inorganic structure prediction with grinsp armel le bail université du maine, laboratoire des...

53
Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France. Email : [email protected]

Post on 19-Dec-2015

220 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Inorganic Structure Prediction with GRINSP

Armel Le Bail

Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

72085 Le Mans Cedex 9, France. Email : [email protected]

Page 2: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

CONTENT

IntroductionGRINSP algorithm

GRINSP predictionsOpened doors, and limitations

Prediction confirmationConclusion

Page 3: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

I- INTRODUCTION

To predict a crystal structure is to be able to announce it before any confirmation by chemical synthesis or discovery

in nature.

A predicted structure should be sufficiently accurate for the calculation of a predicted powder pattern that would

further be used with success in the identification of a real compound not yet characterized.

Page 4: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

If the state of the art had dramatically evolved, we should have huge databases of predicted compounds.

Not any new crystal structure would surprise us since it would correspond already to an entry in that database.

Moreover, we would have obtained in advance the physical properties and we would have preferably synthesized those interesting compounds.

Of course, this is absolutely not the case.

Where are we with inorganic structure prediction?

Page 5: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Things are changing, maybe :

Two databases of hypothetical compounds were built in 2004.

>100000 hypothetical zeolites at :http://www.hypotheticalzeolites.net/

>2000 inorganic compounds in PCOD(zeolites as well as other oxides and fluorides) at :

http://www.crystallography.net/pcod/

However, inorganic prediction software and methods remain scarce:

CASTEP, GULP, G42, SPuDS, AASBU, CERIUS2…

Hence the development of a new one : GRINSP

Page 6: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

II- GRINSP Algorithm

Geometrically Restrained INorganic Structure Prediction

Applies the knowledge of the common geometrical characteristics of a well defined group of crystal structures (N-connected 3D nets with N =

3, 4, 5, 6 and combinations of two N values), in a Monte Carlo algorithm,

In GRINSP, the quality of a model is established by a cost function depending on the weighted differences between calculated and ideal interatomic first neighbour distances M-X, X-X and M-M in binary

MaXb or ternary MaM'bXc compounds.

J. Appl. Cryst. 38, 2005, 389-395.

Page 7: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Comparison of a few GRINSP-predicted cell parameters with observed ones

Predicted (Å) Observed or idealized (Å)

Dense SiO2 a b c R a b c

Quartz 4.965 4.965 5.375 0.0009 4.912 4.912 5.404Tridymite 5.073 5.073 8.400 0.0045 5.052 5.052 8.270 Cristobalite 5.024 5.024 6.796 0.0018 4.969 4.969 6.926

Zeolites ABW 9.872 5.229 8.733 0.0056 9.9 5.3 8.8EAB 13.158 13.158 15.034 0.0037 13.2 13.2 15.0EDI 6.919 6.919 6.407 0.0047 6.926 6.926 6.410GIS 9.772 9.772 10.174 0.0027 9.8 9.8 10.2GME 13.609 13.609 9.931 0.0031 13.7 13.7 9.9JBW 5.209 7.983 7.543 0.0066 5.3 8.2 7.5LTA 11.936 11.936 11.936 0.0035 11.9 11.9 11.9RHO 14.926 14.926 14.926 0.0022 14.9 14.9 14.9

Aluminum fluorides-AlF3 10.216 10.216 7.241 0.0162 10.184 10.184 7.174 

Na4Ca4Al7F33 10.860 10.860 10.860 0.0333 10.781 10.781 10.781

AlF3-pyrochl. 9.668 9.668 9.668 0.0047 9.749 9.749 9.749

Page 8: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

More details on the GRINSP algorithm

Two steps :

 1- Generation of structure candidates

First the M/M’ atoms are placed in a box whose dimensions are selected at random, and the model should exactly correspond to the geometrical specifications (exact coordinations, but some tolerance on distances).

The cell is progressively filled with M/M’ atoms, up to completely respect the geometrical restraints, if possible. The number of M/M'

atoms placed is not predetermined.

In this first step, atoms do not move, their possible positions are tested and checked, then they are retained or not.

Page 9: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

2- Local optimizationThe X atoms are added at the midpoints of the (M/M')-(M/M') first neighbours.

It is verified by distance and cell improvements (Monte Carlo moves) that regular (M/M’)Xn polyhedra can really be built.

The cost function is based on the verification of the provided ideal distances M-M, M-X and X-X first neighbours. A total R factor is defined as :

R = [(R1+R2+R3)/ (R01+R02+R03)],

where Rn and R0n for n = 1, 2, 3 are defined as :

Rn = [wn(d0n-dn)]2, R0n = [wnd0n]

2,

where d0n are the ideal first interatomic distances M-X (n=1), X-X (n=2) and

M-M (n=3), whereas dn are the observed distances in the structural model. The

weights retained (wn) are those used in the DLS software for calculating

idealized zeolite framework data (w1= 2.0, w2 = 0.61 and w3 = 0.23).

Page 10: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

The ideal distances are to be provided by the user for pairs of atoms supposed to form polyhedra (for instance in the case of SiO4 tetrahedra,

one expects to have d1 = 1.61 Å, d2 = 2.629 Å and d3 = 3.07 Å).

For ternary compounds, the M-M' ideal distances are calculated by GRINSP as being the average of the M-M and M'-M' distances. It is

clear that this R factor considers only the X-X intra-polyhedra distances, neglecting any X-X inter-polyhedra distances This cost function R could

possibly be better defined differently, for instance by using the bond valence sum rules (this is in project for the next GRINSP version).

Minimizing the Difference of Distances with Ideal distancesis a very basic approach…

This basic approach can work only for regular polyhedra

Page 11: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

During this second step, the atoms are moving, but no jump is allowed because a jump would break the coordinations established at the first

step. This is a simple routine for local optimization. The change in the cell parameters from the structure candidate to the final model may be

quite considerable (up to 30%),

During the optimization, the original space group used for placing the M/M' atoms may change after adding the X atoms, so that the final

structure is always proposed in the P1 space group, and presented in a CIF.

The final choice of the real symmetry has to be done by using a program like PLATON.

More on the optimization second step

Page 12: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

How GRINSP works :

1- Create a small datafile corresponding to your desire

Example for such a datafile:

TiO6/VO5 Pbam - 55 ! TitleP B A M ! Space group4 2 0 2 ! Nsym (symmetry code), Npol, etc6 5 ! Coordinations of these npol polyhedron-typeTi O ! Definition of the elements for the first polyhedron V O ! Definition of the elements for the second polyhedron 3. 16. 3. 16. 3. 16. ! Min and max a, b, c90. 90. 90. 90. 90. 90. ! Min and max angles5. 35. ! Min and max framework density200000 300000 0.02 0.25 ! Nruns, MCmax, Rmax saving, optimizing20000 1 ! number of MC optimization cycles, refinement code 9550000 ! first filename (will be 9550000.cif, .xtl, .dat, etc)

Page 13: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

2 – Verify if your atom-pairs are already defined :

See into the distgrinsp.txt file :

V O 53.050 4.050 3.5501.526 2.126 1.8262.282 2.882 2.5824.20 7.00Ti O 63.300 4.300 3.8001.650 2.250 1.9502.458 3.057 2.7584.45 6.95

These are minimal, maximaland ideal distances for V-V,V-O and O-O in VO5 squarepyramids,

and for Ti-Ti, Ti-O and O-Oin TiO6 octahedra.

Page 14: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

3-

Run GRINSP

Page 15: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

4-

Wait a bit (one day…) and, when

finished, see the summary

file :

Page 16: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

5 –

See the results (here using

Diamond from a CIF) :

Page 17: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

GRINSP is Open Source, GNU Public Licence

Download it at : http://www.cristal.org/grinsp/

Page 18: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

III- GRINSP Predictions

Binary compounds

Formulations M2X3, MX2, M2X5 and MX3 were examined

Zeolites

More than a thousand models (not >100000) were built with R < 0.01 and cell parameters < 16 Å and placed into the PCOD database.

The way GRINSP recognizes a zeotype is by comparing the coordination sequence (CS) of any model with a list of previously established ones (as

well as with the other CS already stored during the current run).

The CIFs can be obtained by consulting the PCOD database, giving the entry number provided with the figure caption

(for instance PCOD1010026, etc).

Page 19: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Hypothetical zeolite PCOD1010026SG : P432, a = 14.623 Å, FD = 11.51

Page 20: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Hypothetical zeolite PCOD1030081SG : P6/m, a = 15.60 Å, c = 7.13Å, FD = 16.0.

Estimated number of zeolite models proposed by GRINSP : > 2000

Page 21: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Hypothetical aluminosilicate PCOD1010038SG : P432, a = 14.70 Å - FD = 11.32

formulation : [Si2AlO6]-1

Estimated number of aluminosilicates proposed by GRINSP : > 2000

Page 22: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Hypothetical aluminophosphateSG : Pma2, a = 15.81 Å, b = 8.06 Å, c = 5.64 Å - FD = 13.9

formulation : [Al4PO10]-3

Estimated number of aluminophosphates proposed by GRINSP : > 2000

Page 23: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Can GRINSP predict > 100000 zeolites as well ?

Yes, if Rmax fixed at 0.02 instead of 0.01, if the cell parameters maximum limits (16Å) are enlarged,and if multi-redundant solutions in various space groups

are all kept.

I prefer not.

Is there any sense to predict > 100000 zeolites when less than 200 are known ?

Page 24: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

B2O3 polymorphs predicted by GRINSP

Not a lot of crystalline varieties are known for this B2O3

composition. Too many are proposed by GRINSP.

Hypothetical B2O3 PCOD1062004.

Page 25: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Hypothetical B2O3 PCOD1051002

Estimated number of B2O3 models proposed by GRINSP : > 3000

Page 26: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

M2X5 compounds

Example : unknown V2O5, SG: Pbam, a = 13.78 Å, b = 14.55 Å, c

= 7.25 Å, FD = 16.5, R = 0.0056, VO5 square pyramids :

Estimated number of V2O5 models proposed by GRINSP : > 200

Page 27: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

AlF3 polymorphs yet to be synthesized,

predicted by GRINSP

All the known structure-types (5) were retrieved,

Two other structure types existing with stuffed MX3 formulations

were proposed.

Five unknown, “yet to be synthesized" AlF3 polymorphs were

predicted

That time, the total number is small : 12 models only with R < 0.02.

Page 28: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Classification of the 12 AlF3 polymorphs proposed by GRINSP

(identified as known or unknown) according to increasing values of the distance quality factor R < 0.02

Structure-type FD a b c SG Z N R

HTB 19.68 6.99 6.99 7.21 90.0 90. 120.0 P63/mmc 6 1 0.0035

TlCa2Ta5O15 20.67 7.00 7.23 9.56 90.0 90.0 90.0 Pmmm 10 2 0.0040

U-1 (AlF3) 21.27 6.99 7.22 13.5 90.0 105. 90.0 P21/m 14 3 0.0042

Pyrochlore 17.71 9.67 9.67 9.67 90.0 90.0 90.0 Fd-3m 16 1 0.0046U-2 (AlF3) 20.43 6.88 6.89 8.25 90.0 90.0 90.0 P-4m2 8 2 0.0057

Perovskite 21.16 3.62 3.62 3.62 90.0 90.0 90.0 Pm-3m 1 1 0.0063Ba4CoTa10O30 21.15 9.45 13.8 7.22 90.0 90.0 90.0 Iba2 20 2 0.0095

TTB 20.78 11.5 11.5 7.22 90.0 90.0 90.0 P42/mbc 20 2 0.0099

U-3 (AlF3) 22.37 6.96 7.40 5.21 90.0 90.0 90.0 Pnc2 6 2 0.0160

-AlF3 21.17 10.2 10.2 7.24 90.0 90.0 90.0 P4/nmm 16 3 0.0162

U-4 (AlF3) 21.71 10.5 10.5 6.68 90.0 90.0 90.0 I41/a 16 1 0.0181

U-5 (AlF3) 19.74 7.12 7.12 11.98 90.0 90.0 90.0 P42/mmc 12 2 0.0191

FD = framework density (number of Al atoms for a volume of 1000Å3).

SG = higher symmetry spage group in which the initial model of Al-only atoms was obtained (not being necessarily the true final space group obtained after including the F atoms).

Z = number of AlF3 formula per cell.

N = number of Al atoms with different coordination sequences.

R = quality factor regarding the ideal Al-F, F-F and Al-Al first neighbour interatomic distances.

Page 29: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Yet to be synthesized U-3 (AlF3).

Page 30: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Known : -AlF3 - tetrahedra and chains of octahedra

Page 31: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Unknown : U-4 (AlF3),

dense packing of tetrahedra of octahedra, exclusively

Page 32: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Model 13 : U-6 (AlF3), R > 0.02, not viable due to a too high level

of octahedra distortion and short F-F distances

Page 33: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

By-products of the search with GRINSP

Irregular polyhedra can be produced…

For instance, sixfold polyhedra other than octahedra can be produced: trigonal prisms or pentagonal based pyramids.

Since they do not correspond to one unique ideal X-M distance or M-X distance, they are ranked with high R-values.

Page 34: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Octahedra + pentagonal based pyramids :

Page 35: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Octahedra + trigonal prisms :

Page 36: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Chimeric compound mixing trigonal prisms with distorted trigonal bipyramids

Page 37: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Two- and one-dimensionnal compounds can be formed.

Nanotubes with B2O3 formulation for instance :

Page 38: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Ternary MaM’bXc compounds with corner-sharing 3D nets

M/M’ with same coordination but different ionic radii or

different coordination

The built ternary compound will not always be electrically neutral.

Page 39: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Borosilicates

PCOD2050102, Si5B2O13, R = 0.0055.

Estimated number of models built by GRINSP : > 3000

SiO4 tetrahedra

andBO3

triangles

Page 40: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Aluminoborates

Estimated number of models built by GRINSP : >2000

Example : [AlB4O9]-2, cubic, SG : Pn-3, a = 15.31 Å, R = 0.0051:

AlO6 octahedra

andBO3

triangles

Page 41: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Titanosilicates[Si2TiO7]

2-, R = 0.0044, SG : P42/mmc, a = 7.73 Å, c = 10.50 Å, FD = 19.1.

Estimated number of models built by GRINSP : > 500

TiO6 octahedra

andSiO4

tetrahedra

Page 42: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Fluoroaluminates

Known as Na4Ca4Al7F33 : PCOD1000015 - [Ca4Al7F33]4-.

AlF6 and CaF6

octahedra

Page 43: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Unknown : PCOD1010005 - [Ca3Al4F21]3-.

Estimated number of fluoroaluminates models built by GRINSP : ???

Page 44: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

A satellite software (GRINS) can build isostructural compounds faster than running again GRINSP

However, changing the atomic radius may lead to different structures…

Automatization is essential for the fast feeding of the PCOD, unfortunately, human eyes looking at the predicted

structure is still essential : 5 minutes at least are needed for an evaluation before adding the CIF into the database.

With zeolites, identification is easy because the coordination sequences of the known phases helps to recognize if the

prediction leads to a new model or is already known

But this is less easy with non-zeolites because there is no general extension of structure-types descriptors

Page 45: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

IV - Opened doors and limitations

Limitation : corner-sharing polyhedra

Potentially already > 50 or 100.000 hypothetical compounds in PCOD(only 2000 added yet)

Scheduled improvements

Make appear corner-, edge-, and face-sharing polyhedra, altogether.

Propose an automatic way to obtain an electrical neutrality by the detection of holes and the filling of these holes by large cations.

Use of bond valence rules at the optimization step, or/and energy calculations.

Extension to quaternary compounds.

Etc.

Page 46: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

With a few modifications, GRINSP couldPredict structures for ice H2O (on the basis of distorted OH4 tetrahedra):

or predict alloys MxM’y characterized by MM’4 and M’M4 tetrahedra,or predict fullerene structures,

or predict structures for series of organic compounds provided they can be described by common geometrical features, etc.

You are limited only by your own imagination…

Page 47: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

GRINSP can already predict structures deriving from perovskite by oxygen vacancies :

Octahedra and square pyramids : > 500 predictions

Page 48: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Brownmillerite

A problem with ICSD is the difficulty to identify if a predicted structure-type is already described in the database.

Generalized topology descriptors are lacking…

Page 49: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

V- Prediction confirmation

 

More difficult even is the prediction of the synthesis conditions for making to appear these predicted crystal structures. However, if the chemical composition involves at least 3 elements or more, one may

try the battery of classical synthesis methods.

If an interesting model is predicted having the [Ca3Al4F21]3-

formulation, may be it could be really synthesized as Na3Ca3Al4F21 or

Li3Ca3Al4F21, or may be not.

We can already be sure that most predictions will be vain, never confirmed, because the synthesis route may depend on a precursor (organometallic, hydrate, amorphous compound) which itself is yet

unknown, or because the prediction is simply false.

Page 50: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

The [Ca4Al7F33]4- network proposed by GRINSP really exists with the

Na4Ca4Al7F33 formulation.

The more the predicted inorganic formula is complex,the more easy classical and direct synthesis routes can be tested,

but metastable compounds will mostly occur from indirect routes.

Page 51: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

For the confirmation of the predictions, we will have to wait for decades or centuries, who knows.

Anyway, structure (and properties) prediction is an unavoidable part of our future in crystallography and

chemistry. Advantages are obvious.

We need for searchable databases of predicted compounds, preferably open data on the Web.

If we are not able to do that, we cannot pretend having understood and mastered the crystallography rules.

Page 52: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

Citation from Frank C. Hawthorne (1994) :

"The goals of theoretical crystallography may be summarized as follow: (1) predict the stoichiometry of the stable compounds; (2) predict the bond topology (i.e. the approximate atomic arrangement) of the stable compounds; (3) given the bond topology, calculate accurate bond lengths and angles (i.e. accurate atomic coordinates and cell dimensions); (4) given accurate atomic coordinates, calculate accurate static and dynamic properties of a crystal.

For oxides and oxysalts, we are now quite successful at (3) and (4), but fail miserably at (1) and (2)"

F. C. Hawthorne, Acta Cryst. B50 (1994) 481-510.

As a conclusion : generalizing GRINSP would be an empirical answer at goals (1) and (2). We have to stop to « fail miserably »!

Page 53: Inorganic Structure Prediction with GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085

We need for a database pointing at the future materials.

I suggest you to explore your usual crystallography domain, and to help me to feed PCOD with high

quality hypothetical compounds either with GRINSP or using any other prediction software.

VI - Conclusion

This is the future of chemistry and crystallography.Thanks !