inma domínguez explosive nucleosynthesis in type ia supernovae universidad de granada dust in...

73
Inma Domínguez Explosive Nucleosynthesis in Type Ia Supernovae Universidad de Granada Dust in EuroGENESIS environments: from primitive, massive stars to novae Perugia, November 11-14 2012

Upload: alban-peter-price

Post on 29-Jan-2016

241 views

Category:

Documents


0 download

TRANSCRIPT

Inma Domínguez

Explosive Nucleosynthesis in Type Ia Supernovae

Universidad de Granada

Dust in EuroGENESIS environments: from primitive, massive stars to novae

Perugia, November 11-14 2012

Type Ia Supernovae

Light Curve

L

time

Thermonuclear Explosionof a White Dwarf composed of carbon and oxygen with a mass M~MChandrasekhar 1.4 M

56Ni 56Co 56FeLMAX M56Ni

M < 8 M

CO WDs < 1.1 M

Bright Standard Bombs

Distance indicators

Good Calibrated Candles Bright

Parameterizing SNe Ia, Parameterizing SNe Ia, the Cosmological Light the Cosmological Light HouseHouse, by the Shape of their Light Curves, by the Shape of their Light Curves

Mmax-m15

)(15 Bm

MB

Phillips 1993; 1999

<> ~ 0.2 mag

Nearby SNe !!

15 d

The Nobel Prize in Physics 2011for the discovery of the accelerating expansion of the Universe through observations of distant supernovae

Adam Riess

Saul Perlmutter (PI)

http://www.nobelprize.org/mediaplayer/index.php?id=1745&view=1

SNC Project

High-z Team

Brian Schmidt (PI)

Could we reach the needed precision to understand Dark Energy, ?

Improve the Calibration <> ~ 0.2 mag 0.01 mag

CDM Cosmological Model

Observations: Bright SNIa in Galaxies with Star Formation & in which the SN rate is higher !!

Hamuy et al., 1995, 1996,2000, Ivanov et al. 2000 Branch et al. 1996, Mannucci et al 2005 Cappellaro et al. 2003, Sullivan el at. 2006 …

Identify 2nd parameters for the calibration

Does the calibration depend on redshift ?

Do SNe Ia depend on redshift ? Z/Age of progenitoe system ?

Improve the Local Calibration ?

Understand SNe Ia !!

What we know ?

Explosion of a Chandrasekhar mass CO WD in a binary system

M ~ 1.4 M

R ~ 2000 kmc ~ 2 109 g/cm3

vsound ~ 5000 km/s = R/vsound ~ 1 s

exp ~ 1 s

CO WD

MCh

C-burning O-burning Si-burning NSE

Fuel CO

Burning-scales SNe scales

WD

0.5C + 0.5O

half-reaction length/time scales XC : Cini/2 XO : Oini/2

o < 2 107 g/cm3 No NSE o < 5 106 g/cm3 No Si-burno < 106 g/cm3 No O-burn

O0.6 MeV/nuc

C 0.35

MeV/nuc

Si, NSE0.8 MeV/nuc

Considering WD/explosionscales:

•Burning nucleosynthesis

SNIa spectra at maximum light

Branch et al. 1982

Intermediate mass elements (IME): O, Mg, Ca, Si, SPskovskii 1969, Branch et al. 1982

Incomplete burning in the outer shells

Burning at low < 107 g/cm3

Siobserved

synthetic

EXPLOSIONS

1. Ignition Enuc > E

2. Convection con < nuc simmering phase

3. Runaway nuc < hyd Explosive ignition

4. Propagation of the burning front

Laminar (conductive e-) v << vsound

Deflagrations v < vsound turbulent mixing burn-unburnt

Detonations v vsound

3D ?

Explosion 1D models Nucleosynthesis

Delayed Detonation

C-deflagration

NO

OK

C-detonation

IME missing NO

vburn first slow: Deflagrationthen (at DDT)

accelerates: Detonation

Khokhlov 1991

DetDef

Explosive Nucleosynthesis Delayed Detonations

• Center to 0.4 M (T > 5.5 109 K):

NSE e-captures (Ye )

Bravo & Martínez-Pinedo 2012

Ye depends on initial Z & simmering phase

• 0.4 to 1.1 M QSE Si-burning • 1.1 to 1.2 M O-burning • 1.2 to 1.364 M Ne-burning • 1.364 to 1.366 M C-burning• 1.366 to 1.37 M NO-burning

Chemical layered structure

DDT at 0.2 M

Inner 0.1 M: 54Fe, 58Ni No 56Ni

Explosive Nucleosynthesis

Bravo & Martínez-Pinedo 2012

X > 0.01 M

Arnett, Truran, Woosley 1971Thielemann, Nomoto, Yokoi 1984, 1986Woosley & Weaver 1986Khokhlov, 1991Hoflich, Wheeler, Thielemann, 1998Hoflich, Khokhlov, Wheeler, 1995Iwamoto et al. 1999

SN Ia

“Normal SN Ia” 80% of SNe Ia

Produce ~ 0.6 M56Ni

(full range: 0.1-1 M)

Burn 1.1M to Si and beyond

Consistent with MCh WD Delayed-Detonation Explosions

Khokhlov 1991

total burnt mass: IME + 54Fe + 56Ni

Complete burning NSE 54Fe + 56Ni

Neutron-rich elements, 54Fe

Mazzali et al. Science 2007 Zorro Diagram

Produces 2/3 of the observed Fe in the Universe

56Ni

1D Delayed Detonations Mmax m15

DDT : 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.3 2.5 2.7 x 107 g/cm3

DDT shorter pre-expansion burn 56Ni IME (Ca, S, Si, Mg) Ek

Höflich et al.

DDT 56Ni mass Lmax

But 1D Delayed Detonation models parameters !!!

• Progenitor system Path to exploding WD ?

• Mechanism that produces the explosion ? 3D numerical simulations fail

Deflagration to Detonation transition in unconfined environments ?

Do SNe Ia depend on redshift ? progenitor ? Z/Age ?

DDT burn 56Ni, IME

We do not know…

Three Dimensional SimulationsDeflagrations

A. Khokhlov

time=1.79 s Problems: • CO at center• No chemical layered structure• Low Ekin

• Ekin 56Ni massChicago, Flash, MPI, NRL, UPC

DDT Gamezo et al. 2005 Ropke 2007, 2011 Jackson et al. 2010

Gravitationally Confined Detonation Plewa 2004, Jordan et al. 2008, Meakin et al. 2009 Pulsating Reverse Detonations

Alternatives

Bravo & García-Senz

Nucleosynthesis: Simplified -network Flame scales not solved !! WD 2000 kmflame thickness cm

High resolution 3D detonations at low densities (outer layers)

L = 200 km W= 25 km 24 m = 106 g/cm3

Khokhlov, Domínguez et al. 2012

C mass fraction

Nucleosynthesis:-network 13 nuclei 18 reactions

Deflagration to Detonation transition ?

Simmering phase ?Convective hydrostatic C-burning

23Na & 25Mg are important at T 4 108 K 1-4 109

g/cm3

Morales-Garoffolo 2011

e-captures over light nuclei ?

Influence ExplosiveC-ignition !!

URCA process ?

Pierre Lessafre, KITP conference1941

Cooling or heating ? ?

Gamov and Shoënberg (1941)Urca pairs

Bruenn 1973

Thermonuclear reaction rates: sensitivity study

Bravo & Martínez Pinedo 2012

3138 nuclear reactions

x10 1/10

12C + 12C16O + 16O

Enuc < 4 %X < factor of 2 for X > 0.02

28Si, 32S, 54Fe, 56Ni & 58Ni Not modified

(p,) 10 species changes 12%

(,) 33 species change 12%

simultaneous modification of nuclear reactions ? weak interactions ? resonances ?

12C + 12C with a Low Energy Resonance

Bravo et al. 2011

Spillane et al. 2007

Influence runaway conditions: LER

-simmering

T

(if central)

off-center ignition

Conv. Cores

12C burnt

Ye (α/p)

12C + 12C 23Na + p12C + 12C 20Ne + α

vs CF88

Dust formation in the ejecta of SNIa ?

Nozawa et al. 2011

Kepler & Tycho SNR

Gómez et al. 2012

400 yrs

Dust observed (Herschel): Mw,d 3 – 8 10-3 M

Early (100 d) formation: 3 10-4 to 0.2 M / SNIa Destruction (106 yr)

Dust in Type Ia Supernova Remnants Poor producers of interstellar dust !! NO clear detection yet !

Gómez et al. 2012

Tycho SNRDust (contours) is coincident with the outermost shockfront swept up ISM or CSM

X-rays Chandra

Williams et al. 2012

Dust from progenitor system !!

Kepler CSM

Silicate dust

Spitzer

Kepler SNR: Massive AGB companion ?

(N/N > 2)Chiotellis et al. 2012Williams et al. 2012

Tycho SNR (1572)NASA/SAO/JPL-CAHA

Grazie Mille !!

Observations

X, UV, optical, IR

Hsiao et al. 2007, 2012

2001el Krisciunas

Hsiao et al2012

Fe-peak: late IR X-ray (SNR)

Z progenitor: very early U-band

IME: Early Optical spectra IR spectra, X-ray (SNR)

Unburnt Carbon: NIR spectra

SN2011fein M101 at 6.4 Mpc

56Ni & 56Co: -ray no detection yet ! upper limits

SN2011fe: INTEGRAL observations 975419 s

Isern et al. 2012

Dust: MIR & FIR

Kepler SNR

Gómez et al. 2012

Herschel

Proposed 1D Explosion Mechanisms

DET: pure C-detonation

DEF: pure deflagration but …

DDT: delayed detonations DEF DET PDDT: pulsating delayed detonation

Sub-Ch: He-detonation in outer layers shock inward C-O detonation

Super-Chandrasekhar (rotation)

0.8 M

CO0.2 M

He

few

From progenitors to LCs

Mc

h

R ~ 2 108 cmc ~ 2 109 g/cm3

CO WD

< 8M < 1.1M

accretionT & rise at center

Non explosiveC-ignition

Convection(simmering)

ExplosiveC-ignition

1.5 M :

2.2 Gyr7 M :

0.04 Gyr

CoolingGyr

LC: 56Ni 56Co 56Fe

IME (O, Ca, Mg, Si, S)

Enuc > E nuc < hyd

Propagation of burning:IME burning at < 2 107 g/cm3

Pre-expansion of the WDDelayed Detonations (1D) Key parameter: DDT

? 3D ?

3D ?

C-expl

Z = 0.1 Z

Z = 3 Z

Z

Z: Calibration depends on Z !!

Z ( ) Lmax 0.5 mag

WD Age: cooling/crystallization

12C Lmax 0.4 mag t > 1.25 Gyr

Dependence of the transition density on composition ?

Chamulak et al. 2007

Calibration relation vs Z

ApJL Bravo et al. 2010, A&A 2011

SDSS

in agreement with observations

Sullivan et al. 2010

Influence of Z Bravo et al. 2010, Domínguez et al. 2001

56Ni vs Z

Timmes et al. 2003

Z

DDT (12C, )

3Z

Z

MMS : 3 – 7 M

Zini : 10-10 – 0.1

Including simmering: more e-captures

DDT

fixed

eY21

Neutronization

i

ii

ie X

A

ZY

Z 56Ni L

56Ni Mass & Distribution

Further Neutronization: • Simmering: e-cap.• Slow deflagration: e-capt.

Initial Z 22Ne

Our Studies about the influence of Progenitors

Evolution Explosion (1D) of the WD Light Curve

Initial Mass Initial chemical composition c (WD cooling, accretion) Rotation (MT Ubin ig)

MMAX < 0.2 mag

Domínguez et al. ApJ 2001, ApJ 2006, Bravo et al. 2010

The Majority of SNe Ia Standard Bombs Good lighthouses !!

OK for

To progress further Nature of Dark Energy Precision x 10 CONTROL ALL SYSTEMATIC

Numerical Methods STELLAR EVOLUTION & Accretion phase

FRANEC (Chieffi, Domínguez, Imbriani, Limongi, Straniero)

1D Hydrostatic Code

EXPLOSION & LIGHT CURVES

1D Radiation-Hydrodynamic Code (PPM)(Höflich, Khokhlov)

Ray transport Monte Carlo 3D simulations velocity of deflagration

Extended Nuclear Network

Extended Nuclear Network (700 isotopes) Physics and Chemestry coupled Time dependent mixing

(Domínguez, Höflich)

PMS WD Accretion Explosive C-ignition

Light Curves Models

MMS

1.5 7 M

L

WD Progenitors

Z0 0.02 MMAX < 0.05

Z (B-V) < 0.07Extinction

MMAX < 0.2 mag

MMAX < 0.2 mag

14 % in 56Ni mass

Domínguez, Hoflich, Straniero 2001

SNe luminosities

vs host galaxies

Sullivan et al. 2010

After Correction !!!

Low sSFRHigh Mstellar

(High Z)

Brighter by 0.06-0.09 mag

brighter

dimmer

Mste

sSFRbrighter

dimmer

Information about the explosions from Hubble residuals ?

HR = a + Z

= 0.13

= 0.22

Simulations: 200 SNe

M56Ni = 1. - 0.075 Z/Z

M56Ni = 1. - 0.18 Z/Z (1 . - 0.1 Z/Z )Bravo et al. 2010

Gallagher et al. 2008Howell et al 2009!!

observed

Urgent work is demanded on... Progenitors Observations/Theory Galactic chemical enrichment (Fe-peak)

3D Explosions free of parameters

Dust Extinction Different from Milky Way Evolution with z IR Hubble Diagrams

SN properties/Galaxy Properties (Age, Z, SFR)

Large Subsamples with smaller scatter split by properties Hubble diagrams including only passive galaxies

LCs & spectra from early time, including IR More Correlations: SN properties (spectra, colors...)/LC shape and Max

Go tohigher z

Joint Dark Energy Mission – NASA + DOE

Ground Based Telescopes - WorkingBright SNe Survey -CFHT Legacy Survey- Carniege SN Program - ESSENCE- Nearby SNe Factory- Nearby Galaxies SN Search - SN Intensive Study... Near future Pan-STARRS, La Silla SN-search, Skymapper, Palomar Transiente Factory ... and more

from Space under study

SNIa up to z=4

Supernovae

CMBDark MatterBBN

Further information…

Supernova Cosmology Projecthttp://www-supernova.lbl.gov/

The High-Z SN Searchhttp://www.cfa.harvard.edu/supernova//HighZ.html

JDEM-Joint Dark Energy Mission (NASA-DOE)http://jdem.gsfc.nasa.gov/

Dark Cosmology Center at Niels Bohr Institutehttp://dark.nbi.ku.dk/

Peculiar SNe Ia !!

Li et al 2003

Obseved Vexp

extremely lowCaII 6000 km/s broad peak

SN 2002cxSubluminous MB=-17.7m15=1.29

Outside the calibration Identification ? Associated with Star Formation More at high z !!

2001ay 2002cx 2002ic 2003fg

from z=0 to 1.5 SFR x 10Peculiar SNIa x 10

2002cx

Influence of the Progenitor DD Systems Including ROTATION

Steady Accretion

Balance between Angular Momentum deposition

and Angular Momentum lost by GWR

M > MCh Braking and Explosion

Piersanti, Gagliardi, Iben & Tornambé 2003

WD rotation synchronized at the orbital frequency

Rotation determines the decrease of the accretion rate and, hence, it prevents the off-center C-ignition

SN 2003fg: Super-Chandrasekhar ??

z=0.24

Brighter by x 2.2

Normal Spectra !!

Lower expansion velocities

1.3 M of 56Ni Progenitor: 2 M WD

Differential Rotation

Outside Maximum-decline relation !!!! 0.67 mag brighter

Howell et al. Nature 2006

SNLS Team, CFHT

L (erg/s)

MNi

DD Rotating models: LCsDomínguez et al 2006

56Ni: 0.77 0.86 M

Mbol: -19.5 -19.6

ig 46% Ubin

22%

Rigid rotation M < 1.5M

Ellipticals

Spirals

Piersanti et al 2009

Distribution of merging events

If More Massive brighter OK Luminosity distribution OK SN Rates

Differential Rotation M < 2.2 M

work in progress !!

Looking for the companion... Supernova Progenitor Survey -ESO-SPY consortium DD: WD + WD FEW Napiwotzki et al. 2006

Precursors: Recurrent Novae RS Oph MWD~ 1.38 M Hachisu et al.

2006, Selvelli et al. 2003, Sokoloski et al. Nature 2006

X-ray progenitor observations: SN2007on in NGC1404 (E) 4 yr before

Direct hints from the companion ?? SD: WD + MS/RG/AGB Tycho SNR: companion detected (v) Ruiz-Lapuente et al. 2004 Nature - Spectroscopy: No Fe Ihara et al. 2007

+ [Ni/Fe] = 0.16 Hernández, Ruiz-Lapuente et al. 2009

Interaction with the CSM (previous mass loss: SD vs DD) + 2002ic H !! Hamuy et al. 2003 Nature SD/DD + 2006X Patat et al. 2007 Science SD - 27 SNIa NO Radio (VLT) Panagia et al. 2006 NO SD - 2005am 2005cf, No H in nebular spectra Leonard 2007 NO SD Historical SN remnants: Z of the progenitors, explosion etc. Badenes 2008-09

Sprectropolarimetry: asphericals ? disk ? SN 2001el Lifan et al. 2003

SNe Ia alonem ~ 0.7 ~ 1.3

Clocchiatti et al. 2006

m~ 0.8 ~ 1.6

Super-Chandrasekhar

SN2007if

Scalzo et al. 2010

2003fg -20.18 0.94 2006gz -19.29 0.69

2007if -20.54 0.71

2009dc -20.09 0.65

MB m15

MWD ~ 2.4 M

MNi ~ 1.6 M

Sub-Chandrasekhar

Sim et al. 2010

Observations: Hicken et al. 2009

1.15 1.060.97

0.88WD (M)

Shen et al. 2010

Rise time: 2-10 daysSpectra: CaII TiII (from He-DET)

He-Detonatios

Science, Poznanski et al. 2010

Bildsten et al. 2007

Influence of Z Bravo, Domínguez, Badenes, Piersanti, Straniero 2010

Z = 0.1 Z

Z = 3Z

Z

LMAX – width vs Z

Observations (MBol)Contardo et al. 2000, Phillips et al 2006Stanishev et al. 2007, Wang et al. 2009

DDT (12C, ) Assuming: Different calibration for different Z for given m15 :

Z dimmer SNe 0.5 magagreement with observations Sullivan et al. 2010

Z (B-V) < 0.07 Extinction

Effect on colours at MAX

Domínguez et al. 2001Hoflich et al. 1998

SNIaHubble

Diagrams

Expected(before 1998)

Dimmerfurther

Back in time

232 )1()1(

),,,(

zzE

EHzfDMm

km

kOL

t

o

RR

z 1

Relative Distancesi=i/cr

critical density ~ 6 H per m3

12 years: evidence of stronger

m ~ 0.3 ~ 0.7

400 SNe Ia

Observations of SNe Ia alone

> 0 at 99% CL

SNe Ia + Flat Universe (CMB)

Parameterizing SNe Ia by Parameterizing SNe Ia by the Shape of their Light Curvethe Shape of their Light Curve

M. Phillips (1993) & M. Hamuy et al. (1996)

)(15 Bm

MB

<> ~ 0.2 mag

Mmax-m15

LOCAL calibrationValid at High-z ?

Light Curves LCs Radioactive energy

Leibundgut 2003

56Ni 56Co 56 Fe1/2 : 6.1 d 77.7 d

escape

56Ni

0.4M

1.4M

Radioactive Energy: Light Curves

UBVRI Mbol

56Ni -20 1.1 M

-17 0.1 M

To 1st order…

Maximum Lmax 56Ni mass

56Ni 56Co 56 Fe

LC Shape EK = Enuc- Ebin T 56Ni Distribution

Contardo, Leibundgut, Vacca, 2001

Explosion mechanisms DET: pure C-detonation

DEF: pure deflagration

DDT: delayed detonations DEF DET PDDT: pulsating delayed detonation: slow DEF

Sub-Ch: He-detonation in outer layers shock inward C-O detonation

Super-Ch (rotation)

0.8 M

CO

0.2 M

He

tr

EXPLOSIONS

1. Ignition in 1 or several spots ?

2. Runaway ... Explosive ignition

3. Propagation of the burning front

Enuc > E

nuc < hyd

Laminar (conductive e-) v << Deflagrations v < vsound

Detonations v vsound

Influence of MMS & Z Bravo et al. 2010, Domínguez et al. 2001

56Ni vs Z

Timmes et al. 2003

Z

DDT (12C, )

dimmer

Z

3Z

Z

MMS : 3 – 7 M

Zini : 10-10 – 0.1

Including simmering: more e-captures 56Ni L

MMS Lmax

tr

fixed

Z ( ) Lmax

Nucleosynthesis & Light Curves

UBVRI Mbol 56Ni

-20 1.1 M tr: Mmax

-17 0.1 M Mmax-m15

56Ni Mass & Distribution

Contardo, Leibundgut, Vacca, 2001

eY21

i

ii

ie X

A

ZY

Neutronization :

Hoflich, Khokhlov 1996

tr shorter pre-expansion burn 56Ni IME (Ca, S, Si, Mg)

Stellar evolution: Z 22NeSimmering: e-cap.Slow deflagration: e-capt.

56Ni

Explosive Nucleosynthesis

Baron et al. 2012

Mass fraction - velocity

( )

Piersanti et al. 2003a,b

acc < cond

10-5 M/yr

10-6 M/yr

10-7 M/yr

10-8 M/yr

ONe WD

ONe WD

ONe WD

ONe WD

SNIa

acc > cond

> 10-6 M/yr

< 10-6 M/yr

CO over CO

Observations Sullivan el al. 2009

Contreras et al. 2010

Hsiao et al. 2007, 2012

UV, optical, IR

Distance indicators Cosmology

Nucleosynthesis Origin and evoution of the elements

Physics Laboratories: hydrodynamics, combustion, radiation transport, nuclear physics, high-energy physics…

Numerical simulations testing capabilities of computers

Identify 2nd parameters for the calibration

Does the Calibration depend on redshift ?

Improve the Local Calibration ?

Understand SNe Ia !!

Nuclear Energy

© Rolfs & Rodney 1988

BE/A

C-burning O-burning Si-burning NSE

Explosive burningin SNIa:

Fuel is C-O:

Nuclear burning-scales SNe explosion-scales Specific heat C of degenerate matter decreases when increases

C

QT

T increases when increases

C < O < Si < NSE

XC < XO < XSi < XNSE

o < 2 107 g/cm3 No NSE o < 5 106 g/cm3 No Si-burno < 106 g/cm3 No O-burn

RWD

Burning nucleosynthesis

Resolution: at c cm !

Explosion: Propagation of the burning front

Laminar (conductive e-) spontaneous grad T

C/O vcond (vl) ~ 0.01 vsound

Detonations shock Hyd. eq. + Enuc vDET vsound

Deflagrations turbulent mixing burn-unburnt

Rayleigh-Taylor instability 3D problem in 1D vDEF parametrized vDEF < vsound (0.03 vsound )

0 P

DeflagrationRayleigh-Taylor instability

3D problem in 1D vDEF parametrized

Observed Mass Distribution of WDs

few WDs 1.1 M

Samples

Weidemann 2000

Bergeron, Green, Liebert, Saffer Vennes … & SDSS

Segretain et al 97

0.6 M

ONe WDs or Mergers

298 DA WDs

PG Survey

Liebert et al. 2005

Any Path to the Chandrasekhar Mass ??

RG MS

CO Accretion (DD)

GWR

H/He accretion (SD)

10-5 M/yr

Piersanti & Tornambe

3D Pulsating Reverse Explosions Models

Bravo & García-Senz ApJL2006Bravo & García-Senz ApJ 2009Bravo, García-Senz, Cabezon & Dominguez ApJ 2009

SPH

PRD: Mass of the Hydrostatic core

56Ni massEk

Ek = 1.0 – 1.2 foe56Ni = 0.6 – 0.8 M

Mburnt = 1.1 – 1.2 M

IME = 0.2 M

C < 0.13 M

at low v < 0.08 M

Chemical composition

Explosion & Energy

WD binding energy 5-6 1050 erg (~ 0.4 M)

Fuel C & O Fe/Co/Ni > 107 g/cm3

S/Si > 5 106 g/cm3

Mg/O/Ne > 105 g/cm3

Observations unburnt C < 0.01 – 0.2 M

Nearly all MCh WD is burnt

Similar Ek

~ 2 1051 erg (in ~ 1 s)

Similar ENuc

Magic density ~ 107 g/cm3

Nucleosynthesis & Kinetic Energy

EK ~ 1.4 foe 1 foe = 1051 erg

vexp~ 10000 km/s as observed !!

Homologous expansion Vr r

C/O > 20000 km/sIME < 20000 km/sFe-peak < 10000 km/s 54Fe, 58Ni < 2000 km/s neutronized

elements Hole of 56Ni in the center

Chemical layered … as observed !

Vr = cte.0.6 M 56Ni Erad ~ 0.03 EK