de contacto con el flujo, sobre

todo cerca del borde de ataque y a altas velocidades, irrumpe en la zona

laminar de flujo y lo vuelve turbulento.

Page 4: Informe de Mecanica de Fluidos

Alta turbulencia en el flujo de entrada. En particular para pruebas en túneles

de viento, hace que los resultados nunca sean iguales entre dos túneles

diferentes.

Gradientes de presión adversos como los que se generan en cuerpos gruesos,

penetran por atrás el flujo y a medida que se desplazan hacia delante lo

"arrancan".

Calentamiento de la superficie por el fluido, asociado y derivado del

concepto de entropía, si la superficie de contacto está muy caliente,

transmitirá esa energía al fluido y si esta transferencia es lo suficientemente

grande se pasará a flujo turbulento.

b. Flujo laminar: Se caracteriza porque el movimiento de las partículas del

fluido se produce siguiendo trayectorias bastante regulares, separadas y

perfectamente definidas dando la impresión de que se tratara de láminas o

capas más o menos paralelas entre si, las cuales se deslizan suavemente unas

sobre otras, sin que exista mezcla macroscópica o intercambio transversal

entre ellas.

La ley de Newton de la viscosidad es la que rige el flujo laminar:

Esta ley establece la relación existente entre el esfuerzo cortante y la rapidez

de deformación angular. La acción de la viscosidad puede amortiguar

cualquier tendencia turbulenta que pueda ocurrir en el flujo laminar.

Page 5: Informe de Mecanica de Fluidos

En situaciones que involucren combinaciones de baja viscosidad, alta

velocidad o grandes caudales, el flujo laminar no es estable, lo que hace que

se transforme en flujo turbulento.

c. Flujo incompresible: Es aquel en los cuales los cambios de densidad de un

punto a otro son despreciables, mientras se examinan puntos dentro del

campo de flujo, es decir:

Page 6: Informe de Mecanica de Fluidos

Lo anterior no exige que la densidad sea constante en todos los puntos. Si la

densidad es constante, obviamente el flujo es incompresible, pero seria una

condición mas restrictiva.

d. Flujo compresible: Es aquel en los cuales los cambios de densidad de un

punto a otro no son despreciables.

e. Flujo permanente: Llamado también flujo estacionario.

Este tipo de flujo se caracteriza porque las condiciones de velocidad de

escurrimiento en cualquier punto no cambian con el tiempo, o sea que

permanecen constantes con el tiempo o bien, si las variaciones en ellas son

tan pequeñas con respecto a los valores medios. Así mismo en cualquier

punto de un flujo permanente, no existen cambios en la densidad, presión o

temperatura con el tiempo, es decir:

     

Dado al movimiento errático de las partículas de un fluido, siempre existe

pequeñas fluctuaciones en las propiedades de un fluido en un punto, cuando

se tiene flujo turbulento. Para tener en cuenta estas fluctuaciones se debe

generalizar la definición de flujo permanente según el parámetro de interés,

así:

donde:

Nt: es el parámetro velocidad, densidad, temperatura, etc.

Page 7: Informe de Mecanica de Fluidos

El flujo permanente es mas simple de analizar que el no permanente, por la

complejidad que le adiciona el tiempo como variable independiente.

f. Flujo no permanente: Llamado también flujo no estacionario.

En este tipo de flujo en general las propiedades de un fluido y las

características mecánicas del mismo serán diferentes de un punto a otro

dentro de su campo, además si las características en un punto determinado

varían de un instante a otro se dice que es un flujo no permanente, es decir:

donde:

N: parámetro a analizar.

El flujo puede ser permanente o no, de acuerdo con el observador.

g. Flujo uniforme: Este tipo de flujos son poco comunes y ocurren cuando el

vector velocidad en todos los puntos del escurrimiento es idéntico tanto en

magnitud como en dirección para un instante dado o expresado

matemáticamente:

Donde el tiempo se mantiene constante y s es un desplazamiento en

cualquier dirección.

h. Flujo no uniforme: Es el caso contrario al flujo uniforme, este tipo de flujo

se encuentra cerca de fronteras sólidas por efecto de la viscosidad

Page 8: Informe de Mecanica de Fluidos

i. Flujo unidimensional: Es un flujo en el que el vector de velocidad sólo

depende de una variable espacial, es decir que se desprecian los cambios de

velocidad transversales a la dirección principal del escurrimiento. Dichos

flujos se dan en tuberías largas y rectas o entre placas paralelas.

j. Flujo bidimensional: Es un flujo en el que el vector velocidad sólo depende

de dos variables espaciales. En este tipo de flujo se supone que todas las

partículas fluyen sobre planos paralelos a lo largo de trayectorias que

resultan idénticas si se comparan los planos entre si, no existiendo, por tanto,

cambio alguno en dirección perpendicular a los planos.

Page 9: Informe de Mecanica de Fluidos

k. Flujo tridimensional: El vector velocidad depende de tres coordenadas

espaciales, es el caso mas general en que las componentes de la velocidad en

tres direcciones mutuamente perpendiculares son función de las coordenadas

espaciales x, y, z, y del tiempo t.

Este es uno de los flujos mas complicados de manejar desde el punto de

vista matemático y sólo se pueden expresar fácilmente aquellos

escurrimientos con fronteras de geometría sencilla.

l. Flujo rotacional: Es aquel en el cual el campo rot v adquiere en algunos de

sus puntos valores distintos de cero, para cualquier instante.

m. Flujo irrotacional: Al contrario que el flujo rotacional, este tipo de flujo se

caracteriza porque dentro de un campo de flujo el vector rot v es igual a cero

para cualquier punto e instante.

En el flujo irrotacional se exceptúa la presencia de singularidades vorticosas,

las cuales son causadas por los efectos de viscosidad del fluido en

movimiento.

Page 10: Informe de Mecanica de Fluidos

n. Flujo ideal: Es aquel flujo incompresible y carente de fricción. La hipótesis

de un flujo ideal es de gran utilidad al analizar problemas que tengan

grandes gastos de fluido, como en el movimiento de un aeroplano o de un

submarino. Un fluido que no presente fricción resulta no viscoso y los

procesos en que se tenga en cuenta su escurrimiento son reversibles

o. Ecuaciones de Navier-Stokes: Las ecuaciones de Navier-Stokes reciben su

nombre de Claude-Louis Navier y George Gabriel Stokes. Se trata de un

conjunto de ecuaciones en derivadas parciales no lineales que describen el

movimiento de un fluido. Estas ecuaciones gobiernan la atmósfera terrestre,

las corrientes oceánicas y el flujo alrededor de vehículos o proyectiles y, en

general, cualquier fenómeno en el que se involucren fluidos newtonianos.

Estas ecuaciones se obtienen aplicando los principios de conservación de la

mecánica y la termodinámica a un volumen fluido. Haciendo esto se obtiene

la llamada formulación integral de las ecuaciones. Para llegar a su

formulación diferencial se manipulan aplicando ciertas consideraciones,

principalmente aquella en la que los esfuerzos tangenciales guardan una

relación lineal con el gradiente de velocidad (ley de viscosidad de Newton),

obteniendo de esta manera la formulación diferencial que generalmente es

Page 11: Informe de Mecanica de Fluidos

más útil para la resolución de los problemas que se plantean en la mecánica

de fluidos.

III. MATERIALES Y/O EQUIPOS UTILIZADOS

Figuras geométricas que representaran obstáculos dentro del flujo uniforme

Mesa analógica de Stokes

Page 13: Informe de Mecanica de Fluidos

Preparación de los equipos: nivelación de la mesa de analogías de Stokes

Uso de la mesa de analogías de Stokes introduciendo diferentes figuras

geométricas, previamente después de generar un flujo uniforme del agua.

Page 14: Informe de Mecanica de Fluidos

Se introdujo el colorante para visualizar las líneas de corriente y observar

cómo se generan frente a un obstáculo dichas líneas (figuras geométricas).

Page 15: Informe de Mecanica de Fluidos

V. RESULTADOS

Cuando se introdujo la figura geométrica de forma circular se observó que

tenía menor socavación y no llegaba a alterar las líneas de corriente de una

manera escandalosa.

ZONA DE MENOR ZOCAVACION

Page 16: Informe de Mecanica de Fluidos

Cuando se introdujo la figura geométrica de forma cuadrática se observó que

tenía mayor socavación y llegaba a alterar las líneas de corriente debido a que

la forma no tiene esa geometría de generar las líneas de corriente ligera sino

ensanchada al inicio.

CAPA LÍMITE

ZONA DE DESPRENDIMIENTODE LA LINEA DE CORRIENTE

ZONA DE MAYOR ZOCAVACION A DIFERENCIA DEL CIRCULO

Page 17: Informe de Mecanica de Fluidos

Se observa que se genera una socavación de gran magnitud pero menor de lo que genera el cuadrado debido a la forma geométrica del solido puesto a prueba.

ZONA DE MAYOR ENSANCHAMIENTO DE LAS LINEAS DE CORRIENTE DE FORMA IRREGULAR Y CHOCA EN LA PARED DE LA FIGURA CON MAYOR FUERZA

Page 18: Informe de Mecanica de Fluidos

En la figura se observa que existe una mayor socavación debido a la forma de la figura puesta a prueba, las líneas de corriente se ensanchan demasiado.

ZONA DE MAYOR ZOCAVACION A DIFERENCIA DE LAS DEMAS FIGURAS SOMETIDOS A PRUEBA

ZONA DE MAYOR ENSANCHAMIENTO DE LAS LINEAS DE CORRIENTE DE FORMA IRREGULAR Y ESTO HACE QUE SE GENERE UN MAYOR CHOQUE DE LAS FUERZAS DEL AGUA EN LA PARED DE LA FIGURA RECTANGULAR, PRODUCCIENDOSE ASI EL COLAPSO DE LA COLUMNA DE UN PUENTE POR EJEMPLO.

Page 19: Informe de Mecanica de Fluidos

VI. CUESTIONARIO

CUESTIONARIO N° 2: MESA DE ANALOGÍAS DE STOKES

1) Con respecto a la Mesa de Analogías de Stokes, describa si es posible realizar los siguientes experimentos y detalle el proceso que se debería seguir para lograrlo.

a) Visualización y cuantificación de Flujo Permanente.

Si es posible visualizar el flujo permanente debido a que las condiciones de velocidad en cualquier punto del escurrimiento del experimento no cambian con el tiempo, o sea que permanece constante, no existen cambios de la densidad, presión o temperatura.

b) Visualización y comportamiento de las líneas de corriente alrededor de perfiles o cuerpos impermeables

La visualización de las líneas de corriente se logró gracias al colorante que se introdujo en el experimento, estas líneas generaron trayectorias irregulares al chocar con los cuerpos, y este tipo de trayectoria dependió de la geometría de los cuerpos que estuvieron dentro del experimento.

c) Visualización y perturbación del paso de un flujo uniforme a través de una serie de tuberías de eje perpendicular al plano de flujo

Si se generó la visualización de las líneas de corriente, esto dependió de la forma geométrica de los cuerpos que se introdujeron en el experimento.

d) Visualización de un doblete

Page 20: Informe de Mecanica de Fluidos

El doblete nace de la superposición de un flujo fuente y un sumidero, ambos con intensidad de corriente infinita. Se genera un flujo sobre un cilindro circular que se va desvaneciendo, haciendo que la intensidad de flujo aumente sin límite conforme “a” (espaciamiento) disminuye a cero. En otras palabras, el producto “a “permanece constante, generando un doblete.

e) Determinación del Número de Reynolds.

Se podría determinar el número de Reynolds, usando un termómetro, verificando el

caudal, teniendo el área y la longitud; sin embargo, es algo complicado, así que no

fue calculado en la Mesa de Analogías de Stokes, siendo más fácil su cálculo en la

Cuba de Reynolds

2) Uno de los fenómenos que se produce en la Mesa de Analogías de Stokes es la separación de las líneas de corriente del flujo uniforme de las paredes del cuerpo, exponga su acuerdo o desacuerdo acerca de las siguientes afirmaciones citando conceptos y bibliografía revisada.

a) Se debe a la influencia de las paredes del cuerpo.

Falso. Se debe a la geometría del solido que se coloca sobre la mesa para realizar el experimento

b) La zona descolorida toma el nombre de capa límite.

Verdadero. La zona entre el objeto y la línea de corriente se llama capa límite. Las siguientes características de la capa límite son muy importantes:

La capa límite es delgada. El espesor de la capa límite aumenta en dirección corriente abajo. El perfil de la velocidad en la capa límite satisface la condición de no

deslizamiento en la pared y emerge suavemente hasta la velocidad de la corriente libre en el borde de la capa.

Existe un esfuerzo cortante en la pared. Las líneas de corriente del flujo en la capa límite son aproximadamente

paralelas a la superficie.

c) Dentro de la zona descolorida, el flujo es nulo

Falso. Esta afirmación es falsa porque el movimiento bidimensional del fluido se está dando en toda la superficie de la mesa de Stokes.

Page 21: Informe de Mecanica de Fluidos

Y haciendo el experimento se puedo apreciar que ese flujo posee una velocidad, por lo tanto, no es un flujo estacionario.

d) Para realizar el análisis de flujo dentro de la zona descolorida se debe considerar la viscosidad.

Para realizar el análisis del flujo dentro de la zona descolorida se debe de verificar el número de Reynolds pues si es alta la viscosidad del fluido se confinan en una región delgada cerca de las superficies sólidas.

VII. CONCLUCIONES

Se observó que las líneas de corriente trabajan mejor con figuras curvas y no rectangulares, cuadráticas; generando así las figuras curvas una socavación menor para el diseño por ejemplo de columnas de un puente.

La trayectoria de la velocidad de las líneas de corriente se observó en un plano bidimensional.

Las líneas de corriente que se generan en el experimento, dependen netamente de las formas geométricas que se colocaron en el experimento.

I. BIBLIOGRAFIA WENDOR CHEREQUE MORAN. Mecanica de fluidos I.

ROCHA, A..... Hidráulica de Tuberías y Canales, Lima, Perú, 2000.

VEN T. CHOW... Open-channel hydraulics, Mc Graw-Hill,1959 cap 3, pag39,40,41,42,44,49,)

Merle c. potter, David c. wiggert; tercera edicion (cap10 , pag 417,418,419,427,428,430,435)

Page 22: Informe de Mecanica de Fluidos

F. Ugarte mecánica de fluidos,(Pág. 162). http://html.rincondelvago.com/mecanica-de-fluidos_3.html

ANEXO