ing. josé luis unamuno & asoc. tel.: 4255-5424 cbc...

5
Pag. 1 de 18 www.unamuno.com.ar 03/03/2006 AlgebraCBC_Practica_5_TransformacionesLineales19.doc Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424 CBC EXACTAS INGENIERÍA PRÁCTICA 5 TRANSFORMACIONES LINEALES (EN ESTE APUNTE TRANSCRIBIREMOS LA INTRODUCCIÓN TEÓRICA Y LOS TEXTOS DE LOS EJERCICIOS TOMADOS DEL APUNTE EDITADO POR LA “FUNDACIÓN ENSEÑAR CIENCIA” A LOS EFECTOS DE ACLARAR LAS DEFINICIONES QUE VAMOS A UTILIZAR Y ESTABLECER LA MISMA NOTACIÓN SIMBÓLICA, LOS APUNTES MENCIONADOS LOS PODÉS ADQUIRIR EN UBASUR, EVA PERÓN 1265 FRENTE A LA UBA, ¿EN AVELLANEDA?) Presentación: aquí vamos a ver sin dibujos ni cosas por el estilo, y con en enfoque lo más estricto posible el tema Transformaciones Lineales (que es un tema espinoso porque cada vez se suman más conceptos) Recordemos que esto es Álgebra, y el Álgebra se basa en definiciones, son puras definiciones y construcciones que no necesariamente representan elementos reales, en muchos casos son puras abstracciones. Tenés que manejar sin dudas ni baches el tema Espacios Vectoriales, si no, no vale la pena seguir. Aclaración: aquí están resueltos solo los problemas típicos y los que entrañan alguna dificultad en particular. Si un problema se resuelve como otro anterior, simplemente haremos una referencia al problema ya resuelto. TRANSFORMACIONES LINEALES (TL) Definiciones y Propiedades TRANSFORMACIONES LINEALES Sean V y W espacios vectoriales sobre R. Una transformación lineal f:V W es una función que satisface las siguientes dos propiedades: TL: 1 Si u V y v V, f(u+v) = f(u) + f(v). TL: 2 Si k R y u V, f(k.u) = k f(u). Son TL: La función Nula, 0:V W dada por 0(v)=0 v a V La función Identidad, id:V, dada por id(v)=v, v V. Propiedades: Cualquier TL f:V W satisface: a) f(0) = 0 b) f(-v) = -f(v) c) f(v-w) = f(v) – f(w) d) f(a 1 .v 1 +a 2 .v 2 + . . . +a n .v n ) = a 1 .f(v 1 ) + a 2 .f(v 2 ) + . . . + a n .f(v n ) Notación: si f:V W , S T V , T T W , w W, notamos f(S) = {w W / w =f(s), con s S} f -1 (w) = {v V / f(v) = w} f -1 (T) = {v V / f(v) W T} Propiedades: Si S es subespacio de V, entonces f(S) es subespacio de W Si T es subespacio de W, entonces f -1 (T) es subespacio de V. Teorema: Si {v 1 ,v 2 , … , v n } es una base de V, w 1 , w 2 ,…w n son vectores (no necesariamente distintos) en W, entonces hay una única TL tal que f(v 1 ) = w 1 , f(v 2 ) = w 2 , …, f(v n ) = w n ,

Upload: buinhu

Post on 22-Sep-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424 CBC …unamuno.com.ar/pdfs/algebra/AlgCBC-Prac-5-TranLin19-Ejerc01.pdf · Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424 Pag. 1 de

Pag. 1 de 18 www.unamuno.com.ar 03/03/2006 AlgebraCBC_Practica_5_TransformacionesLineales19.doc

Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424

CBC EXACTAS – INGENIERÍA PRÁCTICA 5

TRANSFORMACIONES LINEALES (EN ESTE APUNTE TRANSCRIBIREMOS LA INTRODUCCIÓN TEÓRICA Y LOS TEXTOS DE LOS EJERCICIOS TOMADOS DEL APUNTE EDITADO POR LA “FUNDACIÓN ENSEÑAR CIENCIA” A LOS EFECTOS DE ACLARAR LAS DEFINICIONES QUE VAMOS A UTILIZAR Y ESTABLECER LA MISMA NOTACIÓN SIMBÓLICA, LOS APUNTES MENCIONADOS LOS PODÉS

ADQUIRIR EN UBASUR, EVA PERÓN 1265 FRENTE A LA UBA, ¿EN AVELLANEDA?)

Presentación: aquí vamos a ver sin dibujos ni cosas por el estilo, y con en enfoque lo más estricto posible el tema Transformaciones Lineales (que es un tema espinoso porque cada vez se suman más conceptos) Recordemos que esto es Álgebra, y el Álgebra se basa en definiciones, son puras definiciones y construcciones que no necesariamente representan elementos reales, en muchos casos son puras abstracciones. Tenés que manejar sin dudas ni baches el tema Espacios Vectoriales, si no, no vale la pena seguir. Aclaración: aquí están resueltos solo los problemas típicos y los que entrañan alguna dificultad en particular. Si un problema se resuelve como otro anterior, simplemente haremos una referencia al problema ya resuelto.

TRANSFORMACIONES LINEALES (TL) Definiciones y Propiedades

TRANSFORMACIONES LINEALES

Sean V y W espacios vectoriales sobre R. Una transformación lineal f:V W es una función que satisface las siguientes dos propiedades: TL: 1 Si u V y v V, f(u+v) = f(u) + f(v). TL: 2 Si k R y u V, f(k.u) = k f(u).

Son TL:

La función Nula, 0:V W dada por 0(v)=0 ∀ v ∈ a V

La función Identidad, id:V, dada por id(v)=v, ∀ v ∈ V.

Propiedades:

Cualquier TL f:V W satisface:

a) f(0) = 0

b) f(-v) = -f(v)

c) f(v-w) = f(v) – f(w)

d) f(a1.v1+a2.v2+ . . . +an.vn) = a1.f(v1) + a2.f(v2) + . . . + an.f(vn)

Notación:

si f:V W , S T V , T T W , w ∈ W, notamos

f(S) = {w ∈ W / w =f(s), con s ∈ S}

f -1(w) = {v ∈ V / f(v) = w}

f -1(T) = {v ∈ V / f(v) ∈ W T}

Propiedades:

Si S es subespacio de V, entonces f(S) es subespacio de W

Si T es subespacio de W, entonces f -1(T) es subespacio de V.

Teorema:

Si {v1,v2, … , vn} es una base de V, w1, w2,…wn son vectores (no necesariamente distintos) en W, entonces hay una única TL tal que

f(v1) = w1, f(v2) = w2, …, f(vn) = wn,

Page 2: Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424 CBC …unamuno.com.ar/pdfs/algebra/AlgCBC-Prac-5-TranLin19-Ejerc01.pdf · Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424 Pag. 1 de

Pag. 2 de 18 www.unamuno.com.ar 03/03/2006 AlgebraCBC_Practica_5_TransformacionesLineales19.doc

Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424

Este teorema nos dice que una TL está completamente determinada por los valores que toma en una base.

Si f:V W es una TL, llamamos:

Núcleo de f al conjunto Nu f = {v ∈ V / f(v)=0}

imagen de f al conjunto Im f = {w ∈ W / w = f(v), con v ∈ V}

Observación Im f = f(V)

Propiedades:

si f:V W es una TL, entonces:

a) Nu f es un subespacio de V

b) Im f es un Subespacio de W

c) Si {v1,v2, … , vn} es un conjunto de generadores de V, entonces:

{f(v1), f(v2), … , f(vn)} es un conjunto de generadores de Im f.

d) Si {f(v1), f(v2), … , f(vn)} es linealmente Independiente, entonces v1,v2, … vn es linealmente Independiente

Decimos que un TL f:V W es :

Monomorfismo si es inyectiva, esto es, si verifica “f(v)=f(w) entonces v=w”

Epimorfismo si es suryectiva, esto es, si Im f L W

Isomorfismo si es biyectiva , es decir si es Monomorfismo y Epimorfismo

Propiedades:

si f:V W es una TL, entonces:

a) f es Monomorfismo Nu f = 0

b) Si f es Monomorfismo y {v1, v2, …, vr} es linealmente independiente, entonces {f(v1), f(v2), … ,f(vr)} es linealmente independiente.

c) f es Isomorfismo si y sólo si:

“Si {v1,v2, …, vn} es base de V, entonces {f(v1), f(v2), … f(vn)} es base de W

Teorema de la Dimensión

si f:V W es una TL, entonces

dim V = dim Nu f + dim Im f

Propiedades:

si f:V W y g:W U son TL, la composición gºf:V U dada por (gºf) (v) = g(f(v)), es TL.

Si f:V W es Isomorfismo, la función inversa f -1:W V , que cumple f º f -1 = idW y f -1 º f= idV, es Isomorfismo.

Si f:V W y g:W U son Isomorfismos (gºf) es Isomorfismo y se verifica:

(gºf) -1 = f -1ºg -1

Una TL p:V V es un proyector si pºp=p.

Propiedad: si p:V V es un proyector, entonces

V = Nu p ⊕ Im p

Para todo v ∈ Im p, p(v)=v

Dadas la TL f:Rn Rm , existe una única matriz A ∈ a Rmxn tal que f puede escribirse en la forma:

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

=

n

n

x

xx

Axxxf...

),....,,( 2

1

21 , ó f(x) = Ax

Esta matriz tal que f(x) = Ax se denomina Matriz de La Transformación Lineal f, y escribimos A=M(f).

Propiedad: las columnas de M(f) son un conjunto de generadores de Im f.

Page 3: Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424 CBC …unamuno.com.ar/pdfs/algebra/AlgCBC-Prac-5-TranLin19-Ejerc01.pdf · Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424 Pag. 1 de

Pag. 3 de 18 www.unamuno.com.ar 03/03/2006 AlgebraCBC_Practica_5_TransformacionesLineales19.doc

Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424

Si A ∈ Rmxn,

el rango columna de A es la dimensión del subespacio generado por las columnas de A, el rango fila de A es la dimensión del subespacio generado por las filas de A.

Teorema:

si A ∈ Rmxn, entonces rango fila de A = rango columna de A

Esta igualdad nos permite hablar de rango de A, que notaremos rg A.

Propiedad: dim Im f = rg M(f)

Teorema:

Si A ∈ Rmxn, la dimensión del subespacio de soluciones de Ax=0 es n - rg A.

Sean B={v1, v2, … ,vn} una base del espacio vectorial V de dimensión n y B’={w1, w2, … ,wm} base de un espacio vectorial W de dimensión m.

si f:V W es una TL y f(vj) = a1j.w1+ … + amj.wm, 1<= j <= n,

llamamos matriz asociada a f en las bases B y B’, a la matriz de mxn:

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

=

mnmm

n

n

BB

aaa

aaaaaa

fM

............

...

...

)(

21

22221

11211

'

Notar que en la columna j de MBB’(f) están las coordenadas de f(vj) en base B’.

La matriz MBB’(f) es tal que si v ∈ V, MBB’(f).(v)B=(f(v))B’

Observación:

si f:RnYRm y E y E’ son las respectivas bases canónicas.

MEE’(f) = M(f)

Notación: Si W=V y B’=B, escribimos MB(f) en lugar de MBB’(f).

Propiedad: rg MBB’(f) = dim Im f ; de esto se deduce que el rango de una matriz asociada a una transformación lineal, no depende de las bases elegidas.

Propiedad: Matriz de la composición:

Sean U, V y W espacios vectoriales, y sean B, B’ y B’’ bases de U, V y W respectivamente.

Si f:UYV y g:VYW son TL, se tiene:

MBB’’(gºf).= MB’B’’(g) . MBB’(f)

Propiedad: si f:V W es un Isomorfismo, y B y B’ son bases de V y W respectivamente,

MB’B(f -1).= (MBB’(f))-1

Si B y B’ son dos bases del espacio vectorial V, llamamos matriz de cambio de base de B a B’, a la matriz CBB’ = MBB’(id)

Propiedad: CB’B = (CBB’)-1

Propiedad: si f:V V es una TL y B y B’ son bases de V,

MB’(f) = CBB’. MB(f) . CB’B

o en virtud de la propiedad anterior,

MB’(f) = (CB’B)-1 . MB(f) . CB’B

EJERCICIOS Ejercicio 1: Determinar cuáles de las siguientes funciones son TL :

a) f:R2YR2 , f(x1,x2) = (0,x1) (expresión analítica)

Para ser TL debe cumplir las condiciones TL1 y TL2 (ver pág. 1)

Page 4: Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424 CBC …unamuno.com.ar/pdfs/algebra/AlgCBC-Prac-5-TranLin19-Ejerc01.pdf · Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424 Pag. 1 de

Pag. 4 de 18 www.unamuno.com.ar 03/03/2006 AlgebraCBC_Practica_5_TransformacionesLineales19.doc

Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424

TL1: f(a+b) = f(a) + f(b) TL2: f(k.a) = k.f(a) sean a y b ∈ R2 … a = (a1,a2) y b=(b1,b2) , a+b = (a1+b1 , a2+b2) y k.a = (k.a1,k.a2) Simplemente aplicamos la expresión analítica de f y verificamos que se cumplan TL1 y TL2 TL1 f(a+b) = f(a) + f(b) (0, a1+b1) = (0, a1) + (0, b1) (0, a1+b1) = (0, a1+b1) Listo TL2 f(k.a) = k.f(a) (0,k.a1) = k. (0, a1) (0,k.a1) = (0,k.a1) Listo

b) f:R2YR2 , f(x1,x2) = (2.x1-5 , x1+,x2)

TL1 f(a+b) = f(a) + f(b) (2.(a1+b1)-5 , (a1+b1) + (a2+b2) ) = (2.a1-5 , a1+a2 ) + (2.b1-5,b1+b2) (2.a1+2.b1-5 , a1+b1+a2+b2 ) = (2.a1+5+2.b1+5 , a1+a2 + b1 + b2) Aquí se ve que no se cumple al primera condición, no es TL

c) f:R2YR3 , f(x1,x2) = (x1+3.x2 , x2 , x1) (esta “salta a la vista” que es TL)

TL1 f(a+b) = f(a) + f(b) ((a1+b1)+3.(a2+b2), (a2+b2) , (a1+b1)) = (a1+3.a2, a2, a1) + (b1+3.b2, b2 , b1) ((a1+b1)+3.(a2+b2), (a2+b2) , (a1+b1)) = (a1+b1+3.a2+3.b2, a2+b2 , a1+b1) OK TL2 f(k.a) = k.f(a) (k.a1+3.k.a2 , k.a2 , k.a1 ) = k . (a1+3.a2 , a2 , a1 ) OK

d) f:R2YR , f(x1,x2) = x1.x2 (esta no es TL, comprobalo vos)

e) f:R2YR3x2 , f(x1,x2) = ⎟⎟⎟

⎜⎜⎜

−−+

00

1

2

211

xx

xxx trabajaremos con matrices, es similar pero ordenado de

otra manera, sean a y b ∈ R2 … a = (a1,a2) y b=(b1,b2) , a+b = (a1+b1 , a2+b2) y k.a = (k.a1,k.a2) TL1 f(a+b) = f(a) + f(b)

⎟⎟⎟

⎜⎜⎜

+−+−

++++

0)()(0

11

22

221111

baba

bababa =

⎟⎟⎟

⎜⎜⎜

−−+

00

1

2

211

aa

aaa +

⎟⎟⎟

⎜⎜⎜

−−+

00

1

2

211

bbbbb

OK

TL2 f(k.a) = k.f(a)

⎟⎟⎟

⎜⎜⎜

−−+

0..0

...

1

2

211

akak

akakak = k .

⎟⎟⎟

⎜⎜⎜

−−+

00

1

2

211

aa

aaa OK

Si aplicamos el producto del escalar por la matriz en el segundo miembro vemos que la TL2 se cumple, listo.

f) f:R2x2YR , f(A) = det (A)

En este caso los elementos sobre los cuales trabajamos son matrices de 2x2 y la transformación lineal corresponde al calculo del determinante, es decir que podríamos escribir la expresión analítica de esta manera:

f:R2x2YR , f( ⎟⎟⎠

⎞⎜⎜⎝

2221

1211

aaaa

) = a11.a22-a21.a12 ¿Será un TL?

veamos con A, B, A+B y kA ∈ R2x2 TL1 f(A+B) = f(A) + f(B) (a11+b11).(a22+b22)-(a21+b21).(a12.b12) = a11.a22 - a21.a12 + b11.b22 - b21.b12 Esta no se cumple, se hace evidente a poco de operar sobre el primer miembro de la igualdad, entonces no es una TL

g) f:R3YR , f(x) = v•x con v=(2,1,-3)

Page 5: Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424 CBC …unamuno.com.ar/pdfs/algebra/AlgCBC-Prac-5-TranLin19-Ejerc01.pdf · Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424 Pag. 1 de

Pag. 5 de 18 www.unamuno.com.ar 03/03/2006 AlgebraCBC_Practica_5_TransformacionesLineales19.doc

Ing. José Luis Unamuno & Asoc. Tel.: 4255-5424

Aquí v•x no es otra cosa que el producto escalar de dos vectores, podemos escribir la “expresión analítica de f como f(x,y,z) = (2,1,-3)•(x,y,z) = v2x+y-3z te dejo a vos comprobar que es una TL (es como el ejercicio c) pero más fácil.

h) f:R3YR4 , f(x) = A.x , con A ∈ R4x3

Este es similar al anterior y se resuelve como el c), sólo hay que tener paciencia y ordenar las cosas muy bien. Te adelanto que es una TL. Planteemoslo de esta manera:

A ∈ R4x3 es decir que A =

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

=

434241

333231

232221

131211

aaaaaaaaaaaa

A

Planteando la expresión para f queda:

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

++++++++

=⎟⎟⎟

⎜⎜⎜

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

==⎟⎟⎟

⎜⎜⎜

zayaxazayaxazayaxazayaxa

zyx

aaaaaaaaaaaa

xAzyx

f

...

...

......

..

434241

333231

232221

131211

434241

333231

232221

131211

Con esta última expresión analítica podemos trabajar como en el caso del ejercicio b) y comprobar que es una TL. Sea v1=(x1,y1,z1) , v2=(x2,y2,z2) , v1+ v2 = (x1+x2,y1+y2,z1+z2) TL1 f(v1+ v2) = f(v1) + f(v2)

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

++++++++++++++++++++

).().().().().().().().().().().().(

214321422141

213321322131

212321222121

211321122111

zzayyaxxazzayyaxxazzayyaxxazzayyaxxa

=

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

++++++++

143142141

133132131

123122121

113112111

...

...

......

zayaxazayaxazayaxazayaxa

+

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

++++++++

243242241

233232231

223222221

213212211

...

...

......

zayaxazayaxazayaxazayaxa

vemos que esta igualdad se cumple. La otra condición te la dejo a vos.