input/output manual of light water reactor fuel analysis code femaxi-7 and its related codes

320
JAEA-Data/Code JAEA-Data/Code 2013-009 日本原子力研究開発機構 Reactor Safety Research Unit Nuclear Safety Research Center October 2013 Japan Atomic Energy Agency 日本原子力研究開発機構 Motoe SUZUKI, Hiroaki SAITOU Yutaka UDAGAWA and Fumihisa NAGASE Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes

Upload: others

Post on 11-Sep-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes

JAEA

-DataC

odeJAEA-DataCode

2013-009

日本原子力研究開発機構

Reactor Safety Research UnitNuclear Safety Research Center

October 2013

Japan Atomic Energy Agency 日本原子力研究開発機構

Motoe SUZUKI Hiroaki SAITOU

Yutaka UDAGAWA and Fumihisa NAGASE

InputOutput Manual of Light Water Reactor Fuel

Analysis Code FEMAXI-7 and Its Related Codes

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です

本レポートの入手並びに著作権利用に関するお問い合わせは下記あてにお問い合わせ下さい

なお本レポートの全文は日本原子力研究開発機構ホームページ(httpwwwjaeagojp)より発信されています

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課

319-1195 茨城県那珂郡東海村白方白根 2 番地 4電話 029-282-6387 Fax 029-282-5920 E-mailird-supportjaeagojp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability andor copyright of this report should be addressed to Intellectual Resources Section Intellectual Resources Department Japan Atomic Energy Agency 2-4 Shirakata Shirane Tokai-mura Naka-gun Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387 Fax +81-29-282-5920 E-mailird-supportjaeagojp

copy Japan Atomic Energy Agency 2013

i

JAEA-DataCode 2013-009

InputOutput Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes

Motoe SUZUKI Hiroaki SAITOU Yutaka UDAGAWA and Fumihisa NAGASE

Reactor Safety Research Unit Nuclear Safety Research Center Japan Atomic Energy Agency

Tokai-mura Naka-gun Ibaraki-ken

(Received April 18 2013)

A light water reactor fuel analysis code FEMAXI-7 has been developed as an extended

version from the former version FEMAXI-6 for the purpose of analyzing the fuel behavior in

normal conditions and in anticipated transient conditions Numerous functional improvements

and extensions have been incorporated in FEMAXI-7 which are fully disclosed in the code

model description published in the form of another JAEA-DataCode report

The present manual which is the very counterpart of this description document gives

detailed explanations of files and operation method of FEMAXI-7 code and its related codes

methods of inputoutput sample InputOutput methods of source code modification

subroutine structure and internal variables in a specific manner in order to facilitate users to

perform fuel analysis by FEMAXI-7

Keywords LWR Fuel Code Analysis FEM Analysis Numerical Stability Fission Gas Release PCMI Burn-up

ITOCHU Techno-Solutions Corporation (Tokyo)

ii

JAEA-DataCode 2013-009

軽水炉燃料解析コード FEMAXI-7 および関連コードの入出力マニュアル

日本原子力研究開発機構安全研究センター

原子炉安全研究ユニット

鈴木 元衛斎藤 裕明宇田川 豊永瀬 文久

(2013 年 4 月 18 日受理)

FEMAXI-7 は軽水炉燃料の通常運転時及び過渡条件下のふるまい解析を目的と

するコードとして前バージョン FEMAXI-6 に対して多くの機能の追加改良を実施

した高度化バージョンであるこのモデルと内部構造機能の詳細に関する文書は別

の JAEA-DataCode として刊行される本マニュアルはこれと対をなすもので

FEMAXI-7 及び関連コードのファイルの内容入出力の方法サンプル入出力ソー

スの修正方法サブルーチン構造内部変数などについて詳述しFEMAXI-7 による

燃料解析の具体的方法を説明したものである

原子力科学研究所(駐在)319-1195 茨城県那珂郡東海村白方白根 2-4

伊藤忠テクノソリューションズ株式会社

JAEA-DataCode 2013-009

iii

Contents

1Introduction 1

2 Execution file system 1

21 Files of FEMAXI -7 and EXPLOT 1

22 Files of burning analysis code RODBURN-1 2

23 Files of burning analysis code PLUTON 2

24 Compiling source code 3

241 Compiling by Compaq DVF 3

242 Compiling by Intel VF 95 (or upper) 8

243 Compiling by Linux-GNU Fortrang77 13

References 1 and 2 14

3 Execution of program 15

31 On Windows-PC 15

311 Directory structure for Compaq compiler 15

312 Directory structure for Intel compiler 16

313 Basic process of executing the program -1- (Windows) 17

32 Execution in Linux 23

321 Example of Makefile for GNU Fortran 77 (g77) 23

322 Basic process of execution -2- (Linux) 24

33 Performing Re-start function 27

331 Function to bridge full-length rod and short test rod calculations 27

332 Re-start calculation from base-irradiation to test-irradiation 27

333 Name-list parameters related to Re-start calculation 30

334 Variables taken over and those not taken over in Re-start calculation 31

335 Explanations for sample Re-start calculations and method 41

34 Usage of output of burning analysis code RODBURN-1 47

341 Record No and contents 47

342 Usage of records in FEMAXI 48

343 Making input file of RODBURN-1 by using FEMAXI 51

35 Usage of output of burning analysis code PLUTON 51

351 Physical quantities of PLUTON output for FEMAXI 52

352 Structure of inputoutput files of PLUTON 52

353 Contents read by FEMAXI code 63

354 Output file reading function of FEMAXI 65

JAEA-DataCode 2013-009

iv

355 Unit conversion of burnup 68

36 Calculation examples by RODBURN-1 and PLUTON 69

361 PWR fuels 69

362 BWR fuels 75

37 Usage of the Halden data-base TFDB 81

References 3 81

4 FEMAXI-7 Input manual 82

41 Explanation on the relationship of IS and IST 82

411 Function of ISTATE value 82

412 Relationship between IS IST and ISTATE 83

413 Options specified by IS and IST 83

42 Fixed format input 85

43 Name-list Input 88

44 Plot data index IDNO 133

45 Calculated physical quantities in ZERO power state 133

46 Method to input history point data 134

461 Power history data 134

462 Relative power profile 134

463 Input method of power history 135

47 Setting of cladding outer surface temperature 138

5 Models and Input manual of RODBURN-1 141

51 General feature of RODBURN input format 141

52 Some comments on the RODBURN code (Sept1998) 141

53 Explanations of RODBURN-1 models and methods 143 54 Explanation of neutron flux control by ldquoALPH(K) EXTL(K) EXTT(K)

K=1 NDISTrdquo Option for IDIST 149

55 Some important input name-list parameters of FEMAXI-7 for usage

of RODBURN-1 150

56 RODBURN Input data format (1) 151

57 RODBURN Input data format (2) 155

References 5 161

6 Input Manual of Plotting Control Program EXPLOT 163

61 Input parameters for EXPLOT 163

62 Tables of IDNOs classified by variables 166

JAEA-DataCode 2013-009

v

63 Plotting the quantities with common Y-axis 182 64 Explanation on the physical quantities of Y-axis (3) (4)C Group 183

641 Physical quantities of pellet 183

642 Physical quantities of cladding 185

7 Sample InputOutput (numerical and plotted outputs) 187

71 FEMAXI-7 numerical output image of ldquoABC1outrdquo 187 72 Plotting control data file image of ldquoexplotABCrdquo 215

73 Images of plotted output ldquoABC1ABCpdfrdquo 218

74 Example of numerical output of HBS model 224

75 Sample inputoutput of RODBURN-1 226

8 Manual for modification of materials properties models 245

81 Materials properties subroutines 245

82 Method of addition and modification of models 246

821 Density 246

822 Thermal conductivity 246

823 Specific heat 249

824 Thermal expansion 250

825 Youngrsquos modulus 251

826 Poissonrsquos ratio 252

827 Creep 254

828 Fuel pellet swelling 258

829 Densification 260

8210 Plasticity 260

8211 Grain growth 264

8212 Melting point 264

8213 Fission gas release rate and diffusion coefficient 265

8214 Cladding waterside corrosion 265

8215 Cladding irradiation growth 266

8216 Gap thermal conductance 266

8217 He-Xe gas inter-diffusion coefficient 267

83 Method of incorporating a new surface heat transfer model 268

Appendix 273

JAEA-DataCode 2013-009

vi

目 次 1はじめに 1

2 実行ファイルシステム 1

21 FEMAXI -7 および EXPLOT のファイル 1

22 燃焼計算コード RODBURN-1 のファイル 2

23 燃焼計算コード PLUTON のファイル 2

24 ソースコードのコンパイル 3

241 Compaq DVF によるコンパイル 3

242 Intel VF 95 (or upper)によるコンパイル 8

243 Linux-GNU Fortrang77 でのコンパイル 13

参考文献 1 2 14

3 プログラムの実行 15

31 Windows-PC の場合 15

311 Compaq compiler の場合のディレクトリ構造 15

312 Intel compiler の場合のディレクトリ構造 16

313 基本的な実行の順序 -1-(Windows) 17

32 Linux での実行 23

321 GNU Fortran 77 (g77) の場合の Makefile 例 23

322 基本的な実行の順序 -2-(Linux) 24

33 Re-start 機能の実行 27

331 長尺燃料棒と短尺試験燃料棒の計算をつなぐ計算 27

332 ベース照射から試験照射への Re-start 計算 27

333 Re-start 計算に関係する Name-list パラメータ 30

334 Re-start 計算に引き継がれる変数と引き継がれない変数 31

335 サンプル Re-start 計算と方法の説明 41

34 燃焼計算コード RODBURN-1 の出力の利用 47

341 レコード Noと内容 47

342 FEMAXI でのレコード利用法 48

343 FEMAXI を用いて RODBURN-1 の入力ファイルを作る方法 51

35 燃焼計算コード PLUTON の出力の利用 51

JAEA-DataCode 2013-009

vii

351 PLUTON と FEMAXI の物理量の関係 52

352 PLUTON の入出力ファイルの構造 52

353 FEMAXI コードに読み込まれる内容 63

354 FEMAXI による出力ファイル読み込み機能 65

355 燃焼度の単位変換 68

36 RODBURN-1 と PLUTON の計算例 69

361 PWR 燃料 69

362 BWR 燃料 75

37 Halden データベース TFDB の利用 81

参考文献 3 81

4 FEMAXI-7 入力マニュアル 82

41 IS と IST の関係に関する説明 82

411 ISTATE 値の機能 82

412 IS IST および ISTATE の間の関係 83

413 IS と IST によって指定されるオプション 83

42 固定フォーマット入力 85

43 Name-list 入力 88

44 プロットデータインデックス IDNO 133

45 ZERO パワー状態の計算データ 133

46 履歴データの入力方法 134

461 出力の履歴点データ 134

462 発熱密度プロファイル 134

463 出力履歴の入力方式 135

47 被覆管外表面温度の入力設定モード 138

5 RODBURN-1 のモデルと入力 141

51 RODBURN 入力フォーマットの一般的特徴 141

52 RODBURN コードに関するコメント 141

53 RODBURN-1 のモデルと方法の説明 143

JAEA-DataCode 2013-009

viii

54 ldquoALPH(K) EXTL(K) EXTT(K) K=1 NDISTrdquo IDIST オプションによる

中性子束制御の説明 149

55 RODBURN-1 を使う際の FEMAXI-7 のいくつかの重要な

name-list パラメータ 150

56 RODBURN 入力データフォーマット(1) 151

57 RODBURN 入力データフォーマット(2) 155

参考文献 5 161

6 プロット制御プログラム EXPLOT 入力マニュアル 163

61 EXPLOT の入力パラメータ 163

62 変数によって分類された IDNO のテーブル 166

63 Y 軸共通物理量プロットの使用法 182

64 プロットデータの Y 軸物理量(3)(4)C グループに関する説明 183

641 ペレット物理量 183

642 被覆管物理量 185

7 サンプル入出力(数値出力+プロット図) 187

71 FEMAXI-7 数値出力 ABC1out イメージ 187

72 プロット出力制御データ explotABC イメージ 215

73 プロット出力 ABC1ABCpdf イメージ 218

74 HBS モデルの出力数値ファイル例 224

75 RODBURN-1 入出力サンプルケース 226

8 物性値モデルの修正マニュアル 245

81 物性値ルーチン 245

82 物性値の追加修正方法 246

821 密度 246

822 熱伝導率 246

823 比熱 249

824 熱膨張 250

825 ヤング率 251

JAEA-DataCode 2013-009

ix

826 ポアソン比 252

827 クリープ 254

828 スエリング 258

829 焼きしまり 260

8210 塑性 260

8211 結晶粒成長 264

8212 融点 264

8213 FP ガス放出率と拡散係数 265

8214 被覆管腐食 265

8215 被覆管照射成長 266

8216 ギャプコンダクタンス 266

8217 He-Xe ガス相互拡散係数 267

83 新しい表面熱伝達モデルの組み込み法 268

付録 273

This is a blank page

JAEA-DataCode 2013-009

- 1 -

1 Introduction Fuel analysis code FEMAXI-7 is the latest version which has been extended to cope with a wide variety of LWR fuel behavior analyses by using related auxiliary codes system and compilers The present manual makes a pair with another JAEA-DataCode 2013-005(11) a model description of FEMAXI-7

The authors hope that this manual will serve for a wide circle of users in understanding and operating FEMAXI-7 with proficiency Users are recommended to ask JAEA freely concerning the contents when they come across any problem

2 Execution file system The method of installing FEMAXI(21) system into Windows PC and Linux systems and

execution of the program are explained

21 Files of FEMAXI-7 and EXPLOT The source files of FEMAXI-7 and plotting program EXPLOT consist of the files listed in

Table 211 and Table 212 The source file group of FEMAXI-7 is represented by

Femaxi7FOR in Table 211 and the group of EXPLOT is listed in Table212 A sample

calculation case ID is named ldquoABCrdquo corresponding to the sample case presented later in

chapter 7 FEMAXI-7 reads the input file name from a file-name-description file fnamed

and opens the required files The file names are specified including the path and designated in

the order of the unit No listed in Table 211 (Refer to section 311 )

Table 211 FEMAXI-7 files Unit No File (default name) Contents

Femaxi7FOR Source code including all the modules

- fem2exe Executable program

5 ABCd05 (ft05d) Sample input file

6 ABCout (ft06d) Sample numerical output file

7 ABCplt (expldat) Sample plotting data file

9 fnamed File-name-description file

55 formdata Name-list input format file

89 ft89d Steam table library file

Since EXPLOT uses calcomp-compatible instructions it is necessary to link the program

with a calcomp compatible library pltcmplib (in Linux calcmpa) in compiling

explotfor

JAEA-DataCode 2013-009

- 2 -

Table 212 EXPLOT files Unit No File (default name) Contents

- explotfor explot2exe Source executable program

5 pltcal8lib (or calcmpa) Calcomp-compatible library

6 explotd Plotting control file

7 ABCplot ABCps ABCpdf Sample output Explained in Chap7

22 Files of burning analysis code RODBURN-1 RODBURN-1 is a simplified and convenient burning analysis code for LWR fuel rods(21)

The source files of RODBURN-1 are listed in Table 221 This code calculates the power

density profile in the radial direction of pellet as a function of average burnup and concurrently

calculates the generated amounts of fission products and He RODBURN-1 uses a

file-name-description file rfnamed similarly to FEMAXI

FEMAXI and RODBURN open the files collectively at the head of main program

Accordingly it is easy for users to change the default file names and path to adjust them to their

own system circumstances

Table 221 RODBURN-1 files Unit No File name (default name) Contents

- rodburnfor

rodburnexe

RODBURN source executable program

5 ABCrddat Input data file (sample) (renamed from rodin) 6 ABCrdout Numerical output file (sample) 7 ABCrodex Result data file to be read by FEMAXI 9 rfnamed File-name-description file 1 ft01d RABBLE(23) original library 1 2 ft02d RABBLE original library 2

60 EJU268 Resonance parameters for U-268 and group cross section of WIMS69(24)

61 EJPU240 Resonance parameters for Pu-240 and group cross section of WIMS69

66 origend ORIGEN(25) code library

23 Files of burning analysis code PLUTON PLUTON (=PLUTON-PC) is a burning analysis code for LWR fuels(22) This code has a

variety of calculation contents and output formats by using more precise models and methods

than those of RODBURN When a result file generated by PLUTON is used by FEMAXI-7

JAEA-DataCode 2013-009

- 3 -

either one of two methods should be selected to write the numerical figures of the result file at

the end of input file of FEMAXI or to read the result file into FEMAXI To read the result file

file fmdt is read which is given from PLUTON In an example shown later it has a unit No

of 51 to be read as ABCfmdt

24 Compiling source code 241 Compiling by Compaq DVF

It was a standard compiling method for FEMAXI-V and -6 EXPLOT RODBURN and

PLUTON to be compiled with Compaq Digital Visual Fortran 61 or Upper-version (CDVF)

However CDVF has been discontinued Accordingly hereafter Intelreg Visual Fortran

(IVF)(27) is used as a standard compiler for FEMAXI-7 EXPLOT RODBURN and PLUTON

Nevertheless compiling method with CDVF is explained first as there may be still not so

small a number of users of CDVF The compiling options of CDVF are shown below for

Windows PC (2000 XP Vista and Windows 7) Here the optimization parameter for CDVF

compiling is ldquoFull optimizationrdquo

(1) Basic method on the basis of Developer Studio In the following example Compaq Visual Fortran Standard Edition 660 (English

version) is used The example is also applicable to Compaq Visual Fortran Ver 61 or Upper

1) Making a new project To form a new project open a new project making pane by selecting the menu

[File][New] Select [Fortran Console Application] by [Projects] tab and input [Project

name] eg if the source is FEMAXI ldquoFEMrdquo

Input the directory name in [Location] where project is generated or select a parent

directory name under which the project directory name is input then click [OK] In the

example below ldquoCFEM7rdquo is selected and the project directory is named ldquoCFEM7FEMrdquo

then [OK] is clicked In the next selection pane select [An empty project] click [Finish] and

click [OK] in the pane [New Project Information]

JAEA-DataCode 2013-009

- 4 -

2) Designation of source code Designate the source code in ldquoFile Viewrdquo pane If no ldquoFile Viewrdquo pane is shown show the

pane by selecting [View][Workspace] In the pane extend the workspace files selected in

the previous process 1) Right click on [Source Files] and select [Add Files to Folder] and

then select the source files by [Insert Files into Project] In the example below the compile

target code is FEMAXI-7 and ldquoFEMAXI7FORrdquo is selected

3) Change into Release mode Change the build configuration into ldquoReleaserdquo mode Select the menu [Build][Set

Active Configuration] open [Set Active Project Configuration] pane and change the mode into [FEM - Win32 Release]

JAEA-DataCode 2013-009

- 5 -

4) Designation of other INCLUDE directories If there are some INCLUDE files in a directory except the directory directly under the

project directory it is necessary to designate the INCLUDE directory one more time

This process is as follows select [Project][Settings] to open the pane [Project

Settings] Set [Settings For] into [Win32 Release] (or to [All Configurations] ) and select

the uppermost ranked project name in the file structure viewing pane below Change the

pane into [Fortran] tab and change [Category] into [Preprocessor] Input the directory name

which has the INCLUDE files into [INCLUDE and USE Paths] In this example ldquoINCrdquo is

designated

JAEA-DataCode 2013-009

- 6 -

5) Libraries

For EXPLOT it is necessary to designate a calcomp library for compiling before building Detailed procedure is explained in the next sections (3) and (4)

6) Building the executable files

Perform building to make an executable program by selecting [Build][Build FEMexe (=executable program name)]

7) Confirmation of executable program generation Confirm that the executable program has been generated under ldquoReleaserdquo directory in the

project directory (2) Designation method of linking Calcomp library in Developer Studio

In EXPLOT either one of the two following methods is used in designating the calcomp

JAEA-DataCode 2013-009

- 7 -

library It is not necessary to use both the methods at the same time

1) Addition of library file by changing link setting Link pltcal by adding library file in setting the link of project By selecting

[Project][Settings] open the pane [Project Settings] Select [Win32 Release] (or [All

Configurations]) and select the uppermost project name (ldquoexplot2rdquo) in the directory

structure table pane shown below Shift to the tab [Link] put a half space after the already

registered library in [Objectlibrary modules] and input the library path ie in this example

ldquopltcal8librdquo for this file is stored just under the project directory

2) Addition of library file by adding resource file

Addition of library file to Resource File allows the link Right-click [Resource Files] in

View Files pane select [Add Files to Folder] and open [Insert Files into Project] pane

Change the [File type] into [Library Files(lib)] and select ldquopltcal8librdquo

JAEA-DataCode 2013-009

- 8 -

242 Compiling by Intel VF 95 (or upper)

Method to compile the source by Intel Visual Fortran(27) is described below It is necessary

to change the settings of retention of error check variables and local variables from the initial

settings which is different from the situation in Compaq Visual Fortran

(1) Basic method of compiling FEMAXI-7 on Visual Studio In the following example Intel Visual Fortran Compose XE 2011 on Microsoft Visual

Studio 2010 is used This example is also applicable to Intel Visual Fortran 95 without

significant changes

1) Making project Select [File][New Project] extend [Intel(R) Visual Fortran] and select [Console

Application] and select [Empty Project] Put a project name eg [FEM] and location of the

project and click [OK]

JAEA-DataCode 2013-009

- 9 -

2) Addition of source files Right-click the [source files] of the project in [Solution Explorer] select

[Addition][Existing files] A file pane opens Select source files and click [Addition]

3) Change into Release mode Change the build-configuration into Release mode by opening [Build] pane

[Configuration Manager]

JAEA-DataCode 2013-009

- 10 -

4) Addition of include file Method A Select [Project][Properties] Spread [Fortran] of configuration properties and

designate the include file names or their directory name by clicking [General][Additional Include Directories]

Method B Add the include files to the [Header Files] in Solution Explorer pane

5) Change of settings to cover fortran 77

When compiling FEMAXI-7 EXPLOT and RODBURN by Intel Fortran the following

changes are needed because the source files are partly written in Fortan77 Since PLUTON is

written in Fortran 90 these changes are not necessary

Select [Project][Properties] and spread [Fortran]

i) Spread [Diagnostics][Language Usage Warnings] input [No] in [Check Routine Interfaces]

JAEA-DataCode 2013-009

- 11 -

ii) [Data][Local Variable Storage] change to [All Variables SAVE (Qsave)]

iii ) Open [External Procedure] confirm that [Calling Convention] is [Default]

JAEA-DataCode 2013-009

- 12 -

iv) [Run-time]input [No] in [Check Array and String Bounds]

v) Spread [Diagnostic][General] input [No] in [Interface Block Generation]

This option is not present in Intel Visual Fortran Composer XE 2011

When all the changes are done click [Apply]

6) Making an executable file Make an executable program by [Build][Build Project name]

(2) Method of compiling EXPLOT on Visual Studio 1) Addition of source file and library file Similarly to the case of FEMAXI-7 above add the source code and library by using [Solution Explorer] pane

JAEA-DataCode 2013-009

- 13 -

2) Change of settings to cover fortran 77 All the changes described above in 5) for FEMAXI-7 should be also applied to EXPLOT 3) Making an executable file

Make an executable program by [Build][Build Project name] 243 Compiling by Linux-GNU Fortran g77

To execute FEMAXI-7 on Linux compiling procedure by g77 which can be obtained for

free is explained Only FEMAXI and EXPLOT are assured to be successfully built by g77

(1) FEMAXI compiling

In an usual setting of g77 initialization and retention of local variables is not conducted so that it is necessary to add retention of local variables as optional arguments(-fno-automatic)

and initialization (-finit-local-zero) when compiling Accordingly femaxi7FOR is compiled

by the commands below to make an executable program FEMAXI-7

g77 -o FEMAXI-7 -fno-automatic -finit-local-zero femaxi7FOR (2) Building the executable file of EXPLOT

CALCOMP-compatible library calcmpa is generated from source file calcmpfor

g77 -fno-automatic -finit-local-zero -o calcompfor -c calcmpo ar cr calcmpo calcmpa

By linking CALCOMP-compatible library link is carried out

g77-o EXPLOT -fno-automatic -finit-local-zero explot2for calcmpa

JAEA-DataCode 2013-009

- 14 -

References 1 and 2 (11) M Suzuki H Saitou Y Udagawa and F Nagase Light Water Reactor Fuel Analysis

Code FEMAXI-7 Model and Structure JAEA-DataCode 2013 ndash 005(2013) (21) MSuzuki HSaitou YUdagawa ldquoLight Water Reactor Fuel Analysis Code

FEMAXI-7Model and Structurerdquo JAEA-DataCode 2010-035 (2011) [in Japanese] (22) MUchida HSaitou ldquoRODBURN A Code for Calculating Power Distribution in Fuel

Rodsrdquo JAERI-M 93-108 (1993) [in Japanese] (23) PHKier and AARobba ldquoRABBLE A Program for Computation of Resonance

Absorption in Multi-region Reactor Cellsrdquo ANL-7326 (1967) (24) WIMS-D IAEA Nuclear Data services httpwww-ndsiaeaorg (25) MJBell ldquoORIGEN-The ORNL ISOTOPE GENERATION AND DEPLETION CODErdquo

ORNL-4628 (1973) (26) SLemehov and MSuzuki ldquoPLUTON ndash Three-Group Neutronic Code for Burnup

Analysis of Isotope Generation and Depletion in Highly Irradiated LWR Fuel Rods JAERI-DataCode 2001-025 (2001)

(27) Intel reg Visual Fortran Composer XE 2011 Windows httpwwwxlsoftcomjpproductsintelcompilersfcwindexhtmltab=0

JAEA-DataCode 2013-009

- 15 -

FemReleasefem2exe FEMdsp FEMdsw FEMopt FEMplg of Compaq DVF

formdata (description of output variables) ft89d Fem srcf INC (source and include files)

3 Execution of program

31 On Windows-PC 311 Directory structure for Compaq compiler

An example of directory structure and file configuration is shown for Windows system assuming that the parent directory CFem7 is located on C-drive

CFem7

Plot2 explot2Releaseexplot2exe Pltcal8lib (Calcomp library) explot2dsp explot2dsw explot2plg explot2opt

RODReleaserodburn2exe rodburn2for (RODBURN-1 source) Ejpu240 Eju238 ft01d ft02d origend (library)

rodburn2dsp rodburn2dsw rodburn2plg rodburn2opt of Compaq DVF

rbout rodex (ORDBURN result file to be fed to FEMAXI)

outp out (FEMAXI numerical output) plt (plotting data file generated by FEMAXI) ps (postscript file of plotted figures) pdf (plotted figures in pdf file converted from ps file) plot (text file of numerical data of plotted figures) csv (CSV file of plotted numerical data) rdout (numerical output of RODBURN-1)

Wrk rodbat fembat plotbat (batch programs) d05 (FEMAXI input file) rddat (RODBURN input file) explot (plotting control file) mytitltxt (plotting caption file)

JAEA-DataCode 2013-009

- 16 -

FemReleaseFEMexe FEMsln FEMvfproj of Intel compiler formdata (description of output variables) ft89d (library)

Fem srcf INC (source and include files)

312 Directory structure for Intel compiler

An example of directory structure and file configuration is shown for Windows system assuming that the parent directory Fem7 is located on C-drive

CFem7

Plot2 explot2Releaseexplot2exe explot2 Pltcal8lib (Calcomp library)

explot2sln explot2ncb explot2opt explot2vfproj of Intel compiler

RODRelease RODexe rodburn2for (RODBURN-1 sources) Ejpu240 Eju238 ft01d ft02d origend (libraries) RODsln RODvfproj of Intel compiler

rbout rodex

outp out (FEMAXI numerical output file) plt (plotting data file generated by FEMAXI) ps (postscript file of plotted figures) pdf (plotted figures in pdf file converted from ps file) plot (text file of numerical data of plotted figures) csv (CSV file of plotted numerical data) rdout (numerical output of RODBURN-1)

Wrk rodbat fembat plotbat d05 (FEMAXI input file) rddat (RODBURN-1 input file) explot (plotting control file) mytitltxt (plotting caption file)

JAEA-DataCode 2013-009

- 17 -

313 Basic process of executing the program -1- (Windows)

An important process to execute the FEMAXI-7 system is briefly explained below

(1) Activation of command prompt FEMAXI-7 RODBURN and EXPLOT are executed by entering a batch command

following the MS-DOS prompt For this purpose MS-DOS Windows for the FEMAXI

system has to be prepared

A) Look for the MS-DOS prompt icon in the Windows system create a shortcut to the

program to be executed and place it on Desktop

B) Open ldquoPropertiesrdquo of this shortcut press the program tab select eg CFem7Wrk from

the Work Directory

C) Change the icon to enable easy recognition of this shortcut and simultaneously change

the name of the shortcut to ldquoFem7rdquo Hereafter this shortcut is called ldquoFEM7rdquo

(2) Test run of RODBURN-1

A) Input ldquorod ABCrdquo following the prompt (Fem7Wrk) which causes RODBURN to be

executed By entering ldquorod ABCrdquo the system searches for the file ldquoABCrddatrdquo and

reads it If ldquorod ABCrddatrdquo is entered the system searches for ldquoABCrddatrddatrdquo

and ldquoError stoprdquo occurs because such a file does not exist

B) After the completion of execution start Explorer and confirm if the time stamp of the

file ABCrodex in Wrk RBOUT is renewed

(3) Test run of FEMAXI-7

A) Enter ldquofem ABC 1rdquo following the prompt which causes FEMAXI-7 to be executed

By entering ldquofem ABC 1rdquo the system searches for the file ldquoABCd05rdquo reads it and

outputs the files named ABC1out and ABC1plt When ldquofem ABC 2rdquo is entered first

ABC2out and ABC2plt are created

If ldquofem ABCd05rdquo is entered the system searches for the file ldquoABCd05d05rdquo and

ldquoError stoprdquo occurs because such a file does not exist

B) After the completion of execution start Explorer and confirm if files ABC1out and

ABC1plt are created in Wrk Outp

JAEA-DataCode 2013-009

- 18 -

(4) Test run of EXPLOT

A) Enter ldquoplot ABC1 drdquo following the prompt which causes EXPLOT to be executed By

entering ldquoplot ABC1 drdquo the system searches for and reads files ldquoexplotdrdquo and

ldquoABC1pltrdquo By entering ldquoplot ABC1pltrdquo the system searches for a file ldquoABC1pltpltrdquo

and ldquoError stoprdquo occurs because such a file does not exist When ldquoplot ABC2 frdquo is

entered the files ldquoexplotfrdquo and ldquoABC2pltrdquo are read and the files ABC2plot ABC2ps

and ABC2csv are produced

B) After the completion of execution start Explorer and confirm if files ABC1plot

ABC1ps and ABCcsv are created in Wrk OUTP

C) After this confirmation double click ABC1ps which activates Adobe Acrobat Distiller

and the system converts the ps file into a pdf file After conversion has been completed

the file ABC1pdf is created To enable this conversion it is necessary to install either

the complete set of Adobe Acrobat 40 (or a higher version) or ps2pdf ps2pdf can be

used by downloading from internet without charge installing and setting GhostScrpipt

After setting GhostScrpipt move to Fem7WrkOUTP and input the ps2pdf command

ldquops2pdf ABC1ps ABC1pdfrdquo Then ABC1pdf can be generated from ABC1ps

The above-mentioned conversion cannot be carried out using Acrobat Reader which

can be downloaded without charge

D) Double click ABC1pdf and open the file to confirm the creation of output plots

(5) Main analysis -1- (case1 making input file for RODBURN by using FEMAXI)

A) Initially FEMAXI calculation is carried out without RODBURN Namely calculation

is carried out with the name-list parameter IROD=1 or =2 or =3 in input data file (eg

EFGd05) For the value of IROD see the input manual of FEMAXI-7 Then FEMAXI

does not perform normal calculation but generates a file ldquorodinrdquo in Wrk

B) Open the file ldquorodinrdquo and confirm the content Rename ldquorodinrdquo into eg ldquoABCrddatrdquo

and execute RODBURN with this input file ABCrddat

C) Next to perform calculations using the results of RODBURN execute FEMAXI again

by setting the name-list parameters IROD=0 and IFLX= -2 in EFGd05

D) Edit the plot control information file explotd

JAEA-DataCode 2013-009

- 19 -

E) Execute EXPLOT and produce EFGps and EFplot Obtain plotted figures by

converting EFGps into EFGpdf

F) Note Since the output files EFGout EFGplt EFGplot EFGps and EFGpdf are

overwritten each time E) through F) are executed if users wish to retain previous results

they should be assigned a convenient name such as EFG1out

(6) Main analysis -2- (case2 making input file for RODBURN)

A) When the output history in the input data file (eg EFGd05) is time vs linear power

FEMAXI calculation is initially carried out without RODBURN Namely calculation

is carried out with the name-list parameter IFLX=0

B) Open the output file EFGout using an editor read the cumulative burnup and produce

the RODBURN input data file EFGrddat After this follow the identical processes to

those shown in the case1above

(7) Main analysis -3- (case3 using PLUTON) By designating the name-list parameter IFLX=-1 FEMAXI calculation is performed with

the burning analysis result file obtained by PLUTON-PC execution

JAEA-DataCode 2013-009

- 20 -

(8) List of batch files A) Execution of FEMAXI fembat

In a case where different parent directory from FEM7 is used change the 3rd line ldquoset

MYPATH=CFEM7rdquo

rem FEMAXI Execution Started

setlocal

set MYPATH=CFEM7

IF 2 == GOTO NOX1

echo D05 MYPATHWrk1d gt fnamed

echo OUT MYPATHWrkoutp12out gtgt fnamed

GOTO NOX2

NOX1

rem ERROR

rem 2 argments are required

rem ( ex if input file name is arg1rns )

rem ( ranbat arg1 arg2 )

exit

NOX2

del MYPATHWrkoutp12plt

del MYPATHWrkoutp12plt2

echo PLT MYPATHWrkoutp12plt gtgt fnamed

echo FT11 MYPATHWrkoutp12ft11 gtgt fnamed

echo FT18 MYPATHWrkoutp12ft18 gtgt fnamed

echo FT20 MYPATHWrkoutp12max gtgt fnamed

echo PLUTN MYPATHWrkrbout1FMdt gtgt fnamed

echo RODEX MYPATHWrkrbout1rodex gtgt fnamed

echo FORM MYPATHFemformdata gtgt fnamed

echo FT89 MYPATHFemft89d gtgt fnamed

copy MYPATHWrk1d05 1d

copy MYPATHWrkoutp1ft11 ft15d

MYPATHFemReleaseFem

del fnamed

del 1d

del FT90d

del ft10d

del ft16d

del ft17d

endlocal

rem FEMAXI Calc completed

JAEA-DataCode 2013-009

- 21 -

B) Execution of RODBURN rodbat

echo RODBURN Execution Started

setlocal

set MYPATH=CFEM7

echo MYPATHwrk1d gt rfnamed

echo MYPATHwrkoutp1rdout gtgt rfnamed

echo MYPATHwrkrbout1rodex gtgt rfnamed

echo MYPATHRODft01d gtgt rfnamed

echo MYPATHRODft02d gtgt rfnamed

echo MYPATHRODeju238 gtgt rfnamed

echo MYPATHRODejpu240 gtgt rfnamed

echo MYPATHRODorigend gtgt rfnamed

copy MYPATHwrk1rddat 1d

cMYPATHRODReleaserodburnexe

del rfnamed

del 1d

del wk

del rbpldat

endlocal

echo RODBURN Calc completed

JAEA-DataCode 2013-009

- 22 -

C) Execution of EXPLOT plotbat

rem PLOT6 Execution Started

setlocal

set MYPATH=CFEM8

move MYPATHWrkoutp1plt 1plt

move MYPATHWrkoutp1plt2 1plt2

echo 1plt gtgt expd

IF 2 == GOTO NOX

copy MYPATHWrkexplot2 explotd

echo 12ps gt exp2d

NOX

MYPATHexplot2Releaseexplot2exe

copy plotps MYPATHWrkoutp12ps

copy plotout MYPATHWrkoutp12plot

copy plotd MYPATHWrkoutp12csv

copy ft22d MYPATHWrkoutp12last

move 1plt MYPATHWrkoutp1plt

move 1plt2 MYPATHWrkoutp1plt2

del plotps

del plotd

del plotout

del expldat

del expd

del exp2d

del ft05d

del explotd

endlocal

rem PLOT6 Calc completed

JAEA-DataCode 2013-009

- 23 -

32 Execution in Linux

321 Example of Makefile for GNU Fortran 77 (g77) An example of Makefile of Gnu-make is shown which assumes the directory structure

shown in section 321 The makefile having the following contents is put just under the

directory $HOME$FEM7 and by executing ldquomake FEMAXI7rdquo or ldquomake EXPLOTrdquo

compilation can be performed with g77 In the case below compilation is performed with O2

optimization and static

FEMAXI-7 Makefile(GNU-make)

fortran compiler

FC = g77 -static

include directory

INC = INC

INCP = PLOT2inc

LIBP = PLOT2calcompa

fortran compile flag

OFLAG = -o

FFLAGS = -O2 -I$(INC) -w -fno-automatic -finit-local-zero

FFLAGSP = -O2 -I$(INCP) -w -fno-automatic -finit-local-zero

FFLAGL = -w -fno-automatic -finit-local-zero

FEM = FEM

PLOT2 = PLOT2

SRC = srcf

SRCFEM = $(SRC)femaxi7for

SRCPLOT= $(PLOT2)explot2for

CALCOMP= $(PLOT2)calcmpfor

OBJFEM = $(SRC)femaxi7o

OBJPLOT = $(PLOT2)explot2o

OBJCALCOMP = $(PLOT2)calcmpo

$(OBJFEM) $(SRCFEM)

$(FC) $(FFLAGS) $(OFLAG) $ -c $lt

$(OBJPLOT) $(SRCPLOT)

$(FC) $(FFLAGSP) $(OFLAG) $ -c $lt

$(OBJCALCOMP) $(CALCOMP)

$(FC) $(FFLAGL) $(OFLAG) $ -c $lt

$(LIBP) $(OBJCALCOMP)

ar cr $ $lt

FEMAXI7 $(OBJFEM)

$(FC) $(OBJFEM) $(FFLAGS) $(OFLAG) $(FEM)$

EXPLOT $(OBJPLOT) $(LIBP)

$(FC) $(OBJPLOT) $(OFLAG) $(PLOT2)$ $(LIBP)

JAEA-DataCode 2013-009

- 24 -

322 Basic process of execution -2- (Linux)

By executing a script file in a terminal emulator FEMAXI-7 and EXPLOT can be run In

the following explanation executing method is described on the assumption that the related

files FEM7 are present in the directory which is just below the home directory $HOMES$

The directory structure of Linux system for FEMAXI is similar to those of the Windows

system

[Attention] execution is capable of failure except the case where line feed encode is LF

(1) Process of FEMAXI-7 execution A) Activate the terminal emulator and move the current directory into $HOME$FEM7Wrk

by the command ldquocd FEM7Wrkrdquo

B) Activate FEMAXI by the script file femsh Put an input file eg ABCd05 under $HOME$FEM7Wrk and input ldquofemsh ABC 1rdquo in the terminal emulator The shell script is run ABCd05 is read and files ABC1 are output Here it is noted that by entering ldquofemsh ABCf05 1rdquo the system searches for ABCd05d05 and ldquoError stoprdquo occurs because such a file does not exist

C) After the completion of execution confirm if files ABC1out and ABC1plt are created in

$HOME$FEM7Wrkoutp

(2) Process of EXPLOT execution A) Activate the terminal emulator and move the current directory into $HOME$FEM7Wrk

by the command ldquocd FEM7Wrkrdquo

B) Activate EXPLOT by the script file explotsh If plt file of FEMAXI eg ABC1plt exists under the directory $HOME$FEM7Wrkoutp and EXPLOT input file explotd exists under the directory $HOME$FEM7Wrk input ldquoplotsh ABC1 drdquo in the terminal emulator Then shell-script is executed reads ldquoABC1pltrdquo and ldquoexplotdrdquo and creates a file ABC1 under the directory $HOME$FEM7Wrkoutp Here it is noted that by entering ldquoplotsh ABC1pltrdquo the system searches for ABC1pltplt and ldquoError stoprdquo occurs because such a file does not exist

C) After the completion of execution confirm if files ABC1plot ABC1ps and ABC1csv are

created in $HOME$FEM7Wrkoutp If ps2pdf has been installed in the system

ABC1pdf is also created

JAEA-DataCode 2013-009

- 25 -

(3) Contents of shell-script A) Execution of FEMAXI femsh

binsh

echo FEMAXI Execution Started

echo D05 $1d gtgt fnamed

echo OUT outp$1$2out gtgt fnamed

rm outp$1$2plt

rm outp$1$2plt2

echo PLT outp$1$2plt gtgt fnamed

echo FT11 outp$1$2ft11 gtgt fnamed

echo FT18 outp$1$2ft18 gtgt fnamed

echo FT20 outp$1$2max gtgt fnamed

echo PLUTN rbout$1FMdt gtgt fnamed

echo RODEX rbout$1rodex gtgt fnamed

echo FORM FEMformdata gtgt fnamed

echo FT89 FEMft89d gtgt fnamed

cp $1d05 $1d

FEMFEMAXI-7

rm fnamed

rm $1d

rm FT90d

rm ft10d

rm ft16d

rm ft17d

echo FEMAXI Calc completed

JAEA-DataCode 2013-009

- 26 -

B) Execution of EXPLOT plotsh

plotsh

echo PLOT Execution Started

mv outp$1plt $1plt

mv outp$1plt2 $1plt2

echo $1plt gtgt expd

cp explot$2 explotd

echo $1$2ps gt exp2d

PLOT2EXPLOT

cp plotps outp$1$2ps

cp plotout outp$1$2plot

cp plotd outp$1$2csv

cp ft22d outp$1$2last

mv $1plt outp$1plt

mv $1plt2 outp$1plt2

rm plotps

rm plotd

rm plotout

rm expldat

rm expd

rm exp2d

rm ft05d

rm explotd

echo PLOT6 Calc completed

ps2pdf outp$1$2ps outp$1$2pdf

JAEA-DataCode 2013-009

- 27 -

33 Performing Re-start function A new Re-start function has been implemented in FEMAXI-7 This function generates a result file ie Re-start file which stores the EOL conditions of fuel rod after calculation along base-irradiation history and can be read by FEMAXI-7 to perform re-start calculation Hereafter the first calculation to generate the Re-start file is referred to as ldquoBase calculationrdquo and the calculation following the re-start is referred to as ldquoRe-start calculationrdquo 331 Function to bridge full-length rod and short test rod calculations

In the analysis of a full length fuel rod which was base-irradiated in a commercial reactor and refabricated into a short instrumented rod to be test-irradiated in a test reactor a short rod geometry was obliged to be adopted from the beginning of base-irradiation by the analyses of previous versions of FEMAXI up to FEMAXI-6 This analytical restraint has been removed

(1) In base-irradiation calculation is performed with a full length rod geometry including

pellet stack length and plenum length etc(IFEMRD=1 or 0) In this case users have to

set a plural of segments in the axial direction of rod and this axial segmentation should be

conducted so that length and location of a short test rod portion are included in the axial

segments of base-irradiation analysis

(2) In the input file of FEMAXI where a full length rod is divided into 6 segments (more than 2 segments) by designating IREST=4 for example the rod conditions at the end of base-irradiation in all the segments are stored in Re-start file ft11 This file is usually generated in the directory WrkOUTP

332 Re-start calculation from base-irradiation to test-irradiation

(1) Renaming Re-start file Implication of the file name of ft11 is explained below Suppose a file Base1ft11 is generated after Base calculation(BC) This requires the input file name of Restart calculation (RC) to be Base1d05 However it often happens that RC is applied to test irradiation calculation and its input file is named Testd05 or something similar Consequently it is necessary to rename Base1ft11 into Testft11 If this Restart calculation uses a RODBURN result file the result file named baserodex exists in RBOUT Then it is necessary to make a duplicate of baserodex in another directory rename it into Testrodex or something similar and return it back to RBOUT Otherwise Re-start calculation will not run with input file Testd05

JAEA-DataCode 2013-009

- 28 -

It is often possible to use the same rodex file in both base calculation and Re-start calculation RODBURN performs calculation until the burnup which is to some extent higher than the burnup at EOL which is specified by input file On the other hand the additional burnup during the test irradiation (Re-start calculation) is not very large Accordingly in many cases the burnup extension in the Re-start irradiation falls within the range of burnup of rodex file calculated by RODBURN

Even if the burnup of test irradiation exceeds the maximum burnup of rodex the calculation will not be significantly affected for the following reason

If the burnup of FEMAXI calculation exceeds the upper bound recorded in rodex file FEMAXI continues calculation assuming that the power density profile in the radial direction of pellet remains to be the profile at the highest burnup recorded in the rodex file This is a good approximation because in high burn up region the power density profile has only a slight dependence on burnup extension

If the burnup of Re-start calculation exceeds markedly the upper bound recorded in rodex file of Base calculation the following convenient method is recommended In making rodex for Base calculation extend input irradiation history deliberately to attain much higher burnup than the EOL burnup of base irradiation After rodex is made eliminate the extended part of irradiation history of input file to perform Base calculation (2) Initial conditions of Re-start calculation If the segments for short re-fabricated rod are for example the 2nd to 5th segments of the full length rod by specifying ldquoIREST=5rdquo and ldquoTRSGT=2 5rdquo in the input file of test irradiation analysis the end-of-base-irradiation conditions of these segments ie sizes of pellet and cladding burnup profiles FGRs gap conditions etc are read from ft11 to be used as initial conditions of the analysis of fuel rod during test-irradiation Fig31 illustrates the relationship of rod segmentation for ldquoTRSGT=2 5rdquo

In this case plenum volume initial internal gas pressure and gas composition of test rod can be specified as a new set of initial conditions by name-list parameters in Re-start input file

Fig31 Axial segmentation of the full-length rod and re-fabricated short test-rod

Bottom Plenum re-fabricated zone

115mm 115mm 116mm Top segment 1

30mm Seg4 Seg3 Seg2

Full length rod

Short test rod

JAEA-DataCode 2013-009

- 29 -

as per usual Particularly the plenum volume has to be newly specified However values of initial gas pressure and gas composition are taken over from those in

ft11 if they are not newly specified by name-list parameters All the other conditions of fuel rod such as stress-strain of rod fission gas bubbles or accumulated amount of fission gas atoms power density profile in the radial direction of pellet etc are taken over from ft11

It is recommended that the formatted data of fuel rod specification (size shape) initial plenum volume initial internal pressure and gas composition in the input file of Re-start calculation be the same as those in the input file of Base calculation to circumvent misunderstanding As these data are read in Re-start calculation Re-start execution fails if they are not written in the input file However even if they are written they are not used as the initial values in Re-start calculation The initial values of these quantities in Re-start calculation are always fed by ft11 file

Here plenum volume internal gas pressure gas composition coolant conditions (equivalent diameter of flow area cross section area of flow fuel rod pitch) can be specified in input file as a new set of parameters for Re-start calculation (test irradiation) by using name-list parameters In this case the corresponding data stored in ft11 file are not used in calculation and quantities to be specified as initial conditions can be input by using some or all of the name-list parameters ITIME(n) GASPRN(n) GMIXN(n) DEN(n) FAREN(n) PITCHN(n) and PLENM(n) It is noted that when ITIME(n) is specified GASPRN(n) GMIXN(n) and PLENM(n) have to be specified invariably

All the other quantities such as stress-strain state of fuel rod conditions of fission gas bubbles and fission gas accumulation and power density in the radial direction of pellet are fed from ft11 file However either the data of power density profile vs burnup table which is attached at the last part of input file or the rodex file to be read by FEMAXI is always necessary in Re-start calculation

When IFEMRD=0 this Re-start calculation is also possible though the objective segment in which 2-D calculation is performed has to be the same segment that is specified by TRSGT If not error message is issued and calculation will not start

JAEA-DataCode 2013-009

- 30 -

333 Name-list parameters related to Re-start calculation

A group of name-list input parameters which are used in Re-start calculation function is

listed in Table 331

Table 331 Name-list parameters of FEMAXI-7 Restart function Parameter name Contents Default

Value

IREST

In FEMAXI-7 calculation (1) =0 Analysis only by FEMAXI-7

0

In FEMAXI-7 calculation (2) =4 generating Re-start file (ft11) for FEMAXI allowing the

designation of segments for refabricated short rod

In FEMAXI-7 Re-start calculation (3) =5 reading the restart file (ft11) generated by FEMAXI-7 to perform the FEMAXI calculation of test-irradiation for the axial segments designated by TRSGT However the objective segment for 2-D mechanical analysis in the base-irradiation calculation should be the same as the axial segment designated by TRSGT

TRSGT(2)

Input when IREST=5 in FEMAXI-7 Re-start calculation Otherwise error message is shown and calculation will start

Eg the number of segment is 10 in base-irradiation calculation and conditions of segments 4 to 6 are to be taken over TRSGT=46 is set If only 5th segment is the target TRSGT=5 is set

In performing the 2-D analysis designated objective segment No(specified by IFEM) has to be included in TRSGT For example in base-irradiation the objective segment is 5 (IFEM=5) and TRSGT=4 6 IFEM in Restart calculation is ldquoIFEM=2rdquo If this designation is inconsistent error message is shown and calculation will not start

0

IRTIME

When IRTIME=0 in the input file of Re-start calculation time (or burnup) has to be input as a sequential value from the beginning of base-irradiation

However if time is input burnup at EOL of base-irradiation calculation is taken over to be an initial burnup of Re-start calculation

When IRTIME=1 time at the start of Re-start calculation has to

be 0 and with this initial time=0 the Re-start irradiation history has to be given in input file However in Re-start calculation burnup at EOL of base-irradiation calculation is taken over and added to the initial burnup of Re-start input file

1

JAEA-DataCode 2013-009

- 31 -

334 Variables taken over and those not taken over in Re-start calculation

In performing Re-start calculation in FEMAXI-7 the following variables are taken over

from Base calculation to Re-start calculation They are explained in 6 groups classification

(1) Input variables given in fixed formats Variables given in fixed formats in input file of Base calculation are taken over to Re-start

calculation Accordingly fuel rod geometry except the designated axial segments is taken over

The other variables given in fixed formats eg coolant condition in the input file of Restart

calculation are also effective in Restart calculation Variables in fixed formats taken over in

Re-start calculation are listed in Table 332 Here the number of axial segments and IFEM

number for the objective segment are taken over as conditions of Base calculation to Re-start

calculation

Table 332 Variables in fixed formats taken over to Restart calculation

Name Content Name Content NAX Number of axial segments ENR U-235 enrichment (-) IFEM Number of objective segment FDENI Pellet theoretical density ratio (-)

MRASA Cladding material DZ Axial length of segment (cm) CDIN Cladding inner radius (cm) DISH Dish diameter (cm)

CDOUT Cladding outer radius (cm) DEPTH Dish depth (cm) IDISH Pellet dish specification DISHB Dish bottom circle diameter (cm) ICHAM Pellet chamfer specification PLENUM Plenum volume (cm3) PDIN Pellet center hole diameter (cm) GPIN Initial plenum gas pressure (MPa) PDIA Pellet diameter (cm) GMIXO Initial plenum gas composition (-)

PLENG Pellet length (cm) PWEIT Pellet total weight (g) CHAMR Chamfer width (cm) CHAMZ Chamfer depth (cm)

(2) Name-list input variables (parameters) Table 333 lists the name-list variables taken over from Base- to Re-start calculation 【Warning】 It is to be noted that if even one of these name-list variables (parameters) is

written in Re-start input file Re-start calculation never starts This is to circumvent the following situation if the same name-list variables as those used in Base calculation input file are explicitly written in Re-start input file with the different values from those in Base calculation or if some of the name-list variables are not written in Base calculation input file and are accepted as their default values in Base calculation while these name-list are explicitly written in Re-start input file with the different values from those in Base calculation

JAEA-DataCode 2013-009

- 32 -

FEMAXI neglects these values which are explicitly written in Re-start input file and takes over the values stored in Re-start file ft11 Here if users are not aware of this rule of Re-start calculation and have a false sense that Re-start calculation is performed with the parameter values written explicitly in Re-start input file the users will have inevitably a misunderstanding that the calculated results are obtained under the explicitly written values of parameters in Re-start input file This is a problem to be avoided so that the name-list input variables (parameters) listed in Table 333 must not be written in Re-start input file

Table 333 Name-list parameters and variables taken over from Base- to Restart calculation

(12) Name Content

PU PuO2 weight fraction (-) PUFIS Weight ratio of fissile Pu to total Pu(-)

AZ1 Ratio of length of element in the axial direction of half a pellet in the 2-D local mechanical analysis

ZR Zr-liner thickness (cm)

K1 Number of elements in the axial direction of half a pellet in the 2-D local mechanical analysis

ISHAPE Type of finite element used in the 2-D local mechanical analysis GD Gd2O3 concentration (wt fraction) DMAX Maximum fraction of volumetric shrinkage by densification () SBU Burnup of 90 completion of densification (MWdtUO2) TDNSF Pellet sintering temperature (K) GG Grain radius after heat treatment (m) GG0 Grain radius before heat treatment (m) SITIM Heat treatment time (hour) ADST Densification tuning factor A1 A1 in the swelling rate equation when IFSWEL=4 C1 C1 in the swelling rate equation when IFSWEL=4 BU1 BU1 in the swelling rate equation when IFSWEL=4 A2 A2 in the swelling rate equation when IFSWEL=4 SWSLD Factor to multiply the solid swelling rate 025 per 10E20 fissioncm3 RF Grain boundary gas bubble threshold radius (cm) FBCOV Fraction of grain boundary coverage by grain boundary lenticular gas bubbles CATEXF Axial growth factor fz in cladding irradiation growth equation COLDW Cladding cold work CW RX Multiplication factor for cladding irradiation growth rate GR Initial grain diameter of pellet (μm)

DD1 Adjustment factor for DMAX used in the merged model of densification and swelling

ALD Adjustment factor for α used in the merged model of densification and swelling

BU0 Baseline burnup used in the merged model of densification and swelling IFEMRD Option to activate 2-D local mechanical analysis

JAEA-DataCode 2013-009

- 33 -

Table 333 Name-list parameters and variables taken over from Base- to Restart calculation

(22) Name Content

LBU Option to use local burnup in burnup-dependent models MESH Option to select the number of pellet ring elements IDENSF Option to select pellet densification models IFSWEL Option to select pellet swelling models IGASP Option to select fission gas release model ICAGRW Option to select cladding irradiation growth model IRIM Option for additional FGR from high burnup structure DENSWL Option to activate the merged model of densification and swelling HBS Option to select the high burnup structure model RIMSWL Option for swelling model of high burnup structure NODEG Number of elements inside grain in fission gas diffusion model NODEH Number of elements inside grain in He gas diffusion model OXTH(IFEM) Initial oxide thickness of the objective segment (μm)

(3) Variables associated with the last stage of base irradiation (not name-list input parameters)

The variables which have the calculated values at the last stage of Base-irradiation are listed in Table 334

Table 334 Variables associated with the last stage of base irradiation Name Content

TIME Time (hour) PLHR Baseline linear power (Wcm) PCOOL Coolant pressure (Pa) FAI Fast neutron flux (ncm2s) FAIT Fast neutron fluence (ncm2) BUNP(NHIST) Baseline burnup (GJkgU)

(4) Variables taken over in thermal analysis (not name-list input parameters)

The variables which have the calculated values in thermal analysis at the last stage of Base-irradiation are listed in Table 335

Table 335 Variables of thermal analysis taken over to Restart calculation (15) Name Content

OXTHO Thickness of cladding outer oxide layer including plenum part (μm) OXTH2 Thickness of cladding inner oxide layer including plenum part (μm) CONCH Hydrogen concentration in cladding metallic part (ppm)

CONCO Hydrogen concentration at the previous time step in cladding metallic part (ppm)

JAEA-DataCode 2013-009

- 34 -

Table 335 Variables of thermal analysis taken over to Restart calculation (25) Name Content

IS Option to have a lower plenum NAX1 Number of segments in the axial direction of rod including plenum parts NPR Number of pellet ring elements in thermal analysis NRP Number of pellet ring elements in entire rod length mechanical analysis NC1 Number of cladding ring element nodes PIN Initial gas pressure in the plenum (Pa) GASPR Plenum gas pressure (Pa) PCOOLI Coolant initial pressure (Pa)

VTPLEN Value of plenum space volume divided by plenum gas temperature (cm3K)

XMOLO Initial number of moles of gas in plenum (mol) TOTMLO Number of moles of gas in plenum (mol) SUMHRS Number of moles of He (mol) SUMZRS Number of moles of fission gas (mol) FGRX Fission gas release rate () PLENLN Plenum length (cm) BU1 Average burnup over one segment (GJkgU) BR1F Local burnup (GJkgU) COLD Number density of atoms inside grain (at grain node) (atomscm3) BO Number of gas atoms in the grain boundary of one grain (atoms) TTALO Number of gas atoms inside grain (atoms) ABAR Radius of grain boundary gas bubble (cm) BBDEN Area number density of grain boundary gas bubbles (bubblesm2) AOLD Radius of intra-grain gas bubble (cm) ROLD Radius of FEM element node inside grain (cm) RLSD Amount of released fission gas atoms per one grain (atoms) GENED Amount of generated fission gas atoms per one grain (atoms) RFGRO FGR from high burnup structure (-) GRNS Pellet grain diameter (μm) BBLDO Number density of intra-grain gas bubbles (bubblescm3)

AMO Number density of fission gas atoms in intra-grain gas bubbles in pellet (atomscm3)

ABLD Number of grain boundary gas bubbles of one grain (bubblesgrain) TPOR Fission gas atoms density in the rim structure gas pore (atomscm3) RMPOR2 Gas pore swelling in the rim structure (-) TSWL Swelling by intra- and grain boundary gas bubbles (-)

BNMX Threshold number of area density of gas atoms in grain boundary (atomscm2)

BEFFO Effective burnup (GWdt) XV Rim transformation fraction in pellet (-) FPORE Fraction of fission gas atoms moved to rim gas pores (-) OPR Fraction of open porosity (-) RFGB Threshold radius of grain boundary bubble (cm)

P1 Internal pressure of intra-grain gas bubble and external pressure on the intra-grain bubble (dynecm2)

JAEA-DataCode 2013-009

- 35 -

Table 335 Variables of thermal analysis taken over to Restart calculation (35) Name Content

P2 Internal pressure of intra-grain gas bubble and external pressure on the grain boundary bubble (dynecm2)

TMDAT3(47) Volumetric strain induced by intra-grain gas bubbles () TMDAT3(49) Volumetric strain induced by grain boundary gas bubbles ()

TMDAT3(85) Number of generated fission gas atoms per unit volume of fuel (atomscm3)

TMDAT3(87) Number of generated fission gas atoms inside grain per unit volume of fuel grain (atomscm3)

TMDAT3(88) Number of generated fission gas atoms in intra-grain gas bubbles per unit volume of fuel (atomscm3)

TMDAT3(89) Number of intra-grain gas bubbles per unit volume of fuel (bubblescm3) TMDAT3(90) Number of fission gas atoms per unit area of grain boundary(atomscm2)

TMDAT3(91) Saturation (threshold) number of fission gas atoms per unit area of grain boundary (atomscm2)

TMDAT3(92) Number of gas bubbles per unit area of grain boundary (bubblescm2) TMDAT3(93) Covering fraction of grain boundary by grain boundary gas bubbles (-) TMDAT3(94) Saturation (threshold) radius of grain boundary gas bubbles (μm) RCII Initial inner radius of cladding (cm) RPOI Initial outer radius of pellet (cm) RPII Initial inner radius of pellet (cm) RCI Cladding inner radius (cm) RPO Outer radius of pellet (cm) RPI Inner radius of pellet (cm) TPSTG1 Pellet center temperature (K) CF Pellet-clad contact pressure (Pa) GAPI Initial gap width of pellet-clad (cm) GAP Pellet-clad gap width (cm) GAPO Pellet-clad gap width of previous time step (cm) GAPOO Array to store pellet-clad gap size data (cm) GHOT Pellet-clad gap width at hot stand-by (cm) TCSUF Temperature at the outer oxide surface of cladding (K) TPP1 Pellet temperature used in thermal analysis (K) TP1 Pellet temperature used in entire rod length mechanical analysis ((K) TC1 Cladding temperature (K) TCO Pellet center temperature at previous time step (K) TC Pellet center temperature (K) PGAS1 Amount of generated fission gas atoms (molcm) RGAS1 Amount of released fission gas (molcm) SIGM1 Pressure on grain boundary gas bubble (Pa) SIGA1 Pellet average internal stress (Pa) YS1 Pellet yield stress (Pa) GMIX Gap gas composition (-) GMIXO Initial gap gas composition (-) SOSW Solid swelling strain of pellet (-) URSW Gas bubble swelling strain of pellet (-) SUMSWO Radial displacement of pellet induced by swelling (cm)

JAEA-DataCode 2013-009

- 36 -

Table 335 Variables of thermal analysis taken over to Restart calculation (45) Name Content

SUMUSO Gas bubble swelling displacement of pellet at previous time step (cm) SUMUSW Gas bubble swelling displacement of pellet (cm) VGAP Space volume of P-C gap (cm3cm) VHOL Space volume of inner hole of pellet (cm3cm)

VFORM Space volumes associated with pellet shape such as dish chamfer pellet tilting etc (cm3cm)

SUMV Free space volume temperature inside fuel rod (cm3K) VOL Volume of active length part of fuel rod including internal space (m3) TPA Temperature of internal region of fuel rod (K) GMD Gas molar density at each axial segment (molm3) (=1He=2Xe) TMOL1 Molar number of gas at each axial segment (mol) (=1He=2Xe)

DZX Length of axial segment (cm) (including upper and lower plenum region)

POWER Linear heat rate (Wcm) AFIS Fission density (fissionscm3-s) AFAI Fast neutron flux (ncm2-s) AFAIT Fast neutron fluence (ncm2) TEMP Fuel( pellet cladding) temperature (K) PEX Displacement of pellet by thermal expansion (cm) PCR Displacement of pellet by creep (cm) PDN Displacement of pellet by densification (cm) PSW Displacement of pellet by swelling (cm) PRL Displacement of pellet by relocation (cm) PDS Total displacement of pellet (cm) CEX Displacement of cladding by thermal expansion (cm) CEL Elastic displacement of cladding (cm) CCR Creep displacement of cladding (cm) CDS Total displacement of cladding (cm) CFM Pellet-clad contact pressure (Pa) GAPX Pellet-clad gap width (cm)

PAS Displacement of pellet in the axial direction in the entire rod length mechanical analysis (cm)

CAS Displacement of cladding in the axial direction in the entire rod length mechanical analysis (cm)

SHFC Surface heat flux of cladding (Wcm2) SUCRP Creep displacement of pellet (cm) CCRP Creep strain displacement of cladding inner surface (cm) CCRPE Creep strain of cladding inner surface in the hoop direction (-) BD P-C bonding progress (hourMPa) BDO P-C bonding progress at previous time step (hourMPa) FDEN Pellet relative density (-)

ICLS Flag to indicate if the grain boundary bubble has made tunneling or not (=0tunneling =1not tunneling)

IGB Number of repetition of coalescence and closure of grain boundary bubbles when the bubbles make tunneling

RCIC Initial inner radius of cladding (cm)

JAEA-DataCode 2013-009

- 37 -

Table 335 Variables of thermal analysis taken over to Restart calculation (55) Name Content

RPIC Initial inner radius of pellet (cm) RPOC Initial outer radius of pellet (cm)

VCRC Relocation-induced space volume inside pellet at previous time step (cm3cm)

VCRCN Relocation-induced space volume inside pellet at current time step (cm3cm)

NPH Number of outermost element node for He release model FT Effective fluence of fast neutron (nm2) CW Cladding cold work (-) CTEMP Cladding temperature (K) RTEMP Cladding temperature changing rate (Ks) NPH Number of outermost mesh of fuel grain in He gas release model GASHE He gas partial pressure inside fuel rod (Pa) GASHEA He gas equilibrium pressure (Pa) TMLHE1 Molar number of He inside rod at previous time step (mol) TMLHE2 Molar number of He inside rod at current time step (mol) VOLHE Volume of He inside rod (cm3) HEDEN Concentration of He inside rod (atomscm3) RHOLD Nodal point radius inside grain for He diffusion calculation (cm) RHP Nodal coordinate values for He diffusion calculation (cm) HEOLD Number density of He in each nodal point inside grain (atomscm3) THALO Number of He atoms per one grain at previous time step (atoms) VOLM FEM element volume of pellet (cm3) GENEH Number of He atoms generated per one grain (atoms) DH0S Stored region of in-grain He diffusion coefficient (cm2s) DAH0S Stored region of in-grain He effective diffusion coefficient (cm2s) DBH0S Stored region of grain boundary He diffusion coefficient (cm2s) PGRH He generation rate at previous time step (atomscm3-s) PGRH2 He generation rate at current time step (atomscm3-s)

HEATM0 Initial numbers of generated He atoms in each ring element He atoms inside grain and He atoms at grain boundary (atoms)

HEATM Numbers of generated He atoms in each ring element He atoms inside grain and He atoms at grain boundary (atoms)

HEMOL0 Numbers of moles of generated He in each segment inside grain and at grain boundary at the beginning of time step (mol)

HEMOL1 Numbers of moles of generated He in each segment inside grain and at grain boundary at previous time step (mol)

HEGENE He generation density (atomscm3)

HEATMB Number of He atoms in the inside and outside regions of pellet at each segment (atoms)

HEATMB0 Initial number of He atoms in the inside and outside regions of pellet at each segment (atoms)

(5) Variables taken over in entire rod length (1-D) mechanical analysis (not name-list input parameters)

The variables which have the calculated values in the 1-D Entire Rod Length mechanical

JAEA-DataCode 2013-009

- 38 -

analysis at the last stage of Base-irradiation are listed in Table 336 Table 336 Variables taken over in ERL mechanical analysis (12)

Name Contents NR Number of elements in the radial direction of pellet and cladding KUNTS Counts of total time steps TEMPUO Upper plenum gas temperature at previous time step (K) TEMPLO Lower plenum gas temperature at previous time step (K) TBO Initial plenum gas temperature (K) TIMEOS Time at previous time step (hr) DTIMBS Time step increment at previous time step (hr) VS Fuel rod axial elongation (m) TEMPUS Upper plenum gas temperature at current time step (K) DTMPUS Upper plenum gas temperature increment (K) TEMPLS Lower plenum gas temperature at current time step (K) DTMPLS Lower plenum gas temperature increment (K) DTBOUS Difference between upper plenum gas temperature and room temperature (K) DTBOLS Difference between lower plenum gas temperature and room temperature (K) ALTSUS Thermal expansion strain of upper plenum spring (-) ALTCUS Thermal expansion strain of cladding of upper plenum (-) FWGZS Force imposed on the top end plane of upper plenum (N) FLZPS Force on lower plenum spring (N) FLZCS Force on cladding of lower plenum (N) FUZPS Upper plenum spring force (N) FUZCS Force on cladding of upper plenum (N) EPSR Relocation parameter EPSRR Relocation strain in the radial direction EPSRT Relocation strain in the circumferential direction PWEROS Linear heat rate (Wcm) BUS Segment average burnup (GJkgU) FISO Fission density (fisscm3-s) FAIS Fast neutron flux (ncm2-s) FAITS Fast neutron fluence (ncm2) DFAIS Fast neutron flux increment (ncm2-s) DFAITS Fast neutron fluence increment (ncm2) BR1S Local burnup (GJkgU) TEMPS Fuel temperature (K) DTEMPS Fuel temperature increment(K)

ICONTS P-C contact state(=0open gap =1pellet-clad bonded =2pellet-clad sliding =3 open gap but axial elongation is restricted by adjacent segment

FPRS P-C contact pressure (Pa) GAPS P-C gap width (cm) SWELS Swelling strain of pellet (-) EPSHTS Creep hardening strain at which Pughrsquos reversal occurs (-) EPSDNS Densification strain of pellet (-) PMS Direction of creep flow (=10tensile =00compressive)

IREVS In creep calculation of cladding =1 for adoption of Pughrsquos reversal =0 for non-adoption

JAEA-DataCode 2013-009

- 39 -

Table 336 Variables taken over in ERL mechanical analysis (22) Name Contents

SIGES Equivalent stress (Pa) SIGEBS Equivalent stress at previous time step (Pa) SIGYS Yield stress (Pa) EPSPS Equivalent plastic strain (-) EPSHPS Hot-pressing strain (-) EYNGS Youngrsquos modulus (Pa) EYNGBS Youngrsquos modulus at previous time step (Pa) US Node displacement (m) EPSTHS Thermal expansion strain (-) EPSCPS Creep strain at which Pughrsquos tensile reversal occurs (-) EPSCMS Creep strain at which Pughrsquos compressive reversal occurs (-) SIGS Stress (Pa) EPSCS Creep strain (-) EPSCBS Creep strain at previous time step (-) EPSHS Creep hardening strain (-) EPSS Total strain (-) EPSPVS Plastic strain (-) EPSES Elastic strain (-) EPSRLS Relocation strain (-) EPSDSS Densification + swelling strain (-) RS Ring element nodal coordinate value in the radial direction (m) IBD Flag to indicate P-C bonding state

(6) Variables taken over in 2-D local mechanical analysis when IFEMRD=0 (not name-list input parameters)

The variables which have the calculated values in the 2-D local mechanical analysis at the last stage of Base-irradiation are listed in Table 337 Table 337 Variables taken over in 2-D local mechanical analysis (12)

Name Content NOD2 Number of nodes NELM Number of elements NTEP Number of Gaussian points in the radial direction NRX Number of Gaussian points in the radial direction of pellet elements NRX1 NRX+1 ILOW Number of columns of Gaussian points in the radial direction ICOL Number of layers of Gaussian points in the axial direction NM Number of Gaussian points in the radial direction KL Number of Gaussian points in the axial direction I2 Number of pellet materials (UO2 and MOX) IFX Flag to indicate P-C contact state TEMP2 Temperature at Gaussian point in radial elements (K) EPSO2 Initial strain of element in the radial direction at Gaussian point (-) EPSTH Thermal strain in the radial direction at Gaussian point (-)

JAEA-DataCode 2013-009

- 40 -

Table 337 Variables taken over in 2-D local mechanical analysis (22) Name Content

EPSTA Thermal strain in the axial direction at Gaussian point (-) SMAX Swelling strain in the radial direction at Gaussian point (-) SWMAXI Swelling strain in the axial direction at Gaussian point (-) GRA1 Pellet grain size at Gaussian point (μm) CFU Pellet-clad contact pressure (Pa) CFV Pellet-clad frictional force in the axial direction (Pa) DELGP Pellet-clad radial gap size (cm) GAPGPX Distance between the contact pair of pellet and cladding (cm) SGN Direction of sliding VMU Frictional coefficient between pellet and cladding (-) NCNTB Table of variables of contact pairs composing gap element IALB Flag of contact state at pellet boundary NSO Contact state of the contact pair of pellet and cladding SBPON Contact force at the interface of one pellet and another (N) TU Nodal displacement (cm) XY0 Initial coordinates of nodal points (cm) EPSP Plastic strain of Gaussian point in the element (-) EPSE Elastic strain of Gaussian point in the element (-) EPSR Relocation strain of Gaussian point in the element (-) ZLOCA Information table of stressstrain etc at Gaussian points of elements IEP Flag to indicate elastic-plastic state (=0 elastic state =1plastic state) IRV YesNo flag of cladding creep reversal EPSRLI Initial relocation strains in the radial and circumferential directions of pellet (-) EPSRL Relocation strain of pellet at current time step (-) EPSGRS Upper limit of gas bubble swelling strain of pellet (-) ALC Coordinate value at the top of pellet when locking occurs (cm) EPSSWL Swelling strain of pellet (-) EPSSWS Solid swelling strain of pellet (-) EPSSWU Bubble gas swelling strain of pellet (-) EPSDEN Densification strain of pellet (-) EPSDNY Densification strain component of pellet (-) EPSSWY Swelling strain component of pellet (-) IPLIN Table of information to make shape map in 2-D mechanical analysis

IPELM Table of element number and its corresponding nodal number in 2-D mechanical analysis

JAEA-DataCode 2013-009

- 41 -

335 Explanations for sample Re-start calculations and method

(1) Explanation is given on the following Basic input data BBSd05 which is shown in

Table 338 Table 338 Basic input data set

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50 IRIM=1 RFGFAC=10

FRELOC=030 EPSRLZ=5D-3 IFSNT=2 IGRAIN=0 GR=64 GRWF=15

LBU=1 IPRO=0 R1=10 R2=10 ICAGRW=1 IHOT=1 BETAX=0002

ISPH=1 ICFL=1 IROD=0

ITIME(1)=10 GASPRN(1)=0641 PLENM(1)=8 GMIXN(11)=10 0 0 0

IFEMRD=0 IFEMOP=2 IDSELM=1 IDENSF=0 DMAX=520 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 RF=5E-5 IFSWEL=1 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100 CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10

IPTHEX=3 ATHEX=3561D-6 IRM=0 MESH=3 MOXP=0 IPLYG=1 IZYG=1

TCS=127315 IZOX=1 IST=1 ITEND=1 DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

5 3

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 025 1264 1300 005078 0947 415

111 003 0

219 009 10 00 00 00 3677 00

119

00 01 2196E+13 51315 33 1 4

09853 10044 10044 10085 09974 8

24 3000 20E+13

3560 3000 20E+13

35601 220 1210E+13

65600 220 1210E+13

65601 1758 9669E+12

9997 1758 9669E+12

99971 0 6578E+12 51315 33 1 4

10000 0 0 29815 01 1 4

09853 10044 10044 10085 09974

1000120 0 0 29815 01 1 4

09853 10044 10044 10085 09974

1000140 2 15E+13 29815 72 1 4

1039 1026 1017 0986 0932 106

1007595 20 15E+13 56095 72 1 4

1039 1026 1017 0986 0932 3

1007600 0 15E+13 56095 72 1 4

1007610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 42 -

(2) Base-calculation data before Re-start calculation (BBSd05) As shown in Table 339 Base calculation data are composed by the irradiation history

data It is important to designate ldquoIREST=4rdquo This case is run with IFEMRD=0 which

designates the 2-D local PCMI analysis concurrently with the 1-D entire rod length

mechanical analysis When ldquoIFEMRD=0rdquo is taken over to Re-start calculation both 1-D and

2-D mechanical analyses are performed

In this case no designations are given to ITIME(1)=10 GASPRN(1)=0641

PLENM(1)=8 and GMIXN(11)=10 0 0 0 Execution with ldquoTable 339 filerdquo results in a Re-start file BBSd11

Table339 Base calculation input data before Restart calculation

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GR=64 GRWF=15 LBU=1 IPRO=0 R1=10 R2=10 ICAGRW=1

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

IFEMRD=0 IFEMOP=2 IDSELM=1 IDENSF=0 DMAX=520 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 RF=5E-5 IFSWEL=1 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MESH=3 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=4 DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

5 3

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 025 1264 1300 005078 0947 415

111 003 0

219 009 10 00 00 00 3677 00

9

00 01 2196E+13 51315 33 1 4

09853 10044 10044 10085 09974 8

24 3000 20E+13

3560 3000 20E+13

35601 220 1210E+13

65600 220 1210E+13

65601 1758 9669E+12

9997 1758 9669E+12

99971 0 6578E+12 51315 33 1 4

10000 0 0 29815 01 1 4

09853 10044 10044 10085 09974

STOP

JAEA-DataCode 2013-009

- 43 -

(3) Sample test irradiation data in Re-start calculation A) A sample test irradiation data for Re-start calculation is shown in Table 3310 as BBSrd05 This case does not explicitly designates the 2-D mechanical analysis but performes both the 1-D and 2-D analyses It is important to set IRTIME=0 to perform Re-start calculation with continuous time from Base calculation At the beginning stage of Re-start calculation it is important to specify a new set of values of plenum volume gas pressure and gas composition ITIME(1)=1 GASPRN(1)=0641 PLENM(1)=8 and GMIXN(11)=10 0 0 0 Also it is important to set ldquoIREST=5rdquo to perform Re-start calculation In Table 3310 TRSGT=15 is set so that this is a normal Re-start calculation In other words number of axial segments is 5 which is identical to that of the Base calculation and performs calculation for axial segments 1 to 5

Table 3310 Test irradiation data for Restart calculation (BBSrd05)

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GRWF=15 IPRO=0 R1=10 R2=10

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

ITIME(1)=1 GASPRN(1)=0641 PLENM(1)=8 GMIXN(11)=10 0 0 0

IFEMOP=2 IDSELM=1 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=5 TRSGT=15 IWRES=0 IRTIME=0

DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

5 3

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 025 1264 1300 005078 0947 415

111 003 0

219 009 10 00 00 00 3677 00

110

1000120 0 0 29815 01 1 4

09853 10044 10044 10085 09974

1000140 2 15E+13 29815 72 1 4

1039 1026 1017 0986 0932 106

1007595 20 15E+13 56095 72 1 4

1039 1026 1017 0986 0932 3

1007600 0 15E+13 56095 72 1 4

1007610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 44 -

B) Next an example having ldquoIRTIME=1rdquo is shown in Table 3311 as BSqd05 It is

important to set IRTIME=1 to perform Re-start calculation with a new time which starts at the

beginning of Re-start calculation Similarly to Table 3310 at the beginning stage of

Re-start calculation it is important to specify a new set of values of plenum volume gas

pressure and gas composition Also Re-start calculation requires IREST=5 In Table 3311

TRSGT=1 5 is set just like Table 3310 and a normal Re-start calculation is performed for

the segments 1 to 5

Table3311 Test irradiation data for Restart calculation (BSqd05)

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GRWF=15 IPRO=0 R1=10 R2=10

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

ITIME(1)=1

GASPRN(1)=0641 PLENM(1)=8 GMIXN(11)=10 0 0 0

IFEMOP=2 IDSELM=1 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=5 TRSGT=15 IWRES=0 IRTIME=1

DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

5 3

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 025 1264 1300 005078 0947 415

111 003 0

219 009 10 00 00 00 3677 00

110

120 0 0 29815 01 1 4

09853 10044 10044 10085 09974

140 2 15E+13 29815 72 1 4

1039 1026 1017 0986 0932 106

7595 20 15E+13 56095 72 1 4

1039 1026 1017 0986 0932 3

7600 0 15E+13 56095 72 1 4

7610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 45 -

C) Next an example of input data of Re-start calculation for a short segment rod is shown in

Tables 3312 Table 3312 is the case where the third segment is used as a short test rod In

this case ldquoIREST=5rdquo and ldquoTRSGT=3rdquo are specified in the input file of Re-start calculation

Since this specifies one axial segment geometry the input data is required to match the

one-segment geometry In line with this modification of relative distribution of linear power

in the axial direction is required Also change of the objective segment No (IFEM) is

required for the 2-D local mechanical analysis It is important that IFEM (=3) which has been

specified in Base calculation be included in the range of TRSGT Similarly to Table 3310 at

the beginning stage of Re-start calculation it is important to specify a new set of values of

plenum volume gas pressure and gas composition

Table3312 Test irradiation data for Restart calculation (IBBSud05)

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GRWF=15 IPRO=0 R1=10 R2=10

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

ITIME(1)=1 GASPRN(1)=0641 PLENM(1)=2 GMIXN(11)=10 0 0 0

IFEMOP=2 IDSELM=1 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=5 TRSGT=3 IWRES=0 IRTIME=0

DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

1 1

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

111 003 0

219 009 10 00 00 00 00 00

110

1000120 0 0 29815 01 1 4

10044

1000140 2 15E+13 29815 72 1 4

1017 106

1007595 20 15E+13 56095 72 1 4

1017 3

1007600 0 15E+13 56095 72 1 4

1007610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 46 -

D) Next another example is shown in Table 3313 in which the 2nd 3rd and 4th segments are fabricated into a short test rod In this case ldquoIREST=5rdquo and ldquoTRSGT=2 4rdquo are set in the input file Accordingly this case has three axial-segment geometry so that the input data is required to match the three-segment geometry In line with this modification of relative distribution of linear power in the axial direction is required Also change of the objective segment No (IFEM) is required for the 2-D local mechanical analysis Specifically since the Base calculation has ldquoIFEM=3rdquo the Re-start calculation with IFEM=2 should be set because IFEM=3 denotes the second segment in TRSGT range ldquo2 3 4rdquo Similarly to Table 3310 at the beginning stage of Re-start calculation it is important to specify a new set of values of plenum volume gas pressure and gas composition

Table 3313 Test irradiation data for Restart calculation (BBSvd05)

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GRWF=15 IPRO=0 R1=10 R2=10

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

ITIME(1)=1 GASPRN(1)=0641 PLENM(1)=5 GMIXN(11)=10 0 0 0

IFEMOP=2 IDSELM=1 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=5 TRSGT=24 IWRES=0 IRTIME=0

DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

3 2

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

111 003 0

219 009 10 00 00 00 00 00

110

1000120 0 0 29815 01 1 4

10044 10044 10085

1000140 2 15E+13 29815 72 1 4

1026 1017 0986 106

1007595 20 15E+13 56095 72 1 4

1026 1017 0986 3

1007600 0 15E+13 56095 72 1 4

1007610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 47 -

(4) Method to perform Re-start calculation The ft11 file taken over to Re-start calculation is generated in WrkOUTP as eg

AA1ft11 as a result of Base calculation with input file AAd05

If the input file name of Re-start calculation is BBd05 rename AA1ft11 into BBft11 and type after prompt ldquofem BB 1rdquo Then FEMAXI-7 reads BBft11 and BBd05

performs Re-start calculation and generates the output file BB1out

34 Usage of output of burning analysis code RODBURN-1 In FEMAXI to take into account the changes of some fission product elements and

power density profile of fuel pellet with burnup in the radial direction the burning analysis

code RODBURN-1 can be used as a pre-processing code Calculated results by

RODBURN-1 are compared with those of other burning analysis code in the later sections of

this manual indicating a reasonable predictability

Table 341 shows the output physical quantities and formats of RODBURN-1 which are

read by FEMAXI These data are output for all time steps between historical input points

designated in the input data to RODBURN-1 In FEMAXI linear interpolation is performed

with respect to burnup for these data obtained in each time step and the interpolated values

are used for calculations

Details of items in Table 341 are described below

341 Record No and contents

Record No 1 a heat generation density profile in the radial direction is an output at each

time step at the axial segment having maximum burnup It is assumed that changes in the

heat-generation density profile depend not on the axial position of a segment but only on

burnup Since the information on a segment with maximum burnup is output a table of

burnup vs radial heat-generation-density profile regarding the entire burnup regions

necessary can be produced after completion of the entire time step of RODBURN

Record No 2 number of axial segments is the number of divisions in the axial direction of a

fuel rod in RODBURN

Record No 3 average burnup and the amount of generated He of each axial segment are

output Record Nos 4 and 5 are used to modify history data for input data of

FEMAXI

JAEA-DataCode 2013-009

- 48 -

Record No 4 average burnup average linear heat rate and average fast neutron flux are

output

Record No 5 axial linear heat rate relative to average linear heat rate is output in order to

obtain linear heat rate and fast neutron flux of each axial segment

Record No 6 axial coordinates of each axial segment used in RODBURN

Table 341 Output variables and format of RODBURN-1 Record No

Data No Data Item Unit Format Column Note

1 1 2~11

Maxburnup Radial heat generation density profile

MWdt-U

F102 10F63

1~10 11~70 Refer to 1)

2 1 Number of axial segments I5 1~5

3

1 2~13

Average burnup Molar amount of He gas

MWdt-U Mole

F102 12E124

1~10 11~154

Refer to 1) Number of axial

segments

4

1 2 3

Average burnup Average linear heat rate

Fast neutron flux

MWdt-U Wcm

2ncm timess

F102 E124 E124

1~10 11~22 23~34

Refer to 1)

5 1~12 Axial relative power profile 12F63 1~72 Number of axial

segments

6 1~12 Axial coordinates cm 12E124 1~144 Number of axial

segments Refer to 2)

1) burnup of an axial segment 2) boundary coordinates between n-th and (n+1)th segment

342 Usage of records in FEMAXI To use data obtained from RODBURN-1 in FEMAXI the average linear power of a fuel

rod must be input into FEMAXI When the average linear power-input history is given the

average burnup at each historical point of input is calculated in FEMAXI by accumulating the

average linear power

The heat generation density profile in the radial direction in FEMAXI which is originally

calculated by RODBURN-1 can be obtained by interpolating the data with burnup in the

table of burnup vs heat generation density profile The data are prepared from the

RODBURN data group for the Record No1

JAEA-DataCode 2013-009

- 49 -

(1) Power density profile when MESH=0

In the case where pellet stack is divided into iso-volume ring elements in RODBURN-1

input the calculated results cannot directly correspond to the iso-thickness ring elements of

FEMAXI which has MESH=0 designation In this case the results of RODBURN-1 are used

in FEMAXI by volume interpolation or volume averaging

(2) Power density profile when MESH=1 2 3 or 4 (Recommended)

When MESHge1 the thermal analysis treats pellet stack as an assemblage of N=36 or

more iso-volume ring elements In this case RODBURN-1 sets N=36 or more ring elements

for pellet stack and sets the number of radial division of output file table as N

(3) Burnup profile of pellet in the radial direction

The burnup profile in the radial direction of a pellet stack obtained in RODBURN is not

forwarded to FEMAXI but an identical quantity can be obtained in FEMAXI by

accumulating the heat generation density profile over time The heat generation density is

given by a relative rate ie density ratio when the heat generation density averaged over all

the ring elements is set to 1 Accordingly assuming the density ratio of the i-th ring element in the radial direction to be Ri the burnup increment ∆Bui of this element is given by

∆ ∆Bu R Bui i= for the burnup increment ∆Bu of each time step for each segment The

burnup of each element can be obtained by integration of the burnup increment∆Bui over

time

(4) Molar amount of generated He

The molar amount of He gas is obtained in FEMAXI by interpolating the average burnup

data vs number of He moles generated with average burnup in the table which is produced

for each axial segment from the data group of the Record No 3

(5) Fast neutron flux

Among the historical data given in the input for FEMAXI the average fast neutron flux and

axial relative power ratio are corrected using data from the Record Nos4 and 5 These two

values in the axial direction are obtained by interpolating the following data with average

JAEA-DataCode 2013-009

- 50 -

burnup in FEMAXI (1) table of the average burnup vs average fast neutron flux and (2)

table of the average burnup vs relative power ratio in the axial direction both of which are

produced using data groups of the Record Nos 4 and 5

However sometimes differences happen to exist in the average linear heat rate

corresponding to the same average burnup between RODBURN output and FEMAXI input

data Therefore the difference in the average fast neutron flux is if exists corrected using

FEMFEM ROD

ROD

PP

φ φ= (A12)

and then used in FEMAXI

Here φFEM average fast neutron flux used in FEMAXI

φROD average fast neutron flux output from RODBURN

PFEM average linear heat rate input to FEMAXI

PROD average linear heat rate output from RODBURN

In order to deal with the differences if exist in the axial segment division between

RODBURN and FEMAXI a re-mesh function for the axial direction has been incorporated in

FEMAXI Namely putting a data value of the i-th segment in RODBURN as φi and that of

the (i+1)th segment as φi+1 and putting that of the j-th segment in FEMAXI as φjrsquo the axial

power profile is obtained by

( ) ( )

( )prime =minus prime + prime minus

prime minus primeminus +

minus

φφ φ

ji j i j i i

j j

Z Z Z Z

Z Z1 1

1

(A13)

and the molar amount of generated He gas is obtained by

( )( )

( )( )prime =

minus prime

minus+

prime minus

minusminus

minus ++φ φ φj

i j

i ii

j i

i ii

Z ZZ Z

Z ZZ Z

1

1 11 (A14)

Here Zi and Zj are the axial coordinates obtained from Record No 6 in RODBURN-1

and the axial coordinate in FEMAXI respectively

In RODBURN-1 pellet radius is divided into equal-volume ring elements in many cases

for the analysis of the power profile which is different from the equi-distance division by the

selection of MESH=0 Therefore the calculated values from RODBURN-1 are used by

interpolating with volume or by volume-averaging for the ring elements in FEMAXI

To avoid accumulation of errors due to the extension of burnup and interpolation

between axial coordinates a compensation processing is performed for obtained data

JAEA-DataCode 2013-009

- 51 -

343 Making input file of RODBURN-1 by using FEMAXI

In making an input file for RODBURN-1 prior to FEMAXI calculation an averaged

linear heat rate (LHR) values over representative history points are required However it is

often difficult to obtain directly the averaged LHRs from the data of time-LHR pairs or

burnup-LHR pairs of FEMAXI input file To solve this problem the following function has

been implemented in FEMAXI

First make your input file eg AAd05 of FEMAXI with IROD=1 if your rod is

PWR UO2 type If not IROD=2 3 4 or 5 in accordance with your reactor type and fuel type

Then execute FEMAXI The code will not run normally but automatically give rise to rodin

file in Wrk directory Rename rodin to AArddat and execute RODBURN

The rodin file has all that are needed to perform burning calculation of AA rod with

its history of axial distribution of linear power for every burnup stage When IRODge1 in its

input file FEMAXI calculates the linear heat rate at every axial segment along the irradiation

(burnup) history if the relative power profile data is given in FEMAXI input file for the axial

segments and generates a series of figures of linear heat rate history including the axial power

profile in ldquorodinrdquo file RODBURN utilizes this series of figures and average LHR value is

multiplied by relative axial power figure at each axial segment and burning calculation is

performed

After RODBURN calculation you have AArodex file in RODEX directory Then

modify IROD=1 to IROD=0 and put IFLX= -2 in your input file of FEMAXI Then you

can perform FEMAXI calculation with the RODBURN result

35 Usage of output of burning analysis code PLUTON By assigning name-list parameter IFLX=-1 it is possible to read the PLUTON

result file of burning calculation (refer to section 24) The FEMAXI readable file of

PLUTON can be generated as FMdat by PLUTON To feed this file into FEMAXI the file

is renamed into FMdt and stored in the directory Wrkrbout as described in section

A644 Regarding the details of the PLUTON code see the reference 24

JAEA-DataCode 2013-009

- 52 -

351 Physical quantities of PLUTON output for FEMAXI The following relationship describes the transfer of physical quantities from PLUTON to

FEMAXI

(1) Among the various calculation conditions in FEMAXI the quantities required to be

inputted to PLUTON are given below

Time Linear power distribution

Coolant water temperature Fuel composition

Void fraction of coolant water Diameter and inner diameter of the pellet

Pellet density Plant type

(2) The physical quantities read into FEMAXI among the outputs of PLUTON are given

below

Power distribution in the radial direction of the pellet

Fast-neutron flux

Burnup distribution in the radial direction of the pellet

Generated quantities of fission gas atoms Xe and Kr

352 Structure of inputoutput files of PLUTON (1) In the output files of PLUTON the average burnup average fast-neutron flux and power

density are normalized to a linear power of 100Wcm These files have a simple ASCII

format In the example shown in Table 351 lines are used to separate data In practice data

are separated by blank spaces

(2) The power density and Xe-Kr ratio are tabulated as functions of pellet radius

(3) These tables are output for each step of average burnup and various physical quantities at

the middle burnup at each step are determined by interpolating the values with burnup on the

FEMAXI side In addition in FEMAXI all the physical quantities are used by multiplying

the ratio of linear power for each segment by that for 100Wcm Tables for each burnup step

are continuous from the top to the bottom and two blank rows are used to separate each

burnup step

(4) The burnup range (BOL-EOL) and step burnup (∆B) are assigned at the input of

PLUTON The step width is small initially and becomes large in the high-burnup period

JAEA-DataCode 2013-009

- 53 -

(5) The naming convention used for output files in PLUTON is XXX-FEMdat For example

when the file name of PLUTON is BK365inp the output file name is BK365-FEMdat

Table 351 shows a simplified image of the output file format of PLUTON

- - - - - - - - Continues to the last table - - - - - - - - - - - - - - -

Table 351 Image of table structure of PLUTON

Av Burnup-1 (MWdt) 00 Fast flux-1 1564E13 (ncm2s)

Radii (mm) Power density-1 (Wcm3) XeKr Ratio 00 344E2 6875 0232 348E2 - - -

0328 - -

351E2 - - -

- - -

4639 411E2 - - -

4645 423E2 - - -

Av Burnup-1 (MWdt) 50000 Fast flux-1 1589E13 (ncm2s)

Radii (mm) Power density-1 (Wcm3) XeKr Ratio 00 344E2 6810 0232 350E2 - - -

0328 - - -

352E2 - - -

- - -

4639 428E2 - - - 4645 445E2 - - -

Av Burnup-1 (MWdt) 100000 Fast flux-1 1625E13 (ncm2s)

Radii (mm) Power density-1 (Wcm3) XeKr Ratio 00 344E2 6725 0232 351E2 - - - 0328 - - -

354E2 - - -

- - -

4639 452E2 - - - 4645 523E2 - - -

JAEA-DataCode 2013-009

- 54 -

In addition hereafter the detailed contents and format of the inputoutput files of

PLUTON are shown

【Example of Input file -1-】 Input parameters for the PLUTON code Physical Parameters ______________________________________________________________________________ List of variables Units Values ______________________________________________________________________________ FRDENS fractional fuel density na 0955 Bustep burnup power-step increment GWdt 020 Burnup upper burnup limit GWdt 600 EnriU5 initial enrichment with U-235 fraction 0045 CDiam1 the outer clad diameter cm 1430 CDiam2 the inner clad diameter cm 1267 FDiam1 the outer fuel diameter cm 1237 FDiam2 the inner fuel diameter cm 00 WEPITH 0304 - PWRUO2 0366 - PWRMOX 018 WWERUO2 0307 WFast 2010 - PWRUO2 2390 - PWRMOX 1514 TWater water temperature K 560 DWater water density at lower end plug gcc 0860 Vratio fuel to water ratio by volume NA 0627 VVoids void fraction NA 0350 TFuelC fuel temperature in resonant region C-degree 550 QLLBOL BOL reference LHGR wcm 2500 ______________________________________________________________________________ WtThor thorium content wt fraction fraction 00 ______________________________________________________________________________ ContPu plutonium content wt frac 0000 WtSPOT wt of Pu-spots in matrix wt frac 0000 SpDIAM average size of Pu-rich particles micron 500 SPOTU8 fraction of uranium in Pu-spots fraction 0750 PuFrac239 fraction of Pu-239 in total Pu fraction 0681 PuFrac240 fraction of Pu-240 in total Pu fraction 0218 PuFrac241 fraction of Pu-241 in total Pu fraction 0073 Pufrac242 fraction of Pu-242 in total Pu fraction 0028 ______________________________________________________________________________ ContGd content of Gadolinium Oxide Gd2O3 wt frac 0000 GdX154 fraction of Gd-154 isotope 213 GdX155 fraction of Gd-155 isotope 1461 GdX156 fraction of Gd-156 isotope 2034 GdX157 fraction of Gd-157 isotope 1565 GdX158 fraction of Gd-158 isotope 2500 GdX159 fraction of Gd-159 isotope 0000 GdX160 fraction of Gd-160 isotope 2227 ______________________________________________________________________________ NRADI number of points in radial mesh layout 101 NRADIF number of radial points in output power profile 25 iMeshF index of mesh point layout in output power profile -1 ifFEMF index of FEMAXI-readable output format 1 ifRESI 0 = classical formular gt 0 Egiazarovs formular 1 ifEDGE 0 for volume 1 - for rim region 0 iMeshL -1 iPlant =1 (PWR) =2 (BWR) =3 (HBWR) =4 (Riso DR3) 2 ifPLUT =0 local calculations gt 0 full-scale calculations 0 ifREIR =0 no re-irradiation ifREIR gt 0 if re-irradiation 0 ifDEPL Print out index for Xe amp Kr data 1 ifPOIS Print index for poisoning FP (C=1 W=2 Y=3) 1 inPOIS PuMOX index for poisoning FP (M=1 S=2 A=3) 1 ifCLAD Cladding type 2 iQUICK = 0 for quick succession gt 0 for full succession 0 iTRANS = 0 simple TUR-group gt 0 for full TUR-group 0 inTRUG Print index for TU-Group (M=1 S=2 A=3) 3 ______________________________________________________________________________ FLARCRP BWRRp60dat FLARCPU BWRBu60dat

JAEA-DataCode 2013-009

- 55 -

FLARCBU BWRPu60dat FLPOISS BWRPs60dat FLPOISR BWRPr60dat FEMFORM FEMAXI-readable format BWRFM60dat ______________________________________________________________________________ MODELOP default options ______________________________________________________________________________

【Example output file corresponding to the example input -1-】 --------------------------------------- ------------------------------- ------------------------------- ------ SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 0 1000 2000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 1724E+13 1756E+13 1769E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 6635 6675 6714 3 --------------------------------------- ------------------------------- ------------------------------ ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0880 000 24776 3723 0874 087 24816 3698 0874 175 24858 3671 1 0245 0888 000 24775 3723 0882 088 24814 3698 0882 176 24857 3671 2 0316 0898 000 24773 3724 0893 089 24812 3699 0893 178 24855 3672 3 0374 0907 000 24771 3725 0902 090 24811 3700 0902 180 24853 3672 4 0424 0915 000 24769 3726 0911 091 24809 3700 0910 182 24852 3673 5 0469 0926 000 24767 3726 0922 092 24807 3701 0921 184 24851 3673 6 0510 0935 000 24766 3727 0931 093 24806 3702 0930 186 24849 3673 7 0548 0945 000 24764 3728 0941 094 24804 3702 0940 188 24848 3674 8 0583 0954 000 24762 3728 0951 095 24803 3703 0949 190 24847 3674 9 0616 0964 000 24761 3729 0961 096 24801 3703 0959 192 24845 3675 10 0648 0974 000 24759 3730 0971 097 24800 3704 0969 194 24844 3675 11 0678 0983 000 24757 3730 0981 098 24798 3704 0978 196 24843 3675 12 0707 0993 000 24756 3731 0991 099 24797 3705 0988 198 24842 3676 13 0735 1003 000 24754 3732 1001 100 24796 3705 0998 200 24841 3676 14 0762 1013 000 24753 3732 1012 101 24795 3706 1009 202 24841 3676 15 0787 1023 000 24752 3733 1022 102 24794 3706 1019 204 24840 3676 16 0812 1034 000 24750 3734 1033 103 24793 3706 1030 206 24841 3675 17 0837 1045 000 24749 3734 1045 104 24794 3706 1042 208 24842 3674 18 0860 1056 000 24749 3735 1057 106 24795 3706 1054 211 24845 3673 19 0883 1068 000 24748 3736 1070 107 24797 3705 1068 213 24851 3670 20 0906 1082 000 24748 3737 1085 108 24802 3703 1084 216 24860 3665 21 0927 1097 000 24750 3738 1103 110 24810 3700 1104 220 24877 3658 22 0949 1117 000 24753 3740 1127 112 24825 3694 1132 225 24904 3644 23 0970 1143 000 24759 3742 1161 115 24853 3684 1174 232 24955 3620 24 0990 1189 000 24773 3747 1226 121 24918 3658 1257 245 25066 3565 25 --------------------------------------- ------------------------------- ------------------------------- --------------------------------------- ------------------------------- ------------------------------- ----- SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 3000 4000 5000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 1784E+13 1799E+13 1816E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 6752 6790 6827 3 --------------------------------------- ------------------------------- ------------------------------- ----- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0875 262 24898 3645 0875 349 24937 3619 0876 436 24975 3594 1 0245 0882 264 24897 3645 0883 352 24936 3619 0884 440 24974 3594 2 0316 0893 267 24896 3645 0893 356 24935 3619 0893 445 24973 3594 3 0374 0902 270 24894 3646 0902 360 24934 3620 0902 450 24972 3595 4 0424 0910 273 24893 3646 0910 363 24933 3620 0910 454 24971 3594 5 0469 0920 276 24892 3646 0920 367 24932 3620 0920 459 24970 3594 6 0510 0929 279 24891 3646 0929 371 24931 3620 0928 464 24969 3594 7 0548 0939 281 24890 3647 0938 375 24930 3620 0937 468 24968 3594 8 0583 0948 284 24889 3647 0947 379 24929 3620 0946 473 24968 3594 9 0616 0957 287 24887 3647 0956 383 24928 3620 0955 478 24967 3594 10

JAEA-DataCode 2013-009

- 56 -

0648 0967 290 24886 3647 0965 386 24927 3620 0964 482 24966 3594 11 0678 0976 293 24886 3647 0974 390 24926 3620 0973 487 24966 3594 12 0707 0986 296 24885 3647 0984 394 24926 3620 0982 492 24966 3594 13 0735 0996 299 24884 3647 0993 398 24926 3620 0991 497 24966 3593 14 0762 1006 302 24884 3647 1003 402 24926 3619 1001 502 24967 3592 15 0787 1016 305 24885 3647 1013 406 24927 3618 1011 507 24968 3591 16 0812 1027 309 24886 3646 1024 411 24930 3617 1021 513 24971 3589 17 0837 1039 312 24889 3644 1036 415 24934 3614 1033 518 24976 3586 18 0860 1051 316 24894 3641 1049 420 24940 3611 1046 525 24984 3581 19 0883 1066 320 24902 3637 1063 426 24951 3604 1061 532 24998 3573 20 0906 1083 324 24916 3629 1082 432 24969 3595 1080 540 25019 3561 21 0927 1105 330 24939 3617 1106 440 24998 3579 1106 550 25054 3542 22 0949 1136 338 24978 3597 1140 451 25047 3552 1144 565 25112 3509 23 0970 1185 349 25047 3561 1196 468 25133 3505 1206 588 25211 3453 24 0990 1286 372 25195 3482 1313 502 25309 3406 1338 634 25411 3336 25 --------------------------------------- ------------------------------- ------------------------------- ---- --------------------------------------- ------------------------------- ------------------------------ ------ SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 6000 7000 8000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 1832E+13 1850E+13 1868E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 6863 6899 6935 3 --------------------------------------- ------------------------------- ------------------------------ ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0877 523 25011 3570 0878 611 25046 3547 0880 698 25080 3523 1 0245 0885 528 25010 3570 0886 616 25045 3546 0887 704 25079 3523 2 0316 0894 534 25009 3570 0895 623 25044 3546 0896 712 25078 3523 3 0374 0902 540 25008 3570 0903 629 25044 3546 0903 719 25078 3522 4 0424 0910 544 25008 3570 0910 635 25043 3546 0911 725 25078 3522 5 0469 0919 551 25007 3570 0919 642 25043 3545 0919 733 25077 3522 6 0510 0928 556 25006 3569 0928 648 25042 3545 0927 741 25077 3521 7 0548 0936 562 25006 3569 0936 655 25042 3545 0935 748 25076 3521 8 0583 0945 567 25005 3569 0944 661 25041 3545 0943 755 25076 3520 9 0616 0954 573 25004 3569 0952 667 25041 3544 0951 762 25076 3520 10 0648 0962 578 25004 3569 0961 674 25040 3544 0959 769 25075 3520 11 0678 0971 584 25004 3568 0969 680 25040 3543 0968 777 25075 3519 12 0707 0980 590 25004 3568 0978 687 25040 3543 0976 784 25076 3518 13 0735 0989 596 25004 3567 0987 694 25041 3542 0985 792 25077 3517 14 0762 0998 601 25005 3566 0996 701 25043 3540 0993 800 25079 3515 15 0787 1008 608 25008 3564 1005 708 25045 3538 1003 808 25082 3513 16 0812 1019 614 25011 3562 1016 715 25050 3535 1013 816 25087 3509 17 0837 1030 621 25017 3558 1027 723 25057 3531 1025 825 25095 3504 18 0860 1043 628 25027 3552 1041 732 25068 3524 1038 835 25107 3496 19 0883 1059 637 25042 3543 1057 742 25085 3513 1054 847 25127 3484 20 0906 1079 647 25067 3529 1078 755 25113 3497 1076 862 25157 3466 21 0927 1106 661 25107 3505 1107 771 25158 3470 1107 881 25206 3436 22 0949 1147 679 25173 3468 1151 794 25230 3428 1154 908 25285 3389 23 0970 1215 708 25284 3402 1224 830 25352 3354 1233 952 25416 3308 24 0990 1362 769 25503 3270 1385 906 25586 3209 1407 1045 25661 3151 25 --------------------------------------- ------------------------------- ------------------------------ ------ --------------------------------------- ------------------------------- ------------------------------ ------ SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 9000 10000 20000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 1888E+13 1907E+13 2146E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 6971 7005 7344 3 --------------------------------------- ------------------------------- ------------------------------ ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0881 786 25113 3501 0883 873 25144 3478 0900 1757 25421 3261 1 0245 0888 792 25112 3500 0889 881 25144 3478 0904 1770 25422 3259 2 0316 0896 801 25112 3500 0897 890 25144 3477 0909 1786 25422 3257 3

JAEA-DataCode 2013-009

- 57 -

0374 0904 809 25111 3499 0905 899 25143 3476 0914 1801 25422 3255 4 0424 0911 816 25111 3499 0911 906 25143 3476 0919 1814 25423 3253 5 0469 0920 825 25111 3498 0920 916 25143 3475 0924 1830 25424 3251 6 0510 0927 833 25110 3498 0927 925 25143 3474 0929 1845 25424 3249 7 0548 0935 841 25110 3497 0935 934 25143 3474 0933 1860 25425 3247 8 0583 0943 849 25110 3497 0942 942 25142 3473 0938 1874 25425 3245 9 0616 0950 857 25109 3496 0950 951 25142 3473 0943 1889 25425 3243 10 0648 0958 865 25109 3495 0957 960 25142 3472 0947 1904 25426 3241 11 0678 0966 873 25110 3495 0965 969 25143 3471 0952 1919 25428 3238 12 0707 0974 881 25110 3494 0972 978 25143 3469 0957 1934 25430 3235 13 0735 0983 890 25111 3492 0981 987 25145 3468 0963 1950 25433 3231 14 0762 0991 898 25114 3490 0989 996 25147 3466 0969 1967 25437 3226 15 0787 1000 907 25117 3488 0998 1006 25151 3463 0976 1985 25444 3220 16 0812 1010 917 25122 3484 1008 1017 25157 3458 0985 2004 25454 3212 17 0837 1022 927 25131 3478 1019 1028 25167 3452 0995 2027 25470 3200 18 0860 1035 938 25145 3469 1033 1041 25181 3442 1010 2053 25493 3182 19 0883 1052 952 25166 3456 1050 1056 25204 3428 1030 2087 25528 3157 20 0906 1075 969 25200 3435 1073 1075 25240 3405 1060 2133 25581 3119 21 0927 1107 991 25252 3403 1107 1101 25297 3370 1106 2198 25661 3063 22 0949 1156 1023 25337 3351 1159 1138 25386 3314 1180 2299 25779 2978 23 0970 1241 1075 25475 3263 1249 1199 25531 3220 1310 2470 25957 2848 24 0990 1427 1186 25731 3096 1446 1329 25794 3045 1590 2842 26235 2637 25 --------------------------------------- ------------------------------- ------------------------------ ------ --------------------------------------- ------------------------------- ------------------------------ ------ SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 30000 40000 50000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 2456E+13 2830E+13 3243E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 7681 8037 8419 3 --------------------------------------- ------------------------------- ------------------------------ ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0915 2655 25644 3042 0926 3566 25845 2802 0930 4485 26034 2550 1 0245 0918 2671 25645 3039 0927 3583 25846 2797 0929 4502 26036 2545 2 0316 0920 2691 25646 3035 0927 3605 25848 2791 0929 4524 26040 2537 3 0374 0923 2710 25647 3031 0928 3624 25850 2786 0928 4543 26043 2530 4 0424 0925 2726 25649 3027 0929 3642 25852 2781 0928 4561 26045 2524 5 0469 0928 2747 25650 3023 0929 3664 25854 2775 0927 4583 26048 2517 6 0510 0930 2765 25651 3020 0930 3683 25856 2769 0926 4601 26051 2510 7 0548 0933 2782 25652 3016 0930 3702 25858 2764 0925 4620 26054 2503 8 0583 0935 2800 25653 3012 0930 3721 25860 2758 0924 4639 26057 2497 9 0616 0937 2818 25654 3009 0931 3741 25862 2753 0924 4658 26061 2489 10 0648 0939 2837 25656 3004 0931 3760 25865 2747 0924 4678 26065 2482 11 0678 0942 2856 25658 3000 0932 3781 25868 2740 0925 4699 26071 2473 12 0707 0945 2875 25661 2994 0934 3802 25873 2732 0926 4722 26078 2464 13 0735 0949 2895 25665 2988 0936 3825 25879 2724 0929 4748 26087 2454 14 0762 0953 2917 25672 2981 0940 3851 25887 2714 0933 4777 26099 2442 15 0787 0959 2941 25681 2971 0945 3880 25899 2702 0940 4812 26115 2428 16 0812 0966 2968 25694 2959 0953 3915 25915 2687 0951 4856 26136 2410 17 0837 0977 3001 25713 2943 0965 3959 25939 2667 0967 4913 26166 2387 18 0860 0993 3043 25742 2919 0983 4017 25972 2639 0991 4992 26206 2357 19 0883 1016 3099 25784 2887 1010 4098 26020 2602 1028 5105 26260 2319 20 0906 1052 3177 25846 2840 1053 4215 26087 2551 1083 5269 26333 2268 21 0927 1108 3292 25936 2772 1120 4391 26181 2481 1165 5520 26427 2203 22 0949 1199 3475 26064 2676 1227 4673 26309 2387 1286 5916 26548 2119 23 0970 1356 3790 26243 2540 1406 5154 26477 2261 1382 6557 26699 2016 24 0990 1679 4463 26501 2339 1682 6141 26706 2090 1527 7715 26888 1885 25 --------------------------------------- ------------------------------- ------------------------------ ------

JAEA-DataCode 2013-009

- 58 -

--------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 60000 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 3637E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 8822 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0930 5407 26213 2310 1 0245 0929 5423 26217 2303 2 0316 0928 5444 26221 2295 3 0374 0926 5463 26224 2288 4 0424 0925 5479 26227 2282 5 0469 0924 5499 26231 2274 6 0510 0923 5517 26234 2267 7 0548 0922 5535 26239 2260 8 0583 0922 5553 26243 2252 9 0616 0922 5572 26249 2245 10 0648 0923 5593 26256 2236 11 0678 0925 5615 26264 2227 12 0707 0928 5640 26274 2217 13 0735 0934 5669 26287 2206 14 0762 0941 5705 26303 2192 15 0787 0953 5749 26324 2177 16 0812 0970 5806 26352 2158 17 0837 0995 5884 26389 2134 18 0860 1027 5992 26435 2105 19 0883 1056 6145 26495 2069 20 0906 1092 6363 26571 2024 21 0927 1147 6680 26665 1968 22 0949 1226 7155 26775 1902 23 0970 1340 7893 26897 1827 24 0990 1513 9214 27028 1742 25 --------------------------------------- --------

JAEA-DataCode 2013-009

- 59 -

【Example of input file -2-】 Inputs for FK-1 8x8BJ (Step I) Physical Parameters ______________________________________________________________________________ List of variables Units Values ______________________________________________________________________________ FRDENS fractional fuel density na 095 Bustep burnup power-step increment GWdt 020 Burnup burnup limit GWdt 4500 EnriU5 initial enrichment with U-235 fraction 0039 CDiam1 the outer clad diameter cm 1230 CDiam2 the inner clad diameter cm 1068 FDiam1 the outer fuel diameter cm 1044 FDiam2 the inner fuel diameter cm 000 WEPITH 0304 - PWRUO2 0366 - PWRMOX 018 WWERUO2 0307 WFast 2010 - PWRUO2 2390 - PWRMOX 1514 TWater water temperature K 560 DWater water density at lower end plug gcc 0860 Vratio fuel to water ratio by volume NA 0627 VVoids void fraction NA 0500 TFuelC fuel temperature in resonant region C-degree 550 QLLBOL BOL reference LHGR wcm 2300 ______________________________________________________________________________ WtThor thorium content wt fraction fraction 00 ______________________________________________________________________________ ContPu plutonium content wt frac 0000 WtSPOT wt of Pu-spots in matrix wt frac 0000 SpDIAM average size of Pu-rich particles micron 500 SPOTU8 fraction of uranium in Pu-spots fraction 0750 PuFrac239 fraction of Pu-239 in total Pu fraction 0681 PuFrac240 fraction of Pu-240 in total Pu fraction 0218 PuFrac241 fraction of Pu-241 in total Pu fraction 0073 Pufrac242 fraction of Pu-242 in total Pu fraction 0028 ______________________________________________________________________________ ContGd content of Gadolinium Oxide Gd2O3 wt frac 0000 GdX154 fraction of Gd-154 isotope 213 GdX155 fraction of Gd-155 isotope 1461 GdX156 fraction of Gd-156 isotope 2034 GdX157 fraction of Gd-157 isotope 1565 GdX158 fraction of Gd-158 isotope 2500 GdX159 fraction of Gd-159 isotope 0000 GdX160 fraction of Gd-160 isotope 2227 ______________________________________________________________________________ NRADI number of points in radial mesh layout 101 NRADIF number of radial points in output power profile 25 iMeshF index of mesh point layout in output power profile -1 ifFEMF index of FEMAXI-readable output format 1 ifRESI 0 = classical formular gt 0 Egiazarovs formular 1 ifEDGE 0 for volume 1 - for rim region 0 iMeshL -1 iPlant =1 (PWR) =2 (BWR) =3 (HBWR) =4 (Riso DR3) 2 ifPLUT =0 burnup calculations gt 0 TIME-POWER calculations 1 ifREIR =0 no re-irradiation ifREIR gt 0 if re-irradiation 0 ifDEPL Print out index for Xe amp Kr data 0 ifPOIS Print index for poisoning FP (C=1 W=2 Y=3) 0 inPOIS PuMOX index for poisoning FP (M=1 S=2 A=3) 0 ifCLAD Cladding type 2 iQUICK = 0 for quick succession gt 0 for full succession 0 iTRANS = 0 simple TUR-group gt 0 for full TUR-group 0 inTRUG Print index for TU-Group (M=1 S=2 A=3) 3 ______________________________________________________________________________ FLARCRP FK1_rpdat FLARCPU FK1_pudat FLARCBU FK1_budat FLPOISS FK1_Psdat FLPOISR FK1_Prdat FEMFORM FEMAXI-readable format FK1_FMdat ______________________________________________________________________________ MODELOP DEFAULT OPTIONS ______________________________________________________________________________

-Continues to next pagerarr

JAEA-DataCode 2013-009

- 60 -

Table 2 Design parameters FK-1 commercial base-irradiation ============================================================================== PARAMETER UNITS VALUES ______________________________________________________________________________ CLADmm Total Fuel Rod Length mm 39100 FUELmm Active Fuel Stack Length mm 38100 SYSMPa System pressure MPa 730 VELOCI Coolant velocity ms 252 DEPASS Passing diameter cm 1473 ACOREm Active core m 450 ifCLNT Index of Coolant (LW or HW) LW ifCIRC Index of Circulation (FC or NC) FC ------------------------------------------------------------------------------ NNODES Number of axial nodes in fuel rod representation 0 NCROSS Total number of specified cross-sections 0 ============================================================================== OUTPUT OPTIONS iMeshP Mesh poits layout in step-by-step output file -1 NMESHP Number of radial zones in step-by-step output file 25 iPRNTP Print out option for step-by-step output file On ============================================================================== RE-IRRADIATION OFF ============================================================================== Table 3 IRRADIATION HISTORY FK-1 ============================================================================= ns TIME | Linear Heat | Coolant | RES | FAST | REACTOR | Rate | temperature | factor | factor | index |----------------|---------------| | | iREIRR | QL Type | Inlet Delta | | | ----------------|----------------|---------------| | | [1]| EFPDs | Wcm | C - degree | | | ----------------------------------------------------------------------------- (1) (2) (3) (4) (5) (6) (7) (8) (9) ----------------------------------------------------------------------------- 0 0 20357 L 2780 80 0307 1514 0 1 377 20357 - - - - - 0 2 8651 20357 - - - - - 0 3 16926 20357 - - - - - 0 4 25200 20357 - - - - - 0 5 25536 22847 - - - - - 0 6 36457 22847 - - - - - 0 7 47378 22847 - - - - - 0 8 58300 22847 - - - - - 0 9 58656 21573 - - - - - 0 10 70704 21573 - - - - - 0 11 82752 21573 - - - - - 0 12 94800 21573 - - - - - 0 13 95235 17620 - - - - - 0 14 107190 17620 - - - - - 0 15 119145 17620 - - - - - 0 16 131100 17620 - - - - - 0 17 131487 19811 - - - - - 0 18 144191 19811 - - - - - 0 19 156895 19811 - - - - - 0 20 169600 19811 - - - - - 0 ============================================================================= ampstop ampStop ampSTOP

JAEA-DataCode 2013-009

- 61 -

【Output file corresponding to the input file -2-】 --------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 0 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 2865E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 6664 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0940 000 24771 3711 1 0245 0944 000 24771 3711 2 0316 0949 000 24770 3712 3 0374 0953 000 24769 3712 4 0424 0957 000 24768 3712 5 0469 0962 000 24767 3713 6 0510 0966 000 24766 3713 7 0548 0970 000 24765 3713 8 0583 0975 000 24764 3714 9 0616 0979 000 24764 3714 10 0648 0984 000 24763 3714 11 0678 0988 000 24762 3715 12 0707 0993 000 24761 3715 13 0735 0997 000 24761 3716 14 0762 1002 000 24760 3716 15 0787 1007 000 24759 3716 16 0812 1013 000 24759 3717 17 0837 1019 000 24759 3717 18 0860 1025 000 24759 3718 19 0883 1033 000 24760 3719 20 0906 1041 000 24761 3720 21 0927 1053 000 24764 3721 22 0949 1068 000 24768 3723 23 0970 1089 000 24776 3726 24 0990 1129 000 24791 3730 25 --------------------------------------- -------- --------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 2330 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 2947E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 6777 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0933 217 24897 3630 1 0245 0937 218 24897 3631 2 0316 0942 220 24896 3631 3 0374 0946 221 24895 3631 4 0424 0950 221 24895 3631 5 0469 0955 223 24894 3631 6 0510 0959 224 24893 3631 7 0548 0964 225 24893 3632 8 0583 0968 226 24892 3632 9 0616 0973 227 24892 3632 10 0648 0977 228 24892 3632 11 0678 0982 229 24891 3632 12 0707 0987 230 24891 3632 13 0735 0992 231 24892 3631 14 0762 0997 232 24893 3631 15 0787 1002 234 24894 3630 16 0812 1009 235 24897 3629 17 0837 1016 237 24901 3627 18 0860 1024 238 24907 3624 19 0883 1034 240 24916 3620 20 0906 1046 243 24930 3613 21 0927 1063 246 24951 3604 22 0949 1087 251 24983 3588 23 0970 1125 258 25037 3563 24 0990 1199 271 25144 3511 25 --------------------------------------- --------

Skipped to the last part rarr

JAEA-DataCode 2013-009

- 62 -

--------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 42434 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 4852E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 8508 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0924 3902 26082 2521 1 0245 0925 3911 26084 2518 2 0316 0925 3921 26085 2515 3 0374 0925 3930 26085 2512 4 0424 0925 3937 26086 2509 5 0469 0925 3947 26087 2506 6 0510 0925 3956 26088 2503 7 0548 0926 3965 26090 2500 8 0583 0926 3976 26092 2496 9 0616 0927 3986 26094 2492 10 0648 0929 3998 26097 2488 11 0678 0931 4011 26101 2483 12 0707 0934 4026 26106 2477 13 0735 0938 4044 26114 2470 14 0762 0943 4065 26123 2461 15 0787 0951 4093 26136 2450 16 0812 0962 4128 26154 2436 17 0837 0978 4175 26178 2417 18 0860 1000 4240 26210 2393 19 0883 1031 4328 26252 2362 20 0906 1075 4454 26308 2320 21 0927 1139 4638 26382 2267 22 0949 1234 4914 26476 2198 23 0970 1379 5355 26598 2110 24 0990 1569 6183 26763 1991 25 --------------------------------------- -------- --------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 45764 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 5054E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 8656 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0923 4207 26144 2436 1 0245 0924 4215 26145 2433 2 0316 0924 4226 26146 2429 3 0374 0923 4235 26147 2426 4 0424 0923 4242 26148 2424 5 0469 0923 4252 26149 2420 6 0510 0924 4261 26150 2417 7 0548 0924 4271 26152 2414 8 0583 0925 4281 26154 2410 9 0616 0926 4292 26157 2406 10 0648 0927 4304 26160 2401 11 0678 0929 4318 26165 2396 12 0707 0932 4334 26170 2390 13 0735 0937 4353 26178 2383 14 0762 0943 4376 26188 2374 15 0787 0951 4407 26202 2363 16 0812 0963 4446 26220 2348 17 0837 0980 4499 26245 2330 18 0860 1003 4570 26278 2306 19 0883 1036 4670 26321 2275 20 0906 1083 4811 26377 2235 21 0927 1150 5015 26449 2184 22 0949 1248 5323 26541 2119 23 0970 1391 5812 26658 2037 24 0990 1499 6688 26816 1927 25 --------------------------------------- --------

JAEA-DataCode 2013-009

- 63 -

353 Contents read by FEMAXI code

A handling method of physical quantities from PLUTON-PC read by FEMAXI is

explained

(1) Fast-neutron flux Since the value normalized to a linear power of 100Wcm is given as a function of

average burnup for fast neutrons the standard fast neutron flux is calculated using average

burnup and average linear power for each input time step and this result is given as the

fast-neutron flux for each input time step

(2) Radial power density distribution burnup distribution and generation of Xe-Kr These physical quantities represent the distributions in the radial direction of the pellet

the handling method differs depending on the pellet ring element number option (MESH) in

the thermal calculation of FEMAXI

A) When MESH=0

In this case the pellet is divided into 10 equal-volume ring elements Thus on the basis of

the output file table of PLUTON-PC (equal-volume element condition) the power density in

FEMAXI is calculated by multiplying the power density which is assigned to ring elements in

FEMAXI from the PLUTON-PC table by the ring volume of PLUTON-PC and by dividing

the result by the ring volume of FEMAXI See Fig351 and Table 352 When several

rings of PLUTON-PC correspond to the ring of FEMAXI the power density distribution is

calculated by volume-averaging each ring

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16

Radial element of PLUTON

Radial element of FEMAXI (MESH=0)

Fig351 An example of calculating the power density profile for FEMAXI from PLUTON result when MESH=0 If plural ring elements of PLUTON correspond to one single ring element of FEMAXI averaging over the ring elements is performed to obtain the power density of one element in FEMAXI

JAEA-DataCode 2013-009

- 64 -

Table 352 An example of radial profile conversion from PLUTON to FEMAXI in the case of MESH=0 (Note When plural ring elements of PLUTON correspond to a ring of

FEMAXI volume-averaging is performed)

PLUTON FEMAXI 1 rarr 1 1 rarr 2

1 2 rarr 3 2 rarr 4 3 rarr 5

4 5 rarr 6 5 6 rarr 7

7 8 9 rarr 8 9 10 11 12 rarr 9

12 13 14 15 16 rarr 10

B) When MESH=1 In this case the pellet stack of each axial segment is divided into 100 equal-volume ring

elements Therefore it is necessary to set the number of divisions in the radial direction

NRADIF of the PLUTON output file table as 100 In examples 1 and 2 of the input files of

PLUTON NRADIF=25 is adopted to simplify the appearance of the output file

Here the burnup distribution calculated in PLUTON is not used in FEMAXI because the

power density distribution is passed onto FEMAXI However since the local burnup is

calculated from the power history and density distribution in the radial direction in FEMAXI

the burnup distribution in FEMAXI is essentially an identical one to that obtained by

PLUTON

C) When MESH≧1 (Recommended)

When MESHge1 the pellet stack of each segment is divided into N ie 36 or more

equal-volume ring elements Accordingly it is necessary to match the number of radial

division NRADIF of output table of PLUTON-PC to N+1 because PLUTON-PC outputs the

values at the boundary of ring elements To obtain the average value in each ring element

from these N+1 boundary values it is necessary to make an average of the two values at the

boundaries of each element This averaging calculation is done manually In the example

input files ndashEx1- and ndashEx2- for PLUTON-PC NRADIF=25 is set for simplicity of output

file image Here the burnup profile obtained by PLUTON-PC is not used in FEMAXI

because FEMAXI calculates the burnup profile internally by integrating the power density

JAEA-DataCode 2013-009

- 65 -

profile fed from PLUTON-PC or other burning analysis code with time

354 Output file reading function of FEMAXI

It is important in the data reading processing in PLUTON to grasp the record numbers

written horizontally and the radial mesh numbers See Fig352 The horizontal record

number is determined by the value in column [A] The system reads the values encircled by

the mark as irec irec2 and irec3 from the left-hand side of column [A] The following is an

example for the case of three horizontal records

The program reads the section marked [A] into 120 columns and the locations marked by

correspond to columns 47 80 and 113 The value at each location is stored in variables irec

irec2 and irec3 respectively By the combination of these variables the number of records

written horizontally is determined When the combinations of irec irec2 and irec3 in the IF

statement are 1 0 0 0 2 0 and 0 0 3 the program is designed to read the record numbers 1

2 and 3 respectively

Upon the determination of horizontal record numbers the program reads the mesh number

in the radial direction of [B] stores it in variable imax and performs the reading process on

the basis of the number of meshes in the radial direction The data created by the process up to

this point is designated a group of data the process continues until the data is depleted --------------------------------------- ------------------------------- ------------------------------- --------

SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS

0 1000 2000 3

FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0

1724E+13 1756E+13 1769E+13 3

SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0

6635 6675 6714 3

--------------------------------------- ------------------------------- ------------------------------- --------

1 2 3 4 5 6 7 8 9 10 11 12 13 14

--------------------------------------- ------------------------------- ------------------------------- --------

Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS

relat Relative GWdtM Relative GWdtM Relative GWdtM 25

--------------------------------------- ------------------------------- ------------------------------- --------

0141 0880 000 24776 3723 0874 087 24816 3698 0874 175 24858 3671 1

0245 0888 000 24775 3723 0882 088 24814 3698 0882 176 24857 3671 2

0316 0898 000 24773 3724 0893 089 24812 3699 0893 178 24855 3672 3

0970 1143 000 24759 3742 1161 115 24853 3684 1174 232 24955 3620 24

0990 1189 000 24773 3747 1226 121 24918 3658 1257 245 25066 3565 25

--------------------------------------- ------------------------------- ------------------------------- --------

1 2 3

Fig352 Representative output image of PLUTON

larr[A]

larr[B]

JAEA-DataCode 2013-009

- 66 -

Table 353 shows the variable read in the program Figures 353 and 354 show the

correspondence between the locations of variables read and the output of the reading program

Table 353 Variables under which PLUTON data are stored x is total number of data

Variables to be stored During writing 1 bu(100) bu(x) 2 irec irec(x) 3 hgr(100) lhgr(x)larrreal declaration 4 fflux(100) f_flux(x) 5 xekr_r(100) xekr_r(x) 6 imax imax 7 radr(100) rad_r(imax) 8 fdr(100100) fdr(ximax) 9 bur(100100) bur(ximax)

--------------------------------------- --------

SECTION-AVERAGE BURNUP MWdtM RECORDS

0 1

FAST FLUX at LHGR = 100 Wcm ncm^2s 0

2865E+13 1

SECTION AVERAGE Xe-to-Kr RATIO 0

6664 1

--------------------------------------- --------

1 2 3 4 5 6

--------------------------------------- --------

Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS

relat Relative GWdtM 25

--------------------------------------- --------

0141 0940 000 24771 3711 1

0245 0944 000 24771 3711 2

0316 0949 000 24770 3712 3

0970 1089 000 24776 3726 24

0990 1129 000 24791 3730 25

--------------------------------------- --------

Fig353 Output image in the case where number of record in the lateral direction is 1

ibu(x)

irec

f_flux(x)

xekr_r(x)

imax

rad_r(imax) fdr(ximax)

bur(ximax)

lhgr_r(x)

imax lines

x is total number of data

N times repeated as one set of data

JAEA-DataCode 2013-009

- 67 -

--------------------------------------- ------------------------------- ------------------------------- --------

SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS

0 1000 2000 3

FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0

1724E+13 1756E+13 1769E+13 3

SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0

6635 6675 6714 3

--------------------------------------- ------------------------------- ------------------------------- --------

1 2 3 4 5 6 7 8 9 10 11 12 13 14

--------------------------------------- ------------------------------- ------------------------------- --------

Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS

relat Relative GWdtM Relative GWdtM Relative GWdtM 25

--------------------------------------- ------------------------------- ------------------------------- --------

0141 0880 000 24776 3723 0874 087 24816 3698 0874 175 24858 3671 1

0245 0888 000 24775 3723 0882 088 24814 3698 0882 176 24857 3671 2

0316 0898 000 24773 3724 0893 089 24812 3699 0893 178 24855 3672 3

0970 1143 000 24759 3742 1161 115 24853 3684 1174 232 24955 3620 24

0990 1189 000 24773 3747 1226 121 24918 3658 1257 245 25066 3565 25

--------------------------------------- ------------------------------- ------------------------------- --------

Fig

35

4(1

2)

O

utpu

t im

age

in th

e ca

se w

here

num

ber o

f rec

ord

in th

e la

tera

l dire

ctio

n is

3

ibu(

x)

lhgr

_r(x

)

f_flu

x(x

)

xekr

_r(x

)

fdr(

xim

ax)

bur

(x

imax

) ra

d_r(

imax

)

imax

irec3

imax

pie

ces

x is

tota

l num

ber o

f dat

a

irec2

ire

c

The

first

set

of

dat

a

JAEA-DataCode 2013-009

- 68 -

--------------------------------------- --------

SECTION-AVERAGE BURNUP MWdtM RECORDS

60000 1

FAST FLUX at LHGR = 100 Wcm ncm^2s 0

3637E+13 1

SECTION AVERAGE Xe-to-Kr RATIO 0

8822 1

--------------------------------------- --------

1 2 3 4 5 6

--------------------------------------- --------

Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS

relat Relative GWdtM 25

--------------------------------------- --------

0141 0930 5407 26213 2310 1

0245 0929 5423 26217 2303 2

0316 0928 5444 26221 2295 3

0970 1340 7893 26897 1827 24

0990 1513 9214 27028 1742 25

--------------------------------------- --------

Fig354 (22) Output image in the case where number of record in the lateral direction is 3

355 Unit conversion of burnup The unit of burnup is converted in FEMAXI as follows as required

(1) 1020 fissionscm3

Energy generated per fission 200 MeV 1020 fissionscm3=2x1028 eVcm3

Using 1 cm3=1096f (g) ftheoretical density ratio

1020 fissionscm3=1825x1027f eVg

Using 1 eV=1602x10-19 Joule 1020 fissionscm3=2924x108f Jouleg

Using 1 MWDtUO2=864x104JoulegUO2

1020 fissionscm3=3384x103f MWDtUO2

when f=095 1020 fissionscm3=3562x103 MWDtUO2

Using 1 MWDtUO2=11344 MWDtU

Finally 1020 fissionscm3=4040x103 MWDtU

n-th set of data

JAEA-DataCode 2013-009

- 69 -

(2) Conversion between burnup rate FIMA and burnup

FIMA=(Number of fissionsnumber of atoms of initial heavy elements)

Here the number of atoms of the initial heavy elements denotes the total number of atoms

contained in the fuel such as [fertile isotopes 238U and 240Pu] and [fissile isotopes]

1 1 225 9375 FIMA at burnup MWh kgU MWd teU= minus cong cong

10 100 at burnup GWd tUminus cong

(3) Conversion of BU2 (GJkgU) to BUC (1020fissionscm3) using subroutine FSWELL

From eq (A) above 1020fissionscm3=2924x108f JoulegUO2

1020 fissionscm3=2924f JoulekgUO2

Using 1 JouleKgUO2=11344 JouleKgU

1020fissionscm3=3317f JoulekgUO2

Thus the conversion coefficient is 3317f

36 Calculation examples by RODBURN-1 and PLUTON To evaluate the predictability of the RODBURN-1 code it is necessary to compare the

calculated results with measured data of profiles of burnup or generated elements concentration

in the radial direction However this work has to overcome a tough task to obtain reliable

measured data of irradiated fuel Here allowing the work to be considered in a separate chance

a comparison of calculations between RODBURN-1 and PLUTON codes is carried out as a

simplified assessment Results of the PLUTON code have been relatively well validated with

measured data(3X)

361 PWR fuels (1) Calculation conditions As calculation conditions of UO2 and MOX fuels of PWR fuel specs and irradiation

conditions shown in Tables 361 and 362 are assumed In the calculations of RODBURN-1

and PLUTON size of fuel and major nuclear element composition are the same though the

coolant condition is different due to the code models However the coolant condition has no

significant difference and almost equivalent if it is specified by rod pitch=127mm in

RODBURN-1 or by fuelwater volume ratio=06 in PLUTON

JAEA-DataCode 2013-009

- 70 -

Table 361 Conditions of sample calculation P-1R by RODBURN-1 UO2 MOX (PuO2 66 wt) Pellet diameter 82 mm

density 95 TD

Composition (enrichment)

235U = 4 238U = 96

235U =02 235U=998 239Pu=6534 240Pu=2368 241Pu=657 242Pu=349 236Pu=00 238Pu=091 243Pu=244Pu=245Pu=00

Cladding Outer diameter=97mm Inner diameter=84mm Burnup (GWdt) 0 about 85 GWdt Coolant condition Rod pitch = 127 mm

Table 362 Conditions of sample calculation P-1P by PLUTON UO2 MOX (PuO2 66 wt) Pellet diameter 82 mm

Density 95 TD

Composition (enrichment)

235U = 4 238U = 96

235U =2 235U=98 238Pu=11 239Pu=6534 240Pu=2368 241Pu=657 242Pu=349 236Pu=00 241Am=091 243Am=00

Cladding Outer diameter=97mm Inner diameter=84mm Burnup (GWdt) 0 about 85 GWdt Coolant condition FuelWater volume ratio = 06

(2) Calculated results

A) Results for PWR-UO2 fuel by RODBURN-1 calculation

Figs361 and 362 show respectively the profiles of relative power density and burnup of

UO2 fuel calculated by RODBURN-1 with burnup being a parameter In RODBURN-1

calculation is performed with a pellet which is divided into 36 iso-volume ring elements and

the calculated results corresponding to the half thickness position of each element are output

The symbols in the figure indicate the radial position of half thickness of ring elements In the

outer region of pellet relative power density is elevated with burnup due to Pu generation by

resonance absorption and fission of the generated Pu by thermal neutron Burnup is also

elevated in the outer region as a time-integral of power density

JAEA-DataCode 2013-009

- 71 -

Fig362 Profiles of burnup of PWR-UO2 pellet calculated by RODBURN-1

B) Results for PWR-MOX fuel by RODBURN-1 calculation

Figs363 and 364 show the profiles of relative power density and burnup of MOX fuel

calculated by RODBURN-1 with burnup being a parameter

0 1 2 3 4

10

15

20

25

RODBURN-1 18 GWdt 180 508 856

Rela

tive

heat

genera

tion d

ensi

ty

Radius of UO2 pellet (mm)

0 1 2 3 4

0

50

100

150

200

RODBURN-1 18 GWdt 180 508 856

Radius of UO2 pellet (mm)

Burn

up

(G

Wd

t)

Fig361 Profiles of power density of PWR-UO2 pellet calculated by RODBURN-1

JAEA-DataCode 2013-009

- 72 -

Fig364 Profiles of burnup of PWR-MOX pellet calculated by RODBURN-1

In the case of MOX fuel power density profile in the early stage of irradiation has a

relatively appreciable depression in the central region in comparison with that of UO2 pellet

because resonance reaction by Pu is large in the peripheral region of pellet

0 1 2 3 4

10

15

20

25

Rela

tive

heat

genera

tion d

ensi

ty

Radius of MOX pellet (mm)

RODBURN-1 18 GWdt 178 492 822

0 1 2 3 4

0

50

100

150

Radius of MOX pellet (mm)

RODBURN-1 18 GWdt 178 492 822

Burn

up

(G

Wd

t)

Fig363 Profiles of power density of PWR-MOX pellet calculated by RODBURN-1

JAEA-DataCode 2013-009

- 73 -

C) Results for PWR-UO2 and MOX fuels by PLUTON calculation

Figs365 and 366 show respectively the profiles of relative power density and burnup of

UO2 fuel calculated by PLUTON with burnup being a parameter Figs367 and 368 show

respectively the profiles of relative power density and burnup of MOX fuel calculated by

PLUTON with burnup being a parameter In PLUTON burning calculation is performed with a

pellet which is divided into 36 nodes (boundary) iso-volume ring elements and the calculated

results corresponding to the node position are output The symbols in the figure indicate the

radial position of the node

By comparing the results of two codes for UO2 fuel (Figs361 and 365) it is found that

the peaking of power density profile in the outer region of pellet is larger in PLUTON in low

burnup period than in RODBURN while this relative magnitude is reversed in RODBURN in

high burnup

On the other hand by comparing the results of MOX fuel (Figs363 and 366) it is found

that the depression of power density in the outer region of pellet is particularly larger in

PLUTON in high burnup period than RODBURN

0 1 2 3 4

10

15

20

25

PLUTON 2 GWdt 20 50 85

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of UO2 pellet (mm)Fig365 Profiles of power density of PWR- UO2 pellet calculated by PLUTON

JAEA-DataCode 2013-009

- 74 -

0 1 2 3 40

50

100

150

200 PLUTON

2 GWdt 20 50 85

Burn

up (

GW

dt)

Radius of UO2 pellet (mm)

0 1 2 3 4

10

15

20

PLUTON 2 GWdt 20 50 85

Rela

tive

heat

genera

tion d

ensi

ty

Radius of MOX pellet (mm)

0 1 2 3 40

50

100

150 PLUTON

2 GWdt 20 50 85

Burn

up (

GW

dt)

Radius of MOX pellet (mm)

Fig368 Profiles of burnup of PWR-MOX pellet calculated by PLUTON

Fig366 Profiles of burnup of PWR- UO2 pellet calculated by PLUTON

Fig367 Profiles of power density of PWR-MOX pellet calculated by PLUTON

JAEA-DataCode 2013-009

- 75 -

362 BWR fuels (1) Calculation conditions

As calculation conditions of UO2 and MOX fuels of BWR fuel specs and irradiation

conditions shown in Tables 363 and 364 are assumed Similarly to the calculations of WPR

fuels by RODBURN and PLUTON size of fuel and major nuclear element composition are the

same though the coolant condition is different due to the code models However the coolant

condition has no significant difference and almost equivalent if it is specified by rod

pitch=152mm in RODBURN or by fuelwater volume ratio=0627 in PLUTON

Table 364 Conditions of sample calculation by PLUTON UO2 MOX (PuO2 66 wt) Pellet diameter 948 mm

Density 95 TD

Composition (enrichment)

235U = 4 238U = 96

235U =2 235U=98 238Pu=11 239Pu=6534 240Pu=2368 241Pu=657 242Pu=349 236Pu=00 241Am=091 243Am=00

Cladding Outer diameter=1227mm inner diameter=1055mm Burnup (GWdt) 0 about 85 GWdt Coolant condition FuelWater volume ratio = 0627

Table 363 Conditions of sample calculation by RODBURN-1 UO2 MOX (PuO2 66 wt) Pellet diameter 948 mm

Density 95 TD

Composition (enrichment)

235U = 4 238U = 96

235U =02 235U=998 239Pu=6534 240Pu=2368 241Pu=657 242Pu=349 236Pu=00 238Pu=091 243Pu=244Pu=245Pu=00

Cladding Outer diameter=1227mm inner diameter=1055mm Burnup (GWdt) 0 about 85 GWdt Coolant condition Rod pitch = 152 mm

JAEA-DataCode 2013-009

- 76 -

(2) Calculated results

A) Result of the SWAT code

First a comparison is made between the results of RODBURN-1 and SWAT(31) Fig369

shows this comparison with respect to the relative power density profile at pellet average

burnup of 61 GWdt The results by the two codes have only a slight difference which suggest

that a simplified model of RODBURN-1 can give a satisfactory prediction in comparison with a

dedicated burning analysis code

B) Results for BWR-UO2 fuel by RODBURN-1 calculation

Figs3610 and 3611 show the profiles of relative power density and burnup of UO2 fuel

calculated by RODBURN-1 with burnup being a parameter In the outer region of pellet

relative power density is elevated with burnup due to Pu generation by resonance absorption

and fission of the generated Pu by thermal neutron Burnup is also elevated in the outer region

as a time-integral of power density

0 1 2 3 4 505

10

15

20

25 SWAT RODBURN-1

Rela

tive

Powe

r

Radius (mm)

FK series peaking profile 2004 June 8 (61GWdt)

Fig369 Comparison of power density profiles between the calculations of RODBURN-1 and SWAT

JAEA-DataCode 2013-009

- 77 -

C) Results for BWR-MOX fuel by RODBURN-1 calculation

Figs3612 and 3613 show respectively the profiles of relative power density and burnup

of BWR-MOX fuel calculated by RODBURN-1 with burnup being a parameter In the case of

MOX fuel power density profile in the early stage of irradiation has a relative depression in the

central region because resonance reaction by Pu is large in the peripheral region of pellet

00 01 02 03 04 05

10

15

20

25

RODBURN-1 19 GWdt 183 515 868

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of UO2 pellet (mm)

0 1 2 3 4 5

0

50

100

150

200

RODBURN-1 19 GWdt 183 515 868

Radius of UO2 pellet (mm)

Burn

up

(GW

dt)

Fig3610 Profiles of power density of BWR-UO2 pellet calculated by RODBURN-1

Fig3611 Profiles of burnup of BWR-UO2 pellet calculated by RODBURN-1

JAEA-DataCode 2013-009

- 78 -

Fig3613 Profiles of burnup of BWR-MOX pellet calculated by RODBURN-1

D) Results for BWR-UO2 and MOX fuels by PLUTON calculation

Figs3614 and 3615 show respectively the profiles of relative power density and burnup

of UO2 fuel calculated by PLUTON with burnup being a parameter Figs3616 and 3617

show respectively the profiles of relative power density and burnup of MOX fuel calculated by

Fig3612 Profiles of power density of BWR-MOX pellet calculated by RODBURN-1

0 1 2 3 4 5

10

15

20

25

RODBURN-1 18 GWdt 180 499 831

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of MOX pellet (mm)

0 1 2 3 4 5

0

50

100

150 RODBURN-1

19 GWdt 183 515 868

Burn

up

(GW

dt)

Radius of MOX pellet (mm)

JAEA-DataCode 2013-009

- 79 -

PLUTON with burnup being a parameter In PLUTON burning calculation is performed with a

pellet which is divided into 36 nodes iso-volume ring elements and the calculated results

corresponding to the node position are output The symbols in the figure indicate the radial

position of the node

By comparing the results of UO2 fuel (Fig3610 and 3614) it is found that the peaking

of power density profile in the outer region of pellet is larger in PLUTON in low burnup period

than in RODBURN while this relative magnitude is reversed in RODBURN in high burnup

On the other hand by comparing the results of MOX fuel (Figs3612 and 3616) the

depression in the outer region of pellet is particularly larger in PLUTON in high burnup period

than RODBURN

0 1 2 3 4 5

10

15

20

PLUTON 2 GWdt 20 50 85

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of UO2 pellet (mm)

Fig3614 Profiles of power density of BWR-UO2 pellet calculated by PLUTON

JAEA-DataCode 2013-009

- 80 -

0 1 2 3 4 50

50

100

150 PLUTON 2 GWdt 20 50 85

Radius of UO2 pellet (mm)

Burn

up

(GW

dt)

0 1 2 3 4 5

10

15

20

PLUTON 2 GWdt 20 50 85

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of MOX pellet (mm)

Fig3615 Profiles of burnup of BWR-UO2 pellet calculated by PLUTON

Fig3616 Profiles of power density of BWR-MOX pellet calculated by PLUTON

JAEA-DataCode 2013-009

- 81 -

Fig3617 Profiles of burnup of BWR-MOX pellet calculated by PLUTON

37 Usage of the Halden data-base TFDB

In Halden Project TEST-FUEL-DATA-BANK (TFDB) SYSTEM(32) has been produced

since 1985 and is available for utilizing the experimental data of HBWR Therefore a utility

program TF2FEM which processes TFDB data and generates irradiation history data applicable

to FEMAXI has been developed The major functions of TF2FEM include the following

It supports extraction of several hundred steps of records (history data points) representing

irradiation history from among a few hundred thousand records of TFDB

The extracted history data can be used as input history data for FEMAX

A data file to compare calculation results of FEMAXI with experimental data is also

produced from the TFDB data file

For details refer to TF2FEM Userrsquos Manual included in the code package

References 3 (31) KSuyama TIwasaki and NHirakawa Integrated Burnup Calculation Code System

SWAT JAERI-DataCode 97-047 (1997) [in Japanese] (32) Wiesenack W and Hustadnes V TEST-FUEL-DATA-BANK SYSTEM USER MANUAL

HWR-338 (1993)

0 1 2 3 4 50

50

100

150 PLUTON

2 GWdt 20 50 85

Burn

up

(GW

dt)

Radius of MOX pellet (mm)

JAEA-DataCode 2013-009

- 82 -

4 FEMAXI-7 Input manual

41 Explanation on the relationship of IS and IST

In the heat conduction calculation (thermal analysis) to reduce calculation time

steady-state mode and transient mode are interchanged depending on power conditions This

interchange is controlled by IS and IST which are further explained in sections 42 and 47

In sections 411 and 412 below detailed explanation about this method is given prior to the

entire description of input manual

411 Function of ISTATE value The steady-state mode uses a large time step increment while the transient mode uses a

sub-divided time step This time step size is controlled by an internal variable ISTATE The

ISTATE value is determined by the name-list parameters IS and IST and its function is

summarized in Table 41

Table 41 Function of ISTATE value IS is one of the options of heat conduction calculation and IST an option of internal gas

flow calculation ISTATE Function

0 Adoption of time stepΔt for steady-state mode with null specific heat

1 Adoption of time stepΔt for steady-state mode with null specific heat However Δt is sub-divided into a shorter one by the logics in gas flow calculation than the size of Δt when ISTATE=0

2 Adoption of time stepΔt for transient-state mode with non-zero specific heat Δt is further sub-divided in comparison with those when ISTATE=0 and 1

Here the steady-state mode calculation is to obtain a solution of temperature profile after

infinite length of time of fuel rod in the radial direction at each time step by assuming specific heat = 00 Namely by assuming Cv (volumetric specific heat[Jm3]) = 0 the heat conduction

equation Eq(411)

( ) ( ) ( ) ( ) ( ) [ ] vC T r T r t k T r T r t q r tt

partpart

= nabla sdotnabla + (411)

is transformed into

( ) ( ) ( )[ ] 0k T r T r t q r tnabla sdotnabla + = (412)

Solution of Eq(412) gives the steady-state temperature profile The purpose of this

method is to reduce calculation time by obtaining advantage from the fact that during a period

JAEA-DataCode 2013-009

- 83 -

of slow-changing power the steady-state solution makes a good approximation of the

temperature profile

On the other hand in the transient state calculation this steady-state approximation

cannot hold because rod power is varying with a significant magnitude Therefore Eq(411)

with non-zero specific heat is solved to obtain the temperature profile at each time step

412 Relationship between IS IST and ISTATE

IS and IST are independently determined variables Their values cannot be changed by

other input designations In the case of IS=0 2 3 and 4 the criteria to judge which one of 0

1 2 is set for ISTATE value is as follows

(1) ISTATE=2 is set when power change rate (up or down) exceeds 1Wcms

(2) When power change rate becomes less than 1Wcms and 100s elapses during the

period with ISTATE=2 ISTATE recovers to either ISTATE=0 or =1 in accordance

with the IST value See Table 42

(3) However the transient state addressed in (1) and (2) is induced solely by power

change It does not take into consideration of another type of transient state in which

fuel rod temperature is varied by the change of coolant flow rate

(4) When IS=3 or 4 since the boundary condition of heat conduction equation is the

input-specified temperature of cladding outer surface thermal hydraulic calculation of

coolant is usually not performed (IS3P=0(default) no calculation of thermal

hydraulics of coolant)

Table 42 Set values of ISTATE

IS IST

0 1 2 3 0 1 or 2 0 or 2 0 or 2 0 or 2 2 2 2 2 2

3 4 1 or 2 0 or 2 0 or 2 0 or 2

413 Options specified by IS and IST

IS an option parameter for heat conduction calculation IS = 0 steady-state calculation is performed with 0vC = No sub-division of time step size

is done = 2 transient state calculation is performed with 0vC gt Sub-division of time step size is

JAEA-DataCode 2013-009

- 84 -

automatically done depending on the power change

= 3 condition of fixed temperature at cladding outer surface

= 4 condition of fixed temperature at cladding outer surface

Note (1) IS=3 is the same option as IS=4 In the case in which input cladding temperature is not

varied from the preceding history point of input written in input file IS=4 can be input

to omit the line No13 in input file

(2) When IS is not specified in input file IS=0 is automaticaslly set as default value

(3) When IS is either 3 or 4 procedure for the specific heat and time step size ie setting

of ISTATE value follows Table 42

IST option for internal gas flow default is IST=1 =0 model of gas diffusion in the axial direction is applied

Calculation is performed to have an instantaneous equilibrium of pressure inside rod

within each time step by assuming instantaneous movement of gas the amount of which is

proportional to the fission gas fraction in total gas amount However since the gas

compision varies in every axial segment diffusion calculation among the segments is

concurrently done to attain an uniform composition distribution with time through several

time steps

=1 model of instantaneous pressure equilibrium and complete mixture of gas

Calculation of transferred amount of gas is performed to obtain an instantaneous

complete mixture of composition and pressure equilibrium as well inside fuel rod ie in

every axial segment and plenum

=3 model of gas isolation in each segment

After the instant when either the Pellet-Clad contact pressure exceeds GPCPR (MPa)

or BD which is the bonding progress factor exceeds BDTR (input specified value) in at

least one axial segments gas transfer in the axial direction is not taken into account and

calculation of gas release and pressure is performed independently in each segment In

other words neither pressure equilibrium nor diffusion of gas species are considered

among the axial segments as if each segment were isolated with respect to internal gas

However in the segment which is adjacent to the plenum pressure calculation is

done by taking account of the space volume and gas temperature in the plenum

In the cases other than the above situations the model of instantaneous pressure

JAEA-DataCode 2013-009

- 85 -

equilibrium and complete mixture of gas (IST=1) is applied 42 Fixed format input (1)

Line No SYMBOL (FORMAT)

1 MTITL(I) I=1 20 (20A4) Free title Free title can be input in 2th to 80th columns

2

yenINPUT Calculation conditions are designated by Name-list parameters

(2~80 columns) in between ldquoyenINPUTrdquo and ldquoENDrdquo yenEND

3

NAX IFEM (2I10) Fuel rod specifications NAX = number of axial segments (1leNAXle40) IFEM = the objective segment number (1 le IFEM1 le NAX) I=1bottom of rod I=NAX top

4 MRASA CDIN CDOUT (I10 2F100) Cladding specifications

MRASA = 0 helliphellip RA material = 1 helliphellip SR material CDIN = cladding inner diameter (cm) CDOUT = cladding outer diameter (cm)

5

The number of NAX required (I = 1 NAX) IDISH(I) ICHAM(I) PDIN(I) PDIA(I) PLENG(I) ENR(I) FDENI(I) DZ(I) (2I10 6F100)

Pellet specifications

Number of ring elements of pellet is selected by MESH

IDISH(I) = 0 helliphellip pellet without dish = 1 helliphellip pellet with dish on only one end face = 2 helliphellip pellet with one dish each end face ICHAM(I) = 0 helliphellip pellet without chamfer = 1 helliphellip pellet with chamfer PDIN (I) = pellet center hole diameter (cm) PDIA (I) = pellet diameter (cm) PLENG(I) = length of one pellet (cm) ENR (I) = U-235 enrichment (minus) FDENI(I) = pellet theoretical density ratio (minus)

DZ (I) = axial segment length of pellet stack part (cm)

6

Input only when IDISH = 1 or 2 DISH DEPTH DISHB (3F100) Dish specifications

DISH = dish diameter (cm) DEPTH = dish depth (cm) DISHB = dish bottom diameter (cm)

7 Input only when ICHAM = 1

CHAMR CHAMZ (2F100) Chamfer specifications

CHAMR = chamfer width (cm) CHAMZ = chamfer depth (cm)

8

PLENUM(2) GPIN (GMIXO(I) I=14) PWEIT PLENUM(1) (8F100) Plenum specifications

PLENUM(2) = upper plenum volume (cm3) GPIN= initial gas pressure (MPa) GMIXO(I) = initial gas composition (minus) i = 1hellipHe i = 2hellipN2 i = 3hellipKr i = 4hellipXe PWEIT = pellet total weight (g)

When the input value is 80 - 100TD of that calculated in the code burnup is calculated using the input value If the input value exceeds this range Error Stop occurs When it is blank the value is automatically calculated

PLENUM(1) = lower plenum volume (cm3)

JAEA-DataCode 2013-009

- 86 -

Fixed format input (2)

Line No SYMBOL (FORMAT)

9 NHIST (I10) Number of history

point Input NHIST (1ltNHIST le 1500) NHIST sets consisting of Lines 101112 and 13 are input

10

A1 B1 A2 A5 A3 A4 IT IP IS A6 (6F1003I5F50) History point data

A1 = time (IDAY=0hour =1day)

B1 = burnup (MWdtUO2 (IBUNP=0) MWdtU (IBUNP =1) GJkgU (IBUNP =2) GWd tUO2 (IBUNP=3)

Here either A1 (time) or B1 (burnup) should be designated If both are designated B1 is neglected

A2 = linear heat rate (Wcm)

A5 = fast neutron flux (ncm2-s) If no data or 0 are input the flux follows IFSINP A3 = coolant temperature (K) A4 = coolant pressure (MPa)

IT = 0 time (or burnup) represents the increment from the time step set at

IT=minus100 (when IT= -100 is not set it represents the time (or burnup)

elapsed from the initial time) = -100 time increment from the previous time step (or burnup increment) = 100 cancellation of the IT= -100 setting (time or burnup represents the

time (or burnup) that elapsed from the initial time)

IP = 0 history point without summary output = 1 history point with summary output IS = 0 steady-state calculation

= 2 transient state calculation = 3 condition of fixed temperature at cladding outer surface = 4 the same as IS=3 but input file format can be varied slightly

A6 = coolant velocity (ms) (ICLMAS=0) = coolant mass flow rate (kgcm2s) (ICLMAS=1)

Note If the initial values for A3 A4 and A6 are inputted they need not be inputted thereafter

JAEA-DataCode 2013-009

- 87 -

Fixed format input (3) Line No SYMBOL (FORMAT)

11

(RH(I) I=1 NAX) II ((8F80) 8F80 I6) Relative power profile in the axial direction

RH(I) = relative power of axial segment j (minus) (number of data NAX) II = number of history points at which similar relative power is input When II is designated as 2 or higher Line 11 is omitted for the input of later time step

II-1

When more than 2 values of II are inputted card 11 is omitted for the input of time step

II-1 thereafter In addition when II= 1 the output to II can be omitted

(II can be assigned starting from the right-hand side of each column between the 65th

column to the 70th column of the last card)

12

(RFAI(I) I=1 NAX) II ((8F80) 8F80 I6) Relative fast neutron flux in the axial direction

Input this line only when IRFAI=1 in Name-list Input is designated RFAI(I)=relative fast neutron flux at the axial segment I (-)

(NAX data values) NAX8 cards (rounded up) are required

II = the number of historical points for inputting identical fast- neutron fluxes

Here when more than two values are assigned to II thereafter line 12 is omitted

for the input of time steps of II-1 Furthermore when II=1 the input to II can be

omitted (II is assigned starting from the right-hand side of each column between the

65th column to the 70th column of the last line)

13

(CSTMP(I) I=1 NAX) (8F80) Cladding outer surface temperature

Input only when IS=3 in Line 10 CSTMP(I)=cladding outer surface temperature (K) at the axial segment I

(NAX data values) NAX8 cards (rounded up) are required Refer to ICTP and ICSTMP

14

BU (RRH(I) I=1 NP) ( F100 10F60 (10X 10F60) ) Relative power density profile in the radial direction

Input only when IFLXgt0 BU = burnup (unit is similar to that in Line 10)

BU = burnup (MWdtUO2 (IBUNP=0) MWdtU (IBUNP =1) GJkgU (IBUNP =2) GWd tUO2 (IBUNP=3) ) RRH(I) = power density profile of concentric ring element I

(arbitrary unit normalized by FEMAXI ) or =[power density in element I][pellet average power density] The input line number is designated by IFLX in NAMELIST When IFLXM=0 NP=10 number of iso-thickness ring elements

When IFLXM=1 NP=number of ring elements of pellet stack specified by MESH

15 IEND (A4) Input end line Input ldquoSTOPrdquo

JAEA-DataCode 2013-009

- 88 -

43 Name-list Input (1) Variable name Contents Default

value

Input options IBUNP Designation of unit of burnup (=0MWdtUO2 =1MWdt-U

=2GJkg-U =3GWdtUO2) 0

IDAY Unit of time for input history points (=0hr=1day) 0

ISEC(2 5)

During the period ISEC(1I) - ISEC(2I) time unit is changed to be second ISEC(1I) is the number of history point at which the change starts and ISEC(2I) is the number of history point at which the change ends The maximum number of the periods is five

100

IFLX

Number of power history points to designate the radial power profile If the numerical data are not given IFLX should be one of 0 -1 o -2 which corresponds to the following options = 0 Robertson model -1PLUTON results -2 RODBURN results

ge 1 number of burnup points at which the radial profile data are specified

When IFLX= -1 or -2 corresponding results files should exist in the WrkRBOUT Here when IFLX= -1 (fed from PLUTON file) the output file ldquoft51drdquo of PLUTON should be prepared in advance

0

IFLXM Option to specify the number of ring elements when IFLXgt0 =0 iso-thickness 10 ring elements =1 number of ring elements designated by MESH

1

FACHE When IFLXlt0 amount of He gas given by RODBURN calculation is multiplied by FACHE 10

ICLMAS Coolant unit option =0 flow rate is input in velocity (ms) =1 flow rate is input in mass flow rate (kgcm2s)

0

INPRD

Options for the fetching method of RODBURN results to FEMAXI-7 (Treatment of fast-neutron flux is designated by IFSNT)

INPRD=0 By interpolating the results of RODBURN (the radial and axial

profiles of power fast-neutron flux and He generation) with respect to space and burnup the data are arranged to correspond to the segments in the axial direction of FEMAXI-7

INPRD=1 An identical number of segments in the axial direction is

assumed for FEMAXI-7 and RODBURN The results from RODBURN (the radial and axial profiles of power fast-neutron flux and He generation) are used as data for the corresponding axial segments No spatial interpolation is performed Interpolation of burnup is performed

INPRD=2 The number of segments in the axial direction can be different

for FEMAXI-7 and RODBURN (interpolation processing is performed) With respect to the profiles of power and He generation in the radial direction the result of RODBURN is retrieved For the power profile in the axial direction the input to FEMAXI-7 is used

1

FAIW The fast-neutron flux for a linear power of 1Wcm ((ncm2-sec)(Wcm)) (Fast neutron flux data can be omitted if power history data is input)

5times1011

JAEA-DataCode 2013-009

- 89 -

Name-list Input (2)

Variable name Contents Default value

IPFLX When treating fast-neutron flux as such that is given by input and has a flat profile in the axial direction IPFLX=0 1

IFSNT

Option of fast neutron flux IFSNT=1 FAIW is used the default value of which is 5x1011(ncm2-s) IFSNT=2 Input value is usedWhen the input data is not given LHRtimes

FAIW is adopted IFSNT=3 the value given by RODBURN calculation is used IFSNT=4 a modified value which is given by RODBURN calculation

and is multiplied by FROD is used The default value of FROD is 001

2

FROD When IFSNT=4 fast neutron flux given by RODBURN calculation is multiplied by FROD 001

IRXE When IRXE=1 generated amount of Xe+Kr obtained by RODBURN-1 is used in FEMAXI-7 0

IROD

When IRODgt0 an input file ldquorodinrdquo for RODBURN is generated in the

Wrk directory and FEMAXI-7 calculation is not executed

IROD=1PWR =2BWR =3HaldenBWR =4PWR(MOX)

=5 BWR(MOX)

0

TMCHG Input time for calculation is multiplied by (10+TMCHG) 00 PWCHG Input linear power for calculation is multiplied by (10+TMCHG) 00

SELHST

At line 10 of input list when one of the three quantities A1(time) A2(linear power) and B1(burnup) is to be modified SELHIST is specified SELHIST =0 no modification =1 time is modified

=2linear power is modified =3 burnup is modified

0

STTHST Specifies either the starting time (when SELHIST=1) or burnup (when SELHIST=3) to be modified When SELHIST=2 it is designated either by A1 or B1 in the line No10

00

ENDHST Specifies either the end time (when SELHIST=1) or burnup (when SELHIST=3) to be modified When SELHIST=2 it is designated either by A1 or B1 in the line No10

00

FACHST

Magnification factor for time (when SELHIST=1) linear power (when SELHIST=2) and burnup (when SELHIST=3) In the case that SELHIST=1 and 3 all the input data of times and burnups after ENDHIST are gained by ENDHIST times (FACHST-1)

10

NDIV(1500) Assuming NDIV(I)=N is the input the time-step interval I from historical number I-1 is equally divided by N 15000

ICTP

When CSTMP assigned by line 13 is the cladding surface temperature ICTP=0 is assigned and when CSTEMP is the temperature at the interface of the metallic layer and outer surface oxide film ICTP= 1 is assigned

However even if the oxidation of cladding is not taken into consideration (ICORRO=0) but ICTP=1 a thin oxide film thickness (01microm) is assumed

1

ICSTMP When using degC as the unit for CSTMP which is assigned by the 12-th input line ICSTMP=1 is assigned When the unit is K ICSTMP=0 is assigned 0

JAEA-DataCode 2013-009

- 90 -

Name-list Input (3)

Variable name Contents Default value

IRLHR When IRLHR=0 the axial power profile input in FEMAXI-7 is used When IRLHR=1 the axial power profile obtained by RODBURN is used Effective only when NPRD= either 0 or 1

0

IRFAI

IRFAI is used to assigne the axial segment-wise fast-neutron flux distribution by input

When IRFAI=0 the relative distribution of fast-neutron flux is assumed the same as the relative distribution of linear power

When IRFAI=1 the relative distribution is assigned by the 12-th line of input The relative distribution should be specified by the line 12

When IRFAI= -1 the relative distribution obtained from RODBURN-1 is used

0

ITPLEN When ITPLEN = 1 is assigned the upper- and lower-plenum region temperatures are given by the [ coolant inlet temperature+DTPL] 0

FPLFAC(2) The ratio of fast-neutron fluxes in the upper and lower plenums to those in the adjacent segments of fuel stack (FPLFAC(1) upper-plenum region FPLFAC (2) lower-plenum region)

0505

IFSINP

Interpolation option of fast neutron fluxes at input history points =0 the fast flux at omitted input history points is the same as that at the

previous history point at which flux data is input =1 linear interpolation in terms of burnup is performed for omitted input

points =2 the fast flux dta ashould be input at all the history points They cannot

be omitted

2

ICTINP

Interpolation option of coolant inlet temperature at input history points =0 the temperature at omitted input history points is the same as that at

the previous history point at which temperature data is input =1 linear interpolation in terms of burnup is performed for omitted input

points

1

ICPINP

Interpolation option of coolant pressure at input history points =0 the pressure at omitted input history points is the same as that at the

previous history point at which temperature data is input =1 linear interpolation in terms of burnup is performed for omitted input

points

1

ICVINP

Interpolation option of coolant mass flow rate at input history points =0 the mass flow rate at omitted input history points is the same as that at

the previous history point at which temperature data is input =1 linear interpolation in terms of burnup is performed for omitted input

points

1

IRH

Interpolation option of axial power profile at input history points =0 the profile at omitted input history points is the same as that at the

previous history point at which temperature data is input =1 linear interpolation in terms of burnup is performed for omitted input

points

0

IBUOP

Option of time vsburnup at input history points IBUOP= -1 time is calculated with the input sets of burnup and linear power IBUOP=0 time is calculated with the input sets of burnup and average linear power IBUOP= n time is calculated with the input sets of burnup and linear power at n-th axial segment

-1

JAEA-DataCode 2013-009

- 91 -

Name-list Input (4) Variable name Contents Defauly

value

Calculation options

IFEMOP

= -1 only thermal analysis is executed (non-coupled calculation of thermal analysis and mechanical analysis)

= 0 coupled calculation of thermal analysis and mechanical analysis

IFEMRD designates the option of mechanical analysis

= 2 coupled calculation of thermal analysis and mechanical analysis IFEMRD designates the option of mechanical analysis

2

IFEMRD =0 2-D local mechanical analysis (Mechanical analysis II) =1 Entire rod length (ERL) mechanical analysis (Mechanical analysis I) 1

ZR

Thickness of Zr liner inside the cladding (cm) If cladding has no liner ZR=00 Restart calculation automatically takes over the value specified in

[Base-calculation]

00

IREST

In FEMAXI-7 calculation (1) =0 Analysis only by FEMAXI-7 =1 only 1-D calculation for FURBEL =2 generating Restart file (ft11) fro RANNS In this case the cladding has the same ring elements division as that of

RANNS

0 In FEMAXI-7 calculation (2) =4 generating Restart file (ft11) for FEMAXI and RANNS

allowing the designation of segments for refabricated short rod In FEMAXI-7 Re-start calculation (3) =5 reading the restart file (ft11) of FEMAXI-7 by FEMAXI-7 to

perform the calculation of test-irradiation for the axial segments designated by TRSGT However the objective segment for 2-D mechanical analysis in the base-irradiation calculation should be the same as the axial segment designated by TRSGT

JAEA-DataCode 2013-009

- 92 -

Name-list Input (5)

Variable name Contents Default value

TRSGT(2)

This is designated in the case where IREST=5 in FEMAXI If this condition is not met error message is issued and calculation will not start Ex suppose a rod has 10 axial segments in base-irradiation calculation and re-start calculation is performed for 4- 5- and 6-th segments ldquoTRSGT=4 6rdquo If only 5-th segment is dealt with ldquoTRSGT=5rdquo When IFEMRD=0 the objective segment (IFEM) in the base-irradiation calculation has to be cincluded in the designation by TRSGT For example in the case where IFEM=5 in base-irradiation and TRSGT=46 IFEM in restart calculation has to be IFEM=2 Otherwise error message is issued and no calculation will start

0 0

IRTIME

When IRTIME=0 in the input file of Re-start calculation time (or burnup) has to be input as a sequential value from the beginning of base-irradiation

However if time is input burnup at EOL of base-irradiation calculation is taken over to be an initial burnup of Re-start calculation

When IRTIME=1 time at the start of Restart calculation has to be 0 and

with this initial time=0 the Re-start irradiation history has to be given in input file However in Re-start calculation burnup at EOL of base-irradiation calculation is taken over and added to the initial burnup of Re-start input file

1

NAXSG

Option to select the method of axial force calculation in ERL mechanical analysis

NAXSG=0 in each axial segment axial force is transmitted to its lower adjacent segment Reaction force to the axial force at the segment-segment interface is not taken into consideration

NAXSG=2 each segment displaces independently In each segment axial

force is determined by PCMI within the segment irrespective of the PCMI conditions in the other segments

0

JAEA-DataCode 2013-009

- 93 -

Name-list Input (6)

Variable name Contents Default value

MESH

Number of ring elements of pellet stack 1-D thermal 1-D mechanical 2-Dlocal mechanical

MESH=0 iso-thickness10 iso-thickness 10 iso-thickness 5 MESH=1 iso-volume 36 iso-volume 18 iso-volume 9 MESH=2 iso-volume 72 iso-volume 18 iso-volume 9 MESH=3 iso-volume 36 iso-volume 36 iso-volume 18 MESH=4 iso-volume 72 iso-volume 36 iso-volume 18

However when HBS option (high burnup structure model) is designated MESHgt0 has to be set

When ISHAPE=1 is selected the above number of ring elements is doubled ( In RANNS when IRESTgt0 ldquoMESHrdquo value is automatically taken over from FEMAXI-7 ) Here number of cladding ring elements is irrespective of

ldquoMESHrdquo designation as follows For 1-D thermal and mechanical models 1) Cladding which has no Zr-liner

8 metallic elements + 2 outer oxide layers 2) Cladding with Zr-liner

2 liner elements + 8 metallic elements + 2 outer oxide layers For 2-D local mechanical model 3) Cladding which has no Zr-liner

4 metallic elements + 1 outer oxide layers 4) Cladding with Zr-liner

1 liner elements + 4 metallic elements + 1 outer oxide layers However when ISHAPE=1 the above number of elements is doubled Restart calculation automatically takes over the value specified in [Base-calculation]

3

ARC(4) When IFEMRD=0 ie in 2-D local mechanical analysis the ratio of four element widths in the radial direction can be given by ARC 410

AXBND When IFEMRD=0 ie in 2-D local mechanical analysis AXBEND=1 gives a boundary condition which allows the free displacement of each node in pellet upper end plane in the axial direction

0

INPCK Input data check option (=0 normal calculation =1 input check only) 0

ICHI

Elasticity calculation option when IFEMRD=0 = 0 normal calculation = 1 elasticity calculation only Neither creep nor plasticity is taken into

consideration

0

K1

Number of elements in the axial direction per half a pellet length in the local mechanical analysis (K1 le 5) When ISHAPE=1 this number is doubled ie K1times2 Restart calculation automatically takes over the value specified in [Base-calculation]

3

JAEA-DataCode 2013-009

- 94 -

Name-list Input (7)

Variable name Contents Default value

AZ1(5)

When IFEMRD=0 the ratio of element sizes in the axial direction can be given by AZ1 for the K1 elements per half a pellet length When ISHAPE=1 AZ1 is applied to each 2-element set That is AZ1(I) is applied to (2I-1)th and (2I )th elements Restart calculation automatically takes over the value specified in [Base-calculation]

510

IRM Option for the cladding material (=0 Zircaloy =1 Stainless) 0

ILOCK When IFEMRD=0 axial force treatment option ILOCK=0 locking model =2 no axial force is taken into account 0

IFIX When IFEMRD=0 if contact between pellet and cladding is always assumed as ldquobonding staterdquo designate IFIX=1 0

TLIM Truncation control of CPU time (When the execution time reaches TLIM (s) calculation is terminated by the code itself) 200000

IZERO

Option to calculate and output the quantities such as internal pressure inner space volume cladding size etc at zero-power state in the calculation along the input history data

=0 No calculation at zero-power =1 zero-power calculation is performed with zero-power state temperature

being assumed as TROOM =2 zero-power calculation is performed with zero-power state temperature

being assumed as that at start-up =3 zero-power calculation is performed with zero-power state temperature

being assumed as that of the coolant temperature at that time =4 zero-power calculation is performed with input designated temperature

TZERO

0

TZERO Zero-power state temperature used when IZERO=4 (K) 29115

IELAST

Option of elastic calculation in ERL mechanical analysis =0 regular analysis =1 plasticity and creep of the pellet and cladding are ignored =2 plasticity and creep of the pellet are ignored =3 plasticity and creep of the cladding are ignored

0

IS3P

Option to control the thermal-hydraulics calculation when using the input-specified condition for cladding surface temperature IS3P=0 no thermal-hydraulics calculation is performed

IS3P=1 thermal-hydraulics calculation is performed IS3P=2 when IHF=1 in order that calculation can be continued even if Na-coolant temperature becomes lower than 200oC at a certain history point mode change has to be done into IS=3 or =4 in which cladding surface temperature can be specified by input At the same time thermal calculation of Na-coolant is stopped at this history point

However even when IS3P=0 to perform mechanical calculation of creep down of cladding induced by external coolant pressure the coolant pressure values are maintained at the input values

0

ILNR When IFENRD=0 for stress calculation ILNR=1 Newton-Raphson method is applied ILNR=0 Newton-Raphson method is not applied

0

SIGNR When IFEMRD=0 SIGNR is a permissible error (MPa) for the stress calculated by Newton-Raphson method 01

JAEA-DataCode 2013-009

- 95 -

Name-list Input (8)

Variable name Contents Default value

Options for mechanical properties of cladding oxide and liner and options for hollow pellet

MATXO

=0 mechanical properties of ZrO2 are applied to those of the cladding outer oxide layer

=1 mechanical properties of cladding outer oxide kayer are replaced with those of Zircaloy by designating the values in FACXO

0

FACXO(5)

Option to multiply the mechanical properties values of cladding outer oxide layer by FACXO Effective when MATXO=1 (FACXO(1) Youngrsquos modulus FACXO(2) Poissonrsquos ratio FACXO(3) thermal expansion rate FACXO(4) creep rate FACXO(5) yield stress)

510

MATLNR

(Effective when ZRgt0) Option for mechanical propereties of Zr liner of cladding =0 mechanical properties of pure Zr are applied to the Zr liner =1 mechanical properties of liner are replaced with those of Zircaloy by

designating FACLNR

0

FACLNR(5)

(Effective when ZRgt0 and MATLNR=1) Option to multiply the mechanical properties values of cladding liner by FACLNR (FACLNR(1) Youngrsquos modulus FACLNR(2) Poissonrsquos ratio FACLNR(3) thermal expansion rate FACLNR(4) creep rate FACLNR(5)yield stress)

510

PDPRF

When both solid pellets and hollow pellets exist in one fuel rod power density profile in the radial direction of pellet is adjusted by taking account of the centerhole void

When PDPRF=0 the hollow pellet segment uses the profile in which the center part is eliminated from the solid pellet relative profile (average=10) Numerical output or plotted figure show the LHR which is calculated by this profile so that the LHR value is to a small extent lower due to the null power in the centerhole region

When PDPRF=1 the hollow pellet segment uses the power profile which is obtained by multiplying the profile of ldquoPDPRF=0rdquo with factor f(gt10) to hold the LHR unchanged as if the segment pellet were solid even in the presence of centerhole This factor is constant in the radial direction

0

MXHIST Maximun number of input history points 1500 LD Size of DIMENSION of real number array 4000000

LID Size of DIMENSIONof integer array 500000 【Note 1】The message ldquoDIMENSION AREA OVER FLOW LTSM =xxxxx LD =4000000rdquo is output and the program execution is terminated when LTSMgtLD To avoid this it is necessary to designate LD by name-list input to make LDgtLTSM At the same time ldquo4000000rdquo in the statement ldquoDIMENSION

ID(500000) D(4000000)rdquo in ldquomainforrdquo has to be changed into the value which is specified by LD and compilation of the source program has to be performed again 【Note 2】The message ldquoDIMENSION AREA OVER FLOW LASI=xxxxx LID =500000rdquo is output and the program execution is terminated when LASIgtLID To avoid this it is necessary to designate LID by name-list input to make LIDgtLASI At the same time ldquo5000000rdquo in the statement ldquoDIMENSION

ID(500000) D(4000000)rdquo in ldquomainforrdquo has to be changed into the value which is specified by LID and compilation of the source program has to be performed again

JAEA-DataCode 2013-009

- 96 -

Name-list Input (9) Variable name Contents Default

value

ITBFIX Option to make fuel temperature equal to coolant temperature at 0 power state Effective when ITBFIX=1 1

ISHAPE

Option for type of finite element in 2-D local mechanical analysis ISHAPE=1 Rectangular four-node element with linear shape function ISHAPE=2 Rectangular eight-node element with quadratic shape function Restart calculation automatically takes over the value specified in

[Base-calculation]

2

CHKVAL(10)

Upper limit of checking abnormal values CHKVAL(1) cladding equivalent stress (MPa) CHKVAL(2) pellet center temperature (oC) CHKVAL(3)cladding temperature (oC)

10000 30000 30000

70

ICHK(10) Option to continue calculation even if abnormal value is detected ICHK=0 calculation is continued ICHK ne 0 calculation is stopped

101

ICKOPT

Option to specify the time-step interval using check function argument for checking abnormal values =0 checking calculation only at the input history points

=1 checking calculation at all the time-steps = -n (when n 1 or n 10ne ne ) checking calculation at every n steps = -1 checking calculation at the time-steps exceeding DT_OUT except

the input history points DT_OUT is an option for putput = -10 checking calculation at all the time-steps from PLTIME(1) to

PLTIME(2) However input history points are always included in checking points PLTIME is an option for output

0

DDSIGE Maximum allowable change of equivalent stress in the iteration calculation of ERL (IFEMRD=1) mechanical analysis (MPa) 10

DDSIGE2 Maximum allowable change of equivalent stress in the iteration calculation of 2-D (IFEMRD=0) mechanical analysis (MPa) 100

DLSIGE Allowable error of the maximum change of equivalent stress in the iteration calculation of ERL (IFEMRD=1) mechanical analysis (MPa) 1000

DLSIGE2 Allowable error of the maximum change of equivalent stress in the iteration calculation of 2-D (IFEMRD=0) mechanical analysis (MPa) 2000

ISIGE

Option to continue calculation even if allowable error of the maximum change of equivalent stress is detected in the iteration calculation of ERL (IFEMRD=1) mechanical analysis ISIGE= -1 calculation continues without output of iteration process ISIGE= 0 calculation continues with a simplified output ISIGE= 2 calculation continues with detailed output ISIGE=1 calculation stops with detailed output

1

ISIGE2

Option to continue calculation even if allowable error of the maximum change of equivalent stress is detected in the iteration calculation of 2-D (IFEMRD=0) mechanical analysis ISIGE2= -1 calculation continues without output of iteration process ISIGE2= 0 calculation continues with a simplified output ISIGE2= 2 calculation continues with detailed output ISIGE2=1 calculation stops with detailed output

1

AJUDG1 Temperature error limit in the convergence calculation of temperature dependence of thermal conductivity (oC) 01

ICONVX Maximum number of times of the convergence calculation of temperature dependence of thermal conductivity 20

JAEA-DataCode 2013-009

- 97 -

Name-list Input (10) Variable name Contents Default

value

Calculation conditions

AJUDG2 Temperature error limit in the convergence calculation of gap thermal conductance (oC) 10

ICONV2 Maximum number of times of the convergence calculation of gap thermal conductance 100

AY Tilting of the pellet upper surface in the case of dished pellet AY=0 (cm) Effective only when IFEMRD=0 In a dished pellet AY=00 0002

TROOM Room temperature or fuel rod initial temperature (K) 29115

ITIME(20) An option for changing plenum gas pressure and gas composition A historical point number for changing is inputted to ITIME(I) (up to a

maximum of 20 ) 200

GASPRN(20) The plenum gas pressure (MPa) at a historical point number ITIME(I) is assigned by GASPRN(I) 2000

PLENM(20) The plenum volume (cm3) at a historical point number ITIME(I) is

assigned by PLENM(I) (Note this is not the volume of the fuel free space but the volume at the plenum part)

2000

GMIXN(4 20) Gas composition at history point number ITIME (minus) Molar ratios of gas

compositions at ITIME(I) are specified by GMIXN(1 I) to GMIXN(4 I) where 1 =He 2 = N2 3 =Kr 4 =Xe

8000

DEN(20) Equivalent diameter (cm) of coolant flow area at history point ITIME(I) is designated by DEN(I) At least more than one of DEN FAREAN and PITCHN have to be designated

2000

FAREAN(20) Cross sectional area of coolant channel (cm2) at ITIME(I) is designated by FAREAN(I) At least more than one of DEN FAREAN and PITCHN have to be designated

2000

PITCHN(20) Rod-to-rod pitch (cm) at ITIME(I) is designated by PITCHN(I) At least more than one of DEN FAREAN and PITCHN have to be designated 2000

GAPLK Minimum gap width at which axial force by PCMI is generated (microm) 30 XKSU Upper plenum spring constant (Nm) 15000 ALSU Upper plenum spring thermal expansion coefficient (1K) 15times10-5 XKSL Lower plenum spring constant (Nm) 25000 ALSL Lower plenum spring thermal expansion coefficient (1K) 15times10-5 AMU Friction coefficient between pellet and cladding (IFEMRD=0) 04 AMU2 Friction coefficient between pellet and cladding (IFEMRD=1) 04 DE Equivalent diameter of coolant channel (cm) 00 FAREA Cross sectional area of coolant channel (cm2) 00 PITCH Pitch between fuel rods (cm) (CDOUT cladding outer diameter (cm)) CDOUTtimes13

NRCZR Number of radial elements the metal wall of cladding in the entire rod length mechanical analysis 8

NRCOX Number of radial elements in the outer oxide layer of cladding in the entire rod length mechanical analysis 2

DTPL Temperature difference between gas inside the plenum and surrounding coolant (K) Plenum temperature = Coolant temperature + DTPL (K) 250

LBU

When LBU=1 is set calculation uses the local burnup in the radial direction of pellet and when LBU=1 calculation uses the average burnup

Restart calculation automatically takes over the value specified in [Base-calculation]

1

JAEA-DataCode 2013-009

- 98 -

Name-list Input (11) Variable name Contents Default

value

XLSZU

The axial length of the upper plenum part used in the entire length mechanical analysis (cm) When XLSZU is not assigned (XLSZU=00) it is given by the value obtained by dividing the upper-plenum volume PLENUM (2) which is

assigned by line 8 by 2cirπ ( cir = inner radius of cladding)

00

XLSZL

The axial length of the upper plenum part used in the entire length mechanical analysis (cm) When XLSZL is not assigned (XLSZL=00) it is given by the value obtained by dividing the upper-plenum volume PLENUM(1) which is assigned by line 8 by 2

cirπ ( cir = inner radius of cladding) When PLENUM (1)=00 no lower plenum is assumed to

exist even if XLSZL is designated

00

IRELCV

Option to take into account of the space volume (spaces of crack dish and chamfer) change inside pellet during irradiation IRELCV=0 not taken into account IRELCV=1 taken into account The code calculates the relocation strain relε in the radial circumferential

and axial directions This strain relε changes by the internal compressive stress inside pellet induced by power change

0

IQREAT Option for the reaction heat generated by oxidation of cladding IQREAT=0 not taken into account IQREAT =1taken into account 0

GAMHT When GAMHT=1 γ-heating is added to the thermal calculation of cladding 0

GAMHG γ-heating rate of cladding (Jg) effective when GAMHT=1 10

GAMRC Proportion factor of γ-heating rate of cladding to the metal density and pulse power effective when GAMHT=1 10

IHF When IHF=1 coolant is assumed to be Na 0

NUOP

Option for Nu number to be used in the equation of thermal conductance from claddint to Na coolant

When NUOP=1 80Pr)(Re030036 +=Nu

When NUOP=2 0870 0025PeNu = + Here Pe max(Re Pr 200)=

1

SUBCL When SUBCL=1 if the input-specified inlet coolant temperature exceeds the saturation temperature coolant density at the inlet is made equal to the density of liquid phase coolant at saturation temperature

1

JAEA-DataCode 2013-009

- 99 -

Name-list Input (12) Variable name Contents Default

value

Time step control DPXX Power increment width per unit time step (Wcm) 100 DPBU Burnup increment width per unit time step (MWdtUO2) 1000

IPH IPH=0 when the control of DPXX and DPBU is set to be the objective segment (IFEM) and IPH=1 when it is set to be the peak power segment 1

EFCOEF

Time step width determination factor due to creep

∆tE c

=sdot

sdotσ

εEFCOEF

where σ is equivalent stress E is Youngrsquos modulus and ε c is equivalent creep strain rate

01

MAXTM

Maximun number of time-step controls in one time-step in the ERL mechanical analysis This controls follow P-C contact state changes between contact and non-contact state and changes between plastic and elastic state changes

42

LCMAX Maximum number of judgments of clogged or sliding state of the contact between pellet and cladding when IFEMRD=1 10

LMAX Number of iterations in the Newton-Raphson method for deformation Calculationwhen IFEMRD=1 (LMAX le 100) 20

ITEND

Number of repetitions of Newton-Raohson method in the deformation calculation of 2-D local mechanical analysis ( IFENRD=0) where the first calculation is not included in the repetition so that ldquoITEND=Nrdquo means (N+1) times repetitions

1

ITIMY

Time step control option for elasticityplasticity judgment when IFEMRD=0 and 1

= -1 without time step control = 0 time step control is performed only upon the removal of load = 1 with time step control)

-1

JAEA-DataCode 2013-009

- 100 -

Name-list Input (13) Variable name Contents Default

value Options for pellet thermal conductivity

IPTHCN

Options for fuel pellet thermao conductivity models =1 MATPRO-09 =2 Washington =3 Hirai =4 Halden =5 Modified Hirai =6 Forsberg =7 Kjaer-Pedersen =8 BaronampCouty =9 OhiraampItagaki =10 Lucta MatzkeampHastings =11 Tverberg Amano Wiesenack (Gd-containing fuel) =12 Sontheimer Landskron Billaux (Gd-containing fuel) =13Fukushima (Gd-containing fuel) =14HiraiIshimoto (Gd-containing fuel) =15Daniel Baron (UO2 Gd-containing fuel ) =16 KitajimaampKinoshita =17 Wiesenack(Halden_New) =18 PNNL modified Halden model =90 Ohira amp Itgaki original =91 Ohira amp Itgaki latest model for UO2 and MOX =92 Modified ldquoOhira amp Itagaki modelrdquo in FRAPCON 33 =30Martin(MOX) =31MATPRO-11(MOX) =32Martin+Philipponneau(MOX) =33Duriez et al(MOX) =34Philipponneau(MOX) =35 Halden (new MOX) =36Daniel Baron (MOX Gd-containing fuel) =37 PNNL-modified Halden model in FRAPCON-2-3 =38 PNNL model in FRAPCON-3 based on the Duriez model

17

IZOX Option for thermal conductivity of cladding oxide layer model =1MATPRO-A(Zircaloy) =2MATPRO-11(Zircaloy) =41SUS304

2

ITMC Option for cladding thermal conductivity model =1MATPRO-09 (Zircaloy) =40SUS316 =41SUS304

1

Options for MOX fuel and parameters for pellet thermal conductivity

PU(40)

PuO2 weight fraction at each axial segment (-) It is assumed that segments of PU(I)gt0 have MOX fuel and segments of PU(I)=0 have UO2 fuel

Totally NAX number of PU(I) are designated

( )2

2 2

PuOPu= weight ratioUO +PuO

Restart calculation automatically takes over the value specified in [Base-calculation]

4000

PUFIS(40)

Fissile Pu concentration at each axial segment (-) PUFIS is weight fraction of fissile Pu to total weight of Pu Totally NAX

number of PUFIS(I) are designated Restart calculation automatically takes over the value specified in

[Base-calculation]

4000

JAEA-DataCode 2013-009

- 101 -

Name-list Input (14) Variable name Contents Default

value Y Value of y in MO2-y used when IPTHCN=15 and 36 00 LT Lattice spacing parameter used when IPTHCN=15 and 36 (Aring) 54702

GD Gd2O3 concentration (weight fraction) Restart calculation automatically takes over the value specified in

[Base-calculation] 00

FPTH Magnification factor for pellet thermal conductivity 10

CBU Burnup(MWdkg-UO2)-dependent parameter used when IPTHCN=11

00046 (UO2 fuel) 00056 (Gd-containing fuel)

CGD Gadolinia conc(wt)-dependent parameter used when IPTHCN=11 00066

SLB(6)

SLB(1)=a SLB(2)=b SLB(3)=Dbu SLB(4)=Dgd SLB(5)=Cbu SLB(6)=Cgd

Used when IPTHCN=12 See pellet thermal conductivity model described

in Chapter 4

00235 255times10-4

00949 042

10times10-4

956times10-4

M1

As one of the thermal conductivity models of MOX fuel the model of

IPTHCN=35 multiplies a factor KMOX on the thermal conductivity of UO2

fuel KMOX is assumed by the equation

1 12

(1 ) 1 exp BuM MBu

= minus minus minus +

KMOX and M1 is the value of M1

092

BUMOX KMOX is assumed by the equation

1 12

(1 ) 1 exp BuM MBu

= minus minus minus +

KMOX and BUMOX is the value of Bu2 400

KMOX

When the equation 1 12

(1 ) 1 exp BuM MBu

= minus minus minus +

KMOX is applied to

the other models of UO2 thermal conductivity (IPTHCN=1 -18) ie to use

the UO2 thermal conductivity models which are multiplied by KMOX as

MOX fuel thermal conductivity KMOX=1 is designated

0

JAEA-DataCode 2013-009

- 102 -

Name-list Input (15) Variable name Contents Default

value

IPRO

Option to specify the effect of pellet porosity p=10-D(I)Di (or theoretical density ratio D(I)) on the pellet thermal conductivity where Di is the initial density Refer to Eqs(2327) and (2328) =0 Initial porosity 0p assuming D(I)=Di is used

=1 Porosity defined by 0

0

swgVp p

V∆

= + is used

=2 Porosity defined by 00 0

dens hotV Vp pV V

∆ ∆= + + is used

=3 Porosity defined by 00 0 0

swg dens hotV V Vp pV V V

∆ ∆ ∆= + + + is used

where Di the initial theoretical density ratio 0p initial porosity

0

swgVV

∆ fission gas bubble swelling irrespective of IFSWEL

0

densVV

∆ densification calculated by the model designated by IDENSF

and 0

hotVV

∆ volumetric strain by hot-press

However this porosity calculation is not performed ring element-wise

It is performed at each axial segment and average porosity over one

segment is obtained Plot output is by IDNO=57 and pellet density =1-p

0

MPORO

Option for the effect of porosity on the thermal conductivity of pellet

=0 pellet thermal condcutivity at each axial segment is calculated by using the porosity which is designated by IPRO

=1 pellet thermal condcutivity at each axial segment is calculated by

using the ring-element-wise porosity 00 0

swg densV Vp pV V

∆ ∆= + +

Here definitions of swelling and densification are identical to those by IPRO However ring-element-wise change of porosity obtained by HBS model is independent from MPROR designation The effect of porosity by HBS model at eack ring element can be taken into account in calculation irrespective of MPORO designation

Corresponding plotter output is IDNO=257 total porosity IDNO=260 fission gas bubble porosity

0

JAEA-DataCode 2013-009

- 103 -

Name-list Input (16) Variable name Contents Default

value Options for density

IPDENS

In the mechanical analysis all factors concerning the pellet density ie 1D p= minus and 01Di p= minus are taken into account This option is to select

the factors to be output by plotter The porosity of pellet is obtained by one of the following equations

IPDENS=1 00 0

swg densV Vp pV V

∆ ∆= + +

=2 00 0 0

swg dens hotV V Vp pV V V

∆ ∆ ∆= + + +

=3 00 0 0 0

swg dens hot relV V V Vp pV V V V

∆ ∆ ∆ ∆= + + + +

=4 00 0 0 0 0

swg dens hot rel thV V V V Vp pV V V V V

∆ ∆ ∆ ∆ ∆= + + + + +

where Diinitial theoretical density ratio 0p initial porosity (1- Di)

0

swgVV

∆swelling calculated by the model designated by IFSWEL

0

densVV

∆ densification calculated by the model designated by IDENSF

0

hotVV

∆ hot-pressing

0

relVV

∆relocation-induced change and

0

thVV

∆ volumetric change by thermal expansion

The corresponding plotter outputs are

IDNO=79 segment average porosity designated by IPDENS

IDNO=80 segment average volumetric change designated by IPDENS

IDNO=281 pellet density change (D=1 - p) of each ring element of

segment designated by IPDENS=1

=282 pellet density change (D=1 - p) of each ring element of

segment designated by IPDENS=2

=283 pellet density change of each ring element of segment

designated by IPDENS=3

=284 pellet density change of each ring element of segment

designated by IPDENS=4

1

ICDENS Option for cladding density =1 Zircaloy =41 SUS304 1

JAEA-DataCode 2013-009

- 104 -

Name-list Input (17) Variable name Contents Default

value Options for specific heat

ISPH Option for equation of pellet specific heat =1 MATPRO-11 =30 MATPRO-11 =31 SGTE Database 1

ICSPH Option for equation of cladding specific heat =1 MATPRO-09 (Zircaloy) =41 MATPRO-A (SUS-304) 1

Options for gap thermal conductance

IGAPCN

Option of gap thermal conductance (IGAPCN=5 and 6 are thermally bonding models) =0 Modified Loss amp Stoute =1 MATPRO-09 =2 Loss amp Stoute =3 modified Dean =4 Modified Loss amp Stoute (new) =5 Bonding model 1 (combination of UO2+ZrO2+Open Gapcon) =6 Bonding model 2 (combination of UO2+ZrO2 only even if the gap is

re-opened) =7 gap conductance is fixed at the value specified by GAPCN

0

R1 (Used when IGAPCN = 0 or 2) pellet surface roughness (microm) 10 R2 (Used when IGAPCN = 0 or 2) cladding surface roughness (microm) 10

IAR

Option to change the second element of gas from the standard lsquoN2rsquo When using Ar in place of N2 IAR=rsquoARrsquo When IAR=rsquoARrsquo gas properties

such as GG2 AA2 BB2 and WW2 are automatically set When changing to the gas other than Ar the properties are required to be specified by input

lsquoN2rsquo

GG2 Jump distance between solid and gas (cm) which is used when IAR designates the gas other than N2 Default value is for Ar 50times10-4

AA2 Coefficient a in the equation K=aTb (Wm K) of gas thermal conductivity which is used when IAR designates the gas other than N2 Default value is for Ar

3421 times10-6

AB2 Coefficient b in the equation K=aTb (Wm K) of gas thermal conductivity which is used when IAR designates the gas other than N2 Default value is for Ar

0701

WW2 Molar mass of gas which is used when IAR designates the gas other than N2 Default value is for Ar 39948

OXEMS Oxide emissivity =1Zircaloy =41SUS304 =41SUS316 1

IXEKR XeKr ratio option =0XeKr=8713 =1 XeKr=8614 =2XeKr=16 =3 data from PLUTON is used ( effective only when IFLX= -1)

0

FACPC (Used when IGAPCN = 0 or ge 4) Solid-solid contact term of gap thermal conductance is multiplied by FACPC 10

PC0 (Used when IGAPCN = 4) Reference contact pressure when PCMI occurs 30 X When IGAPCN=4 an exponent for the contact pressure function 30 FACS (IGAPCN = 4) Multiplying factor for solid thermal conductance term 100

TGPG

Option for gap gas temperature TGPG=0 gap gas temperature is set to the average of temperatures at pellet outer surface and cladding inner surface TGPG=N (gt0) gap gas temperature is set to the average of temperatures at the N-th ring element of pellet

0

FGCN Multiplying factor to assume thermally isolated state of P-C gap 10 GAPCN Fixed gap thermal conductance used when IGAPCN=7 (Wcm2K) 05678

JAEA-DataCode 2013-009

- 105 -

Name-list Input (18) Variable name Contents Default

value Options for cladding surface heat transfer model

AKFAC Multiplying factor for the surface heat transfer coefficient of cladding 10

ISCNHAL When ISCNHAL=1 Halden empirical equation is used for the surface heat transfer of cladding Effective when IS=0 1 and 2 0

CSTEM Cladding surface temperature is fixed at the value specified by CSTEM if CSTEM(K) is input Effective when ISCNHAL=0 and IS=0 1 and 2 00

ITSAT

When ITSAT=0 and coolant inlet temperature is higher than [saturation temperature ndash 01] the coolant inlet temperature is set equal to [saturation temperature ndash 01] When ITSAT=1 the inlet temperature is used as is input and inflow of overheated steam is allowed in calculation

0

JL

Option for the surface heat transfer equations in nucleate boiling regime =0 Chenrsquos equation (mailnly for PWR) =1 Jens-Lottes equation (mainly for BWR)

Jens-Lottes equation is applicable to the nucleate boiling region which has a low void ratio (cross section of steamtotal flow cross section) and is used in mailny sub-cooled boiling of water Chenrsquos equation is an evaluation formula which is arranged on the basis of the overheating degree ΔTsat of conduting surface

1

ICFL

When ICFL=1 when the coolant temperature exceeds the cladding temperature in the calculation the cladding temperature is set equal to the coolant temperature and the material properties such as the enthalpy of coolant quality and void fraction are reset using the cladding temperature Option for transient calculation

0

DCNL

Diameter of channel inner tube (cm) When a fuel rod is irradiated inside an inner tube contained in a capsule heat flux loss ocurrs from coolant inside the inner tube to the outer space of the inner tube To approximate this situation the heat flux is calculated by specifying the inner diameter of inner tube coolant temperature at the inlet to the outer space of the inner tube and thermal conductance across the inner tube wall This mode is ON when DCNLgt0

00

TCEXT(20) Coolant inlet temperature (K) at the space outside the inner tube This is different from TCOOL 3000

ICINT(2) In the period between ICINT(1) and ICINT(2) heat outflux through the inner tube channel is taken into account Input the designated history point number to ICINT(1) and ICINT(2)

20

HX(20)

Surface heat conductance (Wcm2K) at the outer surface of the inner tube channel in the period specified by ICINT For example when ICINT(1)=5 and ICINT(2)=10 this period consists of 6 intervals from history point number 6 to 10 However as HX is interpolated with time during the period totally 7 values of HX are specified in HX(1) to HX(7) which is spanned from the beginning of history point 5 to the end of history point 10

2000

FACQJS Fraction of contribution by cladding outer surface heat flux to coolant enthalpy increase 10

JAEA-DataCode 2013-009

- 106 -

Name-list Input (19) Variable name Contents Default

value

Options for FGR model -1-

IGASP

Option for fission gas release model IGASP=0 equilibrium model of grain boundary gas bubbles +intra-grain

bubble model IGASP=2 rate-law model of grain boundary gas bubbles +intra-grain

bubble model Restart calculation automatically takes over the value specified in

[Base-calculation]

0

GBFIS

Option for intra-granular gas bubble model ie model for bubble radius and number density GBFIS=0 White+Tucker model GBFIS=1 Irradiation-induced dissolution model GBFIS=2 Pekka Loumlsoumlnen model

0

APORE (Effective when IGASP=0 or 2 and GBFIS=0) Initial radius of intra-granular gas bubble (nm) 10

KFIS (Effective when IGASP=0 or 2 and GBFIS=0) Exponent used in the equation to determine destruction rate of intra-granular bubbles 20

RFIS (Effective when IGASP=0 or 2 and GBFIS=1) Reference bubble radius (nm) used to determine destruction rate of intra-granular bubbles Initial radius of intra-granular gas bubble (nm)

200

GSV (Effective when IGASP=0 or 2 and GBFIS=1) Tuning factor of surface energy equation of UO2 041

KV (Effective when IGASP=0 2 and GBFIS=1) Tuning factor of vacancy diffusion coefficient 10

RADMG (Effective when GBFIS=2) Upper limit radius of intra-granular gas bubble (nm) 1000

GROU (Effective when GBFIS=2) Initial density of intra-granular gas bubble

0ρ (gcm3) 40

BBC (Effective when GBFIS=2) Parameter to adjust re-dissolution rate (cm3) 3times10-17

RROU (Effective when GBFIS=2) Threshold radius of intragrain bubble Rρ (nm)

under which the initial bubble density 0ρ is kept unchanged 100

NROU

(Effective when GBFIS=2) Value of Nρ in the equation below defining

the bubble density when intra bubble radius exceeds Rρ (RROU)

Namely when R Rρge 0

NiniRR

ρ

ρ ρ

=

10

IRIM

(Effective when IGASP=0 and 2 and only when HBS=0) Model option for (additional) fission gas release from rim region

=0 additional FGR from rim is not taken into account =1 Battelle model =2 Cunningham model

=3 Cunningham model applied to the outermost ring element only =4 Lassmann empirical model

Restart calculation automatically takes over the value specified in [Base-calculation]

1

JAEA-DataCode 2013-009

- 107 -

Name-list Input (20) Variable name Contents Default

value

Options for FGR model -2- BFCT Re-dissolution rate of in-grain bubbles into matrix is multiplied by BFCT 10

FFL Lower boundary value of fission rate F (fissionscm3s) in calculating the re-dissolution rate bprime of fission gas atoms from intra-grain bubbles to solid matrix

1013

IDCNST Option for models of fission gas atom diffusion constant equation =1 Turnbull et al =2 White amp Tucker =3 Kitajima amp Kinoshita =4 Modified Turnbull =5 White =6Kogai

1

IFIS Option for fixing the fission rate which is used in calculating fission gas

atom diffusion coefficient =0 fission rate is not fixed =1 fixed at 1019fissionsm3s

1

FACD Effective diffusion coefficient in grain is multiplied by FACD 10 DIFM Upper limit of fission gas atoms diffusion coefficient(cm2s) 10-8

AM1 When IDCNST=4 an adjusting factor of temperature dependent term of fission gas atoms diffusion coefficient 10

BM1 When IDCNST=4 an adjusting factor of temperature non-dependent term of fission gas atoms diffusion coefficient 10

FGDIFX Option to adjust the temperature dependence of fission gas atoms diffusion coefficient To adjust ie to mulpiply the term FGDIFX=1 is designated If not FGDIFX=0is designated

0

FGDIF0 Factor to multiply the term to adjust the temperature dependence of fission gas atoms diffusion coefficient 100

EFA Parameter a to adjust the temperature dependence of FGDIF0 60

ADDF Re-dissolution rate of gas atoms in grain boundary bubbles into grain matrix is multiplied by ADDF 90

FBSAT Amount of gas saturation at grain boundary is multiplied by FPSAT (Effective when IFSWEL=0 234 and 5) 10

PSAT Limiting pressure acting on grain boundary bubbles (Pa) (Effective when IPEXT=0 12 and 3) 108

RF

Upper limit of inter-grain gas bubble radius At this radius gas is released and bubble will not grow (cm) Restart calculation automatically takes over the value specified in

[Base-calculation]

50times10-5

FBCOV Fraction of coverage of inter-grain gas bubble on grain boundary surface

Restart calculation automatically takes over the value specified in [Base-calculation]

025

ALHOT (Used when IPEXT=1112 and 13) Hot press parameter for the average stress acting on the grain boundary bubbles

10-4

APEXT (Used when IPEXT=14) Pext average stress obtained in the entire rod length mechanical analysis is multiplied by APEXT 10

ISFTN Option for surface energy of pore in UO2 crystal ISFTN=0626 (ergcm2) ISFTN=1Hall and Mortimer model 0

JAEA-DataCode 2013-009

- 108 -

Name-list Input (21) Variable name Contents Default

value

Options for FGR model -3- OPORO Ratio of open bubbles at grain boundary to total open porosity 00 FGG Rate of grain growth sweeping of fission gas atom is multiplied by FGG 10

RFGFAC

Multiplying factor for the FGR from rim structure RFGFACne0 when additional fission gas release from rim region is

assumed RFGFAC=0 when no additional fission gas release is asssumed

10

FRMIN Minimum fission gas release rate () 05 THEATF Interpolation parameter used in in-grain diffusion equation θ 10 FMULT Fitting factor of time step width for fission gas release model 10

NODEG Number of in-grain meshes for fission gas release model (5 or less) Restart calculation automatically takes over the value specified in

[Base-calculation] 3

RREL Dividing ratio of in-grain element to be set for each NODEG-1 in fission gas atoms diffusion calculation (designates NODEG-1 number) 50 10

RB Thickness of grain boundary layer element for re-dissolution of fission gas atoms (cm) 20times10-6

FPMOX

To simulate the FGR of MOX fuel FGR which is calculated by FGR model as usual is multiplied by FPMOX However this only hypothetically increases the amount of released gas and the calculation of fission gas atoms diffusion inside grain is not affected

10

JAEA-DataCode 2013-009

- 109 -

Name-list Input (22) Variable name Contents Default

value

IPEXT

Option for the external pressure Pext acting on grain boundary bubbles

14

IPEXT=0 Pext =0 IPEXT=1 Pext=plenum pressure IPEXT=2 Pext=contact pressure between pellet and cladding IPEXT=3 Pext= max (plenum pressure contact pressure)

IPEXT=13 Pext= thermal stress calculated by the ERL mechanical analysis taking into account the plenum gas pressure and the contact pressure

IPEXT=14 Pext= average stress obtained by stress calculation in the ERL

mechanical analysis + plenum gas pressure

Only when IPEXT=14(default) Pext is set in the following way

Here Sav is the thermal stress which is calculated by the ERL mechanical

analysis as a hydrostatic compressive stress and usually a negative value

and the contact force is automatically included in the calculation of Sav

1) When IGASP=0 Pext=-Sav+plenum gas pressure is set When Sav is

positive ie tensile stress Sav=0 is set

2) When IGASP=2 Pext= -Sav+ plenum gas pressure is set However

when -Savlt0 or when Sav is a positive tensile stress and 2 0extPrγ

+ =

holds Pext is fixed at Pext =208rγ

minus times

ISIGOP ISIGOP=1 is set when evaluating Pext by adding correction on the basis of upper limit of gas bubble strain increment 0

FSIGM Tuning parameter to multiply Pext by FSIGM 10

IFBSAT IFBSAT=1 should be designated when gas saturation concentration at grainboundary is given by a certain fixed value ie FBSATS 0

FBSATS When IFBSAT=1 saturation concentration of gas atoms at grain boundary (atomscm2) 50times1015

JAEA-DataCode 2013-009

- 110 -

Name-list Input (23) Variable name Contents Default

value

Options for rate-law FGR model (IGASP=2) HP (Effective when IGASP=2) Parameter to adjust the increasing rate of radius

of grain boundary gas bubble in its grwoing stage 10

HN (Effective when IGASP=2) Parameter to adjust the decreasing rate of radius of grain boundary gas bubble in its shrinking stage 02

FGCND (Effective when IGASP=2) Parameter to adjust the gas migration conductance from grain boundary gas bubbles 10

NFC (Effective when IGASP=2) NFC (integer) value when assuming the volume of conduit of gas percolation from grain boundary bubbles as

0 ( ) ( )c c c eV V f F g σ= and 0( ) 1 exp[ ( ) ]NFCc c cf F F F= minus minus

10

NSC (Effective when IGASP=2) NSC (integer) value when assuming the volume of conduit of gas percolation from grain boundary bubbles as

0 ( ) ( )c c c eV V f F g σ= and 0 NSC( ) 1 exp[ ( ) ]e e eg σ σ σ= minus minus 10

SIG0 (Effective when IGASP=2) Value of 0

eσ (MPa) when assuming the volume of conduit of gas percolation from grain boundary bubbles as

0 ( ) ( )c c c eV V f F g σ= and 0 NSC( ) 1 exp[ ( ) ]e e eg σ σ σ= minus minus 100

FC1 (Effective when IGASP=2) Coverage ratio 0

cF (-) of grain boundary by grain boundary gas bubbles after one-time coalescence of grain boundary bubbles

085

FC2 (Effective when IGASP=2) Coverage ratio 0

cF (-) of grain boundary by grain boundary gas bubbles after two-times coalescences of grain boundary bubbles

09

FC3 (Effective when IGASP=2) Coverage ratio 0

cF (-) of grain boundary by grain boundary gas bubbles after three-times coalescences of grain boundary bubbles

095

FC4 (Effective when IGASP=2) Coverage ratio 0

cF (-) of grain boundary by grain boundary gas bubbles after four-times coalescences of grain boundary bubbles

099

RINIT (Effective when IGASP=2) Initail radius of grain boundary bubble (microm) 001

NGB (Effective when IGASP=2) Number of bubbles which coalesce into one large bubble when grain boundary bubbles make tunnel and become open to outer space

4

MGB (Effective when IGASP=2) Maximum number of repeated coalescences of grain boundary bubbles when grain boundary bubbles make tunnel and become open to outer space

10

TMG (Effective when IGASP=2) Pellet threshold temperature (K) under which no bubble coalescence ocurrs 12000

DVLTM (Effective when IGASP=2) Lower limit of temperature referred to by the grain bopundary diffusion coefficient of vacancy 10000

LRF (Effective when IGASP=2) LRF=1 is set if the grain boundary gas bubble is assumed to stop growing at the limiting radius RF 0

FCON (Effective when IGASP=2) Threshold coverage of grain boundary bubbles on grain boundary to allow the bubble coalescence to occur 03

JAEA-DataCode 2013-009

- 111 -

Name-list Input (24) Variable name Contents Default

value

Options for pellet swelling

IFSWEL

Option for pellet swelling model =0 Chubb amp Zimmermann+FEMAXI-III =1 solid fission products swelling+ gas bubble swelling =2 MATPRO-09 =3 Kosaka =4 Studsvik =5 Hollowell

Restart calculation automatically takes over the value specified in [Base-calculation]

0

STFCP (Used when either IFSWEL = 0 or IFSWEL=5) Contact pressure above which fission gas bubble swelling does not occur

(Pa) Used in ERL mechanical analysis 30times107

SPCON (Used when either IFSWEL = 0 or IFSWEL=5) Contact pressure above which fission gas bubble swelling does not occur

(Pa) Used in 2-D local mechanical analysis -106

SWSLD

When IFSWEL=0 factor to multiply the solid fission product swelling rate 025 per 1020 fissioncm3

Restart calculation automatically takes over the value specified in [Base-calculation]

10

FDENSF

When either IFSWEL=0 or =1 option for factor fD of density decrease induced by solid fission products swelling

FDENSF=0 01=Df FDENSF=1 0

10 swsD

VfV

∆= minus

0

FACP (When IFSWEL=1) Factor to multiply the contact pressure term of the external pressure on grain boundary gas bubble 10

A1

(Used when IFSWEL = 4) Value of A1 used in the equation ΔVV()=(A1-C1FGR())BU where 0≦BU≦BU1 Restart calculation automatically takes over the value specified in

[Base-calculation]

00965

C1

(Used when IFSWEL = 4) Value of C1 used in the equation ΔVV()=(A1-C1FGR())BU 0≦BU≦BU1 Restart calculation automatically takes over the value specified in

[Base-calculation]

0000459

BU1

(Used when IFSWEL = 4) Value of BU1 (MWdkgU) used in the equation ΔVV()=(A1-C1FGR())BU 0≦BU≦BU1 Restart calculation automatically takes over the value specified in

[Base-calculation]

570

A2

(Used when IFSWEL = 4) Value of A2 used in the equation ΔVV()=(A1-C1FGR())BU1+A2(BU-BU1) BU1ltBU Restart calculation automatically takes over the value specified in [Base-calculation]

0032

JAEA-DataCode 2013-009

- 112 -

Name-list Input (25) Variable name Contents Default

value

Options for densification of pellet

IDENSF

Option for equation of pellet densification =0FEMAXI-III =1Rolstad =2NRC =3Marlowe =4Halden =30 Schlemmer and Ichikawa Restart calculation automatically takes over the value specified in [Base-calculation]

0

DMAX(40)

(Used when IDENSF = 0 2 or 3) Upper limit of pellet volume shrinkage due to densification () at each axial segment Restart calculation automatically takes over the value specified in [Base-calculation]

4010

SBU

(Used when IDENSF = 0) Burnup at which 90 of densification is completed (MWdtUO2) Restart calculation automatically takes over the value specified in

[Base-calculation]

200000

TDNSF (Used when IDENSF = 1 or 3) Sintering temperature (K) Restart calculation automatically takes over the value specified in

[Base-calculation] 20000

GG (Used when IDENSF = 3) Crystal grain diameter after heat treatment (m) Restart calculation automatically takes over the value specified in

[Base-calculation] 10-5

GG0 (Used when IDENSF = 3) Initial crystal grain diameter (m) Restart calculation automatically takes over the value specified in

[Base-calculation] 80times10-6

SITIM (Used when IDENSF = 3) Heat treatment time (hr) Restart calculation automatically takes over the value specified in

[Base-calculation] 240

ADST Densification adjustment factor used when IDENSF=4 Restart calculation automatically takes over the value specified in

[Base-calculation] 06

JAEA-DataCode 2013-009

- 113 -

Name-list Input (26) Variable name Contents Default

value

Options for densification and swelling of pellet

DENSWL

Option for combination model of densification and swelling =0 combination model is not used Densification and swelling are

calculated independently from each other =1 combination model is used Restart calculation automatically takes over the value specified in [Base-calculation]

0

DD1

Assuming that densification is DS(vol) and swelling is SW(vol) the combined volume change VC(vol) is assumed as

1(1 )VC D d DS D SW= minus sdot sdot + sdot where 1( DD1)d = is an adjusting factor for the maximum volumetric shrinkage DMAX

Restart calculation automatically takes over the value specified in [Base-calculation]

13

ALD

ldquoDrdquo in the above equation is given by ( )10tan [ ]

05Bu Bu

π

minus sdot minus= +

ALD is the value of α in this equation Restart calculation automatically takes over the value specified in

[Base-calculation]

04

BU0

ldquoDrdquo in the above equation is given by ( )10tan [ ]

05Bu Bu

π

minus sdot minus= +

BU0 is the value of Bu0 a reference burnup in this equation(GWdt) Restart calculation automatically takes over the value specified in [Base-calculation]

250

Options for fuel grain growth

IGRAIN Option for equation representing UO2 grain growth =0 Itoh =1 Ainscough =2 MacEwan =3 Lyons =4 MATPRO-09 =5 MATPRO-11

0

GR Initial pellet grain size (μm) Restart calculation automatically takes over the value specified in

[Base-calculation] 100

GRWF (Used when IGRAIN = 0) Grain growth rate is multiplied by GRWF 15

AG (Used when IGRAIN = 0) Fitting parameter (grain growth suppression factor) 10

JAEA-DataCode 2013-009

- 114 -

Name-list Input (27) Variable name Contents Default

value

Options for fuel grain growth

IGRAIN Option for equation representing UO2 grain growth =0 Itoh =1 Ainscough =2 MacEwan =3 Lyons =4 MATPRO-09 =5 MATPRO-11

0

GR Initial pellet grain size (μm) Restart calculation automatically takes over the value specified in

[Base-calculation] 100

GRWF (Used when IGRAIN = 0) Grain growth rate is multiplied by GRWF 15

AG (Used when IGRAIN = 0) Fitting parameter (grain growth suppression factor) 10

Options for He release (Refer to [Note] in the next page) NTVHE Number of time points set by TVHE 0

TVHE(41100) TVHE(1 n) number of nth time points (hr) (mole) TVHE(i+1 n) molar amount of He generated in axial segment I at nth

time point 410000

HER

HER=1 He release rate is HERLS times as large as the FGR of Xe+Kr HER=2 option toi assume a fixed release rate ( HEC1 (Default=1000)) to the generated quantity of He irrespective of temperature and burnup HER=3 He absorption and release model

1

HERLS Multiplying factor for the ratio of He release rate to fission gas release rate (Effective when HER=1) 30

HEC1 He gas release rate is assumed as fixed at HEC1() of He generation quantity irrespective of temperature and burnup (Effective when HER=2)

1000

HEGEN (NHIST)

(Effective when HER=3) Option for specifying the time history of He generation quantity HEGEN (N) (N is history point number) is set Eg when

ldquoHEGEN(1)=12E13 HEGEN(4)=234E14rdquo are input at the first history point(initial stage) 12E13 atomscm3 and at the fourth history point 234E14 atomscm3 are designated and between these two points a linear interpolation is made with respect to time

HEGEN(1) is indispensable and initial spacial concentration in solid phase However if IHEGEN=1 is designated unit of HEGEN becomes atomsg-fuel

1500 00

IHEGEN (Effective when HER=3) IHEGEN designates unit of HEGEN IHEGEN=0 atomscm3 IHEGEN=1 atoms g-fuel 0

DHE1

(Effective when HER=3) D1 of the following He diffusion coefficient inside grain (lattice)

11 1 2exp ( ) (f )LAT

QD D f Bu fRT

= minus + +

(m2s) 8times10-7

JAEA-DataCode 2013-009

- 115 -

[Note] Explanation of absorptionrelease model of Helium in UO2 and MOX fuels

The model adopts the He generation quantity calculated by an external burning analysis

code as a function of initial composition of fuel burnup or time When HEAR=1(default=0)

this process is performed in FEMAXI-7 If HEAR=0 the calculation is not performed even if

the He quantity is input

The He generation data is fed to FEMAXI-7 by either designation by name-list parameter

HEGEN(time atomscc) or adding several data lines to the last part of input file and the code

calculates as a function of time the He generation quantity during a certain time-step ie

increment (atomscc-fuel) during the time step in each ring element of pellet

The He diffusion inside pellet is calculated by a concentration-gradient driven diffusion in

the radial direction of pellet assuming that an average concentration of He (atomscc-fuel) in

each ring element has a gradient in the radial direction of pellet Here the boundary

condition at the interface of pellet solid surface and gas phase (assuming that the He spacial

concentration is equal to that of the solid) initial spacial concentrations of He in solid and gas

phase (atomscc-fuel) are specified by input and calculation is performed with respect to

absorptionrelease of He across the pellet-gas phase in each axial segment to derive the He

concentration in gas phase and partial pressure (MPa) in whole rod including plenum space

The diffusion coefficient of He in solid has input options to specify the parameters consisting

of the equation

The solid-gas interface is basically assumed as the surface of outermost ring element of

pellet facing the gap gas (HEBDS=1) or in addition to this inner wall surface of centerhole

of pellet (HEBDS=2) On the other hand the direct absorption and release from the

designated ring elements to gas phase are taken into account That is the He concentration in

gas phase at temperature of each ring element or the He concentration in each ring element is

multiplied by factor HERFAC(I factor) where (I=1helliphellip36 0 le factor le 01 ) to calculate

the direct absorptionrelease at a certain time-step and to be reflected on the average He

concentration of each ring element in the diffusion calculation

JAEA-DataCode 2013-009

- 116 -

Name-list Input (28) Variable name Contents Default

value

QHE1

(Effective when HER=3) Q1 (calmol) of the following He diffusion coefficient inside fuel grain (lattice)

11 1 2exp ( ) (f )LAT

QD D f Bu fRT

= minus + +

460000

DLT (Effective when HER=3) Lower limit value of He diffusion coefficient inside fuel grain (lattice) (m2s)

706times10-17

DHEF1

(Effective when HER=3) 1( )f Bu (m2s) of the following He diffusion coefficient inside fuel grain (lattice)

11 1 2exp ( ) (f )LAT

QD D f Bu fRT

= minus + +

00

DHEF2

(Effective when HER=3) 2(f )f (m2s) of the following He diffusion coefficient inside fuel grain (lattice)

11 1 2exp ( ) (f )LAT

QD D f Bu fRT

= minus + +

00

NODEH

(Effective when HER=3) Number of elements inside grain in He release model (Max 50) Restart calculation automatically takes over the value specified in

[Base-calculation]

5

HESOL He solubility insolid fuel (spacial concentration atomscm3) 1027 High burnup (rim) structure model

HBS

HBS=0 high burnup model is not used HBS=1JAEA rim model with local burnup HBS=2 JAEA rim model with effective burnup

Effective burnup neffB (GWdtM) is defined as

11 0exp ( )n n n

eff eff nB B k T T t Bminus= sdot minus minus sdot ∆ + ∆

where neffB effective burnup at n-th time step (GWdtU)

nT local fuel temperature (K) at n-th time step This is assumed as

0nT T= when 0nT Tle

0T Reference temperature (K)

1k constant

t∆ time step increment (s) nB∆ burnup increment at n-th time step Restart calculation automatically takes over the value specified in [Base-calculation]

0

TSTD (Used when HBS=2) Reference temperature 0T (K) in calculating effective burnup

10000

KON1 (Used when HBS=2) A constant 1k to multiply the temperature dependent term of effective burnup

10-8

JAEA-DataCode 2013-009

- 117 -

Name-list Input (29) Variable name Contents Default

value

FPINF

(Used when HBS=1 or 2) Lassmann empirical model is applied to fission gas transfer from rim structure to pore Ratio FPOR of amount of gas transferred from solid matrix to the free space outside pellet to the total amount of fission gas atoms generated in the rim structure is expressed as a function of burnup Bu ( localBu or effB ) Here FPNF(wt) is used in the function as

( ) ( )( )1 0wt =FPINF+(GEN1times -FPINF)timesexp -GEN2times -Xe Bu Bu Bu

[ ]1FPOR Total Xe generation(Wt)= Xe

[ ]Total generation(wt) 00145 (GWdt)= sdotXe Bu

025

GEN1 (Used when HBS=1 or 2) Value of 1Gen in the above equation (wtGWdt) 00145

GEN2 (Used when HBS=1 or 2) Value of 2Gen in the above equation 01 BURMXE (Used when HBS=1 or 2) Value of Bu0 in the above equation (GWdt) 600

BKONA (Effective when HBS=1) Burnup at which rim structure transformation begins (GWdtU) 650

ARIM

(Effective when HBS=2) Value of α in the following equation assuming that the transformation ratio into rim structure is Xv

( )11tan

Xv effB Buα δ

π

minus minus= +

105

BURIMS (Effective when HBS=2) Value of 1Bu (GWdt) in the equation defining Xv the ratio of transformation into rim structure

600

DRIM (Effective when HBS=2) Value of δ in the equation defining Xv the ratio of transformation into rim structure

052

RMOGR

Option to specify the additional amount of FGR from the gas pores in the rim structure RMOGR=0 no additional FGR from the gas pores

RMOGR=1 additional FGR is evaluated assuming OPR=ATHMR where OPR is the fraction of open pores and 0 OPR ATHMR FPORle = le That is after the rim structure is formed OPR fraction of fission gas atoms generated in the rim structure is released to external space

RMOGR=2 open pore fraction OPR to the rim pore porosity rimp is given

as a function of rimp

003OPR (0 023)023 rim rimp p= sdot le le

( )( ) ( )OPR 003 015 003 100 23 023 024rim rimp p= + minus sdot minus le le

( )( ) ( )OPR 015 045 015 100 24 024 025rim rimp p= + minus sdot minus le le

1

JAEA-DataCode 2013-009

- 118 -

Name-list Input (30) Variable name Contents Default

value

ATHMR (Effective when RMOGR=1) Fraction of athermal release of gas (-) 00

RIMPRO (Used when HBSgt0) Option for pellet rim structure thermal conductivity model =0 Ikatsu model =1 Billaux model

0

BXEQ (Used when HBSgt0) The equivalent burnup Bx to calculate the thermal conductivity of the rim structure region (GWdtU) 400

RIMSWL

(Used when HBSgt0) Option for the swelling of the rim structure region When RIMSWL=1 the volumetric swelling rate of the rim structure region is assumed equal to [porosity + solid swelling] irrespective of the value of IFSWEL Restart calculation automatically takes over the value specified in [Base-calculation]

0

RMPST

Option for calculation of rim structure porosity rimP

RMPST=0 the porosity is not calculated but fixed at 050=rimP RMPST=1 NFD empirical corelation equation is used

Porosity in rim structure RMPOR() is defined as RMPOR = PORMAX (1- PG4)+PORMIN PG4sdot sdot

PORMAX = ( ) 221 2 PGBuBuPG +minussdot

PORMIN = ( ) 223 2 PGBuBuPG +minussdot where rimP =RMPORtimes001 and maximum value of rimP is assumed

as PMX RMPST=2Billaux model is used

tMGWdBPBuAPBPAPprim 1211 ltminussdot=

AP1 AP2 BP1 BP2 GWdtM= sdot minus le lerimp Bu Bu

PMX BP2 GWdtM= gtrimp Bu

Bu local burnup ( localBu or effB ) (GWdtM)

1

PG1 PG1 value ( (GWdtM)2) when RMPST=1 0005 PG2 PG2 value ( (GWdtM)2) when RMPST=1 25 PG3 PG3 value ( (GWdtM)2) when RMPST=1 00013 PG4 PG4 value (-) when RMPST=1 05 BUPOR BU2 value (GWdtM) when RMPST=1 400 AP1 AP1 value (GWdtM)-1 when RMPST=2 00024 AP2 AP2 value (-) when RMPST=2 0106 BP1 BP1 value (-) when RMPST=2 650 BP2 BP2 value (GWdtM ) when RMPST=2 1500 PMX When RMPST=1 or 2 maximum value of rimstructure porosity (-) 0254

JAEA-DataCode 2013-009

- 119 -

Name-list Input (31) Variable name Contents Default

value

Youngrsquos modulus option

IPLYG Option for equation of pellet Youngrsquos modulus

=1 MATPRO-09 =2 MATPRO-11 =30 MATPRO-11 2

FPYG Multiplying factor for pellet Youngrsquos modulus 10

IZYG Option for cladding Youngrsquos modulus =1 Fisher =2 MATPRO-A and -11 =41SUS304

2

FCYG Multiplying factor for cladding Youngrsquos modulus 10

CYNG Cladding Youngrsquos modulus is specified by input CYNG (Pa) If CYNG(gt0) is specified by input the Youngrsquos modulus is fixed at CYNG (Pa) 00

Poissonrsquos ratio option

IPOIS Option for pellet Poissonrsquos ratio =1 MATPRO-09 =30 MATPRO-11 =31 Nutt and Yamada

1

ICPOIS Option for cladding Poissonrsquos ratio =1 Fisher =40SUS316 =41SUS304

1

CPOIS Cladding Poissonrsquos ratio is specified by input CPOIS (-) If CPOIS(gt0) is specified by input the Poissonrsquos ratio is fixed at CPOIS 00

Thermal expansion option

IPTHEX

Option for pellet thermal expansion rate =0 or =1 MATPRO-09 =2 Burdick =3 Halden =4 Conway and Fincel =5 MATPRO-A =6 Martin

=30 MATPRO-11 =31 Martin and Tokar =32 MATPRO-A

0

FPTM Multiplying factor for pellet thermal expansion rate 10

ICATHX Option for cladding thermal expansion rate

=0 MATPRO-09 =1 Scott =2 MATPRO-A =3 MATPRO-11 =40SUS316 =41SUS304

0

ATHEX Thermal expansion coefficient of cladding in the axial direction (oC-1) (Used when ICATHX=0)

4441 times10-6

RTHEX Thermal expansion coefficient of cladding in the radial direction (oC-1) (Used when ICATHX=0)

6721 times10-6

OXTHM Option for thermal expansion rate of cladding oxide layer =1 MATPRO-A (ZrO2) =41SUS-304 =43 SUS316 1

FCTM Multiplying factor for cladding thermal expansion rate 10

JAEA-DataCode 2013-009

- 120 -

Name-list Input (32) Variable name Contents Default

value

Pellet crackrelocation option FRELOC Relocation parameter 05 EPSRLZ Relocation strain in the axial direction 0003

FACR It is assumed that pellet recovers its stiffness if crack space shrinks by FACR times the relocation strain in the radial direction 10

FACZ It is assumed that pellet recovers its stiffness if crack space shrinks by FACZ times the relocation strain in the axial direction 10

IURS When IURS=1 ε R which is assumed as the strain to recover completely the pellet stiffness includes gas bubble swelling and creep strains

0

IYNG Option for pellet crack model (mechanical model)

=0 sstiffness recovery is approximated by a quadratic function =1 by a linear function

1

ECRAC3 Pellet stiffness when pellet is completely cracked (Pa) (mechanical model) 20times109

EFAC Fraction of stiffness recovery of cracked pellet to the pellet Youngrsquos modulus (ERL mechanical analysis) 01

SIGFL Critical stresses PCθσ (MPa) of pellet fracture in the circumferential

direction The same value is applied to those in the radial and axial directions

100

DELTAR (NAX NHIST)

Adjustment quantity (microm) of thermal relocation of pellet of each axial segmentat at arbitrary history points

Assuming that the gap size is GAPi as a result of mechanical analysis at

history point ldquoi-steprdquo the thermal gap size GAP1i is given by

GAP1i=GAPi - Σi(DELTAR)

Here Σi(DELTAR) is the accumulated value of DELTAR until i-step (DefaultDELTAR(IZ IN)=0 (1 le IZ le NAX 1 le IN le NHIST)) However when the gap size comes to GAP1i= GAPi - Σi(DELTAR)=0 GAP1=0 is assumed even if DELTARgt0is designated after the i-step

Also Σi(DELTAR) is reset to null at the moment PCMI ocurrs in the mechanical analysis Σi(DELTAR)=0 is assumed even if DELTARgt0 is specified at the history points after the step at which gap reopens

All 00

Creep option

IPCRP

Option for pellet creep equation =1 MATPRO-09 =2 MATPRO-11 =4SKI model for UO2

=5 Halden UO2 Creep model =11 SKI-based MOX model (fH=1) =12 SKI-based MOX model (fH=2) =13 SKI-based MOX model (fH=3) =15 Halden MOX Creep model =30 MATPRO-11 (MOX)

4

FCRFAC Magnification factor for pellet creep equation in mechanical model 10

TCS Cut-off value of temperature in pellet creep calculation (K) in mechanical model 127315

JAEA-DataCode 2013-009

- 121 -

Name-list Input (33)

Variable name Contents Default value

CRFAC Magnification factor for cladding creep rate (mechanical analysis) 10

TCCS Upper cutoff temperature in cladding creep calculation (K) (mechanical analysis) 107315

FAIMAX Maximum limit value of fast neutron flux used in cladding corrosion calculation (ncm2s) common to thermal and mechanical analyses 1015

SIGMAX Upper cutoff value of equivalent stress (Pa) in cladding creep calculation (mechanical analysis) 4times108

CRPEQ

Option for cladding creep model =0 MATPRO-09 =1 Nen-an-sen =2Franklin

=3 McGrath(Halden) =40SUS316 =41SUS304 =43 SUS316(MRI)

3

HTCRP Option for cladding high temperature creep =1 Rosinger =20 Donaldson(Westinghouse) =21 Donaldson(Wolverine) =22 Donaldson(Sandvik (NRU))

1

HTCREP When high temperature creep model of cladding is used irrespective of temperature condition HTCRP=1 is to be designated 0

ICRP

When ICRP=0 out of the two creep equations ie one designated by CRPEQ and the other designated by HTCRP one equation which gives a faster creep rate than the other is used in calculation When ICRP=1 for the temperature under CRTEMP the equation designated by CRPEQ is used and over CRTEMP the other one designated by HTCRP is used

0

CRTEMP Temperature (oC) at which creep equation of Zircaloy is shifted from the one designated by CRPEQ to high temperature creep equation designated by HTCRP (Effective when ICRP=1)

4500

THETC Implicit solution parameter θ used in creep analysis ( 0 1θle le ) 10

IPUGH =1 Pughrsquos reversal method is adopted in the cladding creep calculation in

2-D local mechanical analysis =0Pughrsquos reversal method is not adopted

1

IPUGH2 =1 Pughrsquos method is adopted in the cladding creep calculation in ERL

mechanical analysis =0Pughrsquos reversal method is not adopted

0

ICC

Option for creep strain increment calculation ICC=0 creep strain increment is calculated by the creep rate with an

updated stress 11

11

+++

++ ∆=∆ ic

nnic

n t θεε ICC=1 creep strain increment is calculated by adding a correcting term

derived from updated stress to the approximated value at i-th step [ ] 1

1

11

1++++

++ +∆=∆ i

nic

nic

nic

n dC σεε θ

0

JAEA-DataCode 2013-009

- 122 -

Name-list Input (34) Variable name Contents Default

value

Plasticity option IFY Pellet plasticity model option =0 Rodford =1 Tachibana 1 FYIEF Option to multiply pellet yield stress by FYIEF 10

ICPLAS

Option for cladding stress-strain relationship =1 FEMAXI-III =2 MATPRO-11 =3 modified MATPRO-11 =4 Ohta model for PWR cladding =5 Ohta model for BWR cladding

=6 FRAPCON34 model =41SUS304

1

CWK (Effective when ICPLAS=2 or 3) Effective cold-work for strength coefficient K

(dimensionless cross section area) 00

CWN (Effective when ICPLAS=2 or 3) Effective cold-work for strain hardening exponent (cross sectional reduction ratio)

00

CW_INIT (Effective when ICPLAS=6) Initial value of effective cold-work (dimensionless cross section area) 05

IPLANT

Option to designate reactor type (Used when ICPLAS=6) =1HBWR(Zry-2) =2BWR(Zry-2) =3PWR(Zry-4) K(Zry) = 10 for Zry-4 K(Zry) =1305 for Zry-2 n(Zry) = 10 for Zry-4 n(Zry) = 16 for Zry-2

2

KF (Effective when ICPLAS= 3) Parameter to adjust the increment of K with burnup 10

ISTR Size K of yield curved surface of Zircaloy is assumed as 23344 (kgmm )YK σ= + when ISTRne0 0

FCYD Multiplying factor for cladding yield stress (except the Zr liner) 10

FCYDZR Multiplying factor for yield stress of cladding Zr liner 10

FCRN Multiplying factor for strain hardening exponent of cladding Zr liner 80

ISTRES

1) When ISTRES=1 (default) as per usual in FEMAXI-7 yielding of cladding and pellet is judged by equivalent stress

2) ISTRES=2 for cladding Eqs(1) and (2) are applied For pellet as per usual model of FEMAXI-7

3) ISTRES=3 for both cladding and pellet Eqs(1) and (2) are applied Eq(1) max STFACS σ= timesY Eq(2) eq maxh h ( )Sσprime = times

where maxS the largest stress of the principal stresses ( hoop stress

for cladding) σ Y yield stress eqσ equivalent stress

hprime yield function in the cases 1) 2) and 3) h yield function in the case 1)

1

STFAC

Relationship between maxS (largest principal stress) andσ Y (yield stress)

(above Eq(1)) where10 STFAC 115( 2 3)le le cong When STFACgt1 STFAC=1 is set and when STFAC ge 115 STFAC=115 is set

10

ISYD Option for strain rate dependence of yield stress

ISYD=1 strain rate dependence is taken into account ISYD=0 strain rate dependence is not taken into account

1

JAEA-DataCode 2013-009

- 123 -

Name-list Input (35) Parameters for Ohta model Parameter name Contents

PL1 Parameters for strength coefficient K

Parameter L1 of strength coefficient K Default value=1745 PL2 L2 Default value=2517 PL3 L3 Default value=526 PL4 L4 Default value=0748 PA1 A 1 Default value=3041233371times104 PA2 A 2 Default value=-8285933869times101 PA3 A 3 Default value=7490958541times10-2 PA4 A 4 Default value=-2242589096times10-5 PB1 B 1 Default value=33282432times102 PB2 B 2 Default value=298027653 PB3 B 3 Default value=-681286681times10-3 PB4 B 4 Default value=351229783times10-6 PH1 H 1 Default value=1times10-6 PH2 H 2 Default value=8775 PH3 H 3 Default value=8663 PH4 H 4 Default value=0341566 BL1 L1 Default value=1201 BL2 L2 Default value=2508 BL3 L3 Default value=1119 BL4 L4 Default value=0627 BA1 A 1 Default value=3656432405times104 BA2 A 2 Default value=-1361626514times102 BA3 A 3 Default value=1695545314times10-1 BA4 A 4 Default value=-7055897451times10-5 BA5 A 5 Default value=-3338799880times104 BA6 A 6 Default value=1330276514times102 BB1 B 1 Default value=-3617377246times104 BB2 B 2 Default value=1361156965times102 BB3 B 3 Default value=-1636731582times10-1 BB4 B 4 Default value=6386789409times10-5 BH1 H 1 Default value=1times10-6 BH2 H 2 Default value=4772 BH3 H 3 Default value=9740 BH4 H 4 Default value=5267783

PNC1 Parameters

for strain hardening exponent n

C 1 Default value=0213 PNC2 C 2 Default value=1808times10-4 PNC3 C 3 Default value=34708518times10-2 PNC4 C 4 Default value=49565251times10-4 PNC5 C 5 Default value=-50245302times10-7 PNC6 C 6 Default value=0027908

PA5 Parameters

for strain rate sensitivity exponent m

A 5 Default value=2063172161times101 PA6 A 6 Default value=-770455times10-2 PA7 A 7 Default value=9504843times10-5 PA8 A 8 Default value =-386096times10-8 PA9 A 9 Default value=-647times10-2

PA10 A 10 Default value0=2203times10-4

JAEA-DataCode 2013-009

- 124 -

Name-list Input (36) Variable name Contents Default

value

Pellet hot-press option BETAX Pellet hot press parameter α (in mechanical analysis) 0002

IHOT

This is effective in the entire-rod-length mechanical analysis model When IHOT=0 the pellet hot-press parameter is the same as the value of

BETAX When IHOT=1 the pellet hot-press parameter is given by

( )( )0

1 (1 )1 (1 )

s

s

D DD D

minus minus minusminus minus minus

BETAX

Here Dpellet theoretical density ratio(-) D0initial value of D Ds FDENH

0

IHPOP

This is effective in the local mechanical analysis model When IHOT=0 the pellet hot-press parameter α is 0 during non-contact

state and during contact state α is set equal to BETAX When IHOT=1 the pellet hot-press parameter is given by

( )( )0

1 (1 )1 (1 )

s

s

D DD D

minus minus minusminus minus minus

BETAX

Here Dpellet theoretical density ratio(-) D0initial value of D Ds FDENH

0

FDENH Ds in the equation above the maximum relative density of pellet attainable by hot-press Effective when IHOT=1 or IHPOP=1 10

Anisotropy parameter option H0(4) Anisotropy factor H0

(H0(1) fuel pellet H0(2)Zry(or SUS) H0(3) pure-Zr H0(4)ZrO2) 410

F0(4) Anisotropy factor F0

(F0(1) fuel pellet F0(2)Zry(or SUS) F0(3)pure-Zr F0(4)ZrO2) 410

G0(4) Anisotropy factor G0

(G0(1) fuel pellet G0(2)Zry(or SUS) G0(3)pure-Zr G0(4)ZrO2) 410

Pellet dishchamfer (buffer element) model option

IDSELM When IDSELM=0 elements for dish (chamfer) space are not used in the

ERLmechanical analysis geometry When IDSELM=1 they are used

0

BUFSP Percentage of the axial length of elements for dish (chamfer) space to the axial length of pellet-pellet gap () 10

Bonding model option

IBOND

Option for P-C bonding model (mechanical model) =0 model of mechanical bonding is not applied

=1 model of mechanical bonding is applied =2 during the mechanical analysis when [gap size]=[cladding inner

diameter]-[pellet outer diameter]gt0 and the gap opens the mechanical bonding model is cancelled and the axial displacement of pellet is allowed to be independent from that of cladding When the gap is closed again ie when the cladding inner diameter becomes equal to pellet outer diameter the model of mechanical bonding is applied again Namely the displacement of pellet outer surface in the axial direction is forced to be shared with that of the cladding inner surface

0

JAEA-DataCode 2013-009

- 125 -

Name-list Input (37) Variable name Contents Default

value

SBONDG A parameterθ for adjusting the gap conductance at bonding (thermal analysis)

001

ALBD An adjustment parameter α used when the gap is open in a segment in which bonding developed (applied to the gap thermal conductance model) 07

FBONDG A parameter F for adjusting gap conductance during bonding (applied to the gap thermal conductance model) 100

BDX A parameter for determining the maximum value of the extent of bonding

advancement (hour-MPa) (common in the gap thermal conductance model and mechanical bonding model)

1000000

BDTR

The value showing the advancement of bonding under the anchored state in the axial direction regardless of the presence or absence of contact due to the advancement of bonding or contacting pressure (common in the gap thermal conductance model and mechanical bonding model)

05

PN Option for PDOWN and PUP Effective when IBOND=1

=0 PDOWN and PUP do not become effective =1 PDOWN and PUP are effective

0

PDOWN

When the power decreases during the bonding state in the segment in which its contact pressure decreases below a certain threshold value the use of bonding is terminated and a regular ldquoanchor-sliderdquo evaluation is used Effective only when PDOWNgt0 (Pa) (in the mechanical analysis model)

00

PUP

When the power increases in the segment subjected to bonding conditions in the segment in which the contact pressure exceeds a certain threshold value the bonding is terminated and a regular ldquoanchor-sliderdquo evaluation is used Effective only when PUPgt0 (Pa) (in the mechanical analysis model)

00

Cladding irradiation growth option

ICAGRW

Cladding irradiation growth equation option = 0 irradiation growth is not applied =1 MATPRO-09 = 2 Manzel = 3 Hannerz = 4 Hesketh =41 SUS304 =43SUS316 Restart calculation automatically takes over the value specified in

[Base-calculation]

1

CATEXF (Used when ICAGRW = 1) Factor in the axial direction f Z Restart calculation automatically takes over the value specified in

[Base-calculation] 005

COLDW (Used when ICAGRW = 1) Cold work CW Restart calculation automatically takes over the value specified in

[Base-calculation] 081

RX Multiplying factor for irradiation growth of cladding oxide layer Restart calculation automatically takes over the value specified in

[Base-calculation] 10

JAEA-DataCode 2013-009

- 126 -

Name-list Input (38)

Variable name Contents Default value

Gas flow model option

IST

Option for internal gas flow See section 413 for detail =0 model of gas diffusion in the axial direction is applied

=1 model of instantaneous pressure equilibrium and complete mixture of gas

=3 model of gas isolation in each segment

1

GPCPR When IST=3 pellet-cladding contact pressure (MPa) at which conditions of no gas flow in the axial direction are set 100

BDTR2 When IST=3 bonding progress (-) at which conditions of no gas flow in the axial direction are set 09

GMIN Minimum value (cm) of gap width for the gap gas flow model 0001

THG1 Interpolation parameter θ1 of temperature and volume etc of gas Used in

the model of fission gas flow in the axial direction 10

THG2 Interpolation parameterθ 2 used in diffusion calculation of model of fission

gas flow in the axial direction 10

Cladding oxidation model option

ICORRO

Cladding outer surface corrosion model option =0 not considered =1 EPRI =2 MATPRO-A(PWR)

=3 MATPRO-A(BWR) =4NUPEC =6 NUREG-CR-7022 (Zircloy-4 in PWR condition) =7 NUREG-CR-7022 (M5 alloy in PWR condition) =8 NUREG-CR-7022 (ZIRLO in PWR condition) =9 NUREG-CR-7022 (Zircaloy-2 in BWR condition)

1

RCORRO Oxide layer growth adjustment factor to multiply the oxide layer growth rate by RCORRO 10

FCORRO Factor to increase the oxide layer growth rate Multiplication =(10+FCORRO) 00

PBR Piling-Bedworth ratio = volume expansion ratio of oxide to metal in Zircaloy Piling-Bedworth Ratio 156

PX Portion of volume expansion ratio X in the radial direction () where X=PBR-10 This volume expansion is due to oxidation 800

OXFAC Multiplying factor for the oxide thermal conductivity 10 OXTHMX Upper limit of oxide layer thickness in calculation (microm) 1000

OXTH(41) Initial oxide thickness of cladding outer surface at each axial segment (microm) Restart calculation automatically takes over the value specified in [Base-calculation]

4101

CNOX CNOX(microm-1) specifies the multiplying factor F for the equation of oxide thermal conductivity F=1-CNOXS where S is oxide thickness (microm) 00

JAEA-DataCode 2013-009

- 127 -

Name-list Input (39) Variable name Contents Default

value Dry-out experiment analysis option

IDRY Option for Dry-out analysis When IDRY=1 dry-out analysis is On 0

DII Inner diameter of inner tube (cm) 18

DIO Outer diameter of inner tube (cm) 20

DOI Inner diameter of outer tube (cm) 21

DOO Outer diameter of outer tube (cm) 23

DSI Inner diameter of capsule outer mantle (cm) 27

DSO Outer diameter of capsule outer mantle (cm) 32

T1IN Inlet temperature of heating steam (oC) 2900

T5IN Inlet temperature of circulating water (oC) 500

TBOUND Coolant water temperature (oC) 400

PRS1 Pressure of heating steam (MPa) 72

PRS3 Pressure of He layer (MPa) 01

PRS5 Pressure of circulating water (MPa) 72

V1 Flow velocity of heating steam (ms) 02

V2 Flow velocity of circulating water (ms) 001

FTH Adjustment factor for the thermal conductivity of He layer (-) 10

RHC Adjustment factor for the thermal conductivity of heating steam layer and for radiative heat transfer coefficient of circulating water (-) 10

DTDRY Maximum time step width in calculating temperatures in dry-out analysis (s) 01

IV1 When IV1=1 mass flow rates (kgs) of heating steam and circulating water are set equal and input of VI is ineffective 0

JAEA-DataCode 2013-009

- 128 -

Name-list Input (40) Variable name Contents Default

value

Numerical output and plotted figure output option

IPHIS

Option for summary output For the history point designated by IP=1 numerical output is given in detail In addition summary output is given for each calculated quantity as a function of time

IPHIS=0 summary output is given only for the history point designated by IP=1 IPHIS=1 summary output is given for all the history points irrespective of IP

0

IPRINT Output option (=0 no output =1 output) (1) Input data list 1 (2) Fuel design data 0 (3) Mesh coordinates data 0 (4) List of parameters 0 (5) History data 1 (6) Results of thermal analysis of each time step 1 (7) Results of mechanical analysis of each time step 1 (8) Summary of thermal analysis results for each segment (thermal analysis) 1 (9) Summary of mechanical analysis results for each segment (thermal analysis) 1 (10) Summary of fission gas release results for each segment (thermal analysis) 1 (11) Summary of fission gas release results for entire fuel rod (thermal analysis) 1

(12) Summary of deformation behavior of pelletcladding of each segment (mechanical model) 1

(13) Summary of pellet stress and strain of each segment (mechanical analysis) 1 (14) Summary of cladding stress-strain of each segment (mechanical analysis) 1 (15) Summary of major results (final information) 1 (16) Output of He generation quantity at each segment 0

(17) Output of relative power density profile in the radial direction of pellet stack at each axialsegment 0

(18) Output of relative power at each axial segment 0 (19) Summary of entire-fuel-rod strain and corrosion of the objective segment 1 (20) Summary of coolant and of cladding oxidation (thermal analysis) 0 (21) INDO table shown after the summary output 0

(22) Table of plotted history points shwon after IDNO table 0

JAEA-DataCode 2013-009

- 129 -

Name-list Input (41) Variable name Contents Default

value

IWNOD

Segment output option (= 0 no output = 1 output) For IPRINT(8) IPRINT(9) IPRINT(10) IPRINT(16) IPRINT(17) output

(including plotter output) is performed for segment I where IWNOD(I) = 1 and output is not performed for segment I where IWNOD(I) = 0 However if all IWNOD is 0 IWNOD(IFEM) = 1 is set only at segment

IFEM

400

IWTHE Thermal analysis output option (= 0 no output = 1 output) (Option when IPRINT(6) = 1)

(1) Fuel temperature 1

(2) Gap gas 0

(3) Grain radius 0

(4) Intra-grain gas bubble radius 0

(5) Intra-grain gas bubble density 0

(6) Intra-grain gas diffusion coefficient 0

(7) Intra-grain gas effective diffusion coefficient 0

(8) Number of gas atoms in grain 0

(9) Number of gas atoms at grain boundary 0

(10) Number of gas atoms released 0

(11) Number of gas atoms in grain and at grain boundary 0

(12) Number of gas atoms released in grain and at grain boundary 0

(13) Number of gas atoms generated 0

(14) Fission gas release rate 1

(15) Gas density at grain boundary 0

(16) Saturated gas density at grain boundary 0

(17) Average stress at grain boundary 0

(18) Burn-up 1

(19) Conditions for thermal calculation 1

(20) Representative output for thermal calculation 1

(21) Number of fission gas atoms solved in solid matrix UO2 0

(22) Number of fission gas atoms in intra-grain bubbles 0

(23) Radius of inter-grain gas bubble 0

(24) Gas-release threshold radius of inter-grain bubble 0

(25) Fraction of coverage on grain boundary by inter-grain bubbles 0

(26) Threshold fraction of coverage on grain boundary by inter-grain bubbles

0

(27) Number density of inter-grain gas bubbles 0 (28) Effective burnup 0 (29) Ratio of rim structure formation ( vX ratio) 0 (30) Porosity in rim structure and total porosity 0

JAEA-DataCode 2013-009

- 130 -

Name-list Input (42) Variable name Contents Default

value

IWFEM Output option for the Local Mechanical Analysis II (effective only when IFEMRD = 0) (= 0 no output = 1 output) (option used when IPRINT(7) = 1)

(1) Stress in the radial direction 0 (2) Stress in the axial direction 1 (3) Stress in the circumferential direction 1 (4) Shear stress 0 (5) Equivalent stress 1 (6) Yield stress 0 (7) Total strain in the radial direction 0 (8) Total strain in the axial direction 0 (9) Total strain in the circumferential direction 0 (10) Total shear strain 0 (11) Equivalent plastic strain 1 (12) Creep strain in the radial direction 0 (13) Creep strain in the axial direction 0 (14) Creep strain in the circumferential direction 1 (15) Shear creep strain 0 (16) Equivalent creep strain 0 (17) Elastic strain in the radial direction 0 (18) Elastic strain in the axial direction 0 (19) Elastic strain in the circumferential direction 0 (20) Shear elastic strain 0 (21) Thermal strain in the radial direction 0 (22) Thermal strain in the axial direction 0 (23) Densification strain 0 (24) Swelling strain 0 (25) Stiffness in the radial direction 0 (26) Stiffness in the axial direction 0 (27) Stiffness in the circumferential direction 0 (28) Creep rate in the radial direction 0 (29) Creep rate in the axial direction 0 (30) Creep rate in the circumferential direction 0 (31) Creep rate in the shear direction 0 (32) Equivalent creep rate 0 (33) Total strain rate in the radial direction 0 (34) Total strain rate in the axial direction 0 (35) Total strain rate in the circumferential direction 0 (36) Total strain rate in the shear direction 0 (37) Equivalent total strain rate 0 (38) Strain energy 0 (39) Temperature distribution in the radial direction 1 (40) Mechanical interaction between pelletcladding 1

JAEA-DataCode 2013-009

- 131 -

Name-list Input (43) Variable name Contents Default

value

IWFEM (continued)

Output option for the Local Mechanical Analysis II (effective only when IFEMRD = 0) (= 0 no output = 1 output) (option used when IPRINT(7) = 1)

(41) Mechanical interaction between pelletpellet 1 (42) Displacement of node 1 (43) Plot of ldquoPellet-Clad Mechanical Interactionrdquo 1 (44) Crack yielding map 1 (45) Mechanical calculation conditions 1

IWROD Output option for the Entire-Rod-Length Mechanical Analysis I (effective only when IFEMRD = 1) (= 0 no output = 1 output)

(This option is used when IPRINT(7) = 1)

(1) Stress in the radial direction 0 (2) Stress in the axial direction 0 (3) Stress in the circumferential direction 0 (4) Equivalent stress 0 (5) Yield stress 0 (6) Creep strain in the radial direction 0 (7) Creep strain in the axial direction 0 (8) Creep strain in the circumferential direction 0 (9) Creep hardening strain 0 (10) Equivalent plastic strain 0 (11) Swelling strain 1 (12) Total strain in the radial direction 0 (13) Total strain in the axial direction 0 (14) Total strain in the circumferential direction 0 (15) Thermal strain 0 (16) Temperature of element 0 (17) Pressure in the radial and axial directions 0 (18) Displacement in the radial and axial directions 1 (19) Elastic strain 0 (20) Relocation strain of pellet 0

JAEA-DataCode 2013-009

- 132 -

Name-list Input (44) Variable name Contents Default

value

MAVE

MAVE=1 average values of stress and strain obtained by ERL mechanical analysis of cladding in the radial direction are output as summary for each time step

MAVE=0 summary of stress and strain at the inner surface of cladding are output as usual

0

IFT90 Option for temperature used in PTEMP and to make a file of gap conductance The file is generated when IFT90=1 (Unit 90) 0

IWRIM Option for output of EXCEL file of rim structure model (Unit 17) IWRIM=0 output is Off IWRIM=1 output is On 0

IOUT18 Option to make Unit 18 (file of contour map of stress-strain ) IOUT18=0 file is not made IOUT18=1 file is made 0

IOUT20 Option to make Unit 20 (summary output file organizing the maximum values of calculated temperature etc ) IOUT20=0 file is not made IOUT20=1 file is made

0

IPLT Generation of FEMAXI-7 plotter data file (Unit 1)

When IPLT=0 no plotter data file is generated 1

IPLTB Format of plotter data file (Unit 1) IPLTB =0 binary format IPLTB =1 text format 0

IPLOPT

Option for the file of plotter output at time-steps =0 Calculated results are output to plotter file only at the designated

historical points of input

=1 gt1 Calculated results are output to plotter file at all the time steps

= -n ( 011 nene nn ) Calculated results are output to plotter file at every n time steps However in addition to this results are output to plotter file also at the designated historical points of input

= -1 calculated results are output at time steps exceeding DT_OUT except

at the input-designated history points = -10 calculated results are output at all the time steps from PLTIME(1) to

PLTIME(2) However results are always output at the designated historical points of input

0

DT_OUT Effective when IPLOPT= -1 Maximum interval time (hour) of plotter output which determines the interval time of plotting at the instants which are not specified by input history points

00

IWRES Option to output the summary of file contents taken over from FEMAXI calculation =0 no output =1 simplified output =2 detailed output 0

ITIM(2)

ITIM(1) is the history point number with which the plotter output file begins to be generated

ITIM(2) is the history point number with which the plotter output file is terminated

1 2000

JAEA-DataCode 2013-009

- 133 -

Name-list Input (45) Variable name Contents Default value

IDNO(800)

Index data of plotter data file When IZERO=0 IDNO(401) - IDNO(500) are set 0

IDNO(1) - IDNO(40) data as a function of time and burnup 61 0 1 30

1 20 21 240

IDNO(41) - IDNO(100) data as a function of time burnup and

axial position

21 20 1 30 21 20

1 0 1 30 1 40 71

30 1 260

IDNO(101) - IDNO(300) data as a function of time burnup and

axial and radial positions (in the entire length mechanical analysis)

51 0 1 380 1 30

1 20 1 60 1 0 1 30 1 20 111

1210

IDNO(301) - IDNO(400) data as a function of time burnup and

axial and radial positions (in the local mechanical analysis)

61 140 71 230 151350

IDNO(401) - IDNO(420) Zero-power data as a function of time and burnup 61140

IDNO(421) - IDNO(450) data as a function of time burnup and radial and axial positions at Zero Power condition 71 230

IDNO(451) - IDNO(500) Zero-power data as a function of time burnup and axial and radial positions 151 350

IDNO(501) - IDNO(800) data ata as a function of time burnup and axial and radial positions 3000

44 Plot data index IDNO IDNO(1) to IDNO(600) are index for the plotter file When IDNO(K)=0 is designated for

the K-th physical quantity shown in ldquoTables (1) - (XX) Physical Quantities of Y axis (1) -

(XX)rdquo which is shown in section A5 the calculated value for the K-th physical quantity is not

stored in the plotter data file when IDNO(K)=1 it is stored and can be output in graphics

45 Calculated physical quantities in ZERO power state In the analysis of fuel behavior sometimes it is required to obtain such data as net FGR

and net permanent deformation of cladding during on-power period while eliminating the

temperature-related factors such as thermal expansion To realize this an optional function

to calculate fuel states under ZERO power state (shut-down state) and output the data is

included This function calculates the change of such quantities under zero-power state as

internal pressure space volume and cladding dimension in a calculation along the power

history by designating the name-list parameter IZERO as 1 2 3 or 4 In addition when

IZERO is designated graphic output for zero-power state can be given

JAEA-DataCode 2013-009

- 134 -

46 Method to input history point data Here the method of production of history data (line numbers 10-11) of the input file is explained

461 Power history data The following items must be inputted as the power history data

A1 = time (hr) B1=burnup A2 = linear heat rate (Wcm) A5 = fast neutron flux (ncm2sdots)

A3 = coolant temperature (K) A4 = coolant pressure (MPa) IT = input generator IP = output

option IS = temperature calculation option A6 = coolant velocity (ms)

However since B1 (burnup) is determined by input of A1 (time) and vice versa either A1

or B1 should be input The unit of B1 is designated by IBUNP when IBUNP = 0 B1 is

MWdt-UO2 when IBUNP = 1 B1 is MWdt-U and when IBUNP = 2 B1 is GJkg-U

Using IT (input generator) input by incremental form is possible IT is selected from

among 0 100 and minus100 when IT = 0 is set A1 (or B1) is recognized as a time increment

from the previous history point (or burnup increment) when IT = 100 A1 (or B1) is

recognized as the time increment from the first history point (or burnup increment) IP is an

output option IP ge 1 designates history points for detailed output and IP = 0 designates

history points for simplified output only IS is a switching flag between steadyunsteady

status in temperature calculation since this switching is automatically performed in the code

input of IP is usually unnecessary -FORMAT (6F 100 2I5)

F100 F100 F100 F100 F100 F100 I5 I5 I5 F50

A1 B2 A2 A5 A3 A4 IT IP IS A6

462 Relative power profile Here the input method for relative power profile is explained RH is the relative

power in the axial direction and designates the power ratio for A2 (linear heat rate which is

given by the history data) at each axial segment Therefore the number of RH data to be

input is NAX (number of axial segments) whose maximum is 40 When an identical

relative power is inputted at history points the input can be omitted using II (history point

option) FORMAT (8F80 I6) 8F 80 I6

(RH(I) I=1 NAX) II

JAEA-DataCode 2013-009

- 135 -

463 Input method of power history For input of power history the power-history-point number pairs of data (combination of

power history data and relative power profile) must be input

Example of input (1)

An example of input for a case with one axial segment where the power is increased

from 0 to 500 Wcm during a period of 10 hr is shown below Here the following values

are used fast neutron flux=25times1013 (ncm2sdots) when 500 Wcm is reached coolant

temperature= 51315 (K) coolant pressure= 34 (MPa) and coolant velocity= 30 (ms)

Example of input (1)

5050505050505050

2

00 51315 34 1 30

10 2

100 5000 25E13 1

5050505050505050

In the first line NHIST = 2 is shown the number of history points is 2

In the second line a hot stand-by state is set in the initial history data Input for the hot

stand-by state is not necessary since the following default values are set time (A1) 10minus5 (hr)

linear heat rate (A2) 10minus3 (Wcm) fast neutron flux (A5) 2times101 (ncm2sdots)

In the third line RH(1) = 10 is set since this case deals with a calculation of 1 axial

segment for the input of relative power profile The history point option is set as II = 2

which means that the same relative power profile is used for the two history points

The fourth line shows input of A1 = 10 (hr) A2 = 500 (Wcm) and A5 = 25times1013

(ncm2sdots) for the history data of the second history point so that the time step is automatically

divided and at each division point values of time-dependent variables are obtained by linear

interpolation Input of coolant temperature and coolant pressure is omitted this means that

the same values as those for the first history point are used that is A3=51314 and A4 = 34

are input For the output option IP = 1 is set in the second and third lines therefore detailed

output is performed both in the hot stand-by state and when 500 Wcm is reached

Example of input (2)

An example with 12 axial segments is shown in which base irradiation is first performed

at 200 Wcm up to 20GWdtUO2 The power is decreased thereafter and then increased to

250 Wcm After conditioning for 72 hr the power is increased to 500 Wcm maintained for

JAEA-DataCode 2013-009

- 136 -

24 hr and finally the power is decreased Here the power increase rate is 200 Wcmsdothr in

every period

The following values are set fast neutron flux=1014 (ncm2sdots) when 500 Wcm is

reached coolant temperature = 51315 (K) coolant pressure = 34 (MPa) and coolant

velocity is constant at 30 (ms) The relative power profile is given for base irradiation and

for ramp irradiation During the base irradiation output of calculation results is performed

at 5GWdt-UO2 10GWdt-UO2 15GWdt-UO2 and at 20GWdt-UO2 and during the ramp

irradiation the output of calculation is also performed at every 50 Wcm power increment

above 250 Wcm When the power is maintained at 500 Wcm the output of calculation is

obtained after 1 3 6 12 and 24 hr

Example of input (2) 5050505050505050 21 00 0001 20E09 51315 34 2 30 077 085 090 092 094 096 098 100 102 105 110 115 7 10 2000 40E13 1 50000 100000 150000 200000 2000 40E13 1 10 0001 20E09 -100 1 10 0001 20E09 -100

093 094 095 096 097 098 099 100 101 102 104 106 14

125 2500 50E13 -100 720 2500 50E13 -100 1 025 -100 05 075 10 125 5000 10E14 1 10 -100 30 60 120 240 5000 10E14 1 25 0001 20E09 -100 1 STOP 5050505050505050

The simplified output is obtained for the 21 history points shown above Among these

history points IP ge 1 is designated only at points where detailed output is required here IP =

2 is inputted and detailed output information is obtained at history points after this designation

The unit of burnup should be MWdt-UO2 therefore IBUNP = 0

The first line shows the number of history points NHIST = 21

The second line shows the history data of the hot stand-by state

JAEA-DataCode 2013-009

- 137 -

Data in the third and fourth lines show that the same relative power profile is used from the

first history point to the 7th history point

The fifth line shows the second history point data of A1 = 1(hr) A2 = 200(Wcm) and A5

= 4times1013 (ncm2sdots) Coolant temperature and pressure are the same as those in the hot

stand-by state

The 6-th to 9-th lines show input to extend burnup up to 20 GWdtUO2 at 200 (Wcm) and

simplified output is obtained at 5 GWdtUO2 and at 15 GWdtUO2 A2 (linear heat rate) and

A5 (fast neutron flux) are obtained by interpolation During this stage A2 = 200 (Wcm)

and A5 = 4times1013 (ncm2sdots) are used

The 10-th line shows setting of IT = minus100 This means that the power was decreased to

0001 (Wcm) within 1 hr from the burnup of 20 GWdtUO2 shown in line 8

The 11-th line shows that the relative power profile was changed after the power leveled

off at 0001 (Wcm) for 1 hr

The 12-th and 13th lines show that the relative power profile given in the 12-13th lines is

applied from the 14-th history point up to the last (26-th) history point Here since a power

of 0 is not allowed a value of around 10minus3 (Wcm) must be set

The 14-th line shows that the power was increased to 250 (Wcm) within 125 hr and the

15-th line shows that the power was maintained at 250 (Wcm) for 72 hr

The 15-th to 20-th lines show that the power was increased by 50 Wcm within 025 hr

(200 Wcmsdothr) after being maintained at 250 (Wcm) for 72 hr Namely elapsed time at the

previous history point where IT = minus100 was designated (shown in the 14-th line) is given by

A1 Since the linear heat rate is given by the linear interpolation setting of A2 = 300 350

400 and 450 in lines 17-20 gives the same results Similarly the fast neutron flux used here

gives the same results by setting A5 = 6times1013 7times1013 8times1013 and 9times1013

The 21-25rd lines show history data which were set to obtain simplified output when the

power is maintained at 500 (Wcm) and at 1 3 6 and 12 hr from the starting time The

detailed output is obtained 24 hr after the starting time

The 26-th line shows that the power was decreased within a 25hr period starting from 24

hr from the starting time Here since the coolant temperature and pressure were set as

constant input for them at the second and later history points was omitted Also since

linear heat rate and fast neutron flux are obtained by linear interpolation input error occurs if

no power is generated at the last history point (Both values should not be zero)

JAEA-DataCode 2013-009

- 138 -

47 Setting of cladding outer surface temperature

In FEMAXI it is possible to simulate transition boiling and investigate changes in the

stress strain deformation oxidation buckling pellet surface temperature and internal

pressure while omitting the calculation of the heat transfer to coolant by designating a history

of the cladding outer surface temperature using input data

The cladding outer surface temperature is designated using IS of the history data IS is

an option to designate conditions of gas flow and heat transfer calculation

IS=0 Stable calculation (fission gas released inside a fuel rod is instantaneously and

completely mixed with gap gas and plenum gas Cladding temperature is calculated

without considering heat capacity of the gas)

IS=1 Gas flow calculation (fission gas flows inside the fuel rod and is distributed and

mixed with gap gas and plenum gas However heat capacity of the gas is not

considered in the calculation of the cladding temperature)

IS=2 Unsteady calculation (fission gas flows inside the fuel rod and distributed and

mixed with gap gas and plenum gas Heat capacity of the gas is considered in the

calculation of the cladding temperature)

In FEMAXI IS=3 is newly included for the heat transfer calculation in which the cladding

outer surface temperature is assigned

IS=3 Heat transfer calculation by designating the cladding outer surface temperature

At the history point where IS=3 is designated axial distribution of the cladding outer

surface temperature is designated by input

For the historical points in which IS=3 is assigned the axial distribution of the cladding

outer surface temperature can be assigned by input

JAEA-DataCode 2013-009

- 139 -

Table 471 shows an example of inputs when the cladding outer surface temperature is

not assigned (ISlt3) and Table 472 shows an example when the cladding outer surface

temperature is assigned (IS=3) Here the data for the cladding outer surface temperature are

described after inputting the power profile in the axial direction

Table 471 Example of inputs without designation of cladding outer surface temperature

TSURUGA 1 NEW TYPE (BWR 8X8)

$INPUT IBUNP=1ICK1=0GR=10IPLT=1BETAX=0002IFEMRD=0

R1=1EPSRLZ=5D-3IPLOPT=-5DMAX=1GRWF=1SBU=1D4FCRFAC=1

IWTHE=181IPTHCN=5BUMIN=50000BUMAX=200000IURS=0

ICORRO=1EFCOEF=1INPCK=0

$END

10 5 2

0 1058 1230

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

3235 03 10 00 00 00

9

0001 53D13 55035 6894 0 1974

10 10 10 10 10 10 10

10 10 10 9

100 2500 53D13 0

02777778 2500 53D13 -100 1

00027778 2500 53D13 -100 1

00005556 2500 53D13 -100 1

00416667 2500 53D13 -100 1

00005556 2500 53D13 -100 1

00027778 2500 53D13 -100 1

02777778 2500 53D13 -100 1

STOP

JAEA-DataCode 2013-009

- 140 -

Table 472 Example of inputs with designation of cladding outer surface temperature

TSURUGA 1 NEW TYPE (BWR 8X8)

$INPUT IBUNP=1ICK1=0GR=10IPLT=1BETAX=0002IFEMRD=0

R1=1EPSRLZ=5D-3IPLOPT=-5DMAX=1GRWF=1SBU=1D4FCRFAC=1

IWTHE=181IPTHCN=5BUMIN=50000BUMAX=200000IURS=0

ICORRO=1EFCOEF=1INPCK=0

$END

10 5 2

0 1058 1230

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

3235 03 10 00 00 00

9

0001 53D13 55035 6894 0 1974

10 10 10 10 10 10 10 10

10 10 9

100 2500 53D13 0

02777778 2500 53D13 -100 1 3

553 553 553 553 553 553 553 553 553 553

00027778 2500 53D13 -100 1 3

603 603 603 603 603 603 603 603 603 603

00005556 2500 53D13 -100 1 3

923 923 923 923 923 923 923 923 923 923

00416667 2500 53D13 -100 1 3

923 923 923 923 923 923 923 923 923 923

00005556 2500 53D13 -100 1 3

603 603 603 603 603 603 603 603 603 603

00027778 2500 53D13 -100 1 3

553 553 553 553 553 553 553 553 553 553

02777778 2500 53D13 -100 1 3

553 553 553 553 553 553 553 553 553 553

STOP

Cladding surface temperature IS

JAEA-DataCode 2013-009

- 141 -

5 Models and Input manual of RODBURN-1

51 General feature of RODBURN input format

Input method of RODBURN is described below Here the input method will change in accordance with the designation of Card No2 ldquoKREG1rdquo so that the method will be explained in the two cases ie KREG1gt0 and KREG1=0 In the case KREG1gt0 users can make input data and parameters at usersrsquo will while in the other case KREG1=0 users can make a standard default set of input data and parameters in an easy manner The case KREG1gt0 will be explained in the input-data-format (1) and the other case KREG1=0 will be explained in the input-data-format (2)

52 Some comments on the RODBURN code (Sept1998)

The RODBURN code has two types of versions One is based on the ORIGEN (ORIGEN79(51)) the other is based on ORIGEN2(52) The ORIGEN79-basis version has been released to the NEA Data_Bank as RODBURN-1 in which resonance absorption calculation uses the RABBLE code to replace (update) the cross section data of U-238(n γ) and Pu-240(n γ) The cross section library of ORIGEN79 is those for the fuel body region though it cannot deal with the cross section changes induced by self-shielding effect of 238U in every part of fuel region This drawback is supplemented by RABBLE(53) with ENDF-BIV(52) data On the other hand ORIGEN-2 used in RODBURN-2 targets the fuel body region In ORIGEN-2 a library is implemented which can give the cross section changes induced by averaged changes of nuclides during burning ORIGEN2 treats the spectrum by one-group approximation for usersrsquo convenience so that it cannot bring in the resonance calculation results (RABBLE results) Therefore RODBURN-2 is suitable for an overall trend of fuel change during burning but it cannot give the power density profile in the radial direction of fuel pellet This is contradictory with the basic purpose of such fuel performance code as FEMAXI

The bottom line is that RODBURN-1 using ORIGEN79 is appropriate for a fuel performance code If the cross section changes with burning are to be taken into account every one step of burning calculation should call RABBLE to update the cross section values However dependence of the resonance integral on burnup is not so strong Thus RODBURN-1 takes a simplified method which uses RABBLE calculation only once at zero-burnup Fig51 summarizes the structure of calculation flow and relationship among the roles of component codes

JAEA-DataCode 2013-009

- 142 -

Fig51 Calculation flow of RODBURN-1

INPUT (Spatial meshing of rod assignment of elements and materials and power history)

1 Resonance Integral in each mesh Separate resonance Parameters by ENDB-IV (05eV~352keV)

2 RABBLE

Microscopic cross-section

Infinite diluting cross- section by WIMS-D library (352keV~0821MeV)

1E Spectrum

Revision of ORIGEN resonance library of U Pu and their isotopes

Calculates amount of fissile material in the axial segment of rod

Specifies three group spectrum constants (thermal fast resonance) ORIGEN rarr PWR amp BWR

Determines thermal neutron flux profile in the radial direction by the table of representative profiles in PWR and BWR (WIMS-D ) Halden reactor larr Robertsonrsquos formula Fast and resonance flux larr average values

Calculates power per unit flux at all meshes

Calculates flux at all meshes

Burnup calculation by ORIGEN

Axial profile of linear heat rate

Output File

∆t increment

JAEA-DataCode 2013-009

- 143 -

53 Explanations of RODBURN-1 models and methods

RODBURN has several types of default profile of power distribution RODBURN does not perform a so-called neutron transport calculation which is conducted by some other dedicated burning analysis codes such as PLUTON or MICROS The following section is an excerpt translated from the original report of RODBURN written by MrMUchida in Japanese [MUchida and HSaito RODBURN A Code for Calculating Power Distribution in Fuel Rods JAERI-M 93-108 (1993)] - - - - - - - - - - - - - - - - - - - - - - - - Beginning of excerpt - - - - - - - - - - - - - - - - - - - - - - - - - 22 Method of radial power profile in RODBURN (1) In case when neutron flux is given In accordance with the logics of the ORIGEN code neutron flux is based on the thermal neutron flux The fast neutron flux and epithermal flux are calculated in proportion to the thermal flux using spectrum parameters The thermal flux is a function of time and axial and radial locations inside the rod (rz t)t tφ φ= (2) Here input quantity is an averaged neutron flux over radius and its relative profile in the axial direction

2

0

1(z t) (r z t) 2

prat t pr dr rφ φ =

int (3)

where pr is the pellet radius

The three spectrum parameters THERM RES and FAST are used in accordance with ORIGEN

0THERM4

TT

π= (4)

where T is thermal neutron temperature (K) and T0=29316K RES = [resonance neutron flux per unit lethargy][thermal neutron flux] (5) FAST = [Fast neutron flux][thermal neutron flux] (6)

Here upper limit of the thermal neutron region is set 05 eV lower limit of fast region is set 1 MeV These three constants are included in RODBURN for each reactor type They are listed in Table 51 For PWR and BWR the recommended values(55) of ORIGEN are adopted as they are For a heavy water reactor only the value for the Halden reactor is

JAEA-DataCode 2013-009

- 144 -

specified and the three constants are derived from of the spectrum distribution determined in the Halden Project However they would be substantially applicable to other heavy water reactor In the axial direction of rod these three group spectrum distributions are treated in a variable separation from space distribution That is if thermal flux is twice larger at a certain axial elevation than at the other elevation the resonance and fast fluxes are assumed also twice However in the radial direction of rod different procedure is done depending on spectrum Average figures over radius are used for the fast and resonance fluxes as

(rz t) (z t)fast fastφ φ= (rz t) (z t)resonance resonanceφ φ= (7)

Radial distribution of thermal flux can be depressed toward the center region when a fuel pellet has high enrichment Consequently for the radial distribution of thermal flux several pre-calculated relative profiles depending on the reactor type and enrichment level are included in RODBURN and they are used by interpolation with respect to actual enrichment These relative profile figures are listed in Table 52 The profiles in the Halden reactor are listed in Table 53 In the initial stage of irradiation the enrichment is uniform in the radial direction However with burnup distribution of residual U-235 becomes non-uniform Moreover generation of Pu is much more non-uniform However in the code these non-uniformities are neglected and average concentrations of fissile materials at a certain axial elevation are used to interpolate the figures in the Table Here Pu-238 and Pu-241 is assumed as equivalent to U-235 The relative figures of thermal flux in Table 2 have been calculated by the WIMS-D code(54) The figure of a heavy water reactor has been derived on the basis of the following method recommended by the Halden Project

0(r) ( )therm CI rφ κ= (8)

where C is a normalization constant Io is a modified Vessel function r is radius (cm) and κis the reverse of diffusion distance (cm-1) given by

08 082 0190328( ) 054 ( )pdκ ερ ερminus= + (9)

where ε is enrichment () ρ is theoretical density ratio of pellet and pd is pellet

diameter (cm) The resonance absorption by U-238 has a strong self-shielding effect due to its high concentration so that the Pu generation is much deviated to the outer region of pellet

JAEA-DataCode 2013-009

- 145 -

Amount of Pu-240 is not so large even in MOX fuel nevertheless the resonance cross section (resonance reaction rate) is still larger As stated in the former section such distributions as those which are steeply deviated to the surface region cannot be dealt with by ORIGEN Therefore the RODBURN code has implemented the resonance calculation code RABBLE as one of the components and let RABBLE to calculate the resonance integral of the above two elements for each of the radially-divided sections in the first step of the whole burning process calculation In the ORIGEN calculation following this first calculation for the two elements U-238 and Pu-240 only the calculated results by RABBLE are used instead of the ORIGEN library data (2) In case when linear power history is given There are some cases of fuel experiments in which only history of the average power of rod is reported In this case also it is necessary to calculate the power density profile and changes of fissile and fission-product elements composition To cope with such a case in a simplified and convenient manner this ldquolinear power history is givenrdquo option has been implemented In this option contrary to the ordinary calculation steps the code calculates the neutron flux which corresponds to the input average power history However in general a reported power history is often a result of calculating Pu buildup on some appropriate assumption so that it is preferable to execute repeated calculations using the condition of section (1) ie ldquowhen neutron flux is givenrdquo under the assumption of history of an absolute value of neutron flux to confirm the reported average power history 1) Expression of neutron flux profile Since RODBURN does not perform a concurrent process of reactor physics calculation and burning analysis calculation it is necessary to assume the neutron flux profile in a reasonable way The fast and resonance fluxes are similarly to section (1) assumed uniform in the radial direction The thermal flux profile is determined by referring to the Table 52 in accordance with the fissile materials concentrations The axial profile is assumed to have an identical shape similarly to section (1) The simplest shape in the axial direction is a cosine profile This profile is modified in order to express a profile which is different to some extent

cos

( )cos

m

b t

m

b t

z zAL

z tz z

L

πδ δ

φαπ

δ δ

minus + + =

minus + +

(10)

( ) 2m b tz L δ δ= + + (11) where A is a normalizing constant L is an axial length of fuel stack z is a distance from

JAEA-DataCode 2013-009

- 146 -

bottom of pellet stack bδ and tδ are ldquoextrapolating distancerdquo from the top end and bottom end respectively α is a constant to express ldquoa slightly flattened profile in comparison with the cosine profilerdquo and it can be varied within the range of 0 1αle lt When 0α = the denominator of Eq(10) is 10 so that the profile becomes the cosine profile itself With increasing α the profile is flattened The two bδ and tδ ldquoextrapolating distancesrdquo aim to express a special type of irradiation condition in test reactor rather than the ldquoextrapolating distancerdquo usually used in reactor physics In irradiation experiments of fuel it often occurs that a test rod shorter than the height of reactor core is set at the axial elevation deviated from the mid-height position of the reactor core In such a case the neutron flux profile can be expressed by designating the two extrapolating distances independently It is also possible to calculate the profile shape in advance and to input the shape as a series of numerical values In both the cases the relative profile of neutron flux in the axial direction can be changed a few times during the irradiation time 2) Calculation of the absolute neutron flux At the beginning of each time step concentration of every element is given at all the (r z) locations The cross section is fixed Also the neutron relative profile is given Assuming that this relative profile is expressed by a normalizing distribution function F(r z) total heat generation corresponding to the neutron flux averaged over entire fuel rod can be obtained by

0 0 ( )f fQ E F r z dvφ σ= int (12)

where fσ is fission cross section and fE is energy per one fission Assuming that the total

heat generation corresponding to the input average linear heat rate is Q an actual average neutron flux is simply

00

QQ

φ φ=

(13)

Neutron flux at each position is determined by this equation using F(r z) However in fact these calculations are performed by taking into account of every element fast neutron and thermal neutron Now that the local neutron flux is obtained ORIGEN calculates the changes of amount of every element during the time step so that ORIGEN is called again after the calculation of Eq(12) Here it is to be noted that during one time step in the input data a constant heat generation rate is assumed In the ORIGEN calculation amount of elements changes during one time step and in accordance with these changes an accumulated heat generation ie burn-up is calculated Therefore if time step increment is too large some discrepancy is capable of

JAEA-DataCode 2013-009

- 147 -

being generated among the input data burn-up and element concentrations To avoid this RODBURN re-divides the input time step into a number of small periods to prevent a too long time step

Table 51 Three group-constants of spectrum

Reactor type THERM RES FAST

PWR 0701 0304 2010

BWR 0676 0307 1514

HWR 0450 0100 1500

PWR (MOX) 0592 0366 2390

BWR (MOX) 0632 0355 1694

Table 52 Thermal neutron flux profile in the radial direction

In the Halden water reactor

Radius (mm)

Thermal neutron flux profile (Enrichment dependent) 1 3 5 7

201 1000 1000 1000 1000 284 1008 1025 1045 1068 347 1014 1043 1077 1117 401 1020 1060 1109 1165 449 1026 1078 1141 1216 491 1032 1096 1174 1267 531 1038 1114 1207 1319 567 1043 1132 1241 1372 602 1049 1150 1276 1428 634 1055 1168 1310 1483

JAEA-DataCode 2013-009

- 148 -

Tabl

e 5

3 T

herm

al n

eutro

n flu

x pr

ofile

s de

pend

ing

on e

nric

hmen

t R

adiu

s (m

m)

PW

R (U

rani

um)

PW

R (M

OX)

1

3

5

7

0

25

378

7

31

1

083

127

0

985

09

64

09

44

09

23

09

96

09

01

07

98

07

03

183

0

987

0

968

0

950

0

932

0

996

0

911

0

819

0

731

2

25

09

89

09

74

09

59

09

44

09

97

09

26

08

47

07

74

259

0

992

0

981

0

970

0

958

0

998

0

945

0

886

0

826

2

90

09

95

09

89

09

82

09

76

09

98

09

67

09

30

08

90

318

0

999

0

998

0

997

0

996

1

000

0

993

0

982

0

966

3

43

100

4 1

009

1

014

1

019

1

001

1

024

1

045

1

059

3

67

100

9 1

021

1

034

1

046

1

003

1

060

1

120

1

175

3

89

101

6 1

037

1

058

1

079

1

005

1

104

1

216

1

325

4

10

102

5 1

059

1

093

1

127

1

008

1

168

1

355

1

551

Rad

ius

(mm

)

B

WR

(Ura

nium

)

BWR

(MO

X)

1

3

5

7

025

3

78

731

10

83

1

90

09

90

09

77

09

64

09

51

09

93

08

44

06

98

05

70

268

0

992

0

980

0

968

0

957

0

994

0

861

0

728

0

609

3

29

09

93

09

83

09

74

09

64

09

95

08

85

07

71

06

68

379

0

995

0

988

0

980

0

973

0

996

0

914

0

825

0

740

4

24

09

97

09

93

09

88

09

84

09

98

09

49

08

90

08

29

465

0

999

0

998

0

998

0

997

1

000

0

989

0

968

0

937

5

02

10

02

10

05

10

09

10

12

10

02

10

37

10

61

10

72

537

1

006

1

014

1

021

1

029

1

004

1

094

1

178

1

246

5

69

10

10

10

24

10

37

10

51

10

08

11

64

13

28

14

80

600

1

016

1

038

1

060

1

082

1

012

1

265

1

553

1

847

- -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- -

End

of e

xcer

pt

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

JAEA-DataCode 2013-009

- 149 -

54 Explanation of neutron flux control by ldquoALPH(K) EXTL(K) EXTT(K) K=1 NDISTrdquo Option for IDIST

IDIST allows an option to give the shape of axial profile of thermal neutron It allows to

select the shape of either (deformed) cosine curve or input numerical figure When IDIST=0

input of (ALPH(K) EXTL(K) EXTT(K) K=1 NDIST) is necessary This line is input

NDSIT times (=total number of profile patterns)

ALPH(I) flattening constant of the I-th pattern where 0≦ALPH(I)lt1

EXTL(I) Lower ldquoextrapolating distancerdquo (cm)

EXTT(I) Upper ldquoextrapolating distancerdquo (cm)

These are the constants used in the following equation to modify the cosine profile If

they are all set 0 a simple cosine profile is obtained Fig52 below shows as an example with A=10 L=10 bδ =05 tδ =05 and Zm=10 some profile shape patterns in which α is

parametrically changed When αgt0 a deformed cosine curve is given

Fig52 Example of profile shape with A=10 L=10 bδ =05 tδ =05 Zm=10 and α

which is parametrically changed

0

02

04

06

08

1

12

0 05 1 15 2 25

φ(z)

z

0012502503750506250750875

L (fuel active length)

Z=Zm

( ) cos cosm m

b t b t

z z z zz t AL L

ϕ π απδ δ δ δ

minus minus = + + + +

EXTT (δt)

EXTL (δb)

α

coscos)(

++

minus

++

minus=

tb

m

tb

m

Lzz

LzzAtz

δδαπ

δδπφ

JAEA-DataCode 2013-009

- 150 -

55 Some important input name-list parameters of FEMAXI-7 for usage of RODBURN-1

Name-list

input parameter

Contents Default value

IFLX

Number of power history points to designate the radial power profile If the numerical data are not given IFLX should be one of 0 -1 o -2 which corresponds to the following options

= 0 Robertson model -1PLUTON results -2 RODBURN results When IFLX=-1 or -2 corresponding results files should exist in the WrkRBOUT

0

FACHE When IFLXlt0 amount of He gas given by RODBURN calculation is multiplied by FACHE 10

IRH

Interpolation option of axial power profile = 0 the profile at omitted input points is the same as that in the previous

stage = 1 linear interpolation in terms of burnup is performed for omitted input

points

0

INPRD

Options for the fetching method of RODBURN results to FEMAXI-6 (Treatment of fast-neutron flux is designated by IFSNT)

INPRD=0 By interpolating the results of RODBURN (the radial and axial

profiles of power fast-neutron flux and He generation) with respect to space and burnup the data are arranged to correspond to the segments in the axial direction of FEMAXI

INPRD=1 An identical number of segments in the axial direction is assumed

for FEMAXI and RODBURN The results from RODBURN (the radial and axial profiles of power fast-neutron flux and He generation) are used as data for the corresponding axial segments No spatial interpolation is performed Interpolation of burnup is performed

INPRD=2 The number of segments in the axial direction can be different for

FEMAXI and RODBURN (interpolation processing is performed) With respect to the profiles of power and He generation in the radial direction the result of RODBURN is retrieved For the power profile in the axial direction the input to FEMAXI is used

1

IROD

When IRODgt0 an original input file ldquorodinrdquo for RODBURN is generated in the Wrk directory and FEMAXI calculation is not executed Users can modify the contents of this file and rename it to be used in RODBURN calculation eg ldquorodinrdquo to ldquoABCrddatrdquo

IROD=1PWR =2BWR =3Halden BWR =4PWR(MOX) =5 BWR(MOX)

0

JAEA-DataCode 2013-009

- 151 -

56 RODBURN Input data format (1) (When KREGI gt0 value is given in line No2)

Line No Variables FORMAT Content

1 TITLE 18A4 Title of calculation

2

MODEL

10I6

Reactor type option 1=PWR 2=BWR

3=Halden WR 4=PWR(MOX) 5=BWR(MOX)

MESHZ Number of axial zones ( le 40)

KREG1

Number of radial regions ( le 39 including coolant region

for resonance calculation) In the case of ldquoKREG1=0rdquo

follow the input-data format (2)

MESHR

Number of pellet regions in the radial regions ( le 36)

(Each axial zone can have different materials such as

enriched U natural U etc but each axial zone has to

have the same number of regions)

IOPT

Option to designate the irradiation history

=0 average thermal neutron flux is input

=1 average linear heat rate (Wcm) is input

IDIST

Option to designate axial profile of either thermal

neutron flux or linear heat rate

=0 (deformed ) cosine profile is input

=1 Numerical values are input

(Note even if IOPT=1 IDIST and related array data

should be given by either the line 15 or 16)

MODEL2 [can be omitted if reactor type is not changed]

Option to designate the change of reactor type in the

course of irradiation

Reactor type 1=PWR 2=BWR 3=Halden WR

4=PWR(MOX) 5=BWR(MOX)

Here MODEL2=MODEL is possible

KREG2 [can be omitted if reactor type is not changed]

Number of radial regions ( le 39 including coolant

region for resonance calculation) in MODEL2

However if MODEL2 is not designated or if

resonance calculation is not done in MODEL2 KREG2

is not designated

IFLPW IFLPW=0 axial profile of thermal neutron flux is input

IFLPW=1 axial profile of linear heat rate is input

ISTOP ISTOP=0 Regular calculation

ISTOP=1 Input checking calculation

JAEA-DataCode 2013-009

- 152 -

RODBURN Input data format (1_continued) (When KREGIgt0 value is given in line No2)

Line No Variables FORMAT Content

3 ZMESH(I)

I=1 MESHZ 9F84

Upper end coordinate value of each axial zone of active

length (cm)

4

RMIN

RMAX2(I)

I=1 KREG1

F80 8F80

( 8X 8F80)

RMIN fuel pellet inner radius (cm)

RMAX2(I) outer radius of each region (cm)

(ie center hole is not included in the ldquoregionsrdquo)

5 TEMP(I)

I=1 KREG1

8X 8F80

( 8X 8F80)

Temperature at each region (K)

(Rough values independent of time and axial zone)

6 NMIX I6 Total number of ldquomixturerdquo with different composition

7

(NUCLX(I)

CONCEX(I)

I=17)

7(I3 F73)

This line is repeated NMIX times consecutively

Each line corresponds to one mixture and specifies

maximum 7 nuclides

NUCLX(I) nuclides number below

CONCEX(I) concentration (gcm3)

Nuclides number

1 = 238U 2 = 240Pu 3 = H 4 = D

5 = 16O 6 = He 7 = Zr-2 8 = Zr-4

9 = 235U 10 = 239Pu 11 = 241Pu 12 = 242Pu

8

MIX(IJ)

I=1 KREG1

J=1 MESHZ)

30I2

This line is repeated MESHZ times consecutively

Each line corresponds to each axial zone In each line

specify what ldquomixturerdquo exists in each radial region from

inner region to outer region (The order to specify the

mixture in the line 7 is ldquomixture numberrdquo)

Only if KREG2ne0 designate the lines 9 to 13 Otherwise skip to the line 14

9

RMIN

RMAX3(I)

I=1 KREG2

F80 8F80

( 8X 8F80)

Radius of each region after reactor type change

RMIN pellet inner radius (cm)

RMAX3(I) outer radius of each region (cm)

(Center hole is not included in the ldquoregionsrdquo

Here pellet regions up to MESHR should be given

the same values as RMAX2(I) )

10 TEMP2(I)

I=1 KREG2

8X 8F80

( 8X 8F80)

Temperature at each region after reactor type change(K)

(Rough values independent of time and axial zone)

11 NMIX I6 Total number of ldquomixturerdquo with different composition

after reactor type change

JAEA-DataCode 2013-009

- 153 -

RODBURN Input data format (1_continued) (When KREGIgt0 value is given in line No2)

Line No Variables FORMAT Content

12

(NUCLX(I)

CONCEX(I)

I=1 7)

7(I3 F73)

This line is repeated NMIX times consecutively

Each line corresponds to one mixture and specifies

maximum 7 nuclides after reactor type change

NUCLX(I) nuclides number below

CONCEX(I) concentration (gcm3)

Nuclides number

1 = 238U 2 = 240Pu 3 = H 4 = D

5 = 16O 6 = He 7 = Zr-2 8 = Zr-4

9 = 235U 10 = 239Pu 11 = 241Pu 12 = 242Pu

Here number and concentrations of nuclides in pellet

should be the same as those specified in the line 7

13

(MIX2(I J)

I=1 KREG2

J=1 MESHZ)

30I2

This line is repeated MESHZ times consecutively

Each line corresponds to each axial zone In each line

specify what ldquomixturerdquo exists in each radial region from

inner region to outer region after reactor type change

(The order to specify the mixture in the line 12 is

ldquomixture numberrdquo However regions of pellet should

have the same data as those specified in the line 8)

14 NDIST I6

Number of patterns of axial profile of either neutron

flux (IFLPW=0) or linear heat rate (IFLPW=1) The

patterns can be specified at each time step

15

(ALPH(K)

EXTL(K)

EXTT(K)

K=1 NDIST)

3F84

(Not necessary when IDIST=1)

This line is input NDIST times consecutively

ALPH(I) Constant of averaging of the I-th pattern

where 0 le ALPH(I) lt 1

EXTL(I) Lower region extrapolation distance (cm)

EXTT(I) Upper region extrapolation distance (cm) (Theses constants modify the cosine profile If all the

values are set equal to 0 a normal cosine profile is given as input) See the explanation in section 54

16

(FLUXZ(IK)

I=1 MESHZ

K=1 NDIST)

12F82

(Not necessary when IDIST=0)

This line is input NDIST times consecutively

IFLPW=0 axial profile of thermal neutron flux is input

IFLPW=1 axial profile of linear heat rate is input

JAEA-DataCode 2013-009

- 154 -

RODBURN Input data format (1_continued) (When KREGIgt0 value is given in line No2)

17 ISTP DTIME I6 E125

ISTP Number of time steps ( le 200) DTIME The longest period of time step (day)

The ldquonumber of time stepsrdquo specified here is the times of specifying the approximate pattern of output power history Total period of irradiation can be one single time step The code automatically divides each input step period into the period which is not longer than DTIME

It is better to specify the length of DTIME to be less than the period during which irradiation is less than 1times1020ncm2 within the 200 time steps

18

(TIMX(I)

KDIS(I)

PLHR(I 1)

PLHR(I 2)

ICHG

I=1ISTP)

E125 I6

2E125 I6

(Input ISTP times consecutively) TIMX(I) end of I-th step (day) KDIS(I) Number of the I-th step pattern of either thermal neutron flux profile or linear heat rate profile (variable ldquokrdquo in the lines 15 and 16)

PLHR(I 1) PLHR(I 2) Average powers at the beginning and end of the I-th step respectively

IOPT = 0 average thermal neutron flux (ncm2s) IOPT = 1 average linear heat rate (Wcm) ICHG when MODEL2 gt 0 ICHG=1 should be

designated at the time TIMX(I) when reactor type changes In other cases ICHG is not designated

19 NPRINT I6 Total number of time steps at which the results are

printed out Besides these the final result is printed out additionally

20 TIMPRN(I) I=1 NPRINT

9F82 Tine of print-out of numerical results (day) From the

first step after TIMPRN(I) results are printed out sequentially

21 IDIMPR(I) I=1 NPRINT

9I8

Corresponding to the line 20 specify what type of output is printed out IDIMPR=1 only 1-dimensional data is output (Eg axial zone-wise averaged burnup are printed

out for all the axial zones) =2 1-dimensional data and (r z) distributions of

power generation variables Limited to the axial zones which are specified by the line 22

=3 In addition to the above 2-dimensional nuclides contents are output (Limited to the axial zones which are specified by the line 22)

22 IZD2(I) I=1 12

12I6 The axial zone numbers for the 2-dimensional output are specified sequentially as needed

23 STOP A4 To define the end of the input data ldquoSTOPrdquo should be input from the 1-st column to the 4-th column

JAEA-DataCode 2013-009

- 155 -

57 RODBURN Input data format (2) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

1 TITLE 18A4 Title of calculation

2

MODEL

10I6

Reactor type option 1=PWR 2=BWR

3=Halden WR 4=PWR(MOX) 5=BWR(MOX)

MESHZ Number of axial zones ( le 40)

KREG1 Specify ldquoKREG1=0rdquo This gives KREG1=MESHR+3

MESHR

Number of pellet regions in the radial regions ( le 36)

Each axial zone can have different materials such as

enriched U natural U etc but each axial zone has to

have the same number of regions

IOPT

Option to designate the irradiation history

=0 average thermal neutron flux is input

=1 average linear heat rate (Wcm) is input

IDIST

Option to designate axial neutron flux profile (or

power profile)

=0 (deformed ) cosine profile is input

=1 Numerical values are input

(Note even if IOPT=1 IDIST and related array data

should be given by either the line 10 or 11)

MODEL2 [can be omitted if reactor type is not changed]

Option to designate the change of reactor type in the

course of irradiation

Reactor type 1=PWR 2=BWR 3=Halden WR

4=PWR(MOX) 5=BWR(MOX)

Here MODEL2=MODEL is possible

KREG2 [can be omitted if reactor type is not changed]

Number of radial regions ( le 39 including coolant

region for resonance calculation) in MODEL2

However if MODEL2 is not designated or if

resonance calculation is not done in MODEL2 KREG2

is not designated

IFLPW

IFLPW=0 axial profile of thermal neutron flux is input

(eg Halden Reactor)

IFLPW=1 axial profile of linear heat rate is input

ISTOP ISTOP=0 Regular calculation

ISTOP=1 Input checking calculation

JAEA-DataCode 2013-009

- 156 -

RODBURN Input data format (2-continued) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

3

IAUTO

7I6

IAUTO=0 Input the nuclides number and concentrations

of mixtures in each of the pellet cladding and coolant

regions

IAUTO=1 default values are set (notes 1 2 and 8)

IPTCH1

Option before reactor type change

IPTCH1=0 input the outer diameter of coolant boundary

IPTCH1=1 input fuel rod pitch

IZR1

(note 1)

Cladding material option before reactor type change

(IZR1=2 Zry-2 IZR1=4 Zry-4)

IHD1

(note 2)

Coolant option before reactor type change

(IHD1=0 H2O IHD1=1 D2O)

IPTCH2

(note 6)

Option after reactor type change

IPTCH2=0 input the outer diameter of coolant

boundary

IPTCH2=1 input fuel rod pitch

IZR2 (note 1) Cladding material option after reactor type change

(IZR2=2 Zry-2 IZR2=4 Zry-4)

IHD2 (note 2) Coolant option after reactor type change

(IHD2=0 H2O IHD2=1 D2O)

4

ZLENG

(note 3)

7F80

Active length of fuel rod (cm)

PDIN Pellet inner diameter (cm) PDIA

(note 4) Pellet outer diameter (cm) CDOUT1

(note 5) Cladding outer diameter before reactor type change (cm)

PITCH1 (note 6)

Coolant boundary diameter before reactor type change

(IPTCH1=0) or fuel rod pitch (IPTCH1=1) (cm) CDOUT2

(note 5) Cladding outer diameter after reactor type change (cm)

PITCH2 (note 6)

Coolant boundary diameter after reactor type change

(IPTCH2=0) or fuel rod pitch (IPTCH2=1) (cm)

JAEA-DataCode 2013-009

- 157 -

RODBURN Input data format (2-continued) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

5

(note 7)

TP1

8F80

Pellet center temperature before reactor type change (K)

TS1 Pellet surface temperature before reactor type change(K)

TC1 Cladding temperature before reactor type change (K)

TW1 Coolant temperature before reactor type change (K)

TP2 Pellet center temperature after reactor type change (K)

TS2 Pellet surface temperature after reactor type change (K)

TC2 Cladding temperature after reactor type change (K)

TW2 Coolant temperature after reactor type change (K)

When IAUTO=0 specify the lines 6 and 7 When IAUTO=1 specify the line 8

6

(NUCLX(I)

CONCEX(I)

I=17)

7(I3 F73)

This line is repeated three times consecutively

Each line corresponds to one mixture and specifies

max7 nuclides before reactor type change

NUCLX(I) nuclides number below

CONCEX(I) concentration (gcm3)

Nuclides number

1 = 238U 2 = 240Pu 3 = H 4 = D

5 = 16O 6 = He 7 = Zr-2 8 = Zr-4

9 = 235U 10 = 239Pu 11 = 241Pu 12 = 242Pu

Only when KREG2gt0 specify the line 7

7

(NUCLX(I)

CONCEX(I)

I=1 7)

7(I3 F73)

This line is repeated three times consecutively

Each line corresponds to one mixture and specifies

max7 nuclides after reactor type change

NUCLX(I) nuclides number below

CONCEX(I) concentration (gcm3)

Nuclides number

1 = 238U 2 = 240Pu 3 = H 4 = D

5 = 16O 6 = He 7 = Zr-2 8 = Zr-4

9 = 235U 10 = 239Pu 11 = 241Pu 12 = 242Pu

Here number and concentrations of nuclides in pellet

should be the same as those specified in the line 6

JAEA-DataCode 2013-009

- 158 -

RODBURN Input data format (2-continued) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

When IAUTO=1 specify the line 8

8

(note 8)

FDEN 6F80

Pellet theoretical density ratio (-)

FU235 U-235enrichment (-)

FPUO2

[If fuel contains no Pu this line can be omitted]

PuO2 weight ratio

+ 22

2

PuOUOPuO (-)

FPU240 Pu-240 weight ratio

minus totPuPu240

(-)

FPU241 Pu-241 weight ratio

minus totPuPu241

(-)

FPU242 Pu-242 weight ratio

minus totPuPu242

(-)

9 NDIST I6

Total number of patterns of the axial profiles of either

neutron flux (IFLPW=0) or linear heat rate

(IFLPW=1) This can be specifies at each time step

10

(ALPH(K)

EXTL(K)

EXTT(K)

K=1 NDIST)

3F84

(Not necessary when IDIST=1) This line is input NDIST times consecutively ALPH(I) Constant of averaging of the I-th pattern where 0 le ALPH(I) lt 1 EXTL(I) Lower region extrapolation distance (cm) EXTT(I) Upper region extrapolation distance (cm) (This modifies the cosine profile If all the values are set equal to 0 a normal cosine profile is given as input)

See the explanation in section 54

11 (FLUXZ (I K)

I=1 MESHZ) 12F82

(Not necessary when IDIST=0)

This line is input NDIST times consecutively

IFLPW=0 axial profile of thermal neutron flux is input

IFLPW=1 axial profile of linear heat rate is input

12 ISTP DTIME I6 E125

ISTP Number of time steps ( le 200)

DTIME The longest period of time step (day) The ldquonumber of time stepsrdquo specified here is the times of specifying the approximate pattern of output power history Total period of irradiation can be one single time step The code automatically divides each input step into sub-steps which are not longer than DTIME It is better to specify the length of DTIME to be less than the period during which irradiation is less than 1 times

1020ncm2 within the 200 time steps

JAEA-DataCode 2013-009

- 159 -

RODBURN Input data format (2-continued) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

13

(TIMX(I)

KDIS(I)

PLHR(I 1)

PLHR(I 2)

ICHG

I=1 ISTP)

E125 I6

2E125 I6

This line is input ISTP times consecutively

TIMX(I) end of I-th step (day)

KDIS(I) Number of the I-th step pattern of either

thermal neutron flux profile or linear heat rate profile

(variable ldquoKrdquo in the lines 10 and 11)

PLHR(I 1) PLHR(I 2) Average powers at the

beginning and end of the I-th step respectively

IOPT = 0 average thermal neutron flux (ncm2s)

IOPT = 1 average linear heat rate (Wcm)

ICHG when MODEL2 ne 0 ICHG=1 should be

designated at the time TIMX(I) when reactor type

changes In other cases ICHG is not designated

14 NPRINT I6

Total number of time steps at which the results are

printed out Besides these the final result is printed out

additionally

15 TIMPRN(I)

I=1 NPRINT 9F82

Tine of print-out of numerical results (day)

(From the first step after TIMPRN(I) results are printed

out sequentially)

16 IDIMPR(I)

I=1 NPRINT 9I8

Corresponding to the line 15 specify what type of

output is printed out IDIMPR=1 only 1-dimensional data is output (Eg axial zone-wise averaged burnup are printed

out for all the axial zones) =2 1-dimensional data and (r z) distributions

of power generation variables Limited to the axial zones which are specified by the line 17

=3 In addition to the above 2-dimensional

nuclides contents are output (Limited to the axial

zones which are specified by the line 15)

17 IZD2(I)

I=1 12 12I6

The axial zone numbers for the 2-dimensional output are

specified sequentially as needed

18 STOP A4 To define the end of the input data ldquoSTOPrdquo should be

input from the 1-st column to the 4-th column

JAEA-DataCode 2013-009

- 160 -

(note 1) Densities of Zry-2 and Zry-4 are assumed as 655 (gcm3)

(note 2) In light water (H2O) density of H= 0079(gcm3) density of O=0631(gcm3)

In heavy water (D2O) density of D= 01807(gcm3) density of O=07226(gcm3)

(note 3) Length of each axial zone is given by equally dividing the total active length of rod by

ldquoMESHZrdquo

(note 4) Pellet is divided into equal-volume ring elements The number of the ring elements is

specified by ldquoMESHRrdquo

(note 5) It is assumed that a cladding has one region

(note 6) It is assumed that coolant has two regions When rod-to-rod pitch is specified coolant

outer boundary radius r is given by PITCHrπ

=

(note 7)

Approximating the temperature distribution inside a pellet by a quadrature function gives

the temperature of i-th region from the center as

( )2

12lowast

minuslowastminusminus=

MESHRITTTT sPPi

Where TP pellet center temperature and Ts pellet surface temperature

(note 8)

Calculation method of element compositions (gcc) of fuel pellet are described below

(1) Calculation of theoretical density of MOX fuel Assuming the theoretical density of MOX fuel as ρ weight ratio of UO2 as

2UOF

weight ratio of PuO2 as2PuOF volume ratio of UO2 as

2UOV and volume ratio of PuO2

as 2PuOV the followings hold

1

1

22

22

222

222

=+

=+

sdot=sdot

sdot=sdot

PuOUO

PuOUO

UOUOUO

PuOPuOPuO

FF

VV

FV

FV

ρρ

ρρ

where2UOρ =1096(gcc)

2PuOρ =1146(gcc) Eliminating 2UOV

2PuOV and 2UOF

from the above Eqs and solution with respect to ρ gives

( )2222

22

PuOUOPuOPuO

PuOUO

F ρρρρρ

ρminus+

sdot=

(2) Calculation of each weight ratio

Each weight ratio is defined as follows 2

2 2

2

2 2

2

2

UO

PuO

UOFUO PuO

PuOFUO PuO

=+

=+

235

235 235 238

238

238 235 238

U

U

UFU U

UFU U

=+

=+

JAEA-DataCode 2013-009

- 161 -

(note 8)

PuPuPuPuPuF

PuPuPuPuPuF

PuPuPuPuPuF

PuPuPuPuPuF

Pu

Pu

Pu

Pu

242241240239

242

242

242241240239

241

241

242241240239

240

240

242241240239

239

239

+++=

+++=

+++=

+++=

2

2

PuOPuF

UOUF

Pu

U

=

=

Here values of 2PuOF FU235 FPu240 FPu241 and FPu242 are given by input

As a result FUO2 FU238 and FPu239 are determined by the above equations

Also for FU and FPu th next equations hold

235 238

235 238

239 240 241 242

239 240 241 242

235 238235 238 32

239 240 241 242239 240 241 242 32

U UU

U U

Pu Pu Pu PuPu

Pu Pu Pu Pu

F FFF F

F F F FFF F F F

sdot + sdot=

sdot + sdot +sdot + sdot + sdot + sdot

=sdot + sdot + sdot + sdot +

Therefore each elemental composition (concentration) can be determined by the

following equations

( ) ( )

235 235

238 238

239 239

240 240

241 241

242 242

2

2

2

2

2

2

2 21 1

U U U UO D

U U U UO D

Pu Pu Pu PuO D

Pu Pu Pu PuO D

Pu Pu Pu PuO D

Pu Pu Pu PuO D

o U UO Pu PuO D

F F F F

F F F F

F F F F

F F F F

F F F F

F F F F

F F F F F

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= minus + minus sdot sdot

where FD is the pellet theoretical density ratio (-)

References 5 (51) Bell MJ ldquoORIGEN ndash The ORNL Isotope Generation and Depletion Coderdquo

ORNL-4628 (1973) (52) Croff AG ldquoORIGEN2- A Revised and Updated Version of the Oal Ridge Isotope

Generation and Depletion Coderdquo ORNL-5621 (1980)

JAEA-DataCode 2013-009

- 162 -

(53) Kier PH and Robba AA ldquoRABBLE A Program for Computation of Resonance Absorption in Multiregion Reactor Cellsrdquo ANL-7326 (1967)

(54) WIMS-D IAEA Nuclear Data Services httpwww-ndsiaeaorg (55) Croff AG et al ldquoRevised uranium-plutonium cycle PWR and BWR models for the

ORIGEN computer coderdquo ORNLTM-6051 (1978)

(56) ENDF-BIV IAEA Nuclear Data services httpwww-ndsiaeaorg

JAEA-DataCode 2013-009

- 163 -

6 Input Manual of Plotting Control Program EXPLOT

61 Input parameters for EXPLOT Line No SYMBOL (FORMAT) 1 Comments 2 ISET () Total number of figures Input ISET-sets consisting of the following lines IRNUM ITOPT NOLINE () Function setting

3

IRNUM number of lines drawn in one figure (max 5 lines)

ITOPT designation of graph type ITOPT = 0 X axis represents time burnup or linear heat rate ITOPT = 1 X axis represents coordinates in the radial or axial direction (relative value

is allowed) ITOPT = 2 Construct a diagram for comparison of calculated values with measured

values (in this case maximum value of IRNUM becomes 4 since one line is used for the measured values)

ITOPT=3 X axis represents either radius or axial coordinate Designation method of ITIM in line 7 is different from the case of ITOPT=1

NOLINE Grid line (broken line) option = 0 Grid line is not plotted = 1 Grid line is plotted =2 Grid line is plotted When once or more in ISET-sets lines NOLINE=2 is designated the corresponding CSV file is output with sets of the radial and axial coordinates time and physical quantity = -1 When once or more in ISET-sets lines NOLINE= -1 is designated the PS file is not generated = -2 When once or more in ISET-sets lines NOLINE= -1 is designated the PS file is not

generated but CSV file is output with sets of the radial and axial coordinates time and physical quantity

Accordingly when once or more in ISET-sets lines NOLINElt0 is designated the PS file is not generated

JAEA-DataCode 2013-009

- 164 -

IXOPT IXOPT2 IYOPT2 IYNUM (IYOPT(I) I=1 IYNUM) () Axis setting

4

IXOPT setting of the contents of X axis (set when ITOPT = 0 or 2) = 1 time = 2 coordinates in the radial direction (minus) (set when ITOPT = 1) = 3 coordinates in the axial direction (minus) (set when ITOPT = 1) = 4 burnup (at the objective segment set by IXOPT2) = 5 linear heat rate (at the objective segmentWcm) = 6 burnup (average on all axial segments set by IXOPT2) =7 linear heat rate (average on all axial segmentsWcm) =8 elapsed time from the point designated by ITIM(1) in the input line 7 =9 energy density (calg-fuel) IXOPT2 setting of units for time and burnup Setting of units when X axis represents time (IXOPT = 1) (Dummy when IXOPTgt1 ) IXOPT2 = 0 hour IXOPT2 = 1 day IXOPT2 = 2 Min IXOPT2 = 3 sec IXOPT2 = 4 msec Setting of units when X axis represents burnup (IXOPT = 4 or 6) (Dummy when IXOPT is neither 4 nor 6) IXOPT2 =0 MWd tUO2 IXOPT2 =4 MWd tMOX IXOPT2 =2 MWd tU IXOPT2 =5 GWd tMOX IXOPT2 =1 GWd tUO2 IXOPT2 =6 MWd tHM

IXOPT2 =3 GWd tU IXOPT2 =7 GWd tHM IYOPT2 setting of units for time and burnup Setting of units when Y axis represents time (IYOPT(I)=1 or 12) IYOT2 =0 MWd tUO2 IYOPT2 =4 MWd tMOX IYOT2 =2 MWd tU IYOPT2 =5 GWd tMOX

IYOPT2 =1 GWd tUO2 IYOPT2 =6 MWd tHM IYOPT2 =3 GWd tU IYOPT2 =7 GWd tHM

IYNUM number of Y axes When more than 2 physical properties are set for Y axis

(IYNUM ≧2) IYNUM = IRNUM must be set since one graph is drawn for one Y axis (IYOPT(I) I = 1 IYNUM) select contents of Y axis from Tables 1 to 9 and input the

physical quantity number

(IYOPT(I) I=1 IRNUM) Input the IDNO number of physical quantity of Y axis selected from Table (1) to (3)

(Note) 1) Designation of IXOPT=19 has the same effect as that which is given by designation of IXOPT=8 or IXOPT2=4 and the time is in elapsed time (ms) 2) HM is the sum of weight of U and Pu in MOX fuel

5 (IR(I) I = 1 IRNUM) () Radial mesh number (IR(I) I = 1 IRNUM) radial mesh number is set for each figure When setting is not necessary input 1

JAEA-DataCode 2013-009

- 165 -

6

(IZ(I) I = 1 IRNUM) () Axial segment number (IZ(I) I = 1 IRNUM) Set the segment number in the axial direction for each figure Input 1 when setting is not necessary

7

(ITIM(I) I = 0 1) or (ITIM(I) I = 1 RNUM) () Time step number (When ITOPT = 0 input (ITIM(I) I = 12)) ITIM(1) = set a time step number for starting point of the figure ITIM(2) = set a time step number for end point of the figure (When ITOPT = 1 input (ITIM(I) I = 1 RNUM)) Set time step numbers for each figure (When ITOPT=3 input (ITIM(I) I=1 IRNUM)) Set the time of output Unit is specified by

IXOPT2 ITIM is a real number Example when IRNUM=3 IXOPT2=3 (unit is sec) and ldquoITIM(1)=00 ITIM(2)=10 ITIM(3)=20rdquo is input by Line No7 the plot program finds the history points which are given at the closest time to 00s 10sand 20s and outputs figures at these history points

8

X0 XM XNUM IXN IFLAG(6) () Setting of X-axis scale This line is a DUMMY when IXOPT=2 or 3 X0 minimum value of X-axis scale (IFLAGne3) XM maximum value of X-axis scale (IFLAGne3) XNUM increment of X-axis scale (IFLAGne3) IXN number of digits after decimal point on X axis (IFLAGne3) Example IXN = minus1 for 10 IXN = 1 for 100 IXN = 2 for 1000 IFLAG setting of X-axis scale =3 automatic scaling is applied to X axis ne3 X axis is drawn with designated scaling by input

9

IYNUM lines are required (I = 1 IYNUM) Y0(I) YM(I) YNUM(I) IYN(I) IFLAG(I) () Setting of Y-axis scale

Y0(I) minimum value of Y-axis scale YM(I) maximum value of Y-axis scale YNUM(I) increment of Y-axis scale IYN(I) number of digits after decimal point on Y axis (input in the same manner as for IXN) IFLAG(I) option for Y-axis scale = 0 scale is expressed with real numbers (decimal number expression) = 1 scale is expressed with floating format = 2 logarithmic scaling is used for Y axis = 3 automatic scaling is applied to Y axis

When IFLAG(I) = 3 Y0 to IYN are DUMMY since automatic scaling is selected When IFLAG(I)=2 user can designate a semi-logarithmic scaling For example if user

wants to plot with the Y-axis of 107 to 1013 scale range designate ldquoY0(I)=7 YM(I)=13 YNUM(I)=1rdquo where IYN(I) is dummy

Note 1) Data specified by asterisk () are input with free format

JAEA-DataCode 2013-009

- 166 -

62 Tables of IDNOs classified by variables

Table (1) Physical Quantities of Y axis (1) ()designated by IXOPT2

Group No Item Unit Std-Out

A Data regarding time and burnup

1 2 3

Rod average burnup Fission gas release rate Rod internal pressure

() ()

(MPa)

4 Plenum volume (cm3)

5

Pellet elongation (when IFEMRD=1) at the objective segment designated by IFEM)

()

6 7 8

Cladding elongation at plenum top (IFEMRD=1) Maximum change of cladding outer radius Average linear heat rate in the axial direction

() (microm)

(Wcm)

times

9 10

Average iodine concentration Maximum iodine concentration

(gcm2) (gcm2)

times

times

11 12 13

Average change in cladding outer radius Coolant inlet temperature Coolant pressure

(microm) (C)

(MPa)

times

times

14

Coolant velocity or mass flow rate (designated by input parameter)

(ms) or (kgcm2s)

times

15 Average fast neutron flux in the axial direction (1013ncm2s)

16 17 18

Average fast neutron fluence in the axial direction Pellet elongation (IFEMRD=0) Cladding elongation (IFEMRD=0)

(1020ncm2) () ()

19

Cladding max change of outer diameter at zero power state (IFEMRD=0)

(microm) times

20

Cladding average change of outer diameter at zero power state (IFEMRD=0)

(microm) times

21 22

Pellet elongation (IFEMRD=1) Cladding elongation at plenum top (IFEMRD=1)

(mm) (mm)

times

times

23 --- 28 Not used

29 30

Coolant mass flow rate He gas release rate

(kgm2s) ()

times

times

[Note] 1) Std-Out (Standard output states) indicates the default state of output O mark

= output X mark = not output They are standard output from FEMAXI by setting default

states of IDNO in making the plotter data file Regarding IDNO number items marked by times

eg pellet elongation when plotted output of pellet elongation is needed it is necessary to set

IDNO(21)=1 in input file of FEMAXI

2) When calculating a case with long power history in FEMAXI the size of the plot data file

sometimes becomes substantially large To avoid this unnecessary items among items

marked by should be set as IDNO()=0 Whereby the plot file size can be minimized Here

JAEA-DataCode 2013-009

- 167 -

indicates each item number in the figure

3) When IFEMRD=0 items 5 and 6 are elongations at the objective segment

4) IDNO=7 and 11 are the displacement at the outer surface of oxide of cladding When the

displacement at the metal part of cladding ie at the interface of metal-oxide IDNO=174

is used

Here IDNO=19 and 20 are results of 2-D local mechanical analysis In this analysis no

oxide layer is taken into account so that cladding outer radius displacement (metal-oxide

interface) is implicitly assumed to be equal to the displacement at outer oxide surface

When IFEMRD=1 ie entire rod length (ERL) mechanical analysis solely IDNO=17

to 20 which are used in the 2-D local mechanical analysis are given the results of ERL

analysis

JAEA-DataCode 2013-009

- 168 -

Table (2) Physical Quantities of Y axis (2) ()designated by IXOPT2 Group No Item Unit Std-Out

B1 Data regarding time burnup

and axial location

41 Linear heat rate (thermal analysis=TA) (Wcm)

42 Burnup (TA) ()

43 Diameter gap width (mechanical analysis when IFEMRD=0 gap at each axial segment and when IFEMRD=1 gap at each node couple is output sequentially)

(microm) times

44 45

PCMI contact pressure (When IFEMRD=0) Fission gas release rate

(MPa) ()

times

46 Frictional force between pellet and cladding in the axial direction (When IFEMRD=0)

(MPa) times

47 Pellet elongation (When IFEMRD=0) () times

48

Cladding elongation (Items 47 and 48 are output by the mechanical analysis When IFEMRD=0 elongation at each axial segment is obtained when IFEMRD=1 the same values in the axial direction are output)

() times

49 50 51 52 53 54

Gap conductance (TA) Coolant temperature (TA) Cladding inner surface temperature (TA) Cladding outer surface temperature (TA) Pellet center temperature (TA) Pellet outer surface temperature (TA)

(Wcm2C) (C) (C) (degC) (degC) (degC)

times times times

55 56 57 58 59 60

Cladding outer radius change(the same as 43) Composition of Xe + Kr (TA) Pellet density (TA) Cladding metal-oxide interface temperature Cladding outer oxide layer thickness Coolant enthalpy

(microm) ()

(TD) (C)

(microm) (kJkg)

times times times times

61 62 63 64 65

Coolant quality Cladding outer surface heat flux Cladding outer surface heat transfer coefficient Fast neutron flux Fast neutron fluence

(-) (Wcm2)

(Wcm2C) (1013ncm2s) (1020ncm2)

times times times

66 67 68 69

Pellet power density Gap size Pellet densification strain (ΔVV) Rim thickness

(Wcm3) (microm)

(001) (microm)

70 Additional FGR from rim structure ()

Note 1) When the 2-D local mechanical analysis is performed (IFEMRD=0) items 47 and 48 are uniform values in the axial direction and items 43 44 46 55 and 68 are the values which are obtained with respect to half a pellet length of the objective segment The others are obtained with respect to the 1-D entire rod length mechanical analysis (IFEMRD=1) 2) IDNO=55 cladding outer diameter displacement (metal-oxide interface) = displacement at outer oxide surface

JAEA-DataCode 2013-009

- 169 -

Table (3) Physical Quantities of Y axis (3) Group No Item Unit Std-

Out

B2 Data regarding time burnup

and axial location

71 72 73 74 75

Molar quantity of released Xe Molar quantity of released Kr Molar quantity of released He Contact pressure in the radial direction (IFEMRD=1) Frictional force in the axial direction (IFEMRD=1)

(001mol) (001mol) (001mol) (MPa) (MPa)

times times times

times

76 77 78 79 80

Pellet elongation (IFEMRD=1) Cladding elongation (IFEMRD=1) Cladding outer oxide surface diameter change (IFEMRD=1) Pellet porosity deignated by IPDENS Pellet volume change deignated by IPDENS

() ()

(microm) () ()

times

times

times

times

times

81 82 83 84 85

Pellet diameter change (IFEMRD=1) Pellet diameter strain (IFEMRD=1) Pellet-clad bonding progress ( 0 BD 1le le ) Intra-granular gas bubble radius (average) Volumetric strain by intra-granular gas bubbles(average)

(microm) () ( - ) ( o

A ) ()

times

times

times

times

times

86 87 88 89 90

Inter-granular gas bubble radius (average) Volumetric strain by inter-granular gas bubbles(average) Pellet radial displacement (IFEMRD=1) Elastic component of pellet radial displacement Thermal component of pellet radial displacement

(microm) ()

(microm) (microm) (microm)

times

times

times times times

91 92 93 94 95

Relocation component of pellet radial displacement Densification component of pellet radial displacement Swelling component of pellet radial displacement Creep component of pellet radial displacement Pellet axial displacement

(microm) (microm) (microm) (microm) (microm)

times

times times times times

96 97 98 99 100

Cladding inner surface radial displacement Elastic component of cladding radial displacement Thermal component of cladding radial displacement Creep component of cladding radial displacement Cladding axial displacement

(microm) (microm) (microm) (microm) (microm)

times times

times times times

(Note) The items 88 to 100 are obtained with respect to entire rod length (IFEMRD=1)

JAEA-DataCode 2013-009

- 170 -

Table (4) Physical Quantities of Y axis (4) ()designated by IXOPT2 Group NO Item Unit Std-

Out C1 Data regarding time burnup locations in the axial and radial directions

101 102 103 104 105

Pellet local burnup Pellet power density Pellet node temperature Cladding node temperature Pellet element temperature

() (Wcm3)

(C) (C) (C)

106 107 108 109 110

Cladding element average temperature Fission gas release rate Pellet grain diameter Pellet equivalent stress Pellet average stress

(C) ()

(microm) (MPa) (MPa)

times times times times

111 112 113 114 115

Pellet stress in the radial direction Pellet stress in the circumferential direction Pellet stress in the axial direction Pellet strain in the radial direction Pellet strain in the circumferential direction

(MPa) (MPa) (MPa)

() ()

times times times times times

116 117 118 119 120

Pellet strain in the axial direction Pellet elastic strain in the radial direction Pellet elastic strain in the circumferential direction Pellet elastic strain in the axial direction Pellet thermal expansion strain in the radial direction

() () () () ()

times times times times times

121 122 123 124 125

Pellet thermal expansion strain in the axial direction Pellet densification volumetric strain(ΔVV) Pellet swelling strain(ΔLL) Pellet equivalent creep strain Pellet creep strain in the axial direction

() () () () ()

times times times times times

126 127 128 129 130

Pellet creep strain in the axial direction Pellet creep strain in the axial direction Pellet equivalent plastic strain Pellet plastic strain in the radial direction Pellet plastic strain in the circumferential direction

() () () () ()

times times times times times

131 132 133 134 135

Pellet plastic strain in the axial direction Pellet displacement in the radial direction Pellet displacement in the axial direction Pellet radial displacement by elastic strain Pellet axial displacement by elastic strain

() (microm) (microm) (microm) (microm)

times times times times times

136 137 138 139 140

Pellet radial displacement by thermal strain Pellet axial displacement by thermal strain Pellet radial displacement by densification Pellet axial displacement by densification Pellet radial displacement by swelling

(microm) (microm) (microm) (microm) (microm)

times times times times times

(Note) When the local mechanical analysis is performed (IFEMRD=0) values of stress strain and displacement are obtained with respect to half a pellet length of the objective segment When entire rod length mechanical analysis is performed (IFEMRD=1) they are obtained with respect to the entire rod length

JAEA-DataCode 2013-009

- 171 -

Table (5) Physical Quantities of Y axis (5) ()designated by IXOPT2 Group No Item Unit Std-

Out

C2

Data regarding time burnup locations in the axial and radial directions

141 142 143 144 145

Pellet axial displacement by swelling Pellet radial displacement by creep Pellet axial displacement by creep Pellet radial displacement by plastic strain Pellet axial displacement by plastic strain

(microm) (microm) (microm) (microm) (microm)

times times times times times

146 147 148 149 150

Radius of intra-granular gas bubble Volumetric strain by intra-granular gas bubble Radius of inter-granular gas bubble Volumetric strain by inter-granular gas bubble Absolute value of pellet yield stress

( A )

() (microm) ()

(MPa)

times times times times times

151 152 153 154 155

Cladding equivalent stress Cladding average stress Cladding stress in the radial direction Cladding stress in the circumferential direction Cladding stress in the axial direction

(MPa) (MPa) (MPa) (MPa) (MPa)

times times times

156 157 158 159 160

Cladding strain in the radial direction Cladding strain in the circumferential direction Cladding strain in the axial direction Cladding elastic strain in the radial direction Cladding elastic strain in the circumferential direction

() () () () ()

times times times times

161 162 163 164 165

Cladding elastic strain in the axial direction Cladding thermal strain in the radial direction Cladding thermal strain in the axial direction Cladding average axial thermal strain (Note) Cladding axial irradiation growth strain

() () () () ()

times times times times

166 167 168 169 170

Cladding equivalent creep strain Cladding creep strain in the radial direction Cladding creep strain in the circumferential direction Cladding creep strain in the axial direction Cladding equivalent plastic strain

() () () () ()

times times times times

171 172 173 174 175

Cladding plastic strain in the radial direction Cladding plastic strain in the circumferential direction Cladding plastic strain in the axial direction Cladding radial displacement Sum of cladding axial displacements in each segment

() () ()

(microm) (microm)

times times

176 177 178 179 180

Cladding radial displacement by elastic strain Cladding axial displacement by elastic strain Cladding radial displacement by thermal strain Cladding axial displacement by thermal strain Cladding axial displacement by irradiation growth strain

(microm) (microm) (microm) (microm) (microm)

(Note1) Cladding average thermal strain of item 159 is obtained with respect to time burnup and radial location (Note2) The above table represents the data of both the mechanical analysis and thermal analysis for the entire length model The data of the average thermal strain in the axial direction of the cladding 164 represent those with respect to time burnup and the location in the radial direction

JAEA-DataCode 2013-009

- 172 -

Table (6) Physical Quantities of Y axis (6) Group No Item Unit Std-

Out

C2

Data regarding time burnup locations in the axial and radial directions

181 182 183 184

Cladding radial displacement by creep strain Cladding axial displacement by creep strain Cladding radial displacement by plastic strain Cladding axial displacement by plastic strain

(microm) (microm) (microm) (microm)

185 186 187

Number of generated fission gas atoms per unit volume of fuel Number of fission gas atoms per unit volume inside grain Number of fission gas atoms per unit volume of solid matrix

(atomscm3) (atomscm3) (atomscm3)

times times times

188 Number of fission gas atoms in the intra-grain bubbles per unit volume of fuel

(atomscm3) times

189 190

Number of intra-grain bubbles per unit volume Number of fission gas atoms per unit area of grain surface

bubblescm3 (atomscm2)

times times

191

Saturation number of fission gas atoms per unit area of grain surface

(atomscm2) times

192 193 194

Number of gas bubbles per unit area of grain surface Coverage fraction of inter-granular bubbles on grain surface Saturation radius of inter-granular gas bubble

bubblescm2 (-) (microm)

times times times

195 196 197

Nominal diffusion coefficient of fission gas atoms Effective diffusion coefficient of fission gas atoms Pellet theoretical density designated by IPDENS

(cm2s) (cm2s) (TD)

times times times

198 --- 200 Not used

201 Difference between element-average temperature of cladding and cladding outer surface temperature (oC) times

202 --- 222 Not used 223 Pellet yield stress (MPa) times 224 Cladding yield stress (MPa) times

225 --- 227 Not used 228 229 230

Pellet relocation strain in the radial direction Pellet relocation strain in the hoop direction Pellet relocation strain in the axial direction

() () ()

times times times

231 232

Pellet radial displacement induced by relocation Pellet axial displacement induced by relocation

(microm) (microm)

times times

233 Cladding outer surface displacement by waterside oxidation (microm) times 234 Pellet densification strain + swelling strain () 235 Apparent stiffness of pellet in the radial direction (GPa) 236 Apparent stiffness of pellet in the circumferential direction (GPa) 237 Apparent stiffness of pellet in the axial direction (GPa) 238 Youngrsquos modulus of cladding (GPa) 239 Poissonrsquos ratio of cladding (-) 240 Strain-hardening exponent of cladding (-) 241 Youngrsquos modulus of pellet (GPa) 242 Poissonrsquos ratio of pellet (-) 243 Thermal conductivity of cladding (WcmK) 244 Specific heat of pellet (JkgK) 245 Specific heat of cladding (JkgK) 246 Pellet melting point depending on the axial position (ordmC) 247 Gap size depending on the radial and axial positions (microm) 248 Deviation stress of cladding in the radial direction (MPa) 249 Deviation stress of cladding in the circumferential direction (MPa) 250 Deviation stress of cladding in the axial direction (MPa)

JAEA-DataCode 2013-009

- 173 -

Table (7) Physical Quantities of Y axis (7) (Note) Number of radial elements of IDNO=251- 300 depends on the designation of MESH

Group No Item Unit Std-Out

C2

Data regarding time burnup locations in the axial and radial directions

251 252 253 254

Fuel pellet local burnup Fuel pellet effective burnup Pellet ring element average temperature Fuel pellet thermal conductivity

(MWdt) (MWdt)

(oC) (WcmK)

times times times times

255 256

Cladding heat generation density by γ-heating Fraction of rim structure volume ( vX ratio)

(Wcm3) (-)

times times

257 Total porosity of fuel (0

0 0

swg densV Vp pV V

∆ ∆= + + ) () times

258 259 260

Rim structure porosity Open porosity in rim structure Porosity by fission gas bubbles

() () ()

times times times

261 Total volumetric swelling of pellet () times

262 263 264 265

Re-dissolution ratio b of fission gas atoms into solid matrix Re-dissolution ratioαinto solid matrix in rate-law model Fraction of gas atoms trapped by intra-granular gas bubbles g Stiffness fraction of dish element (buffer space)

(1s) (1s) (1s) (-)

times times times times

266 267

Displacement of pellet solid elements in the axial direction Volumetric fraction of dish space element to the initial value

(microm) (-)

times times

268 Not used

269 Ratio of amount of fission gas atoms in intra-grain gas bubbles to the total amount of generated fission gas atoms () times

270 Fission gas atoms in grain boundary gas bubbles in unit volume of pellet (atomscm3) times

271 Grain boundary inventory of fission gas atoms (atoms) times

272 Number density of grain boundary gas bubbles in pellet (bubblescm3) times

273 Ratio of amount of fission gas in grain boundary gas bubbles to the total amount of generated fission gas atoms () times

274 Fission gas atoms density inside the pores in rim structure (atomscm3) times

275 Grain diameter of fuel pellet (microm) times

276 277

Volumetric swelling of gas pores in rim structure --------- Not used -------------

()

times

278 Heat generation density of fuel pellet (Wcm3) times

279 280 281

Nodal temperature of pellet ring element Amount of released gas atoms per unit volume of pellet Pellet theoretical density designated by IPDENS=1

(oC) (atomscm3)

(TD)

times times times

282 283 284

Pellet theoretical density designated by IPDENS=2 Pellet theoretical density designated by IPDENS=3 Pellet theoretical density designated by IPDENS=4

(TD) (TD) (TD)

times times times

285 Ratio of amount of fission gas atoms retained in the solid phase of rim structure (-) times

286

Fraction of transferred amount of gas atoms from solid phase of rim structure to gas pores

(-) (cm2s)

times times

287 288

Nominal diffusion coefficient of He gas atoms (when HER=3) Effective diffusion coefficient of He gas atoms (when HER=3) (cm2s) times

times 289 -------------- Not used -----------------

290 He gas atoms generation rate per unit volume of fuel pellet (atomscm3s) times

JAEA-DataCode 2013-009

- 174 -

Table (8) Physical Quantities of Y axis (8) ()designated by IXOPT2

[Note] Number of radial elements of IDNO=251- 300 depends on the designation of MESH IDNO=301- 324 are of the data of 2-D local mechanical analysis They are output only when IFEMRD=0 Stress strain and displacement correspond to the values in half a pellet length geometry

Group IDNO Item Unit Std-Out

C2

Data regarding time burnup locations in the axial and radial directions

291 Internal pressure of grain boundary gas bubble (MPa) times

292 Overpressure of grain boundary gas bubbles (MPa) times

293 Intra-grain gas bubble pressure (MPa) times 294 Number density of He gas atoms at grain boundary (atomscm3) times

295 -296 - - - - - Not used - - - - -

297 He atoms density inside grain (when HER=3) (atomscm3) times

298 Average density of He atoms inside grain (when HER=3) (atomscm3) times 299 He gas release rate (when HER=3) () times 300 Void fraction of coolant water (-) times 301 Local burnup () 302 Heat generation density of fuel pellet (Wcm3) 303 Nodal temperature of pellet ring element (oC) 304 Nodal temperature of cladding ring element (oC) 305 Pellet element average temperature (oC) 306 Cladding element average temperature (oC) times 307 Fission gas release rate () 308 Pellet grain diameter (microm) times 309 Pellet equivalent stress (MPa) times 310 Pellet average (hydrostatic) stress (MPa) times 311 Pellet stress in the radial direction (MPa) times 312 Pellet stress in the circumferential direction (MPa) times 313 Pellet stress in the axial direction (MPa) times 314 Pellet strain in the radial direction () times 315 Pellet strain in the circumferential direction () times 316 Pellet strain in the axial direction () times 317 Pellet elastic strain in the radial direction () times 318 Pellet elastic strain in the circumferential direction () times 319 Pellet elastic strain in the axial direction () times 320 Pellet thermal strain I the radial direction () times 321 Pellet thermal strain in the axial direction () times 322 Pellet densification volumetric strain (ΔVV) () times 323 Pellet swelling strain (ΔLL) () times 324 Pellet equivalent creep strain () times 325 Pellet creep strain in the radial direction () times 326 Pellet creep strain in the circumferential direction () times 327 Pellet creep strain in the axial direction () times 328 Pellet equivalent plastic strain () times 329 Pellet plastic strain in the radial direction () times 330 Pellet plastic strain in the circumferential direction () times 331 Pellet plastic strain in the axial direction () times 332 Pellet radial displacement (microm) times

JAEA-DataCode 2013-009

- 175 -

Table (9) Physical Quantities of Y axis (9) IDNO=325- 365 are of the data of 2-D local mechanical analysis They are output only when IFEMRD=0 Stress strain and displacement correspond to the values in half a pellet length geometry

Group IDNO Item Unit Std-Out

C3

Data regarding time burnup locations in the axial and radial directions

333 Pellet axial displacement (microm) times 334 Pellet radial displacement by elastic strain (microm) times

335 Pellet axial displacement by elastic strain (microm) times 336 Pellet radial displacement by thermal strain (microm) times 337 Pellet axial displacement by thermal strain (microm) times 338 Pellet radial displacement by densification (microm) times 339 Pellet axial displacement by densification (microm) times 340 Pellet radial displacement by swelling (microm) times 341 Pellet axial displacement by swelling (microm) times 342 Pellet radial displacement by creep (microm) times 343 Pellet axial displacement by creep (microm) times 344 Pellet radial displacement by plastic strain (microm) times 345 Pellet axial displacement by plastic strain (microm) times

346 347348 349 350

Cladding equivalent stress Cladding average stress Cladding stress in the radial direction Cladding stress in the circumferential direction Cladding stress in the axial direction

(MPa) (MPa) (MPa) (MPa) (MPa)

times times times

351 352 353 354 355

Cladding strain in the radial direction Cladding strain in the circumferential direction Cladding strain in the axial direction Cladding elastic strain in the radial direction Cladding elastic strain in the circumferential direction

() () () () ()

times times times times

356 357 358 359 360

Cladding elastic strain in the axial direction Cladding thermal strain in the radial direction Cladding thermal strain in the axial direction Cladding average axial thermal strain (Note) Cladding axial irradiation growth strain

() () () () ()

times times times times

361 362 363 364 365

Cladding equivalent creep strain Cladding creep strain in the radial direction Cladding creep strain in the circumferential direction Cladding creep strain in the axial direction Cladding equivalent plastic strain

() () () () ()

times times times times

JAEA-DataCode 2013-009

- 176 -

Table (10) Physical Quantities of Y axis (10)

[Note] IDNO=366-400 are results in the case of ldquoIFEMRD=0rdquo ie in the 2-D Local

PCMI analysis Stress strain and displacement are values for the half-length pellet geometry

Group IDNO Item Unit Std-Out

C4

Data regarding time burnup locations in the axial and radial directions

366 Cladding plastic strain in the radial direction ()

367 368

Cladding plastic strain in the circumferential direction Cladding plastic strain in the axial direction

() ()

times times

369 370

Cladding radial displacement Cladding axial displacement

(microm) (microm)

371 372 373 374

Cladding radial displacement by elastic strain Cladding axial displacement by elastic strain Cladding radial displacement by thermal strain Cladding axial displacement by thermal strain

(microm) (microm) (microm) (microm)

375 376 377 378 379

Cladding axial displacement by irradiation growth strain Cladding radial displacement by creep strain Cladding axial displacement by creep strain Cladding radial displacement by plastic strain Cladding axial displacement by plastic strain

(microm) (microm) (microm) (microm) (microm)

380 Pellet yield stress (MPa) times

381 Cladding yield stress (MPa) times

382 Pellet relocation strain in the radial direction () times

383 Pellet relocation strain in the hoop direction () times

384 Pellet relocation strain in the axial direction () times

385 Pellet radial displacement induced by relocation (microm) times

386 Pellet axial displacement induced by relocation (microm) times

387 Cladding outer surface displacement caused by waterside oxidation

(microm) times

388 Pellet radial displacement calculated from strain (microm) times

389 Pellet axial displacement calculated from strain (microm) times

390 Cladding radial displacement calculated from strain (microm) times

391 Cladding axial displacement calculated from strain (microm) times

392 Pellet nodal coordinate value in the radial direction (mm) times

393 Pellet nodal coordinate value in the axial direction (mm) times

394 Cladding nodal coordinate value in the radial direction (mm) times

395 Cladding nodal coordinate value in the axial direction (mm) times

396 Densification and swelling strains of pellet () times

397 Shear stress in pellet (MPa) times

398 Shear stress in cladding (MPa) times

399 Shear strain in pellet () times

400 Shear strain in cladding () times

JAEA-DataCode 2013-009

- 177 -

Table (11) Physical Quantities of Y axis (11)

Group IDNO Item Unit Std-Out

A

Data regarding time and burnup

401 Plenum volume at zero power state (cm3) times 402 Pellet elongation at zero power state (IFEMRD=1) () times

403 Cladding max change of outer diameter at zero power state (IFEMRD=1)

(microm)

times

404 Cladding average change of outer diameter at zero power state (IFEMRD=1)

(microm)

times

405 Cladding elongation at zero power state (IFEMRD=1) () times

406 Cladding internal pressure at zero power state (MPa) times

407 Pellet elongation at zero power state (IFEMRD=0) () times

408 Cladding max change of outer diameter at zero power state (IFEMRD=0)

(microm)

times

409

Cladding average change of outer diameter at zero power state (IFEMRD=0)

(microm)

times

410 Cladding elongation at zero power state (IFEMRD=0) () times

411 - 420 - - - - - Not used - - - - - -

Table (12) Physical Quantities of Y axis (12)

Group IDNO Item Unit Std-

Out B Data

regarding time

burnup and axial elevation

421 Diametral gap size at zero power state (IFEMRD=0) (microm) times

422 PCMI pressure at zero power state(IFEMRD=0) (MPa) times

423 Pellet elongation at zero power state(IFEMRD=0) () times

424 Cladding elongation at zero power state(IFEMRD=0) () times

425 Cladding outer diameter change at zero power (IFEMRD=0) (microm) times

426 Pellet density at zero power state (TD) times

427 Diametral gap size by thermal model at zero power state (IFEMRD=1)

(microm) times

428 PCMI pressure at zero power state(IFEMRD=1) (MPa) times

429 Pellet elongation at zero power state(IFEMRD=1) () times

430 Cladding elongation at zero power state(IFEMRD=1) () times

431 Cladding outer diameter change at zero power (IFEMRD=1)

(microm) times

432 - 450 - - - - - Not used - - - - - -

(Note) When IZEROgt0 the Std-Out is O (output) for all the items of 401 to 406 and 421 to 427

JAEA-DataCode 2013-009

- 178 -

Table (13) Physical Quantities of Y axis (13)

(Note) When IZEROgt0 the Std-Out is O (output) for all the items of 451 to 465 The data 451-465 are for the entire rod length mechanical analysis irrespective of IFEMRD

Group IDNO Item Unit Std-

Out C Data

regarding time

burnup axial and radial locations

451 452 453

Pellet radial strain at zero power state Pellet circumferential strain at zero power state Pellet axial strain at zero power state

() () ()

times times times

454 455 456

Pellet swelling strain at zero power state Pellet radial displacement at zero power state Pellet axial displacement at zero power state

() (microm) (microm)

times times times

457 Pellet radial displacement by swelling at zero power state (microm) times

458 459 460 461

Pellet axial displacement by swelling at zero power state Cladding radial strain at zero power state Cladding circumferential strain at zero power state Cladding axial strain at zero power state

(microm) () () ()

times times

times times

462 Cladding axial strain by irradiation growth at zero power state () times

463 464

Cladding radial displacement at zero power state Cladding axial displacement at zero power state

(microm) (microm)

times

times 465

Cladding axial displacement by irradiation growth at zero power state

(microm) times

466 ndash470 - - - - - Not used - - - - - -

471 472 473

Pellet radial strain at zero power state Pellet circumferential strain at zero power state Pellet axial strain at zero power state

() () ()

times times times

474 475 476

Pellet swelling strain at zero power state Pellet radial displacement at zero power state Pellet axial displacement at zero power state

() (microm) (microm)

times times times

477 Pellet radial displacement by swelling at zero power state (microm) times

478 Pellet axial displacement by swelling at zero power state (microm) times 479 480 481

Cladding radial strain at zero power state Cladding circumferential strain at zero power state Cladding axial strain at zero power state

() () ()

times times times

482 Cladding axial strain by irradiation growth at zero power state () times 483 484

Cladding radial displacement at zero power state Cladding axial displacement at zero power state

(microm) (microm)

times

times

485 Cladding axial displacement by irradiation growth at zero power state

(microm) times

486 ndash500 - - - - - Not used - - - - - -

JAEA-DataCode 2013-009

- 179 -

Table (14) Physical Quantities of Y axis (14) [Note] Number of radial elements of IDNO=501 - 600 depends on the designation of MESH

Group DNO Item Unit Std-Out

C Data

regarding time

burnup axial and radial locations

501 Amount of He generation per unit volume of pellet (atomscm3) times 502

-508 - - - - - Not used - - - - - -

509 He partial pressure in plenum as a function of time and burnup (MPa) times

510 He gas density in plenum as a function of time and burnup (atomscm3

) times

511 -512 - - - - - Not used - - - - - -

513 Plenum gas temperature as a function of time and burnup (oC) times

514 -529 - - - - - Not used - - - - - -

530 Internal pressure at each axial segment as a function of time burnup and axial coordinate MPa times

531-533 - - - - - Not used - - - - - -

534 Segment averaged amount of He generation as a function of time burnup and axial coordinate (atomscm3) times

535 Segment averaged release rate of He as a function of time burnup and axial coordinate () times

536 Number of generated He atoms at each axial segment as a function of time burnup and axial coordinate (atoms) times

537-540 - - - - - Not used - - - - - -

541 Pellet shear creep strain (2-D local mechanical model) () times 542 Pellet shear plastic strain (2-D local mechanical model) () times 543 Pellet shear elastic strain (2-D local mechanical model) () times 544 Pellet shear relocation strain (2-D local mechanical model) () times 545 Cladding shear creep strain (2-D local mechanical model) () times 546 Cladding shear plastic strain (2-D local mechanical model) () times 547 Cladding shear elastic strain (2-D local mechanical model) () times 548 Heating steam layer temperature (Dry-out model) (oC) times

549 Flow inner tube temperature (Dry-out model) (oC) times

550 He gas layer temperature (Dry-out model) (oC) times

551 Flow outer tube temperature (Dry-out model) (oC) times

552 Circulating water temperature (Dry-out model) (oC) times

553 Capsule outer mantle pipe temperature (Dry-out model) (oC) times

554-555 - - - - - Not used - - - - - -

JAEA-DataCode 2013-009

- 180 -

Table (15) Physical Quantities of Y axis (15) [Note] Number of radial elements of IDNO=501 - 600 depends on the designation of MESH

Group IDNO Item Unit Std-Out

C Data

regarding time

burnup axial and

radial ocations

556 Axial coordinate of top height of buffer element of each axial segment (mm) times

557 Axial coordinate of top height of pellet stack of each axial segment (mm) times

558 - - - - - -Not used - - - - - - - -

559 Pellet stack total (elastic+plastic) elongation excluding thermal expansion component () times

560 Cladding total (elastic+plastic) elongation excluding thermal expansion component () times

561 Volume of released fission gas at 1 atm 0 oC (mm3) times 562 Volume of released He gas at 1atm 0oC (mm3) times

563 Pellet peak temperature highest temperature of pellet stack ring element at a certain axial segment (oC) times

564 Location of peak temperature the radial coordinate value of mid-thickness of pellet stack ring element having the highest temperature IDNO=563 in a certain axial segment

(mm) times

565 Average hydrogen concentration H in cladding (wtppm) times

566 Pre-crack depth a1 (derived from the least square approximation curve of data of high burnup PWR fuels subjected to the NSRR experiments)

(microm) times

567 Pre-crack depth a2 (derived from an upper envelope curve of data of high burnup PWR fuels subjected to the NSRR experiments )

(microm) times

568 Effective fast neutron fluence (ncm2) times 569 Coefficient of cladding cold-work (-) times 570 Cladding temperature used to evaluate IDNO=568 and 569 (oC) times

571 Cladding temperature change rate used to evaluate IDNO=568 and 569 (oCs) times

572 Gas phase volume of plenum (cm3) times

573 Ratio of amount of fission gas atoms retained inside grains to the total generation of fission gas atoms () times

574 Ratio of amount of fission gas atoms retained at grain boundary to the total generation of fission gas atoms () times

575 -582 - - - - - Not used - - - - - -

583 Temperature at the most-heated segment of cladding () times

584 -592 - - - - - Not used - - - - - -

593 Additional FGR from rim structure (depending on the radial element and axial segment) () times

594 Ratio of amount of fission gas atoms generated in rim structure to the total amount of generated fission gas atoms in pellet (depending on the radial element and axial segment)

() times

595 - 598 - - - - - Not used - - - - - -

599 Critical heat flux (Wcm2) times 600 - - - - - Not used - - - - - -

JAEA-DataCode 2013-009

- 181 -

Table (16) Physical Quantities of Y axis (16) [Note] Number of radial elements of IDNO=701 - 708 depends on the designation of MESH

Group IDNO Item Unit Std-Out

C

Data regarding time burnup axial and radial locations

701 Ratio of amount of fission gas atoms retained in solid phase to the total amount of generated fission gas atoms for each axial segment

() times

702 Ratio of amount of fission gas atoms in rim pores to the total amount of generated fission gas atoms for each axial segment () times

703 Ratio of amount of fission gas atoms in grain boundary bubbles to the total amount of generated fission gas atoms for each axial segment

() times

704 Ratio of amount of fission gas atoms in grain boundary bubbles to the total amount of generated fission gas atoms in a rod () times

705 Ratio of amount of fission gas atoms in rim pores to the total amount of generated fission gas atoms in a rod () times

706 Ratio of amount of fission gas atoms retained in solid phase to the total amount of generated fission gas atoms in a rod () times

707 Ratio of amount of fission gas atoms in intra-grain gas bubbles to the total amount of generated fission gas atoms in a rod () times

708 Ratio of amount of fission gas atoms retained inside pellets to the total amount of generated fission gas atoms in a rod () times

JAEA-DataCode 2013-009

- 182 -

63 Plotting the quantities with common Y-axis To plot the following data in a single picture IYNUM=1 is to be designated so that Y-

axis is drawn by a common scale

Physical quantity of Y-axis IDNO Burnup 1 42 101

Fission gas release rate 2 45 70 107 255 573 574 Rod internal pressure 3 406 Rod internal free volume 4 401 572 Elongations of pellet and cladding 5 6 17 18 47 48 402 405 423 424 Cladding outer diameter change 7 11 19 20 55 78 403 404 425 431 Pellet stack displacement in the axial direction 133 266

Linear heat rate 8 41 Iodine concentration 9 10 Temperature 12 50 51 52 53 54 58 Gap size 43 67 421 427 PCMI pressure 44 46 422 428 Molar amount of released fission gas 71 72 73 Stress 109-113 309-313 Strain 114-131 156-173 451-454 459-462 Displacement 132-145 174-184 455-458 463-465 Radius of inter-granular gas bubble 148194 Number density of gas atoms in grain 185-188 264 - 266 270 274 Surface number density of gas atoms in grain boundary 190 191 Diffusion constant of fission gas atoms 195196 Pellet temperature 53 54 103 105 253 279 303 305 Cladding temperature 51 52 58 104 106 304 306 Cladding deviation stress 248 - 250 Fast neutron fluence 16 65 568

Example Specifying the IRNUM=number of plotted figures and IYNUM=1

401 the first ldquo4rdquo is IRNUM the number of figures 133151525354 fuel temperature the fourth ldquo1rdquo is IYNUM the number of Y-axis 1111 Specifying the radial ring number 1111 Specifying the axial segment number 11000 00 30 05 13 2780 28801003 ldquoIYNUM=1rdquo allows only one line for Y-axis scale

JAEA-DataCode 2013-009

- 183 -

64 Explanation on the physical quantities of Y-axis (3) (4) C Group

In the following explanation thermal analysis is identical irrespective of IFEMRD value

designated by input Also fission gas release rate (Item No107) is an exception of the explanation because it is always output at each axial segment

641 Physical quantities of pellet (1) In thermal analysis and ERL mechanical analysis

Displacement stress strain etc are evaluated at points indicated bytimesmarks which are the Gaussrsquos integral (Gaussian) points Here temperature is either the value at node or element average value When assigning the plotting positions IR and IZ assign the location of point in the radial and axial directions respectively Physical quantities evaluated at nodal points should be specified by IRrsquo=IR+1

When MESH=3 IR=1 to 36 and IZ= designated axial segments in both thermal analysis

and ERL mechanical analysis An example of ring element division of pellet stack is shown

in Fig61

[In case of 36 radial divisions] IR= 1 2 3 4 5 hellip 33 34 35 36

times times times times times times times times times times 8 (No of Axial

times times times times times times times times times times 7 segments

times times times times times times times times times times 6 ≦40)

times times times times times times times times times times 5

times times times times times times times times times times 4

times times times times times times times times times times 3

times times times times times times times times times times 2

times times times times times times times times times times IZ=1 Center line of Pellet Fig61 Numbering of elements and location of Gaussian points in the case where

pellet stack is divided into 36 ring elements in the radial direction and 8 segments in the axial direction

JAEA-DataCode 2013-009

- 184 -

(2) 2-D local mechanical analysis

Displacement stress strain etc are evaluated at points indicated bytimesmarks which are the Gaussrsquos integral (Gaussian) points Here temperature is either the value at node or element average value When assigning the plotting positions IR and IZ assign the location of point in the radial and axial directions respectively Physical quantities evaluated at nodal points should be specified by IRrsquo=IR+1

When MESH=3 and outputting the physical quantities of each element IR=1 to 36 (18 ring elements) and IZ=1 to 6 (three elements)

When MESH=3 and outputting the physical quantities at nodal points of each element IR=1 to 37 and IZ=1 to 7

An example of ring element division of half a pellet length is shown in Fig62

[In case of 18 radial elements] IR= 1 2 3 4 5 33 34 35 36

times times times times times times times times times times 6

times times times times times times times times times times 5

times times times times times times times times times times 4 Half a pellet length

times times times times times times times times times times 3

times times times times times times times times times times 2

times times times times times times times times times times 1=IZ

Center line of Pellet

Fig62 Numbering of elements and location of Gaussian points in the case where half a pellet geometry is divided into 18 ring elements in the radial direction and 5 elements in the axial direction

JAEA-DataCode 2013-009

- 185 -

642 Physical quantities of cladding

(1) Model 1 ERL mechanical analysis (IFEMRD=1) Displacement stress strain etc are evaluated at points indicated bytimesmarks which are

the Gaussrsquos integral (Gaussian) points Here temperature is either the value at node or element average value When assigning the plotting positions IR and IZ assign the location of point in the radial and axial directions respectively

A cladding with no Zr-liner has 10 ring elements consisting of 8 elements for metallic

part and 2 elements for outer surface oxide Accordingly with respect to Gaussian points and

temperatures IR=1 to 8 are for the metallic elements and IR=9 and 10 are for the outer oxide

However a cladding with Zr-liner has 12 ring elements consisting of 2 elements for Zr-

liner 8 elements for metallic part and 2 elements for outer surface oxide Accordingly with

respect to Gaussian points and temperatures IR=1 to 2 are for the Zr-liner elements IR=3 to

10 are for the metallic elements and IR=11 and 12 are for the outer oxide Physical quantities evaluated at nodal points should be specified by IRrsquo=IR+1

The standard setting of ring element division of cladding in the 1-D ERL and thermal

analyses is shown in Fig63

Standard setting (No of Axial segments≦40) IR= 1 2 3 4 5 6 7 8 9 10

times times times times times times times times times times IZ= 8

times times times times times times times times times times 7

times times times times times times times times times times 6

times times times times times times times times times times 5

times times times times times times times times times times 4

times times times times times times times times times times 3

times times times times times times times times times times 2

Inner surface times times times times times times times times times times 1

of cladding Metal Oxide Fig63 Numbering of elements and location of Gaussian points in the cladding segment

which has 8 ring elements of metal part and two outer oxide elements

JAEA-DataCode 2013-009

- 186 -

(2) Mode 2 3 2-D local mechanical analysis (IFEMRD=0) Stress strain etc evaluated at points indicated bytimesmarks which are the Gaussrsquos integral

points Here temperature is either the value at node or element average value Displacement is evaluated at nodal points and output

Fig64 shows an example which has 5 ring elements ie 4 metallic elements and one outer oxide element The inner element is ignored in the 2-D mechanical analysis

Here if cladding has Zr-liner the inner elements 1 and 2 is assigned to Zr-liner so that IR=1 and 2 are the Zr-liner elements IR=3 to 10 are metallic elements and IR=11 and 12 are outer oxide elements

Physical quantities evaluated at nodal points should be specified by both IRrsquo=IR+1 and IZrsquo=IZ+1

The standard setting of ring element division of cladding in the 2-D local mechanical

analysis is shown in Fig63

[In case of 5 radial elements] IR= 1 2 3 4 5 6 7 8 9 10

times times times times times times times times times times 6

times times times times times times times times times times 5

times times times times times times times times times times 4 Half a pellet length

times times times times times times times times times times 3

times times times times times times times times times times 2

times times times times times times times times times times 1=IZ

Metal Oxide Inner surface of cladding

Fig64 Numbering of elements and location of Gaussian points in the cladding segment

which corresponds to half a pellet length and has 4 ring elements of metal part one outer oxide ring element and 6 axial elements

JAEA-DataCode 2013-009

- 187 -

7 Sample InputOutput (numerical and plotted outputs)

71 FEMAXI-7 numerical output image of ldquoABC1outrdquo

FUEL ELEMENT MODELING BY AXI SYMMETRIC FINITE ELEMENT METHOD - - - --- - - - VERSION 11 MECHANICAL ANALISYS MODE WHOLE ROD (IFEMRD = 1) RUN DATE 13MAR04 START TIME 194833 ( INPUT FILE NAME = ft05d ) 1 I N P U T D A T A L I S T ------------------------------- 1 2 3 4 5 6 7 8 CARD NO 5050505050505050 1 PWR-type Rod Sample Case (January 2012) 2 ampINPUT IBUNP=1IDAY=1IRH=1 TROOM=2951 DTPL=200 ICORRO=2 PX=990 3 PITCH=16 IPUGH=1 TLIM=1000 IFLX=-2 INPRD=2 RCORRO=04 4 IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=1FAIW=5E11 5 IGRAIN=0 GR=100 GRWF=15 LBU=1 IPRO=0 R1=10 R2=10 ICAGRW=1 6 IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0 7 8 IFEMRD=1 IFEMOP=2 IDSELM=1 IDENSF=0 DMAX=1020 FDENSF=0 9 IPEXT=14 IDCNST=1 IPTHCN=17 IFSWEL=4 A1=006 ICPLAS=3 10 IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001 11 MATXO=2 FACXO=01 01 01 100 01 12 CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6 13 IRM=0 MESH=3 MOXP=0 IPLYG=1 IZYG=1 TCS=177315 IZOX=1 IST=1 14 15 IPRINT=11001 IPLOPT=5 DPBU=100 16 IWTHE=100190130 31 17 IWROD(1)=31 80 31 000100 18 IDNO(1)=81 60 51 200 19 IDNO(41)=101 01111 301 401101150130101 20 IDNO(81)=1 190 21 IDNO(101)=10 3101 30101101 601 801100 1130 22 IDNO(151)=20 61 30110101 3010011 401 210 23 ampEND 24 10 6 25 1 083 097 26 2 0 00 082 10 004 095 10 27 2 0 00 082 10 004 095 10 28 2 0 00 082 10 004 095 10 29 2 0 00 082 10 004 095 10 30 2 0 00 082 10 004 095 10 31 2 0 00 082 10 004 095 10 32 2 0 00 082 10 004 095 10 33 2 0 00 082 10 004 095 10 34 2 0 00 082 10 004 095 10 35 2 0 00 082 10 004 095 10 36 06218 0021 00 37 80 10 10 00 00 00 5500 00 38 23 39 00 01 55815 154 1 304 40 620 865 1000 1149 1190 1163 1005 0931 41 786 541 8 42 100 1145 43 150000 2500

JAEA-DataCode 2013-009

- 188 -

44 200000 2700 45 250000 2900 1 46 280000 2700 47 300000 2600 48 305000 1000 49 305010 10 1 50 656 903 1098 1167 1201 1174 1073 0959 51 817 581 8 52 305100 1000 53 350000 2000 1 54 400000 2200 55 420000 2100 56 460000 2050 57 490000 1900 58 500000 1800 59 500100 60 1 60 798 1002 1104 1128 1122 1104 1086 1032 61 912 708 7 62 501100 1700 1 63 520000 1600 64 550000 1500 65 570000 1400 66 598999 1100 55815 154 1 304 67 599000 1100 55815 154 1 304 68 STOP 5050505050505050 1 0---------------------------------------------------------------------------------- PWR-type Rod Sample Case (January 2012) ---------------------------------------------------------------------------------- INPUT DATA 0(1) PELLET SPECIFICATIONS ---- 0 NODE DIAMETER (CM) SHAPE U-235 FRACTIONAL ONE PELLET NODE INSIDE OUTSIDE CHAMF DISH ENRICH DENSITY LENGTH (CM) LENGTH (CM) 1 0000 0820 0040 0950 1000 10000 2 0000 0820 0040 0950 1000 10000 3 0000 0820 0040 0950 1000 10000 4 0000 0820 0040 0950 1000 10000 5 0000 0820 0040 0950 1000 10000 6 0000 0820 0040 0950 1000 10000 7 0000 0820 0040 0950 1000 10000 8 0000 0820 0040 0950 1000 10000 9 0000 0820 0040 0950 1000 10000 10 0000 0820 0040 0950 1000 10000 DISH DIAMETER (CM) = 0622 DISH DEPTH (CM) = 0021 DISH BOTTOM (CM) = 0000 PELLET TOTAL WEIGHT (GRAM) = 550000 GRAIN SIZE (MICRON) = 10000 MAXIMUM FRACTIONAL DENSITY = 0970 SATURATE BURNUP (MWDTUO2) = 20000000 (2) OTHERS CLAD MATERIAL IS STRESS RELIEVED ZIRCALOY CLAD INSIDE DIAMETER (CM) = 0830 CLAD OUTSIDE DIAMETER (CM) = 0970 THERMAL RELOCATION (-) = 0300 UPPER PLENUM VOLUME (CM3) = 8000 LOWER PLENUM VOLUME (CM3) = 0000 INITIAL GAS PRESSURE (MPA) = 1000 INITIAL GAS COMPOSITION (PERCENT) HELIUM = 1000 N2 = 00 KRYPTON = 00 XENON = 00 PELLET SURFACE ROUGHNESS (CM) = 00001 CLADDING SURFACE ROUGHNESS (CM) = 00001 ROOM TEMPERATURE (DEGK) = 29510 1 HISTORY DATA (1) STAGE TIME BURNUP LHR COOLANT COOLANT COOLANT FAST NEUTRON HISTRY PRINT SSUS NO TEMP PRESS VELOCITY FLUX OPTION OPTION OPTION (NHIST) (H M S MS) (MWDTUO2) (MWDTU) (GJKGU) (WCM) (DEGK) (MPA) (MS) (NCM2S) (0=OFF) (1=ON) (1=0N) ------- -------------- ---------------------------- ------- -------- ------- ---------- ------------ ------ ------ ------ 1 0 0 0 0 00 00 000 00 55815 1540 30400 5000D+09 0 1 0 2 201920424 88 100 086 1145 55815 1540 30400 5725D+13 0 0 0 3 95903137860 132222 150000 129600 2500 55815 1540 30400 1250D+14 0 0 0 4 11828 8 2729 176296 200000 172800 2700 55815 1540 30400 1350D+14 0 0 0 5 139055442965 220370 250000 216000 2900 55815 1540 30400 1450D+14 0 1 0 6 151523443106 246815 280000 241920 2700 55815 1540 30400 1350D+14 0 0 0 7 1603044 1696 264444 300000 259200 2600 55815 1540 30400 1300D+14 0 0 0 8 163535637288 268852 305000 263520 1000 55815 1540 30400 5000D+13 0 0 0 9 163561451942 268861 305010 263529 10 55815 1540 30400 5000D+11 0 1 0 10 1637659 3825 268940 305100 263606 1000 55815 1540 30400 5000D+13 0 0 0 11 198595338887 308519 350000 302400 2000 55815 1540 30400 1000D+14 0 1 0 12 226301552534 352593 400000 345600 2200 55815 1540 30400 1100D+14 0 0 0 13 237123830796 370222 420000 362880 2100 55815 1540 30400 1050D+14 0 0 0 14 259553826231 405481 460000 397440 2050 55815 1540 30400 1025D+14 0 0 0 15 27723 4 0609 431926 490000 423360 1900 55815 1540 30400 9500D+13 0 0 0

JAEA-DataCode 2013-009

- 189 -

16 28352 056896 440741 500000 432000 1800 55815 1540 30400 9000D+13 0 0 0 17 283643137758 440829 500100 432086 60 55815 1540 30400 3000D+12 0 1 0 18 284964457773 441710 501100 432950 1700 55815 1540 30400 8500D+13 0 1 0 19 298293257924 458370 520000 449280 1600 55815 1540 30400 8000D+13 0 0 0 20 320813533 18 484815 550000 475200 1500 55815 1540 30400 7500D+13 0 0 0 21 336862948372 502444 570000 492480 1400 55815 1540 30400 7000D+13 0 0 0 22 3638551 9574 528007 598999 517535 1100 55815 1540 30400 5500D+13 0 1 0 23 363855730374 528007 599000 517536 1100 55815 1540 30400 5500D+13 0 1 0 LAST STAGE NUMBER = 23 ---------------------------- HISTORY DATA LIST (MODIFIED BY RODBURN OUTPUT RESULT) 1 HISTORY DATA (1) STAGE TIME BURNUP LHR COOLANT COOLANT COOLANT FAST NEUTRON HISTRY PRINT SSUS NO TEMP PRESS VELOCITY FLUX OPTION OPTION OPTION (NHIST) (H M S MS) (MWDTUO2) (MWDTU) (GJKGU) (WCM) (DEGK) (MPA) (MS) (NCM2S) (0=OFF) (1=ON) (1=0N) ------- -------------- ---------------------------- ------- -------- ------- ---------- ------------ ------ ------ ------ 1 0 0 0 0 00 00 000 00 55815 1540 30400 4625D+09 0 1 0 2 201920424 82 93 080 1059 55815 1540 30400 5296D+13 0 0 0 3 95903137860 123995 140667 121536 2359 55815 1540 30400 1180D+14 0 0 0 4 11828 8 2729 165727 188010 162441 2565 55815 1540 30400 1282D+14 0 0 0 5 139055442965 207733 235664 203613 2773 55815 1540 30400 1386D+14 0 1 0 6 151523443106 233063 264399 228441 2591 55815 1540 30400 1296D+14 0 0 0 7 1603044 1696 250005 283620 245047 2502 55815 1540 30400 1251D+14 0 0 0 8 163535637288 254247 288432 249205 963 55815 1540 30400 4814D+13 0 0 0 9 163561451942 254256 288442 249213 10 55815 1540 30400 4815D+11 0 1 0 10 1637659 3825 254332 288528 249288 963 55815 1540 30400 4815D+13 0 0 0 11 198595338887 292666 332016 286862 1943 55815 1540 30400 9714D+13 0 1 0 12 226301552534 335695 380831 329038 2158 55815 1540 30400 1079D+14 0 0 0 13 237123830796 353018 400483 346017 2068 55815 1540 30400 1034D+14 0 0 0 14 259553826231 387863 440013 380171 2034 55815 1540 30400 1017D+14 0 0 0 15 27723 4 0609 414169 469856 405955 1896 55815 1540 30400 9478D+13 0 0 0 16 28352 056896 422972 479842 414583 1799 55815 1540 30400 8996D+13 0 0 0 17 283643137758 423060 479942 414670 60 55815 1540 30400 2999D+12 0 1 0 18 284964457773 423941 480941 415533 1699 55815 1540 30400 8497D+13 0 1 0 19 298293257924 440594 499834 431856 1599 55815 1540 30400 7997D+13 0 0 0 20 320813533 18 467028 529822 457766 1499 55815 1540 30400 7497D+13 0 0 0 21 336862948372 484651 549814 475039 1399 55815 1540 30400 6997D+13 0 0 0 22 3638551 9574 510203 578801 500084 1100 55815 1540 30400 5498D+13 0 1 0 23 363855730374 510203 578802 500085 1100 55815 1540 30400 5498D+13 0 1 0 LAST STAGE NUMBER = 23 ---------------------------- 1 OUTPUT ---STAGE--- 1 IFEM = 6 ---------------------------------------------------------------------------------------------------- |THERMAL ANALYSIS INFORMATION | | STAGE NO 1 | | TIME (HMSMS) 0 0 0 0 | | COOLANT TEMPERATURE 28500 DEGC | | COOLANT PRESSURE 154D+01 MPA | ---------------------------------------------------------------------------------------------------- LHR BURN UP GAP CONDUCTANCE (WCM2-K) TEMPERATURE (C) CLEARANCE CONTACT NODE (WCM) (MWDTU) TOTAL GAS SOLID RAD PC PS CI CO (MICRONS) FORCE(MPA) NODE 10 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 10 9 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 9 8 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 8 7 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 7 6 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 6 5 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 5 4 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 4 3 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 3 2 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 2 1 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 1 BURN UP PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) (FISSCC THERMAL DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE CSFR PFAC 1020) EXPANS CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 9 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 8 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 7 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 6 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 5 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 4 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 3 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 2 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 1 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 CLAD SURFACE COOLANT COOLANT COOLANT CLAD SURFACE CLAD SURFACE HEAT TRANS CLAD OUTER CORROSION NODE TEMP(C) TEMP(C) ENTHALPY(JKG) QUALTY(-) HF(WCM2) COEF(WCM2K) MODE (MICROND) THICKNESS(MIC)

JAEA-DataCode 2013-009

- 190 -

10 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 9 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 8 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 7 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 6 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 5 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 4 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 3 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 2 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 1 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 MODE1 SINGLE PHASE FORCED CONVECTION (DITTUS-BOELTER) MODE2 NUCLEATE BOILING (JENS-LOTTES) MODE3 HIGH-FLOW TRANSITION BOILING(MODIFIED CONDIE BENGSTON) MODE4 HIGH-FLOW FILM BOILING(CONDIE BENGSTON) MODE5 LOW-FLOW POST-CHF TRANSITION AND FILM BOILING MODE6 CONDENSATION 0 INITIAL GAS (MOL) = 414D-03 0 FISSION GAS RESULT 0 LOCAL FISSION GAS RELEASE FRACTION (AXIAL NODE) 1 000500 2 000500 3 000500 4 000500 5 000500 6 000500 7 000500 8 000500 9 000500 10 000500 0 ROD AVERAGE FISSION GAS = 000500 FRACTIONS OF GAS MIXTURE (PERCENT) AXIAL NODE RELEASE FRACTION 1 2 3 4 5 6 7 8 9 10 ROD GAS PRESSURE ( MPA ) = 1938 HE 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 ROD GAS VOLUME ( CM3 ) = 9908 N2 00 00 00 00 00 00 00 00 00 00 (GAPPLENUM)= 2159 7749 KR 00 00 00 00 00 00 00 00 00 00 TOTAL GAS ( MOL ) = 414D-03 XE 00 00 00 00 00 00 00 00 00 00 ROD PRS(MPA) 1938 1938 1938 1938 1938 1938 1938 1938 1938 1938 0 RELEASED IODINE ( GRAMCM2 ) = 274D-24 (AVERAGE) 345D-24 (PEAK) 0 (MOL) HE N2 KR XE TOTAL PRODUCED GAS 130D-24 000D+00 130D-17 870D-17 100E-16 RELEASED GAS 195D-26 000D+00 168D-23 113D-22 130E-22 ROD GAS 414D-03 000D+00 168D-23 113D-22 414E-03 0 RADIAL TEMPERATURE DISTRIBUTION AT AXIAL NODE OF 6 PELLET GAP CLAD 1234567891011 123 285 285 285 285 285 285 285 285 285 285 285 285 285 285 === OPTIONAL OUTPUT (IN ELEMENT AVERAGE) === ---------------------------------------------------------------------------------------------------- | TEMPERATURE DISTRIBUTION IN THE FUEL (DEGC) IWTHE= 1 | ---------------------------------------------------------------------------------------------------- SEG 10 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 9 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 8 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 7 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 6 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 5 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 4 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 3 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 2 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 1 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 ---------------------------------------------------------------------------------------------------- | RADIUS OF INTRAGRANULAR GAS BUBBLE (ANGSTROM) IWTHE= 4 | ---------------------------------------------------------------------------------------------------- SEG 10 000 000 000 000 000 000 000 000 000 000 9 000 000 000 000 000 000 000 000 000 000 8 000 000 000 000 000 000 000 000 000 000 7 000 000 000 000 000 000 000 000 000 000 6 000 000 000 000 000 000 000 000 000 000 5 000 000 000 000 000 000 000 000 000 000 4 000 000 000 000 000 000 000 000 000 000 3 000 000 000 000 000 000 000 000 000 000 2 000 000 000 000 000 000 000 000 000 000 1 000 000 000 000 000 000 000 000 000 000 ---------------------------------------------------------------------------------------------------- | FISSION GAS RELEASE RATE IN A RING () IWTHE= 14 | ---------------------------------------------------------------------------------------------------- SEG 10 050 050 050 050 050 050 050 050 050 050 9 050 050 050 050 050 050 050 050 050 050 8 050 050 050 050 050 050 050 050 050 050 7 050 050 050 050 050 050 050 050 050 050 6 050 050 050 050 050 050 050 050 050 050 5 050 050 050 050 050 050 050 050 050 050 4 050 050 050 050 050 050 050 050 050 050 3 050 050 050 050 050 050 050 050 050 050 2 050 050 050 050 050 050 050 050 050 050 1 050 050 050 050 050 050 050 050 050 050 ---------------------------------------------------------------------------------------------------- BURNUP DISTRIBUTION IN THE FUEL (MWDT) IWTHE= 18 ---------------------------------------------------------------------------------------------------- SEG 10 00 00 00 00 00 00 00 00 00 00 9 00 00 00 00 00 00 00 00 00 00 8 00 00 00 00 00 00 00 00 00 00 7 00 00 00 00 00 00 00 00 00 00 6 00 00 00 00 00 00 00 00 00 00 5 00 00 00 00 00 00 00 00 00 00 4 00 00 00 00 00 00 00 00 00 00 3 00 00 00 00 00 00 00 00 00 00 2 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00

JAEA-DataCode 2013-009

- 191 -

================================================================================================================================== MECHANICAL ANALYSIS INFORMATION OUTPUT STAGE NUMBER = 1 TIME = 0 H 0 M 0 S 00 MS ROD GAS PRESS(MPA) = 1938 COOLANT PRESS(MPA) = 15400 AXIAL FORCE(N) = -6479344 ================================================================================================================================== ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ SEG LHR B U R N U P FAST NEUTRON FLUX FAST NEUTRON FLUENCE FISSION RATE (WCM) (GJKGU) (MWDTU) (MWDTUO2) (FISSCC) (NCM2SEC) (NCM2) (FISSCCSEC) ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ 10 00 200860D-15 232477D-14 204924D-14 579572D+02 270500D+09 973800D+03 319723D+08 9 00 291823D-15 337758D-14 297727D-14 842040D+02 393000D+09 141480D+04 464514D+08 8 00 345658D-15 400067D-14 352651D-14 997378D+02 465500D+09 167580D+04 550207D+08 7 00 373132D-15 431866D-14 380682D-14 107665D+03 502500D+09 180900D+04 593940D+08 6 00 431794D-15 499761D-14 440530D-14 124592D+03 581500D+09 209340D+04 687315D+08 5 00 441818D-15 511364D-14 450758D-14 127484D+03 595000D+09 214200D+04 703272D+08 4 00 426596D-15 493745D-14 435227D-14 123092D+03 574500D+09 206820D+04 679041D+08 3 00 371276D-15 429717D-14 378788D-14 107130D+03 500000D+09 180000D+04 590985D+08 2 00 321154D-15 371705D-14 327651D-14 926673D+02 432500D+09 155700D+04 511202D+08 1 00 230191D-15 266425D-14 234848D-14 664205D+02 310000D+09 111600D+04 366410D+08 ---------------------------------------------------------------------------------------------------- STRESS(RADIAL) (MPA) IWROD= 1 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 SEGMENT NUM 10 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 9 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 8 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 7 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 6 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 5 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 4 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 3 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 2 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 1 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 ---------------------------------------------------------------------------------------------------- STRESS(HOOP) (MPA) IWROD= 2 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 7 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00

JAEA-DataCode 2013-009

- 192 -

1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 SEGMENT NUM 10 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 9 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 8 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 7 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 6 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 5 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 4 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 3 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 2 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 1 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 ---------------------------------------------------------------------------------------------------- STRESS(AXIAL) (MPA) IWROD= 3 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 9 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 8 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 7 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 6 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 5 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 4 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 3 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 2 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 1 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 SEGMENT NUM 10 -519 -519 -519 -519 -519 -519 -519 -519 50 50 9 -519 -519 -519 -519 -519 -519 -519 -519 50 50 8 -519 -519 -519 -519 -519 -519 -519 -519 50 50 7 -519 -519 -519 -519 -519 -519 -519 -519 50 50 6 -519 -519 -519 -519 -519 -519 -519 -519 50 50 5 -519 -519 -519 -519 -519 -519 -519 -519 50 50 4 -519 -519 -519 -519 -519 -519 -519 -519 50 50 3 -519 -519 -519 -519 -519 -519 -519 -519 50 50 2 -519 -519 -519 -519 -519 -519 -519 -519 50 50 1 -519 -519 -519 -519 -519 -519 -519 -519 50 50 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(RADIAL) (001) IWROD= 12 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 9 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 8 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 7 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 6 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 5 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 4 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 3 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 2 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 1 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 SEGMENT NUM 10 240 237 234 231 228 225 223 221 -177 -177 9 240 237 234 231 228 225 223 221 -177 -177

JAEA-DataCode 2013-009

- 193 -

8 240 237 234 231 228 225 223 221 -177 -177 7 240 237 234 231 228 225 223 221 -177 -177 6 240 237 234 231 228 225 223 221 -177 -177 5 240 237 234 231 228 225 223 221 -177 -177 4 240 237 234 231 228 225 223 221 -177 -177 3 240 237 234 231 228 225 223 221 -177 -177 2 240 237 234 231 228 225 223 221 -177 -177 1 240 237 234 231 228 225 223 221 -177 -177 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(HOOP) (001) IWROD= 13 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 9 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 8 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 7 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 6 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 5 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 4 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 3 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 2 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 1 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 SEGMENT NUM 10 75 79 82 85 88 90 93 95 96 96 9 75 79 82 85 88 90 93 95 96 96 8 75 79 82 85 88 90 93 95 96 96 7 75 79 82 85 88 90 93 95 96 96 6 75 79 82 85 88 90 93 95 96 96 5 75 79 82 85 88 90 93 95 96 96 4 75 79 82 85 88 90 93 95 96 96 3 75 79 82 85 88 90 93 95 96 96 2 75 79 82 85 88 90 93 95 96 96 1 75 79 82 85 88 90 93 95 96 96 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(AXIAL) (001) IWROD= 14 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 9 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 8 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 7 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 6 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 5 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 4 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 3 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 2 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 1 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 SEGMENT NUM 10 75 75 75 75 75 75 75 75 75 75 9 75 75 75 75 75 75 75 75 75 75 8 75 75 75 75 75 75 75 75 75 75 7 75 75 75 75 75 75 75 75 75 75 6 75 75 75 75 75 75 75 75 75 75 5 75 75 75 75 75 75 75 75 75 75 4 75 75 75 75 75 75 75 75 75 75 3 75 75 75 75 75 75 75 75 75 75

JAEA-DataCode 2013-009

- 194 -

2 75 75 75 75 75 75 75 75 75 75 1 75 75 75 75 75 75 75 75 75 75 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 9 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 8 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 7 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 6 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 5 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 4 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 3 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 2 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 1 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 (R-DIRECTION OF Cladding) 10 31 33 35 37 39 41 43 45 47 47 47 9 31 33 35 37 39 41 43 45 47 47 47 8 31 33 35 37 39 41 43 45 47 47 47 7 31 33 35 37 39 41 43 45 47 47 47 6 31 33 35 37 39 41 43 45 47 47 47 5 31 33 35 37 39 41 43 45 47 47 47 4 31 33 35 37 39 41 43 45 47 47 47 3 31 33 35 37 39 41 43 45 47 47 47 2 31 33 35 37 39 41 43 45 47 47 47 1 31 33 35 37 39 41 43 45 47 47 47 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 772674 (Plenum) 10 5414193 753509 9 4872774 678158 8 4331355 602807 7 3789935 527456 6 3248516 452105 5 2707097 376754 4 2165677 301403 3 1624258 226053 2 1082839 150702 1 541419 75351 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT INCREMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 9 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 8 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 7 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 6 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314

JAEA-DataCode 2013-009

- 195 -

5 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 4 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 3 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 2 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 1 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 (R-DIRECTION OF Cladding) 10 31 33 35 37 39 41 43 45 47 47 47 9 31 33 35 37 39 41 43 45 47 47 47 8 31 33 35 37 39 41 43 45 47 47 47 7 31 33 35 37 39 41 43 45 47 47 47 6 31 33 35 37 39 41 43 45 47 47 47 5 31 33 35 37 39 41 43 45 47 47 47 4 31 33 35 37 39 41 43 45 47 47 47 3 31 33 35 37 39 41 43 45 47 47 47 2 31 33 35 37 39 41 43 45 47 47 47 1 31 33 35 37 39 41 43 45 47 47 47 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 772674 (Plenum) 10 5414193 753509 9 4872774 678158 8 4331355 602807 7 3789935 527456 6 3248516 452105 5 2707097 376754 4 2165677 301403 3 1624258 226053 2 1082839 150702 1 541419 75351 STAGE NO 1 PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) CLEARANCE CONTACT THERMAL ELASTIC DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE (MICRONS) FORCE(MPA) EXPANS DEFORM CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 9 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 8 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 7 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 6 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 5 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 4 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 3 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 2 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 1 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 OUTPUT ---STAGE--- 245 IFEM = 6 ---------------------------------------------------------------------------------------------------- |THERMAL ANALYSIS INFORMATION | | STAGE NO 245 | | TIME (HMSMS) 139055442965 | | COOLANT TEMPERATURE 28500 DEGC | | COOLANT PRESSURE 154D+01 MPA | ---------------------------------------------------------------------------------------------------- LHR BURN UP GAP CONDUCTANCE (WCM2-K) TEMPERATURE (C) CLEARANCE CONTACT NODE (WCM) (MWDTU) TOTAL GAS SOLID RAD PC PS CI CO (MICRONS) FORCE(MPA) NODE 10 1664 139916 2202 2198 0000 00043 7375 3823 3532 3253 2311 0000 10 9 2353 200109 4987 3357 0061 00047 9618 3956 3774 3385 0000 8141 9 8 2766 236006 6250 3446 0067 00050 11233 4093 3923 3470 0000 9306 8 7 3076 259181 6921 3494 0068 00053 12522 4205 4033 3534 0000 9540 7 6 3399 292014 7687 3535 0065 00056 14005 4335 4164 3618 0000 9354 6 5 3477 298764 7775 3545 0065 00056 14343 4351 4178 3620 0000 9477 5 4 3375 289333 7481 3503 0062 00054 13823 4281 4107 3562 0000 8991 4 3 3133 261438 6714 3467 0065 00052 12651 4158 3978 3467 0000 9267 3 2 2599 220676 5349 3367 0062 00047 10420 3945 3758 3327 0000 8608 2 1 1884 159197 3062 3050 0004 00042 7860 3727 3490 3172 0000 0576 1 BURN UP PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) (FISSCC THERMAL DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE CSFR PFAC 1020) EXPANS CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 00000 00000 346 1956 -142 -2035 1123 1244 2128 908 -368 -2965 -2641 9 00000 00000 495 2684 -1053 -2338 1606 1126 1827 970 -113 -3777 -3173 8 00000 00000 584 3300 -1916 -2451 1894 1131 1748 1008 -085 -3905 -3252 7 00000 00000 641 3849 -2657 -2505 2080 1139 1713 1036 -084 -3960 -3287 6 00000 00000 723 4556 -3814 -2564 2344 1140 1471 1070 -093 -4200 -3529 5 00000 00000 739 4726 -4054 -2574 2398 1139 1431 1073 -090 -4243 -3569

JAEA-DataCode 2013-009

- 196 -

4 00000 00000 716 4458 -3697 -2560 2322 1144 1493 1054 -101 -4158 -3507 3 00000 00000 647 3896 -2702 -2510 2098 1142 1740 1020 -090 -3915 -3260 2 00000 00000 546 2967 -1397 -2407 1771 1129 1861 963 -100 -3749 -3139 1 00000 00000 394 2083 -195 -2152 1278 1205 2182 894 -344 -3143 -2818 CLAD SURFACE COOLANT COOLANT COOLANT CLAD SURFACE CLAD SURFACE HEAT TRANS CLAD OUTER CORROSION NODE TEMP(C) TEMP(C) ENTHALPY(JKG) QUALTY(-) HF(WCM2) COEF(WCM2K) MODE (MICROND) THICKNESS(MIC) 10 3215 2968 132152D+06 -0313(MSUBCOOL) 534824D+01 215763D+00 1 180640D-02 658399 9 3310 2959 131682D+06 -0317(MSUBCOOL) 756199D+01 215472D+00 1 300755D-02 941862 8 3361 2948 131084D+06 -0324(MSUBCOOL) 888938D+01 215103D+00 1 412772D-02 1163614 7 3395 2935 130401D+06 -0331(MSUBCOOL) 988361D+01 214685D+00 1 520368D-02 1328893 6 3430 2921 129644D+06 -0338(MSUBCOOL) 109188D+02 214225D+00 1 700957D-02 1626736 5 3428 2906 128841D+06 -0347(MSUBCOOL) 111703D+02 213740D+00 1 705977D-02 1625651 4 3399 2891 128040D+06 -0355(MSUBCOOL) 108430D+02 213260D+00 1 575005D-02 1422411 3 3349 2876 127279D+06 -0363(MSUBCOOL) 100673D+02 212808D+00 1 407496D-02 1104054 2 3257 2863 126609D+06 -0369(MSUBCOOL) 835237D+01 212412D+00 1 240772D-02 791306 1 3139 2853 126085D+06 -0375(MSUBCOOL) 605449D+01 212104D+00 1 130984D-02 517308 0 INITIAL GAS (MOL) = 414D-03 0 FISSION GAS RESULT 0 LOCAL FISSION GAS RELEASE FRACTION (AXIAL NODE) 1 000500 2 000500 3 001515 4 005243 5 007439 6 005951 7 001292 8 000500 9 000500 10 000500 0 ROD AVERAGE FISSION GAS = 002837 FRACTIONS OF GAS MIXTURE (PERCENT) AXIAL NODE RELEASE FRACTION 1 2 3 4 5 6 7 8 9 10 ROD GAS PRESSURE ( MPA ) = 2493 HE 900 900 900 900 900 900 900 900 900 900 ROD GAS VOLUME ( CM3 ) = 9031 N2 00 00 00 00 00 00 00 00 00 00 (GAPPLENUM)= 1326 7705 KR 13 13 13 13 13 13 13 13 13 13 TOTAL GAS ( MOL ) = 432D-03 XE 87 87 87 87 87 87 87 87 87 87 ROD PRS(MPA) 2493 2493 2493 2493 2493 2493 2493 2493 2493 2493 0 RELEASED IODINE ( GRAMCM2 ) = 922D-06 (AVERAGE) 240D-05 (PEAK) 0 (MOL) HE N2 KR XE TOTAL PRODUCED GAS 753D-05 000D+00 200D-03 134D-02 154E-02 RELEASED GAS 187D-06 000D+00 566D-05 379D-04 437E-04 ROD GAS 414D-03 000D+00 566D-05 379D-04 432E-03 0 RADIAL TEMPERATURE DISTRIBUTION AT AXIAL NODE OF 6 PELLET GAP CLAD 1234567891011 123 1401 1389 1357 1302 1227 1133 1022 895 755 605 433 416 388 362 === OPTIONAL OUTPUT (IN ELEMENT AVERAGE) === ---------------------------------------------------------------------------------------------------- | TEMPERATURE DISTRIBUTION IN THE FUEL (DEGC) IWTHE= 1 | ---------------------------------------------------------------------------------------------------- SEG 10 73551 72777 71242 68962 65967 62292 57977 53065 47590 41474 9 95854 94584 92066 88339 83465 77521 70599 62799 54202 44636 8 111919 110298 107088 102339 96136 88588 79831 70009 59245 47287 7 124739 122842 119084 113521 106255 97420 87188 75745 63255 49407 6 139497 137303 132947 126487 118032 107739 95815 82499 68002 51914 5 142861 140598 136102 129431 120693 110052 97723 83958 68981 52362 4 137688 135519 131216 124836 116488 106330 94567 81432 67131 51262 3 126020 124080 120235 114544 107112 98079 87623 75938 63198 49083 2 103833 102368 99465 95171 89561 82732 74800 65889 56103 45226 1 78367 77457 75652 72976 69465 65168 60137 54429 48092 41021 ---------------------------------------------------------------------------------------------------- | RADIUS OF INTRAGRANULAR GAS BUBBLE (ANGSTROM) IWTHE= 4 | ---------------------------------------------------------------------------------------------------- SEG 10 236 236 236 236 237 238 239 241 245 260 9 250 249 245 241 240 241 242 244 248 267 8 429 410 352 292 256 243 242 244 248 269 7 797 762 646 487 341 261 243 243 247 269 6 1141 1136 1073 885 621 371 260 246 249 273 5 1137 1141 1129 978 704 416 269 246 249 273 4 1136 1119 1028 831 575 348 256 245 249 272 3 837 801 680 512 354 263 242 242 246 268 2 297 290 269 251 243 241 242 244 248 268 1 238 238 238 239 239 240 241 243 247 264 ---------------------------------------------------------------------------------------------------- | FISSION GAS RELEASE RATE IN A RING () IWTHE= 14 | ---------------------------------------------------------------------------------------------------- SEG 10 050 050 050 050 050 050 050 050 050 050 9 050 050 050 050 050 050 050 050 050 050 8 050 050 050 050 050 050 050 050 050 050 7 1586 1363 663 090 050 050 050 050 050 050 6 5579 5124 3776 2259 715 050 050 050 050 050 5 6538 6169 4727 2842 1114 061 050 050 050 050 4 4973 4571 3384 2006 502 050 050 050 050 050 3 1866 1630 876 139 050 050 050 050 050 050 2 050 050 050 050 050 050 050 050 050 050 1 050 050 050 050 050 050 050 050 050 050 ---------------------------------------------------------------------------------------------------- BURNUP DISTRIBUTION IN THE FUEL (MWDT) IWTHE= 18 ---------------------------------------------------------------------------------------------------- SEG 10 128403 128525 128726 128963 129226 129511 129822 130159 130515 130887 9 181416 181652 181976 182343 182745 183175 183640 184142 184669 185216 8 212546 212866 213272 213724 214214 214735 215298 215901 216533 217188 7 232465 232844 233307 233817 234366 234948 235574 236245 236946 237672 6 260453 260926 261474 262069 262705 263375 264094 264862 265664 266493 5 266174 266667 267234 267846 268501 269189 269927 270716 271539 272390 4 258177 258642 259183 259771 260400 261062 261773 262534 263327 264148

JAEA-DataCode 2013-009

- 197 -

3 234397 234783 235252 235767 236322 236910 237542 238220 238928 239661 2 199294 199576 199947 200362 200814 201295 201816 202376 202962 203571 1 145500 145656 145894 146171 146477 146807 147167 147556 147966 148393 ================================================================================================================================== MECHANICAL ANALYSIS INFORMATION OUTPUT STAGE NUMBER = 245 TIME = 13905 H 54 M 42 S9651 MS ROD GAS PRESS(MPA) = 2493 COOLANT PRESS(MPA) = 15400 AXIAL FORCE(N) = -6458962 ================================================================================================================================== ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ SEG LHR B U R N U P FAST NEUTRON FLUX FAST NEUTRON FLUENCE FISSION RATE (WCM) (GJKGU) (MWDTU) (MWDTUO2) (FISSCC) (NCM2SEC) (NCM2) (FISSCCSEC) ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ 10 1664 120888D+03 139916D+04 123334D+04 348815D+20 831989D+13 293344D+21 983386D+12 9 2353 172895D+03 200109D+04 176393D+04 498879D+20 117654D+14 420078D+21 139064D+13 8 2766 203909D+03 236006D+04 208035D+04 588370D+20 138323D+14 495608D+21 163493D+13 7 3076 223932D+03 259181D+04 228463D+04 646146D+20 153807D+14 543515D+21 181795D+13 6 3399 252300D+03 292014D+04 257405D+04 728000D+20 169942D+14 613706D+21 200867D+13 5 3477 258132D+03 298764D+04 263355D+04 744827D+20 173857D+14 627896D+21 205494D+13 4 3375 249984D+03 289333D+04 255042D+04 721315D+20 168744D+14 607926D+21 199451D+13 3 3133 225883D+03 261438D+04 230453D+04 651773D+20 156647D+14 547649D+21 185152D+13 2 2599 190664D+03 220676D+04 194522D+04 550153D+20 129941D+14 463175D+21 153587D+13 1 1884 137546D+03 159197D+04 140329D+04 396883D+20 941785D+13 333962D+21 111316D+13 ---------------------------------------------------------------------------------------------------- STRESS(RADIAL) (MPA) IWROD= 1 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -11 -11 -10 -10 -10 -10 -09 -09 -09 -08 -08 -08 -07 -07 -07 -06 -06 -06 -05 -05 -05 -05 -04 -04 -04 -03 -03 -03 -03 -02 -02 -02 -01 -01 -01 -00 9 -84 -84 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -84 -84 -85 -85 -85 -85 -85 -85 -85 -85 -85 -84 -84 -83 -83 8 -83 -84 -84 -84 -84 -84 -84 -85 -85 -85 -85 -85 -85 -85 -85 -85 -85 -85 -86 -86 -87 -88 -89 -90 -90 -91 -92 -92 -92 -93 -93 -93 -94 -94 -94 -94 7 -57 -59 -62 -65 -68 -70 -72 -74 -75 -76 -77 -77 -78 -79 -79 -80 -81 -82 -83 -84 -86 -87 -88 -89 -90 -91 -92 -92 -93 -94 -94 -95 -95 -95 -96 -96 6 -67 -67 -67 -67 -67 -66 -65 -65 -65 -66 -67 -69 -70 -72 -74 -75 -77 -78 -79 -81 -82 -83 -84 -85 -86 -87 -88 -88 -89 -90 -91 -91 -92 -93 -93 -94 5 -71 -71 -71 -71 -72 -72 -72 -71 -71 -72 -73 -74 -75 -77 -78 -80 -81 -82 -83 -84 -85 -86 -87 -88 -88 -89 -90 -90 -91 -92 -92 -93 -93 -94 -95 -95 4 -58 -58 -58 -58 -56 -55 -55 -56 -58 -59 -61 -62 -64 -65 -67 -69 -71 -72 -74 -75 -76 -78 -79 -80 -81 -82 -83 -84 -85 -86 -87 -87 -88 -89 -90 -90 3 -50 -52 -56 -59 -63 -65 -68 -69 -71 -72 -73 -74 -75 -76 -76 -77 -78 -79 -80 -81 -83 -84 -85 -86 -87 -88 -89 -89 -90 -91 -91 -92 -92 -93 -93 -93 2 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -84 -85 -86 -86 -87 -87 -87 -88 -88 -88 -88 -88 -88 -88 -88 -87 1 -20 -20 -19 -19 -19 -18 -18 -18 -17 -17 -17 -16 -16 -15 -15 -14 -14 -13 -13 -12 -12 -12 -11 -11 -11 -10 -10 -09 -09 -09 -08 -08 -07 -07 -06 -06 SEGMENT NUM 10 -34 -49 -64 -78 -93 -107 -120 -141 -154 -154 9 -108 -114 -119 -125 -130 -135 -141 -149 -154 -154 8 -119 -123 -127 -132 -136 -140 -144 -150 -154 -154 7 -121 -125 -129 -133 -137 -141 -144 -150 -154 -154 6 -120 -124 -127 -131 -135 -139 -144 -150 -154 -154 5 -121 -125 -128 -132 -136 -140 -144 -150 -154 -154 4 -116 -121 -125 -129 -133 -138 -143 -149 -154 -154 3 -119 -123 -127 -131 -135 -139 -144 -150 -154 -154 2 -113 -118 -122 -127 -132 -137 -142 -149 -154 -154 1 -39 -53 -67 -81 -94 -108 -121 -141 -154 -154 ---------------------------------------------------------------------------------------------------- STRESS(HOOP) (MPA) IWROD= 2 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -11 -10 -09 -08 -08 -07 -06 -05 -04 -03 -02 -01 00 01 02 03 04 05 06 07 06 06 08 09 11 12 13 15 16 17 18 20 21 22 23 25 9 -84 -84 -84 -84 -84 -84 -84 -85 -85 -85 -86 -86 -86 -87 -87 -88 -88 -89 -89 -100 -108 -107 -104 -101 -98 -94 -91 -87 -83 -78 -72 -64 -56 -47 -37 -27 8 -83 -85 -86 -87 -87 -87 -88 -88 -88 -88 -89 -89 -90 -90 -91 -92 -93 -102 -117 -124 -127 -128 -126 -125 -123 -121 -119 -117 -114 -111 -109 -108 -107 -105 -102 -97 7 -57 -69 -80 -87 -91 -94 -95 -96 -96 -96 -96 -97 -97 -97 -98 -109 -124 -132 -136 -137 -138 -138 -137 -136 -135 -134 -133 -131 -129 -127 -125 -122 -121 -122 -122 -122 6 -67 -67 -68 -69 -62 -50 -61 -73 -83 -89 -94 -105 -116 -123 -127 -128 -129 -130 -130 -130 -131 -131 -131 -131 -131 -131 -132 -132 -133 -133 -134 -135 -135 -138 -142 -148 5 -71 -72 -72 -74 -75 -77 -68 -66 -77 -88 -100 -111 -118 -122 -124 -125 -125 -125 -125 -126 -126 -126 -126 -125 -125 -126 -126 -126 -127 -128 -129 -130 -132 -135 -139 -145 4 -58 -59 -59 -51 -42 -53 -66 -78 -86 -91 -94 -96 -105 -117 -124 -128 -129 -130 -131 -132 -132 -133 -133 -133 -133 -133 -133 -134 -134 -135 -135 -135 -136 -139 -144 -150 3 -50 -63 -75 -85 -91 -94 -96 -96 -97 -97 -97 -97 -97 -97 -98 -103 -119 -129 -133 -135 -136 -136 -135 -134

JAEA-DataCode 2013-009

- 198 -

-133 -131 -130 -128 -126 -124 -121 -120 -120 -121 -121 -121 2 -83 -84 -84 -84 -84 -84 -85 -85 -85 -86 -86 -86 -87 -87 -88 -89 -89 -90 -96 -112 -118 -118 -116 -113 -111 -108 -104 -101 -98 -95 -91 -86 -80 -72 -62 -50 1 -20 -19 -18 -17 -16 -15 -14 -13 -11 -10 -08 -06 -04 -03 -01 -00 01 02 03 04 02 03 04 06 08 09 11 12 14 16 17 19 20 22 23 25 SEGMENT NUM 10 -854 -872 -891 -910 -929 -947 -966 -978 -164 -165 9 -399 -410 -422 -434 -446 -460 -473 -484 -157 -157 8 -341 -349 -358 -368 -378 -388 -399 -407 -157 -157 7 -328 -337 -346 -355 -364 -374 -384 -392 -157 -157 6 -328 -339 -351 -363 -376 -389 -403 -415 -157 -157 5 -321 -331 -343 -355 -368 -382 -396 -408 -157 -157 4 -345 -357 -370 -383 -397 -412 -427 -440 -157 -158 3 -339 -349 -359 -369 -380 -391 -403 -412 -157 -157 2 -370 -381 -393 -405 -418 -432 -446 -458 -157 -157 1 -796 -820 -845 -870 -895 -919 -944 -963 -163 -163 ---------------------------------------------------------------------------------------------------- STRESS(AXIAL) (MPA) IWROD= 3 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 00 00 00 00 00 00 00 00 -10 -11 -10 -09 -08 -06 -05 -04 -03 -02 -00 00 01 02 03 04 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -29 -44 -43 -37 -30 -23 -17 -10 -04 00 03 06 09 12 15 18 21 8 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -27 -56 -67 -71 -71 -67 -63 -58 -52 -45 -37 -28 -18 -08 -00 04 09 14 19 7 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -31 -60 -73 -78 -81 -82 -81 -78 -74 -70 -65 -60 -53 -46 -37 -27 -15 -03 03 10 16 6 -64 -64 -64 -62 -48 -00 -00 -00 -00 -00 -07 -30 -49 -60 -66 -69 -70 -70 -70 -70 -69 -68 -65 -62 -58 -54 -50 -45 -40 -34 -27 -18 -08 01 09 17 5 -69 -69 -69 -69 -68 -64 -43 -12 -08 -18 -33 -46 -56 -61 -64 -65 -65 -64 -64 -62 -61 -59 -56 -52 -49 -45 -40 -35 -30 -24 -18 -10 -02 05 13 21 4 -56 -55 -54 -38 -00 -00 -00 -00 -00 -00 -00 -03 -27 -48 -60 -65 -68 -69 -70 -70 -69 -68 -65 -62 -59 -55 -50 -45 -40 -33 -25 -15 -04 04 11 19 3 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -17 -50 -66 -73 -76 -77 -76 -72 -68 -64 -58 -52 -45 -37 -27 -15 -04 03 09 16 22 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -20 -51 -61 -61 -56 -50 -43 -35 -27 -19 -10 -03 02 05 09 13 17 20 1 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -08 -28 -32 -31 -29 -28 -26 -24 -23 -21 -19 -17 -15 -12 -10 -08 -06 SEGMENT NUM 10 -442 -458 -475 -491 -507 -522 -538 -553 -159 -159 9 -428 -445 -462 -480 -498 -517 -537 -556 -159 -159 8 -394 -410 -427 -445 -463 -482 -503 -523 -158 -159 7 -367 -383 -399 -417 -436 -455 -475 -496 -158 -158 6 -333 -348 -365 -383 -401 -421 -443 -465 -158 -158 5 -327 -343 -359 -377 -396 -416 -437 -459 -158 -158 4 -342 -359 -377 -396 -416 -437 -460 -484 -158 -158 3 -372 -389 -407 -427 -447 -468 -490 -513 -158 -158 2 -406 -424 -442 -461 -481 -502 -523 -545 -158 -159 1 -411 -430 -448 -467 -485 -503 -521 -539 -159 -159 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(RADIAL) (001) IWROD= 12 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 631 617 605 593 582 571 560 549 539 529 520 511 502 493 484 476 467 459 451 443 453 447 436 425 415 405 396 387 379 370 363 355 348 341 334 328 9 586 569 554 539 525 511 498 485 472 460 448 436 424 413 402 391 381 370 360 368 410 395 367 343 320 300 282 266 252 240 228 218 208 200 192 185 8 526 515 503 491 478 465 452 440 429 418 408 398 389 380 371 363 355 359 408 492 556 531 482 437 395 356 321 290 262 239 220 205 192 179 168 157 7 327 449 490 500 494 482 467 451 436 422 409 397 386 376 367 374 416 484 569 662 722 685 618 555 497 443 393 347 306 269 238 213 195 180 167 154 6 -235 -39 97 183 288 499 605 628 616 591 564 554 566 593 633 687 748 815 889 970 1010 950 858 772 691 616 546 481 420 365 316 274 240 217 200 183 5 -346 -85 97 232 325 403 490 583 614 612 607 613 629 657 697 747 804 866 937 1013 1050 986 889 798 713 635 562 493 431 373 322 279 244 222 203 187 4 -192 -24 73 188 475 624 663 654 627 596 566 538 527 544 579 628 689 758 832 915 960 902 813 729 651 578 511 449 392 340 295 257 229 210 194 178 3 309 471 526 539 534 520 502 484 466 450 435 421 408 397 386 382 412 471 552 643 700 662 595 532 474 420 371 326 286 252 225 205 189 175 162 150 2 595 576 560 545 530 515 501 487 474 462 449 438 426 415 404 394 383 373 370 416 470 450 412 378 346 318 293 271 253 237 223 210 199 189 180 172 1 667 650 635 621 607 594 580 567 555 543 531 520 510 499 489 479 469 460 450 442 457 450 436 423

JAEA-DataCode 2013-009

- 199 -

410 398 387 376 365 355 345 336 327 318 310 301 SEGMENT NUM 10 1033 993 958 924 892 862 833 796 -187 -187 9 1293 1245 1201 1160 1121 1083 1047 1002 -19 -19 8 1404 1352 1305 1261 1218 1178 1139 1090 50 51 7 1475 1421 1372 1325 1280 1238 1197 1146 92 93 6 1612 1553 1500 1449 1400 1354 1310 1254 183 184 5 1633 1573 1519 1467 1418 1371 1327 1270 198 199 4 1586 1528 1475 1424 1376 1330 1287 1232 171 172 3 1453 1398 1349 1303 1259 1216 1176 1125 84 84 2 1299 1250 1206 1163 1123 1085 1048 1002 -09 -09 1 1071 1029 992 956 921 889 858 819 -150 -151 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(HOOP) (001) IWROD= 13 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 631 628 625 621 617 613 609 605 602 598 594 591 587 584 581 577 574 571 568 565 562 559 556 554 551 548 545 543 540 537 534 531 529 526 523 520 9 586 583 578 573 569 564 559 554 550 545 541 536 532 528 523 519 515 511 507 503 501 498 496 493 489 486 482 478 474 470 467 463 459 455 451 447 8 526 524 521 517 513 509 505 501 497 493 489 485 482 478 474 471 467 464 462 462 463 465 466 466 465 463 461 458 455 451 447 444 440 436 432 428 7 327 348 375 394 406 414 419 422 423 423 423 422 421 419 418 416 416 417 420 425 431 438 442 446 447 448 447 446 444 441 438 434 431 427 423 420 6 -235 -201 -150 -105 -65 -21 24 65 99 127 149 167 183 198 213 227 242 258 274 291 308 324 337 348 356 361 366 368 370 370 370 369 367 365 362 360 5 -346 -301 -233 -171 -118 -72 -30 09 45 75 101 124 144 163 181 199 217 235 253 272 290 308 322 333 342 348 353 356 358 359 359 358 356 354 352 350 4 -192 -163 -121 -82 -34 22 72 112 144 170 190 206 219 231 243 255 267 280 294 309 325 339 351 360 367 372 375 377 378 377 376 375 373 370 368 365 3 309 336 373 398 415 425 432 436 439 440 440 440 439 437 436 434 433 433 435 439 445 451 455 457 458 458 456 455 452 449 445 442 438 434 430 426 2 595 592 586 581 576 571 566 561 556 551 547 542 538 533 529 525 520 516 512 509 508 506 505 502 499 496 493 489 485 481 476 472 468 464 460 456 1 667 664 659 654 650 645 640 636 631 627 622 618 614 610 606 602 598 594 590 586 583 580 577 574 570 567 564 561 557 554 550 547 544 540 537 534 SEGMENT NUM 10 -619 -588 -560 -533 -509 -485 -463 -433 -415 -414 9 -743 -704 -670 -638 -607 -579 -551 -514 -491 -491 8 -761 -719 -683 -649 -617 -586 -557 -518 -493 -493 7 -768 -726 -688 -653 -619 -588 -558 -517 -492 -491 6 -825 -778 -738 -699 -663 -629 -596 -552 -524 -524 5 -834 -787 -746 -707 -670 -635 -603 -558 -530 -529 4 -820 -774 -734 -696 -660 -626 -594 -551 -523 -523 3 -762 -720 -683 -648 -615 -584 -554 -514 -489 -489 2 -735 -696 -662 -630 -599 -571 -544 -507 -484 -484 1 -661 -628 -599 -571 -545 -521 -498 -466 -447 -447 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(AXIAL) (001) IWROD= 14 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 947 928 909 890 872 855 838 821 805 790 775 761 747 734 721 708 696 684 672 660 590 572 569 566 564 561 558 556 554 551 549 547 545 543 541 538 9 1884 1830 1778 1726 1676 1627 1579 1532 1486 1441 1398 1355 1313 1273 1233 1194 1156 1119 1083 960 845 817 811 806 800 795 790 786 782 777 773 769 765 760 756 751 8 2858 2759 2667 2580 2495 2414 2335 2259 2184 2111 2040 1971 1904 1838 1774 1712 1651 1517 1360 1191 1049 1009 1002 995 988 980 972 964 955 947 940 933 926 920 912 904 7 4034 3742 3528 3360 3219 3094 2979 2872 2769 2671 2575 2483 2393 2306 2220 2051 1881 1708 1527 1339 1184 1139 1133 1126 1119 1111 1103 1094 1084 1074 1063 1053 1044 1035 1026 1015 6 5631 5384 5130 4891 4634 4328 4015 3791 3615 3465 3303 3113 2926 2742 2556 2365 2172 1977 1778 1575 1412 1363 1358 1352 1345 1338 1330 1322 1312 1302 1290 1277 1263 1251 1239 1225 5 5743 5499 5255 5006 4762 4512 4264 4024 3804 3599 3402 3209 3020 2832 2640 2446 2250 2052 1851 1647 1483 1434 1428 1422 1416 1409 1401 1392 1383 1372 1359 1346 1332 1320 1307 1291 4 5598 5340 5098 4838 4437 4071 3820 3632 3475 3337 3209 3077 2892 2709 2527 2343 2153 1960 1764 1563 1401 1354 1348 1341 1335 1327 1319 1310 1300 1288 1276 1263 1250 1239 1226 1210 3 4159 3816 3573 3389 3238 3107 2988 2878 2773 2673 2576 2482 2390 2301 2215 2079 1907 1736 1557 1371 1217 1173 1166 1159 1152 1143 1134 1125 1114 1103 1093 1084 1075 1065 1055 1042 2 2286 2215 2146 2079 2014 1951 1889 1829 1770 1713 1657 1602 1549 1497 1447 1397 1349 1303 1200 1050 920 886 880 873 866 860 853 846 841 835 830 825 820 814 808 802 1 1044 1019 995 972 949 927 906 885 864 845 826 808 791 774 758 742 727 712 697 654 558 537 534 531 528 526 523 520 517 514 511 508 506 503 500 497 SEGMENT NUM 10 352 352 352 352 352 352 352 352 352 352 9 317 317 317 317 317 317 317 317 317 317 8 276 276 276 276 276 276 276 276 276 276 7 247 247 247 247 247 247 247 247 247 247

JAEA-DataCode 2013-009

- 200 -

6 210 210 210 210 210 210 210 210 210 210 5 205 205 205 205 205 205 205 205 205 205 4 219 219 219 219 219 219 219 219 219 219 3 255 255 255 255 255 255 255 255 255 255 2 317 317 317 317 317 317 317 317 317 317 1 368 368 368 368 368 368 368 368 368 368 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 -00 43 61 74 85 94 102 110 117 123 129 134 139 144 149 153 157 161 165 169 172 175 179 182 185 188 191 193 196 198 200 203 205 207 209 211 213 2311 9 -00 40 56 68 78 87 94 101 107 112 117 122 126 131 134 138 141 145 148 150 153 156 159 162 164 167 169 171 172 174 175 177 178 179 181 182 183 -0000 8 -00 36 50 61 70 78 85 91 96 101 106 110 114 118 122 125 128 131 134 137 141 145 149 153 156 159 161 163 165 167 168 170 171 172 173 174 175 0000 7 00 22 35 46 55 63 70 76 82 87 91 96 100 104 107 110 114 117 121 126 131 136 141 146 150 153 156 159 161 163 164 166 167 168 169 170 171 0000 6 00 -16 -17 -15 -12 -07 00 08 16 23 30 36 41 47 52 58 64 70 77 84 92 99 106 112 118 123 127 130 134 136 139 140 142 144 145 146 147 0000 5 00 -24 -26 -24 -20 -14 -09 -02 05 12 19 26 32 38 44 50 57 64 71 78 86 94 101 107 113 118 122 126 129 132 134 136 138 140 141 142 143 -0000 4 -00 -13 -14 -12 -09 -01 08 17 25 32 39 45 50 56 61 66 71 77 83 90 97 104 111 117 122 126 130 134 136 139 141 143 145 146 147 148 149 -0000 3 00 21 34 46 56 64 72 79 85 90 95 100 104 108 112 115 118 122 126 130 135 140 145 149 153 156 159 162 164 166 167 169 170 171 172 173 174 0000 2 -00 41 57 69 79 88 95 102 108 114 119 123 128 132 136 139 143 146 149 152 155 159 162 165 168 170 172 174 176 178 179 180 182 183 184 185 186 -0000 1 -00 46 64 78 89 99 108 115 122 129 135 141 146 151 155 160 164 168 172 175 179 182 185 189 192 194 197 200 202 204 207 209 211 213 215 216 218 0000 (R-DIRECTION OF Cladding) 10 -264 -255 -362 -469 -576 -684 -791 -899 -243 -211 -178 9 -317 -306 -413 -521 -628 -736 -845 -953 -298 -252 -205 8 -325 -313 -421 -529 -638 -747 -857 -967 -314 -256 -198 7 -329 -316 -425 -534 -644 -754 -864 -975 -324 -258 -192 6 -353 -339 -449 -560 -671 -782 -894 -1007 -359 -278 -197 5 -357 -343 -453 -563 -674 -786 -897 -1009 -361 -281 -200 4 -351 -337 -446 -555 -665 -775 -885 -996 -345 -274 -204 3 -326 -313 -421 -528 -636 -745 -853 -962 -308 -253 -199 2 -314 -303 -408 -515 -621 -728 -835 -943 -285 -246 -207 1 -282 -272 -378 -483 -589 -695 -802 -909 -249 -224 -199 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 2904804 (Plenum) 10 8359666 2766703 9 7936580 2414740 8 7279799 2097697 7 6464730 1821543 6 5538076 1574351 5 4402830 1364513 4 3197476 1159485 3 2066647 940601 2 1099513 685300 1 386120 368351 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT INCREMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 2311 9 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 8 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 7 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000

JAEA-DataCode 2013-009

- 201 -

6 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 5 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 4 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 3 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 2 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 1 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 (R-DIRECTION OF Cladding) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 8 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 7 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 6 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 5 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 4 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 3 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 1 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- -0433 (Plenum) 10 -0495 -0495 9 -0503 -0503 8 -0496 -0496 7 -0468 -0468 6 -0421 -0421 5 -0302 -0302 4 -0161 -0161 3 -0059 -0059 2 -0018 -0018 1 -0003 -0003 STAGE NO 245 PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) CLEARANCE CONTACT THERMAL ELASTIC DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE (MICRONS) FORCE(MPA) EXPANS DEFORM CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 2311 0000 1956 -017 -143 -2035 1123 1244 2128 908 -368 -2978 -2641 9 -0000 8141 2684 -185 -1065 -2338 1606 1126 1827 970 -113 -3780 -3173 8 -0000 9306 3300 -191 -1934 -2451 1894 1131 1748 1008 -085 -3908 -3252 7 0000 9540 3849 -165 -2685 -2505 2080 1139 1713 1036 -084 -3963 -3287 6 0000 9354 4556 -163 -3842 -2564 2344 1140 1471 1070 -093 -4207 -3529 5 -0000 9477 4726 -173 -4085 -2574 2398 1139 1431 1073 -090 -4250 -3569 4 -0000 8991 4458 -147 -3724 -2560 2322 1144 1493 1054 -101 -4165 -3507 3 0000 9267 3896 -155 -2732 -2510 2098 1142 1740 1020 -090 -3919 -3260 2 -0000 8608 2967 -186 -1413 -2407 1771 1129 1861 963 -100 -3752 -3139 1 -0000 0576 2083 -034 -197 -2152 1278 1205 2182 894 -344 -3156 -2818

OUTPUT ---STAGE--- 314 to 530 are skipped OUTPUT ---STAGE--- 618 IFEM = 6 ---------------------------------------------------------------------------------------------------- |THERMAL ANALYSIS INFORMATION | | STAGE NO 618 | | TIME (HMSMS) 3638551 9574 | | COOLANT TEMPERATURE 28500 DEGC | | COOLANT PRESSURE 154D+01 MPA | ---------------------------------------------------------------------------------------------------- LHR BURN UP GAP CONDUCTANCE (WCM2-K) TEMPERATURE (C) CLEARANCE CONTACT NODE (WCM) (MWDTU) TOTAL GAS SOLID RAD PC PS CI CO (MICRONS) FORCE(MPA) NODE 10 779 367727 9573 1237 0033 00034 5022 3225 3194 3062 0000 5971 10 9 1003 503959 9542 1242 0022 00036 5969 3344 3304 3136 0000 4827 9 8 1135 585050 9534 1246 0017 00038 6610 3429 3383 3196 0000 4043 8 7 1195 635879 9531 1250 0014 00039 6963 3480 3432 3237 0000 3668 7 6 1214 687736 9529 1252 0012 00040 7203 3530 3480 3285 0000 3223 6 5 1234 702118 9528 1255 0012 00040 7311 3537 3487 3288 0000 3360 5 4 1241 688741 9524 1254 0014 00039 7257 3499 3449 3247 0000 3799 4 3 1214 645320 9521 1249 0016 00038 6996 3436 3387 3186 0000 4222 3 2 1102 555299 9526 1245 0022 00036 6345 3338 3293 3108 0000 5156 2 1 878 416184 9550 1240 0033 00034 5329 3212 3177 3028 0000 6422 1 BURN UP PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS)

JAEA-DataCode 2013-009

- 202 -

(FISSCC THERMAL DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE CSFR PFAC 1020) EXPANS CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 00000 00000 910 1265 -869 -2648 2827 1164 1650 822 -138 -3787 -3350 9 00000 00000 1247 1528 -2705 -2707 3813 1186 1051 851 -177 -4320 -3949 8 00000 00000 1448 1719 -3904 -2720 4356 1204 609 872 -204 -4716 -4391 7 00000 00000 1573 1830 -4700 -2725 4659 1217 246 885 -220 -5048 -4754 6 00000 00000 1702 1911 -5595 -2728 4910 1234 -292 899 -240 -5541 -5292 5 00000 00000 1737 1945 -5704 -2728 4973 1230 -311 900 -239 -5562 -5311 4 00000 00000 1704 1923 -5328 -2728 4914 1216 -036 889 -224 -5312 -5036 3 00000 00000 1597 1835 -4579 -2725 4710 1211 413 872 -206 -4898 -4587 2 00000 00000 1374 1632 -3115 -2717 4163 1187 1091 847 -171 -4285 -3909 1 00000 00000 1030 1342 -1189 -2678 3185 1164 1733 817 -122 -3719 -3267 CLAD SURFACE COOLANT COOLANT COOLANT CLAD SURFACE CLAD SURFACE HEAT TRANS CLAD OUTER CORROSION NODE TEMP(C) TEMP(C) ENTHALPY(JKG) QUALTY(-) HF(WCM2) COEF(WCM2K) MODE (MICROND) THICKNESS(MIC) 10 3014 2897 128360D+06 -0351(MSUBCOOL) 250161D+01 213451D+00 1 832580D-03 1816573 9 3044 2893 128150D+06 -0354(MSUBCOOL) 322089D+01 213326D+00 1 113146D-02 2701414 8 3059 2888 127899D+06 -0356(MSUBCOOL) 364308D+01 213176D+00 1 144000D-02 3534076 7 3063 2883 127625D+06 -0359(MSUBCOOL) 383222D+01 213013D+00 1 169268D-02 4261788 6 3060 2877 127342D+06 -0362(MSUBCOOL) 389336D+01 212845D+00 1 204166D-02 5404631 5 3058 2872 127054D+06 -0365(MSUBCOOL) 395675D+01 212674D+00 1 206684D-02 5447848 4 3054 2866 126763D+06 -0368(MSUBCOOL) 397981D+01 212502D+00 1 176148D-02 4552731 3 3044 2861 126474D+06 -0371(MSUBCOOL) 389750D+01 212332D+00 1 138437D-02 3411536 2 3023 2856 126202D+06 -0374(MSUBCOOL) 353955D+01 212172D+00 1 100819D-02 2274658 1 2984 2851 125969D+06 -0376(MSUBCOOL) 282018D+01 212036D+00 1 719173D-03 1438407 0 INITIAL GAS (MOL) = 414D-03 0 FISSION GAS RESULT 0 LOCAL FISSION GAS RELEASE FRACTION (AXIAL NODE) 1 001306 2 004371 3 009150 4 012529 5 014209 6 012980 7 008746 8 004846 9 002029 10 000517 0 ROD AVERAGE FISSION GAS = 007950 FRACTIONS OF GAS MIXTURE (PERCENT) AXIAL NODE RELEASE FRACTION 1 2 3 4 5 6 7 8 9 10 ROD GAS PRESSURE ( MPA ) = 3869 HE 555 555 555 555 555 555 555 555 555 555 ROD GAS VOLUME ( CM3 ) = 8502 N2 00 00 00 00 00 00 00 00 00 00 (GAPPLENUM)= 1295 7207 KR 58 58 58 58 58 58 58 58 58 58 TOTAL GAS ( MOL ) = 655D-03 XE 387 387 387 387 387 387 387 387 387 387 ROD PRS(MPA) 3869 3869 3869 3869 3869 3869 3869 3869 3869 3869 0 RELEASED IODINE ( GRAMCM2 ) = 635D-05 (AVERAGE) 123D-04 (PEAK) 0 (MOL) HE N2 KR XE TOTAL PRODUCED GAS 374D-04 000D+00 490D-03 328D-02 381E-02 RELEASED GAS 462D-05 000D+00 390D-04 261D-03 304E-03 ROD GAS 418D-03 000D+00 390D-04 261D-03 655E-03 0 RADIAL TEMPERATURE DISTRIBUTION AT AXIAL NODE OF 6 PELLET GAP CLAD 1234567891011 123 720 717 707 690 666 635 598 553 501 440 353 348 338 328 === OPTIONAL OUTPUT (IN ELEMENT AVERAGE) === ---------------------------------------------------------------------------------------------------- | TEMPERATURE DISTRIBUTION IN THE FUEL (DEGC) IWTHE= 1 | ---------------------------------------------------------------------------------------------------- SEG 10 50137 49790 49097 48058 46674 44945 42870 40441 37627 34186 9 59563 59065 58068 56574 54584 52096 49108 45604 41527 36389 8 65952 65354 64158 62365 59974 56985 53392 49173 44250 37944 7 69470 68820 67520 65570 62969 59716 55803 51201 45821 38860 6 71864 71185 69827 67788 65067 61660 57557 52723 47055 39644 5 72934 72237 70844 68753 65962 62467 58257 53296 47476 39848 4 72394 71698 70308 68220 65434 61948 57749 52805 47010 39435 3 69794 69130 67803 65812 63156 59835 55838 51139 45643 38518 2 63308 62740 61605 59902 57634 54798 51392 47394 42735 36803 1 53189 52782 51969 50751 49129 47102 44670 41821 38518 34434 ---------------------------------------------------------------------------------------------------- | RADIUS OF INTRAGRANULAR GAS BUBBLE (ANGSTROM) IWTHE= 4 | ---------------------------------------------------------------------------------------------------- SEG 10 345 345 345 346 347 349 351 355 362 399 9 389 389 389 390 391 393 396 400 409 457 8 411 411 412 413 414 416 419 424 434 488 7 402 404 414 423 427 429 432 437 448 506 6 367 371 386 407 429 442 445 451 462 523 5 362 365 378 401 427 444 449 454 466 528 4 374 378 392 412 432 442 445 451 462 523 3 400 403 413 424 429 432 435 440 451 509 2 403 403 404 405 406 408 411 415 425 477 1 361 362 362 363 364 366 368 372 380 421 ---------------------------------------------------------------------------------------------------- | FISSION GAS RELEASE RATE IN A RING () IWTHE= 14 | ---------------------------------------------------------------------------------------------------- SEG 10 050 050 050 050 050 050 050 050 050 055 9 050 050 050 050 050 050 050 050 050 483 8 050 050 050 050 050 050 050 050 050 1382 7 1312 1165 685 165 050 050 050 050 050 2533 6 3549 3378 2746 1748 643 053 050 050 050 2856 5 3896 3771 3233 2209 953 092 050 050 050 2949 4 3282 3099 2459 1509 493 050 050 050 050 2863 3 1513 1360 856 247 050 050 050 050 050 2591 2 050 050 050 050 050 050 050 050 050 1261 1 050 050 050 050 050 050 050 050 050 301 ---------------------------------------------------------------------------------------------------- BURNUP DISTRIBUTION IN THE FUEL (MWDT) IWTHE= 18 ----------------------------------------------------------------------------------------------------

JAEA-DataCode 2013-009

- 203 -

SEG 10 324005 324729 325496 326304 327154 328039 328982 329986 331030 332107 9 434959 436249 437487 438743 440035 441356 442749 444225 445754 447329 8 499245 500925 502484 504043 505632 507245 508938 510728 512579 514487 7 538963 540903 542676 544438 546226 548035 549928 551928 553995 556126 6 579130 581344 583344 585321 587320 589338 591444 593669 595967 598336 5 590217 592509 594573 596611 598670 600747 602914 605203 607566 610003 4 579907 582127 584131 586112 588116 590137 592248 594477 596779 599153 3 546300 548289 550103 551904 553729 555576 557507 559547 561656 563829 2 475797 477330 478768 480212 481690 483193 484772 486445 488174 489956 1 363908 364819 365744 366702 367702 368735 369831 370996 372205 373452 ================================================================================================================================== MECHANICAL ANALYSIS INFORMATION OUTPUT STAGE NUMBER = 618 TIME = 36385 H 51 M 9 S5743 MS ROD GAS PRESS(MPA) = 3869 COOLANT PRESS(MPA) = 15400 AXIAL FORCE(N) = -8371215 ================================================================================================================================== ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ SEG LHR B U R N U P FAST NEUTRON FLUX FAST NEUTRON FLUENCE FISSION RATE (WCM) (GJKGU) (MWDTU) (MWDTUO2) (FISSCC) (NCM2SEC) (NCM2) (FISSCCSEC) ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ 10 779 317716D+03 367727D+04 324145D+04 916754D+20 389400D+13 770095D+21 460259D+12 9 1003 435421D+03 503959D+04 444231D+04 125639D+21 501600D+13 105619D+22 592876D+12 8 1135 505483D+03 585050D+04 515711D+04 145855D+21 567600D+13 122644D+22 670886D+12 7 1195 549399D+03 635879D+04 560516D+04 158526D+21 597300D+13 133246D+22 705990D+12 6 1214 594204D+03 687736D+04 606226D+04 171454D+21 607200D+13 144275D+22 717692D+12 5 1234 606630D+03 702118D+04 618904D+04 175040D+21 617100D+13 147295D+22 729393D+12 4 1241 595072D+03 688741D+04 607113D+04 171705D+21 620400D+13 144460D+22 733294D+12 3 1214 557557D+03 645320D+04 568838D+04 160880D+21 607200D+13 135167D+22 717692D+12 2 1102 479778D+03 555299D+04 489486D+04 138438D+21 551100D+13 116373D+22 651383D+12 1 878 359583D+03 416184D+04 366858D+04 103756D+21 438900D+13 871773D+21 518766D+12 ---------------------------------------------------------------------------------------------------- STRESS(RADIAL) (MPA) IWROD= 1 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -36 -36 -37 -37 -38 -38 -39 -39 -40 -40 -41 -42 -42 -43 -43 -44 -45 -45 -46 -46 -47 -48 -49 -49 -50 -51 -52 -52 -53 -54 -55 -56 -57 -58 -59 -60 9 -23 -24 -24 -25 -25 -26 -26 -27 -27 -28 -28 -29 -29 -30 -31 -31 -32 -32 -33 -34 -34 -35 -35 -36 -37 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -48 8 -15 -15 -16 -16 -17 -17 -17 -18 -19 -19 -20 -20 -21 -21 -22 -22 -23 -23 -24 -24 -25 -26 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -39 -40 7 -11 -11 -11 -12 -12 -13 -13 -13 -14 -14 -15 -15 -16 -16 -17 -17 -18 -18 -19 -20 -21 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -35 -36 6 -05 -05 -06 -06 -07 -07 -08 -08 -09 -09 -10 -10 -11 -11 -12 -13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -20 -21 -22 -23 -24 -25 -27 -28 -29 -30 -32 5 -06 -06 -06 -07 -07 -08 -08 -09 -09 -10 -10 -11 -11 -12 -13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -20 -21 -22 -23 -24 -25 -26 -28 -29 -30 -32 -33 4 -09 -09 -09 -10 -10 -11 -11 -12 -12 -13 -14 -14 -15 -15 -16 -17 -17 -18 -19 -20 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -31 -32 -33 -35 -36 -38 3 -11 -12 -12 -13 -13 -14 -14 -15 -15 -16 -16 -17 -18 -18 -19 -20 -21 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -35 -36 -37 -39 -40 -42 2 -21 -21 -22 -22 -23 -23 -24 -24 -25 -25 -26 -26 -27 -28 -28 -29 -30 -31 -31 -32 -33 -34 -35 -36 -37 -38 -39 -41 -42 -43 -44 -45 -47 -48 -50 -51 1 -36 -37 -37 -37 -38 -39 -39 -40 -40 -41 -41 -42 -43 -43 -44 -44 -45 -46 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -62 -63 -64 SEGMENT NUM 10 -101 -108 -114 -120 -127 -133 -139 -148 -154 -154 9 -91 -99 -107 -114 -122 -129 -136 -147 -154 -154 8 -84 -93 -101 -110 -118 -126 -134 -146 -154 -154 7 -80 -90 -99 -108 -116 -125 -133 -146 -154 -154 6 -76 -87 -96 -105 -114 -123 -132 -145 -154 -154 5 -78 -88 -97 -106 -115 -124 -133 -146 -154 -154 4 -82 -91 -100 -108 -117 -125 -134 -146 -154 -154 3 -85 -94 -102 -111 -119 -127 -135 -146 -154 -154 2 -94 -102 -109 -116 -123 -130 -137 -147 -154 -154 1 -105 -112 -117 -123 -129 -134 -140 -148 -154 -154 ---------------------------------------------------------------------------------------------------- STRESS(HOOP) (MPA) IWROD= 2 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -36 -38 -40 -41 -43 -45 -47 -48 -50 -52 -54 -56 -59 -61 -63 -66 -68 -71 -73 -76 -76 -79 -82 -85 -88 -91 -94 -98 -102 -105 -109 -114 -118 -123 -128 -134 9 -23 -25 -27 -28 -30 -32 -33 -35 -37 -39 -41 -43 -46 -48 -50 -53 -55 -58 -59 -53 -56 -60 -63 -67 -71 -75 -80 -84 -89 -95 -101 -111 -126 -136 -146 -158 8 -15 -17 -18 -19 -21 -23 -24 -26 -28 -30 -32 -34 -36 -38 -37 -38 -40 -44 -47 -50 -54 -57 -61 -65 -69 -73 -78 -83 -88 -94 -100 -107 -114 -123 -133 -147 7 -11 -12 -13 -15 -16 -18 -19 -21 -23 -22 -24 -26 -29 -31 -34 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -76 -81 -87 -92 -99 -105 -113 -122 -132 -146 6 -05 -07 -08 -09 -11 -12 -14 -16 -18 -20 -22 -24 -26 -28 -31 -33 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -77 -82 -88 -94 -100 -108 -116 -126 -139

JAEA-DataCode 2013-009

- 204 -

5 -06 -07 -09 -10 -12 -13 -15 -17 -19 -20 -22 -25 -27 -29 -32 -34 -37 -40 -43 -46 -50 -53 -57 -61 -65 -70 -75 -80 -85 -91 -97 -104 -112 -121 -132 -145 4 -09 -10 -12 -13 -15 -17 -18 -20 -22 -24 -27 -29 -31 -34 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -76 -81 -87 -92 -98 -105 -112 -120 -129 -139 -153 3 -11 -14 -15 -17 -18 -20 -21 -22 -25 -28 -30 -33 -35 -38 -41 -44 -47 -50 -54 -57 -61 -65 -69 -74 -78 -83 -88 -94 -100 -106 -113 -120 -128 -137 -148 -161 2 -21 -23 -24 -26 -28 -29 -31 -33 -35 -37 -39 -41 -44 -46 -48 -53 -57 -61 -65 -69 -73 -77 -81 -85 -90 -94 -100 -105 -110 -116 -122 -129 -136 -144 -154 -166 1 -36 -38 -40 -42 -43 -45 -47 -49 -51 -53 -55 -58 -60 -62 -65 -68 -70 -73 -75 -80 -85 -89 -93 -96 -100 -104 -109 -113 -117 -122 -127 -133 -139 -145 -152 -160 SEGMENT NUM 10 -450 -461 -473 -485 -496 -508 -519 -527 -162 -162 9 -524 -535 -546 -557 -568 -579 -589 -596 -163 -164 8 -569 -581 -593 -606 -618 -631 -644 -652 -163 -164 7 -593 -605 -618 -631 -644 -657 -671 -680 -164 -165 6 -627 -639 -651 -664 -677 -690 -703 -712 -164 -166 5 -619 -631 -643 -656 -668 -681 -694 -703 -164 -166 4 -589 -600 -612 -625 -637 -650 -663 -672 -164 -165 3 -554 -567 -580 -593 -607 -621 -634 -645 -163 -164 2 -498 -510 -522 -534 -546 -559 -571 -580 -163 -163 1 -420 -431 -444 -456 -468 -480 -493 -502 -162 -162 ---------------------------------------------------------------------------------------------------- STRESS(AXIAL) (MPA) IWROD= 3 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08 08 09 09 09 10 10 11 11 12 12 12 13 13 13 10 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 32 34 34 34 34 35 35 35 35 36 36 35 -00 -00 -00 -00 -00 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21 21 20 20 19 19 18 18 17 17 16 16 16 16 16 16 16 16 17 18 16 7 00 00 00 00 00 00 00 00 00 14 15 15 15 14 13 12 11 11 10 09 08 07 07 06 05 05 04 04 03 03 02 02 02 02 02 03 6 18 17 16 15 14 13 12 11 10 09 08 07 07 06 05 04 03 02 01 00 -01 -02 -03 -04 -05 -06 -08 -09 -10 -11 -12 -13 -14 -15 -15 -13 5 15 14 13 12 11 10 09 09 08 07 06 05 04 03 02 01 00 -01 -02 -03 -05 -06 -08 -09 -11 -12 -14 -16 -18 -20 -22 -24 -26 -28 -29 -29 4 12 11 10 09 08 07 06 05 04 03 02 02 01 -00 -01 -02 -03 -05 -06 -08 -10 -12 -14 -16 -18 -20 -22 -24 -27 -29 -31 -34 -36 -38 -40 -40 3 12 00 00 00 00 00 00 07 06 05 03 02 01 00 -01 -02 -03 -04 -06 -08 -09 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -34 -35 -34 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 03 01 00 -01 -02 -03 -05 -06 -07 -08 -09 -10 -11 -12 -12 -13 -13 -14 -13 -12 -10 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 15 14 12 11 11 10 10 10 10 10 10 10 10 10 11 11 11 12 SEGMENT NUM 10 -428 -443 -458 -474 -489 -504 -519 -533 -160 -160 9 -439 -457 -474 -492 -509 -527 -545 -562 -160 -161 8 -436 -453 -471 -489 -507 -526 -545 -564 -161 -161 7 -427 -444 -461 -479 -497 -515 -533 -552 -161 -162 6 -420 -436 -453 -469 -486 -504 -521 -539 -161 -162 5 -408 -424 -439 -456 -472 -488 -505 -523 -161 -162 4 -390 -406 -422 -437 -454 -470 -487 -504 -161 -162 3 -383 -399 -416 -433 -451 -469 -487 -505 -161 -161 2 -396 -413 -430 -447 -465 -483 -501 -519 -160 -161 1 -427 -443 -458 -474 -490 -505 -521 -537 -161 -161 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(RADIAL) (001) IWROD= 12 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 383 387 390 393 396 399 402 404 407 409 411 413 415 417 419 420 422 423 425 425 441 444 437 430 423 417 411 406 401 397 393 389 386 382 379 376 9 01 31 58 83 108 133 157 181 205 228 250 272 294 315 336 357 376 395 417 505 595 602 584 568 553 542 532 525 520 518 517 521 533 545 560 574 8 -392 -323 -269 -221 -175 -132 -90 -48 -07 33 73 112 150 188 243 340 455 590 722 855 955 954 915 878 844 812 784 757 733 711 693 680 671 668 670 676 7 -1088 -728 -535 -411 -327 -264 -211 -163 -117 -47 60 164 275 393 521 656 784 911 1041 1174 1268 1257 1203 1152 1104 1062 1019 978 939 903 869 839 813 793 779 771 6 -1717 -1315 -1008 -778 -590 -425 -281 -144 -16 107 230 354 477 594 711 832 955 1081 1209 1341 1432 1421 1360 1300 1241 1184 1131 1079 1031 986 943 905 871 842 822 814 5 -1948 -1463 -1087 -767 -526 -340 -186 -48 78 200 321 441 556 670 787 908 1031 1155 1284 1416 1507 1493 1432 1368 1306 1246 1189 1135 1083 1036 992 951 913 880 853 835 4 -1554 -1197 -947 -745 -571 -411 -253 -115 09 126 246 371 500 626 747 870 995 1123 1253 1386 1480 1465 1405 1347 1289 1232 1177 1126 1078 1033 991 951 915 882 856 838

JAEA-DataCode 2013-009

- 205 -

3 -1131 -819 -572 -422 -325 -255 -200 -137 -42 69 174 284 397 516 639 773 902 1029 1160 1291 1385 1374 1316 1262 1212 1165 1118 1074 1032 992 955 921 891 864 841 821 2 -169 -125 -88 -52 -17 17 51 84 117 149 181 212 242 272 306 396 502 621 756 890 989 992 954 919 886 855 826 800 775 751 730 712 694 679 666 658 1 334 343 351 359 367 374 381 388 395 401 408 414 419 425 430 435 440 445 461 539 623 632 614 597 582 567 553 539 527 515 505 494 485 476 467 459 SEGMENT NUM 10 1226 1184 1146 1111 1077 1045 1015 974 16 15 9 1539 1488 1443 1400 1359 1320 1282 1233 261 261 8 1759 1701 1649 1600 1554 1510 1469 1413 431 430 7 1907 1845 1789 1736 1686 1639 1594 1534 546 544 6 2097 2028 1968 1910 1856 1804 1754 1688 693 691 5 2091 2023 1962 1904 1850 1798 1748 1682 686 684 4 1986 1920 1862 1807 1755 1706 1659 1596 603 602 3 1814 1754 1700 1649 1602 1556 1513 1455 471 471 2 1516 1466 1420 1378 1337 1298 1261 1212 242 241 1 1210 1168 1131 1096 1063 1031 1001 961 05 05 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(HOOP) (001) IWROD= 13 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 383 384 385 386 387 388 389 390 391 392 393 394 395 395 396 397 398 398 399 400 401 402 402 403 404 404 404 404 404 404 404 404 403 403 403 403 9 01 06 15 23 32 40 49 57 65 73 81 89 97 105 113 121 128 136 143 151 161 171 181 189 197 204 210 216 222 227 231 236 241 245 250 254 8 -392 -380 -361 -343 -326 -310 -294 -278 -263 -248 -234 -219 -205 -191 -176 -161 -144 -125 -103 -80 -56 -32 -10 09 27 43 57 70 82 93 103 112 121 129 137 145 7 -1088 -1026 -937 -865 -806 -757 -716 -679 -647 -616 -586 -555 -523 -491 -457 -423 -388 -352 -316 -279 -242 -206 -174 -145 -119 -95 -73 -54 -36 -19 -04 09 22 34 45 55 6 -1717 -1648 -1540 -1440 -1350 -1270 -1196 -1129 -1065 -1005 -948 -892 -839 -787 -737 -687 -639 -591 -543 -496 -449 -405 -365 -328 -295 -265 -238 -214 -191 -171 -152 -135 -119 -104 -90 -78 5 -1948 -1865 -1733 -1609 -1495 -1394 -1303 -1221 -1146 -1077 -1011 -949 -890 -834 -779 -725 -673 -622 -572 -522 -473 -426 -384 -345 -311 -279 -251 -225 -201 -180 -160 -142 -125 -110 -96 -82 4 -1554 -1493 -1399 -1313 -1236 -1165 -1098 -1035 -976 -919 -865 -813 -762 -712 -663 -615 -567 -520 -473 -427 -381 -337 -297 -261 -229 -199 -172 -148 -126 -106 -87 -70 -55 -40 -27 -15 3 -1131 -1078 -993 -916 -852 -798 -752 -712 -674 -637 -600 -563 -526 -489 -452 -414 -375 -336 -297 -258 -218 -181 -146 -115 -88 -62 -39 -19 00 18 34 48 61 74 85 96 2 -169 -161 -149 -137 -125 -113 -101 -90 -78 -67 -55 -44 -33 -22 -11 01 14 30 48 68 90 111 130 148 163 177 190 201 212 221 230 238 245 252 258 263 1 334 336 338 341 344 346 349 351 353 356 358 361 363 365 367 369 372 374 376 379 384 390 395 399 403 407 410 412 414 416 418 419 420 421 422 422 SEGMENT NUM 10 -786 -748 -714 -682 -651 -623 -595 -558 -534 -534 9 -926 -879 -837 -798 -761 -726 -692 -647 -617 -616 8 -1029 -976 -929 -885 -843 -803 -765 -714 -680 -679 7 -1114 -1056 -1006 -958 -913 -870 -829 -773 -736 -734 6 -1240 -1177 -1121 -1069 -1019 -971 -926 -864 -824 -820 5 -1245 -1181 -1126 -1073 -1023 -976 -931 -869 -828 -825 4 -1180 -1120 -1067 -1017 -969 -924 -882 -823 -785 -782 3 -1075 -1020 -972 -926 -882 -841 -802 -748 -714 -712 2 -916 -870 -829 -790 -754 -719 -686 -641 -612 -611 1 -766 -729 -695 -664 -634 -606 -579 -542 -519 -519 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(AXIAL) (001) IWROD= 14 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 1451 1432 1413 1394 1376 1358 1340 1322 1305 1288 1270 1253 1236 1220 1203 1187 1171 1155 1139 1123 1129 1115 1110 1104 1098 1092 1085 1078 1071 1064 1055 1047 1037 1025 1011 983 9 3146 3089 3033 2977 2922 2868 2815 2762 2709 2657 2606 2556 2506 2457 2408 2361 2313 2267 2212 2252 2130 2094 2086 2078 2068 2057 2045 2031 2014 1994 1968 1763 1719 1677 1630 1581 8 4500 4392 4294 4202 4113 4027 3943 3861 3779 3699 3619 3541 3463 3387 3289 3245 3081 2893 2710 2519 2359 2309 2304 2298 2291 2284 2276 2267 2257 2245 2231 2214 2194 2171 2140 2082 7 6183 5744 5439 5218 5048 4909 4786 4674 4567 4506 4338 4168 3988 3802 3603 3398 3201 3004 2804 2599 2429 2374 2371 2367 2363 2358 2353 2346 2339 2331 2321 2309 2294 2276 2252 2220 6 6939 6708 6477 6250 6022 5793 5564 5337 5116 4900 4685 4470 4257 4052 3849 3644 3437 3229 3018 2803 2627 2571 2569 2567 2564 2561 2557 2553 2548 2542 2535 2526 2514 2497 2474 2441 5 6958 6726 6495 6264 6035 5808 5582 5356 5133 4912 4693 4476 4265 4059 3851 3642 3432 3221 3007 2790 2612 2553 2553 2551 2549 2547 2545 2542 2538 2534 2529 2522 2512 2497 2475 2444 4 6826 6594 6364 6134 5903 5667 5425 5195 4979 4769 4558 4344 4128 3915 3708 3502 3294 3085 2874 2658 2481 2422 2421 2420 2417 2414 2411 2408 2404 2399 2394 2386 2376 2362 2341 2313 3 6349 5923 5569 5318 5129 4978 4849 4750 4575 4385 4203 4018 3829 3636 3438 3229 3026 2825 2622 2415 2242 2186 2184 2181 2178 2175 2171 2166 2161 2155 2147 2138 2126 2111 2091 2065 2 3834 3759 3685 3612 3541 3470 3401 3332 3264 3197 3130 3065 3000 2936 2894 2744 2584 2413 2226 2039 1879 1828 1824 1820 1815 1810 1805 1798 1790 1780 1770 1757 1742 1725 1706 1681

JAEA-DataCode 2013-009

- 206 -

1 1865 1837 1809 1782 1755 1728 1702 1676 1650 1625 1600 1575 1550 1526 1502 1478 1455 1431 1469 1355 1234 1196 1192 1188 1183 1179 1174 1168 1162 1156 1150 1142 1135 1127 1118 1108 SEGMENT NUM 10 439 439 439 439 439 439 439 439 439 439 9 347 347 347 347 347 347 347 347 347 347 8 278 278 278 278 278 278 278 278 278 278 7 243 243 243 243 243 243 243 243 243 243 6 208 208 208 208 208 208 208 208 208 208 5 226 226 226 226 226 226 226 226 226 226 4 257 257 257 257 257 257 257 257 257 257 3 297 297 297 297 297 297 297 297 297 297 2 385 385 385 385 385 385 385 385 385 385 1 461 461 461 461 461 461 461 461 461 461 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 26 37 46 53 59 65 70 75 80 85 89 93 97 101 105 109 112 116 119 122 126 129 132 135 138 141 144 146 149 151 154 156 158 161 163 165 0000 9 00 00 01 02 04 05 07 10 12 14 17 19 22 25 28 31 34 37 40 44 48 52 57 61 65 69 72 76 79 82 86 89 92 95 99 102 105 -0000 8 00 -27 -36 -42 -46 -49 -51 -52 -52 -52 -52 -51 -50 -49 -47 -45 -42 -38 -33 -27 -21 -14 -07 -00 06 12 17 23 28 32 37 41 45 49 53 57 61 0000 7 00 -74 -95 -107 -114 -119 -123 -126 -128 -129 -130 -129 -128 -125 -121 -117 -111 -104 -97 -89 -80 -70 -61 -52 -44 -36 -29 -22 -16 -10 -04 01 06 11 16 20 25 -0000 6 -00 -117 -155 -176 -191 -200 -206 -210 -212 -212 -211 -209 -205 -200 -195 -188 -181 -173 -164 -155 -144 -134 -123 -113 -104 -96 -88 -80 -73 -66 -60 -54 -49 -44 -39 -34 -29 0000 5 00 -133 -175 -198 -212 -221 -226 -228 -229 -228 -226 -222 -218 -212 -206 -199 -191 -183 -173 -163 -152 -141 -130 -119 -110 -101 -92 -84 -77 -70 -63 -57 -51 -46 -41 -36 -31 0000 4 -00 -106 -140 -161 -174 -183 -189 -193 -194 -194 -193 -190 -186 -182 -176 -169 -162 -153 -144 -134 -123 -112 -101 -91 -82 -73 -65 -57 -49 -42 -36 -30 -24 -19 -13 -08 -04 0000 3 00 -77 -100 -113 -121 -126 -130 -132 -134 -134 -134 -132 -129 -125 -120 -115 -108 -100 -92 -83 -73 -62 -52 -43 -34 -25 -18 -10 -03 03 10 16 21 27 32 37 41 0000 2 -00 -12 -15 -17 -18 -18 -18 -17 -16 -15 -13 -11 -09 -07 -04 -02 02 06 11 17 24 32 39 46 52 58 64 70 75 80 84 89 93 97 101 105 109 0000 1 -00 23 33 40 47 53 58 63 68 73 77 81 86 90 94 97 101 105 109 112 116 121 126 130 134 138 142 146 149 153 156 159 162 165 168 171 173 0000 (R-DIRECTION OF Cladding) 10 -335 -324 -439 -554 -669 -784 -900 -1016 -376 -285 -195 9 -395 -381 -501 -621 -741 -861 -982 -1103 -473 -338 -204 8 -439 -424 -548 -673 -798 -924 -1050 -1176 -557 -381 -204 7 -475 -459 -588 -718 -848 -978 -1109 -1241 -631 -418 -206 6 -529 -511 -648 -786 -924 -1062 -1201 -1340 -747 -477 -207 5 -531 -513 -650 -788 -927 -1066 -1205 -1344 -752 -480 -208 4 -504 -486 -617 -749 -881 -1013 -1146 -1279 -673 -446 -219 3 -459 -443 -566 -690 -813 -938 -1062 -1187 -565 -395 -225 2 -391 -378 -494 -610 -727 -844 -962 -1079 -443 -329 -216 1 -327 -316 -428 -540 -652 -765 -877 -990 -344 -272 -201 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 3320349 (Plenum) 10 17978018 3139625 9 17011895 2700241 8 15111354 2353547 7 13062890 2075605 6 10982299 1832555 5 8725090 1624646 4 6498207 1399120 3 4400904 1142594 2 2524119 845249 1 972466 460642 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT INCREMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000

JAEA-DataCode 2013-009

- 207 -

8 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 7 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 6 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 5 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 4 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 3 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 1 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 (R-DIRECTION OF Cladding) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 8 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 7 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 6 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 5 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 4 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 3 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 1 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 1253 (Plenum) 10 1222 1222 9 1090 1090 8 0947 0947 7 0808 0808 6 0680 0680 5 0592 0592 4 0511 0511 3 0425 0425 2 0307 0307 1 0154 0154 STAGE NO 618 PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) CLEARANCE CONTACT THERMAL ELASTIC DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE (MICRONS) FORCE(MPA) EXPANS DEFORM CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 0000 5971 1265 -090 -869 -2648 2827 1164 1650 822 -138 -3787 -3350 9 -0000 4827 1528 -063 -2705 -2707 3813 1186 1051 851 -177 -4321 -3949 8 -0000 4043 1719 -045 -3905 -2720 4356 1204 609 872 -204 -4717 -4391 7 -0000 3668 1830 -035 -4700 -2725 4659 1217 246 885 -220 -5049 -4754 6 -0000 3223 1911 -024 -5595 -2728 4910 1234 -292 899 -240 -5542 -5292 5 0000 3360 1945 -026 -5704 -2728 4973 1230 -311 900 -239 -5564 -5311 4 -0000 3799 1923 -032 -5328 -2728 4914 1216 -036 889 -224 -5313 -5036 3 -0000 4222 1835 -039 -4579 -2725 4710 1211 413 872 -206 -4899 -4587 2 -0000 5156 1632 -059 -3115 -2717 4163 1187 1091 847 -171 -4286 -3909 1 -0000 6422 1342 -091 -1190 -2678 3185 1164 1733 817 -122 -3719 -3267 OUTPUT ---STAGE--- 619 IFEM = 6 ---------------------------------------------------------------------------------------------------- |THERMAL ANALYSIS INFORMATION | | STAGE NO 619 | | TIME (HMSMS) 363855730374 | | COOLANT TEMPERATURE 28500 DEGC | | COOLANT PRESSURE 154D+01 MPA | ---------------------------------------------------------------------------------------------------- LHR BURN UP GAP CONDUCTANCE (WCM2-K) TEMPERATURE (C) CLEARANCE CONTACT NODE (WCM) (MWDTU) TOTAL GAS SOLID RAD PC PS CI CO (MICRONS) FORCE(MPA) NODE 10 779 367728 9573 1237 0033 00034 5022 3225 3194 3062 0000 5970 10 9 1003 503960 9542 1242 0022 00036 5968 3344 3304 3136 0000 4827 9 8 1135 585051 9534 1246 0017 00038 6610 3429 3383 3196 0000 4043 8 7 1195 635880 9531 1250 0014 00039 6963 3480 3432 3237 0000 3668 7 6 1214 687737 9529 1252 0012 00040 7203 3529 3480 3285 0000 3224 6 5 1234 702119 9528 1255 0012 00040 7311 3537 3487 3288 0000 3360 5 4 1241 688742 9524 1254 0014 00039 7257 3499 3449 3247 0000 3800 4 3 1214 645321 9521 1249 0016 00038 6996 3436 3387 3186 0000 4222 3

JAEA-DataCode 2013-009

- 208 -

2 1102 555300 9526 1245 0022 00036 6345 3338 3293 3108 0000 5156 2 1 878 416184 9550 1240 0033 00034 5329 3212 3177 3028 0000 6422 1 BURN UP PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) (FISSCC THERMAL DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE CSFR PFAC 1020) EXPANS CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 00000 00000 910 1265 -869 -2648 2827 1164 1649 822 -138 -3787 -3351 9 00000 00000 1247 1528 -2705 -2707 3813 1186 1051 851 -177 -4321 -3949 8 00000 00000 1448 1719 -3905 -2720 4356 1204 609 872 -204 -4717 -4391 7 00000 00000 1574 1830 -4700 -2725 4659 1217 246 885 -220 -5049 -4754 6 00000 00000 1702 1911 -5595 -2728 4910 1234 -292 899 -240 -5542 -5292 5 00000 00000 1737 1945 -5704 -2728 4973 1230 -311 900 -239 -5564 -5311 4 00000 00000 1704 1923 -5328 -2728 4914 1216 -036 889 -224 -5313 -5036 3 00000 00000 1597 1835 -4579 -2725 4710 1211 413 872 -206 -4899 -4587 2 00000 00000 1374 1632 -3115 -2717 4163 1187 1091 847 -171 -4286 -3909 1 00000 00000 1030 1342 -1190 -2678 3185 1164 1733 817 -122 -3719 -3267 CLAD SURFACE COOLANT COOLANT COOLANT CLAD SURFACE CLAD SURFACE HEAT TRANS CLAD OUTER CORROSION NODE TEMP(C) TEMP(C) ENTHALPY(JKG) QUALTY(-) HF(WCM2) COEF(WCM2K) MODE (MICROND) THICKNESS(MIC) 10 3014 2896 128346D+06 -0352(MSUBCOOL) 250161D+01 213443D+00 1 831541D-03 1816577 9 3043 2892 128137D+06 -0354(MSUBCOOL) 322089D+01 213318D+00 1 113010D-02 2701419 8 3059 2888 127887D+06 -0356(MSUBCOOL) 364307D+01 213169D+00 1 143834D-02 3534082 7 3062 2882 127615D+06 -0359(MSUBCOOL) 383220D+01 213007D+00 1 169085D-02 4261795 6 3060 2877 127333D+06 -0362(MSUBCOOL) 389335D+01 212839D+00 1 203958D-02 5404640 5 3058 2872 127047D+06 -0365(MSUBCOOL) 395673D+01 212670D+00 1 206495D-02 5447857 4 3054 2866 126758D+06 -0368(MSUBCOOL) 397979D+01 212499D+00 1 176017D-02 4552738 3 3044 2861 126471D+06 -0371(MSUBCOOL) 389749D+01 212330D+00 1 138362D-02 3411542 2 3022 2856 126200D+06 -0374(MSUBCOOL) 353954D+01 212171D+00 1 100823D-02 2274663 1 2984 2851 125968D+06 -0376(MSUBCOOL) 282018D+01 212035D+00 1 719058D-03 1438410 0 INITIAL GAS (MOL) = 414D-03 0 FISSION GAS RESULT 0 LOCAL FISSION GAS RELEASE FRACTION (AXIAL NODE) 1 001306 2 004371 3 009150 4 012529 5 014209 6 012980 7 008746 8 004846 9 002029 10 000517 0 ROD AVERAGE FISSION GAS = 007950 FRACTIONS OF GAS MIXTURE (PERCENT) AXIAL NODE RELEASE FRACTION 1 2 3 4 5 6 7 8 9 10 ROD GAS PRESSURE ( MPA ) = 3869 HE 555 555 555 555 555 555 555 555 555 555 ROD GAS VOLUME ( CM3 ) = 8502 N2 00 00 00 00 00 00 00 00 00 00 (GAPPLENUM)= 1295 7207 KR 58 58 58 58 58 58 58 58 58 58 TOTAL GAS ( MOL ) = 655D-03 XE 387 387 387 387 387 387 387 387 387 387 ROD PRS(MPA) 3869 3869 3869 3869 3869 3869 3869 3869 3869 3869 0 RELEASED IODINE ( GRAMCM2 ) = 635D-05 (AVERAGE) 123D-04 (PEAK) 0 (MOL) HE N2 KR XE TOTAL PRODUCED GAS 374D-04 000D+00 490D-03 328D-02 381E-02 RELEASED GAS 462D-05 000D+00 390D-04 261D-03 304E-03 ROD GAS 418D-03 000D+00 390D-04 261D-03 655E-03 0 RADIAL TEMPERATURE DISTRIBUTION AT AXIAL NODE OF 6 PELLET GAP CLAD 1234567891011 123 720 717 707 690 666 635 598 553 501 440 353 348 338 328 === OPTIONAL OUTPUT (IN ELEMENT AVERAGE) === ---------------------------------------------------------------------------------------------------- | TEMPERATURE DISTRIBUTION IN THE FUEL (DEGC) IWTHE= 1 | ---------------------------------------------------------------------------------------------------- SEG 10 50133 49786 49093 48054 46670 44942 42867 40437 37624 34184 9 59559 59061 58065 56571 54581 52093 49105 45601 41524 36386 8 65949 65351 64155 62361 59971 56982 53389 49170 44248 37942 7 69467 68817 67517 65567 62966 59713 55800 51199 45819 38858 6 71861 71183 69824 67786 65065 61658 57555 52722 47053 39643 5 72931 72235 70842 68751 65960 62466 58255 53295 47475 39847 4 72392 71697 70306 68218 65433 61946 57748 52804 47009 39434 3 69792 69129 67802 65810 63155 59833 55837 51138 45642 38517 2 63307 62739 61604 59901 57632 54797 51391 47393 42735 36803 1 53187 52781 51968 50750 49128 47102 44669 41821 38518 34434 ---------------------------------------------------------------------------------------------------- | RADIUS OF INTRAGRANULAR GAS BUBBLE (ANGSTROM) IWTHE= 4 | ---------------------------------------------------------------------------------------------------- SEG 10 345 345 345 346 347 349 351 355 362 399 9 389 389 389 390 391 393 396 400 409 457 8 411 411 412 413 414 416 419 424 434 488 7 402 404 414 423 427 429 432 437 448 506 6 367 371 386 407 429 442 445 451 462 523 5 362 365 378 401 427 444 449 454 466 528 4 374 378 392 412 432 442 445 451 462 523 3 400 403 413 424 429 432 435 440 451 509 2 403 403 404 405 406 408 411 415 425 477 1 361 362 362 363 364 366 368 372 380 421 ---------------------------------------------------------------------------------------------------- | FISSION GAS RELEASE RATE IN A RING () IWTHE= 14 | ---------------------------------------------------------------------------------------------------- SEG 10 050 050 050 050 050 050 050 050 050 055 9 050 050 050 050 050 050 050 050 050 483 8 050 050 050 050 050 050 050 050 050 1382 7 1312 1165 685 165 050 050 050 050 050 2533 6 3549 3378 2746 1748 643 053 050 050 050 2856 5 3896 3771 3233 2209 953 092 050 050 050 2949 4 3282 3099 2459 1509 493 050 050 050 050 2863 3 1513 1360 856 247 050 050 050 050 050 2591 2 050 050 050 050 050 050 050 050 050 1261 1 050 050 050 050 050 050 050 050 050 301

JAEA-DataCode 2013-009

- 209 -

---------------------------------------------------------------------------------------------------- BURNUP DISTRIBUTION IN THE FUEL (MWDT) IWTHE= 18 ---------------------------------------------------------------------------------------------------- SEG 10 324006 324729 325496 326304 327155 328040 328983 329987 331030 332108 9 434960 436250 437488 438744 440036 441357 442750 444226 445754 447330 8 499246 500926 502485 504044 505633 507246 508938 510729 512580 514488 7 538964 540904 542677 544439 546227 548036 549928 551929 553996 556127 6 579130 581345 583345 585322 587321 589339 591445 593670 595968 598337 5 590218 592510 594574 596612 598671 600748 602915 605204 607567 610004 4 579907 582128 584132 586113 588117 590138 592249 594478 596780 599154 3 546300 548290 550104 551904 553730 555577 557507 559548 561656 563830 2 475797 477330 478768 480213 481690 483194 484773 486445 488175 489957 1 363909 364820 365744 366703 367703 368736 369832 370997 372205 373452 ================================================================================================================================== MECHANICAL ANALYSIS INFORMATION OUTPUT STAGE NUMBER = 619 TIME = 36385 H 57 M 30 S3744 MS ROD GAS PRESS(MPA) = 3869 COOLANT PRESS(MPA) = 15400 AXIAL FORCE(N) = -8369844 ================================================================================================================================== ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ SEG LHR B U R N U P FAST NEUTRON FLUX FAST NEUTRON FLUENCE FISSION RATE (WCM) (GJKGU) (MWDTU) (MWDTUO2) (FISSCC) (NCM2SEC) (NCM2) (FISSCCSEC) ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ 10 779 317717D+03 367728D+04 324145D+04 916756D+20 389400D+13 770096D+21 460259D+12 9 1003 435422D+03 503960D+04 444232D+04 125639D+21 501600D+13 105619D+22 592876D+12 8 1135 505484D+03 585051D+04 515712D+04 145855D+21 567600D+13 122645D+22 670886D+12 7 1195 549400D+03 635880D+04 560517D+04 158527D+21 597300D+13 133247D+22 705990D+12 6 1214 594204D+03 687737D+04 606227D+04 171455D+21 607200D+13 144275D+22 717692D+12 5 1234 606631D+03 702119D+04 618905D+04 175040D+21 617100D+13 147296D+22 729393D+12 4 1241 595073D+03 688742D+04 607114D+04 171705D+21 620400D+13 144460D+22 733294D+12 3 1214 557558D+03 645321D+04 568839D+04 160881D+21 607200D+13 135167D+22 717692D+12 2 1102 479779D+03 555300D+04 489486D+04 138438D+21 551100D+13 116373D+22 651383D+12 1 878 359583D+03 416184D+04 366859D+04 103756D+21 438900D+13 871774D+21 518766D+12 ---------------------------------------------------------------------------------------------------- STRESS(RADIAL) (MPA) IWROD= 1 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -36 -36 -37 -37 -38 -38 -39 -39 -40 -40 -41 -42 -42 -43 -43 -44 -45 -45 -46 -46 -47 -48 -48 -49 -50 -51 -52 -52 -53 -54 -55 -56 -57 -58 -59 -60 9 -23 -24 -24 -25 -25 -26 -26 -27 -27 -28 -28 -29 -29 -30 -31 -31 -32 -32 -33 -34 -34 -35 -35 -36 -37 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -48 8 -15 -15 -16 -16 -17 -17 -17 -18 -18 -19 -20 -20 -21 -21 -22 -22 -23 -23 -24 -24 -25 -26 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -39 -40 7 -11 -11 -11 -12 -12 -13 -13 -13 -14 -14 -15 -15 -16 -16 -17 -17 -18 -18 -19 -20 -21 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -35 -36 6 -05 -05 -06 -06 -07 -07 -08 -08 -09 -09 -10 -10 -11 -11 -12 -13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -20 -21 -22 -23 -24 -25 -27 -28 -29 -30 -32 5 -06 -06 -06 -07 -07 -08 -08 -09 -09 -10 -10 -11 -11 -12 -13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -20 -21 -22 -23 -24 -25 -26 -28 -29 -30 -32 -33 4 -09 -09 -09 -10 -10 -11 -11 -12 -12 -13 -14 -14 -15 -15 -16 -17 -17 -18 -19 -20 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -31 -32 -33 -35 -36 -38 3 -11 -12 -12 -13 -13 -14 -14 -15 -15 -16 -16 -17 -18 -18 -19 -20 -21 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -35 -36 -37 -39 -40 -42 2 -21 -21 -22 -22 -23 -23 -24 -24 -25 -25 -26 -26 -27 -28 -28 -29 -30 -31 -31 -32 -33 -34 -35 -36 -37 -38 -39 -41 -42 -43 -44 -45 -47 -48 -50 -51 1 -36 -37 -37 -37 -38 -39 -39 -40 -40 -41 -41 -42 -43 -43 -44 -44 -45 -46 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -62 -63 -64 SEGMENT NUM 10 -101 -108 -114 -120 -127 -133 -139 -148 -154 -154 9 -91 -99 -107 -114 -122 -129 -136 -147 -154 -154 8 -84 -93 -101 -110 -118 -126 -134 -146 -154 -154 7 -80 -90 -99 -108 -116 -125 -133 -146 -154 -154 6 -76 -87 -96 -105 -114 -123 -132 -145 -154 -154 5 -78 -88 -97 -106 -115 -124 -133 -146 -154 -154 4 -82 -91 -100 -108 -117 -125 -134 -146 -154 -154 3 -85 -94 -102 -111 -119 -127 -135 -146 -154 -154 2 -94 -102 -109 -116 -123 -130 -137 -147 -154 -154 1 -105 -112 -117 -123 -129 -134 -140 -148 -154 -154 ---------------------------------------------------------------------------------------------------- STRESS(HOOP) (MPA) IWROD= 2 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -36 -38 -40 -41 -43 -45 -47 -48 -50 -52 -54 -56 -59 -61 -63 -66 -68 -71 -73 -76 -76 -79 -82 -85 -88 -91 -94 -98 -102 -105 -109 -114 -118 -123 -128 -134 9 -23 -25 -27 -28 -30 -32 -33 -35 -37 -39 -41 -43 -46 -48 -50 -53 -55 -58 -59 -53 -56 -60 -63 -67 -71 -75 -80 -84 -89 -95 -101 -111 -126 -136 -146 -158 8 -15 -17 -18 -19 -21 -23 -24 -26 -28 -30 -32 -34 -36 -38 -37 -38 -40 -44 -47 -50 -54 -57 -61 -65 -69 -73 -78 -83 -88 -94 -100 -107 -114 -123 -133 -147 7 -11 -12 -13 -15 -16 -18 -19 -21 -23 -22 -24 -26 -29 -31 -34 -36 -39 -42 -45 -48 -52 -55 -59 -63

JAEA-DataCode 2013-009

- 210 -

-67 -72 -76 -81 -87 -92 -99 -105 -113 -122 -132 -146 6 -05 -07 -08 -09 -11 -12 -14 -16 -18 -20 -22 -24 -26 -28 -31 -33 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -77 -82 -88 -94 -100 -108 -116 -126 -139 5 -06 -07 -09 -10 -12 -13 -15 -17 -19 -20 -22 -25 -27 -29 -32 -34 -37 -40 -43 -46 -50 -53 -57 -61 -65 -70 -75 -80 -85 -91 -97 -104 -112 -121 -132 -145 4 -09 -10 -12 -13 -15 -17 -18 -20 -22 -24 -27 -29 -31 -34 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -76 -81 -87 -92 -98 -105 -112 -120 -129 -139 -153 3 -11 -14 -15 -17 -18 -20 -21 -22 -25 -28 -30 -33 -35 -38 -41 -44 -47 -50 -54 -57 -61 -65 -69 -74 -78 -83 -88 -94 -100 -106 -113 -120 -128 -137 -148 -161 2 -21 -23 -24 -26 -28 -29 -31 -33 -35 -37 -39 -41 -44 -46 -48 -53 -57 -61 -65 -69 -73 -77 -81 -85 -90 -94 -100 -105 -110 -116 -122 -129 -136 -144 -154 -166 1 -36 -38 -40 -42 -43 -45 -47 -49 -51 -53 -55 -58 -60 -62 -65 -68 -70 -73 -75 -80 -85 -89 -93 -96 -100 -104 -109 -113 -117 -122 -127 -133 -139 -145 -152 -160 SEGMENT NUM 10 -450 -462 -473 -485 -496 -508 -519 -527 -162 -162 9 -524 -535 -546 -557 -568 -579 -590 -596 -163 -164 8 -569 -581 -593 -606 -618 -631 -644 -652 -163 -164 7 -593 -605 -618 -631 -644 -657 -671 -680 -164 -165 6 -627 -639 -651 -664 -677 -690 -703 -712 -164 -166 5 -619 -631 -643 -656 -668 -681 -694 -703 -164 -166 4 -589 -600 -612 -625 -637 -650 -663 -672 -164 -165 3 -554 -567 -580 -593 -607 -621 -634 -645 -163 -164 2 -498 -510 -522 -534 -546 -559 -571 -580 -163 -163 1 -420 -431 -444 -456 -468 -480 -493 -502 -162 -162 ---------------------------------------------------------------------------------------------------- STRESS(AXIAL) (MPA) IWROD= 3 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08 08 09 09 09 10 10 11 11 12 12 12 13 13 13 10 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 32 34 34 34 34 34 35 35 35 35 36 35 00 00 00 00 -00 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21 21 20 20 19 19 18 18 17 17 16 16 16 16 16 16 16 16 17 18 16 7 00 00 00 00 00 00 00 00 00 14 15 15 15 14 13 12 11 11 10 09 08 07 07 06 05 05 04 04 03 03 02 02 02 02 02 03 6 18 17 16 15 14 13 12 11 10 09 08 07 07 06 05 04 03 02 01 00 -01 -02 -03 -04 -05 -06 -08 -09 -10 -11 -12 -13 -14 -15 -15 -13 5 15 14 13 12 11 10 09 09 08 07 06 05 04 03 02 01 00 -01 -02 -03 -05 -06 -08 -09 -11 -12 -14 -16 -18 -20 -22 -24 -26 -28 -29 -29 4 12 11 10 09 08 07 06 05 04 03 02 02 01 -00 -01 -02 -03 -05 -06 -08 -10 -12 -14 -16 -18 -20 -22 -24 -27 -29 -31 -34 -36 -38 -40 -40 3 11 00 00 00 00 00 00 07 06 05 03 02 01 00 -01 -02 -03 -04 -06 -08 -09 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -34 -35 -34 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 03 01 00 -01 -02 -03 -05 -06 -07 -08 -09 -10 -11 -12 -12 -13 -13 -13 -13 -12 -10 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 15 14 12 11 11 10 10 10 10 10 10 10 10 10 11 11 11 12 SEGMENT NUM 10 -428 -443 -458 -474 -489 -504 -519 -533 -160 -160 9 -439 -457 -474 -492 -509 -527 -545 -562 -160 -161 8 -436 -453 -471 -489 -507 -526 -545 -564 -161 -161 7 -427 -444 -461 -479 -497 -515 -533 -552 -161 -162 6 -420 -436 -453 -469 -486 -504 -521 -539 -161 -162 5 -408 -424 -439 -456 -472 -488 -505 -523 -161 -162 4 -390 -406 -422 -437 -454 -470 -487 -504 -161 -162 3 -383 -400 -416 -433 -451 -469 -487 -505 -161 -161 2 -396 -413 -430 -447 -465 -483 -501 -519 -160 -161 1 -427 -443 -458 -474 -490 -505 -521 -537 -161 -161 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(RADIAL) (001) IWROD= 12 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 383 387 390 393 396 399 402 404 407 409 411 413 415 417 419 420 422 423 425 425 441 444 437 430 423 417 411 406 401 397 393 389 386 382 379 376 9 01 31 58 83 108 133 157 181 205 228 250 272 294 315 336 357 376 395 417 505 595 602 584 568 553 542 532 525 520 518 517 521 533 545 560 574 8 -392 -323 -269 -221 -176 -132 -90 -48 -07 33 73 112 150 188 243 340 455 590 722 855 955 954 915 878 844 812 784 757 733 711 693 680 671 668 670 676 7 -1088 -728 -535 -411 -327 -264 -211 -163 -117 -47 60 164 275 393 521 656 784 911 1041 1174 1268 1257 1203 1152 1104 1062 1019 978 939 903 869 839 813 793 779 771 6 -1717 -1315 -1008 -778 -590 -425 -281 -144 -16 107 230 354 477 594 711 832 955 1081 1209 1341 1432 1421 1360 1300 1241 1184 1131 1079 1031 986 943 905 871 842 822 814 5 -1948 -1463 -1087 -767 -526 -340 -186 -48 78 200 321 441 556 670 787 908 1031 1155 1284 1416 1507 1493 1432 1368

JAEA-DataCode 2013-009

- 211 -

1306 1246 1189 1135 1083 1036 992 951 913 880 853 835 4 -1554 -1197 -947 -745 -571 -411 -253 -115 09 126 246 371 500 626 747 870 995 1123 1253 1386 1480 1465 1405 1347 1289 1232 1177 1126 1078 1033 991 951 915 882 856 838 3 -1131 -819 -572 -422 -325 -255 -200 -137 -42 69 174 284 397 516 639 773 902 1029 1160 1291 1385 1374 1316 1262 1212 1165 1118 1074 1032 992 955 921 891 864 841 821 2 -169 -125 -88 -52 -17 17 51 84 117 149 181 212 242 272 306 396 502 621 756 890 989 992 954 919 886 855 826 800 775 751 730 712 694 679 666 658 1 334 343 351 359 367 374 381 388 395 401 408 414 419 425 430 435 440 445 461 539 623 632 614 598 582 567 553 539 527 515 505 494 485 476 467 459 SEGMENT NUM 10 1226 1184 1146 1111 1077 1045 1015 974 16 15 9 1539 1488 1443 1400 1359 1320 1282 1233 261 261 8 1759 1701 1649 1600 1554 1510 1469 1413 431 430 7 1907 1845 1789 1736 1686 1639 1594 1534 546 544 6 2097 2028 1968 1910 1856 1804 1754 1688 693 691 5 2091 2023 1962 1904 1850 1798 1748 1682 686 684 4 1986 1920 1862 1807 1755 1706 1659 1596 603 602 3 1814 1754 1700 1650 1602 1556 1513 1455 471 471 2 1516 1466 1420 1378 1337 1298 1261 1212 242 241 1 1210 1168 1131 1096 1063 1031 1001 961 05 05 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(HOOP) (001) IWROD= 13 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 383 384 385 386 387 388 389 390 391 392 393 394 395 395 396 397 398 398 399 400 401 402 402 403 404 404 404 404 404 404 404 404 403 403 403 403 9 01 06 15 23 32 40 49 57 65 73 81 89 97 105 113 121 128 136 143 151 161 171 181 189 197 204 210 216 222 227 231 236 241 245 250 254 8 -392 -380 -361 -343 -326 -310 -294 -278 -263 -248 -234 -219 -205 -191 -176 -161 -144 -125 -103 -80 -56 -32 -10 09 27 43 57 70 82 93 103 112 121 129 137 145 7 -1088 -1026 -937 -865 -806 -758 -716 -679 -647 -616 -586 -555 -523 -491 -458 -423 -388 -352 -316 -279 -242 -206 -174 -145 -119 -95 -73 -54 -36 -19 -04 09 22 34 45 55 6 -1717 -1648 -1540 -1440 -1350 -1270 -1196 -1129 -1065 -1005 -948 -892 -839 -787 -737 -687 -639 -591 -543 -496 -449 -405 -365 -328 -295 -265 -238 -214 -191 -171 -152 -135 -119 -104 -90 -78 5 -1948 -1865 -1733 -1609 -1495 -1394 -1303 -1221 -1146 -1077 -1011 -949 -890 -834 -779 -725 -673 -622 -572 -522 -473 -426 -384 -345 -311 -279 -251 -225 -201 -180 -160 -142 -125 -110 -96 -82 4 -1554 -1493 -1399 -1313 -1236 -1165 -1098 -1035 -975 -919 -865 -813 -762 -712 -663 -615 -567 -520 -473 -427 -381 -337 -297 -261 -229 -199 -172 -148 -126 -106 -87 -70 -55 -40 -27 -15 3 -1131 -1078 -993 -916 -852 -798 -752 -712 -674 -637 -600 -563 -526 -489 -452 -414 -375 -336 -297 -258 -218 -181 -146 -115 -88 -62 -39 -19 00 18 34 48 61 74 85 96 2 -169 -161 -149 -137 -125 -113 -101 -90 -78 -67 -55 -44 -33 -22 -11 01 14 30 48 68 90 111 130 148 163 177 190 201 212 221 230 238 245 252 258 263 1 334 336 338 341 344 346 349 351 353 356 358 361 363 365 367 369 372 374 376 379 384 390 395 399 403 407 410 412 414 416 418 419 420 421 422 422 SEGMENT NUM 10 -786 -748 -714 -682 -651 -623 -595 -558 -535 -534 9 -926 -879 -837 -798 -761 -726 -692 -647 -617 -616 8 -1029 -976 -929 -885 -843 -803 -766 -714 -680 -679 7 -1114 -1056 -1006 -958 -913 -870 -829 -773 -736 -734 6 -1240 -1177 -1121 -1069 -1019 -971 -926 -864 -824 -820 5 -1245 -1181 -1126 -1073 -1023 -976 -931 -869 -828 -825 4 -1180 -1120 -1067 -1017 -969 -924 -882 -823 -785 -782 3 -1075 -1020 -972 -926 -882 -841 -802 -748 -714 -712 2 -916 -870 -829 -790 -754 -719 -686 -641 -612 -611 1 -766 -729 -695 -664 -634 -606 -579 -542 -519 -519 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(AXIAL) (001) IWROD= 14 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 1451 1432 1413 1394 1376 1358 1340 1322 1305 1288 1270 1253 1236 1220 1203 1187 1171 1155 1139 1123 1129 1115 1110 1104 1098 1092 1085 1078 1071 1063 1055 1047 1037 1025 1010 982 9 3145 3089 3033 2977 2922 2868 2815 2762 2709 2657 2606 2556 2506 2457 2408 2361 2313 2267 2212 2251 2130 2094 2086 2077 2068 2057 2045 2031 2014 1994 1968 1763 1719 1677 1630 1581 8 4500 4392 4294 4202 4113 4027 3943 3861 3779 3699 3619 3541 3463 3387 3289 3245 3081 2893 2709 2519 2359 2309 2304 2298 2291 2284 2276 2267 2257 2245 2231 2214 2194 2171 2140 2081 7 6183 5744 5439 5218 5048 4909 4786 4674 4567 4505 4337 4167 3988 3802 3603 3398 3201 3004 2803 2599 2429 2374 2371 2367 2363 2358 2353 2346 2339 2331 2321 2309 2294 2276 2252 2220 6 6938 6708 6477 6250 6022 5792 5564 5337 5116 4900 4685 4470 4257 4052 3849 3644 3437 3229 3018 2803 2627 2571 2569 2567 2564 2561 2557 2553 2548 2542 2535 2526 2514 2497 2474 2441 5 6958 6726 6495 6264 6035 5808 5582 5356 5133 4912 4693 4476 4265 4059 3851 3642 3432 3221 3007 2790 2612 2554 2553 2551 2549 2547 2545 2542 2538 2535 2529 2522 2512 2497 2475 2444 4 6826 6593 6364 6134 5903 5667 5425 5195 4979 4769 4558 4344 4128 3915 3708 3502 3294 3085 2874 2658 2481 2422 2421 2420 2417 2414 2411 2408 2404 2400 2394 2387 2376 2362 2342 2314 3 6348 5923 5569 5318 5129 4978 4849 4750 4575 4385 4203 4018 3829 3636 3438 3229 3026 2825 2622 2415 2242 2186 2184 2181

JAEA-DataCode 2013-009

- 212 -

2178 2175 2171 2166 2161 2155 2147 2138 2126 2111 2091 2065 2 3834 3759 3685 3612 3541 3470 3401 3332 3264 3197 3130 3065 3000 2936 2893 2744 2584 2413 2226 2039 1879 1828 1824 1820 1815 1810 1805 1798 1790 1780 1770 1757 1743 1726 1706 1681 1 1865 1837 1809 1782 1755 1728 1702 1676 1650 1625 1600 1575 1550 1526 1502 1478 1455 1431 1468 1355 1234 1196 1192 1188 1183 1179 1174 1168 1162 1156 1150 1142 1135 1127 1118 1108 SEGMENT NUM 10 439 439 439 439 439 439 439 439 439 439 9 347 347 347 347 347 347 347 347 347 347 8 278 278 278 278 278 278 278 278 278 278 7 243 243 243 243 243 243 243 243 243 243 6 208 208 208 208 208 208 208 208 208 208 5 226 226 226 226 226 226 226 226 226 226 4 257 257 257 257 257 257 257 257 257 257 3 297 297 297 297 297 297 297 297 297 297 2 385 385 385 385 385 385 385 385 385 385 1 461 461 461 461 461 461 461 461 461 461 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 26 37 46 53 59 65 70 75 80 85 89 93 97 101 105 109 112 116 119 122 126 129 132 135 138 141 144 146 149 151 154 156 158 161 163 165 0000 9 00 00 01 02 04 05 07 10 12 14 17 19 22 25 28 31 34 37 40 44 48 52 57 61 65 69 72 76 79 82 86 89 92 95 99 102 105 -0000 8 00 -27 -36 -42 -46 -49 -51 -52 -52 -52 -52 -51 -50 -49 -47 -45 -42 -38 -33 -27 -21 -14 -07 -00 06 12 17 23 28 32 37 41 45 49 53 57 61 -0000 7 00 -74 -95 -107 -114 -119 -123 -126 -128 -129 -130 -129 -128 -125 -121 -117 -111 -104 -97 -89 -80 -70 -61 -52 -44 -36 -29 -22 -16 -10 -04 01 06 11 16 20 25 0000 6 -00 -117 -155 -176 -191 -200 -206 -210 -212 -212 -211 -209 -205 -200 -195 -188 -181 -173 -164 -155 -144 -134 -123 -113 -104 -96 -88 -80 -73 -66 -60 -54 -49 -44 -39 -34 -29 0000 5 00 -133 -175 -198 -212 -221 -226 -228 -229 -228 -226 -222 -218 -212 -206 -199 -191 -183 -173 -163 -152 -141 -130 -119 -110 -101 -92 -84 -77 -70 -63 -57 -51 -46 -41 -36 -31 0000 4 -00 -106 -140 -161 -174 -183 -189 -193 -194 -194 -193 -190 -186 -182 -176 -169 -162 -153 -144 -134 -123 -112 -101 -91 -82 -73 -65 -57 -49 -42 -36 -30 -24 -19 -13 -08 -04 0000 3 00 -77 -100 -113 -121 -126 -130 -132 -134 -134 -134 -132 -129 -125 -120 -115 -108 -100 -92 -83 -73 -62 -52 -43 -34 -25 -18 -10 -03 03 10 16 21 27 32 37 41 0000 2 -00 -12 -15 -17 -18 -18 -18 -17 -16 -15 -13 -11 -09 -07 -04 -02 02 06 11 17 24 32 39 46 52 58 64 70 75 80 84 89 93 97 101 105 109 0000 1 -00 23 33 40 47 53 58 63 68 73 77 81 86 90 94 97 101 105 109 112 116 121 126 130 134 138 142 146 149 153 156 159 162 165 168 171 173 -0000 (R-DIRECTION OF Cladding) 10 -335 -324 -439 -554 -669 -784 -900 -1016 -375 -285 -195 9 -395 -381 -501 -621 -741 -861 -982 -1103 -473 -338 -203 8 -439 -424 -548 -673 -798 -924 -1050 -1176 -557 -381 -204 7 -475 -459 -588 -718 -848 -978 -1109 -1240 -631 -418 -206 6 -529 -511 -648 -786 -924 -1062 -1201 -1340 -747 -477 -207 5 -531 -513 -650 -788 -927 -1065 -1205 -1344 -752 -480 -208 4 -504 -486 -617 -749 -881 -1013 -1146 -1279 -673 -446 -219 3 -459 -443 -566 -690 -813 -938 -1062 -1187 -565 -395 -225 2 -391 -378 -494 -610 -727 -844 -962 -1079 -443 -329 -216 1 -327 -316 -428 -540 -652 -764 -877 -990 -344 -272 -201 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 3320391 (Plenum) 10 17978029 3139636 9 17011908 2700254 8 15111368 2353561 7 13062903 2075618 6 10982308 1832563 5 8725095 1624651 4 6498211 1399123 3 4400908 1142598 2 2524124 845254 1 972470 460646 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT INCREMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000

JAEA-DataCode 2013-009

- 213 -

9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 8 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 7 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 6 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 3 00 -00 -00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 1 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 00 00 00 00 00 00 -0000 (R-DIRECTION OF Cladding) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 8 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 7 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 6 -00 00 00 00 00 00 00 00 00 00 00 5 00 00 00 00 00 00 00 00 00 00 00 4 00 00 00 00 00 00 00 00 00 00 00 3 00 00 00 00 00 00 00 00 00 00 00 2 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 0042 (Plenum) 10 0011 0011 9 0014 0014 8 0014 0014 7 0012 0012 6 0008 0008 5 0005 0005 4 0003 0003 3 0005 0005 2 0005 0005 1 0004 0004 STAGE NO 619 PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) CLEARANCE CONTACT THERMAL ELASTIC DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE (MICRONS) FORCE(MPA) EXPANS DEFORM CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 0000 5970 1265 -090 -869 -2648 2827 1164 1649 822 -138 -3787 -3351 9 -0000 4827 1528 -063 -2705 -2707 3813 1186 1051 851 -177 -4321 -3949 8 -0000 4043 1719 -045 -3905 -2720 4356 1204 609 872 -204 -4717 -4391 7 -0000 3668 1830 -035 -4700 -2725 4659 1217 246 885 -220 -5049 -4754 6 -0000 3224 1911 -024 -5595 -2728 4910 1234 -292 899 -240 -5542 -5292 5 0000 3360 1945 -026 -5704 -2728 4973 1230 -311 900 -239 -5564 -5311 4 0000 3800 1923 -032 -5328 -2728 4914 1216 -036 889 -224 -5313 -5036 3 -0000 4222 1835 -039 -4579 -2725 4710 1211 413 872 -206 -4899 -4587 2 0000 5156 1632 -059 -3115 -2717 4163 1187 1091 847 -171 -4286 -3909 1 -0000 6422 1342 -091 -1190 -2678 3185 1164 1733 817 -122 -3719 -3267 ------------------------------------------------------------------------------------------------------------------- | RESULTS OF THERMAL ANALYSIS THERMAL INFORMATION ( SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | T H E R M A L I N F O R M A T I O N ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | TEMPERATURE GAP CONDUCTANCE RADIAL CONTACT PROD FISS IODN CPU NO HEAT | FUEL FUEL CLAD CLAD TOTAL GAS SOLID BONDING GAP PRESS GAS GAS REL TIME RATE (MWD | CENTER SURFACE INNER OUTER (WCM2 (WCM2 (WCM2 RATIO SIZE (XE+KR) REL (10-5 (HRMSMS) (WCM) TU) | (DEGC)(DEGC)(DEGC)(DEGC) C) C) C) (-) (MIC) (MPA)(10-3MOL)() GCM2)(SEC) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 2850 2850 2850 2850 0602 060 000 0000 0 323 00 000 050 0000 0 245 139055442965 3399 292014| 14005 4335 4164 3618 7687 354 006 0667 1 00 94 190 595 2397 12 314 163561451942 12 356537| 2881 2856 2856 2854 6119 123 000 0842 0 55 00 232 775 3809 15 363 198595338887 2316 408858| 10360 3925 3828 3452 9134 282 005 0925 1 00 82 266 755 4256 18 513 283643137758 66 578551| 3054 2887 2883 2872 6939 108 000 1000 0 29 00 377 920 7345 25 |

JAEA-DataCode 2013-009

- 214 -

530 284964457773 1877 579655| 9437 3830 3754 3454 9600 191 002 1000 1 00 53 378 921 7367 26 618 3638551 9574 1214 687736| 7203 3530 3480 3285 9529 125 001 1000 1 00 32 448 1298 12313 30 619 363855730374 1214 687737| 7203 3529 3480 3285 9529 125 001 1000 1 00 32 448 1298 12313 30 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF THERMAL ANALYSIS MECHANICAL INFORMATION ( SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | F U E L O U T E R S U R F A C E | RADIAL GAP | CLAD INNER SURFACE ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | THERMAL CREEP DENSIFI SWELL RELOCA RADIAL | RAD CONTACT|THERMAL ELASTIC CREEP RADIAL NO HEAT | EXPAN -CATION -ING -TION DISPLA | GAP PRESS | EXPAN DEFORM DISPLA RATE (MWD | -SION -CEMENT | | -SION -ATION -CEMENT (HRMSMS) (WCM) TU) | (MIC) (MIC) (MIC) (MIC) (MIC) (MIC) | (MIC) (MPA)| (MIC) (MIC) (MIC) (MIC) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 729 000 000 000 1345 2074 | 323 00 | 734 -407 000 306 245 139055442965 3399 292014| 4556 -3814 -2564 2344 1140 1471 | 00 94 | 1070 -093 -4200 -3529 314 163561451942 12 356537| 737 -4304 -2639 2835 2962 -222 | 55 00 | 735 -332 -4725 -4671 363 198595338887 2316 408858| 2983 -4067 -2674 3241 1143 467 | 00 82 | 985 -107 -5049 -4533 513 283643137758 66 578551| 777 -5410 -2720 4406 2290 -546 | 29 00 | 742 -342 -5260 -5252 | | | 530 284964457773 1877 579655| 2665 -5407 -2720 4413 1199 105 | 00 53 | 969 -213 -5264 -4895 618 3638551 9574 1214 687736| 1911 -5595 -2728 4910 1234 -292 | 00 32 | 899 -240 -5541 -5292 619 363855730374 1214 687737| 1911 -5595 -2728 4910 1234 -292 | 00 32 | 899 -240 -5542 -5292 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF THERMAL ANALYSIS FISSION GAS INFORMATION ( SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | F U E L C E N T E R | | F U E L - C L A D ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | FUEL GRAIN BUBBLE BUBBLE DIFFUS DIFFUS GAS SATURA | LOCAL |FISSON AMOUNT XE+KR NO HEAT | CENTER RADIUS RADIUS DENSITY COEFF COEFF DENSAT -TION | FGR AT| GAS OF GAS IN GAP RATE (MWD | TEMP (10D14 EFFECT BOUND DENS | CENTER| REL IN GAP (HRMSMS) (WCM) TU) | (DEGC) (MIC) (ANGST) BCM3) (10D-16 CM2S) (10D13 ATCM2) | () | () (10-3MOL) () ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 2850 50 00 193532 02 02 00 2610 | 050 | 050 009 000 245 139055442965 3399 292014| 14005 53 114 42205 454 298 2317 2317 | 5579 | 595 003 999 314 163561451942 12 356537| 2881 54 22 130136 02 02 438 2811 | 6489 | 775 008 1504 363 198595338887 2316 408858| 10360 54 28 119001 03 03 563 2368 | 5712 | 755 004 1611 513 283643137758 66 578551| 3054 54 33 109726 02 02 1074 3047 | 4151 | 920 008 2948 | | | 530 284964457773 1877 579655| 9437 54 33 109523 02 02 978 1806 | 4144 | 921 005 2956 618 3638551 9574 1214 687736| 7203 54 37 103495 02 02 1080 2151 | 3549 | 1298 007 4451 619 363855730374 1214 687737| 7203 54 37 103495 02 02 1080 2151 | 3549 | 1298 007 4451 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF THERMAL ANALYSIS FISSION GAS INFORMATION ( WHOLE FUEL ROD ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | F U E L R O D ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | AMOUNT OF GAS FRACTION OF GAS MIXTURE FISSION INNER NO HEAT | PRODUCE RELEASE PLENUM GAP TOTAL IN GAS GAS RATE (MWD (10D20 | (XE+KR) (XE+KR) FUEL ROD HE N2 KR XE RELEASE PRESS (HRMSMS) (WCM) TU) FISSCC)| (10D-3 MOLE) () () () () () (MPA) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00 000 | 000 000 324 090 414 10000 000 000 000 050 194 245 139055442965 3399 235664 582 | 1535 044 391 040 432 9587 000 131 878 284 249 314 163561451942 12 288442 713 | 1879 069 379 077 457 9070 000 197 1315 368 228 363 198595338887 2316 332016 821 | 2163 075 401 048 449 9232 000 217 1449 346 258 513 283643137758 66 479942 1186 | 3127 158 440 089 530 7853 000 389 2602 507 286 | 530 284964457773 1877 480941 1189 | 3133 159 465 055 520 8002 000 398 2661 507 308 618 3638551 9574 1214 578801 1431 | 3771 300 575 080 655 6390 000 595 3983 795 387 619 363855730374 1214 578802 1431 | 3771 300 575 080 655 6390 000 595 3983 795 387 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF FEM MECHANICAL ANALYSIS FUEL AND CLAD DEFORMATIONS ( ANALYZED SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | DIAMETRAL FUEL TOP | DIAMETRAL GAP | DIAMETRAL CLADDING | DIA RIDGE ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | AXIAL AXIAL RADIAL RADIAL| RADIAL CONTACT CONTACT| AXIAL RADIAL RADIAL | RIDGE RIDGE NO HEAT | DIPS DIPS DIPS DIPS | GAP AT PRESS PRESS | DISP DISP DISP |HEIGHT HEIGHT RATE (MWD | CENTER SURF INNER OUTER | TOP AXIAL RADIAL | AT TOP OUTTOP OUTMID| MAX TOP-MID (HRMSMS) (WCM) TU) | (MM) (MM) (MIC) (MIC) | (MIC) (MPA) (MPA) | (MM) (MIC) (MIC) | (MIC) (MIC) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 5414 5414 00 415 | 646 00 00 | 0773 93 93 | 00 00 245 139055442965 3399 292014| 8360 8360 00 294 | 00 13 94 | 2905 -394 -394 | 00 00 314 163561451942 12 356537| 7785 7785 00 -44 | 110 00 00 | 2647 -556 -556 | 00 00 363 198595338887 2316 408858| 10858 10858 00 93 | -00 07 82 | 2880 -490 -490 | 00 00 513 283643137758 66 578551| 14128 14128 00 -109 | 59 00 00 | 2986 -494 -494 | 00 00 | | | | 530 284964457773 1877 579655| 15224 15224 -00 21 | 00 08 53 | 3149 -418 -418 | 00 00 618 3638551 9574 1214 687736| 17978 17978 -00 -58 | -00 05 32 | 3320 -415 -415 | 00 00

JAEA-DataCode 2013-009

- 215 -

619 363855730374 1214 687737| 17978 17978 -00 -58 | -00 05 32 | 3320 -414 -414 | 00 00 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF FEM MECHANICAL ANALYSIS STRESSES AND STRAINS IN FUEL ( ANALYZED SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | T O P A N D I N N E R O F F U E L ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | CIRCUM AXIAL RADIAL CIRCUM AXIAL RADIAL EQUIV EQUIV CIRCUM AXIAL RADIAL EQUIV NO HEAT | TOTAL TOTAL TOTAL CREEP CREEP CREEP CREEP PLAST STRESS STRESS STRESS STRESS RATE (MWD | STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN (HRMSMS) (WCM) TU) |(001) (001) (001) (001)(001)(001)(001)(001) (MPA) (MPA) (MPA) (MPA) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 51 68 51 0 -0 0 0 0 00 -00 00 00 245 139055442965 3399 292014| -24 563 -24 -208 364 -208 381 0 -67 -64 -67 14 314 163561451942 12 356537| -135 556 -135 -249 407 -249 437 0 118 154 118 36 363 198595338887 2316 408858| -106 561 -106 -244 398 -244 428 0 -65 -00 -65 65 513 283643137758 66 578551| -173 656 -173 -300 499 -300 533 0 68 96 68 28 | 530 284964457773 1877 579655| -143 671 -143 -300 499 -300 533 0 -12 -14 -12 04 618 3638551 9574 1214 687736| -172 694 -172 -314 526 -314 560 0 -05 18 -05 23 619 363855730374 1214 687737| -172 694 -172 -314 526 -314 560 0 -05 18 -05 23 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF FEM MECHANICAL ANALYSIS STRESSES AND STRAINS IN CLAD ( ANALYZED SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | T O P A N D I N N E R O F C L A D D I N G ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | CIRCUM AXIAL RADIAL CIRCUM AXIAL RADIAL EQUIV EQUIV CIRCUM AXIAL RADIAL EQUIV NO HEAT | TOTAL TOTAL TOTAL CREEP CREEP CREEP CREEP PLAST STRESS STRESS STRESS STRESS RATE (MWD | STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN (HRMSMS) (WCM) TU) |(001) (001) (001) (001)(001)(001)(001)(001) (MPA) (MPA) (MPA) (MPA) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 8 8 24 -0 0 0 0 0 -997 -519 -49 821 245 139055442965 3399 292014| -78 21 155 -101 -26 128 135 0 -339 -348 -124 220 314 163561451942 12 356537| -104 16 169 -114 -33 147 154 0 -792 -360 -44 650 363 198595338887 2316 408858| -101 18 182 -122 -34 156 164 0 -386 -411 -115 284 513 283643137758 66 578551| -117 17 191 -127 -42 169 176 0 -836 -428 -51 680 | 530 284964457773 1877 579655| -109 20 195 -127 -42 169 176 0 -560 -368 -97 403 618 3638551 9574 1214 687736| -118 21 203 -134 -44 177 185 0 -639 -436 -87 484 619 363855730374 1214 687737| -118 21 203 -134 -44 177 185 0 -639 -436 -87 484 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF FEM MECHANICAL ANALYSIS FUEL AND CLAD DEFORMATIONS ( WHOLE FUEL ROD ) | | AND THERMAL ANALYSIS FUEL FREE VOLUME AND CLADDING OXIDATION INFORMATION | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | F U E L R O D | OXIDE THICKNESS ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP FLUEN | CLAD FUEL CLAD INNER FUEL PLENUM | OXIDE OXIDE NO HEAT CE(10 | DIA AXIAL AXIAL GAS FREE VOLUME | THICK THICK RATE (MWD (MWDT) E19N | DISP DISP DISP PRESSURE VOLUME | AVE MAX (HRMSMS) (WCM) TUO2) CM2) | (MIC) (001) (001) (MPA) (CM3) (CM3) | (MIC) (MIC) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00 00 00 | 933 5414 673 1938 9908 7749 | 0100 0100 245 139055442965 2773 207733 235664 6137 | -3957 8360 2531 2493 9031 7705 | 11180 16267 314 163561451942 10 254256 288442 7483 | -5276 7785 2306 2280 9303 7722 | 14973 22739 363 198595338887 1943 292666 332016 8592 | -4666 10858 2509 2584 8906 7568 | 17212 26062 513 283643137758 60 423060 479942 12145 | -4913 14128 2601 2863 8871 7397 | 28099 44001 | | 530 284964457773 1699 423941 480941 12169 | -4196 15224 2743 3082 8601 7347 | 28163 44092 618 3638551 9574 1100 510203 578801 14427 | -4169 17978 2893 3869 8502 7207 | 34844 54478 619 363855730374 1100 510203 578802 14428 | -4167 17978 2893 3869 8502 7207 | 34844 54479 ----------------------------------------------------------------------------------------------------------------------------------- INS1M= 0 INS2M= 0 INS3M= 0 ----------------------------- --- Calculation completed --- -----------------------------

72 Plotting control data file image of ldquoexplotABCrdquo

Sample Case Plotting Control

16

101

63018 Average LHR

JAEA-DataCode 2013-009

- 216 -

1

1

12000

5155620513

00600513

301

6301646464 Fast Flux

111

357

12000

5155620513

00600513

301

6301535353 Pellet center temperature

111

357

12000

5155620513

00600513

301

6301545454 Pellet surface temperature

101010

357

12000

5155620513

00600513

101

63012 Fission Gas Relase Rate

1

2

12000

5155620513

00600513

101

63013 Rod Internal Pressure

1

1

12000

5155620513

351050513

301

6301676767 Gap width

111

357

JAEA-DataCode 2013-009

- 217 -

12000

5155620513

00600513

301

6301494949 Gap Conductance

111

357

12000

5155620513

00600513

301

6301787878 Cladding Outer surface Diameter change

111

357

12000

5155620513

00600513

301

6301154154154 Cladding Hoop Stress

555

357

12000

7180724010-13

00600513

301

6301818181 Pellet Diameter change

111

357

12000

5155620513

00600513

311

2331101101101 Pellet local burnup

111

555

10 15200

5155620513

00600513

101

63016 Cladding Average elongation

1

1

12000

5155620513

JAEA-DataCode 2013-009

- 218 -

020800523

301

6301525252 Clad outer temperature

111

357

12000

5155620513

00600513

301

6301505050 Coolant temperature

111

1510

12000

5155620513

00600513

301

6301595959 Oxide thickness

111

357

1 1000

5155620513

00600513

73 Images of plotted output ldquoABC1ABCpdfrdquo

JAEA-DataCode 2013-009

- 219 -

JAEA-DataCode 2013-009

- 220 -

JAEA-DataCode 2013-009

- 221 -

JAEA-DataCode 2013-009

- 222 -

JAEA-DataCode 2013-009

- 223 -

JAEA-DataCode 2013-009

- 224 -

74 Example of numerical output of HBS model The result file which is generated by the High burnup structure formation model has a format of the ASCII table so as to be read by EXCEL or other gpaphical plotting softwares A sample of this file is presented in Figs 741 (12) and (22) Time Step No 431 time(hr)= 4807920 Segment No 1 2 3 4 5 6 7 8 9 10 11 12 Burnup(MWdt) 66214 247436 345140 407444 451814 472564 479751 481165 444920 399073 311228 114811 Power(Wcm) 47 47 47 47 47 47 47 47 47 47 47 47 Pellet Radius(cm) Local Burnup (MWdtU) 02600 59535 223747 312851 369954 410759 429871 436494 437799 404413 362269 281870 103406 06277 59535 223747 312851 369954 410759 429871 436494 437799 404413 362269 281870 103406 08180 59535 223747 312851 369954 410759 429871 436494 437799 404414 362269 281870 103406

51346 89214 369653 529193 630008 699531 731078 741868 743986 688916 616560 473792 161066 51608 90464 379943 546566 651956 724293 756951 768099 770286 713281 637905 488643 164049 51870 91755 390889 565226 675618 751010 784867 796398 798661 739569 660907 504550 167162 Pellet Radius(cm) Effective Burnup (GWdtU) 02600 5953 22374 16846 11614 4517 4131 4261 4698 5208 10668 21238 10340 06277 5953 22374 16901 12376 4782 4145 4279 4782 5305 12739 21263 10340 08180 5953 22374 16962 13210 5135 4161 4298 4865 5422 15584 21292 10340

51346 8921 36964 52917 62998 69950 73105 74184 74395 68889 61653 47377 16106 51608 9046 37993 54654 65193 72426 75692 76806 77025 71325 63788 48862 16404 51870 9175 39087 56520 67559 75098 78483 79636 79863 73954 66088 50453 16715

Pellet Radius(cm) Pellet Temperature (C) 00000 2970 2933 2924 2945 2984 3040 3100 3155 3183 3193 3201 3254 05200 2970 2932 2924 2944 2983 3039 3099 3154 3182 3192 3200 3253 07354 2969 2932 2923 2943 2982 3038 3098 3153 3181 3192 3200 3253

51477 2925 2870 2853 2867 2902 2956 3015 3070 3101 3116 3132 3204 51739 2925 2870 2852 2866 2901 2954 3014 3069 3100 3115 3131 3203 52000 2924 2869 2851 2865 2899 2953 3013 3067 3099 3114 3130 3203 Pellet Radius(cm) Pellet Thermal Conductivity (WcmK) 02600 07561 05572 04876 04514 04286 04185 04150 04142 04312 04549 05082 06871 06277 07561 05572 04876 04514 04286 04185 04150 04142 04312 04549 05082 06871 08180 07561 05572 04876 04514 04286 04185 04150 04142 04312 04549 05083 06871

50550 07158 04685 03935 03574 03359 03268 03237 03231 03386 03612 04156 06263 51608 07089 04459 03676 03308 03127 03102 03104 03104 03142 03347 03906 06139 51870 07070 04398 03605 03237 03104 03119 03134 03137 03107 03275 03838 06106

Fig741 (12) Example of HBS model output (ft17d)

JAEA-DataCode 2013-009

- 225 -

Pellet Radius(cm) Pellet Porosity () 02600 300 300 300 300 300 300 300 300 300 300 300 300 06277 300 300 300 300 300 300 300 300 300 300 300 300 08180 300 300 300 300 300 300 300 300 300 300 300 300

51346 300 300 300 300 302 313 321 323 301 300 300 300 51608 300 300 300 300 309 338 356 360 305 300 300 300 51870 300 300 300 300 331 391 423 430 319 300 300 300 Pellet Radius(cm) Pellet xv ratio () 02600 00 00 00 00 00 00 00 00 00 00 00 00 06277 00 00 00 00 00 00 00 00 00 00 00 00 08180 00 00 00 00 00 00 00 00 00 00 00 00

50281 00 00 00 00 00 00 00 00 00 00 00 00 50550 00 00 00 00 00 03 13 17 00 00 00 00 50816 00 00 00 00 00 39 84 96 00 00 00 00 51082 00 00 00 00 17 171 281 307 04 00 00 00 51346 00 00 00 00 112 481 692 739 54 00 00 00 51608 00 00 00 00 372 1070 1413 1487 232 00 00 00 51870 00 00 00 16 909 2031 2520 2621 643 01 00 00 Pellet Radius(cm) Fission Gas Release ratio () 02600 50 50 50 50 50 165 215 221 50 50 50 50 06277 50 50 50 50 50 149 193 200 50 50 50 50 08180 50 50 50 50 50 146 190 197 50 50 50 50

50281 50 50 50 50 50 50 50 50 50 50 50 50 50550 50 50 50 50 50 50 50 50 50 50 50 50 50816 50 50 50 50 50 907 906 911 50 50 50 50 51082 50 50 50 50 752 1018 1090 1104 50 50 50 50 51346 50 50 50 50 806 1018 1090 1104 646 50 50 50 51608 50 50 50 50 806 1018 1090 1104 735 50 50 50 51870 50 50 50 50 806 1018 1090 1104 735 50 50 50

Fig741 (22) Example of HBS model output (ft17d)

JAEA-DataCode 2013-009

- 226 -

75 Sample inputoutput of RODBURN-1

(1) input data file ABCrddat PWR-type Rod Sample Case (May 2011) 1 10 -2 36 1 1 0 0 1 0 1 1 4 0 100000 0000 0820 0970 1600 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 127315 77315 61315 59315 09500 00000 09600 00400 22 0670 0935 1081 1242 1286 1257 1086 1006 0850 0585 0676 0936 1111 1227 1267 1238 1100 1001 0849 0594 0678 0937 1120 1222 1260 1232 1105 0999 0849 0597 0679 0937 1130 1217 1254 1226 1109 0998 0849 0600 0680 0938 1136 1214 1250 1222 1112 0997 0849 0602 0681 0938 1139 1212 1248 1220 1114 0996 0848 0603 0681 0938 1140 1212 1247 1219 1114 0996 0848 0603 0681 0938 1140 1212 1247 1219 1114 0996 0848 0603 0681 0938 1140 1212 1247 1219 1114 0996 0849 0603 0709 0953 1132 1192 1218 1192 1108 1005 0864 0628 0739 0970 1123 1171 1185 1162 1100 1014 0880 0655 0751 0976 1119 1162 1173 1151 1098 1018 0887 0666 0775 0990 1112 1145 1147 1127 1092 1025 0900 0687 0792 0999 1106 1133 1129 1110 1088 1031 0909 0703 0798 1002 1104 1128 1123 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 22 2000 010

JAEA-DataCode 2013-009

- 227 -

0846831 1 001 10591 399605366 2 10805 23591 492838987 3 23746 25646 579413064 4 25814 27726 631357510 5 27834 25914 667947308 6 25981 25019 681414387 7 25035 9629 681510390 8 9629 096 682374416 9 096 9629 827495656 10 9714 19427 942927758 11 19615 21577 988026812 12 21660 20675 1081485092 13 20833 20337 1155127851 14 20453 18956 1181334058 15 18992 17992 1181855365 16 17993 600 1187364624 17 600 16993 1242897959 18 16993 15994 1336733088 19 15994 14994 1403604099 20 14994 13994 1516077261 21 13994 10996 1516081668 22 10996 10996 1 758041 3 1 2 3 4 5 6 7 8 9 10 STOP

(2) Output file ABCrdout ==================================================================================================================================

==

==================================================================================================================================

==================================================================================================================================

RRRRRRRR BBBBBBBB 111

RR RR BB BB 1111

RR RR BB BB 11

RR RR BB BB 11

RRRRRRRR BBBBBBBB 11

RRRR BB BB 11

RR RR BB BB 11

RR RR BB BB 11

RR RR BBBBBBBB 111111

==================================================================================================================================

==================================================================================================================================

RODBURN PWR-type Rod Sample Case (May 2011) VERSION 12 (Septembar 2005)

INPUT FILECFEM_ranwrkABCd RUN DATE11MAY12 START TIME144735

IPRIN(1)= 6

I N P U T D A T A L I S T

-------------------------------

1 2 3 4 5 6 7 8

CARD NO 5050505050505050

1 PWR-type Rod Sample Case (May 2011)

2 1 10 -2 36 1 1 0 0 1 0

3 1 1 4 0

4 100000 0000 0820 0970 1600

5 10000 10000 10000 10000 10000 10000 10000 10000 10000

6 10000

7 127315 77315 61315 59315

8 09500 00000

9 09600 00400

10 22

JAEA-DataCode 2013-009

- 228 -

11 0670 0935 1081 1242 1286 1257 1086 1006 0850

12 0585

13 0676 0936 1111 1227 1267 1238 1100 1001 0849

14 0594

15 0678 0937 1120 1222 1260 1232 1105 0999 0849

16 0597

17 0679 0937 1130 1217 1254 1226 1109 0998 0849

18 0600

19 0680 0938 1136 1214 1250 1222 1112 0997 0849

20 0602

21 0681 0938 1139 1212 1248 1220 1114 0996 0848

22 0603

23 0681 0938 1140 1212 1247 1219 1114 0996 0848

24 0603

25 0681 0938 1140 1212 1247 1219 1114 0996 0848

26 0603

27 0681 0938 1140 1212 1247 1219 1114 0996 0849

28 0603

29 0709 0953 1132 1192 1218 1192 1108 1005 0864

30 0628

31 0739 0970 1123 1171 1185 1162 1100 1014 0880

32 0655

33 0751 0976 1119 1162 1173 1151 1098 1018 0887

34 0666

35 0775 0990 1112 1145 1147 1127 1092 1025 0900

36 0687

37 0792 0999 1106 1133 1129 1110 1088 1031 0909

38 0703

39 0798 1002 1104 1128 1123 1104 1086 1032 0912

40 0708

41 0798 1002 1104 1128 1122 1104 1086 1032 0912

42 0708

43 0798 1002 1104 1128 1122 1104 1086 1032 0912

44 0708

45 0798 1002 1104 1128 1122 1104 1086 1032 0912

46 0708

47 0798 1002 1104 1128 1122 1104 1086 1032 0912

48 0708

49 0798 1002 1104 1128 1122 1104 1086 1032 0912

50 0708

5050505050505050

RODBURN PWR-type Rod Sample Case (May 2011) VERSION 12

I N P U T D A T A L I S T

-------------------------------

1 2 3 4 5 6 7 8

CARD NO 5050505050505050

51 0798 1002 1104 1128 1122 1104 1086 1032 0912

52 0708

53 0798 1002 1104 1128 1122 1104 1086 1032 0912

54 0708

55 22 2000 010

56 0846831 1 001 10591

57 399605366 2 10805 23591

58 492838987 3 23746 25646

59 579413064 4 25814 27726

60 631357510 5 27834 25914

61 667947308 6 25981 25019

62 681414387 7 25035 9629

63 681510390 8 9629 096

64 682374416 9 096 9629

65 827495656 10 9714 19427

66 942927758 11 19615 21577

67 988026812 12 21660 20675

68 1081485092 13 20833 20337

69 1155127851 14 20453 18956

70 1181334058 15 18992 17992

71 1181855365 16 17993 600

72 1187364624 17 600 16993

73 1242897959 18 16993 15994

74 1336733088 19 15994 14994

75 1403604099 20 14994 13994

76 1516077261 21 13994 10996

JAEA-DataCode 2013-009

- 229 -

77 1516081668 22 10996 10996

78 1

79 758041

80 3

81 1 2 3 4 5 6 7 8 9 10

82 STOP

5050505050505050

RODBURN PWR-type Rod Sample Case (May 2011) VERSION 12

PWR-type Rod Sample Case (May 2011)

CONTROL DATA

1 MODEL =1PWR =2BWR =3HWR =4PWR(MOX) =5BWR(MOX)

10 MESHZ NUMBER OF AXIAL MESHES(=lt 40)

-2 KREG1 NUMBER OF RADIAL MESHES(=lt 39)

36 MESHR NUMBER OF PELLET RADIAL MESHES(=lt 36)

1 IOPT POWER HISTORY DATA OPTION (0INPUT AVERAGE THERMAL FLUX)

(1INPUT AVERAGE POWER DENSITY (WCM))

1 IDIST AXIAL DISTRIBUTION INPUT OPTION(0COSINE1INPUT)

0 MODEL2 =1PWR =2BWR =3HWR =4PWR(MOX) =5BWR(MOX)

0 KREG2 NUMBER OF RADIAL MESHES FOR MODEL2(=lt 39)

(0DOES NOT CALCULATE BY RABBLE)

1 IFLPW =0AXIAL FLUX DISTRIBUTION =1AXIAL POWER DISTRIBUTION

0 ISTOP =0NOMAL CALCULATION =1INPUT DATA CHECK

SPECTRAL INDICES

THERM = 07010 RES = 03040 FAST = 20100

CONTROL DATA 2

1 IAUTO =0NUCLIDE NUM amp CONC INPUT =1AUTO GENERATE

1 IPTCH1 =0BOUNDARY DIAMETER INPUT =1FUEL ROD PITCH INPUT

4 IZR1 =2ZIRCALOY-2 =4ZIRCALOY-4

0 IHD1 =0H2O(COOLANT) =1D2O(COOLANT)

0 IPTCH2 =0BOUNDARY DIAMETER INPUT =1FUEL ROD PITCH INPUT

0 IZR2 =2ZIRCALOY-2 =4ZIRCALOY-4

0 IHD2 =0H2O(COOLANT) =1D2O(COOLANT)

FUEL PIN SIZE

1000000 ZLENG FUEL ACTIVE LENGTH (CM)

00000 PDIN PELLET INNER DIAMETER (CM)

08200 PDIA PELLET OUTER DIAMETER (CM)

09700 CDOUT1 CLADDING OUTER DIAMETER (CM)

16000 PITCH1 FUEL ROD PITCH (CM)

00000 CDOUT2 CLADDING OUTER DIAMETER (CM)

00000 PITCH2 FUEL ROD PITCH (CM)

AXIAL DISTANCE FOR EACH MESH(CM)

1000E+01 2000E+01 3000E+01 4000E+01 5000E+01 6000E+01 7000E+01 8000E+01 9000E+01 1000E+02

RADIAL DISTANCE FOR EACH MESH(CM)

0000E+00 6833E-02 9664E-02 1184E-01 1367E-01 1528E-01 1674E-01 1808E-01 1933E-01 2050E-01 2161E-01 2266E-01

2367E-01 2464E-01 2557E-01 2647E-01 2733E-01 2817E-01 2899E-01 2979E-01 3056E-01 3131E-01 3205E-01 3277E-01

3348E-01 3417E-01 3484E-01 3551E-01 3616E-01 3680E-01 3743E-01 3805E-01 3866E-01 3925E-01 3984E-01 4043E-01

4100E-01

FUEL MATRIALS(1)

09500 FDEN FUEL FRACTIONAL DENSITY (-)

00000 FPUO2 PUO2 WEIGHT FRACTION (WT FRAC)

FUEL MATRIALS(2)

09600 FU238 U238U-TOTAL (WT FRAC)

00400 FU235 U235U-TOTAL (WT FRAC)

00000 FU232 U232U-TOTAL (WT FRAC)

JAEA-DataCode 2013-009

- 230 -

00000 FU233 U233U-TOTAL (WT FRAC)

00000 FU234 U234U-TOTAL (WT FRAC)

00000 FU236 U236U-TOTAL (WT FRAC)

00000 FU237 U237U-TOTAL (WT FRAC)

00000 FU239 U239U-TOTAL (WT FRAC)

00000 FU240 U240U-TOTAL (WT FRAC)

NUCLIDE NUMBER AND CONCENTRATION(GCC)

MIXTURE NO NUCLIDE CONCENTRATION

1 U238 8810E+00

1 U235 3671E-01

1 O 1235E+00

2 ZR-4 6550E+00

3 H 7900E-02

3 O 6310E-01

ARRAY DESCRIPTION OF MIXTURE

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

VOLUME(CM3) OF FUEL SEGMENT

RADIAL

AXIAL 1 2 3 4 5 6 7 8 9 10

1 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

2 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

3 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

4 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

5 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

6 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

7 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

8 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

9 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

10 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

RADIAL

AXIAL 11 12 13 14 15 16 17 18 19 20

1 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

2 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

3 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

4 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

5 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

6 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

7 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

8 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

9 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

10 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

RADIAL

AXIAL 21 22 23 24 25 26 27 28 29 30

1 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

2 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

3 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

4 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

5 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

6 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

7 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

8 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

9 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

10 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

FUEL PELLET TOTAL WEIGHT (GRAM) = 549859

JAEA-DataCode 2013-009

- 231 -

NUMBER OF PATTERNS FOR AXIAL FLUX DISTRIBUTION NDIST = 22

INPUT AXIAL POWER DISTRIBUTION

1 6700E-01 9350E-01 1081E+00 1242E+00 1286E+00 1257E+00 1086E+00 1006E+00 8500E-01 5850E-01

2 6760E-01 9360E-01 1111E+00 1227E+00 1267E+00 1238E+00 1100E+00 1001E+00 8490E-01 5940E-01

3 6780E-01 9370E-01 1120E+00 1222E+00 1260E+00 1232E+00 1105E+00 9990E-01 8490E-01 5970E-01

4 6790E-01 9370E-01 1130E+00 1217E+00 1254E+00 1226E+00 1109E+00 9980E-01 8490E-01 6000E-01

5 6800E-01 9380E-01 1136E+00 1214E+00 1250E+00 1222E+00 1112E+00 9970E-01 8490E-01 6020E-01

6 6810E-01 9380E-01 1139E+00 1212E+00 1248E+00 1220E+00 1114E+00 9960E-01 8480E-01 6030E-01

7 6810E-01 9380E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9960E-01 8480E-01 6030E-01

8 6810E-01 9380E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9960E-01 8480E-01 6030E-01

9 6810E-01 9380E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9960E-01 8490E-01 6030E-01

10 7090E-01 9530E-01 1132E+00 1192E+00 1218E+00 1192E+00 1108E+00 1005E+00 8640E-01 6280E-01

11 7390E-01 9700E-01 1123E+00 1171E+00 1185E+00 1162E+00 1100E+00 1014E+00 8800E-01 6550E-01

12 7510E-01 9760E-01 1119E+00 1162E+00 1173E+00 1151E+00 1098E+00 1018E+00 8870E-01 6660E-01

13 7750E-01 9900E-01 1112E+00 1145E+00 1147E+00 1127E+00 1092E+00 1025E+00 9000E-01 6870E-01

14 7920E-01 9990E-01 1106E+00 1133E+00 1129E+00 1110E+00 1088E+00 1031E+00 9090E-01 7030E-01

15 7980E-01 1002E+00 1104E+00 1128E+00 1123E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

16 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

17 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

18 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

19 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

20 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

21 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

22 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

NORMALIZED POWER DISTRIBUTION

1 6701E-01 9352E-01 1081E+00 1242E+00 1286E+00 1257E+00 1086E+00 1006E+00 8502E-01 5851E-01

2 6761E-01 9361E-01 1111E+00 1227E+00 1267E+00 1238E+00 1100E+00 1001E+00 8491E-01 5941E-01

3 6781E-01 9371E-01 1120E+00 1222E+00 1260E+00 1232E+00 1105E+00 9991E-01 8491E-01 5971E-01

4 6791E-01 9371E-01 1130E+00 1217E+00 1254E+00 1226E+00 1109E+00 9981E-01 8491E-01 6001E-01

5 6800E-01 9380E-01 1136E+00 1214E+00 1250E+00 1222E+00 1112E+00 9970E-01 8490E-01 6020E-01

6 6811E-01 9381E-01 1139E+00 1212E+00 1248E+00 1220E+00 1114E+00 9961E-01 8481E-01 6031E-01

7 6811E-01 9382E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9962E-01 8482E-01 6031E-01

8 6811E-01 9382E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9962E-01 8482E-01 6031E-01

9 6811E-01 9381E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9961E-01 8491E-01 6031E-01

10 7089E-01 9529E-01 1132E+00 1192E+00 1218E+00 1192E+00 1108E+00 1005E+00 8639E-01 6279E-01

11 7391E-01 9701E-01 1123E+00 1171E+00 1185E+00 1162E+00 1100E+00 1014E+00 8801E-01 6551E-01

12 7509E-01 9759E-01 1119E+00 1162E+00 1173E+00 1151E+00 1098E+00 1018E+00 8869E-01 6659E-01

13 7750E-01 9900E-01 1112E+00 1145E+00 1147E+00 1127E+00 1092E+00 1025E+00 9000E-01 6870E-01

14 7920E-01 9990E-01 1106E+00 1133E+00 1129E+00 1110E+00 1088E+00 1031E+00 9090E-01 7030E-01

15 7982E-01 1002E+00 1104E+00 1128E+00 1123E+00 1104E+00 1086E+00 1032E+00 9123E-01 7082E-01

16 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

JAEA-DataCode 2013-009

- 232 -

17 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

18 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

19 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

20 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

21 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

22 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

DTIME(DAY) = 2000 ZMAX(CM) = 10000 ISTP = 22 DINCR= 010

ISTP KDIS TIMX(DAY) PLHR(WCM)

1 1 085 001 10591

2 2 39961 10805 23591

3 3 49284 23746 25646

4 4 57941 25814 27726

5 5 63136 27834 25914

6 6 66795 25981 25019

7 7 68141 25035 9629

8 8 68151 9629 096

9 9 68237 096 9629

10 10 82750 9714 19427

11 11 94293 19615 21577

12 12 98803 21660 20675

13 13 108149 20833 20337

14 14 115513 20453 18956

15 15 118133 18992 17992

16 16 118186 17993 600

17 17 118736 600 16993

18 18 124290 16993 15994

19 19 133673 15994 14994

20 20 140360 14994 13994

21 21 151608 13994 10996

22 22 151608 10996 10996

ISTEP KDIS TIMX(DAY) PLHR(WCM) POWER(MW)

1 1 085 5295 000529

2 2 2078 11124 001112

3 2 4072 11763 001176

4 2 6066 12402 001240

5 2 8060 13041 001304

6 2 10054 13680 001368

7 2 12047 14320 001432

8 2 14041 14959 001496

9 2 16035 15598 001560

10 2 18029 16237 001624

11 2 20023 16877 001688

12 2 22016 17516 001752

13 2 24010 18155 001816

14 2 26004 18794 001879

15 2 27998 19434 001943

16 2 29992 20073 002007

17 2 31985 20712 002071

18 2 33979 21351 002135

19 2 35973 21991 002199

20 2 37967 22630 002263

21 2 39961 23269 002327

22 3 41825 23934 002393

23 3 43690 24314 002431

24 3 45555 24694 002469

25 3 47419 25073 002507

26 3 49284 25453 002545

27 4 51015 26003 002600

28 4 52747 26385 002638

JAEA-DataCode 2013-009

- 233 -

29 4 54478 26767 002677

30 4 56210 27150 002715

31 4 57941 27532 002753

32 5 59673 27514 002751

33 5 61404 26874 002687

34 5 63136 26234 002623

35 6 64965 25738 002574

36 6 66795 25257 002526

37 7 68141 17329 001733

38 8 68151 4862 000486

39 9 68237 4862 000486

40 10 70051 10322 001032

41 10 71865 11536 001154

42 10 73679 12751 001275

43 10 75494 13965 001396

44 10 77308 15179 001518

45 10 79122 16393 001639

46 10 80936 17608 001761

47 10 82750 18822 001882

48 11 84673 19777 001978

49 11 86597 20103 002010

50 11 88521 20430 002043

51 11 90445 20757 002076

52 11 92369 21084 002108

53 11 94293 21411 002141

54 12 95796 21498 002150

55 12 97299 21170 002117

56 12 98803 20841 002084

57 13 100672 20783 002078

58 13 102541 20684 002068

59 13 104410 20585 002059

60 13 106279 20486 002049

61 13 108149 20387 002039

62 14 109990 20266 002027

63 14 111831 19892 001989

64 14 113672 19517 001952

65 14 115513 19143 001914

66 15 116823 18736 001874

67 15 118133 18237 001824

68 16 118186 9293 000929

69 17 118736 8793 000879

70 18 120588 16820 001682

71 18 122439 16487 001649

72 18 124290 16154 001615

73 19 126166 15888 001589

74 19 128043 15688 001569

75 19 129920 15488 001549

76 19 131797 15288 001529

77 19 133673 15088 001509

78 20 135345 14863 001486

79 20 137017 14613 001461

80 20 138689 14363 001436

81 20 140360 14113 001411

82 21 142235 13739 001374

83 21 144110 13239 001324

84 21 145984 12740 001274

85 21 147859 12240 001224

86 21 149733 11741 001174

87 21 151608 11241 001124

88 22 151608 10992 001099

89 22 153503 18560 001856

90 22 155398 18560 001856

91 22 157293 18560 001856

92 22 159189 18560 001856

93 22 161084 18560 001856

94 22 162979 18560 001856

95 22 164874 18560 001856

96 22 166769 18560 001856

RODBURN SUB CODE RABBLE INPUT CONDITION amp CALCULATION RESULT

NO CELL REGIONS = 39 NO MATERIALS = 12

NO COMPOSITIONS = 39 NO RESONANT MATERIALS = 2

JAEA-DataCode 2013-009

- 234 -

NO BROAD GROUPS = 12 LETHARGY WIDTH INTER GROUP =0100000E-01

NO INTERMEDIATE GROUPS = 885 RESONANCETEST = 0500E-02 (BARNS)

CIRCULARIZED CELL WITH COSINE INTERFACE CURRENTS

REGION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

COMPOSITION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

OUTER DIMENSION 0068 0097 0118 0137 0153 0167 0181 0193 0205 0216 0227 0237 0246 0256 0265 0273 0282 0290

TEMPERATURE 1266 1252 1238 1225 1211 1197 1183 1169 1155 1141 1127 1113 1100 1086 1072 1058 1044 1030

REGION 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

REGION 37 38 39

COMPOSITION 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

COMPOSITION 37 38 39

OUTER DIMENSION 0298 0306 0313 0320 0328 0335 0342 0348 0355 0362 0368 0374 0380 0387 0393 0398 0404 0410

OUTER DIMENSION 0485 0694 0903

TEMPERATURE 1016 1002 988 975 961 947 933 919 905 891 877 863 850 836 822 808 794 780

TEMPERATURE 613 593 593

MATERIAL RES MASS SIG POT SIG A 1V SIG F 1V COMPOSITIONDENSITY

(AMU) (BARNS) (BARNS) (BARNS) 1 2 3 4 5

U238 190 238051E+02 118230E+01 000000E+00 000000E+00 222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 000000E+00 000000E+00 000000E+00

P240 200 240054E+02 109860E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

H 0 100783E+00 204280E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 472045E-02 472045E-02

D 0 201431E+00 559400E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

O 0 159949E+01 290700E+00 000000E+00 000000E+00 464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 000000E+00 237570E-02 237570E-02

HE 0 400259E+00 136800E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

ZR-2 0 913870E+01 647900E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

JAEA-DataCode 2013-009

- 235 -

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

ZR-4 0 913950E+01 647900E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 431582E-02 000000E+00 000000E+00

U235 0 235044E+02 115000E+01 000000E+00 000000E+00 940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 000000E+00 000000E+00 000000E+00

P239 0 239053E+02 112930E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

P241 0 241057E+02 125660E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

P242 0 242059E+02 123160E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

BROAD GROUP NO INTER GROUPS NO FINE GPINTER GP MAXIMUN ENERGY (EV) MINIMUM ENERGY (EV)

1 45 20 03519E+04 02244E+04

2 45 20 02244E+04 01431E+04

3 45 20 01431E+04 09123E+03

4 91 20 09123E+03 03672E+03

5 90 20 03672E+03 01493E+03

6 68 20 01493E+03 07564E+02

7 45 20 07564E+02 04823E+02

8 55 20 04823E+02 02783E+02

9 55 20 02783E+02 01605E+02

10 48 20 01605E+02 09934E+01

11 90 20 09934E+01 04039E+01

12 208 20 04039E+01 05046E+00

ABSORPTION 1 GROUPS

U238 11032E+00 11164E+00 11273E+00 11378E+00 11482E+00 11585E+00 11692E+00 11803E+00 11916E+00 12031E+00

12152E+00 12279E+00 12414E+00 12563E+00 12720E+00 12888E+00 13066E+00 13259E+00 13469E+00 13700E+00

13951E+00 14229E+00 14544E+00 14901E+00 15314E+00 15785E+00 16351E+00 17048E+00 17931E+00 19097E+00

20711E+00 23069E+00 26701E+00 32670E+00 43343E+00 63435E+00 00000E+00 00000E+00 00000E+00

P240 54437E+02 54422E+02 54412E+02 54398E+02 54386E+02 54375E+02 54364E+02 54354E+02 54344E+02 54333E+02

54323E+02 54312E+02 54301E+02 54292E+02 54282E+02 54273E+02 54263E+02 54252E+02 54241E+02 54230E+02

54219E+02 54207E+02 54194E+02 54181E+02 54168E+02 54152E+02 54136E+02 54118E+02 54098E+02 54077E+02

54054E+02 54027E+02 53994E+02 53955E+02 53902E+02 53823E+02 00000E+00 00000E+00 00000E+00

FISSION 1 GROUPS

U238 89217E-05 89168E-05 89130E-05 89097E-05 89066E-05 89037E-05 89009E-05 88980E-05 88953E-05 88927E-05

JAEA-DataCode 2013-009

- 236 -

88900E-05 88874E-05 88846E-05 88816E-05 88787E-05 88757E-05 88728E-05 88699E-05 88669E-05 88639E-05

88608E-05 88577E-05 88546E-05 88513E-05 88480E-05 88447E-05 88411E-05 88373E-05 88333E-05 88289E-05

88241E-05 88186E-05 88122E-05 88045E-05 87943E-05 87797E-05 00000E+00 00000E+00 00000E+00

P240 23082E-01 23089E-01 23094E-01 23098E-01 23103E-01 23107E-01 23112E-01 23116E-01 23121E-01 23125E-01

23129E-01 23134E-01 23139E-01 23144E-01 23149E-01 23155E-01 23161E-01 23166E-01 23172E-01 23179E-01

23185E-01 23192E-01 23200E-01 23207E-01 23216E-01 23224E-01 23233E-01 23243E-01 23254E-01 23266E-01

23279E-01 23295E-01 23312E-01 23331E-01 23353E-01 23376E-01 00000E+00 00000E+00 00000E+00

ABSORPTION RESONANCE INTEGRAL

U238 14935E+01 15122E+01 15276E+01 15424E+01 15570E+01 15715E+01 15865E+01 16021E+01 16180E+01 16340E+01

16509E+01 16687E+01 16877E+01 17084E+01 17304E+01 17538E+01 17786E+01 18054E+01 18347E+01 18667E+01

19016E+01 19402E+01 19839E+01 20333E+01 20905E+01 21555E+01 22338E+01 23300E+01 24517E+01 26125E+01

28349E+01 31596E+01 36597E+01 44817E+01 59527E+01 87265E+01 00000E+00 00000E+00 00000E+00

P240 72101E+03 72125E+03 72145E+03 72155E+03 72166E+03 72176E+03 72187E+03 72199E+03 72209E+03 72217E+03

72226E+03 72235E+03 72245E+03 72259E+03 72272E+03 72286E+03 72298E+03 72310E+03 72321E+03 72333E+03

72344E+03 72355E+03 72366E+03 72377E+03 72388E+03 72395E+03 72404E+03 72412E+03 72420E+03 72429E+03

72439E+03 72449E+03 72460E+03 72473E+03 72489E+03 72506E+03 00000E+00 00000E+00 00000E+00

FISSION RESONANCE INTEGRAL

U238 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03

12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03

12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03

12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 00000E+00 00000E+00 00000E+00

P240 30572E+00 30600E+00 30620E+00 30639E+00 30656E+00 30672E+00 30689E+00 30705E+00 30721E+00 30737E+00

30752E+00 30768E+00 30785E+00 30803E+00 30821E+00 30840E+00 30858E+00 30877E+00 30896E+00 30916E+00

30936E+00 30957E+00 30979E+00 31001E+00 31025E+00 31048E+00 31073E+00 31100E+00 31129E+00 31161E+00

31197E+00 31238E+00 31284E+00 31339E+00 31406E+00 31490E+00 00000E+00 00000E+00 00000E+00

TIME STEP NO 44 TIME = 77308 DAYS FLUX = 29345E+13 NCM2SEC

RADAIL DISTRIBUTION AXIAL SEGMENT NO 1 AXIAL COODINATE(CM) = 500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 0048 26083E-05 17781E+02 26057E-02 19355E+04 17060E+04 17231E+13 23886E+13 17778E+21

2 0084 26154E-05 17829E+02 26095E-02 19383E+04 17084E+04 17230E+13 23884E+13 17777E+21

3 0108 26223E-05 17876E+02 26143E-02 19419E+04 17116E+04 17241E+13 23899E+13 17791E+21

4 0128 26294E-05 17924E+02 26198E-02 19460E+04 17152E+04 17256E+13 23920E+13 17810E+21

5 0145 26368E-05 17975E+02 26257E-02 19504E+04 17191E+04 17274E+13 23945E+13 17833E+21

6 0160 26445E-05 18027E+02 26321E-02 19551E+04 17232E+04 17295E+13 23975E+13 17859E+21

7 0174 26526E-05 18082E+02 26389E-02 19601E+04 17277E+04 17319E+13 24007E+13 17888E+21

8 0187 26612E-05 18141E+02 26462E-02 19656E+04 17325E+04 17344E+13 24043E+13 17921E+21

9 0199 26700E-05 18201E+02 26539E-02 19713E+04 17376E+04 17372E+13 24081E+13 17955E+21

10 0211 26791E-05 18263E+02 26619E-02 19772E+04 17428E+04 17400E+13 24120E+13 17991E+21

11 0221 26885E-05 18327E+02 26702E-02 19834E+04 17482E+04 17430E+13 24161E+13 18028E+21

12 0232 26985E-05 18395E+02 26789E-02 19898E+04 17539E+04 17460E+13 24203E+13 18067E+21

13 0242 27090E-05 18467E+02 26880E-02 19966E+04 17599E+04 17491E+13 24246E+13 18106E+21

14 0251 27205E-05 18545E+02 26977E-02 20038E+04 17662E+04 17524E+13 24292E+13 18148E+21

15 0260 27326E-05 18628E+02 27079E-02 20114E+04 17729E+04 17558E+13 24340E+13 18191E+21

16 0269 27455E-05 18716E+02 27187E-02 20194E+04 17800E+04 17594E+13 24388E+13 18235E+21

17 0278 27589E-05 18807E+02 27299E-02 20277E+04 17873E+04 17629E+13 24437E+13 18280E+21

18 0286 27733E-05 18905E+02 27418E-02 20366E+04 17951E+04 17665E+13 24488E+13 18328E+21

19 0294 27889E-05 19011E+02 27547E-02 20461E+04 18035E+04 17704E+13 24541E+13 18377E+21

20 0302 28059E-05 19127E+02 27685E-02 20564E+04 18126E+04 17745E+13 24598E+13 18430E+21

21 0309 28246E-05 19255E+02 27834E-02 20675E+04 18224E+04 17789E+13 24659E+13 18486E+21

22 0317 28452E-05 19396E+02 27998E-02 20796E+04 18331E+04 17836E+13 24725E+13 18545E+21

23 0324 28682E-05 19552E+02 28176E-02 20929E+04 18447E+04 17886E+13 24793E+13 18607E+21

24 0331 28936E-05 19725E+02 28368E-02 21071E+04 18573E+04 17934E+13 24861E+13 18669E+21

25 0338 29223E-05 19921E+02 28581E-02 21230E+04 18712E+04 17984E+13 24929E+13 18733E+21

26 0345 29545E-05 20141E+02 28817E-02 21405E+04 18867E+04 18035E+13 25000E+13 18799E+21

27 0352 29926E-05 20400E+02 29086E-02 21605E+04 19043E+04 18087E+13 25073E+13 18868E+21

28 0358 30386E-05 20714E+02 29402E-02 21839E+04 19250E+04 18142E+13 25149E+13 18938E+21

29 0365 30968E-05 21110E+02 29793E-02 22130E+04 19506E+04 18207E+13 25239E+13 19020E+21

30 0371 31728E-05 21628E+02 30290E-02 22499E+04 19831E+04 18280E+13 25339E+13 19110E+21

31 0377 32759E-05 22331E+02 30944E-02 22985E+04 20259E+04 18357E+13 25447E+13 19206E+21

32 0384 34240E-05 23341E+02 31858E-02 23664E+04 20858E+04 18441E+13 25564E+13 19312E+21

33 0390 36491E-05 24875E+02 33218E-02 24674E+04 21748E+04 18534E+13 25692E+13 19430E+21

34 0396 40146E-05 27367E+02 35378E-02 26278E+04 23162E+04 18633E+13 25830E+13 19558E+21

35 0401 46609E-05 31773E+02 39137E-02 29070E+04 25623E+04 18739E+13 25975E+13 19693E+21

36 0407 58652E-05 39982E+02 46091E-02 34236E+04 30176E+04 18849E+13 26129E+13 19836E+21

RADAIL DISTRIBUTION AXIAL SEGMENT NO 2 AXIAL COODINATE(CM) = 1500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

JAEA-DataCode 2013-009

- 237 -

1 0048 34307E-05 23387E+02 35511E-02 26377E+04 23249E+04 25874E+13 35866E+13 25823E+21

2 0084 34432E-05 23472E+02 35578E-02 26427E+04 23294E+04 25874E+13 35867E+13 25822E+21

3 0108 34543E-05 23548E+02 35655E-02 26484E+04 23344E+04 25889E+13 35887E+13 25840E+21

4 0128 34653E-05 23622E+02 35738E-02 26546E+04 23398E+04 25908E+13 35914E+13 25866E+21

5 0145 34764E-05 23698E+02 35826E-02 26611E+04 23456E+04 25932E+13 35947E+13 25897E+21

6 0160 34876E-05 23774E+02 35919E-02 26680E+04 23516E+04 25958E+13 35983E+13 25932E+21

7 0174 34993E-05 23854E+02 36018E-02 26753E+04 23581E+04 25987E+13 36023E+13 25972E+21

8 0187 35116E-05 23938E+02 36124E-02 26832E+04 23651E+04 26019E+13 36068E+13 26015E+21

9 0199 35243E-05 24025E+02 36234E-02 26914E+04 23723E+04 26053E+13 36115E+13 26061E+21

10 0211 35373E-05 24113E+02 36348E-02 26999E+04 23798E+04 26090E+13 36165E+13 26109E+21

11 0221 35509E-05 24206E+02 36467E-02 27087E+04 23875E+04 26127E+13 36217E+13 26159E+21

12 0232 35653E-05 24304E+02 36591E-02 27180E+04 23957E+04 26165E+13 36271E+13 26210E+21

13 0242 35806E-05 24408E+02 36723E-02 27277E+04 24043E+04 26205E+13 36326E+13 26264E+21

14 0251 35972E-05 24522E+02 36864E-02 27382E+04 24135E+04 26247E+13 36384E+13 26319E+21

15 0260 36148E-05 24642E+02 37012E-02 27492E+04 24232E+04 26290E+13 36444E+13 26377E+21

16 0269 36335E-05 24769E+02 37169E-02 27609E+04 24335E+04 26334E+13 36505E+13 26436E+21

17 0278 36532E-05 24904E+02 37332E-02 27730E+04 24442E+04 26379E+13 36567E+13 26497E+21

18 0286 36744E-05 25048E+02 37507E-02 27860E+04 24556E+04 26425E+13 36630E+13 26559E+21

19 0294 36976E-05 25206E+02 37695E-02 28000E+04 24680E+04 26473E+13 36697E+13 26626E+21

20 0302 37230E-05 25379E+02 37900E-02 28151E+04 24813E+04 26526E+13 36770E+13 26696E+21

21 0309 37509E-05 25569E+02 38121E-02 28316E+04 24959E+04 26583E+13 36849E+13 26771E+21

22 0317 37817E-05 25780E+02 38365E-02 28497E+04 25118E+04 26644E+13 36934E+13 26851E+21

23 0324 38163E-05 26015E+02 38632E-02 28696E+04 25293E+04 26707E+13 37022E+13 26934E+21

24 0331 38549E-05 26279E+02 38924E-02 28912E+04 25484E+04 26769E+13 37108E+13 27017E+21

25 0338 38990E-05 26579E+02 39250E-02 29154E+04 25697E+04 26832E+13 37195E+13 27102E+21

26 0345 39488E-05 26919E+02 39613E-02 29424E+04 25935E+04 26896E+13 37284E+13 27191E+21

27 0352 40082E-05 27323E+02 40033E-02 29736E+04 26210E+04 26962E+13 37375E+13 27281E+21

28 0358 40806E-05 27817E+02 40532E-02 30107E+04 26537E+04 27032E+13 37471E+13 27376E+21

29 0365 41726E-05 28444E+02 41156E-02 30570E+04 26945E+04 27114E+13 37586E+13 27485E+21

30 0371 42936E-05 29269E+02 41958E-02 31166E+04 27470E+04 27208E+13 37716E+13 27606E+21

31 0377 44593E-05 30399E+02 43028E-02 31961E+04 28171E+04 27308E+13 37854E+13 27737E+21

32 0384 46989E-05 32032E+02 44543E-02 33086E+04 29163E+04 27415E+13 38003E+13 27878E+21

33 0390 50648E-05 34526E+02 46818E-02 34776E+04 30652E+04 27532E+13 38165E+13 28036E+21

34 0396 56612E-05 38592E+02 50468E-02 37487E+04 33042E+04 27657E+13 38339E+13 28207E+21

35 0401 67168E-05 45787E+02 56863E-02 42237E+04 37229E+04 27790E+13 38522E+13 28387E+21

36 0407 86747E-05 59134E+02 68719E-02 51044E+04 44991E+04 27928E+13 38715E+13 28577E+21

=================== Skipped =====================

RADAIL DISTRIBUTION AXIAL SEGMENT NO 9 AXIAL COODINATE(CM) = 8500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 0048 31326E-05 21354E+02 32309E-02 23999E+04 21153E+04 22565E+13 31280E+13 22976E+21

2 0084 31429E-05 21425E+02 32366E-02 24041E+04 21190E+04 22565E+13 31280E+13 22975E+21

3 0108 31524E-05 21490E+02 32433E-02 24090E+04 21234E+04 22578E+13 31298E+13 22992E+21

4 0128 31619E-05 21555E+02 32505E-02 24144E+04 21282E+04 22596E+13 31323E+13 23015E+21

5 0145 31716E-05 21621E+02 32583E-02 24202E+04 21333E+04 22618E+13 31353E+13 23044E+21

6 0160 31815E-05 21688E+02 32666E-02 24263E+04 21387E+04 22642E+13 31387E+13 23076E+21

7 0174 31919E-05 21759E+02 32754E-02 24329E+04 21444E+04 22669E+13 31425E+13 23112E+21

8 0187 32028E-05 21833E+02 32848E-02 24399E+04 21506E+04 22699E+13 31466E+13 23151E+21

9 0199 32140E-05 21910E+02 32947E-02 24473E+04 21571E+04 22731E+13 31510E+13 23193E+21

10 0211 32255E-05 21988E+02 33049E-02 24549E+04 21638E+04 22765E+13 31557E+13 23238E+21

11 0221 32376E-05 22070E+02 33156E-02 24628E+04 21708E+04 22799E+13 31604E+13 23283E+21

12 0232 32503E-05 22157E+02 33267E-02 24710E+04 21780E+04 22835E+13 31653E+13 23330E+21

13 0242 32638E-05 22249E+02 33384E-02 24797E+04 21857E+04 22871E+13 31704E+13 23379E+21

14 0251 32785E-05 22349E+02 33510E-02 24891E+04 21939E+04 22910E+13 31758E+13 23430E+21

15 0260 32940E-05 22455E+02 33642E-02 24989E+04 22026E+04 22950E+13 31814E+13 23483E+21

16 0269 33106E-05 22568E+02 33782E-02 25093E+04 22117E+04 22991E+13 31870E+13 23537E+21

17 0278 33279E-05 22686E+02 33927E-02 25200E+04 22212E+04 23032E+13 31928E+13 23592E+21

18 0286 33465E-05 22813E+02 34082E-02 25316E+04 22314E+04 23075E+13 31986E+13 23650E+21

19 0294 33668E-05 22951E+02 34250E-02 25440E+04 22424E+04 23120E+13 32049E+13 23711E+21

20 0302 33890E-05 23102E+02 34431E-02 25575E+04 22542E+04 23168E+13 32115E+13 23775E+21

21 0309 34134E-05 23269E+02 34627E-02 25720E+04 22671E+04 23220E+13 32188E+13 23843E+21

22 0317 34404E-05 23453E+02 34842E-02 25880E+04 22812E+04 23277E+13 32266E+13 23917E+21

23 0324 34706E-05 23659E+02 35078E-02 26055E+04 22966E+04 23335E+13 32347E+13 23993E+21

24 0331 35043E-05 23888E+02 35334E-02 26246E+04 23134E+04 23392E+13 32426E+13 24068E+21

25 0338 35426E-05 24149E+02 35620E-02 26458E+04 23321E+04 23450E+13 32506E+13 24146E+21

26 0345 35857E-05 24443E+02 35937E-02 26694E+04 23529E+04 23510E+13 32589E+13 24227E+21

27 0352 36370E-05 24793E+02 36304E-02 26966E+04 23769E+04 23571E+13 32674E+13 24311E+21

28 0358 36995E-05 25219E+02 36737E-02 27288E+04 24052E+04 23635E+13 32763E+13 24397E+21

29 0365 37788E-05 25760E+02 37277E-02 27689E+04 24406E+04 23711E+13 32868E+13 24497E+21

30 0371 38829E-05 26469E+02 37970E-02 28203E+04 24859E+04 23797E+13 32987E+13 24608E+21

31 0377 40251E-05 27439E+02 38890E-02 28887E+04 25462E+04 23889E+13 33115E+13 24727E+21

32 0384 42303E-05 28838E+02 40188E-02 29851E+04 26311E+04 23988E+13 33252E+13 24856E+21

33 0390 45434E-05 30972E+02 42130E-02 31294E+04 27583E+04 24096E+13 33402E+13 25001E+21

JAEA-DataCode 2013-009

- 238 -

34 0396 50533E-05 34448E+02 45241E-02 33604E+04 29620E+04 24212E+13 33563E+13 25157E+21

35 0401 59560E-05 40601E+02 50680E-02 37644E+04 33181E+04 24335E+13 33733E+13 25323E+21

36 0407 76333E-05 52035E+02 60761E-02 45133E+04 39781E+04 24463E+13 33911E+13 25497E+21

RADAIL DISTRIBUTION AXIAL SEGMENT NO10 AXIAL COODINATE(CM) = 9500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 0048 23272E-05 15864E+02 23063E-02 17131E+04 15100E+04 14776E+13 20483E+13 15444E+21

2 0084 23328E-05 15902E+02 23093E-02 17153E+04 15119E+04 14776E+13 20482E+13 15443E+21

3 0108 23386E-05 15942E+02 23134E-02 17184E+04 15146E+04 14785E+13 20495E+13 15455E+21

4 0128 23446E-05 15983E+02 23181E-02 17218E+04 15177E+04 14799E+13 20514E+13 15472E+21

5 0145 23509E-05 16026E+02 23232E-02 17256E+04 15210E+04 14815E+13 20537E+13 15493E+21

6 0160 23575E-05 16071E+02 23286E-02 17297E+04 15246E+04 14834E+13 20563E+13 15516E+21

7 0174 23645E-05 16119E+02 23345E-02 17341E+04 15285E+04 14856E+13 20593E+13 15542E+21

8 0187 23720E-05 16169E+02 23409E-02 17388E+04 15326E+04 14879E+13 20625E+13 15570E+21

9 0199 23797E-05 16222E+02 23476E-02 17438E+04 15370E+04 14903E+13 20659E+13 15601E+21

10 0211 23876E-05 16276E+02 23546E-02 17489E+04 15416E+04 14929E+13 20695E+13 15633E+21

11 0221 23958E-05 16332E+02 23618E-02 17543E+04 15463E+04 14956E+13 20732E+13 15666E+21

12 0232 24044E-05 16391E+02 23693E-02 17599E+04 15512E+04 14983E+13 20769E+13 15701E+21

13 0242 24136E-05 16453E+02 23772E-02 17658E+04 15564E+04 15011E+13 20809E+13 15736E+21

14 0251 24235E-05 16521E+02 23857E-02 17720E+04 15619E+04 15041E+13 20850E+13 15773E+21

15 0260 24340E-05 16592E+02 23945E-02 17786E+04 15677E+04 15072E+13 20893E+13 15811E+21

16 0269 24451E-05 16668E+02 24038E-02 17855E+04 15738E+04 15104E+13 20937E+13 15850E+21

17 0278 24567E-05 16747E+02 24135E-02 17927E+04 15801E+04 15136E+13 20981E+13 15891E+21

18 0286 24690E-05 16831E+02 24238E-02 18004E+04 15869E+04 15169E+13 21027E+13 15933E+21

19 0294 24824E-05 16922E+02 24349E-02 18086E+04 15942E+04 15203E+13 21075E+13 15977E+21

20 0302 24970E-05 17022E+02 24468E-02 18175E+04 16020E+04 15240E+13 21126E+13 16024E+21

21 0309 25130E-05 17131E+02 24597E-02 18270E+04 16104E+04 15280E+13 21181E+13 16074E+21

22 0317 25306E-05 17251E+02 24737E-02 18374E+04 16196E+04 15323E+13 21241E+13 16127E+21

23 0324 25502E-05 17384E+02 24889E-02 18487E+04 16295E+04 15367E+13 21302E+13 16182E+21

24 0331 25717E-05 17531E+02 25053E-02 18609E+04 16402E+04 15411E+13 21363E+13 16237E+21

25 0338 25959E-05 17696E+02 25234E-02 18743E+04 16521E+04 15456E+13 21425E+13 16294E+21

26 0345 26231E-05 17881E+02 25434E-02 18892E+04 16652E+04 15502E+13 21489E+13 16353E+21

27 0352 26550E-05 18099E+02 25661E-02 19060E+04 16800E+04 15550E+13 21555E+13 16414E+21

28 0358 26935E-05 18361E+02 25925E-02 19257E+04 16973E+04 15599E+13 21624E+13 16477E+21

29 0365 27420E-05 18692E+02 26251E-02 19499E+04 17187E+04 15658E+13 21705E+13 16549E+21

30 0371 28050E-05 19121E+02 26664E-02 19805E+04 17457E+04 15723E+13 21795E+13 16629E+21

31 0377 28903E-05 19703E+02 27203E-02 20206E+04 17810E+04 15793E+13 21892E+13 16715E+21

32 0384 30123E-05 20534E+02 27954E-02 20764E+04 18302E+04 15868E+13 21997E+13 16809E+21

33 0390 31972E-05 21795E+02 29065E-02 21589E+04 19029E+04 15952E+13 22113E+13 16914E+21

34 0396 34968E-05 23837E+02 30822E-02 22894E+04 20179E+04 16042E+13 22238E+13 17028E+21

35 0401 40259E-05 27444E+02 33868E-02 25156E+04 22174E+04 16137E+13 22370E+13 17149E+21

36 0407 50121E-05 34167E+02 39493E-02 29335E+04 25857E+04 16237E+13 22508E+13 17276E+21

AMOUNT(G-ATOMCC) ON AXIAL MESH= 1 500 CM TIME STEP= 44 77308 DAYS

NUCLIDE RADIAL 1 RADIAL 2 RADIAL 3 RADIAL 4 RADIAL 5 RADIAL 6 RADIAL 7 RADIAL 8 RADIAL 9 RADIAL 10

0048 0084 0108 0128 0145 0160 0174 0187 0199 0211

1 H2 12004E-07 12032E-07 12065E-07 12100E-07 12137E-07 12176E-07 12219E-07 12264E-07 12311E-07 12360E-07

2 He 12192E-06 12195E-06 12207E-06 12223E-06 12243E-06 12264E-06 12288E-06 12314E-06 12342E-06 12378E-06

6 C 11812E-06 11812E-06 11821E-06 11834E-06 11849E-06 11866E-06 11886E-06 11907E-06 11930E-06 11954E-06

8 O 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02

33 As 17694E-10 17750E-10 17803E-10 17859E-10 17916E-10 17975E-10 18037E-10 18102E-10 18170E-10 18240E-10

34 Se 37094E-06 37132E-06 37188E-06 37251E-06 37321E-06 37397E-06 37478E-06 37566E-06 37659E-06 37755E-06

35 Br 10683E-06 10696E-06 10714E-06 10734E-06 10756E-06 10779E-06 10804E-06 10831E-06 10860E-06 10890E-06

36 Kr 27288E-05 27307E-05 27339E-05 27377E-05 27420E-05 27466E-05 27517E-05 27572E-05 27629E-05 27689E-05

37 Rb 24114E-05 24128E-05 24155E-05 24187E-05 24223E-05 24262E-05 24305E-05 24352E-05 24401E-05 24452E-05

38 Sr 66199E-05 66242E-05 66316E-05 66405E-05 66505E-05 66612E-05 66730E-05 66858E-05 66993E-05 67133E-05

39 Y 74449E-06 74514E-06 74604E-06 74701E-06 74820E-06 74947E-06 75078E-06 75215E-06 75362E-06 75514E-06

40 Zr 22930E-04 22952E-04 22985E-04 23024E-04 23066E-04 23111E-04 23160E-04 23214E-04 23270E-04 23328E-04

41 Nb 29834E-06 29890E-06 29951E-06 30016E-06 30085E-06 30157E-06 30234E-06 30314E-06 30400E-06 30487E-06

42 Mo 18218E-04 18243E-04 18277E-04 18314E-04 18355E-04 18399E-04 18445E-04 18495E-04 18549E-04 18604E-04

43 Tc 47116E-05 47185E-05 47272E-05 47370E-05 47476E-05 47589E-05 47711E-05 47841E-05 47978E-05 48120E-05

44 Ru 10367E-04 10391E-04 10419E-04 10450E-04 10482E-04 10516E-04 10552E-04 10591E-04 10632E-04 10674E-04

45 Rh 20747E-05 20795E-05 20849E-05 20906E-05 20965E-05 21028E-05 21094E-05 21165E-05 21239E-05 21314E-05

46 Pd 33496E-05 33658E-05 33828E-05 34010E-05 34200E-05 34398E-05 34609E-05 34834E-05 35071E-05 35313E-05

47 Ag 17637E-06 17772E-06 17903E-06 18041E-06 18179E-06 18321E-06 18481E-06 18645E-06 18808E-06 18978E-06

48 Cd 14558E-06 14647E-06 14741E-06 14841E-06 14938E-06 15051E-06 15170E-06 15289E-06 15419E-06 15543E-06

49 In 54463E-08 54686E-08 54896E-08 55108E-08 55327E-08 55551E-08 56030E-08 56280E-08 56538E-08 56803E-08

50 Sn 15913E-06 15976E-06 16037E-06 16101E-06 16176E-06 16247E-06 16327E-06 16408E-06 16492E-06 16586E-06

51 Sb 52543E-07 52755E-07 53019E-07 53238E-07 53468E-07 53709E-07 53965E-07 54239E-07 54492E-07 54843E-07

52 Te 21026E-05 21070E-05 21122E-05 21179E-05 21240E-05 21304E-05 21372E-05 21445E-05 21522E-05 21601E-05

53 I 10117E-05 10142E-05 10171E-05 10201E-05 10230E-05 10263E-05 10298E-05 10335E-05 10374E-05 10416E-05

54 Xe 20909E-04 20941E-04 20982E-04 21029E-04 21080E-04 21134E-04 21193E-04 21256E-04 21322E-04 21390E-04

55 Cs 11370E-04 11387E-04 11408E-04 11431E-04 11456E-04 11482E-04 11511E-04 11541E-04 11573E-04 11606E-04

JAEA-DataCode 2013-009

- 239 -

56 Ba 49350E-05 49427E-05 49526E-05 49636E-05 49755E-05 49880E-05 50018E-05 50167E-05 50321E-05 50481E-05

57 La 50292E-05 50357E-05 50445E-05 50544E-05 50652E-05 50769E-05 50894E-05 51027E-05 51170E-05 51316E-05

58 Ce 11810E-04 11825E-04 11845E-04 11868E-04 11893E-04 11919E-04 11948E-04 11979E-04 12011E-04 12044E-04

59 Pr 46537E-05 46591E-05 46667E-05 46753E-05 46847E-05 46946E-05 47055E-05 47173E-05 47297E-05 47425E-05

60 Nd 13871E-04 13887E-04 13910E-04 13936E-04 13965E-04 13996E-04 14029E-04 14065E-04 14103E-04 14142E-04

61 Pm 80504E-06 80628E-06 80756E-06 80887E-06 81022E-06 81156E-06 81303E-06 81458E-06 81618E-06 81787E-06

62 Sm 25161E-05 25204E-05 25257E-05 25310E-05 25386E-05 25455E-05 25528E-05 25599E-05 25683E-05 25769E-05

63 Eu 38719E-06 38811E-06 38928E-06 39060E-06 39185E-06 39344E-06 39517E-06 39697E-06 39891E-06 40091E-06

64 Gd 12073E-06 12124E-06 12199E-06 12270E-06 12333E-06 12413E-06 12498E-06 12591E-06 12681E-06 12782E-06

65 Tb 27282E-08 27469E-08 27655E-08 27845E-08 28037E-08 28241E-08 28456E-08 28695E-08 28932E-08 29730E-08

92 U 37615E-02 37613E-02 37610E-02 37607E-02 37604E-02 37601E-02 37597E-02 37594E-02 37590E-02 37586E-02

93 Np 84230E-06 84328E-06 84502E-06 84709E-06 84942E-06 85196E-06 85473E-06 85774E-06 86090E-06 86419E-06

94 Pu 16893E-04 17039E-04 17167E-04 17293E-04 17420E-04 17547E-04 17680E-04 17820E-04 17962E-04 18108E-04

95 Am 74370E-07 75029E-07 75721E-07 76533E-07 77361E-07 78233E-07 79101E-07 80027E-07 81057E-07 82055E-07

96 Cm 91222E-08 92027E-08 92957E-08 94095E-08 95326E-08 97248E-08 98495E-08 99839E-08 10129E-07 10276E-07

NUCLIDE RADIAL 11 RADIAL 12 RADIAL 13 RADIAL 14 RADIAL 15 RADIAL 16 RADIAL 17 RADIAL 18 RADIAL 19 RADIAL 20

0221 0232 0242 0251 0260 0269 0278 0286 0294 0302

1 H2 12411E-07 12464E-07 12521E-07 12581E-07 12645E-07 12712E-07 12782E-07 12857E-07 12938E-07 13026E-07

2 He 12412E-06 12443E-06 12476E-06 12510E-06 12546E-06 12583E-06 12629E-06 12671E-06 12713E-06 12759E-06

6 C 11979E-06 12004E-06 12031E-06 12058E-06 12087E-06 12116E-06 12146E-06 12178E-06 12211E-06 12246E-06

8 O 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02

33 As 18312E-10 18389E-10 18470E-10 18558E-10 18651E-10 18750E-10 18854E-10 18964E-10 19085E-10 19216E-10

34 Se 37856E-06 37960E-06 38069E-06 38185E-06 38307E-06 38435E-06 38567E-06 38708E-06 38859E-06 39022E-06

35 Br 10921E-06 10953E-06 10986E-06 11022E-06 11060E-06 11100E-06 11141E-06 11185E-06 11232E-06 11283E-06

36 Kr 27751E-05 27816E-05 27884E-05 27954E-05 28030E-05 28108E-05 28189E-05 28274E-05 28365E-05 28464E-05

37 Rb 24506E-05 24561E-05 24618E-05 24679E-05 24743E-05 24809E-05 24878E-05 24950E-05 25028E-05 25111E-05

38 Sr 67278E-05 67429E-05 67588E-05 67755E-05 67930E-05 68113E-05 68301E-05 68500E-05 68713E-05 68942E-05

39 Y 75671E-06 75836E-06 76008E-06 76199E-06 76393E-06 76595E-06 76804E-06 77020E-06 77258E-06 77514E-06

40 Zr 23388E-04 23451E-04 23517E-04 23586E-04 23660E-04 23737E-04 23817E-04 23901E-04 23993E-04 24090E-04

41 Nb 30578E-06 30673E-06 30774E-06 30881E-06 30994E-06 31114E-06 31240E-06 31376E-06 31521E-06 31679E-06

42 Mo 18662E-04 18721E-04 18784E-04 18851E-04 18921E-04 18995E-04 19072E-04 19154E-04 19242E-04 19338E-04

43 Tc 48268E-05 48422E-05 48584E-05 48758E-05 48940E-05 49132E-05 49331E-05 49544E-05 49773E-05 50020E-05

44 Ru 10717E-04 10763E-04 10812E-04 10864E-04 10918E-04 10976E-04 11036E-04 11100E-04 11170E-04 11245E-04

45 Rh 21395E-05 21478E-05 21566E-05 21660E-05 21761E-05 21867E-05 21976E-05 22095E-05 22224E-05 22363E-05

46 Pd 35567E-05 35833E-05 36115E-05 36418E-05 36739E-05 37079E-05 37437E-05 37821E-05 38236E-05 38690E-05

47 Ag 19156E-06 19349E-06 19551E-06 19767E-06 19995E-06 20242E-06 20501E-06 20777E-06 21084E-06 21411E-06

48 Cd 15694E-06 15841E-06 15997E-06 16161E-06 16314E-06 16488E-06 16683E-06 16907E-06 17117E-06 17353E-06

49 In 57082E-08 57373E-08 57682E-08 58018E-08 58372E-08 58978E-08 59375E-08 59803E-08 60268E-08 60556E-08

50 Sn 16677E-06 16772E-06 16873E-06 16981E-06 17103E-06 17229E-06 17348E-06 17477E-06 17625E-06 17780E-06

51 Sb 55276E-07 55652E-07 55928E-07 56251E-07 56694E-07 57438E-07 57809E-07 58244E-07 58786E-07 59382E-07

52 Te 21685E-05 21772E-05 21863E-05 21961E-05 22064E-05 22174E-05 22288E-05 22409E-05 22542E-05 22685E-05

53 I 10460E-05 10504E-05 10549E-05 10598E-05 10650E-05 10705E-05 10764E-05 10830E-05 10899E-05 10974E-05

54 Xe 21462E-04 21536E-04 21614E-04 21698E-04 21786E-04 21878E-04 21974E-04 22076E-04 22187E-04 22306E-04

55 Cs 11641E-04 11677E-04 11714E-04 11754E-04 11797E-04 11842E-04 11889E-04 11939E-04 11992E-04 12050E-04

56 Ba 50647E-05 50824E-05 51008E-05 51201E-05 51407E-05 51624E-05 51847E-05 52086E-05 52346E-05 52625E-05

57 La 51469E-05 51627E-05 51792E-05 51972E-05 52160E-05 52356E-05 52562E-05 52781E-05 53013E-05 53267E-05

58 Ce 12079E-04 12115E-04 12154E-04 12194E-04 12237E-04 12282E-04 12329E-04 12378E-04 12432E-04 12489E-04

59 Pr 47559E-05 47698E-05 47844E-05 47998E-05 48162E-05 48335E-05 48512E-05 48702E-05 48907E-05 49125E-05

60 Nd 14183E-04 14226E-04 14270E-04 14318E-04 14368E-04 14420E-04 14474E-04 14532E-04 14594E-04 14661E-04

61 Pm 81959E-06 82139E-06 82326E-06 82532E-06 82757E-06 82988E-06 83228E-06 83494E-06 83778E-06 84085E-06

62 Sm 25863E-05 25958E-05 26056E-05 26164E-05 26276E-05 26394E-05 26517E-05 26646E-05 26785E-05 26936E-05

63 Eu 40312E-06 40538E-06 40762E-06 40999E-06 41259E-06 41518E-06 41793E-06 42088E-06 42407E-06 42767E-06

64 Gd 12893E-06 13013E-06 13118E-06 13229E-06 13344E-06 13468E-06 13597E-06 13750E-06 13902E-06 14072E-06

65 Tb 29993E-08 30269E-08 30554E-08 30868E-08 31864E-08 32218E-08 32592E-08 33008E-08 33997E-08 34476E-08

92 U 37582E-02 37578E-02 37573E-02 37568E-02 37563E-02 37558E-02 37552E-02 37546E-02 37539E-02 37532E-02

93 Np 86767E-06 87121E-06 87491E-06 87884E-06 88296E-06 88719E-06 89165E-06 89619E-06 90127E-06 90662E-06

94 Pu 18261E-04 18422E-04 18593E-04 18780E-04 18977E-04 19187E-04 19408E-04 19648E-04 19909E-04 20193E-04

95 Am 83127E-07 84245E-07 85462E-07 86731E-07 88263E-07 89699E-07 91210E-07 92897E-07 94675E-07 96705E-07

96 Cm 10452E-07 10619E-07 10793E-07 10979E-07 11201E-07 11471E-07 11734E-07 11990E-07 12254E-07 12562E-07

NUCLIDE RADIAL 21 RADIAL 22 RADIAL 23 RADIAL 24 RADIAL 25 RADIAL 26 RADIAL 27 RADIAL 28 RADIAL 29 RADIAL 30

0309 0317 0324 0331 0338 0345 0352 0358 0365 0371

1 H2 13121E-07 13226E-07 13341E-07 13466E-07 13606E-07 13762E-07 13943E-07 14157E-07 14424E-07 14767E-07

2 He 12811E-06 12864E-06 12921E-06 12988E-06 13048E-06 13121E-06 13195E-06 13274E-06 13368E-06 13487E-06

6 C 12283E-06 12322E-06 12363E-06 12404E-06 12447E-06 12491E-06 12536E-06 12584E-06 12637E-06 12697E-06

8 O 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02

33 As 19360E-10 19520E-10 19697E-10 19894E-10 20117E-10 20368E-10 20664E-10 21022E-10 21475E-10 22068E-10

34 Se 39197E-06 39388E-06 39594E-06 39814E-06 40057E-06 40323E-06 40625E-06 40974E-06 41404E-06 41944E-06

35 Br 11338E-06 11397E-06 11462E-06 11532E-06 11609E-06 11694E-06 11790E-06 11903E-06 12041E-06 12217E-06

36 Kr 28569E-05 28683E-05 28805E-05 28934E-05 29076E-05 29230E-05 29401E-05 29596E-05 29834E-05 30132E-05

37 Rb 25200E-05 25297E-05 25400E-05 25509E-05 25628E-05 25756E-05 25899E-05 26061E-05 26258E-05 26503E-05

38 Sr 69186E-05 69454E-05 69739E-05 70041E-05 70369E-05 70727E-05 71126E-05 71582E-05 72136E-05 72823E-05

39 Y 77791E-06 78090E-06 78425E-06 78777E-06 79172E-06 79598E-06 80078E-06 80648E-06 81343E-06 82239E-06

40 Zr 24196E-04 24311E-04 24434E-04 24567E-04 24712E-04 24871E-04 25052E-04 25261E-04 25517E-04 25839E-04

JAEA-DataCode 2013-009

- 240 -

41 Nb 31853E-06 32043E-06 32254E-06 32483E-06 32733E-06 33023E-06 33358E-06 33765E-06 34266E-06 34916E-06

42 Mo 19440E-04 19552E-04 19674E-04 19806E-04 19951E-04 20112E-04 20296E-04 20510E-04 20775E-04 21112E-04

43 Tc 50286E-05 50578E-05 50896E-05 51239E-05 51621E-05 52043E-05 52527E-05 53094E-05 53796E-05 54690E-05

44 Ru 11327E-04 11417E-04 11516E-04 11623E-04 11743E-04 11877E-04 12031E-04 12214E-04 12444E-04 12740E-04

45 Rh 22514E-05 22680E-05 22862E-05 23062E-05 23288E-05 23538E-05 23831E-05 24183E-05 24624E-05 25196E-05

46 Pd 39181E-05 39724E-05 40321E-05 40981E-05 41728E-05 42566E-05 43541E-05 44709E-05 46176E-05 48079E-05

47 Ag 21770E-06 22164E-06 22596E-06 23093E-06 23648E-06 24281E-06 25039E-06 25946E-06 27073E-06 28551E-06

48 Cd 17624E-06 17906E-06 18221E-06 18585E-06 18977E-06 19426E-06 19931E-06 20562E-06 21366E-06 22327E-06

49 In 61107E-08 61716E-08 62614E-08 63373E-08 63643E-08 64400E-08 65543E-08 67132E-08 68880E-08 71162E-08

50 Sn 17954E-06 18146E-06 18363E-06 18596E-06 18858E-06 19154E-06 19488E-06 19910E-06 20416E-06 21079E-06

51 Sb 60039E-07 60752E-07 61545E-07 62364E-07 63318E-07 64213E-07 65521E-07 67071E-07 69170E-07 71942E-07

52 Te 22839E-05 23008E-05 23194E-05 23396E-05 23622E-05 23877E-05 24173E-05 24520E-05 24955E-05 25509E-05

53 I 11052E-05 11140E-05 11235E-05 11339E-05 11458E-05 11593E-05 11745E-05 11926E-05 12156E-05 12446E-05

54 Xe 22434E-04 22575E-04 22727E-04 22893E-04 23075E-04 23278E-04 23509E-04 23781E-04 24117E-04 24544E-04

55 Cs 12113E-04 12181E-04 12256E-04 12337E-04 12427E-04 12527E-04 12643E-04 12778E-04 12947E-04 13162E-04

56 Ba 52927E-05 53254E-05 53613E-05 54000E-05 54429E-05 54904E-05 55448E-05 56085E-05 56877E-05 57888E-05

57 La 53539E-05 53835E-05 54158E-05 54508E-05 54891E-05 55316E-05 55802E-05 56364E-05 57065E-05 57955E-05

58 Ce 12552E-04 12620E-04 12694E-04 12773E-04 12861E-04 12959E-04 13070E-04 13199E-04 13360E-04 13563E-04

59 Pr 49361E-05 49620E-05 49899E-05 50199E-05 50529E-05 50893E-05 51307E-05 51785E-05 52373E-05 53121E-05

60 Nd 14734E-04 14812E-04 14897E-04 14989E-04 15090E-04 15201E-04 15328E-04 15475E-04 15656E-04 15885E-04

61 Pm 84416E-06 84786E-06 85191E-06 85646E-06 86159E-06 86743E-06 87432E-06 88269E-06 89328E-06 90688E-06

62 Sm 27097E-05 27274E-05 27468E-05 27676E-05 27906E-05 28161E-05 28451E-05 28788E-05 29217E-05 29749E-05

63 Eu 43147E-06 43562E-06 44001E-06 44478E-06 45021E-06 45617E-06 46281E-06 47071E-06 48052E-06 49274E-06

64 Gd 14261E-06 14483E-06 14700E-06 14952E-06 15234E-06 15551E-06 15902E-06 16326E-06 16835E-06 17529E-06

65 Tb 35009E-08 35601E-08 36254E-08 36988E-08 38359E-08 39302E-08 40407E-08 41746E-08 43961E-08 46193E-08

92 U 37525E-02 37516E-02 37507E-02 37497E-02 37485E-02 37472E-02 37457E-02 37439E-02 37417E-02 37388E-02

93 Np 91231E-06 91848E-06 92520E-06 93217E-06 93982E-06 94808E-06 95724E-06 96764E-06 98026E-06 99581E-06

94 Pu 20503E-04 20846E-04 21232E-04 21664E-04 22162E-04 22725E-04 23398E-04 24219E-04 25255E-04 26617E-04

95 Am 98928E-07 10134E-06 10407E-06 10727E-06 11072E-06 11443E-06 11894E-06 12420E-06 13094E-06 13964E-06

96 Cm 12982E-07 13363E-07 13788E-07 14333E-07 14891E-07 15456E-07 16231E-07 17055E-07 18099E-07 19512E-07

NUCLIDE RADIAL 31 RADIAL 32 RADIAL 33 RADIAL 34 RADIAL 35 RADIAL 36

0377 0384 0390 0396 0401 0407

1 H2 15225E-07 15872E-07 16846E-07 18408E-07 21150E-07 26185E-07

2 He 13618E-06 13783E-06 14016E-06 14343E-06 14898E-06 15890E-06

6 C 12761E-06 12831E-06 12910E-06 12995E-06 13085E-06 13180E-06

8 O 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02

33 As 22873E-10 24030E-10 25791E-10 28653E-10 33718E-10 43157E-10

34 Se 42654E-06 43631E-06 45059E-06 47302E-06 51170E-06 58285E-06

35 Br 12446E-06 12766E-06 13238E-06 13984E-06 15277E-06 17657E-06

36 Kr 30512E-05 31024E-05 31765E-05 32914E-05 34859E-05 38381E-05

37 Rb 26814E-05 27231E-05 27834E-05 28758E-05 30324E-05 33168E-05

38 Sr 73699E-05 74888E-05 76601E-05 79250E-05 83748E-05 91917E-05

39 Y 83396E-06 84998E-06 87366E-06 91123E-06 97581E-06 10951E-05

40 Zr 26258E-04 26834E-04 27680E-04 29011E-04 31305E-04 35515E-04

41 Nb 35786E-06 37040E-06 38927E-06 41966E-06 47321E-06 57277E-06

42 Mo 21555E-04 22174E-04 23094E-04 24554E-04 27087E-04 31766E-04

43 Tc 55869E-05 57520E-05 59977E-05 63887E-05 70700E-05 83312E-05

44 Ru 13134E-04 13693E-04 14536E-04 15891E-04 18262E-04 22669E-04

45 Rh 25963E-05 27057E-05 28711E-05 31387E-05 36095E-05 44877E-05

46 Pd 50649E-05 54304E-05 59856E-05 68822E-05 84696E-05 11437E-04

47 Ag 30560E-06 33472E-06 37890E-06 45077E-06 57838E-06 81745E-06

48 Cd 23756E-06 25756E-06 28793E-06 33712E-06 42363E-06 58460E-06

49 In 73864E-08 78318E-08 83957E-08 91017E-08 11156E-07 14745E-07

50 Sn 21976E-06 23285E-06 25194E-06 28311E-06 33813E-06 44240E-06

51 Sb 75335E-07 80235E-07 87284E-07 99065E-07 11941E-06 15762E-06

52 Te 26246E-05 27296E-05 28858E-05 31365E-05 35755E-05 43926E-05

53 I 12836E-05 13386E-05 14216E-05 15553E-05 17905E-05 22290E-05

54 Xe 25106E-04 25891E-04 27060E-04 28918E-04 32152E-04 38134E-04

55 Cs 13447E-04 13847E-04 14446E-04 15400E-04 17066E-04 20155E-04

56 Ba 59228E-05 61104E-05 63892E-05 68328E-05 76031E-05 90287E-05

57 La 59126E-05 60756E-05 63185E-05 67036E-05 73705E-05 86016E-05

58 Ce 13830E-04 14203E-04 14755E-04 15632E-04 17155E-04 19965E-04

59 Pr 54100E-05 55459E-05 57467E-05 60642E-05 66132E-05 76245E-05

60 Nd 16184E-04 16600E-04 17213E-04 18185E-04 19864E-04 22964E-04

61 Pm 92553E-06 95251E-06 99389E-06 10611E-05 11796E-05 14032E-05

62 Sm 30461E-05 31442E-05 32917E-05 35245E-05 39303E-05 46812E-05

63 Eu 50901E-06 53188E-06 56590E-06 61965E-06 71247E-06 88410E-06

64 Gd 18432E-06 19744E-06 21693E-06 24850E-06 30265E-06 40406E-06

65 Tb 49204E-08 54122E-08 61346E-08 72825E-08 93608E-08 13364E-07

92 U 37349E-02 37294E-02 37211E-02 37077E-02 36841E-02 36403E-02

93 Np 10154E-05 10416E-05 10791E-05 11360E-05 12309E-05 13999E-05

94 Pu 28487E-04 31202E-04 35360E-04 42152E-04 54210E-04 76692E-04

95 Am 15139E-06 16802E-06 19337E-06 23436E-06 30703E-06 44362E-06

96 Cm 21399E-07 23980E-07 28039E-07 34667E-07 46580E-07 69077E-07

JAEA-DataCode 2013-009

- 241 -

=================== Skipped =========================

TIME STEP NO 96 TIME = 166769 DAYS FLUX = 51255E+13 NCM2SEC

RADAIL DISTRIBUTION AXIAL SEGMENT NO 1 AXIAL COODINATE(CM) = 500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 0048 33671E-05 22953E+02 54785E-02 40694E+04 35869E+04 33859E+13 46935E+13 46119E+21

2 0084 33855E-05 23078E+02 54941E-02 40810E+04 35971E+04 33868E+13 46948E+13 46122E+21

3 0108 34006E-05 23181E+02 55093E-02 40922E+04 36070E+04 33886E+13 46972E+13 46151E+21

4 0128 34149E-05 23279E+02 55247E-02 41037E+04 36171E+04 33905E+13 46999E+13 46190E+21

5 0145 34290E-05 23375E+02 55406E-02 41155E+04 36275E+04 33926E+13 47028E+13 46235E+21

6 0160 34428E-05 23469E+02 55570E-02 41276E+04 36382E+04 33947E+13 47057E+13 46287E+21

7 0174 34571E-05 23566E+02 55742E-02 41404E+04 36495E+04 33970E+13 47090E+13 46344E+21

8 0187 34720E-05 23668E+02 55925E-02 41540E+04 36615E+04 33996E+13 47126E+13 46406E+21

9 0199 34874E-05 23773E+02 56114E-02 41681E+04 36739E+04 34026E+13 47167E+13 46474E+21

10 0211 35031E-05 23881E+02 56309E-02 41826E+04 36866E+04 34059E+13 47212E+13 46546E+21

11 0221 35198E-05 23994E+02 56513E-02 41977E+04 37000E+04 34094E+13 47261E+13 46620E+21

12 0232 35374E-05 24114E+02 56728E-02 42137E+04 37141E+04 34130E+13 47311E+13 46697E+21

13 0242 35562E-05 24242E+02 56955E-02 42305E+04 37289E+04 34166E+13 47362E+13 46776E+21

14 0251 35766E-05 24381E+02 57200E-02 42488E+04 37450E+04 34203E+13 47413E+13 46858E+21

15 0260 35981E-05 24528E+02 57459E-02 42680E+04 37619E+04 34241E+13 47466E+13 46943E+21

16 0269 36210E-05 24684E+02 57734E-02 42884E+04 37799E+04 34280E+13 47519E+13 47030E+21

17 0278 36454E-05 24850E+02 58021E-02 43097E+04 37987E+04 34320E+13 47574E+13 47119E+21

18 0286 36719E-05 25031E+02 58330E-02 43327E+04 38190E+04 34362E+13 47632E+13 47211E+21

19 0294 37009E-05 25229E+02 58666E-02 43577E+04 38410E+04 34408E+13 47696E+13 47310E+21

20 0302 37330E-05 25447E+02 59033E-02 43849E+04 38650E+04 34459E+13 47767E+13 47415E+21

21 0309 37680E-05 25686E+02 59433E-02 44146E+04 38912E+04 34515E+13 47844E+13 47528E+21

22 0317 38067E-05 25950E+02 59874E-02 44473E+04 39200E+04 34573E+13 47926E+13 47648E+21

23 0324 38503E-05 26247E+02 60362E-02 44836E+04 39520E+04 34633E+13 48008E+13 47773E+21

24 0331 38995E-05 26582E+02 60903E-02 45238E+04 39874E+04 34691E+13 48089E+13 47896E+21

25 0338 39561E-05 26968E+02 61515E-02 45692E+04 40275E+04 34750E+13 48170E+13 48022E+21

26 0345 40203E-05 27406E+02 62201E-02 46202E+04 40724E+04 34809E+13 48252E+13 48152E+21

27 0352 40973E-05 27931E+02 63010E-02 46803E+04 41253E+04 34869E+13 48336E+13 48285E+21

28 0358 41919E-05 28576E+02 63984E-02 47527E+04 41891E+04 34933E+13 48424E+13 48425E+21

29 0365 43120E-05 29394E+02 65212E-02 48439E+04 42695E+04 35010E+13 48531E+13 48588E+21

30 0371 44703E-05 30474E+02 66811E-02 49626E+04 43742E+04 35098E+13 48653E+13 48770E+21

31 0377 46883E-05 31960E+02 68976E-02 51234E+04 45160E+04 35192E+13 48783E+13 48966E+21

32 0384 50046E-05 34116E+02 72079E-02 53539E+04 47191E+04 35291E+13 48921E+13 49177E+21

33 0390 54880E-05 37411E+02 76782E-02 57033E+04 50270E+04 35398E+13 49069E+13 49411E+21

34 0396 62740E-05 42769E+02 84388E-02 62682E+04 55250E+04 35512E+13 49226E+13 49662E+21

35 0401 76543E-05 52178E+02 97761E-02 72615E+04 64005E+04 35631E+13 49392E+13 49927E+21

36 0407 10168E-04 69315E+02 12244E-01 90950E+04 80166E+04 35757E+13 49566E+13 50206E+21

=================== Skipped =========================

AMOUNT(G-ATOMCC) ON AXIAL MESH= 10 9500 CM TIME STEP= 96 166769 DAYS

NUCLIDE RADIAL 1 RADIAL 2 RADIAL 3 RADIAL 4 RADIAL 5 RADIAL 6 RADIAL 7 RADIAL 8 RADIAL 9 RADIAL 10

0048 0084 0108 0128 0145 0160 0174 0187 0199 0211

1 H2 24619E-07 24713E-07 24803E-07 24895E-07 24990E-07 25089E-07 25192E-07 25302E-07 25416E-07 25533E-07

2 He 36404E-06 36490E-06 36593E-06 36704E-06 36823E-06 36948E-06 37089E-06 37235E-06 37386E-06 37542E-06

6 C 26040E-06 26040E-06 26057E-06 26080E-06 26108E-06 26138E-06 26173E-06 26211E-06 26251E-06 26294E-06

8 O 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02

33 As 21222E-10 21337E-10 21435E-10 21527E-10 21619E-10 21710E-10 21804E-10 21903E-10 22005E-10 22109E-10

34 Se 66222E-06 66351E-06 66484E-06 66623E-06 66769E-06 66920E-06 67081E-06 67252E-06 67430E-06 67614E-06

35 Br 19229E-06 19271E-06 19315E-06 19360E-06 19406E-06 19455E-06 19506E-06 19561E-06 19617E-06 19676E-06

36 Kr 46606E-05 46668E-05 46736E-05 46809E-05 46887E-05 46968E-05 47053E-05 47145E-05 47241E-05 47340E-05

37 Rb 41448E-05 41498E-05 41555E-05 41616E-05 41680E-05 41747E-05 41820E-05 41897E-05 41977E-05 42060E-05

38 Sr 10835E-04 10849E-04 10864E-04 10880E-04 10897E-04 10915E-04 10934E-04 10954E-04 10975E-04 10997E-04

39 Y 93636E-06 93796E-06 93947E-06 94099E-06 94253E-06 94412E-06 94585E-06 94763E-06 94947E-06 95136E-06

40 Zr 40853E-04 40927E-04 41005E-04 41087E-04 41173E-04 41262E-04 41357E-04 41457E-04 41562E-04 41671E-04

41 Nb 22604E-06 22697E-06 22773E-06 22846E-06 22919E-06 22990E-06 23064E-06 23142E-06 23222E-06 23303E-06

42 Mo 34694E-04 34780E-04 34867E-04 34957E-04 35052E-04 35149E-04 35252E-04 35361E-04 35475E-04 35592E-04

43 Tc 85310E-05 85531E-05 85750E-05 85974E-05 86207E-05 86447E-05 86700E-05 86969E-05 87247E-05 87534E-05

44 Ru 20364E-04 20438E-04 20511E-04 20585E-04 20661E-04 20739E-04 20822E-04 20909E-04 20999E-04 21092E-04

45 Rh 32023E-05 32153E-05 32269E-05 32383E-05 32498E-05 32613E-05 32734E-05 32862E-05 32992E-05 33125E-05

46 Pd 10367E-04 10428E-04 10486E-04 10546E-04 10609E-04 10672E-04 10739E-04 10810E-04 10884E-04 10960E-04

47 Ag 44148E-06 44511E-06 44838E-06 45162E-06 45493E-06 45830E-06 46182E-06 46551E-06 46928E-06 47320E-06

48 Cd 53894E-06 54323E-06 54733E-06 55143E-06 55541E-06 55964E-06 56414E-06 56897E-06 57388E-06 57914E-06

49 In 65149E-08 64972E-08 65294E-08 65611E-08 65919E-08 66227E-08 66545E-08 66878E-08 66767E-08 67109E-08

50 Sn 36650E-06 36814E-06 36999E-06 37183E-06 37370E-06 37561E-06 37762E-06 37967E-06 38185E-06 38396E-06

JAEA-DataCode 2013-009

- 242 -

51 Sb 11171E-06 11235E-06 11291E-06 11360E-06 11428E-06 11506E-06 11586E-06 11672E-06 11748E-06 11820E-06

52 Te 41795E-05 41943E-05 42086E-05 42232E-05 42382E-05 42537E-05 42701E-05 42875E-05 43053E-05 43237E-05

53 I 19898E-05 19979E-05 20051E-05 20127E-05 20206E-05 20284E-05 20369E-05 20457E-05 20549E-05 20642E-05

54 Xe 39501E-04 39608E-04 39715E-04 39827E-04 39944E-04 40064E-04 40191E-04 40327E-04 40468E-04 40613E-04

55 Cs 20564E-04 20619E-04 20673E-04 20727E-04 20783E-04 20840E-04 20900E-04 20964E-04 21030E-04 21098E-04

56 Ba 10162E-04 10189E-04 10216E-04 10245E-04 10275E-04 10306E-04 10338E-04 10374E-04 10410E-04 10447E-04

57 La 92023E-05 92244E-05 92466E-05 92695E-05 92934E-05 93180E-05 93443E-05 93721E-05 94009E-05 94305E-05

58 Ce 19786E-04 19833E-04 19880E-04 19928E-04 19979E-04 20031E-04 20086E-04 20144E-04 20205E-04 20267E-04

59 Pr 84807E-05 84989E-05 85177E-05 85369E-05 85574E-05 85785E-05 86008E-05 86245E-05 86492E-05 86746E-05

60 Nd 27202E-04 27260E-04 27321E-04 27385E-04 27451E-04 27520E-04 27593E-04 27671E-04 27752E-04 27836E-04

61 Pm 69667E-06 69905E-06 70096E-06 70272E-06 70445E-06 70613E-06 70787E-06 70965E-06 71147E-06 71330E-06

62 Sm 52034E-05 52173E-05 52312E-05 52449E-05 52598E-05 52752E-05 52917E-05 53087E-05 53267E-05 53449E-05

63 Eu 11064E-05 11103E-05 11142E-05 11183E-05 11226E-05 11272E-05 11320E-05 11370E-05 11423E-05 11478E-05

64 Gd 55703E-06 55932E-06 56235E-06 56517E-06 56855E-06 57196E-06 57538E-06 57910E-06 58337E-06 58753E-06

65 Tb 79826E-08 80406E-08 80990E-08 81519E-08 83162E-08 83769E-08 84376E-08 85005E-08 86130E-08 86837E-08

92 U 36846E-02 36840E-02 36834E-02 36829E-02 36823E-02 36817E-02 36811E-02 36804E-02 36797E-02 36790E-02

93 Np 22631E-05 22649E-05 22678E-05 22713E-05 22751E-05 22792E-05 22838E-05 22888E-05 22939E-05 22994E-05

94 Pu 23060E-04 23253E-04 23417E-04 23576E-04 23735E-04 23893E-04 24057E-04 24229E-04 24404E-04 24582E-04

95 Am 60636E-06 61173E-06 61700E-06 62234E-06 62789E-06 63360E-06 63967E-06 64614E-06 65283E-06 65972E-06

96 Cm 20581E-06 20768E-06 20973E-06 21177E-06 21399E-06 21642E-06 21893E-06 22165E-06 22443E-06 22719E-06

NUCLIDE RADIAL 11 RADIAL 12 RADIAL 13 RADIAL 14 RADIAL 15 RADIAL 16 RADIAL 17 RADIAL 18 RADIAL 19 RADIAL 20

0221 0232 0242 0251 0260 0269 0278 0286 0294 0302

1 H2 25655E-07 25784E-07 25921E-07 26068E-07 26225E-07 26390E-07 26562E-07 26748E-07 26952E-07 27173E-07

2 He 37706E-06 37884E-06 38072E-06 38266E-06 38470E-06 38690E-06 38914E-06 39154E-06 39421E-06 39702E-06

6 C 26339E-06 26384E-06 26432E-06 26481E-06 26532E-06 26585E-06 26638E-06 26693E-06 26752E-06 26814E-06

8 O 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02

33 As 22219E-10 22335E-10 22458E-10 22592E-10 22734E-10 22885E-10 23045E-10 23219E-10 23409E-10 23619E-10

34 Se 67806E-06 68007E-06 68226E-06 68455E-06 68696E-06 68950E-06 69216E-06 69500E-06 69823E-06 70159E-06

35 Br 19737E-06 19801E-06 19868E-06 19941E-06 20018E-06 20099E-06 20184E-06 20276E-06 20375E-06 20482E-06

36 Kr 47444E-05 47552E-05 47666E-05 47788E-05 47918E-05 48053E-05 48194E-05 48345E-05 48508E-05 48686E-05

37 Rb 42147E-05 42238E-05 42333E-05 42435E-05 42543E-05 42655E-05 42772E-05 42897E-05 43033E-05 43180E-05

38 Sr 11020E-04 11044E-04 11069E-04 11096E-04 11125E-04 11155E-04 11186E-04 11219E-04 11255E-04 11295E-04

39 Y 95335E-06 95543E-06 95764E-06 96003E-06 96253E-06 96519E-06 96804E-06 97104E-06 97430E-06 97787E-06

40 Zr 41784E-04 41902E-04 42028E-04 42162E-04 42304E-04 42454E-04 42610E-04 42777E-04 42959E-04 43156E-04

41 Nb 23390E-06 23480E-06 23578E-06 23684E-06 23797E-06 23915E-06 24043E-06 24181E-06 24332E-06 24499E-06

42 Mo 35715E-04 35843E-04 35979E-04 36125E-04 36280E-04 36443E-04 36614E-04 36798E-04 36997E-04 37214E-04

43 Tc 87834E-05 88149E-05 88483E-05 88843E-05 89223E-05 89625E-05 90048E-05 90500E-05 90991E-05 91527E-05

44 Ru 21190E-04 21292E-04 21400E-04 21518E-04 21642E-04 21773E-04 21911E-04 22059E-04 22220E-04 22396E-04

45 Rh 33265E-05 33412E-05 33568E-05 33739E-05 33919E-05 34111E-05 34314E-05 34534E-05 34773E-05 35032E-05

46 Pd 11040E-04 11123E-04 11212E-04 11308E-04 11410E-04 11517E-04 11630E-04 11752E-04 11884E-04 12028E-04

47 Ag 47728E-06 48157E-06 48618E-06 49111E-06 49632E-06 50190E-06 50773E-06 51407E-06 52095E-06 52845E-06

48 Cd 58467E-06 59033E-06 59654E-06 60264E-06 60935E-06 61619E-06 62421E-06 63249E-06 64163E-06 65148E-06

49 In 67510E-08 67889E-08 68293E-08 68734E-08 69200E-08 69663E-08 70190E-08 70802E-08 71424E-08 72107E-08

50 Sn 38632E-06 38873E-06 39144E-06 39430E-06 39732E-06 40047E-06 40397E-06 40774E-06 41175E-06 41613E-06

51 Sb 11906E-06 12018E-06 12106E-06 12191E-06 12294E-06 12396E-06 12490E-06 12604E-06 12728E-06 12867E-06

52 Te 43431E-05 43633E-05 43850E-05 44083E-05 44328E-05 44587E-05 44859E-05 45152E-05 45469E-05 45818E-05

53 I 20741E-05 20844E-05 20953E-05 21071E-05 21195E-05 21328E-05 21467E-05 21617E-05 21786E-05 21968E-05

54 Xe 40765E-04 40924E-04 41093E-04 41275E-04 41467E-04 41671E-04 41883E-04 42111E-04 42359E-04 42629E-04

55 Cs 21170E-04 21245E-04 21324E-04 21410E-04 21501E-04 21597E-04 21698E-04 21806E-04 21923E-04 22051E-04

56 Ba 10487E-04 10528E-04 10571E-04 10618E-04 10668E-04 10720E-04 10775E-04 10834E-04 10897E-04 10966E-04

57 La 94613E-05 94941E-05 95283E-05 95654E-05 96046E-05 96461E-05 96893E-05 97358E-05 97862E-05 98413E-05

58 Ce 20333E-04 20401E-04 20474E-04 20553E-04 20636E-04 20723E-04 20815E-04 20913E-04 21020E-04 21136E-04

59 Pr 87012E-05 87290E-05 87584E-05 87902E-05 88236E-05 88590E-05 88961E-05 89357E-05 89787E-05 90257E-05

60 Nd 27924E-04 28015E-04 28112E-04 28216E-04 28326E-04 28441E-04 28563E-04 28693E-04 28834E-04 28988E-04

61 Pm 71522E-06 71726E-06 71944E-06 72183E-06 72439E-06 72708E-06 73001E-06 73319E-06 73668E-06 74050E-06

62 Sm 53638E-05 53840E-05 54066E-05 54293E-05 54535E-05 54795E-05 55064E-05 55353E-05 55668E-05 56015E-05

63 Eu 11535E-05 11595E-05 11660E-05 11729E-05 11801E-05 11878E-05 11957E-05 12045E-05 12139E-05 12240E-05

64 Gd 59188E-06 59626E-06 60139E-06 60634E-06 61186E-06 61782E-06 62414E-06 63083E-06 63786E-06 64549E-06

65 Tb 87552E-08 88272E-08 89091E-08 90333E-08 91292E-08 92250E-08 93328E-08 94422E-08 96788E-08 98576E-08

92 U 36783E-02 36775E-02 36767E-02 36758E-02 36749E-02 36739E-02 36729E-02 36718E-02 36706E-02 36692E-02

93 Np 23051E-05 23109E-05 23169E-05 23233E-05 23300E-05 23370E-05 23442E-05 23518E-05 23598E-05 23684E-05

94 Pu 24769E-04 24966E-04 25175E-04 25404E-04 25645E-04 25902E-04 26174E-04 26468E-04 26788E-04 27138E-04

95 Am 66698E-06 67457E-06 68266E-06 69138E-06 70066E-06 71046E-06 72077E-06 73191E-06 74404E-06 75725E-06

96 Cm 23021E-06 23332E-06 23679E-06 24035E-06 24423E-06 24823E-06 25243E-06 25712E-06 26239E-06 26787E-06

NUCLIDE RADIAL 21 RADIAL 22 RADIAL 23 RADIAL 24 RADIAL 25 RADIAL 26 RADIAL 27 RADIAL 28 RADIAL 29 RADIAL 30

0309 0317 0324 0331 0338 0345 0352 0358 0365 0371

1 H2 27414E-07 27680E-07 27906E-07 28232E-07 28603E-07 29017E-07 29506E-07 30096E-07 30844E-07 31815E-07

2 He 40016E-06 40358E-06 40738E-06 41136E-06 41579E-06 42072E-06 42644E-06 43351E-06 44216E-06 45326E-06

6 C 26882E-06 26953E-06 27027E-06 27101E-06 27176E-06 27254E-06 27334E-06 27418E-06 27515E-06 27624E-06

8 O 77158E-02 77158E-02 77158E-02 77157E-02 77158E-02 77157E-02 77157E-02 77157E-02 77157E-02 77157E-02

33 As 23848E-10 24101E-10 24387E-10 24708E-10 25077E-10 25495E-10 25996E-10 26610E-10 27391E-10 28420E-10

34 Se 70524E-06 70926E-06 71363E-06 71856E-06 72396E-06 73006E-06 73719E-06 74580E-06 75651E-06 77059E-06

35 Br 20600E-06 20729E-06 20872E-06 21029E-06 21206E-06 21404E-06 21636E-06 21915E-06 22265E-06 22720E-06

JAEA-DataCode 2013-009

- 243 -

36 Kr 48880E-05 49093E-05 49326E-05 49578E-05 49861E-05 50175E-05 50540E-05 50971E-05 51510E-05 52207E-05

37 Rb 43340E-05 43515E-05 43707E-05 43916E-05 44149E-05 44407E-05 44705E-05 45060E-05 45504E-05 46073E-05

38 Sr 11337E-04 11384E-04 11435E-04 11491E-04 11553E-04 11622E-04 11703E-04 11799E-04 11919E-04 12073E-04

39 Y 98176E-06 98605E-06 99081E-06 99613E-06 10022E-05 10089E-05 10168E-05 10263E-05 10383E-05 10540E-05

40 Zr 43370E-04 43606E-04 43866E-04 44151E-04 44471E-04 44828E-04 45244E-04 45743E-04 46369E-04 47176E-04

41 Nb 24681E-06 24883E-06 25110E-06 25366E-06 25660E-06 25993E-06 26393E-06 26884E-06 27510E-06 28350E-06

42 Mo 37450E-04 37710E-04 37997E-04 38314E-04 38672E-04 39072E-04 39541E-04 40103E-04 40809E-04 41725E-04

43 Tc 92110E-05 92753E-05 93467E-05 94254E-05 95145E-05 96144E-05 97318E-05 98733E-05 10051E-04 10283E-04

44 Ru 22588E-04 22800E-04 23034E-04 23294E-04 23590E-04 23921E-04 24311E-04 24781E-04 25375E-04 26149E-04

45 Rh 35317E-05 35633E-05 35986E-05 36380E-05 36835E-05 37349E-05 37962E-05 38711E-05 39657E-05 40900E-05

46 Pd 12186E-04 12360E-04 12553E-04 12768E-04 13011E-04 13284E-04 13606E-04 13996E-04 14487E-04 15127E-04

47 Ag 53664E-06 54571E-06 55586E-06 56712E-06 58008E-06 59473E-06 61213E-06 63333E-06 66017E-06 69522E-06

48 Cd 66217E-06 67412E-06 68747E-06 70184E-06 71814E-06 73678E-06 75865E-06 78488E-06 81804E-06 86181E-06

49 In 72929E-08 73527E-08 74134E-08 75339E-08 77230E-08 81064E-08 84522E-08 86790E-08 89630E-08 93242E-08

50 Sn 42090E-06 42589E-06 43163E-06 43817E-06 44553E-06 45384E-06 46370E-06 47548E-06 49026E-06 50971E-06

51 Sb 13021E-06 13201E-06 13408E-06 13632E-06 13885E-06 14189E-06 14509E-06 14896E-06 15363E-06 16036E-06

52 Te 46197E-05 46615E-05 47078E-05 47590E-05 48171E-05 48825E-05 49595E-05 50522E-05 51696E-05 53230E-05

53 I 22163E-05 22377E-05 22615E-05 22874E-05 23173E-05 23504E-05 23905E-05 24382E-05 24998E-05 25793E-05

54 Xe 42922E-04 43246E-04 43605E-04 43998E-04 44443E-04 44941E-04 45523E-04 46223E-04 47104E-04 48248E-04

55 Cs 22192E-04 22345E-04 22517E-04 22706E-04 22921E-04 23162E-04 23446E-04 23790E-04 24223E-04 24787E-04

56 Ba 11042E-04 11125E-04 11217E-04 11317E-04 11430E-04 11557E-04 11705E-04 11883E-04 12107E-04 12397E-04

57 La 99012E-05 99672E-05 10040E-04 10120E-04 10211E-04 10313E-04 10431E-04 10574E-04 10753E-04 10987E-04

58 Ce 21263E-04 21402E-04 21556E-04 21726E-04 21918E-04 22132E-04 22385E-04 22689E-04 23070E-04 23565E-04

59 Pr 90766E-05 91325E-05 91944E-05 92628E-05 93394E-05 94253E-05 95256E-05 96458E-05 97967E-05 99924E-05

60 Nd 29155E-04 29339E-04 29541E-04 29764E-04 30014E-04 30294E-04 30621E-04 31012E-04 31503E-04 32140E-04

61 Pm 74472E-06 74940E-06 75468E-06 76066E-06 76779E-06 77587E-06 78574E-06 79797E-06 81360E-06 83429E-06

62 Sm 56386E-05 56795E-05 57249E-05 57750E-05 58315E-05 58945E-05 59691E-05 60577E-05 61711E-05 63164E-05

63 Eu 12352E-05 12476E-05 12612E-05 12759E-05 12927E-05 13112E-05 13329E-05 13590E-05 13920E-05 14343E-05

64 Gd 65415E-06 66309E-06 67348E-06 68431E-06 69670E-06 71035E-06 72594E-06 74495E-06 76839E-06 79904E-06

65 Tb 10045E-07 10205E-07 10387E-07 10587E-07 10822E-07 11121E-07 11549E-07 11929E-07 12446E-07 13119E-07

92 U 36678E-02 36662E-02 36645E-02 36625E-02 36603E-02 36578E-02 36549E-02 36513E-02 36469E-02 36411E-02

93 Np 23778E-05 23881E-05 23988E-05 24100E-05 24222E-05 24352E-05 24496E-05 24658E-05 24857E-05 25100E-05

94 Pu 27518E-04 27939E-04 28413E-04 28947E-04 29563E-04 30260E-04 31096E-04 32119E-04 33411E-04 35111E-04

95 Am 77168E-06 78764E-06 80544E-06 82515E-06 84752E-06 87268E-06 90240E-06 93833E-06 98366E-06 10429E-05

96 Cm 27381E-06 28045E-06 28778E-06 29577E-06 30488E-06 31515E-06 32717E-06 34163E-06 35986E-06 38377E-06

NUCLIDE RADIAL 31 RADIAL 32 RADIAL 33 RADIAL 34 RADIAL 35 RADIAL 36

0377 0384 0390 0396 0401 0407

1 H2 33059E-07 34949E-07 37815E-07 43025E-07 51286E-07 67947E-07

2 He 46840E-06 48922E-06 52040E-06 57045E-06 65726E-06 81926E-06

6 C 27741E-06 27867E-06 28006E-06 28157E-06 28316E-06 28483E-06

8 O 77157E-02 77157E-02 77157E-02 77157E-02 77157E-02 77157E-02

33 As 29835E-10 31891E-10 35031E-10 40142E-10 49144E-10 65641E-10

34 Se 78925E-06 81595E-06 85611E-06 92063E-06 10340E-05 12431E-05

35 Br 23333E-06 24208E-06 25531E-06 27659E-06 31423E-06 38353E-06

36 Kr 53136E-05 54447E-05 56422E-05 59575E-05 65068E-05 75183E-05

37 Rb 46832E-05 47901E-05 49499E-05 52056E-05 56517E-05 64717E-05

38 Sr 12279E-04 12571E-04 13008E-04 13709E-04 14935E-04 17189E-04

39 Y 10753E-05 11057E-05 11521E-05 12267E-05 13579E-05 15998E-05

40 Zr 48262E-04 49805E-04 52129E-04 55872E-04 62433E-04 74548E-04

41 Nb 29491E-06 31147E-06 33687E-06 37830E-06 45140E-06 58593E-06

42 Mo 42963E-04 44732E-04 47408E-04 51731E-04 59328E-04 73381E-04

43 Tc 10596E-04 11045E-04 11726E-04 12826E-04 14763E-04 18349E-04

44 Ru 27200E-04 28704E-04 30994E-04 34699E-04 41226E-04 53308E-04

45 Rh 42608E-05 45080E-05 48870E-05 55047E-05 65983E-05 86259E-05

46 Pd 15996E-04 17243E-04 19139E-04 22212E-04 27637E-04 37707E-04

47 Ag 74327E-06 81267E-06 91846E-06 10902E-05 13940E-05 19570E-05

48 Cd 91996E-06 10044E-05 11318E-05 13394E-05 17057E-05 23848E-05

49 In 99755E-08 10704E-07 11841E-07 13990E-07 17625E-07 23512E-07

50 Sn 53610E-06 57394E-06 63189E-06 72577E-06 89027E-06 11955E-05

51 Sb 16999E-06 18381E-06 20376E-06 23477E-06 29069E-06 39156E-06

52 Te 55304E-05 58291E-05 62819E-05 70150E-05 83022E-05 10686E-04

53 I 26858E-05 28402E-05 30748E-05 34541E-05 41267E-05 53734E-05

54 Xe 49791E-04 51996E-04 55330E-04 60710E-04 70167E-04 87665E-04

55 Cs 25553E-04 26651E-04 28319E-04 31021E-04 35787E-04 44606E-04

56 Ba 12788E-04 13346E-04 14189E-04 15548E-04 17936E-04 22349E-04

57 La 11302E-04 11751E-04 12431E-04 13530E-04 15460E-04 19029E-04

58 Ce 24234E-04 25189E-04 26634E-04 28971E-04 33078E-04 40666E-04

59 Pr 10257E-04 10633E-04 11202E-04 12120E-04 13732E-04 16714E-04

60 Nd 32996E-04 34216E-04 36057E-04 39025E-04 44233E-04 53860E-04

61 Pm 86310E-06 90531E-06 97051E-06 10777E-05 12675E-05 16194E-05

62 Sm 65124E-05 67948E-05 72215E-05 79118E-05 91246E-05 11373E-04

63 Eu 14915E-05 15733E-05 16966E-05 18955E-05 22444E-05 28919E-05

64 Gd 83941E-06 89647E-06 98209E-06 11209E-05 13634E-05 18068E-05

65 Tb 14019E-07 15373E-07 17361E-07 20634E-07 26525E-07 37184E-07

JAEA-DataCode 2013-009

- 244 -

92 U 36332E-02 36219E-02 36047E-02 35769E-02 35281E-02 34380E-02

93 Np 25406E-05 25809E-05 26378E-05 27232E-05 28634E-05 31068E-05

94 Pu 37448E-04 40839E-04 46023E-04 54456E-04 69298E-04 96489E-04

95 Am 11232E-05 12387E-05 14146E-05 17005E-05 22058E-05 31488E-05

96 Cm 41593E-06 46204E-06 53163E-06 64430E-06 84319E-06 12168E-05

AXIAL DISTRIBUTION

AXIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 500 15017E-03 15017E+02 22775E+00 46992E+04 41420E+04 34521E+13 49566E+13 50206E+21

2 1500 18971E-03 18971E+02 30218E+00 62348E+04 54955E+04 50697E+13 72281E+13 73190E+21

3 2500 20979E-03 20979E+02 35032E+00 72282E+04 63711E+04 59420E+13 84717E+13 89546E+21

4 3500 21457E-03 21457E+02 37105E+00 76559E+04 67482E+04 61827E+13 88150E+13 96838E+21

5 4500 21344E-03 21344E+02 37715E+00 77816E+04 68590E+04 61768E+13 88065E+13 99002E+21

6 5500 20991E-03 20991E+02 36944E+00 76227E+04 67189E+04 60412E+13 86131E+13 96267E+21

7 6500 20627E-03 20627E+02 34456E+00 71093E+04 62663E+04 58100E+13 82835E+13 87543E+21

8 7500 19563E-03 19563E+02 31750E+00 65509E+04 57742E+04 53420E+13 76163E+13 78292E+21

9 8500 17223E-03 17223E+02 27397E+00 56528E+04 49825E+04 43853E+13 62656E+13 64099E+21

10 9500 13296E-03 13296E+02 20122E+00 41517E+04 36594E+04 28535E+13 41122E+13 42862E+21

SUM AVE SUM AVE AVE AVE AVE AVE

189468E-02 189468E+02 313514E+01 646871E+04 570171E+04 512553E+13 553675E+13 777844E+21

CPU TIME = 416 (sec)

JAEA-DataCode 2013-009

- 245 -

8 Manual for modification of materials properties models

This modification manual for material properties is intended to be a guide for users to enable the addition of new material values to FEMAXI-7

81 Materials properties subroutines

Table 811 shows a list of subroutines (functions) which define the material properties used in FEMAXI-7 When users wish to add a new material property the relevant subroutines are modified The table below shows the modification method

Table 811 List of subroutines for materials properties in FEMAXI-7

Materials Properties Pellet Gap Cladding

Thermal conductivity PTHCON - CTHCON Specific heat PHCAP - CHCAP

Thermal expansion PTHEX - CTHEX Youngrsquos modulus FELMOD - CELMOD

Poissonrsquos ratio FPOIR - CPOIR

Creep

FCREEP CREEP1 CREEP2 XCREP1 XCREP2

New subroutine (FCPEQ_)

CCREEP CREEP1 CREEP2 XCREP1 XCREP2

New subroutine (CCPEQ_)

Swelling FSWELL - - Densification PDENS - -

Plasticity FYIE

FHSOFT FTSOFT

- CYLD

Grain growth GRAIN - - Melting point TMELT - -

Fission gas release FISGAS - - Corrosion rate - - CORRO

Irradiation growth - - CAGROW Gap thermal conductance - GAPCON -

Fission gas diffusion coefficient DIFC - -

He-Xe mutual diffusion coefficient - DIFCON -

JAEA-DataCode 2013-009

- 246 -

82 Method of addition and modification of models

821 Density (1) Pellet density

Addition of a new model of pellet theoretical density ratio uses FUNCTION PDEN

Table 821 shows the arguments of FUNCTION PDEN By using the arguments pellet

theoretical density ratio is defined as PDEN Here the theoretical density ratio is given by

pellet theoretical densitytimes pellet relative density (FDEN) FUNCTION PDEN assumes

the theoretical density ratio of UO2 as 1096 gcm3 that of PuO2 as 1146 gcm3 and that of

Gd2O3 as 820 gcm3 No modification options using materials properties number are

introduced Table 821 Arguments of FUNCTION PDEN

Argument s Content Unit PDEN Theoretical density of pellet gcm3 GD weight fraction of Gd2O3 wt frac

PU weight fraction of PuO2 wt frac

(2) Cladding density Addition of cladding density model uses FUNCTION CDENS Table 822 lists the arguments of FUNCTION CDENS Assignment starting at ICDENS=4 allows a definition of new model

Table 822 Arguments of FUNCTION CDENS (ICDENS is transferred as one of the COMMON variables)

Argument s Content Unit CDENS Cladding density gcm3

ICDENS Option for cladding density ICDENS=1 Zircaloy ICDENS=2 SUS-304 ICDENS=3 SUS-316

TK Temperature K

822 Thermal conductivity

(1) Thermal conductivity of fuel FUNCTION PTHCON is used for the addition of fuel thermal conductivity Table 823

shows the contents of common variables (or arguments or independent variables) of

JAEA-DataCode 2013-009

- 247 -

FUNCTION PTHCON The thermal conductivity is defined as PTHCON using the common variables shown in Table 823 [Note] Since the thermal conductivity must be a continuous function the function value should not jump at the boundary of temperature regions To ensure the continuity of the functions arrangements such as selecting the larger of two functions must be made in function-overlapping regions Furthermore when variables other than common variables are required it is recommended to assign the variable using COMMON variables

Here when defining the material properties of UO2 pellets the assignment should start at IPTHCN=16 and when defining those of MOX pellets the assignment should start at IPTHCN=34

Table 823 Arguments of FUNCTION PTHCON

Argument s Content Unit PTHCON Thermal conductivity of fuel pellet Wcm-K

IPTHCN

Options for the fuel thermal conductivity Since IPTHCN=1-18 30-38 and 90-92 are already used use the number which is different from these IPTHCN numbers when adding new models IPTHCN=1-29 are assigned to UO2 pellets At present IPTHCN=1-15 are used start from IPTHCN=16 when adding new models

IPTHCN=30- are intended for MOX pellets At present IPTHCN=30-33 are used start at IPTHCN=34 when adding new models

IGD

Options for the thermal conductivity of fuel containing Gd At present IGD=1-2 is used the assignment should start at IGD=3 Here IGD and IPTHCN are independent the thermal conductivity of pellets containing Gd can be defined using IPTHCN without any problems

TEMP Temperature K FDEN Pellet relative density -

BURNUP Burnup MWdt

GD Weight fraction of Gd2O3 - Y Y in MO(2-Y) eg Y=0001 when UO2001 -

PU Weight fraction of PuO2 -

PUM Molar fraction of PuO2 -

JAEA-DataCode 2013-009

- 248 -

(2) Cladding thermal conductivity

FUNCTION CTHCON is used for the addition of the cladding thermal conductivity The common variables of FUNCTION CTHCON are shown in Table 824 The thermal conductivity is defined as CTHCON using the common variables shown in the table [Note] Similar caution to PTHCON applies also to CTHCON ITMC designates materials option and IZOX designates options for oxide layer

Table 824 Arguments of FUNCTION CTHCON (containing COMMON variables)

Arguments Content Unit CTHCON Cladding thermal conductivity Wcm-K

IZYM

Cladding material option automatically set by the code IZYM=1 Zircaloy IZYM=2 Pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

ITMC

Options for the cladding thermal conductivity ITMC=0 - 19 are assigned to Zircaloy At present ITMC=1 and 2 are used Start from ITMC=3 when adding new models ITMC=20 - 29 are assigned to pure Zirconium (currently there is only one option thus no selection flag is available) ITMC=40 - 49 are assigned to stainless steel At present ITMC=40 - 43 are used Start from ITMC=44 when adding new models

IZOX

Options for cladding oxide IZOX=0 - 29 are assigned to Zircaloy At present IZOX=1 and 2 are used Start from IZOX=3 when adding new models IZOX=40 - 49 are assigned to stainless steel

CT Temperature K

OXTH Oxide layer thickness mm

BU Burnup GJkgU

FAIT Fast neutron fluence ncm2

JAEA-DataCode 2013-009

- 249 -

823 Specific heat (1) Specific heat of fuel pellet

FUNCTION PHCAP is used for the addition of specific heat Table 825 presents the common variables for FUNCTION PHCAP The specific heat of fuel is defined in the name of PHCAP using the common variables in the table [Note] Users should make the specific heat equation as continuous a function as possible Furthermore if new variables are required in addition to arguments the addition should be carried out using COMMON variables Here when defining the material property of UO2 pellets the assignment should start at ISPH=2 and when defining those of MOX pellets the assignment should start at ISPH=33 Table 825 Arguments in FUNCTION PHCAP

Arguments Content Unit PHCAP Fuel pellet specific heat JKg-K

ISPH

Options for the fuel specific heat ISPH=1-29 are allocated to UO2 At present ISPH=1 is used When adding new models start at ISPH=2 ISPH=30- are assigned to MOX pellets At present ISPH=30-32 are used When adding new models start at ISPH=33

TK Temperature K PU Weight fraction of PuO2 - PUM Molar fraction of PuO2 -

(2) Cladding specific heat

FUNCTION CHCAP is used for the addition of specific heat Table 826 presents the common variables for FUNCTION CHCAP Currently no options for the cladding specific heat are used

Table 826 Arguments in FUNCTION CHCAP

Arguments Content Unit CHCAP Cladding specific heat JKg-K

IZYM Cladding materials option IZYM=1 Zircaloy IZYM=2 Pure zirconium IZYM=3 ZrO2 IZYM=4 Stainless steel

T Temperature K

JAEA-DataCode 2013-009

- 250 -

824 Thermal expansion (1) Thermal expansion of fuel pellet

FUNCTION PTHEX is used for the addition of the fuel thermal expansion Table 827 shows common variables for FUNCTION PTHEX Using the common variables shown in Table 827 the fuel expansion is defined using PTHEX [Note] Users should make the function as continuous as possible The thermal expansion is defined in terms of a sentential function and is determined in terms of the thermal expansion increments which are obtained by taking the difference between the expansions before and after a time step When there are variables in addition to arguments it is convenient to add them using the common variables When defining the material properties of UO2 pellets the assignment should start at IPTHEX=6 and when defining those of MOX pellets the assignment should start at IPTHEX=33 Table 827 Arguments in FUNCTION PTHEX

Arguments Content Unit PTHEX Pellet thermal expansion -

IPTHEX

Options for pellet thermal expansion IPTHEX=1 - 29 are assigned to UO2 pellet At present IPTHEX=1 - 5 are used When adding new models start at IPTHEX=6 IPTHEX=30- are assigned to MOX pellet At present IPTHEX=30 - 32 are used When adding new models start at IPTHEX=33

TEMPR Temperature at present time step K TEMPO Temperature at previous time step K PU Weight fraction of PuO2 - PUM Molar fraction of PuO2 - Y Y in MO(2-Y) eg Y=0001 in UO2001 -

(2) Thermal expansion of cladding

SUBROUTINE CTHEX is used for the addition of cladding thermal expansion Table 828 presents the arguments in SUBROUTINE CTHEX The cladding thermal expansion is defined using the arguments as CDTHEX in the radial direction and as CATHEX in the axial direction The model calculates the thermal expansion increment by obtaining the difference of thermal expansion values between the present and previous time steps [Note] Users should make the equation as continuous a function as possible Furthermore if new variables are required in addition to arguments the addition should be carried out using COMMON variables

JAEA-DataCode 2013-009

- 251 -

Table 828 Arguments and Common Variables of SUBROUTINE CTHEX Arguments Content Unit CDTHEX Cladding thermal expansion in the radial direction - CATHEX Cladding thermal expansion in the axial direction - IZYM Cladding material option

IZYM=1Zircaloy IZYM=2pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

ICATHX Cladding thermal expansion material option ICATHX=0 - 19 for Zircaloy At present CATHX=1-3 are used When adding new models start at ICATHX=4 ICATHX=20 - 29 for pure zirconium ICATHX=30 - 39 for ZrO2 ICATHX=40 - 49 for stainless steel

TEMP2 Temperature at the present time step K TEMP1 Temperature at the previous time step K

825 Youngrsquos modulus (1) Youngrsquos modulus of fuel pellet

FUNCTION FELMOD is used for the addition of pellet Youngrsquos modulus Table 829 presents the arguments in the FUNCTION The pellet Youngrsquos modulus is defined as FELMOD

[Note] Users should make the equation as continuous a function as possible Furthermore if new variables are required in addition to arguments the addition should be carried out using COMMON variables When defining the material properties of UO2 pellets the assignment should start at IPLYG=3 and when defining those of MOX pellets the assignment should start at IPLYG=31 Table 829 Arguments in FUNCTION FELMOD

Arguments Content Unit FELMOD Youngrsquos modulus Nm2

IPLYG Options for pellet Youngrsquos modulus IPLYG=1 - 29 are assigned to UO2 pellet

At present IPLYG=1 - 2 are used When adding new models start at IPLYG=3 IPLYG=30- are assigned to MOX pellet

At present IPLYG=30 are used When adding new models start at IPLYG=31

FTEMP Temperature K FRADEN Pellet relative density (Theoretical density ratio) - PU PuO2 weight fraction -

JAEA-DataCode 2013-009

- 252 -

(2) Youngrsquos modulus of cladding

FUNCTION CELMOD is used for the addition of cladding Youngrsquos modulus Table 8210 presents the arguments in the FUNCTION The cladding Youngrsquos modulus is defined as CELMOD

[Note] Users should make the Youngrsquos modulus equation as continuous a function as

possible Furthermore if new variables are required in addition to arguments it is preferable to transfer them as COMMON variables Table 8210 Arguments in FUNCTION CELMOD

Arguments Content Unit CELMOD Cladding Youngrsquos modulus Nm2

IZYM

Cladding material option automatically set by the code IZYM=1Zircaloy IZYM=2pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

IZYG

Cladding Youngrsquos modulus option IZYG=0 - 19 for Zircaloy At present IZYG=1 and 2are used Start at IZYG=3 when adding new models IZYG=20 - 29 for pure zirconium IZYG=30 - 39 for ZrO2 IZYG=40 - 49 for stainless steel At present IZYG=40-43 are used Start at IZYG=44 when adding new models

CTEMP Temperature K FAIT Fast neutron fluence ncm2

826 Poissonrsquos ratio (1) Poissonrsquos ratio of fuel pellet

FUNCTION FPOIR is used for the addition of pellet Poissonrsquos ratio Table 8211 presents the arguments in the FUNCTION The pellet Poissonrsquos ratio is defined as FPOIR

[Note] If new variables are required in addition to arguments the addition should be carried out using COMMON variables When defining the material properties of UO2 pellets the assignment should start at IPOIS=2 and when defining those of MOX pellets the assignment should start at IPOIS=32

JAEA-DataCode 2013-009

- 253 -

Table 8211 Arguments in FUNCTION FPOIR

Arguments Content Unit FPOIR Poissonrsquos ratio of pellet -

IPOIS

Options for pellet Poissonrsquos ratio IPOIS=1 - 29 are assigned to UO2 pellet

At present IPOIS=1 is used When new models are added the assignment should start at IPOIS=2 IPLYG=30- are assigned to MOX pellet At present IPOIS=30 - 31 are used When new models are added the assignment should start at IPOIS=32

FTEMP Temperature K FDEN Pellet theoretical density ratio -

F (U(1-f) Pu(f))O2 molar fraction -

(2) Poissonrsquos ratio of cladding

FUNCTION CPOIR is used for the addition of cladding Poissonrsquos ratio Table 8212 presents the arguments in the FUNCTION The cladding Poissonrsquos ratio is defined as CPOIR

[Note] If new variables are required in addition to arguments the addition should be

carried out using COMMON variables

Table 8212 Arguments in FUNCTION CPOIR Arguments Content Unit CELMOD Cladding Poissonrsquos ratio - IZYM Cladding material option

IZYM=1Zircaloy IZYM=2pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

ICPOIS Cladding Poissonrsquos ratio option ICPOIS=0 - 19 for Zircaloy ICPOIS 20 - 29 for pure zirconium ICPOIS =30 - 39 for ZrO2 ICPOIS =40 - 49 for stainless steel At present ICPOIS=40 -43 are used Start at ICPOIS=44 when adding new models

CTEMP Temperature K

JAEA-DataCode 2013-009

- 254 -

827 Creep

(1) Creep in fuel pellets For the addition of a pellet creep equation a subroutine FCPEQyen is produced

Currently FCPEQ1-FCPEQ3 have been used thus the subroutine should start at FCPEQ4 To prepare FCPEQ4 existing FCPEQ1 and FCPEQ2 are reused in the case of UO2 fuel

and FCPEQ3 can be reused in the case of MOX fuel In FCPEQ4 among the subroutine variables FFUNG FS FH GFUNC GS and GH

must be redefined The contents of these variables are shown in Table 8213 Of these variables it is common to neglect strain hardening In such cases users can assign 0 to GFUNC GS and GH Accordingly values should be assigned to FFUNG FS and FH only

1) Since FFUNC is the effective creep strain rate in which time t is eliminated from the original creep rate equation (1hr) the creep rate equation is defined using FFUNC 2) Since FS is a differential term corresponding to the effective stress of effective creep strain rate it is defined by differentiating FFUNC by effective stress SIGE Here the unit used for SIGE is Pa When other units are used in the defining equation it is important to convert the unit 3) FH is a differential term for the equation representing creep hardening strain in general FH=0 The correction method in the case when creep hardening strain is taken into consideration is described in the cladding creep item

The correction of five subroutines is required to call FCPEQ4 after the preparation of subroutine FCPEQ4 These are the subroutines for the simplified thermal analysis FCREEP subroutines for mechanical analysis of the entire fuel rod XCREP1 and XCREP2 and subroutines for the local mechanical analysis CREEP1 and CREEP2

Method for correcting subroutine FCREEP

In the case of UO2 fuel add the following at the location required ELSEIF(IPCRPEQ3) THEN CALL FCPEQ4

1 (FFUNCF1 F2 F3 GFUNCGS GH EPSH DEPSHTEMP FIS

2 FDI GR SIGE FCRFACTHETC DTIME TCS NST 3 )

In the case of MOX fuel add the following at the location required ELSEIF(IPCRPEQ30) THEN CALL FCPEQ4

1 (FFUNCF1 F2 F3 GFUNCGS GH EPSH DEPSHTEMP FIS

2 FDI GR PU SIGE FCRFACTHETC DTIME TCSNST3 )

JAEA-DataCode 2013-009

- 255 -

In subroutine XCREEP1 the same correction for FCREEP should apply however the last common variable is set to 1 instead of 3 The method for correcting subroutine XCREP2 is the same as that used for XCREP1 and there are two items to be corrected The common variables of FCPEQ4 in the first correction are 2 and the last common variable of FCPEQ4 in the second correction is 3

The method for correcting subroutine CREEP1 is the same as that applied to XCREP1 Similar to XCREP1 the last common variable of FCPEQ4 is 1

The method for correcting subroutine CREEP2 is the same as that applied to XCREP2 and the number of corrections is 1 In this case the last common variable of FCPEQ4 is 2

When defining the material values of UO2 pellets start at IPCRP=3 and for MOX pellets start at IPCRP=31 Table 8213 Arguments in SUBROUTINE FCPEQ_ (12)

Arguments Content Unit FFUNC Pellet creep strain rate 1hr

F1 Constituent parameter F1 of creep-induced stress-strain matrix [ ]cC -

F2 Constituent parameter F2 of creep-induced stress-strain matrix [ ]cC -

F3 Adjustment factor parameter F3 for strain-hardening in creep strain

GFUNC Creep strain-hardening rate 1hr

GS Differential term by stress in creep strain-hardening rate 1(hrPa)

GH Differential term by strain-hardening in creep strain-hardening rate 1hr

EPSH Creep hardening strain at the start of time step -

DEPSH Increment of creep hardening strain (The initial Gaussian value is 0 )

TEMP Temperature K FIS Fission rate Fissionscm3-s FDI Initial theoretical density ratio of pellet - GR Grain diameter in pellet μm

SIGE Equivalent stress Pa FCRFAC Adjustment factor for creep strain rate - THETC Implicit solution parameter ( )10 leleθ - DTIME Time increment hr

JAEA-DataCode 2013-009

- 256 -

Table 8213 Arguments in SUBROUTINE FCPEQ_ (22)

Arguments Content Unit TCS Cut-off temperature level K NST Historical point number - IFLG Calculation option to select calculating items - PU Weight fraction of PuO2 - FS Differential term by stress in creep strain rate 1(hrPa) FH Differential term by hardening strain in creep strain rate 1hr

(2) Cladding creep For the addition of the creep equation of cladding subroutine CCPEQ is prepared

Currently CCPEQ1-CCPEQ8 are in use the new subroutine should be prepared starting at CCPEQ9

When preparing CCPEQ9 the existing CCPEQ1 and CCPEQ2 are reused for Zircaloy during normal operation periods the existing CCPEQ3 can be reused for ZrO2 the existing CCPEQ4 and CCPEQ5 can be reused for high-temperature Zircaloy and CCPEQ6 and CCPEQ7 can be reused for stainless steel

In CCPEQ9 among subroutine variables FFUNC FS FH GFUNC GS and GH must be redefined The contents of these variables are shown in Table 8214

1) FFUNC is the effective creep strain rate (1hr) in which t is eliminated from the original equation The creep rate equation is defined using FFUNC

2) Since FS is the differential term corresponding to the effective stress in the effective creep strain rate equation it is defined by differentiating FFUNC by effective stress (SIGE) However since the unit used for SIGE is Pa it is important to convert the unit when other units are used in the defining equation

3) H is the differential term corresponding to the creep strain hardening equation it is obtained by preparing the differential term for the strain hardening

4) Regarding GFUNG GS and GH depending on the creep equation there are three cases the method of addition is the same manner as in FFUNG FS and FH the addition is carried out by removing the thermal creep portion and the addition is carried out without considering strain hardening GFUNC is defined in accordance with the above description GS is given by the equation which is obtained by differentiating GFUNC with respect to effective strain GH is given by the equation which is obtained by differentiating GFUNC with respect to creep hardening

JAEA-DataCode 2013-009

- 257 -

The analytical derivation of these equations is shown below using an example of the Franklin model (CRPEQ=2)

1 expm p ncreep c

QmA tT

e e φ σminus = = sdot sdot sdot sdot minus

exp

m c

p nt

QAT

e

φ σ=

sdot sdot sdot minus

11

expm

p nmcQt AT

e φ σminus

= sdot sdot sdot minus

FFUNC

111

111

exp

exp

mp nmc c

nmp mmc

Qm AT

Qm AT

e e φ σ

e φ σ

minus

minus

= sdot sdot sdot minus

= sdot sdot minus

FS

11 11 exp

nmpc mmc

Qn AT

e e φ σσ

minusminus part = sdot sdot minus sdot part

FH

11

11

( 1) exp

( 1) exp

mp nc mc

c

nmp mmc

Qm AT

Qm AT

e e φ σe

e φ σ

minus

minus

part = minus sdot sdot sdot sdot minus part

= minus sdot sdot sdot minus sdot

As described after preparation of CCPEQ9 corrections of five subroutines are required to call FCPEQ4 These are subroutines for the simplified thermal analysis CCREEP subroutines for the entire length mechanical analysis XCREP1 and XCREP2 and subroutines for the local mechanical analysis CREEP1 and CREEP2 The correction method is the same as that used for fuel creep thus the explanation is omitted

The flag for the selection of a creep equation for Zircaloy during a normal operation period is CRPEQ (integer variable) currently CRPEQ=1 is used the new addition should start at CRPEQ=2 In the case of ZrO2 there is no flag Therefore for example assuming that the selection flag in the existing equation is CRPEQ=30 the flag for the selection of a new creep equation should start from CRPEQ=31

JAEA-DataCode 2013-009

- 258 -

The flag for the selection of a creep equation for Zircaloy at high temperature is given by the HTCRP (integer) variable since at present HTCRP=1 20 21 and 22 are used the assignment of the creep equation selection flag should start with HTCRP=3

The flag for the selection of a creep equation for stainless steel is given by CRPEQ (integer variable) since at present CRPEQ=40 is used CRPEQ=42 should be used for the assignment of the creep equation selection flag

Table 8214 Arguments in SUBROUTINE CCPEQ_ Arguments Content Unit FFUNC Cladding creep strain rate 1hr

F1 Constituent parameter F1 in creep stress-strain matrix of [ ]cC -

F2 Constituent parameter F2 in creep stress-strain matrix of [ ]cC -

F3 Adjusting parameter F3 by strain-hardening due to creep strain - GFUNC Cladding creep strain hardening rate 1hr

GS Stress-differential term of cladding creep strain hardening rate 1(hrPa)

GH Strain-hardening-differential term of cladding creep strain hardening rate 1hr

EPSH Creep hardening strain at the start of time step -

DEPSH Increment of creep hardening strain (The initial Gaussian value is 0 ) -

TEMP Temperature K

FAI Fast neutron flux ncm2-s

SIGE Equivalent stress Pa

CRFAC Adjusting parameter for cladding creep strain rate -

THETC Implicit solution parameter ( )10 leleθ -

DTIME Time increment hour

NST Number of historical input point -

IFLG Calculation option to select calculating items -

FS Stress-differential term of cladding creep strain rate 1(hrPa)

FH Differential term by hardening strain in creep strain rate 1hr

828 Fuel pellet swelling For the addition of a pellet swelling equation SUBROUTINE FSWELL is used

Table 8215 shows the arguments for subroutine FSWELL The swelling strain of pellets is defined using the arguments listed in Table 8215 as SSW and USW

SSW represents solid swelling strain and USW represents gas bubble swelling strain When there is no difference between the equations representing the solid strain and bubble

JAEA-DataCode 2013-009

- 259 -

strain SSW is defined but USW is set to 0 The total swelling strain is given by SSW+USW Also when solid swelling strain and bubble swelling strain are each defined as the total swelling the solid swelling strain is given as SSW and [bubble swelling ndash solid swelling strain] is given as USW However when USWlt0 USW=0

Since the strain is a linear strain when the strain is defined by the volumetric strain the obtained values should be reduced to 13 and the resulting values should be assigned to SSW and USW

[Note] The users should make the swelling equation as continuous a function as possible Also a string dependency of the bubble swelling equation on temperature occasionally causes a problem in the numerical convergence of the gap conductance calculation Measures to avoid the very strong dependence of the swelling equation on temperature should be taken When variables other than common variables are required it is recommended that they are referred to via COMMON variables The addition of a model can start at IFSWEL=5

Table 8215 Arguments in SUBROUTINE FSWELL Arguments Content Unit SSW Pellet solid swelling strain - USW Pellet gas bubble swelling strain -

IFSWEL

Options for pellet swelling model IFSWEL=0 - 29 are assigned to UO2 pellet At present IFSWEL=1- 4 is used When adding new models start at IFSWEL=5 IFSWEL=30- are assigned to MOX pellet

Currently there is no distinction between UO2 model and MOX model for swelling For MOX also IFSWEL=0 - 4 are used When adding new models for MOX start at IFSWEL=30

BU2 Burnup GJKg-U DBU Burnup increment GJKg-U TEMP Temperature K FDEN Pellet theoretical density ratio -

FDENI Initial theoretical density ratio of pellet -

GR Grain diameter of fuel mm

PO Plenum gas pressure Pa SWO Pellet swelling strain at the previous time step -

I Mesh number in the radial direction -

NODE Axial segment number - IFLG Calculation option in the case of IFSWEL=1 -

JAEA-DataCode 2013-009

- 260 -

829 Densification

FUNCTION DENSF is used for the addition of pellet densification model Table 8216 presents the arguments in the FUNCTION The pellet densification strain is defined as DENSF Since the strain is a linear strain when strain is defined as a volumetric strain the one-third of the volumetric strain is given to DENSF [Note] The users should make the swelling equation as continuous a function as possible If new variables are required in addition to arguments the addition should be carried out using COMMON variables When defining the material properties of UO2 pellets the assignment should start at IDENSF=5 and when defining those of MOX pellets the assignment should start at IDENSF=31 Table 8216 Arguments in FUNCTION DENSF

Arguments Content Unit DENSF Pellet densification strain - IDENSF Options for pellet densification model

IDENSF=0 - 29 are assigned to UO2 pellet At present IDENSF=1 - 4 are used When adding new models start at IDENSF=5 IDENSF=30- are assigned to MOX pellet Currently there is no distinction between UO2 model and MOX model for swelling For MOX also IDENSF=1-4 are used When adding new models for MOX start at IDENSF=31

BU Burnup MWdt SITIM Sintering time hr DMAX Maximum volumetric strain by densification -

TDNSF Sintering temperature K

GG Pellet grain diameter m GG0 Initial grain diameter m FDEN Pellet theoretical density ratio

8210 Plasticity (1) Plasticity of fuel

FUNCTION FYIE SUBROUTINE FTSOFT and SUBROUTINE FHSOFT should be corrected when adding the plastic equation of the pellet FUNCTION FYIE provides the yield stress (Pa) to the FYIE SUBROUTINE FTSOFT provides the differential term of

JAEA-DataCode 2013-009

- 261 -

the temperature of the yield stress of the pellet (PaK) to H2 SUBROUTINE FHSOFT provides the differential term due to the plastic strain of the yield stress of the pellet to H1

Tables 8217 to 8219 show arguments for FUNCTION FYIE SUBROUTINE FTSOFT and SUBROUTINE FHSOFT When defining material property equations the definition should start with IFY=2 At present there is no distinction between UO2 and MOX fuels [Note] The yield stress must be represented by a continuous function

Table 8217 Arguments in FUNCTION FYIE

Arguments Content Unit FYIE Pellet yield stress Pa

IFY Pellet plasticity model option IFY=0 - 29 are assigned to UO2 pellets Currently IFY=1 is used when adding a new subroutine start at IFY=2 IFY=30 is assigned to MOX pellets Currently there is no setting for MOX If a new addition is required it should start at IFY=30

TEMP Temperature K EPSP Pellet equivalent plastic strain -

FYIEF Option to magnify the pellet yield stress by FYIEF times -

Table 8218 Arguments in SUBROUTINE FTSOFT Arguments Content Unit H2 Temperature-differential term of pellet yield stress PaK

IFY Pellet plasticity model option IFY=0 - 29 are assigned to UO2 pellets Currently IFY=1 is used when adding a new subroutine the assignment should start at IFY=2 IFY=30- is assigned to MOX pellets Currently there is no setting for MOX If a new addition is required it should start at IFY=30

TEM3 Temperature K EPSP3 Pellet equivalent plastic strain -

JAEA-DataCode 2013-009

- 262 -

Table 8219 Arguments in SUBROUTINE FHSOFT Arguments Content Unit H2 Equivalent plastic strain-differential term of pellet yield stress Pa

IFY Pellet plasticity model option IFY=0 - 29 are assigned to UO2 pellets Currently IFY=1 is used when adding a new subroutine the assignment should start at IFY=2 IFY=30- is assigned to MOX pellets Currently there is no setting for MOX If a new addition is required it should start at IFY=30

TEM3 Temperature K

(2) Cladding plasticity

FUNCTION CYID should be corrected when adding the plastic equation of cladding As the FUNCTION CYID has five ldquoENTRY POINTrdquo each ENTRY POINT should be given a necessary materials property model The five ldquoENTRY POINTrdquo are

CYIE (02 Yield stress) CRN(Strain-hardening exponent) CDKDT(Temperature-differential term of cladding 02 strength) CDNDT(Temperature-differential term of cladding strain-hardening exponent) CDEDT(Temperature-differential term of cladding Youngrsquos modulus)

Arguments of each ldquoENTRY POINTrdquo is presented in Tables 8220 - 8224 【Note】02 strength and strain-hardening exponent should be a continuous function

Table 8220 Arguments in FUNCTION CYIE Arguments Content Unit CYIE Cladding 02 strength Pa

IZYM Cladding material option IZYM=1Zircaloy IZYM=2pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

ICPLAS Cladding Plasticity option ICPOIS=0 - 19 for Zircaloy ICPOIS 20 - 29 for pure zirconium ICPOIS =30 - 39 for ZrO2 ICPOIS =40 - 49 for stainless steel

TEMP Temperature K FAIT Fast neutron fluence ncm2 FAI Fast neutron flux ncm2-s EPSDOT Strain rate 1hr MRASA Material flag of Zircaloy cladding

(=0Re-crystallized =1Stress-relieved) -

JAEA-DataCode 2013-009

- 263 -

Table 8221 Arguments in FUNCTION CRN Arguments Content Unit CRN Cladding strain-hardening exponent -

IZYM See Table 8220 -

ICPLAS See Table 8220 -

TEMP Temperature K FAIT Fast neutron fluence ncm2

Table 8222 Arguments in FUNCTION CDKDT

Arguments Content Unit CDKDT Temperature-differential term of cladding 02

strength PaK

IZYM See Table 8220 -

ICPLAS See Table 8220 -

TEMP Temperature K FAIT Fast neutron fluence ncm2

Table 8223 Arguments in FUNCTION CDNDT

Arguments Content Unit CDNDT Temperature-differential term of cladding

strain-hardening exponent 1K

IZYM See Table 8220 -

ICPLAS See Table 8220 -

TEMP Temperature K FAIT Fast neutron fluence ncm2

Table 8224 Arguments in FUNCTION CDEDT

Arguments Content Unit

CDEDT Temperature-differential term of cladding Youngrsquos modulus

PaK

IZYM See Table 8220 -

ICPLAS See Table 8220 - TEMP Temperature K FAIT Fast neutron fluence ncm2

JAEA-DataCode 2013-009

- 264 -

8211 Grain growth FUNCTION GRAIN is used for the addition of pellet grain growth model Table 8225

presents the arguments in the FUNCTION The pellet grain growth is defined as GRAIN [Note] In many cases the grain growth function is defined by the n-th power of time In

such cases first the time elapsed is calculated by the difference between the initial grain size and the current grain size assuming that the temperature at the current step is continuous Then time increments of grain size are integrated for all steps during the time elapsed and the grain size at the end of the current step is obtained At present there is no distinction between the growth rates of UO2 and MOX fuels When variables need to be added to common variables it is recommended that the users add them using COMMON variables The addition of a model can be started at IGRAIN=6

Table 8225 Arguments in FUNCTION GRAIN

Arguments Content Unit GRAIN Grain diameter of fuel pellet cm IGRAIN Grain growth model option

IGRAIN=0 - 29 are assigned to UO2 pellets Currently IGRAIN=0 - 5 are used when adding a new subroutine the assignment should start at IGRAIN=6 IGRAIN=30- is assigned to MOX pellets Currently there is no distinction between UO2 and MOX If a new addition is required it should start at IGRAIN=30 for MOX

GRNO Grain diameter at the start of time step cm TEMP Temperature K BURN Burnup MWdt GR0 Initial grain diameter cm DTIME Time step width sec

BO Fission gas atom density at grain boundary atomscm2

SAT Saturation value of fission gas atom at grain boundary atomscm2

8212 Melting point Since the equation of the fuel melting point has currently no options it is necessary to

set a new selection flag and add a new model The fuel melting point model is defined by FUNCTION TMELT Table 8226 shows the arguments for FUNCTION TMELT

JAEA-DataCode 2013-009

- 265 -

Table 8226 Arguments in FUNCTION TMELT Arguments Content Unit TMELT Melting point of fuel pellet K F Molar fraction of PuO2 - BU Burnup MWdt

8213 Fission gas release rate and diffusion coefficient Since a mechanistic model has been adopted for the fission gas release it is not easy to

add another type of model FUNCTION DIFC is used for the addition of the equation for the intra-granular diffusion coefficient of fission gas atoms Table 8227 shows the arguments used in FUNCTION DIFC The diffusion coefficient of fission gas DIFC is defined using the arguments in Table 8227

The model option is IDCNST At present since model equations up to IDCNST=1-3 have been used a new model can be introduced starting at IDCNST=4 Here when a new variable is required for a new model it is recommended that the users define the new variable using the COMMON variables

Table 8227 Arguments in FUNCTION DIFC

Arguments Content Unit DIFC Diffusion coefficient of fission gas atom cm2s IDCNST Option for equation of diffusion coefficient of fission gas atom -

TEMP Temperature K

8214 Cladding waterside corrosion SUBROUTINE CORRO is used for the addition of cladding waterside corrosion rate

equation Table 8228 presents the arguments in the SUBROUTINE The corrosion rate is defined as CORRD Table 8228 Arguments in SUBROUTINE CORRO ( including COMMON)(12)

Arguments Content Unit CORRD Cladding waterside corrosion rate daym m

IZYM Cladding material option IZYM=3 Zircaloy IZYM=4 stainless steel

ICORRO Corrosion model option ICORRO=0-39 is assigned to Zircaloy ICORRO=40- is assigned to stainless steel

JAEA-DataCode 2013-009

- 266 -

Table 8228 Arguments in SUBROUTINE CORRO ( including COMMON) (22)

Arguments Content Unit TEMP0 Cladding surface temperature K

OXTH Oxide layer thickness mm

QF Surface heat flux Wcm2

FAIX Fast neutron flux ncm2-s

DTD Time increment day

FCORRO Adjusting factor for cladding corrosion rate -

DTIME Time increment Hr

8215 Cladding irradiation growth FUNCTION CAGROW is used for the addition of the cladding irradiation growth model Table 8229 shows the arguments used in FUNCTION CAGROW The strain increment of the cladding irradiation growth is defined by CAGROW using the arguments listed in Table 8229 Since CAGROW is given as a function of the irradiation it is defined by the difference between the irradiation growth strain up to the previous time step and the current strain Option for irradiation growth of cladding is designated by ICAGRW At present ICAGRW=0 - 4 are used a new model should start at ICAGRW=5 Table 8229 Arguments in FUNCTION CAGROW

Arguments Content Unit CAGROW Cladding irradiation growth increment -

ICAGRW Option for irradiation growth model -

FAIT Fast neutron fluence at current time step ncm2 DFAIT Fast neutron fluence increment ncm2

8216 Gap thermal conductance

SUBROUTINE GAPCON is used for the addition of the cladding gap thermal conductance model Table 8230 shows the arguments used in GAPCON The gap thermal conductance GCOND(GCONS GCONG GCONR) is defined by GAPCON using the arguments listed in Table 8230

The model option is IGAPCN At present since model equations up to IGAPCN=1-6 have been used a new model can be introduced starting at IGAPCN=7 Here when a new variable is required for a new model it is recommended that the users define a new variable using the COMMON variables

JAEA-DataCode 2013-009

- 267 -

Table 8230 Arguments in SUBROUTINE GAPCON

Arguments Content Unit PST Pellet surface temperature K CST Cladding surface temperature K GAPE Pellet-cladding gap width cm FDEN Burnup GJKg-U R01 Pellet surface roughness cm R02 Cladding surface roughness cm PCON Contact pressure Pa

GASPR Plenum pressure Pa

GMIX(4) Molar ratio of rare gases (=1He =2N2 =3Kr =4Xe)

LL Count number of iteration calculation -

MRASA Cladding material (=0Re-crystallized =1Stress-relieved)

GCOND Gap thermal conductance (output) Wcm2-K

GCONS Gap conductance by contact (output) Wcm2-K GCONG Gap conductance by gas conduction (output) Wcm2-K GCONR Gap conductance by radiation heat transfer (output) Wcm2-K FAI Fast neutron flux ncm2-s FAIT Fast neutron fluence ncm2 BURN Burnup GJKg-U PDIA Pellet diameter cm ENR Pellet enrichment - NODE Axial segment number - IGAPCN Option for gap conductance model -

8217 He-Xe gas inter-diffusion coefficient

FUNCTION DIFCON is used t for the addition of the inter-diffusion constant of He-Xe Table 8231 shows the arguments used in FUNCTION DIFCON The constant is defined by the arguments listed in Table 8231

Since the model option is not used currently it is necessary to introduce a new option parameter of model Here when a new variable is required for a new model it is recommended that the users define a new variable using the COMMON variables

JAEA-DataCode 2013-009

- 268 -

Table 8231 Arguments in FUNCTION DIFCON Arguments Content Unit DIFCON Inter-diffusion constant of Xe-Kr cm2s AN Molecular density molem3 TK Temperature K

83 Method of incorporating a new surface heat transfer

model

In order to incorporate a new cladding surface heat transfer model into FEMAXI-6 it

is necessary to alter four subroutines and add one new subroutine

The common method of adding a new name-list parameter input variable is shown below

(1) Add a COMMON variable (include statement) to ldquoBLOCK DATA

(2) Add a COMMON variable (include statement) to ldquoMAINrdquo

(3) Add a COMMON statement (include statement) to the subroutine using the

variable

(1) Addition of COMMON variables

A new file (eg IHCOEF) in the folder INC is added IHCOEF file

(2) Modification of ldquoBLOCK DATArdquo A new COMMON variable ldquoIHNEWrdquo is added to BLOCK DATArdquo Default value of

ldquoIHNEWrdquo is 0

BLOCK DATA include lsquoIHCOEFrsquo DATA IHNEW 0

IHCOEF IHNEW Surface heat transfer model option COMMONIHCOEF IHNEW

JAEA-DataCode 2013-009

- 269 -

(3) Modification of ldquoMAINrdquo

Add a new COMMON variable ldquoIHNEWrdquo In addition add a name-list parameter If ldquoIHNEW=1rdquo is assigned in the input file the code uses a new model

PROGRAM MAIN

C1220new include lsquoIHCOEFrsquo C1220new C NAMELISTINPUT C1220new IHNEW C1220new C

(4) Modification of subroutine ldquoCONTROLrdquo

1) Add a new COMMON variable ldquoIHNEWrdquo (include statement)

2) If IHNEW is not 0 ICSTge 4 holds The numbers from ICST=0 to ICST=3 have

already been used For example for the selected input values of IHNEWgt0 if a line

of statement ldquoICST=IHNEW+3rdquo is added the new model can be used by specifying the

value of ldquoIHNEWrdquo to 1 2 or 3

SUBROUTINE CONTROL

C1220new

include lsquoIHCOEFrsquo

ICST = 0

IF(CSTEMNE00) ICST = 3

IF(ISCNHALEQ1) ICST = 2

IF(ISTATEGE3) THEN

JAEA-DataCode 2013-009

- 270 -

ICST = 1

END IF

C1220new

IF(IHNEWNE0) ICST = IHNEW + 3

C1220new

IF(ISTNE0 AND ISTATEEQ0) ISTATE = 1

C

(5) Modification of ldquoUSTEMPrdquo

Prepare a new subroutine ldquoTSUR3rdquo and call this subroutine when ICST=4 between

ldquoC1220newArdquo and ldquoC1220newBrdquo as specified in the list below The required

arguments should be written

TCOL (NODE)= coolant temperature (K) at axial node number ldquoNODErdquo HCOEF (NODE)= cladding surface heat transfer coefficient (Wcm2-K) at axial node number ldquoNODErdquo rarrThis is used to output the results

SHF = heat flux (Wcm2) PCOOL = coolant pressure (Pa) TSUR = cladding surface temperature (K) and PSTG=Local linear heat rate (Wcm) at axial node number

ldquoNODErdquo

In subroutine ldquoTSUR3rdquo HCOEF and TSUR are calculated

SUBROUTINE USTEMP

C

IF(SHFLT00) SHF=00

IF(ICFLNE0 AND TSURLTTB(NODE)) TSUR = TB(NODE)

GO TO 334

C

322 CONTINUE

When ICST=1(ISTATE=3condition of fixed temperature at

cladding outer surface) substitute the cladding outer surface

temperature into TCOL

IF(ICSTEQ1) THEN

JAEA-DataCode 2013-009

- 271 -

ICTP=0(If CSTMP is the cladding surface temperature)

IF(ICTPEQ0 OR ICORROEQ0) THEN

TSUR = CSTMP(NODE)

TB(NODE)=TSUR

ELSE

ICTP=1(If CSTMP is temperature at metal-oxide interface)

TSUR = CSTMP(NODE)-PSTG(2PITHCON(NE))

1

DLOG(RTP(NODTNODE)RTP(NENODE))

TB(NODE)=TSUR

ENDIF

When ICST=2 (ISCNHAL=1the Halden equation is used)

substitute the cladding surface temperature into TCOL

ELSEIF(ICSTEQ2) THEN

CALL TSUR2(PSTGTCOL(NODE)TSUR)

TB(NODE)=TSUR

When ICST=3(input by CSTEM) substitute the cladding surface

temperature into TCOL

ELSEIF(ICSTEQ3) THEN

TSUR = CSTEM

TB(NODE)=TSUR

C1220newA

ELSEIF(ICSTEQ4) THEN

CALL

TSUR3(PSTGTCOL(NODE)HCOEF(NODE)SHFPCOOLTSURICST)

C1220newB

ELSE

WRITE(66150) ICSTIS3PNODETSURTB(NODE)

6150 FORMAT( ICST OPTION ERROR ---gt PROGRAM ATOP IN USTEMP

1 ICSTIS3PNODETSURTB=3I52F102)

STOP

ENDIF

JAEA-DataCode 2013-009

- 272 -

(6) Making ldquoTSUR3rdquo

A new heat transfer coefficient is prepared by this new subroutine For example in the Jens-Lottes equation ldquoFLMrdquo is the thermal conductivity (Wcm2-K) This equation requires that the cladding surface temperature be determined Thus it must be set as ldquoTSURH=TC+SHFFLMrdquo Furthermore the unit of ldquoHCOEFrdquo is converted to (Wm2-K) to conform to the output requirement

C1220new

SUBROUTINE TSUR3(PSTGTCHCOEFSHFPCOOLTSURHICST)

IMPLICIT DOUBLE PRECISION (A-HO-Z)

C----------------------------------------------------------

C THIS SUBROUTINE CALCURATES CLAD SURFACE TEMPERATURE BASED

C ON NEW MODEL (USING JENS-LOTTES EQUATION OR OTHER NEW

C EQUATION)

C

C ltlt INPUT gtgt

C PSTG LOCAL LINEAR HEAT RATE (WCM)

C TC COOLANT TEMPERATURE FROM SUFCN(INPUT)[K]

C SHF SURFACE HEAT FLUX (WCM2)

C PCOOL COOLANT PRESSURE (Pa)

C

C ltlt OUTPUT gtgt

C TSURH CLAD SURFACE TEMPERATURE (K)

C HCOEF HEAT TRANSFER COEFFICIENT (WM2-K)

C

C-----------------------------------------------------------

C

IF(ICSTEQ4) THEN

FLM = 01263D0DEXP( PCOOL6201D6 )SHF075D0

ELSEIF (ICSTEQ5) THEN

C ----[EQUATION FOR HANARO CONDITION]----

ENDIF

TSURH = TC + SHFFLM

HCOEF = FLM10D4

C

RETURN

END

JAEA-DataCode 2013-009

- 273 -

Appendix

A1 Title list for plotted figures

A2 Relationship between IDNO and array variables

A3 Subroutine list A4 Subroutine tree

JAEA-DataCode 2013-009

- 274 -

A1 Title list for plotted figures

TableA11 (16) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

1 AVERAGE BURNUP (MWDTM) 51 CLAD INNER TEMPERATURE (C)

2 AVERAGE FISSION GAS RELEASE () 52 CLAD SURFACE TEMPERATURE (C)

3 PLENUM PRESSURE (MPA) 53 PELLET CENTER TEMPERATURE (C)

4 ROD FREE VOLUME (CC) 54 PELLET SURFACE TEMPERATURE (C)

5 PELLET ELONGATION () 55 CLAD OUTER DIAMETER CHANGE (MIC)

6 CLAD ELONGATION () 56 XE+KR ()

7 CLAD MAXIMUM DIAMETER CHANGE (MIC) 57 FUEL FRACTIONAL DENSITY (TD)

8 AVERAGE LINEAR HEAT RATE (WCM) 58 ZRYZRY-OXIDE BOUNDARY TEMPERATURE (C)

9 AVERAGE RELEASED IODINE (GCM2) 59 ZRY OUTER OXIDE THICKNESS (MIC)

10 PEAK RELEASED IODINE (GCM2) 60 COOLANT ENTHALPY (KJKG)

11 CLAD AVERAGE DIAMETER CHANGE (MIC) 61 COOLANT QUALTY (-)

12 COOLANT INLET TEMPERATURE (C) 62 CLAD SURFACE HEAT FLUX (WCM2)

13 COOLANT PRESSURE (MPA) 63 CLAD FILM CONDUCTANCE (WCM2-C)

14 COOLANT VELOCITY (MS) 64 FAST NEUTRON FLUX (NCM2-S)

15 FAST NEUTRON FLUX (NCM2-S) 65 FAST NEUTRON FLUENCE (NCM2)

16 AVERAGE FLUENCE (NCM2) 66 PELLET AVERAGE POWER DENSITY (WCM3)

17 FUEL ELONGATION () 67 MECHANICAL DIAMETER GAP (MIC)

18 CLAD ELONGATION () 68 PELLET DENSIFICATION dVV ()

19 CLAD MAXIMUM DIAMETER CHANGE (MIC) 69 RIM LAYER THICKNESS (MIC)

20 CLAD AVERAGE DIAMETER CHANGE (MIC) 70 ADDITIONAL FGR FROM RIM ()

21 PELLET ELONGATION (MM) 71 RELEASED XE GAS (MOL)

22 CLAD ELONGATION (MM) 72 RELEASED KR GAS (MOL)

23 ENERGY DEPOSITION (JG-FUEL) 73 RELEASED HE GAS (MOL)

24 CLAD AXIAL LOAD (N) 74 THERMAL PCMI PRESSURE (MPA)

25 CLAD RADIAL STRAIN ENERGY (J) 75 PELLET-CLAD FRICTIONAL PRESSURE (MPA)

26 CLAD CIRCUM STRAIN ENERGY (J) 76 PELLET ELONGATION ()

27 CLAD AXIAL STRAIN ENERGY (J) 77 CLADDING AXIAL ELONGATION ()

28 CLAD EQUIVALENT STRAIN ENERGY (J) 78 CLAD OUTER DIAMETER CHANGE (MIC)

29 COOLANT MASS FLOW RATE (KGM2S) 79 PELLET POROSITY ()

30 AVERAGE HE GAS RELEASE () 80 PELLET VOLUME CHANGE ()

31 ZRY INNER OXIDE THICKNESS (MIC) 81 PELLET OUTER DIAMETER CHANGE (MIC)

32 ZRY INNER ALPHA LAYER (MIC) 82 PELLET OUTER STRAIN ()

33 ZRY OUTER ALPHA LAYER (MIC) 83 BONDING RATIO (-)

34 ENERGY DEPOSITION (JG-FUEL) 84 INTRAGRANULAR BUBBLE RADIUS (ANGSTROM)

35 ZRY BETA LAYER THICKNESS (MIC) 85 INTRAGRANULAR BUBBLE dVV ()

36 ZRY BETA LAYER UNDER OXB (MIC) 86 INTERGRANULAR BUBBLE RADIUS (MIC)

37 CLAD RADIAL STRAIN ENERGY (J) 87 INTERGRANULAR BUBBLE dVV ()

38 CLAD CIRCUM STRAIN ENERGY (J) 88 PELLET OUTER RADIAL DISP (MIC)

39 CLAD AXIAL STRAIN ENERGY (J) 89 PELLET ELASTIC RADIAL DISP (MIC)

40 CLAD EQUIVALENT STRAIN ENERGY (J) 90 PELLET THERMAL RADIAL DISP (MIC)

41 LINEAR HEAT RATE (WCM) 91 PELLET RELOCATION RADIAL DISP (MIC)

42 BURNUP (MWDTU) 92 PELLET DENSIFICATION RADIAL DISP (MIC)

43 DIAMETER GAP WIDTH (MIC) 93 PELLET SWELLING RADIAL DISP (MIC)

44 LOCAL FEM PCMI PRESSURE (MPA) 94 PELLET CREEP RADIAL DISP (MIC)

45 FISSION GAS RELEASE () 95 PELLET AXIAL DISPLACEMENT (MIC)

46 FUEL-CLAD FRICTIONAL PRESSURE (MPA) 96 CLAD INNER RADIAL DISP (MIC)

47 PELLET ELONGATION () 97 CLAD ELASTIC RADIAL DISP (MIC)

48 CLADDING AXIAL ELONGATION () 98 CLAD THERMAL RADIAL DISP (MIC)

49 GAP CONDUCTANCE (WCM2-C) 99 CLAD CREEP RADIAL DISP (MIC)

50 COOLANT TEMPERATURE (C) 100 CLAD AXIAL DISPLACEMENT (MIC)

JAEA-DataCode 2013-009

- 275 -

TableA11 (26) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

101 BURNUP (MWDTM) 151 CLAD EQUIVALENT STRESS (MPA)

102 PELLET AVERAGE POWER DENSITY (WCM3) 152 CLAD AVERAGE STRESS (MPA)

103 PELLET NODAL TEMPERATURE (C) 153 CLAD RADIAL STRESS (MPA)

104 CLAD NODAL TEMPERATURE (C) 154 CLAD CIRCUM STRESS (MPA)

105 PELLET ELEMENT TEMPERATURE (C) 155 CLAD AXIAL STRESS (MPA)

106 CLAD ELEMENT TEMPERATURE (C) 156 CLAD RADIAL STRAIN ()

107 FISSION GAS RELEASE () 157 CLAD CIRCUM STRAIN ()

108 PELLET GRAIN DIAMETER (MIC) 158 CLAD AXIAL STRAIN ()

109 PELLET EQUIVALENT STRESS (MPA) 159 CLAD RADIAL ELASTIC STRAIN ()

110 PELLET AVERAGE STRESS (MPA) 160 CLAD CIRCUM ELASTIC STRAIN ()

111 PELLET RADIAL STRESS (MPA) 161 CLAD AXIAL ELASTIC STRAIN ()

112 PELLET CIRCUM STRESS (MPA) 162 CLAD RADIAL THERMAL STRAIN ()

113 PELLET AXIAL STRESS (MPA) 163 CLAD AXIAL THERMAL STRAIN ()

114 PELLET RADIAL STRAIN () 164 CLAD AVERAGE AXIAL THERMAL STRAIN ()

115 PELLET CIRCUM STRAIN () 165 CLAD AXIAL IRRADIATION GROWTH STRAIN()

116 PELLET AXIAL STRAIN () 166 CLAD EQUIVALENT CREEP STRAIN ()

117 PELLET RADIAL ELASTIC STRAIN () 167 CLAD RADIAL CREEP STRAIN ()

118 PELLET CIRCUM ELASTIC STRAIN () 168 CLAD CIRCUM CREEP STRAIN ()

119 PELLET AXIAL ELASTIC STRAIN () 169 CLAD AXIAL CREEP STRAIN ()

120 PELLET RADIAL THERMAL STRAIN () 170 CLAD EQUIVALENT PLASTIC STRAIN ()

121 PELLET AXIAL THERMAL STRAIN () 171 CLAD RADIAL PLASTIC STRAIN ()

122 PELLET DENSIFICATION dVV() 172 CLAD CIRCUM PLASTIC STRAIN ()

123 PELLET SWELLING STRAIN () 173 CLAD AXIAL PLASTIC STRAIN ()

124 PELLET EQUIVALENT CREEP STRAIN () 174 CLAD RADIAL DISPLACEMENT (MIC)

125 PELLET RADIAL CREEP STRAIN () 175 CLAD AXIAL DISPLACEMENT (MIC)

126 PELLET CIRCUM CREEP STRAIN () 176 CLAD RADIAL ELASTIC DISP (MIC)

127 PELLET AXIAL CREEP STRAIN () 177 CLAD AXIAL ELASTIC DISP (MIC)

128 PELLET EQUIVALENT PLASTIC STRAIN () 178 CLAD RADIAL THERMAL DISP (MIC)

129 PELLET RADIAL PLASTIC STRAIN () 179 CLAD AXIAL THERMAL DISP (MIC)

130 PELLET CIRCUM PLASTIC STRAIN () 180 CLAD AXIIRRADIATION GROWTH DISP (MIC)

131 PELLET AXIAL PLASTIC STRAIN () 181 CLAD RADIAL CREEP DISP (MIC)

132 PELLET RADIAL DISPLACEMENT (MIC) 182 CLAD AXIAL CREEP DISP (MIC)

133 PELLET AXIAL DISPLACEMENT (MIC) 183 CLAD RADIAL PLASTIC DISP (MIC)

134 PELLET RADIAL ELASTIC DISP (MIC) 184 CLAD AXIAL PLASTIC DISP (MIC)

135 PELLET AXIAL ELASTIC DISP (MIC) 185 PRODUCED FISSION GAS DENSITY (ATOMSCM3)

136 PELLET RADIAL THERMAL DISP (MIC) 186 FISSION GAS DENSITY IN GRAIN (ATOMSCM3)

137 PELLET AXIAL THERMAL DISP (MIC) 187 FISSION GAS IN SOLID MATRIX (ATOMSCM3)

138 PELLET RADIAL DENSIFICATION DISP (MIC) 188 FISSION GAS IN INTRA BUBBLE (ATOMSCM3)

139 PELLET AXIAL DENSIFICATION DISP (MIC) 189 INTRA FG BUBBLE DENSITY (BUBBLESCM3)

140 PELLET RADIAL SWELLING DISP (MIC) 190 FISSION GAS DENSITY IN BOUND (ATOMSCM2)

141 PELLET AXIAL SWELLING DISP (MIC) 191 SATURATED FG DENSITY IN BOUND(ATOMSCM2)

142 PELLET RADIAL CREEP DISP (MIC) 192 INTER FG BUBBLE DENSITY (BUBBLESCM2)

143 PELLET AXIAL CREEP DISP (MIC) 193 COVERING RATIO OVER BOUND (-)

144 PELLET RADIAL PLASTIC DISP (MIC) 194 LIMIT OF INTER BUBBLE RADIUS (MIC)

145 PELLET AXIAL PLASTIC DISP (MIC) 195 DIFFUSION COEFFICIENT (CM2S)

146 INTRAGRANULAR BUBBLE RADIUS (ANGSTROM) 196 EFFECTIVE DIFFUSION COEFFICIENT (CM2S)

147 INTRAGRANULAR BUBBLE dVV () 197 FUEL FRACTIONAL DENSITY (TD)

148 INTERGRANULAR BUBBLE RADIUS (MIC) 198 OXIDE CONCENTRATION (MGCM3)

149 INTERGRANULAR BUBBLE dVV () 199 OXIDE CONCENTRATION (MGCM3)

150 PELLET YIELD STRESS (ORIGINAL) (MPA) 200 OXIDE CONCENTRATION (MGCM3)

JAEA-DataCode 2013-009

- 276 -

TableA11 (36) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

201 CLAD TEMP - CLAD SURFACE TEMP (C) 251 LOCAL BURNUP (MWDT)

202 RADIAL STRAIN ENERGY DENSITY (KJM3) 252 LOCAL EFFECTIVE BURNUP (MWDTM)

203 CIRCUM STRAIN ENERGY DENSITY (KJM3) 253 PELLET ELEMENT TEMPERATURE (C)

204 AXIAL STRAIN ENERGY DENSITY (KJM3) 254 PELLET THERMAL CONDUCTIVITY (WCM-K)

205 EQIVALENT STRAIN ENERGY DENSITY (KJM3) 255 CLAD POWER DENSITY FOR GAMMA HEAT(WCM3)

206 CLAD RADIAL STRAIN ENERGY (J) 256 PELLET XV RATIO (-)

207 CLAD CIRCUM STRAIN ENERGY (J) 257 PELLET TOTAL POROSITY ()

208 CLAD AXIAL STRAIN ENERGY (J) 258 PELLET RIM LAYER POROSITY ()

209 CLAD EQUIVALENT STRAIN ENERGY (J) 259 PELLET RIM OPEN POROSITY ()

210 FAILURE CRITERIA CSED (KJM3) 260 PELLET GAS BUBBLE POROSITY ()

211 PELLET RADIAL STRAIN RATE (1S) 261 PELLET TOTAL SWELLING ()

212 PELLET CIRCUM STRAIN RATE (1S) 262 RATE OF RE-DISSOLUTION OF GAS b(1S)

213 PELLET AXIAL STRAIN RATE (1S) 263 RATE OF RE-DISSOLUTION OF GAS alpha(1S)

214 PELLET EQUIVALENT STRAIN RATE (1S) 264 RATE OF TRAPPING GAS INTRA BUBBLES (1S)

215 CLAD RADIAL STRAIN RATE (1S) 265 BUFFER ELEMENT STIFFNESS FRACTION (-)

216 CLAD CIRCUM STRAIN RATE (1S) 266 PELLET ELEMENT AXIAL DISPLACEMENT (MIC)

217 CLAD AXIAL STRAIN RATE (1S) 267 BUFFER ELEMENT VOLUME FRACTION (-)

218 CLAD EQUIVALENT STRAIN RATE (1S) 268 ------NON USE---------------------------

219 CLAD RADIAL CREEP RATE (1S) 269 FISSION GAS IN INTRA BUBBLE RATIO ()

220 CLAD CIRCUM CREEP RATE (1S) 270 FISSION GAS IN INTER BUBBLE (ATOMSCM3)

221 CLAD AXIAL CREEP RATE (1S) 271 FISSION GAS IN INTER BUBBLE (ATOMS)

222 CLAD EQUIVALENT CREEP RATE (1S) 272 INTER FG BUBBLE DENSITY (BUBBLESCM3)

223 PELLET YIELD STRESS (MPA) 273 FISSION GAS IN INTER BUBBLE RATIO ()

224 CLAD YIELD STRESS (MPA) 274 FISSION GAS IN RIM PORE (ATOMSCM3)

225 PELELT ENTHALPY (JG-FUEL) 275 PELLET GRAIN DIAMETER (MIC)

226 CLAD ENTHALPY (JG-FUEL) 276 RIM PORE BUBBLE SWELLING dVV ()

227 FUEL(PELLET+CLAD) ENTHALPY (JG-FUEL) 277 THERMAL+BUBBLE SWELLING STRAIN ()

228 PELLET RADIAL RELOCATION STRAIN () 278 PELLET POWER DENSITY (WCM3)

229 PELLET CIRCUM RELOCATION STRAIN () 279 PELLET NODAL TEMPERATURE (C)

230 PELLET AXIAL RELOCATION STRAIN () 280 RELEASED FISSION GAS DENSITY (ATOMSCM3)

231 PELLET RADIAL RELOCATION DISP (MIC) 281 FUEL DENSITY (TD) (IPDENS=1)

232 PELLET AXIAL RELOCATION DISP (MIC) 282 FUEL DENSITY (TD) (IPDENS=2)

233 CLAD RADIAL CORROSION DISP (MIC) 283 FUEL DENSITY (TD) (IPDENS=3)

234 DENSIFICATION+SWELLING STRAIN () 284 FUEL DENSITY (TD) (IPDENS=4)

235 PELLET RADIAL ELAST MODULUS (GPA) 285 SATURATED MATRIX FP GAS FRACTION (-)

236 PELLET CIRCUM ELAST MODULUS (GPA) 286 RIM GAS PORE TRANSPORT FRACTION (-)

237 PELLET AXIAL ELAST MODULUS (GPA) 287 HE DIFFUSION COEF (CM2S)

238 CLAD ELASTIC MODULUS (GPA) 288 HE EFFECTIVE DIFFUSION COEF (CM2S)

239 CLAD POISSONS RATIO (-) 289 HE GRAIN BOUNDARY DIFFUSION COEF(CM2S)

240 CLAD HARDENING EXPONENT N (-) 290 HE GENERATE RATE (ATOMSCM3-S)

241 PELLET ELASTIC MODULUS (GPA) 291 INTER-GRAIN BUBBLE PRESSURE (MPA)

242 PELLET POISSONS RATIO (-) 292 INTER-GRAIN BUBBLE OVER-PRESSURE (MPA)

243 CLAD THERMAL CONDUCTIVITY (WCM-K) 293 INTEA-GRAIN BUBBLE PRESSURE (MPA)

244 PELLET SPECIFIC HEAT CAPACITY (JKG-K) 294 HE DENSITY IN BOUNDARY (ATMSCM3)

245 CLAD SPECIFIC HEAT CAPACITY (JKG-K) 295 BOUNDARY ELEMENT TEMPERATURE (C)

246 PELLET MELTING TEMPERATURE (C) 296 BOUNDARY ELEMENT VOLUME (CM3)

247 DIAMETER GAP WIDTH (MIC) 297 HE DENSITY IN GRAIN (ATOMSCM3)

248 CLAD RADIAL DEVIATION STRESS (MPA) 298 HE AVERAGE DENSITY IN GRAIN (ATOMSCM3)

249 CLAD CIRCUM DEVIATION STRESS (MPA) 299 HE GAS RELEASE ()

250 CLAD AXIAL DEVIATION STRESS (MPA) 300 COOLANT VOID FRACTION (-)

JAEA-DataCode 2013-009

- 277 -

TableA11 (46) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

301 BURNUP (MWDTU) 351 CLAD RADIAL STRAIN ()

302 PELLET AVERAGE POWER DENSITY (WCM3) 352 CLAD CIRCUM STRAIN ()

303 PELLET NODAL TEMPERATURE (C) 353 CLAD AXIAL STRAIN ()

304 CLAD NODAL TEMPERATURE (C) 354 CLAD RADIAL ELASTIC STRAIN ()

305 PELLET ELEMENT TEMPERATURE (C) 355 CLAD CIRCUM ELASTIC STRAIN ()

306 CLAD ELEMENT TEMPERATURE (C) 356 CLAD AXIAL ELASTIC STRAIN ()

307 FISSION GAS RELEASE () 357 CLAD RADIAL THERMAL STRAIN ()

308 PELLET GRAIN DIAMETER (MIC) 358 CLAD AXIAL THERMAL STRAIN ()

309 PELLET EQUIVALENT STRESS (MPA) 359 CLAD AVERAGE AXIAL THERMAL STRAIN ()

310 PELLET AVERAGE STRESS (MPA) 360 CLAD AXIAL IRRADIATION GROWTH STRAIN()

311 PELLET RADIAL STRESS (MPA) 361 CLAD EQUIVALENT CREEP STRAIN ()

312 PELLET CIRCUM STRESS (MPA) 362 CLAD RADIAL CREEP STRAIN ()

313 PELLET AXIAL STRESS (MPA) 363 CLAD CIRCUM CREEP STRAIN ()

314 PELLET RADIAL STRAIN () 364 CLAD AXIAL CREEP STRAIN ()

315 PELLET CIRCUM STRAIN () 365 CLAD EQUIVALENT PLASTIC STRAIN ()

316 PELLET AXIAL STRAIN () 366 CLAD RADIAL PLASTIC STRAIN ()

317 PELLET RADIAL ELASTIC STRAIN () 367 CLAD CIRCUM PLASTIC STRAIN ()

318 PELLET CIRCUM ELASTIC STRAIN () 368 CLAD AXIAL PLASTIC STRAIN ()

319 PELLET AXIAL ELASTIC STRAIN () 369 CLAD RADIAL DISPLACEMENT (MIC)

320 PELLET RADIAL THERMAL STRAIN () 370 CLAD AXIAL DISPLACEMENT (MIC)

321 PELLET AXIAL THERMAL STRAIN () 371 CLAD RADIAL ELASTIC DISP (MIC)

322 PELLET DENSIFICATION dVV () 372 CLAD AXIAL ELASTIC DISP (MIC)

323 PELLET SWELLING STRAIN () 373 CLAD RADIAL THERMAL DISP (MIC)

324 PELLET EQUIVALENT CREEP STRAIN () 374 CLAD AXIAL THERMAL DISP (MIC)

325 PELLET RADIAL CREEP STRAIN () 375 CLAD AXIAL IRRADIATION GROWTH DISP(MIC)

326 PELLET CIRCUM CREEP STRAIN () 376 CLAD RADIAL CREEP DISP (MIC)

327 PELLET AXIAL CREEP STRAIN () 377 CLAD AXIAL CREEP DISP (MIC)

328 PELLET EQUIVALENT PLASTIC STRAIN () 378 CLAD RADIAL PLASTIC DISP (MIC)

329 PELLET RADIAL PLASTIC STRAIN () 379 CLAD AXIAL PLASTIC DISP (MIC)

330 PELLET CIR PLASTIC STRAIN () 380 PELLET YIELD STRESS (MPA)

331 PELLET AXIAL PLASTIC STRAIN () 381 CLAD YIELD STRESS (MPA)

332 PELLET RADIAL DISPLACEMENT (MIC) 382 PELLET RADIAL RELOCATION STRAIN ()

333 PELLET AXIAL DISPLACEMENT (MIC) 383 PELLET CIRCUM RELOCATION STRAIN ()

334 PELLET RADIAL ELASTIC DISP (MIC) 384 PELLET AXIAL RELOCATION STRAIN ()

335 PELLET AXIAL ELASTIC DISP (MIC) 385 PELLET RADIAL RELOCATION DISP (MIC)

336 PELLET RADIAL THERMAL DISP (MIC) 386 PELLET AXIAL RELOCATION DISP (MIC)

337 PELLET AXIAL THERMAL DISP (MIC) 387 CLAD RADIAL CORROSION DISP (MIC)

338 PELLET RADIAL DENSIFICATION DISP (MIC) 388 PELLET RADIAL DISPLACEMENT (MIC)

339 PELLET AXIAL DENSIFICATION DISP (MIC) 389 PELLET AXIAL DISPLACEMENT (MIC)

340 PELLET RADIAL SWELLING DISP (MIC) 390 CLAD RADIAL DISPLACEMENT (MIC)

341 PELLET AXIAL SWELLING DISP (MIC) 391 CLAD AXIAL DISPLACEMENT (MIC)

342 PELLET RADIAL CREEP DISP (MIC) 392 PELLET RADIAL COORDINATE (MM)

343 PELLET AXIAL CREEP DISP (MIC) 393 PELLET AXIAL COORDINATE (MM)

344 PELLET RADIAL PLASTIC DISP (MIC) 394 CLAD RADIAL COORDINATE (MM)

345 PELLET AXIAL PLASTIC DISP (MIC) 395 CLAD AXIAL COORDINATE (MM)

346 CLAD EQUIVALENT STRESS (MPA) 396 DENSIFICATION+SWELLING STRAIN ()

347 CLAD AVERAGE STRESS (MPA) 397 PELLET SHEAR STRESS (MPA)

348 CLAD RADIAL STRESS (MPA) 398 CLAD SHEAR STRESS (MPA)

349 CLAD CIRCUM STRESS (MPA) 399 PELLET SHEAR STRAIN ()

350 CLAD AXIAL STRESS (MPA) 400 CLAD SHEAR STRAIN ()

JAEA-DataCode 2013-009

- 278 -

TableA11 (56) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

401 ROD FREE VOLUME (0 POWER) (CC) 451 PELLET RADIAL STRAIN (0 POWER) ()

402 FUEL ELONGATION (0 POWER) () 452 PELLET CIRCUM STRAIN (0 POWER) ()

403 CLAD MAX DIAMETER CHANGE(0 POWER) (MIC) 453 PELLET AXIAL STRAIN (0 POWER) ()

404 CLAD AVE DIAMETER CHANGE(0 POWER) (MIC) 454 PELLET SWELL STRAIN (0 POWER) ()

405 CLAD ELONGATION (0 POWER) () 455 PELLET RADIAL DISP (0 POWER) (MIC)

406 PLENUM PRESSURE (0 POWER) (MPA) 456 PELLET AXIAL DISP (0 POWER) (MIC)

407 FUEL ELONGATION (0 POWER) () 457 PELLET RADIAL SWELL DISP(0 POWER) (MIC)

408 CLAD MAX DIAMETER CHANGE(0 POWER) (MIC) 458 PELLET AXIAL SWELL DISP (0 POWER) (MIC)

409 CLAD AVE DIAMETER CHANGE(0 POWER) (MIC) 459 CLAD RADIAL STRAIN (0 POWER) ()

410 CLAD ELONGATION (0 POWER) () 460 CLAD CIRCUM STRAIN (0 POWER) ()

411 ------NON USE--------------------------- 461 CLAD AXIAL STRAIN (0 POWER) ()

412 ------NON USE--------------------------- 462 CLAD AXIAL GROWTH STRAIN (0 POWER) ()

413 ------NON USE--------------------------- 463 CLAD RADIAL DISP (0 POWER) (MIC)

414 ------NON USE--------------------------- 464 CLAD AXIAL DISP (0 POWER) (MIC)

415 ------NON USE--------------------------- 465 CLAD AXIAL GROWTH DISP (0 POWER) (MIC)

416 ------NON USE--------------------------- 466 ------NON USE---------------------------

417 ------NON USE--------------------------- 467 ------NON USE---------------------------

418 ------NON USE--------------------------- 468 ------NON USE---------------------------

419 ------NON USE--------------------------- 469 ------NON USE---------------------------

420 ------NON USE--------------------------- 470 ------NON USE---------------------------

421 DIAMETER GAP WIDTH (0 POWER) (MIC) 471 PELLET RADIAL STRAIN (0 POWER) ()

422 PCMI PRESSURE (0 POWER) (MPA) 472 PELLET CIRCUM STRAIN (0 POWER) ()

423 PELLET ELONGATION (0 POWER) () 473 PELLET AXIAL STRAIN (0 POWER) ()

424 CLAD ELONGATION (0 POWER) () 474 PELLET SWELL STRAIN (0 POWER) ()

425 CLAD OUT DIAMETER CHANGE (0 POWER) (MIC) 475 PELLET RADIAL DISP (0 POWER) (MIC)

426 FUEL FRACTINAL DENSITY (0 POWER) (TD) 476 PELLET AXIAL DISP (0 POWER) (MIC)

427 DIAMETER GAP WIDTH (0 POWER) (MIC) 477 PELLET RADIAL SWELL DISP (0 POWER) (MIC)

428 PCMI PRESSURE (0 POWER) (MPA) 478 PELLET AXIAL SWELL DISP (0 POWER) (MIC)

429 PELLET ELONGATION (0 POWER) () 479 CLAD RADIAL STRAIN (0 POWER) ()

430 CLAD ELONGATION (0 POWER) () 480 CLAD CIRCUM STRAIN (0 POWER) ()

431 CLAD OUT DIAMETER CHANGE(0 POWER) (MIC) 481 CLAD AXIAL STRAIN (0 POWER) ()

432 ------NON USE--------------------------- 482 CLAD AXIAL GROWTH STRAIN (0 POWER) ()

433 ------NON USE--------------------------- 483 CLAD RADIAL DISP (0 POWER) (MIC)

434 ------NON USE--------------------------- 484 CLAD AXIAL DISP (0 POWER) (MIC)

435 ------NON USE--------------------------- 485 CLAD AXIAL GROWTH DISP (0 POWER) (MIC)

436 ------NON USE--------------------------- 486 ------NON USE---------------------------

437 ------NON USE--------------------------- 487 ------NON USE---------------------------

438 ------NON USE--------------------------- 488 ------NON USE---------------------------

439 ------NON USE--------------------------- 489 ------NON USE---------------------------

440 ------NON USE--------------------------- 490 ------NON USE---------------------------

441 ------NON USE--------------------------- 491 CLAD TEMPERATURE (C)

442 ------NON USE--------------------------- 492 CLAD CIRCUM STRESS (MPA)

443 ------NON USE--------------------------- 493 CLAD Lr of FAC (-)

444 ------NON USE--------------------------- 494 CLAD Kr of FAC (-)

445 ------NON USE--------------------------- 495 CLAD Lr of A(Lr_Kr) (-)

446 ------NON USE--------------------------- 496 CLAD Kr of A(Lr_Kr) (-)

447 ------NON USE--------------------------- 497 CLAD KI of FAC (MPam12)

448 ------NON USE--------------------------- 498 ------NON USE---------------------------

449 ------NON USE--------------------------- 499 ------NON USE---------------------------

450 ------NON USE--------------------------- 500 ------NON USE---------------------------

JAEA-DataCode 2013-009

- 279 -

TableA11 (66) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

501 PRODUCED HE DENSITY (ATOMSCM3) 551 OUTER TUBE TEMPERATURE (C)

502 PRODUCED HE(Cm-242) (ATOMSCM3) 552 LOOP WATER TEMPERATURE (C)

503 PRODUCED HE(Cm-244) (ATOMSCM3) 553 CAPSULE CYLINDER TEMPERATURE (C)

504 PRODUCED HE(O-16) (ATOMSCM3) 554 ENERGY DEPOSITION (JG-FUEL)

505 PRODUCED HE(T-fiss) (ATOMSCM3) 555 FLOW OUT ENTHALPY (JG-FUEL)

506 PRODUCED HE(ALHPA) (ATOMSCM3) 556 AXIAL UPPER END COORDINATE (MM)

507 Cm-242 DENSITY (ATOMSCM3) 557 AXIAL PELLET ELEM UPPER END COORDI(MM)

508 Cm-244 DENSITY (ATOMSCM3) 558 GRAIN SEPARATION RADIAL COORDINATE (MM)

509 PLENUM HE GAS PRESSURE (MPA) 559 PELLET ELONGATION (ELASTIC+PLASTIC) ()

510 PLENUM HE DENSITY (ATOMSCM3) 560 CLAD ELONGATION (ELASTIC+PLASTIC) ()

511 GAS BUBBLE INNER FORCE (DYNE) 561 RELEASED FP GAS VOLUME (NTP) (MM3)

512 GRAIN COMBINE RESISTANCE (DYNE) 562 RELEASED HE GAS VOLUME (NTP) (MM3)

513 PLENUM TEMPERATURE (C) 563 PELLET MAXIMUM TEMPERATURE (C)

514 PRODUCED HE(Pu-238) (ATOMSCM3) 564 PELLET MAXIMUM TEMPERATURE POSITION

(MM)

515 Pu-238 DENSITY (ATOMSCM3) 565 CLAD AVERAGE HYDROGEN DENSITY (WTPPM)

516 HE GENERATE RATE(Cm-242) (ATOMSCM3-S) 566 PROSPECTIVE CLAD CRACK LENGTH A1 (MIC)

517 HE GENERATE RATE(Cm-244) (ATOMSCM3-S) 567 PROSPECTIVE CLAD CRACK LENGTH A2 (MIC)

518 HE GENERATE RATE(Pu-238) (ATOMSCM3-S) 568 EFFECTIVE FAST FLUENCE (NCM2)

519 HE GENERATE RATE(O-16) (ATOMSCM3-S) 569 EFFECTIVE COLD WORK (-)

520 HE GENERATE RATE(T-fiss) (ATOMSCM3-S) 570 CLADDING TEMPERATURE (C)

521 Am-241 DENSITY (ATOMSCM3) 571 AVERAGE RATE OF CHANGE OF CLAD

TEMP(CS)

522 Am-243 DENSITY (ATOMSCM3) 572 PLENUM VOLUME (CC)

523 Np-237 DENSITY (ATOMSCM3) 573 AVERAGE FISSION GAS RATIO IN GRAIN ()

524 Pu-239 DENSITY (ATOMSCM3) 574 AVERAGE FISSION GAS RATIO IN BOUNDARY()

525 Pu-240 DENSITY (ATOMSCM3) 575 J-INTEGRAL (kNm)

526 Pu-241 DENSITY (ATOMSCM3) 576 SCALE OF NOTCH LENGTH TO RING THICK (-)

527 Pu-242 DENSITY (ATOMSCM3) 577 INTERNAL RADIUS (MM)

528 NEUTRON FLUX (NCM2-S) 578 RING THICKNESS (MM)

529 NEUTRON FLUENCE (NCM2) 579 TEMPERATURE AT THE TIP OF CRACK (C)

530 INNER GAS PRESSURE (MPA) 580 INTERNAL STRAIN ()

531 PELLET SWELLING STRAIN(CLUSTER BUILD)() 581 ------NON USE---------------------------

532 HE SOLUBILITY (ATOMSCM3) 582 ------NON USE---------------------------

533 DEPOSITED HE UNDER SUPER-SAT(ATOMSCM3) 583 ------NON USE---------------------------

534 SEG AV PRODUCED HE DENSITY (ATOMSCM3) 584 ------NON USE---------------------------

535 SEGMENT AVERAGE HE GAS RELEASE () 585 ------NON USE---------------------------

536 PRODUCED HE (ATOMS) 586 ------NON USE---------------------------

537 RELEASED HE (ATOMS) 587 ------NON USE---------------------------

538 RELEASED HE FROM INNER BOUNDARY (ATOMS) 588 ------NON USE---------------------------

539 RELEASED HE FROM OUTER BOUNDARY (ATOMS) 589 ------NON USE---------------------------

540 HE GENERATE RATE(ALHPA) (ATOMSCM3-S) 590 ------NON USE---------------------------

541 PELLET SHEAR CREEP STRAIN () 591 ------NON USE---------------------------

542 PELLET SHEAR PLASTIC STRAIN () 592 ------NON USE---------------------------

543 PELLET SHEAR ELASTIC STRAIN () 593 ------NON USE---------------------------

544 PELLET SHEAR RELOCATION STRAIN () 594 ------NON USE---------------------------

545 CLAD SHEAR CREEP STRAIN () 595 ------NON USE---------------------------

546 CLAD SHEAR PLASTIC STRAIN () 596 ------NON USE---------------------------

547 CLAD SHEAR ELASTIC STRAIN () 597 ------NON USE---------------------------

548 HEATING STEAM LAYER TEMPERATURE (C) 598 CLAD SURFACE VAPOR FILM HEAT

FLUX(WCM2)

549 INNER TUBE TEMPERATURE (C) 599 CRITICAL HEAT FLUX (WCM2)

550 HELIUM GAS LAYER TEMPERATURE (C) 600 FILM THICKNESS (MIC)

JAEA-DataCode 2013-009

- 280 -

Table A12 Title list for X-axis of plotted figures

NO X-axis title

1 TIME (HOUR)

2 RADIAL COORDINATE (MM)

3 AXIAL COORDINATE (MM)

4 BURNUP (MWDTUO2)

5 LINEAR HEAT RATE (WCM)

6 AVERAGE BURNUP (MWDTUO2)

7 AVERAGE LINEAR HEAT RATE (WCM)

8 TIME (SEC)

9 ENERGY DEPOSITION (JG-FUEL)

10 ENERGY DEPOSITION (JG-FUEL)

11 TIME (DAY)

12 TIME (MIN)

13 BURNUP (GWDTUO2)

14 BURNUP (MWDTU)

15 BURNUP (GWDTU)

16 AVERAGE BURNUP (GWDTUO2)

17 AVERAGE BURNUP (MWDTU)

18 AVERAGE BURNUP (GWDTU)

19 TIME (MS)

20 RADIAL COORDINATE (MM)

21 RADIAL COORDINATE (CM)

22 R-COORDINATE IN A GRAIN (MIC)

23 BURNUP (MWDTMOX)

24 AVERAGE BURNUP (MWDTMOX)

25 BURNUP (GWDTMOX)

26 BURNUP (MWDTM)

27 BURNUP (GWDTM)

28 AVERAGE BURNUP (GWDTMOX)

29 AVERAGE BURNUP (MWDTHM)

30 AVERAGE BURNUP (GWDTHM)

JAEA-DataCode 2013-009

- 281 -

Table A13 Title list for Y-axis of plotted figures (Group output)

NO MYTITL1

1 BURNUP (MWDTUO2)

2 BURNUP (GWDTUO2)

3 BURNUP (MWDTU)

4 BURNUP (GWDTU)

5 FISSON GAS RELEASE ()

6 PLENUM PRESSURE (MPA)

7 PLENUM VOLUME (CC)

8 ELONGATION ()

9 CLAD OUTER DIA CHANGE (MIC)

10 LINEAR HEAT RATE (WCM)

11 RELEASED IODINE (GCM2)

12 TEMPERATURE (C)

13 DIAMETER GAP (MIC)

14 PCMI PRESSURE (MPA)

15 RELEASED FP GAS (001MOL)

16 STRESS (MPA)

17 PELLET STRESS (MPA)

18 CLAD STRESS (MPA)

19 STRAIN ()

20 PELLET STRAIN ()

21 CLAD STRAIN ()

22 DISPLACEMENT (MIC)

23 RADIAL DISPLACEMENT (MIC)

24 AXIAL DISPLACEMENT (MIC)

25 COOLANT MASS FLUX (KGCM2-S)

26 INTERGRANULAR BUBBLE RADIUS (MIC)

27 FG DENSITY IN GRAIN (ATOMSCM3)

28 FG DENSITY IN BOUND (ATOMSCM2)

29 DIFFUSION COEFFICIENT (CM2S)

30 ENTHALPY (JG-FUEL)

31 PELLET TEMPERATURE (C)

32 CLADDING TEMPERATURE (C)

33 PRODUCED HE DENSITY (ATOMSCM3)

34 CLAD DEVIATION STRESS (MPA)

35 GRSEP MDL DEFINED FORCE (DYNE)

36 HE GENERATE RATE (ATOMSCM3-S)

37 MINOR ACTINIDE DENSITY (ATOMSCM3)

38 PRODUCED OR RELEASED HE (ATOMS)

39 PELLET AXIAL DISPLACEMENT (MIC)

40 PELLET AXIAL COORDINATE (MM)

41 BURNUP (MWDTMOX)

42 BURNUP (GWDTMOX)

43 BURNUP (MWDTHM)

44 BURNUP (GWDTHM)

45 INCIPIENT CRACK LENGTH (MIC)

46 FAST NEUTRON FLUENCE (NEUTRONCM2)

47 ------NON USE---------------------------

48 ------NON USE---------------------------

49 ------NON USE---------------------------

50 ------NON USE---------------------------

JAEA-DataCode 2013-009

- 282 -

A2 Relationship between IDNO and array variables

Table A21 Relationship of IDNO for FEMAXI-7 (and RANNS) IDNO Array variable name COMMON name 1- 30 TMDAT1 (40) OUTPL

31 - 40 TMDAT11 (10NNZ1) OUTPL2 41 - 100 TMDAT2 (60NNZ1) OUTPL

101 - 250 TMDAT3 (150NPC1) - 251 - 300 TMDAT9 (50NPB1) - 301 - 400 TMDAT7 (100NM211) - 401 - 420 TMDAT4 (20) OUTPL 421 - 450 TMDAT5 (30NNZ1) OUTPL 451 - 470 TMDAT6 (50NPC1) - 471 - 490 TMDAT8 (50NM211) - 491 - 500 TMDAT12 (10NNZ) OUTPL2 501 - 600 TMDAT13 (100NRBNNZ) OUTPL2

NNZ=42 NNZ1=43 NPC=NPR1(73) NPB=NPR2(74) NM21=NN2+1(73) Here NNZ= 42 ie number of segments in the axial direction (up to 40) + upper and lower plenums NPR1 number of ring elements of pellet stack in thermal model and entire rod length mechanical model number of ring elements (up to 72) +1 NN As the number of ring elements in the radial direction of pellet in local mechanical analysis model is 36 and the number of Gaussian points in each element is 2 NN2 is the total number of Gaussian points in the ring elements of pellet and NN2+1 is the total number of nodes in the ring elements in the local mechanical analysis model

Table A22 Relationship of IDNO for EXPLOT IDNO Array variable name

1 ndash 30 TDATA1 (30) 31 - 40 TDATA8 (10NNZ1)

41 - 100 TDATA2 (60NNZ1) 101 - 250 TDATA3 (15073NNZ)

(198 ndash 200) TDATA9 (8013NNZ1) 251 - 300 TDAT10 (5074NNZ)

251 ndash 300 (IDR=14) TDAT12 (10172NNZ) 301 - 400 TDATA7 (10073NNZ) 401 - 420 TDATA4 (20) 421 - 450 TDATA5 (30NNZ1) 451 - 490 TDATA6 (4073NNZ) 491 - 500 TDAT11 (10NNZ1) 501 - 600 TDAT13 (10074NNZ)

NNZ=42 NNZ1=43

JAEA-DataCode 2013-009

- 283 -

A3 Subroutine list

Table A3 lists the FEMAXI-7 subroutines which are classified in terms of their analytical functions The abbreviations in the table are as follows

P Program controlling routines plotter routines and other auxiliary function

subroutines which are not included in the description of analytical models T Subroutines used in the thermal analysis models M1 Subroutines used in the entire rod length mechanical analysis model M2 Subroutines used in the 2-D local mechanical analysis model

Table A3 Subroutine and functions of FEMAXI-7

Name Function P T M1 M2 AAZERO Zero setting of common areas ABNDTA Routine to check if abnormal value is obtained or not ADBU Calc of burnup increment from time history increment ADRESP Calc of address in the matrix in contact state ADRESS Calc of address in matrix ADTM Calc of time history increment from burnup increment

AMDIF Calc of number density of fission gas atoms in intra-grain bubbles (rate-law model)

ANDIF Calc of number density of intra-grain gas bubbles (rate-law model) BBL Calc of intra-grain bubble radius BBL2 Auxiliary routine for calc of intra-grain bubble radius BBR Calc of intra-grain bubble radius (rate-law model)

BBR2 Auxiliary routine for calc of intra-grain bubble radius (rate-law model)

BDMAT Formation of [B]T[D] matrix BFMAX Calc of saturated number density of gas atoms at grain boundary BLOCKDATA Block data list BLR2 Calc of internal gas pressure of lenticular (grain boundary) bubbles BMAT Formation of [B] matrix

BOUNDF Calc of nodal force on the upper surface of pellet in the axial direction

BUFSTF Setting the spring constants of dish element (FEMAXI) and buffer element (RANNS)

BURNUP Calc of burnup CAGROW Calc of cladding irradiation growth in the axial direction calequilibrbl Calc of bubble radius in equilibrium state CANDM Calc of fission gas release model

CANDMH Calc of He diffusion inside grain with boundary condition of He concentration at grain boundary

CANDMT Calc of fission gas release model (rate-law model) CANEAL Calc of effective fast neutron fluence and cold work

JAEA-DataCode 2013-009

- 284 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

CCPEQ1 Cladding creep model CCPEQ2 Cladding creep model CCPEQ3 Cladding creep model CCPEQ4 Cladding creep model CCPEQ5 Cladding creep model CCPEQ6 Cladding creep model CANEAL Calc of effective fast neutron fluence and cold work CCPEQ1 Cladding creep model CCPEQ2 Cladding creep model CCPEQ3 Cladding creep model CCPEQ4 Cladding creep model CCPEQ5 Cladding creep model CCPEQ6 Cladding creep model CCPEQ7 Cladding creep model CCPEQ8 Cladding creep model CCPEQ9 Cladding creep model CCPEQ10 Cladding creep model (dummy) CCREEP Calc of cladding creep strain CDEDT Calc of temperature-differential term of cladding Youngrsquos moduli CDENS Cladding density

CDNDT Calc of temperature differential term of strain-hardening of cladding

CELMOD Cladding Youngrsquos modulus

CFRFZ Calc of forces at inner surface of cladding in the radial and axial directions

CDNDT Calc of temperature-differential term of cladding strain-hardening exponent n

CHCAP Calc of cladding volumetric specific heat CHKDTA Routine to check if abnormal value is obtained or not

CHKNAME Check routine for name-list variables at the beginning of Re-start calculation

CHSOFT Calc of stress-differential term of cladding yield function CLBDF Calc of contact force on the upper surface of pellet

CLDKDT Temperature-differential term of 02 ultimate strength of cladding

CLEAR Zero setting of real number areas CLEARB Zero setting of region of COMMONOTHER CLEARG Zero setting of region of COMMONGAUSS CLOXD Routine of cladding oxidation

CMAT Calc of effective Youngrsquos moduli of pellet and cladding and Poissonrsquos ratio

CMAT1 Formation of pellet [C] matrix CMAT2 Formation of cladding [C] matrix

JAEA-DataCode 2013-009

- 285 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

CMHARD Calc of cladding Mayer hardness CNSTR Setting of displacement increment COLECT Calc of total stiffness matrix and loading vector

COMV2 Convergence routine for coupled calc of thermal and mechanical analyses

CONST1 Composition of the total matrix CONSTF Routine of controlling the composition of total matrix CONSTR Setting of the composition of total matrix and boundary conditions CONTROL Control of entire program

COORDI Setting of shape coordinates for FEM in the local mechanical analysis by quadratic elements

COORDI1 Setting of shape coordinates for FEM in the local mechanical analysis by linear elements

CORRO Calc of cladding outer surface oxidation rate CPOIR Calc of Poissonrsquos ratio of cladding CPUGH Control routine of Pughrsquos reversal method CRACK Setting of pellet crack status CREEP1 Formation of [Cc] matrix and creep strain vector cε∆ CREEP2 Formation of creep strain increment cε∆ of cladding CRN Cladding hardening exponent CTHCON Calc of cladding thermal conductivity CTHEX Cladding thermal expansion CTSOFT Calc of temperature differential term in cladding yield function CUBIC1 Calc of bubble radius as the largest real root of cubic equation CUBIC2 Calc of bubble radius as the largest real root of cubic equation CYIE Calc of Zircaloy yield stress (02 proof stress) CYIEZ Zr liner yield stress (02 proof stress) CYIE2 Calc of Zircaloy yield stress (size of yield surface at ε p ) DATE2 Date of calculation DEFBET Setting the pellet hot-press parameter DELTAN FEM mesh element data in the local mechanical analysis by

quadratic elements

DELTAN1 FEM mesh element data in the local mechanical analysis by linear elements

DENSF Pellet densification model DEVSIG Deviation stress DFCLAD Formation of loading vector of cladding DFCLAD2 Formation of loading vectors in cladding DFPLT Formation of loading vector of pellet DFX Determines the size of cladding yield surface DIFC Diffusion coefficient of FISSION atom in pellet grains DIFCON Xe-He mutual diffusion coefficient

JAEA-DataCode 2013-009

- 286 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

DIFH Diffusion coefficient of He inside grain DIFV Diffusion coefficient of vacancy DLAX Solving the asymmetrical matrix DOT Routine for Pughrsquos reversal method in cladding creep DPMAT Formation of [DP] matrix DPST Calc of ∆ε p

DRYUPD Updating the temperature distribution of cladding temperature control geometry

ELMLP1 Control of formation of element stiffness matrix and loading vector ELMLP2 Control of calculation of stress-strain of elements EPTODP Calc of displacement from the strain at power (hot) state EQIEPS Calc of equivalent strain EQISIG Calc of equivalent stress EQSCAL Convergence calculation of size of yield surface at ε p ERF The Error function ERFUNC The Error function ESMAT Formation of element stiffness matrix EXTSTR Calc of thermal stress on the intra-granular gas bubbles FCP Calc of coolant specific heat FCPEQ1 Pellet creep model FCPEQ2 Pellet creep model FCPEQ3 Pellet creep model FCPEQ4 Pellet creep model FCPEQ5 Pellet creep model FCPEQ11 Pellet creep model FCPEQ15 Pellet creep model FCREEP Calc of pellet creep strain (MATPRO-09) FDIST Calc of flux depression in pellet in the radial direction FDISTF Calc of flux depression in pellet in the radial direction FELMOD Calc of pellet Youngrsquos modulus FEMAXI Main routine of local mechanical analysis FEMISS Calc of pellet emissivity

FEMRDS Updating and outputting the Entire rod length mechanical analysis and making Re-start file to be taken over to RANNS

FEMROD Main routine of entire length mechanical analysis FGPRO Calc of fission gas generation FGPROR Calc of the yield of Xe and Kr FGRELN Calc of fission gas release rate at each element of pellet FHSOFT Calc of stress-differential term of pellet yield functionσ y FIRSTSTEP Setting of initial conditions of transient FGR model FISRAT Calc of fission density

JAEA-DataCode 2013-009

- 287 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

FLMCON Calc of cladding surface heat transfer coefficient by Jens-Lottes equation

FLOAD Calc of element loading vector FLXDEP Calc of flux depression in pellet in the radial direction FORCE Calc of total external force vector FPOIR Poissonrsquos ratio of pellet FPRES1 Calc of effective width of surface node in linear element FPRES2 Calc of effective width of surface nodes FSWELL Pellet swelling model FTSOFT Calc of temperature-differential term of pellet yield function σY FX Routine to determine the size of cladding yield surface FYIE Pellet yield stress (02 proof stress) GAPCON Calc of gap conductance GAPCON _NSR77 Calc of gap thermal conductance by Ross and Stoute model

GAPELN Contact judgment of pelletclad and pelletpellet GAPMOD Convergence calculation of gap conductance GASFLW Model of gas flow and diffusion in P-C gap space

GAULP1 Formation of stiffness matrix and loading vectors at gauss point in element

GAULP2 Calc of stress-strain at gauss point in element

GBCLS Calc of re-closure of grain boundary gas bubbles in rate-law model

GBCONB Calc of radius of bubble resulted from bubble coalescence GPSSET Setting of boundary conditions GRAIN Calc of pellet grain growth GTHCON Thermal conductivity of gases GTHCON _NSR77 Thermal conductivity of gases

GVISCO Viscosity coefficient of gases HBSPRT Generation of output file of HBS model HEADER Title of the local mechanical analysis HELRLS Routine of calc of He gas release HEPRO Properties of He gas (thermal conductivity specific heat density) HEUPD Time-step wise updating of the variables related to He model HFACT Determining the width of element for dish space HMOD4 Equation of transient boiling+ film boiling (RELAP-5)

HOKAN Interpolation between the 100 equal-volume ring elements and 10 equal-thickness ring elements in a pellet

HOKAN1 Interpolation routine used in reading PLUTON results

HOKAN2 Interpolation routine for power density profile in the radial direction of pellet

HOKAN5 Interpolation between iso-volumetric ring element geometry and iso-thickness ring element geometry of pellet stack

JAEA-DataCode 2013-009

- 288 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

HOKANB Calc of fraction of rim structure formation HOTVOL Auxiliary routine to calculate plenum volume

HTRMOD Calc of cladding surface heat transfer coefficient depending on the coolant condition

ICLEAR Zero setting of integer areas INIDRY Setting of initial values of variables of dry-out model

INIFEM Setting of initial values of variables of entire rod length mechanical model

INIGAS Calc of plenum gas pressure and volume in hot stand-by condition INIMAT Calc of [C] matrix INIRDT Setting of initial values of variables of thermal analysis INISET Setting of initial values of variables in coordinates INISTR Calc of initial strain INPGER Generator of historical input data INPHIS Input routine of power history INPHS Input history routine for auxiliary use in INPHIS INPIMG Print-out of input data image INPPLU Input routine for the PLUTON code INPR Radial meshing in the local mechanical analysis INPROD Input routine for output file of the RODBURN code INPUT1 Input routine for thermal analysis INTG Calc of the coefficient matrices [A] and [E] for fission gas release INTGH Calc of the coefficient matrix [H] for fission gas release INTGX Volumetric integral of residual fission gas in pellet grains INTPLT Routine of quadratic interpolation

INTRA3 Calc of fission gas atoms diffusion inside grain for intra-grain gas bubble growth model

INV3 Inverse matrix of 3times3 symmetrical matrix INVERS Inverse matrix of 4times4 symmetrical matrix JACK1 Jacobian of linear elements JACK2 Jacobian of quadratic elements

JUDGE Obtaining control factor for the minimum time-step used in the changes of contact-to-non-contact and elastic-to-plastic states

JUDGFS Routine to judge the bonding-or-sliding state for each contact pair in every axial segment

KOGAI_PARAM Setting the parameters of Kogai FGR model KOGAI_RBDOT Calc of bubble radius growth of Kogai FGR model KOGAIMODEL Main routine of Kogai FGR model

LASSEM Option for additional FGR from rim structure Lassmann empirical model

LINSET Setting of node array variables at outer surface in the 2-D local mechanical model for quadratic elements

LINSET1 Setting of node array variables at outer surface in the local mechanical model for linear elements

JAEA-DataCode 2013-009

- 289 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

LOCALI Storage and extract of information at gauss point MAIN Main routine MAKEH Calc of heat transfer coefficient h MATDAT Setting of materials properties for heat conduction calc MATDEF Determination of materials properties option MDEPS0 Calc of initial strain in rod entire length analysis

MDEPSP Calc of initial strain of plenum part in entire rod length mechanical analysis

MDSIG Calc of stress in the rod entire length analysis MESHP Element digitization of pellet into 100 equal-volume rings MODIFY Setting of contact boundary conditions in local mechanical analysis MODSET Calc of total matrix area in local mechanical analysis MOVE Storage of total matrix (entire length analysis) NCOUPL Initial setting of contact pair in local mechanical analysis NR Obtaining the solution of fifth-degree equation by Newton method

NVACAN Determining the intra-grain gas bubble number density in the gas bubble growth model

OpenInputFiles Routine for setting open statements OPTSO2 Solution of asymmetrical matrix OPTSOL Solution of symmetrical matrix OUTELM Output of stress and strain at Gaussrsquos point in element OUTELM1 Output of stress and strain at Gaussrsquos point in linear element

OUTEM Auxiliary routine for the output of stress and strain at Gaussrsquos point in element

OUTEM1 Auxiliary routine for the output of stress and strain at Gaussrsquos point in linear elements

OUTEM2 Auxiliary routine for the output of stress and strain at Gaussrsquos point in element

OUTEM3 Auxiliary routine for the output of stress and strain at Gaussrsquos point in linear elements

OUTND Auxiliary routine for output of nodal displacement OUTND1 Auxiliary routine for output of nodal displacement OUTND3 Auxiliary routine for the output of nodal displacement in linear

elements

OUTND4 Auxiliary routine for the output of nodal displacement in linear elements

OUTNOD Output of nodal displacement OUTNOD1 Output for nodal displacement in linear elements OUTP Output of time-dependent variables in the entire length analysis

OUTP1 Output of time-dependent variables in the local mechanical analysis

OUTP2 Summary output of deformation information which is given by the entire length mechanical analysis to the thermal analysis model

JAEA-DataCode 2013-009

- 290 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

OUTPT0 Final summary output 0 OUTPT1 Final summary output 1 OUTPT2 Final summary output 2 OUTPT3 Final summary output 3 P1 Shape function of linear element P2 Shape function of quadratic element PDATA1 Output of stress and strain at Gaussrsquos point in element PDATA1A Routine to store data for plotting output in linear elements PDATA2 Output of stress and strain at Gaussrsquos point in element PDATA2A Routine to store data for plotting output in linear elements PDATA3 Output of stress and strain at Gaussrsquos point in element PDATA3A Routine to store data for plotting output in linear elements PDEN Pellet theoretical density PDENS Densification strain of pellet PEXT14 Calc of external pressure imposed on grain boundary gas bubbles

when IPEXT=14

PFRFZ Calc of pellet axial force PHCAP Specific volumetric heat of pellet PHIST Time step control PJUMP Initial relocation PLFZ Calc of axial force in entire rod length mechanical analysis PLOTLN Mapping of gap contact state PLOTLN1 Mapping of gap contact state in linear elements PLOUT PLUTON output file PLUTN2 Routine for reading the PLUTON result output file POLATE Interpolating routine used in calc of viscosity coefficient of gas POROST Calc of total porosity in pellet stack elements POWDIS Calc of power distribution PREEPS Setting of boundary condition for calc of initial strain increment

PREPCM Setting the values of coordinate displacement function volume etc at current time step

PRERDT Setting the initial state of updated time-step PRHIS2 Output routine for power history PRINT0 Output of input data of thermal calculation PRINT1 Output of time-dependent variables in thermal analysis PRINT2 Output of time-dependent variables in gap gas state PRINT3 Output of time-dependent temperature distribution PRINT5 Detailed output of time-dependent variables in thermal analysis PRIOPT Output of all the optional parameters PROBD1 Setting of pellet axial force condition PROBDF Judgment of pelletpellet contact state PROBTY Judgment of yieldunloading state

JAEA-DataCode 2013-009

- 291 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

PROFIL Address calculation by profile method PSTPCM Control of the output routine of entire length mechanical analysis PSWELL Pellet swelling strain PTHCON UO2 pellet thermal conductivity PTHEX Pellet thermal expansion PUGH Calc of cladding creep by Pughrsquos reversal method

PX1 partpartξN of linear element in FEM

PX2 partpartξN of the quadric finite element in FEM

PY1 partpartηN of linear element in FEM

PY2 partpartηN of the quadric finite element

RDGAS1 Setting of time step width for gas transfer calculation in the axial direction

RDGAS2 Diffusion and flow transfer of gas in the axial direction RDTEMP Control of entire thermal analysis RDTUPD Routine for updating variables related to thermal analysis

READFM Reading routine from Re-start file in entire rod length mechanical analysis

READFM2 Reading routine from Re-start file in local mechanical analysis READRD Reading routine from Re-start file in thermal analysis REDIS Calc of re-dissolution rate of fission gas atoms to solid phase REDSTR Re-distribution of fission gas density after grain growth of pellet REDTIT Reading of the title sentence

REMESH Re-sizing of the cladding elements by the progress of the waterside corrosion

REMSH2 Re-sizing of the cladding elements by the progress of the waterside corrosion (for ten ring elements)

REPLG Updating of the stress and strain at Gauss points REPLN Updating of the force and displacement at nodal points RIMFGR Calc of additional FGR from rim layer RIMPOR Calc of gas pores in rim structure RMESH Calc of radial coordinate by re-sizing of cladding elements

RMESHB Setting the initial coordinate values of the radial ring element of cladding

RMESHC Calc of the radial coordinate values of cladding in ERL mechanical model

RMESHP Calc of the radial coordinate values of pellet in ERL mechanical model

RODXE Calc of yield of Xe+Kr generation from RODBURN result file

RWPCM Storing and resetting of initial values in the entire length mechanical analysis

SATP Determination of saturation temperature enthalpy and specific volume of saturated water and steam by given pressure

JAEA-DataCode 2013-009

- 292 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

SATT Determination of pressure enthalpy and specific volume of saturated water and steam by given temperature

SAVFM1 Setting of the output variables in local mechanical analysis

SAVFM2 Setting of the plotting output variables in local mechanical analysis

SAVFM3 Setting of the plotting output variables in local mechanical analysis by linear elements

SAVPM1 Setting of the output variables in entire length mechanical analysis

SAVPM2 Setting of the plotting output variables in entire length mechanical analysis

SAVRD1 Setting of the output variables in thermal analysis SAVRD2 Setting of the plotting output variables in thermal analysis SBES0 0-th Bessel function SBES1 Primary Bessel function SCNHAL Calc of cladding surface temperature and heat transfer coefficient SCRITH Calc of coolant critical heat flux SDENS Calc of Na (sodium) density SECOND2 Counting the calculation time (sec) SETR Re-division of FEM elements in grain after grain growth in pellet

SETR0 Setting of initial values of variables in coordinate inside grain of pellet

SETRH0 Setting of initial values of variables in coordinate inside grain of pellet for He diffusion calc

SHAPE1 Linear shape function SHAPE2 Quadratic shape function SHCAP Specific heat of Na SNDPLT Making of the output file for plotting SOLFEM Solution routine of stiffness matrix SOLVE Solver for fission gas atoms diffusion calculation of 3 elements SOLVE2 Solver for fission gas release calculation

SOLVF1 Solution of bonded state of pellet-cladding gap by setting boundary conditions

SOLVF2 Setting of sliding state between pellet and cladding SOLVF3 Setting of bonded state between pellet and cladding

SPROP Calculation of coolant specific heat thermal conductivity and viscosity coefficient

SSMAT Formation of total matrix for each segment STABL Calc of coolant temperature enthalpy specific volume and quality STBLDT Routine to read steam table STBLED Routine to output steam table STBLER Routine to output the error message of steam table STBLNC Setting of steam table caption

JAEA-DataCode 2013-009

- 293 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

STBLPR Determination of index of pressure table in steam table STBLTM Determination of index of temperature table in steam table

STEAM Calc of temperatures enthalpies specific heats and specific volumes of saturated water and steam

STEAMZ Calc of coolant enthalpy and specific volume from temperature and pressure

STHCON Thermal conductivity of Na

STMSI Conversion of quantities calculated by STEAM into SI unit expression

STMZSI Conversion of quantities calculated by STEAMZ into SI unit expression

STRESS Stress strain calculation

STVSH Calc of Na enthalpy from Na temperature or calc of Na temperature from Na enthalpy

SUFCN0 Calc of coolant enthalpy at each axial node

SUFCNA Calc of enthalpy of Na coolant at each axial coordinate

SUFCND Determination of cladding outer surface temperature in dry-out experiment condition

SUFCNH Calc of surface heat transfer coefficient by judging coolant state

SUFCNH2 Determination of cladding outer surface heat transfer coefficient to Na coolant by judging the Na condition

SUFCNS Calc of coolant enthalpy at each axial node at initial state

SUSPRO Materials properties of SUS316 thermal conductivity specific heat and density

TEMP1D One dimensional heat conduction calculation

TEMPIP Setting temperature burnup and pellet density for the calc of local mechanical analysis

TERP04 Routine for linear interpolation of area variables THGAP Calc of gap width at zero-power state THGAP1 Routine to transfer the results of entire length mechanical analysis to

thermal analysis

THGAP2 Setting of the results of entire length mechanical analysis THGAPN Deformation calculation in thermal analysis TIMEB Time step control by pelletpellet contact in the axial direction TIMEG Time step control by pelletclad contact in the radial direction TIMER Main routine for time step control TIMEY Time step control by plasticityunloading TMELT Calc of pellet melting point TMSTP Determination of time step in entire length analysis

TSUR2 Halden empirical equation to determine cladding surface temperature

uffelen _dGasNR Fission gas release rate by Van Uffelen model

JAEA-DataCode 2013-009

- 294 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

UPDPCM Updating of values of entire length mechanical analysis with updating of time step

USMESH Meshing for heat conduction calculation USTEMP Main routine for heat conduction calculation

USTEMP2 Calc of temperature distribution of temperature controlling system of cladding

VLUME0 Calc of plenum volume at zero-power state VLUME2 Calc of plenum space volume in entire length mechanical analysis VLUMES Calc of plenum volume VOID Calc of coolant quality and void fraction

WATER Properties of water and steam thermal conductance thermal conductivity constant pressure specific heat density

WATER0 Properties of water and steam constant pressure specific heat and density

WRITFM Setting routine for initial conditions of the FURBEL code

WRITFM2 Writing output routine for Re-start calc of FEMAXI-7 in 2-D local mechanical analysis

WRITRD Writing output routine for Re-start calc of FEMAXI-7 in thermal analysis

WTMAT Calc of coolant thermal conductivity Prandtle number and viscosity coefficient

WTMAT2 Calc of coolant surface tension WTMAT3 Calc of coolant thermal expansion

WTSAT Calc of coolant saturation temperature specific volume enthalpy and density

WTTMP Calc of temperature-specific volume of water and steam XBDMAT [B]T[D] matrix XBMAT [B] matrix XCHSFT Calculation of stress differential term of cladding yield function

XCREP1 Making the [CC] matrix of cladding creep and Δεc vector XCPEP2 Creep strain rate of claddingε c (MATPRO-09)

XCPEQ2 Calc of )( fc =ε and partpartσ

partpartε

f fc

in cladding creep

XDPMAT [DP] matrix XDPST Calc of equivalent plastic strain increment XDVSIG Deviation stress XELML1 Formation of element matrix and loading vector XELML2 Calc of stress and strain in element XELMP1 Calc of the element matrix and load vector in plenum region XELMP2 Calc of the stress and strain of elements in plenum region XEQEPS Equivalent strain XEQSIG Equivalent stress XESMAT Element stiffness matrix

JAEA-DataCode 2013-009

- 295 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

XFLOAD Element loading vector XIODD Calc of Iodine concentration XPJUMP Initial relocation XPRBTY Judgment of plasticityunloading XPSWEL Pellet swelling strain XPUGH Pughrsquos reversal method for cladding creep

XPURSW Routine controlling the strain change in the time-step of pellet gas bubble swelling calc

ZOEMIS Emissivity of Zirconium oxide layer

JAEA-DataCode 2013-009

- 296 -

A4 Subroutine tree Subroutine tree is described below to show the FEMAXI-7 structure clearly MAIN------SECOND2 |---OPENINPUTFILES |---HEADER----TIME | |--DATE2----DATE_AND_TIME |---INPIMG |---AAZERO----CLEARG | |--CLEARB | |--ICLEAR |---CHKNAME |---INPUT1----PDEN | |--PRINT0 | |--INIDRY----WATER0(4) |---CONTROL---INPGER----HFACT | |--INPR | |--LINSET | |--PLOTLN | |--LINSET1 | |--PLOTLN1 | |--COORDI | |--COORDI1 | |--OUTNOD----OUTND | | |--OUTND3 | |--OUTNOD1---OUTND1 | | |--OUTND4 | |--DELTAN | |--DELTAN1 | |--NCOUPL | |--GPSSET | |--MODSET | |--FPRES2 | |--FPRES1 | |--PRIOPT | |--INPHIS----INPHS | | |--ADBU | | |--ADTM | | |--CDENS-----CDNDT | | |--PRHIS2 | |--INPPLU----PLUTN2----PLOUT | | |--HOKAN1 | | |--HOKAN2 | |--INPROD----ADBU | |--PRHIS2 | |--HOKAN | |--RODXE-----FGPROR |--INISET |--PHIST-----FISRAT | |--ADTM |--RDTEMP(1) |--READFM2 |--FEMAXI(3) |--SAVFM1----OUTPT0----OUTNOD----OUTND | | |--OUTND3

JAEA-DataCode 2013-009

- 297 -

| |--OUTNOD1---OUTND1 | | |--OUTND4 | |--OUTELM----OUTEM | | |--OUTEM2 | |--OUTELM1---OUTEM1 | |--OUTEM3 |--SECOND2 |--SAVFM2----PDATA1 | |--PDATA2 | |--PDATA3 | |--EPTODP | |--PTHEX | |--CTHEX | |--CELMOD |--SAVFM3----PDATA1A | |--PDATA2A | |--PDATA3A | |--EPTODP | |--PTHEX | |--CTHEX | |--CELMOD |--SNDPLT |--ABNDTA----CHKDTA |--WRITFM2 |--OUTPT1----GRAIN |--OUTPT2 |--OUTPT3 (1) RDTEMP----GRAIN |--INIRDT----READRD | |--SETR0 | |--PJUMP-----CELMOD | | |--CPOIR | | |--CTHEX | | |--PTHEX | |--INIGAS | |--FISRAT | |--SETRH0 | |--SUFCNS----WTSAT-----STMSI(5) | |--STMZSI(6) |--HOKAN |--RDGAS1----DIFCON |--PRERDT----STMZSI(6) | |--SDENS | |--SUFCN0----WTSAT-----STMSI(5) | | |--VOID------WTTMP-----STMZSI(6) | | |--STEAMZ(6) | |--STVSH | |--SUFCNA----STVSH | | |--SDENS | |--FISRAT | |--BURNUP | |--FLXDEP----FDISTF----SBES0 | | |--FDIST-----SBES0 | | | |--SBES1 | | |--HOKAN5

JAEA-DataCode 2013-009

- 298 -

| |--FGPRO | |--HOKAN | |--CANEAL | |--TEMP1D----USTEMP----USMESH | |--DRYUPD | |--TSUR2 | |--MATDAT----TMELT | | |--PTHCON | | |--PHCAP | | |--CTHCON | | |--CHCAP | | |--CDENS-----CDNDT | | |--HOKANB | | |--GAPCON----CELMOD | | |--CRN | | |--CYIE | | |--PTHCON | | |--CTHCON | | |--GTHCON | | |--GAPCON_NSR77----GTHCON | | |--GVISCO | | |--FEMISS | | |--ZOEMIS | |----FLMCON | |----POWDIS | |----SUFCNH----SCRITH----WTMAT2 | | |--HTRMOD----WTMAT | | |--WTMAT2 | | |--TERP04 | | |--STMSI | | |--HMOD4 | | |--WTMAT3 | |----SUFCNH2---STHCON | | |--SDENS | | |--SHCAP | |----SUFCND----USTEMP2---MAKEH | |--WATER0(4) | |--DLAX |----THGAPN----PDENS | |--DENSF | |--PTHEX | |--FSWELL | |--CELMOD | |--CPOIR | |--CTHEX | |--FELMOD | |--CRN | |--CYIE | |--CCREEP----CCPEQ1 | | |--CCPEQ2 | | |--CCPEQ8 | | |--CCPEQ9 | | |--CCPEQ4 | | |--CCPEQ5 | | |--CCPEQ7 | | |--CCPEQ3

JAEA-DataCode 2013-009

- 299 -

| |--FCREEP----FCPEQ1 | |--FCPEQ2 | |--FCPEQ4 | |--FCPEQ5 | |--FCPEQ11 | |--FCPEQ15 | |--FCPEQ3 |----THGAP1----PTHEX | |--FSWELL |----SECOND2 |----GAPMOD |----PEXT14 |----FGRELN----MESHP | |--RIMFGR | |--LASSEM | |--FCREEP----FCPEQ1 | | |--FCPEQ2 | | |--FCPEQ4 | | |--FCPEQ5 | | |--FCPEQ11 | | |--FCPEQ15 | | |--FCPEQ3 | |--CANDMT----REDIS | |--DIFC | |--GBCLS | |--BFMAX | |--GRAIN | |--SETR | |--REDSTR | |--INTGH | |--INTGX | |--INTRA3----REDIS | | |--SOLVE | | |--SOLVE2 | | |--INTGX | | |--INTRAB----BBL------BBL2 | | |--ANDIF | | |--NVACAN---NR | | |--AMDIF----REDIS | |--ERFUNC | |--BLR2 | |--FIRSTSTEP----KOGAI_PARAM | | |--CALEQUILIBRBL---CUBIC2 | |--KOGAIMODEL---KOGAI_PARAM | | |--CALEQUILIBRBL---CUBIC2 | | |--UFFELEN_DGASNR | |--GBCONB |----POROST----PDENS | |--DENSF |----HELRLS----CANDMH----SETR | |--INTG | |--INTGH | |--DIFH | |--SOLVE2 | |--INTGX |----VLUMES----HOTVOL----PTHEX | |--CAGROW

JAEA-DataCode 2013-009

- 300 -

|----VLUME2----CAGROW |----RDGAS2----GASFLW----DIFCON |----CLOXD-----CORRO-----CTHCON |----CONV2 |----FEMROD(2) |----THGAP2----PTHEX |----RDTUPD----HEUPD | |--DRYUPD | |--XIODD |----TEMPIP----REMESH2 | |--INTPLT |----SAVRD1----HOKAN |----PRINT1----PRINT2 | |--PRINT3 | |--PRINT5----GRAIN | |--HOKAN |----SAVRD2----HOKAN | |--THGAP-----PTHEX | | |--CELMOD | | |--CPOIR | | |--CTHEX | | |--FELMOD | |--VLUME0----PTHEX |----HBSPRT |----WRITRD |----FEMRDS----FISRAT |--FEMROD(2) |--THGAP2----PTHEX (2) FEMROD------INIFEM----READFM | |--RWPCM | |--RMESH-----RMESHP | |--RMESHC | |--RMESHB----RMESHP | |--RMESHC |----RWPCM |----TMSTP |----PREPCM----XBMAT |----MDEPSP----CTHEX | |--CAGROW |----PREEPS |----MDEPS0----PDENS | |--DENSF | |--XPSWEL----XPURSW | |--XPJUMP----CELMOD | | |--CPOIR | | |--CTHEX | | |--PTHEX | |--PTHEX | |--CTHEX | |--CAGROW |----MATDEF----DEFBET |----XELMP1----XEQSIG | |--CMAT2-----CELMOD | | |--CPOIR | |--XCREP1(7)

JAEA-DataCode 2013-009

- 301 -

| |--INV3 | |--XBDMAT | |--XESMAT |----XELML1----XEQSIG | |--CMAT1-----FELMOD | | |--FPOIR | |--XCREP1(7) | |--CMAT2-----CELMOD | | |--CPOIR | |--INV3 | |--XDPMAT----XEQSIG | | |--FHSOFT | | |--FTSOFT | | |--CHSOFT----CELMOD | | | |--CYIE | | | |--CRN | | |--EQSCAL----FX | | |--DFX | | |--CTSOFT----CELMOD | | | |--CYIE | | | |--CRN | | | |--CLDKDT | | | |--CDNDT | | | |--CDEDT | | |--EQSCAL----FX | | |--DFX | | |--XDVSIG | |--BUFSTF | |--XBDMAT | |--XESMAT | |--XFLOAD |----SSMAT |----DFPLT |----DFCLAD |----DFCLAD2 |----CONSTF----ADRESS | |--CONSTR | |--SOLVF1----OPTSOL | |--SOLVF2----OPTSO2 | |--SOLVF3----OPTSOL | |--ADRESP | |--CONST1 |----SOLFEM----OPTSOL | |--OPTSO2 | |--CNSTR |----XELMP2----MDSIG | |--XEQSIG | |--XCREP2(8) |----XELML2----MDSIG | |--XDPST-----XEQSIG | | |--XDVSIG | | |--FHSOFT | | |--FTSOFT | | |--CHSOFT----CELMOD | | | |--CYIE | | | |--CRN | | |--EQSCAL----FX

JAEA-DataCode 2013-009

- 302 -

| | |--DFX | | |--CTSOFT----CELMOD | | |--CYIE | | |--CRN | | |--CLDKDT | | |--CDNDT | | |--CDEDT | | |--EQSCAL----FX | | |--DFX | |--XEQSIG | |--XPRBTY----FYIE | | |--CYIE2-----CELMOD | | |--CYIE | | |--CRN | | |--EQSCAL----FX | | |--DFX | |--XCREP2(8) |----JUDGFS----PFRFZ |----JUDGE |----SECOND2 |----UPDPCM |----REMESH |----OUTP2 |----PSTPCM----CFRFZ | |--PLFZ | |--OUTP1-----OUTP | |--SAVPM1 | |--OUTP2 | |--SAVPM2----EPTODP | |--PTHEX | |--CTHEX | |--CELMOD |----WRITFM (3) FEMAXI------INISTR----PDENS | |--DENSF | |--PSWELL | |--PTHEX | |--PJUMP-----CELMOD | | |--CPOIR | | |--CTHEX | | |--PTHEX | |--CTHEX | |--CAGROW | |--CELMOD |----GPSSET |----PROFIL |----FORCE |----ELMLP1----LOCALI----CLEARG | |--SHAPE1----JACK1-----PX1 | | | |--PY1 | | |--P1 | | |--PX1 | | |--PY1 | |--SHAPE2----JACK2-----PX2 | | | |--PY2

JAEA-DataCode 2013-009

- 303 -

| | |--P2 | | |--PX2 | | |--PY2 | |--GAULP1----CLEARB | | |--BMAT | | |--INIMAT----CMAT------FELMOD | | | |--FPOIR | | | |--CELMOD | | | |--CPOIR | | |--CREEP1----EQISIG | | | |--DEVSIG | | | |--FCPEQ1 | | | |--FCPEQ2 | | | |--FCPEQ4 | | | |--FCPEQ5 | | | |--FCPEQ11 | | | |--FCPEQ15 | | | |--FCPEQ3 | | | |--CCPEQ1 | | | |--CCPEQ2 | | | |--CCPEQ8 | | | |--CCPEQ9 | | | |--CCPEQ4 | | | |--CCPEQ5 | | | |--CCPEQ7 | | | |--CCPEQ3 | | |--INVERS | | |--DPMAT-----EQISIG | | | |--FHSOFT | | | |--FTSOFT | | | |--CHSOFT----CELMOD | | | | |--CYIE | | | | |--CRN | | | | |--EQSCAL----FX | | | | |--DFX | | | |--CTSOFT----CELMOD | | | | |--CYIE | | | | |--CRN | | | | |--CLDKDT | | | | |--CDNDT | | | | |--CDEDT | | | | |--EQSCAL----FX | | | | |--DFX | | | |--DEVSIG | | |--BDMAT | | |--ESMAT | | |--FLOAD | |--COLECT |----MODIFY |----GAPELN----OPTSO2 |----ELMLP2----LOCALI----CLEARG | |--GAULP2----CLEARB | | |--BMAT | | |--STRESS | | |--EQISIG | | |--DPST------DEVSIG | | | |--FHSOFT

JAEA-DataCode 2013-009

- 304 -

| | | |--FTSOFT | | | |--CHSOFT----CELMOD | | | | |--CYIE | | | | |--CRN | | | | |--EQSCAL----FX | | | | |--DFX | | | |--CTSOFT----CELMOD | | | |--CYIE | | | |--CRN | | | |--CLDKDT | | | |--CDNDT | | | |--CDEDT | | | |--EQSCAL----FX | | | |--DFX | | |--CREEP2----EQISIG | | | |--DEVSIG | | | |--FCPEQ1 | | | |--FCPEQ2 | | | |--FCPEQ4 | | | |--FCPEQ5 | | | |--FCPEQ11 | | | |--FCPEQ15 | | | |--FCPEQ3 | | | |--CCPEQ1 | | | |--CCPEQ2 | | | |--CCPEQ8 | | | |--CCPEQ9 | | | |--CCPEQ4 | | | |--CCPEQ5 | | | |--CCPEQ7 | | | |--CCPEQ3 | | |--CRACK | | |--PROBTY----FYIE | | | |--CYIE2-----CELMOD | | | |--CYIE | | | |--CRN | | | |--EQSCAL----FX | | | |--DFX | | |--FYIE | | |--CYIE2-----CELMOD | | | |--CYIE | | | |--CRN | | | |--EQSCAL----FX | | | |--DFX | | |--BOUNDF | |--CLBDF |----PROBDF |----PROBD1 |----TIMER-----TIMEG | |--TIMEB | |--TIMEY |----EQISIG |----SECOND2 |----REPLN |----REPLG-----LOCALI----CLEARG | |--CRACK | |--EQISIG

JAEA-DataCode 2013-009

- 305 -

|----CPUGH-----LOCALI----CLEARG |--PUGH------EQIEPS |--DOT (4) WATER0------WTSAT----STMSI(5) |--WTMAT |--FCP-------STBLPR----STBLDT | | |--STBLER | |--STBLTM----STBLER |--STMZSI(6) (5) STMSI-------STEAM----SATT------STBLDT | |--STBLER |--FCP-------STBLPR----STBLDT | | |--STBLER | |--STBLTM----STBLER |--SATP------STBLTS----STBLDT | |--STBLER |--WTMAT (6) STMZSI----STEAMZ-----SATP------STBLTS----STBLDT | |--STBLER |--STMPT------STBLER |--STBLTS----STBLDT | |--STBLER |--STBLTM----STBLER (7) XCREP1------XEQSIG |----XDVSIG |----FCPEQ1 |----FCPEQ2 |----FCPEQ4 |----FCPEQ5 |----FCPEQ11 |----FCPEQ15 |----FCPEQ3 |----CCPEQ1 |----CCPEQ2 |----CCPEQ8 |----CCPEQ9 |----CCPEQ4 |----CCPEQ5 |----CCPEQ7 |----CCPEQ3 (8) XCREP2------XEQSIG |----XDVSIG |----FCPEQ1 |----FCPEQ2 |----FCPEQ4 |----FCPEQ5 |----FCPEQ11

JAEA-DataCode 2013-009

- 306 -

|----FCPEQ15 |----FCPEQ3 |----CCPEQ1 |----CCPEQ2 |----CCPEQ8 |----CCPEQ9 |----CCPEQ4 |----CCPEQ5 |----CCPEQ7 |----CCPEQ3

国際単位系(SI)

乗数  接頭語 記号 乗数  接頭語 記号

1024 ヨ タ Y 10-1 デ シ d1021 ゼ タ Z 10-2 セ ン チ c1018 エ ク サ E 10-3 ミ リ m1015 ペ タ P 10-6 マイクロ micro1012 テ ラ T 10-9 ナ ノ n109 ギ ガ G 10-12 ピ コ p106 メ ガ M 10-15 フェムト f103 キ ロ k 10-18 ア ト a102 ヘ ク ト h 10-21 ゼ プ ト z101 デ カ da 10-24 ヨ ク ト y

表5SI 接頭語

名称 記号 SI 単位による値

分 min 1 min=60s時 h 1h =60 min=3600 s日 d 1 d=24 h=86 400 s度 deg 1deg=(π180) rad分 rsquo 1rsquo=(160)deg=(π10800) rad秒 rdquo 1rdquo=(160)rsquo=(π648000) rad

ヘクタール ha 1ha=1hm2=104m2

リットル Ll 1L=11=1dm3=103cm3=10-3m3

トン t 1t=103 kg

表6SIに属さないがSIと併用される単位

名称 記号 SI 単位で表される数値

電 子 ボ ル ト eV 1eV=1602 176 53(14)times10-19Jダ ル ト ン Da 1Da=1660 538 86(28)times10-27kg統一原子質量単位 u 1u=1 Da天 文 単 位 ua 1ua=1495 978 706 91(6)times1011m

表7SIに属さないがSIと併用される単位でSI単位で表される数値が実験的に得られるもの

名称 記号 SI 単位で表される数値

キ ュ リ ー Ci 1 Ci=37times1010Bqレ ン ト ゲ ン R 1 R = 258times10-4Ckgラ ド rad 1 rad=1cGy=10-2Gyレ ム rem 1 rem=1 cSv=10-2Svガ ン マ γ 1γ=1 nT=10-9Tフ ェ ル ミ 1フェルミ=1 fm=10-15mメートル系カラット 1メートル系カラット = 200 mg = 2times10-4kgト ル Torr 1 Torr = (101 325760) Pa標 準 大 気 圧 atm 1 atm = 101 325 Pa

1cal=41858J(「15」カロリー)41868J(「IT」カロリー)4184J(「熱化学」カロリー)

ミ ク ロ ン micro 1 micro =1microm=10-6m

表10SIに属さないその他の単位の例

カ ロ リ ー cal

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できるしかし接頭語を付した単位はもはや コヒーレントではない(b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で量についての情報をつたえるために使われる

 実際には使用する時には記号rad及びsrが用いられるが習慣として組立単位としての記号である数字の1は明 示されない(c)測光学ではステラジアンという名称と記号srを単位の表し方の中にそのまま維持している

(d)ヘルツは周期現象についてのみベクレルは放射性核種の統計的過程についてのみ使用される

(e)セルシウス度はケルビンの特別な名称でセルシウス温度を表すために使用されるセルシウス度とケルビンの

  単位の大きさは同一であるしたがって温度差や温度間隔を表す数値はどちらの単位で表しても同じである

(f)放射性核種の放射能(activity referred to a radionuclide)はしばしば誤った用語でrdquoradioactivityrdquoと記される

(g)単位シーベルト(PV200270205)についてはCIPM勧告2(CI-2002)を参照

(a)量濃度(amount concentration)は臨床化学の分野では物質濃度

  (substance concentration)ともよばれる(b)これらは無次元量あるいは次元1をもつ量であるがそのこと   を表す単位記号である数字の1は通常は表記しない

名称 記号SI 基本単位による

表し方

秒ルカスパ度粘 Pa s m-1 kg s-1

力 の モ ー メ ン ト ニュートンメートル N m m2 kg s-2

表 面 張 力 ニュートン毎メートル Nm kg s-2

角 速 度 ラジアン毎秒 rads m m-1 s-1=s-1

角 加 速 度 ラジアン毎秒毎秒 rads2 m m-1 s-2=s-2

熱 流 密 度 放 射 照 度 ワット毎平方メートル Wm2 kg s-3

熱 容 量 エ ン ト ロ ピ ー ジュール毎ケルビン JK m2 kg s-2 K-1

比熱容量比エントロピー ジュール毎キログラム毎ケルビン J(kg K) m2 s-2 K-1

比 エ ネ ル ギ ー ジュール毎キログラム Jkg m2 s-2

熱 伝 導 率 ワット毎メートル毎ケルビン W(m K) m kg s-3 K-1

体 積 エ ネ ル ギ ー ジュール毎立方メートル Jm3 m-1 kg s-2

電 界 の 強 さ ボルト毎メートル Vm m kg s-3 A-1

電 荷 密 度 クーロン毎立方メートル Cm3 m-3 sA表 面 電 荷 クーロン毎平方メートル Cm2 m-2 sA電 束 密 度 電 気 変 位 クーロン毎平方メートル Cm2 m-2 sA誘 電 率 ファラド毎メートル Fm m-3 kg-1 s4 A2

透 磁 率 ヘンリー毎メートル Hm m kg s-2 A-2

モ ル エ ネ ル ギ ー ジュール毎モル Jmol m2 kg s-2 mol-1

モルエントロピー モル熱容量ジュール毎モル毎ケルビン J(mol K) m2 kg s-2 K-1 mol-1

照射線量(X線及びγ線) クーロン毎キログラム Ckg kg-1 sA吸 収 線 量 率 グレイ毎秒 Gys m2 s-3

放 射 強 度 ワット毎ステラジアン Wsr m4 m-2 kg s-3=m2 kg s-3

放 射 輝 度 ワット毎平方メートル毎ステラジアン W(m2 sr) m2 m-2 kg s-3=kg s-3

酵 素 活 性 濃 度 カタール毎立方メートル katm3 m-3 s-1 mol

表4単位の中に固有の名称と記号を含むSI組立単位の例

組立量SI 組立単位

名称 記号

面 積 平方メートル m2

体 積 立法メートル m3

速 さ 速 度 メートル毎秒 ms加 速 度 メートル毎秒毎秒 ms2

波 数 毎メートル m-1

密 度 質 量 密 度 キログラム毎立方メートル kgm3

面 積 密 度 キログラム毎平方メートル kgm2

比 体 積 立方メートル毎キログラム m3kg電 流 密 度 アンペア毎平方メートル Am2

磁 界 の 強 さ アンペア毎メートル Am量 濃 度 (a) 濃 度 モル毎立方メートル molm3

質 量 濃 度 キログラム毎立法メートル kgm3

輝 度 カンデラ毎平方メートル cdm2

屈 折 率 (b) (数字の) 1 1比 透 磁 率 (b) (数字の) 1 1

組立量SI 基本単位

表2基本単位を用いて表されるSI組立単位の例

名称 記号他のSI単位による

表し方SI基本単位による

表し方平 面 角 ラジアン(b) rad 1(b) mm立 体 角 ステラジアン(b) sr(c) 1(b) m2m2

周 波 数 ヘルツ(d) Hz s-1

ントーュニ力 N m kg s-2

圧 力 応 力 パスカル Pa Nm2 m-1 kg s-2

エ ネ ル ギ ー 仕 事 熱 量 ジュール J N m m2 kg s-2

仕 事 率 工 率 放 射 束 ワット W Js m2 kg s-3

電 荷 電 気 量 クーロン A sC電 位 差 ( 電 圧 ) 起 電 力 ボルト V WA m2 kg s-3 A-1

静 電 容 量 ファラド F CV m-2 kg-1 s4 A2

電 気 抵 抗 オーム Ω VA m2 kg s-3 A-2

コ ン ダ ク タ ン ス ジーメンス S AV m-2 kg-1 s3 A2

バーエウ束磁 Wb Vs m2 kg s-2 A-1

磁 束 密 度 テスラ T Wbm2 kg s-2 A-1

イ ン ダ ク タ ン ス ヘンリー H WbA m2 kg s-2 A-2

セ ル シ ウ ス 温 度 セルシウス度(e) Kンメール束光 lm cd sr(c) cd

スクル度照 lx lmm2 m-2 cd放射性核種の放射能( f ) ベクレル(d) Bq s-1

吸収線量 比エネルギー分与カーマ

グレイ Gy Jkg m2 s-2

線量当量 周辺線量当量 方向

性線量当量 個人線量当量シーベルト(g) Sv Jkg m2 s-2

酸 素 活 性 カタール kat s-1 mol

表3固有の名称と記号で表されるSI組立単位SI 組立単位

組立量

名称 記号 SI 単位で表される数値

バ ー ル bar 1bar=01MPa=100kPa=105Pa水銀柱ミリメートル mmHg 1mmHg=133322Paオングストローム Å 1Å=01nm=100pm=10-10m海 里 M 1M=1852mバ ー ン b 1b=100fm2=(10-12cm)2=10-28m2

ノ ッ ト kn 1kn=(18523600)msネ ー パ Npベ ル B

デ ジ ベ ル dB

表8SIに属さないがSIと併用されるその他の単位

SI単位との数値的な関係は    対数量の定義に依存

名称 記号

長 さ メ ー ト ル m質 量 キログラム kg時 間 秒 s電 流 ア ン ペ ア A熱力学温度 ケ ル ビ ン K物 質 量 モ ル mol光 度 カ ン デ ラ cd

基本量SI 基本単位

表1SI 基本単位

名称 記号 SI 単位で表される数値

エ ル グ erg 1 erg=10-7 Jダ イ ン dyn 1 dyn=10-5Nポ ア ズ P 1 P=1 dyn s cm-2=01Pa sス ト ー ク ス St 1 St =1cm2 s-1=10-4m2 s-1

ス チ ル ブ sb 1 sb =1cd cm-2=104cd m-2

フ ォ ト ph 1 ph=1cd sr cm-2 104lxガ ル Gal 1 Gal =1cm s-2=10-2ms-2

マ ク ス ウ ェ ル Mx 1 Mx = 1G cm2=10-8Wbガ ウ ス G 1 G =1Mx cm-2 =10-4Tエルステッド( c ) Oe 1 Oe  (1034π)A m-1

表9固有の名称をもつCGS組立単位

(c)3元系のCGS単位系とSIでは直接比較できないため等号「   」

   は対応関係を示すものである

(第8版2006年改訂)

この印刷物は再生紙を使用しています

  • Man-0_Title_Contents
  • Man-1_2_3_File System
    • CFem7
    • CFem7
      • Man-4_FEMAXI_Inp Manual
        • Fixed format input (2)
        • Fixed format input (3)
        • 43 Name-list Input (1)
        • Name-list Input (2)
        • Name-list Input (3)
        • 【Note 1】The message ldquoDIMENSION AREA OVER FLOW LTSM =xxxxx LD =4000000rdquo is output and the program execution is terminated when LTSMgtLD To avoid this it is necessary to designate LD by name-list input to make LDgtLTSM At the same time ldquo4000000rdquo i
        • 【Note 2】The message ldquoDIMENSION AREA OVER FLOW LASI=xxxxx LID =500000rdquo is output and the program execution is terminated when LASIgtLID To avoid this it is necessary to designate LID by name-list input to make LIDgtLASI At the same time ldquo5000000rdquo
        • Name-list Input (9)
        • Name-list Input (11)
        • Name-list Input (12)
        • Name-list Input (13)
        • Name-list Input (14)
        • Name-list Input (15)
        • Name-list Input (16)
        • Name-list Input  (17)
        • Name-list Input (18)
        • Name-list Input (19)
        • Name-list Input (21)
        • Name-list Input (22)
        • Name-list Input (23)
        • Name-list Input (24)
        • Name-list Input (25)
        • Name-list Input (26)
        • Name-list Input (27)
        • [Note] Explanation of absorptionrelease model of Helium in UO2
        • and MOX fuels
        • Name-list Input (28)
        • Name-list Input (29)
        • Name-list Input (30)
        • Name-list Input (31)
        • Name-list Input (32)
        • Name-list Input (33)
        • Name-list Input (34)
        • Name-list Input (35) Parameters for Ohta model
        • Name-list Input (36)
        • Name-list Input (37)
        • Name-list Input (38)
        • Name-list Input (40)
        • Name-list Input (41)
        • Name-list Input (42)
        • Name-list Input (43)
        • Name-list Input (44)
        • Name-list Input (45)
          • 45 Calculated physical quantities in ZERO power state
            • -FORMAT (6F 100 2I5)
            • Example of input (1)
            • 2
            • Example of input (2)
            • 21
            • 10
            • 30
            • STOP
              • 47 Setting of cladding outer surface temperature
                  • Man-5_RB_Input Manual
                    • 1 Resonance Integral in each mesh
                    • 2 RABBLE
                    • ORIGEN rarr PWR amp BWR
                      • Man-6_Plot_manual
                        • C2
                        • C2
                        • C2
                        • C2
                        • C3
                        • C4
                          • Man-7_Sample_IO
                          • Man-8_Matpro_modify
                          • App1_2_Title_IDNO
                          • App3_Sub_List
                            • A3  Subroutine list
                              • App4_Sub_Tree
                                • MAIN------SECOND2
                                • |---OPENINPUTFILES
                                • |---HEADER----TIME
                                • | |--DATE2----DATE_AND_TIME
                                • |---INPIMG
                                • |---AAZERO----CLEARG
                                • | |--CLEARB
                                • | |--ICLEAR
                                • |---CHKNAME
                                • |---INPUT1----PDEN
                                • | |--PRINT0
                                • | |--INIDRY----WATER0(4)
                                • |---CONTROL---INPGER----HFACT
                                • | |--INPR
                                • | |--LINSET
                                • | |--PLOTLN
                                • | |--LINSET1
                                • | |--PLOTLN1
                                • | |--COORDI
                                • | |--COORDI1
                                • | |--OUTNOD----OUTND
                                • | | |--OUTND3
                                • | |--OUTNOD1---OUTND1
                                • | | |--OUTND4
                                • | |--DELTAN
                                • | |--DELTAN1
                                • | |--NCOUPL
                                • | |--GPSSET
                                • | |--MODSET
                                • | |--FPRES2
                                • | |--FPRES1
                                • | |--PRIOPT
                                • | |--INPHIS----INPHS
                                • | | |--ADBU
                                • | | |--ADTM
                                • | | |--CDENS-----CDNDT
                                • | | |--PRHIS2
                                • | |--INPPLU----PLUTN2----PLOUT
                                • | | |--HOKAN1
                                • | | |--HOKAN2
                                • | |--INPROD----ADBU
                                • | |--PRHIS2
                                • | |--HOKAN
                                • | |--RODXE-----FGPROR
                                • |--INISET
                                • |--PHIST-----FISRAT
                                • | |--ADTM
                                • |--RDTEMP(1)
                                • |--READFM2
                                • |--FEMAXI(3)
                                • |--SAVFM1----OUTPT0----OUTNOD----OUTND
                                • | | |--OUTND3
                                • | |--OUTNOD1---OUTND1
                                • | | |--OUTND4
                                • | |--OUTELM----OUTEM
                                • | | |--OUTEM2
                                • | |--OUTELM1---OUTEM1
                                • | |--OUTEM3
                                • |--SECOND2
                                • |--SAVFM2----PDATA1
                                • | |--PDATA2
                                • | |--PDATA3
                                • | |--EPTODP
                                • | |--PTHEX
                                • | |--CTHEX
                                • | |--CELMOD
                                • |--SAVFM3----PDATA1A
                                • | |--PDATA2A
                                • | |--PDATA3A
                                • | |--EPTODP
                                • | |--PTHEX
                                • | |--CTHEX
                                • | |--CELMOD
                                • |--SNDPLT
                                • |--ABNDTA----CHKDTA
                                • |--WRITFM2
                                • |--OUTPT1----GRAIN
                                • |--OUTPT2
                                • |--OUTPT3
                                • (1) RDTEMP----GRAIN
                                • |--INIRDT----READRD
                                • | |--SETR0
                                • | |--PJUMP-----CELMOD
                                • | | |--CPOIR
                                • | | |--CTHEX
                                • | | |--PTHEX
                                • | |--INIGAS
                                • | |--FISRAT
                                • | |--SETRH0
                                • | |--SUFCNS----WTSAT-----STMSI(5)
                                • | |--STMZSI(6)
                                • |--HOKAN
                                • |--RDGAS1----DIFCON
                                • |--PRERDT----STMZSI(6)
                                • |     |--SDENS
                                • | |--SUFCN0----WTSAT-----STMSI(5)
                                • | | |--VOID------WTTMP-----STMZSI(6)
                                • | | |--STEAMZ(6)
                                • | |--STVSH
                                • | |--SUFCNA----STVSH
                                • | | |--SDENS
                                • | |--FISRAT
                                • | |--BURNUP
                                • | |--FLXDEP----FDISTF----SBES0
                                • | | |--FDIST-----SBES0
                                • | | | |--SBES1
                                • | | |--HOKAN5
                                • | |--FGPRO
                                • | |--HOKAN
                                • | |--CANEAL
                                • |
                                • |--TEMP1D----USTEMP----USMESH
                                • | |--DRYUPD
                                • | |--TSUR2
                                • | |--MATDAT----TMELT
                                • | | |--PTHCON
                                • | | |--PHCAP
                                • | | |--CTHCON
                                • | | |--CHCAP
                                • | | |--CDENS-----CDNDT
                                • | | |--HOKANB
                                • | | |--GAPCON----CELMOD
                                • | | |--CRN
                                • | | |--CYIE
                                • | | |--PTHCON
                                • | | |--CTHCON
                                • | | |--GTHCON
                                • | | |--GAPCON_NSR77----GTHCON
                                • | | |--GVISCO
                                • | | |--FEMISS
                                • | | |--ZOEMIS
                                • | |----FLMCON
                                • | |----POWDIS
                                • | |----SUFCNH----SCRITH----WTMAT2
                                • | | |--HTRMOD----WTMAT
                                • | | |--WTMAT2
                                • | | |--TERP04
                                • | | |--STMSI
                                • | | |--HMOD4
                                • | | |--WTMAT3
                                • | |----SUFCNH2---STHCON
                                • | | |--SDENS
                                • | | |--SHCAP
                                • | |----SUFCND----USTEMP2---MAKEH
                                • | |--WATER0(4)
                                • | |--DLAX
                                • |----THGAPN----PDENS
                                • | |--DENSF
                                • | |--PTHEX
                                • | |--FSWELL
                                • | |--CELMOD
                                • | |--CPOIR
                                • | |--CTHEX
                                • | |--FELMOD
                                • | |--CRN
                                • | |--CYIE
                                • | |--CCREEP----CCPEQ1
                                • | | |--CCPEQ2
                                • | | |--CCPEQ8
                                • | | |--CCPEQ9
                                • | | |--CCPEQ4
                                • | | |--CCPEQ5
                                • | | |--CCPEQ7
                                • | | |--CCPEQ3
                                • | |--FCREEP----FCPEQ1
                                • | |--FCPEQ2
                                • | |--FCPEQ4
                                • | |--FCPEQ5
                                • | |--FCPEQ11
                                • | |--FCPEQ15
                                • | |--FCPEQ3
                                • |----THGAP1----PTHEX
                                • | |--FSWELL
                                • |----SECOND2
                                • |----GAPMOD
                                • |----PEXT14
                                • |----FGRELN----MESHP
                                • | |--RIMFGR
                                • | |--LASSEM
                                • | |--FCREEP----FCPEQ1
                                • | | |--FCPEQ2
                                • | | |--FCPEQ4
                                • | | |--FCPEQ5
                                • | | |--FCPEQ11
                                • | | |--FCPEQ15
                                • | | |--FCPEQ3
                                • | |--CANDMT----REDIS
                                • | |--DIFC
                                • | |--GBCLS
                                • | |--BFMAX
                                • | |--GRAIN
                                • | |--SETR
                                • | |--REDSTR
                                • | |--INTGH
                                • | |--INTGX
                                • | |--INTRA3----REDIS
                                • | | |--SOLVE
                                • | | |--SOLVE2
                                • | | |--INTGX
                                • | | |--INTRAB----BBL------BBL2
                                • | | |--ANDIF
                                • | | |--NVACAN---NR
                                • | | |--AMDIF----REDIS
                                • | |--ERFUNC
                                • | |--BLR2
                                • | |--FIRSTSTEP----KOGAI_PARAM
                                • | | |--CALEQUILIBRBL---CUBIC2
                                • | |--KOGAIMODEL---KOGAI_PARAM
                                • | | |--CALEQUILIBRBL---CUBIC2
                                • | | |--UFFELEN_DGASNR
                                • | |--GBCONB
                                • |----POROST----PDENS
                                • | |--DENSF
                                • |----HELRLS----CANDMH----SETR
                                • | |--INTG
                                • | |--INTGH
                                • | |--DIFH
                                • | |--SOLVE2
                                • | |--INTGX
                                • |----VLUMES----HOTVOL----PTHEX
                                • | |--CAGROW
                                • |----VLUME2----CAGROW
                                • |----RDGAS2----GASFLW----DIFCON
                                • |----CLOXD-----CORRO-----CTHCON
                                • |----CONV2
                                • |----FEMROD(2)
                                • |----THGAP2----PTHEX
                                • |----RDTUPD----HEUPD
                                • | |--DRYUPD
                                • | |--XIODD
                                • |----TEMPIP----REMESH2
                                • | |--INTPLT
                                • |----SAVRD1----HOKAN
                                • |----PRINT1----PRINT2
                                • | |--PRINT3
                                • | |--PRINT5----GRAIN
                                • | |--HOKAN
                                • |----SAVRD2----HOKAN
                                • | |--THGAP-----PTHEX
                                • | | |--CELMOD
                                • | | |--CPOIR
                                • | | |--CTHEX
                                • | | |--FELMOD
                                • | |--VLUME0----PTHEX
                                • |----HBSPRT
                                • |----WRITRD
                                • |----FEMRDS----FISRAT
                                • |--FEMROD(2)
                                • |--THGAP2----PTHEX
                                • (2) FEMROD------INIFEM----READFM
                                • | |--RWPCM
                                • | |--RMESH-----RMESHP
                                • | |--RMESHC
                                • | |--RMESHB----RMESHP
                                • | |--RMESHC
                                • |----RWPCM
                                • |----TMSTP
                                • |----PREPCM----XBMAT
                                • |----MDEPSP----CTHEX
                                • | |--CAGROW
                                • |----PREEPS
                                • |----MDEPS0----PDENS
                                • | |--DENSF
                                • | |--XPSWEL----XPURSW
                                • | |--XPJUMP----CELMOD
                                • | | |--CPOIR
                                • | | |--CTHEX
                                • | | |--PTHEX
                                • | |--PTHEX
                                • | |--CTHEX
                                • | |--CAGROW
                                • |----MATDEF----DEFBET
                                • |----XELMP1----XEQSIG
                                • | |--CMAT2-----CELMOD
                                • | | |--CPOIR
                                • | |--XCREP1(7)
                                • | |--INV3
                                • | |--XBDMAT
                                • | |--XESMAT
                                • |----XELML1----XEQSIG
                                • | |--CMAT1-----FELMOD
                                • | | |--FPOIR
                                • | |--XCREP1(7)
                                • | |--CMAT2-----CELMOD
                                • | | |--CPOIR
                                • | |--INV3
                                • | |--XDPMAT----XEQSIG
                                • | | |--FHSOFT
                                • | | |--FTSOFT
                                • | | |--CHSOFT----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | | |--CTSOFT----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | | |--CLDKDT
                                • | | | |--CDNDT
                                • | | | |--CDEDT
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | | |--XDVSIG
                                • | |--BUFSTF
                                • | |--XBDMAT
                                • | |--XESMAT
                                • | |--XFLOAD
                                • |----SSMAT
                                • |----DFPLT
                                • |----DFCLAD
                                • |----DFCLAD2
                                • |----CONSTF----ADRESS
                                • | |--CONSTR
                                • | |--SOLVF1----OPTSOL
                                • | |--SOLVF2----OPTSO2
                                • | |--SOLVF3----OPTSOL
                                • | |--ADRESP
                                • | |--CONST1
                                • |----SOLFEM----OPTSOL
                                • | |--OPTSO2
                                • | |--CNSTR
                                • |----XELMP2----MDSIG
                                • | |--XEQSIG
                                • | |--XCREP2(8)
                                • |----XELML2----MDSIG
                                • | |--XDPST-----XEQSIG
                                • | | |--XDVSIG
                                • | | |--FHSOFT
                                • | | |--FTSOFT
                                • | | |--CHSOFT----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | | |--CTSOFT----CELMOD
                                • | | |--CYIE
                                • | | |--CRN
                                • | | |--CLDKDT
                                • | | |--CDNDT
                                • | | |--CDEDT
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | |--XEQSIG
                                • | |--XPRBTY----FYIE
                                • | | |--CYIE2-----CELMOD
                                • | | |--CYIE
                                • | | |--CRN
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | |--XCREP2(8)
                                • |----JUDGFS----PFRFZ
                                • |----JUDGE
                                • |----SECOND2
                                • |----UPDPCM
                                • |----REMESH
                                • |----OUTP2
                                • |----PSTPCM----CFRFZ
                                • | |--PLFZ
                                • | |--OUTP1-----OUTP
                                • | |--SAVPM1
                                • | |--OUTP2
                                • | |--SAVPM2----EPTODP
                                • | |--PTHEX
                                • | |--CTHEX
                                • | |--CELMOD
                                • |----WRITFM
                                • (3) FEMAXI------INISTR----PDENS
                                • | |--DENSF
                                • | |--PSWELL
                                • | |--PTHEX
                                • | |--PJUMP-----CELMOD
                                • | | |--CPOIR
                                • | | |--CTHEX
                                • | | |--PTHEX
                                • | |--CTHEX
                                • | |--CAGROW
                                • | |--CELMOD
                                • |----GPSSET
                                • |----PROFIL
                                • |----FORCE
                                • |----ELMLP1----LOCALI----CLEARG
                                • | |--SHAPE1----JACK1-----PX1
                                • | | | |--PY1
                                • | | |--P1
                                • | | |--PX1
                                • | | |--PY1
                                • | |--SHAPE2----JACK2-----PX2
                                • | | | |--PY2
                                • | | |--P2
                                • | | |--PX2
                                • | | |--PY2
                                • | |--GAULP1----CLEARB
                                • | | |--BMAT
                                • | | |--INIMAT----CMAT------FELMOD
                                • | | | |--FPOIR
                                • | | | |--CELMOD
                                • | | | |--CPOIR
                                • | | |--CREEP1----EQISIG
                                • | | | |--DEVSIG
                                • | | | |--FCPEQ1
                                • | | | |--FCPEQ2
                                • | | | |--FCPEQ4
                                • | | | |--FCPEQ5
                                • | | | |--FCPEQ11
                                • | | | |--FCPEQ15
                                • | | | |--FCPEQ3
                                • | | | |--CCPEQ1
                                • | | | |--CCPEQ2
                                • | | | |--CCPEQ8
                                • | | | |--CCPEQ9
                                • | | | |--CCPEQ4
                                • | | | |--CCPEQ5
                                • | | | |--CCPEQ7
                                • | | | |--CCPEQ3
                                • | | |--INVERS
                                • | | |--DPMAT-----EQISIG
                                • | | | |--FHSOFT
                                • | | | |--FTSOFT
                                • | | | |--CHSOFT----CELMOD
                                • | | | | |--CYIE
                                • | | | | |--CRN
                                • | | | | |--EQSCAL----FX
                                • | | | | |--DFX
                                • | | | |--CTSOFT----CELMOD
                                • | | | | |--CYIE
                                • | | | | |--CRN
                                • | | | | |--CLDKDT
                                • | | | | |--CDNDT
                                • | | | | |--CDEDT
                                • | | | | |--EQSCAL----FX
                                • | | | | |--DFX
                                • | | | |--DEVSIG
                                • | | |--BDMAT
                                • | | |--ESMAT
                                • | | |--FLOAD
                                • | |--COLECT
                                • |----MODIFY
                                • |----GAPELN----OPTSO2
                                • |----ELMLP2----LOCALI----CLEARG
                                • | |--GAULP2----CLEARB
                                • | | |--BMAT
                                • | | |--STRESS
                                • | | |--EQISIG
                                • | | |--DPST------DEVSIG
                                • | | | |--FHSOFT
                                • | | | |--FTSOFT
                                • | | | |--CHSOFT----CELMOD
                                • | | | | |--CYIE
                                • | | | | |--CRN
                                • | | | | |--EQSCAL----FX
                                • | | | | |--DFX
                                • | | | |--CTSOFT----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | | |--CLDKDT
                                • | | | |--CDNDT
                                • | | | |--CDEDT
                                • | | | |--EQSCAL----FX
                                • | | | |--DFX
                                • | | |--CREEP2----EQISIG
                                • | | | |--DEVSIG
                                • | | | |--FCPEQ1
                                • | | | |--FCPEQ2
                                • | | | |--FCPEQ4
                                • | | | |--FCPEQ5
                                • | | | |--FCPEQ11
                                • | | | |--FCPEQ15
                                • | | | |--FCPEQ3
                                • | | | |--CCPEQ1
                                • | | | |--CCPEQ2
                                • | | | |--CCPEQ8
                                • | | | |--CCPEQ9
                                • | | | |--CCPEQ4
                                • | | | |--CCPEQ5
                                • | | | |--CCPEQ7
                                • | | | |--CCPEQ3
                                • | | |--CRACK
                                • | | |--PROBTY----FYIE
                                • | | | |--CYIE2-----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | | |--EQSCAL----FX
                                • | | | |--DFX
                                • | | |--FYIE
                                • | | |--CYIE2-----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | | |--EQSCAL----FX
                                • | | | |--DFX
                                • | | |--BOUNDF
                                • | |--CLBDF
                                • |----PROBDF
                                • |----PROBD1
                                • |----TIMER-----TIMEG
                                • | |--TIMEB
                                • | |--TIMEY
                                • |----EQISIG
                                • |----SECOND2
                                • |----REPLN
                                • |----REPLG-----LOCALI----CLEARG
                                • | |--CRACK
                                • | |--EQISIG
                                • |----CPUGH-----LOCALI----CLEARG
                                • |--PUGH------EQIEPS
                                • |--DOT
                                • (4) WATER0------WTSAT----STMSI(5)
                                • |--WTMAT
                                • |--FCP-------STBLPR----STBLDT
                                • | | |--STBLER
                                • | |--STBLTM----STBLER
                                • |--STMZSI(6)
                                • (5) STMSI-------STEAM----SATT------STBLDT
                                • | |--STBLER
                                • |--FCP-------STBLPR----STBLDT
                                • | | |--STBLER
                                • | |--STBLTM----STBLER
                                • |--SATP------STBLTS----STBLDT
                                • | |--STBLER
                                • |--WTMAT
                                • (6) STMZSI----STEAMZ-----SATP------STBLTS----STBLDT
                                • | |--STBLER
                                • |--STMPT------STBLER
                                • |--STBLTS----STBLDT
                                • | |--STBLER
                                • |--STBLTM----STBLER
                                • (7) XCREP1------XEQSIG
                                • |----XDVSIG
                                • |----FCPEQ1
                                • |----FCPEQ2
                                • |----FCPEQ4
                                • |----FCPEQ5
                                • |----FCPEQ11
                                • |----FCPEQ15
                                • |----FCPEQ3
                                • |----CCPEQ1
                                • |----CCPEQ2
                                • |----CCPEQ8
                                • |----CCPEQ9
                                • |----CCPEQ4
                                • |----CCPEQ5
                                • |----CCPEQ7
                                • |----CCPEQ3
                                • (8) XCREP2------XEQSIG
                                • |----XDVSIG
                                • |----FCPEQ1
                                • |----FCPEQ2
                                • |----FCPEQ4
                                • |----FCPEQ5
                                • |----FCPEQ11
                                • |----FCPEQ15
                                • |----FCPEQ3
                                • |----CCPEQ1
                                • |----CCPEQ2
                                • |----CCPEQ8
                                • |----CCPEQ9
                                • |----CCPEQ4
                                • |----CCPEQ5
                                • |----CCPEQ7
                                • |----CCPEQ3
Page 2: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です

本レポートの入手並びに著作権利用に関するお問い合わせは下記あてにお問い合わせ下さい

なお本レポートの全文は日本原子力研究開発機構ホームページ(httpwwwjaeagojp)より発信されています

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課

319-1195 茨城県那珂郡東海村白方白根 2 番地 4電話 029-282-6387 Fax 029-282-5920 E-mailird-supportjaeagojp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability andor copyright of this report should be addressed to Intellectual Resources Section Intellectual Resources Department Japan Atomic Energy Agency 2-4 Shirakata Shirane Tokai-mura Naka-gun Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387 Fax +81-29-282-5920 E-mailird-supportjaeagojp

copy Japan Atomic Energy Agency 2013

i

JAEA-DataCode 2013-009

InputOutput Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes

Motoe SUZUKI Hiroaki SAITOU Yutaka UDAGAWA and Fumihisa NAGASE

Reactor Safety Research Unit Nuclear Safety Research Center Japan Atomic Energy Agency

Tokai-mura Naka-gun Ibaraki-ken

(Received April 18 2013)

A light water reactor fuel analysis code FEMAXI-7 has been developed as an extended

version from the former version FEMAXI-6 for the purpose of analyzing the fuel behavior in

normal conditions and in anticipated transient conditions Numerous functional improvements

and extensions have been incorporated in FEMAXI-7 which are fully disclosed in the code

model description published in the form of another JAEA-DataCode report

The present manual which is the very counterpart of this description document gives

detailed explanations of files and operation method of FEMAXI-7 code and its related codes

methods of inputoutput sample InputOutput methods of source code modification

subroutine structure and internal variables in a specific manner in order to facilitate users to

perform fuel analysis by FEMAXI-7

Keywords LWR Fuel Code Analysis FEM Analysis Numerical Stability Fission Gas Release PCMI Burn-up

ITOCHU Techno-Solutions Corporation (Tokyo)

ii

JAEA-DataCode 2013-009

軽水炉燃料解析コード FEMAXI-7 および関連コードの入出力マニュアル

日本原子力研究開発機構安全研究センター

原子炉安全研究ユニット

鈴木 元衛斎藤 裕明宇田川 豊永瀬 文久

(2013 年 4 月 18 日受理)

FEMAXI-7 は軽水炉燃料の通常運転時及び過渡条件下のふるまい解析を目的と

するコードとして前バージョン FEMAXI-6 に対して多くの機能の追加改良を実施

した高度化バージョンであるこのモデルと内部構造機能の詳細に関する文書は別

の JAEA-DataCode として刊行される本マニュアルはこれと対をなすもので

FEMAXI-7 及び関連コードのファイルの内容入出力の方法サンプル入出力ソー

スの修正方法サブルーチン構造内部変数などについて詳述しFEMAXI-7 による

燃料解析の具体的方法を説明したものである

原子力科学研究所(駐在)319-1195 茨城県那珂郡東海村白方白根 2-4

伊藤忠テクノソリューションズ株式会社

JAEA-DataCode 2013-009

iii

Contents

1Introduction 1

2 Execution file system 1

21 Files of FEMAXI -7 and EXPLOT 1

22 Files of burning analysis code RODBURN-1 2

23 Files of burning analysis code PLUTON 2

24 Compiling source code 3

241 Compiling by Compaq DVF 3

242 Compiling by Intel VF 95 (or upper) 8

243 Compiling by Linux-GNU Fortrang77 13

References 1 and 2 14

3 Execution of program 15

31 On Windows-PC 15

311 Directory structure for Compaq compiler 15

312 Directory structure for Intel compiler 16

313 Basic process of executing the program -1- (Windows) 17

32 Execution in Linux 23

321 Example of Makefile for GNU Fortran 77 (g77) 23

322 Basic process of execution -2- (Linux) 24

33 Performing Re-start function 27

331 Function to bridge full-length rod and short test rod calculations 27

332 Re-start calculation from base-irradiation to test-irradiation 27

333 Name-list parameters related to Re-start calculation 30

334 Variables taken over and those not taken over in Re-start calculation 31

335 Explanations for sample Re-start calculations and method 41

34 Usage of output of burning analysis code RODBURN-1 47

341 Record No and contents 47

342 Usage of records in FEMAXI 48

343 Making input file of RODBURN-1 by using FEMAXI 51

35 Usage of output of burning analysis code PLUTON 51

351 Physical quantities of PLUTON output for FEMAXI 52

352 Structure of inputoutput files of PLUTON 52

353 Contents read by FEMAXI code 63

354 Output file reading function of FEMAXI 65

JAEA-DataCode 2013-009

iv

355 Unit conversion of burnup 68

36 Calculation examples by RODBURN-1 and PLUTON 69

361 PWR fuels 69

362 BWR fuels 75

37 Usage of the Halden data-base TFDB 81

References 3 81

4 FEMAXI-7 Input manual 82

41 Explanation on the relationship of IS and IST 82

411 Function of ISTATE value 82

412 Relationship between IS IST and ISTATE 83

413 Options specified by IS and IST 83

42 Fixed format input 85

43 Name-list Input 88

44 Plot data index IDNO 133

45 Calculated physical quantities in ZERO power state 133

46 Method to input history point data 134

461 Power history data 134

462 Relative power profile 134

463 Input method of power history 135

47 Setting of cladding outer surface temperature 138

5 Models and Input manual of RODBURN-1 141

51 General feature of RODBURN input format 141

52 Some comments on the RODBURN code (Sept1998) 141

53 Explanations of RODBURN-1 models and methods 143 54 Explanation of neutron flux control by ldquoALPH(K) EXTL(K) EXTT(K)

K=1 NDISTrdquo Option for IDIST 149

55 Some important input name-list parameters of FEMAXI-7 for usage

of RODBURN-1 150

56 RODBURN Input data format (1) 151

57 RODBURN Input data format (2) 155

References 5 161

6 Input Manual of Plotting Control Program EXPLOT 163

61 Input parameters for EXPLOT 163

62 Tables of IDNOs classified by variables 166

JAEA-DataCode 2013-009

v

63 Plotting the quantities with common Y-axis 182 64 Explanation on the physical quantities of Y-axis (3) (4)C Group 183

641 Physical quantities of pellet 183

642 Physical quantities of cladding 185

7 Sample InputOutput (numerical and plotted outputs) 187

71 FEMAXI-7 numerical output image of ldquoABC1outrdquo 187 72 Plotting control data file image of ldquoexplotABCrdquo 215

73 Images of plotted output ldquoABC1ABCpdfrdquo 218

74 Example of numerical output of HBS model 224

75 Sample inputoutput of RODBURN-1 226

8 Manual for modification of materials properties models 245

81 Materials properties subroutines 245

82 Method of addition and modification of models 246

821 Density 246

822 Thermal conductivity 246

823 Specific heat 249

824 Thermal expansion 250

825 Youngrsquos modulus 251

826 Poissonrsquos ratio 252

827 Creep 254

828 Fuel pellet swelling 258

829 Densification 260

8210 Plasticity 260

8211 Grain growth 264

8212 Melting point 264

8213 Fission gas release rate and diffusion coefficient 265

8214 Cladding waterside corrosion 265

8215 Cladding irradiation growth 266

8216 Gap thermal conductance 266

8217 He-Xe gas inter-diffusion coefficient 267

83 Method of incorporating a new surface heat transfer model 268

Appendix 273

JAEA-DataCode 2013-009

vi

目 次 1はじめに 1

2 実行ファイルシステム 1

21 FEMAXI -7 および EXPLOT のファイル 1

22 燃焼計算コード RODBURN-1 のファイル 2

23 燃焼計算コード PLUTON のファイル 2

24 ソースコードのコンパイル 3

241 Compaq DVF によるコンパイル 3

242 Intel VF 95 (or upper)によるコンパイル 8

243 Linux-GNU Fortrang77 でのコンパイル 13

参考文献 1 2 14

3 プログラムの実行 15

31 Windows-PC の場合 15

311 Compaq compiler の場合のディレクトリ構造 15

312 Intel compiler の場合のディレクトリ構造 16

313 基本的な実行の順序 -1-(Windows) 17

32 Linux での実行 23

321 GNU Fortran 77 (g77) の場合の Makefile 例 23

322 基本的な実行の順序 -2-(Linux) 24

33 Re-start 機能の実行 27

331 長尺燃料棒と短尺試験燃料棒の計算をつなぐ計算 27

332 ベース照射から試験照射への Re-start 計算 27

333 Re-start 計算に関係する Name-list パラメータ 30

334 Re-start 計算に引き継がれる変数と引き継がれない変数 31

335 サンプル Re-start 計算と方法の説明 41

34 燃焼計算コード RODBURN-1 の出力の利用 47

341 レコード Noと内容 47

342 FEMAXI でのレコード利用法 48

343 FEMAXI を用いて RODBURN-1 の入力ファイルを作る方法 51

35 燃焼計算コード PLUTON の出力の利用 51

JAEA-DataCode 2013-009

vii

351 PLUTON と FEMAXI の物理量の関係 52

352 PLUTON の入出力ファイルの構造 52

353 FEMAXI コードに読み込まれる内容 63

354 FEMAXI による出力ファイル読み込み機能 65

355 燃焼度の単位変換 68

36 RODBURN-1 と PLUTON の計算例 69

361 PWR 燃料 69

362 BWR 燃料 75

37 Halden データベース TFDB の利用 81

参考文献 3 81

4 FEMAXI-7 入力マニュアル 82

41 IS と IST の関係に関する説明 82

411 ISTATE 値の機能 82

412 IS IST および ISTATE の間の関係 83

413 IS と IST によって指定されるオプション 83

42 固定フォーマット入力 85

43 Name-list 入力 88

44 プロットデータインデックス IDNO 133

45 ZERO パワー状態の計算データ 133

46 履歴データの入力方法 134

461 出力の履歴点データ 134

462 発熱密度プロファイル 134

463 出力履歴の入力方式 135

47 被覆管外表面温度の入力設定モード 138

5 RODBURN-1 のモデルと入力 141

51 RODBURN 入力フォーマットの一般的特徴 141

52 RODBURN コードに関するコメント 141

53 RODBURN-1 のモデルと方法の説明 143

JAEA-DataCode 2013-009

viii

54 ldquoALPH(K) EXTL(K) EXTT(K) K=1 NDISTrdquo IDIST オプションによる

中性子束制御の説明 149

55 RODBURN-1 を使う際の FEMAXI-7 のいくつかの重要な

name-list パラメータ 150

56 RODBURN 入力データフォーマット(1) 151

57 RODBURN 入力データフォーマット(2) 155

参考文献 5 161

6 プロット制御プログラム EXPLOT 入力マニュアル 163

61 EXPLOT の入力パラメータ 163

62 変数によって分類された IDNO のテーブル 166

63 Y 軸共通物理量プロットの使用法 182

64 プロットデータの Y 軸物理量(3)(4)C グループに関する説明 183

641 ペレット物理量 183

642 被覆管物理量 185

7 サンプル入出力(数値出力+プロット図) 187

71 FEMAXI-7 数値出力 ABC1out イメージ 187

72 プロット出力制御データ explotABC イメージ 215

73 プロット出力 ABC1ABCpdf イメージ 218

74 HBS モデルの出力数値ファイル例 224

75 RODBURN-1 入出力サンプルケース 226

8 物性値モデルの修正マニュアル 245

81 物性値ルーチン 245

82 物性値の追加修正方法 246

821 密度 246

822 熱伝導率 246

823 比熱 249

824 熱膨張 250

825 ヤング率 251

JAEA-DataCode 2013-009

ix

826 ポアソン比 252

827 クリープ 254

828 スエリング 258

829 焼きしまり 260

8210 塑性 260

8211 結晶粒成長 264

8212 融点 264

8213 FP ガス放出率と拡散係数 265

8214 被覆管腐食 265

8215 被覆管照射成長 266

8216 ギャプコンダクタンス 266

8217 He-Xe ガス相互拡散係数 267

83 新しい表面熱伝達モデルの組み込み法 268

付録 273

This is a blank page

JAEA-DataCode 2013-009

- 1 -

1 Introduction Fuel analysis code FEMAXI-7 is the latest version which has been extended to cope with a wide variety of LWR fuel behavior analyses by using related auxiliary codes system and compilers The present manual makes a pair with another JAEA-DataCode 2013-005(11) a model description of FEMAXI-7

The authors hope that this manual will serve for a wide circle of users in understanding and operating FEMAXI-7 with proficiency Users are recommended to ask JAEA freely concerning the contents when they come across any problem

2 Execution file system The method of installing FEMAXI(21) system into Windows PC and Linux systems and

execution of the program are explained

21 Files of FEMAXI-7 and EXPLOT The source files of FEMAXI-7 and plotting program EXPLOT consist of the files listed in

Table 211 and Table 212 The source file group of FEMAXI-7 is represented by

Femaxi7FOR in Table 211 and the group of EXPLOT is listed in Table212 A sample

calculation case ID is named ldquoABCrdquo corresponding to the sample case presented later in

chapter 7 FEMAXI-7 reads the input file name from a file-name-description file fnamed

and opens the required files The file names are specified including the path and designated in

the order of the unit No listed in Table 211 (Refer to section 311 )

Table 211 FEMAXI-7 files Unit No File (default name) Contents

Femaxi7FOR Source code including all the modules

- fem2exe Executable program

5 ABCd05 (ft05d) Sample input file

6 ABCout (ft06d) Sample numerical output file

7 ABCplt (expldat) Sample plotting data file

9 fnamed File-name-description file

55 formdata Name-list input format file

89 ft89d Steam table library file

Since EXPLOT uses calcomp-compatible instructions it is necessary to link the program

with a calcomp compatible library pltcmplib (in Linux calcmpa) in compiling

explotfor

JAEA-DataCode 2013-009

- 2 -

Table 212 EXPLOT files Unit No File (default name) Contents

- explotfor explot2exe Source executable program

5 pltcal8lib (or calcmpa) Calcomp-compatible library

6 explotd Plotting control file

7 ABCplot ABCps ABCpdf Sample output Explained in Chap7

22 Files of burning analysis code RODBURN-1 RODBURN-1 is a simplified and convenient burning analysis code for LWR fuel rods(21)

The source files of RODBURN-1 are listed in Table 221 This code calculates the power

density profile in the radial direction of pellet as a function of average burnup and concurrently

calculates the generated amounts of fission products and He RODBURN-1 uses a

file-name-description file rfnamed similarly to FEMAXI

FEMAXI and RODBURN open the files collectively at the head of main program

Accordingly it is easy for users to change the default file names and path to adjust them to their

own system circumstances

Table 221 RODBURN-1 files Unit No File name (default name) Contents

- rodburnfor

rodburnexe

RODBURN source executable program

5 ABCrddat Input data file (sample) (renamed from rodin) 6 ABCrdout Numerical output file (sample) 7 ABCrodex Result data file to be read by FEMAXI 9 rfnamed File-name-description file 1 ft01d RABBLE(23) original library 1 2 ft02d RABBLE original library 2

60 EJU268 Resonance parameters for U-268 and group cross section of WIMS69(24)

61 EJPU240 Resonance parameters for Pu-240 and group cross section of WIMS69

66 origend ORIGEN(25) code library

23 Files of burning analysis code PLUTON PLUTON (=PLUTON-PC) is a burning analysis code for LWR fuels(22) This code has a

variety of calculation contents and output formats by using more precise models and methods

than those of RODBURN When a result file generated by PLUTON is used by FEMAXI-7

JAEA-DataCode 2013-009

- 3 -

either one of two methods should be selected to write the numerical figures of the result file at

the end of input file of FEMAXI or to read the result file into FEMAXI To read the result file

file fmdt is read which is given from PLUTON In an example shown later it has a unit No

of 51 to be read as ABCfmdt

24 Compiling source code 241 Compiling by Compaq DVF

It was a standard compiling method for FEMAXI-V and -6 EXPLOT RODBURN and

PLUTON to be compiled with Compaq Digital Visual Fortran 61 or Upper-version (CDVF)

However CDVF has been discontinued Accordingly hereafter Intelreg Visual Fortran

(IVF)(27) is used as a standard compiler for FEMAXI-7 EXPLOT RODBURN and PLUTON

Nevertheless compiling method with CDVF is explained first as there may be still not so

small a number of users of CDVF The compiling options of CDVF are shown below for

Windows PC (2000 XP Vista and Windows 7) Here the optimization parameter for CDVF

compiling is ldquoFull optimizationrdquo

(1) Basic method on the basis of Developer Studio In the following example Compaq Visual Fortran Standard Edition 660 (English

version) is used The example is also applicable to Compaq Visual Fortran Ver 61 or Upper

1) Making a new project To form a new project open a new project making pane by selecting the menu

[File][New] Select [Fortran Console Application] by [Projects] tab and input [Project

name] eg if the source is FEMAXI ldquoFEMrdquo

Input the directory name in [Location] where project is generated or select a parent

directory name under which the project directory name is input then click [OK] In the

example below ldquoCFEM7rdquo is selected and the project directory is named ldquoCFEM7FEMrdquo

then [OK] is clicked In the next selection pane select [An empty project] click [Finish] and

click [OK] in the pane [New Project Information]

JAEA-DataCode 2013-009

- 4 -

2) Designation of source code Designate the source code in ldquoFile Viewrdquo pane If no ldquoFile Viewrdquo pane is shown show the

pane by selecting [View][Workspace] In the pane extend the workspace files selected in

the previous process 1) Right click on [Source Files] and select [Add Files to Folder] and

then select the source files by [Insert Files into Project] In the example below the compile

target code is FEMAXI-7 and ldquoFEMAXI7FORrdquo is selected

3) Change into Release mode Change the build configuration into ldquoReleaserdquo mode Select the menu [Build][Set

Active Configuration] open [Set Active Project Configuration] pane and change the mode into [FEM - Win32 Release]

JAEA-DataCode 2013-009

- 5 -

4) Designation of other INCLUDE directories If there are some INCLUDE files in a directory except the directory directly under the

project directory it is necessary to designate the INCLUDE directory one more time

This process is as follows select [Project][Settings] to open the pane [Project

Settings] Set [Settings For] into [Win32 Release] (or to [All Configurations] ) and select

the uppermost ranked project name in the file structure viewing pane below Change the

pane into [Fortran] tab and change [Category] into [Preprocessor] Input the directory name

which has the INCLUDE files into [INCLUDE and USE Paths] In this example ldquoINCrdquo is

designated

JAEA-DataCode 2013-009

- 6 -

5) Libraries

For EXPLOT it is necessary to designate a calcomp library for compiling before building Detailed procedure is explained in the next sections (3) and (4)

6) Building the executable files

Perform building to make an executable program by selecting [Build][Build FEMexe (=executable program name)]

7) Confirmation of executable program generation Confirm that the executable program has been generated under ldquoReleaserdquo directory in the

project directory (2) Designation method of linking Calcomp library in Developer Studio

In EXPLOT either one of the two following methods is used in designating the calcomp

JAEA-DataCode 2013-009

- 7 -

library It is not necessary to use both the methods at the same time

1) Addition of library file by changing link setting Link pltcal by adding library file in setting the link of project By selecting

[Project][Settings] open the pane [Project Settings] Select [Win32 Release] (or [All

Configurations]) and select the uppermost project name (ldquoexplot2rdquo) in the directory

structure table pane shown below Shift to the tab [Link] put a half space after the already

registered library in [Objectlibrary modules] and input the library path ie in this example

ldquopltcal8librdquo for this file is stored just under the project directory

2) Addition of library file by adding resource file

Addition of library file to Resource File allows the link Right-click [Resource Files] in

View Files pane select [Add Files to Folder] and open [Insert Files into Project] pane

Change the [File type] into [Library Files(lib)] and select ldquopltcal8librdquo

JAEA-DataCode 2013-009

- 8 -

242 Compiling by Intel VF 95 (or upper)

Method to compile the source by Intel Visual Fortran(27) is described below It is necessary

to change the settings of retention of error check variables and local variables from the initial

settings which is different from the situation in Compaq Visual Fortran

(1) Basic method of compiling FEMAXI-7 on Visual Studio In the following example Intel Visual Fortran Compose XE 2011 on Microsoft Visual

Studio 2010 is used This example is also applicable to Intel Visual Fortran 95 without

significant changes

1) Making project Select [File][New Project] extend [Intel(R) Visual Fortran] and select [Console

Application] and select [Empty Project] Put a project name eg [FEM] and location of the

project and click [OK]

JAEA-DataCode 2013-009

- 9 -

2) Addition of source files Right-click the [source files] of the project in [Solution Explorer] select

[Addition][Existing files] A file pane opens Select source files and click [Addition]

3) Change into Release mode Change the build-configuration into Release mode by opening [Build] pane

[Configuration Manager]

JAEA-DataCode 2013-009

- 10 -

4) Addition of include file Method A Select [Project][Properties] Spread [Fortran] of configuration properties and

designate the include file names or their directory name by clicking [General][Additional Include Directories]

Method B Add the include files to the [Header Files] in Solution Explorer pane

5) Change of settings to cover fortran 77

When compiling FEMAXI-7 EXPLOT and RODBURN by Intel Fortran the following

changes are needed because the source files are partly written in Fortan77 Since PLUTON is

written in Fortran 90 these changes are not necessary

Select [Project][Properties] and spread [Fortran]

i) Spread [Diagnostics][Language Usage Warnings] input [No] in [Check Routine Interfaces]

JAEA-DataCode 2013-009

- 11 -

ii) [Data][Local Variable Storage] change to [All Variables SAVE (Qsave)]

iii ) Open [External Procedure] confirm that [Calling Convention] is [Default]

JAEA-DataCode 2013-009

- 12 -

iv) [Run-time]input [No] in [Check Array and String Bounds]

v) Spread [Diagnostic][General] input [No] in [Interface Block Generation]

This option is not present in Intel Visual Fortran Composer XE 2011

When all the changes are done click [Apply]

6) Making an executable file Make an executable program by [Build][Build Project name]

(2) Method of compiling EXPLOT on Visual Studio 1) Addition of source file and library file Similarly to the case of FEMAXI-7 above add the source code and library by using [Solution Explorer] pane

JAEA-DataCode 2013-009

- 13 -

2) Change of settings to cover fortran 77 All the changes described above in 5) for FEMAXI-7 should be also applied to EXPLOT 3) Making an executable file

Make an executable program by [Build][Build Project name] 243 Compiling by Linux-GNU Fortran g77

To execute FEMAXI-7 on Linux compiling procedure by g77 which can be obtained for

free is explained Only FEMAXI and EXPLOT are assured to be successfully built by g77

(1) FEMAXI compiling

In an usual setting of g77 initialization and retention of local variables is not conducted so that it is necessary to add retention of local variables as optional arguments(-fno-automatic)

and initialization (-finit-local-zero) when compiling Accordingly femaxi7FOR is compiled

by the commands below to make an executable program FEMAXI-7

g77 -o FEMAXI-7 -fno-automatic -finit-local-zero femaxi7FOR (2) Building the executable file of EXPLOT

CALCOMP-compatible library calcmpa is generated from source file calcmpfor

g77 -fno-automatic -finit-local-zero -o calcompfor -c calcmpo ar cr calcmpo calcmpa

By linking CALCOMP-compatible library link is carried out

g77-o EXPLOT -fno-automatic -finit-local-zero explot2for calcmpa

JAEA-DataCode 2013-009

- 14 -

References 1 and 2 (11) M Suzuki H Saitou Y Udagawa and F Nagase Light Water Reactor Fuel Analysis

Code FEMAXI-7 Model and Structure JAEA-DataCode 2013 ndash 005(2013) (21) MSuzuki HSaitou YUdagawa ldquoLight Water Reactor Fuel Analysis Code

FEMAXI-7Model and Structurerdquo JAEA-DataCode 2010-035 (2011) [in Japanese] (22) MUchida HSaitou ldquoRODBURN A Code for Calculating Power Distribution in Fuel

Rodsrdquo JAERI-M 93-108 (1993) [in Japanese] (23) PHKier and AARobba ldquoRABBLE A Program for Computation of Resonance

Absorption in Multi-region Reactor Cellsrdquo ANL-7326 (1967) (24) WIMS-D IAEA Nuclear Data services httpwww-ndsiaeaorg (25) MJBell ldquoORIGEN-The ORNL ISOTOPE GENERATION AND DEPLETION CODErdquo

ORNL-4628 (1973) (26) SLemehov and MSuzuki ldquoPLUTON ndash Three-Group Neutronic Code for Burnup

Analysis of Isotope Generation and Depletion in Highly Irradiated LWR Fuel Rods JAERI-DataCode 2001-025 (2001)

(27) Intel reg Visual Fortran Composer XE 2011 Windows httpwwwxlsoftcomjpproductsintelcompilersfcwindexhtmltab=0

JAEA-DataCode 2013-009

- 15 -

FemReleasefem2exe FEMdsp FEMdsw FEMopt FEMplg of Compaq DVF

formdata (description of output variables) ft89d Fem srcf INC (source and include files)

3 Execution of program

31 On Windows-PC 311 Directory structure for Compaq compiler

An example of directory structure and file configuration is shown for Windows system assuming that the parent directory CFem7 is located on C-drive

CFem7

Plot2 explot2Releaseexplot2exe Pltcal8lib (Calcomp library) explot2dsp explot2dsw explot2plg explot2opt

RODReleaserodburn2exe rodburn2for (RODBURN-1 source) Ejpu240 Eju238 ft01d ft02d origend (library)

rodburn2dsp rodburn2dsw rodburn2plg rodburn2opt of Compaq DVF

rbout rodex (ORDBURN result file to be fed to FEMAXI)

outp out (FEMAXI numerical output) plt (plotting data file generated by FEMAXI) ps (postscript file of plotted figures) pdf (plotted figures in pdf file converted from ps file) plot (text file of numerical data of plotted figures) csv (CSV file of plotted numerical data) rdout (numerical output of RODBURN-1)

Wrk rodbat fembat plotbat (batch programs) d05 (FEMAXI input file) rddat (RODBURN input file) explot (plotting control file) mytitltxt (plotting caption file)

JAEA-DataCode 2013-009

- 16 -

FemReleaseFEMexe FEMsln FEMvfproj of Intel compiler formdata (description of output variables) ft89d (library)

Fem srcf INC (source and include files)

312 Directory structure for Intel compiler

An example of directory structure and file configuration is shown for Windows system assuming that the parent directory Fem7 is located on C-drive

CFem7

Plot2 explot2Releaseexplot2exe explot2 Pltcal8lib (Calcomp library)

explot2sln explot2ncb explot2opt explot2vfproj of Intel compiler

RODRelease RODexe rodburn2for (RODBURN-1 sources) Ejpu240 Eju238 ft01d ft02d origend (libraries) RODsln RODvfproj of Intel compiler

rbout rodex

outp out (FEMAXI numerical output file) plt (plotting data file generated by FEMAXI) ps (postscript file of plotted figures) pdf (plotted figures in pdf file converted from ps file) plot (text file of numerical data of plotted figures) csv (CSV file of plotted numerical data) rdout (numerical output of RODBURN-1)

Wrk rodbat fembat plotbat d05 (FEMAXI input file) rddat (RODBURN-1 input file) explot (plotting control file) mytitltxt (plotting caption file)

JAEA-DataCode 2013-009

- 17 -

313 Basic process of executing the program -1- (Windows)

An important process to execute the FEMAXI-7 system is briefly explained below

(1) Activation of command prompt FEMAXI-7 RODBURN and EXPLOT are executed by entering a batch command

following the MS-DOS prompt For this purpose MS-DOS Windows for the FEMAXI

system has to be prepared

A) Look for the MS-DOS prompt icon in the Windows system create a shortcut to the

program to be executed and place it on Desktop

B) Open ldquoPropertiesrdquo of this shortcut press the program tab select eg CFem7Wrk from

the Work Directory

C) Change the icon to enable easy recognition of this shortcut and simultaneously change

the name of the shortcut to ldquoFem7rdquo Hereafter this shortcut is called ldquoFEM7rdquo

(2) Test run of RODBURN-1

A) Input ldquorod ABCrdquo following the prompt (Fem7Wrk) which causes RODBURN to be

executed By entering ldquorod ABCrdquo the system searches for the file ldquoABCrddatrdquo and

reads it If ldquorod ABCrddatrdquo is entered the system searches for ldquoABCrddatrddatrdquo

and ldquoError stoprdquo occurs because such a file does not exist

B) After the completion of execution start Explorer and confirm if the time stamp of the

file ABCrodex in Wrk RBOUT is renewed

(3) Test run of FEMAXI-7

A) Enter ldquofem ABC 1rdquo following the prompt which causes FEMAXI-7 to be executed

By entering ldquofem ABC 1rdquo the system searches for the file ldquoABCd05rdquo reads it and

outputs the files named ABC1out and ABC1plt When ldquofem ABC 2rdquo is entered first

ABC2out and ABC2plt are created

If ldquofem ABCd05rdquo is entered the system searches for the file ldquoABCd05d05rdquo and

ldquoError stoprdquo occurs because such a file does not exist

B) After the completion of execution start Explorer and confirm if files ABC1out and

ABC1plt are created in Wrk Outp

JAEA-DataCode 2013-009

- 18 -

(4) Test run of EXPLOT

A) Enter ldquoplot ABC1 drdquo following the prompt which causes EXPLOT to be executed By

entering ldquoplot ABC1 drdquo the system searches for and reads files ldquoexplotdrdquo and

ldquoABC1pltrdquo By entering ldquoplot ABC1pltrdquo the system searches for a file ldquoABC1pltpltrdquo

and ldquoError stoprdquo occurs because such a file does not exist When ldquoplot ABC2 frdquo is

entered the files ldquoexplotfrdquo and ldquoABC2pltrdquo are read and the files ABC2plot ABC2ps

and ABC2csv are produced

B) After the completion of execution start Explorer and confirm if files ABC1plot

ABC1ps and ABCcsv are created in Wrk OUTP

C) After this confirmation double click ABC1ps which activates Adobe Acrobat Distiller

and the system converts the ps file into a pdf file After conversion has been completed

the file ABC1pdf is created To enable this conversion it is necessary to install either

the complete set of Adobe Acrobat 40 (or a higher version) or ps2pdf ps2pdf can be

used by downloading from internet without charge installing and setting GhostScrpipt

After setting GhostScrpipt move to Fem7WrkOUTP and input the ps2pdf command

ldquops2pdf ABC1ps ABC1pdfrdquo Then ABC1pdf can be generated from ABC1ps

The above-mentioned conversion cannot be carried out using Acrobat Reader which

can be downloaded without charge

D) Double click ABC1pdf and open the file to confirm the creation of output plots

(5) Main analysis -1- (case1 making input file for RODBURN by using FEMAXI)

A) Initially FEMAXI calculation is carried out without RODBURN Namely calculation

is carried out with the name-list parameter IROD=1 or =2 or =3 in input data file (eg

EFGd05) For the value of IROD see the input manual of FEMAXI-7 Then FEMAXI

does not perform normal calculation but generates a file ldquorodinrdquo in Wrk

B) Open the file ldquorodinrdquo and confirm the content Rename ldquorodinrdquo into eg ldquoABCrddatrdquo

and execute RODBURN with this input file ABCrddat

C) Next to perform calculations using the results of RODBURN execute FEMAXI again

by setting the name-list parameters IROD=0 and IFLX= -2 in EFGd05

D) Edit the plot control information file explotd

JAEA-DataCode 2013-009

- 19 -

E) Execute EXPLOT and produce EFGps and EFplot Obtain plotted figures by

converting EFGps into EFGpdf

F) Note Since the output files EFGout EFGplt EFGplot EFGps and EFGpdf are

overwritten each time E) through F) are executed if users wish to retain previous results

they should be assigned a convenient name such as EFG1out

(6) Main analysis -2- (case2 making input file for RODBURN)

A) When the output history in the input data file (eg EFGd05) is time vs linear power

FEMAXI calculation is initially carried out without RODBURN Namely calculation

is carried out with the name-list parameter IFLX=0

B) Open the output file EFGout using an editor read the cumulative burnup and produce

the RODBURN input data file EFGrddat After this follow the identical processes to

those shown in the case1above

(7) Main analysis -3- (case3 using PLUTON) By designating the name-list parameter IFLX=-1 FEMAXI calculation is performed with

the burning analysis result file obtained by PLUTON-PC execution

JAEA-DataCode 2013-009

- 20 -

(8) List of batch files A) Execution of FEMAXI fembat

In a case where different parent directory from FEM7 is used change the 3rd line ldquoset

MYPATH=CFEM7rdquo

rem FEMAXI Execution Started

setlocal

set MYPATH=CFEM7

IF 2 == GOTO NOX1

echo D05 MYPATHWrk1d gt fnamed

echo OUT MYPATHWrkoutp12out gtgt fnamed

GOTO NOX2

NOX1

rem ERROR

rem 2 argments are required

rem ( ex if input file name is arg1rns )

rem ( ranbat arg1 arg2 )

exit

NOX2

del MYPATHWrkoutp12plt

del MYPATHWrkoutp12plt2

echo PLT MYPATHWrkoutp12plt gtgt fnamed

echo FT11 MYPATHWrkoutp12ft11 gtgt fnamed

echo FT18 MYPATHWrkoutp12ft18 gtgt fnamed

echo FT20 MYPATHWrkoutp12max gtgt fnamed

echo PLUTN MYPATHWrkrbout1FMdt gtgt fnamed

echo RODEX MYPATHWrkrbout1rodex gtgt fnamed

echo FORM MYPATHFemformdata gtgt fnamed

echo FT89 MYPATHFemft89d gtgt fnamed

copy MYPATHWrk1d05 1d

copy MYPATHWrkoutp1ft11 ft15d

MYPATHFemReleaseFem

del fnamed

del 1d

del FT90d

del ft10d

del ft16d

del ft17d

endlocal

rem FEMAXI Calc completed

JAEA-DataCode 2013-009

- 21 -

B) Execution of RODBURN rodbat

echo RODBURN Execution Started

setlocal

set MYPATH=CFEM7

echo MYPATHwrk1d gt rfnamed

echo MYPATHwrkoutp1rdout gtgt rfnamed

echo MYPATHwrkrbout1rodex gtgt rfnamed

echo MYPATHRODft01d gtgt rfnamed

echo MYPATHRODft02d gtgt rfnamed

echo MYPATHRODeju238 gtgt rfnamed

echo MYPATHRODejpu240 gtgt rfnamed

echo MYPATHRODorigend gtgt rfnamed

copy MYPATHwrk1rddat 1d

cMYPATHRODReleaserodburnexe

del rfnamed

del 1d

del wk

del rbpldat

endlocal

echo RODBURN Calc completed

JAEA-DataCode 2013-009

- 22 -

C) Execution of EXPLOT plotbat

rem PLOT6 Execution Started

setlocal

set MYPATH=CFEM8

move MYPATHWrkoutp1plt 1plt

move MYPATHWrkoutp1plt2 1plt2

echo 1plt gtgt expd

IF 2 == GOTO NOX

copy MYPATHWrkexplot2 explotd

echo 12ps gt exp2d

NOX

MYPATHexplot2Releaseexplot2exe

copy plotps MYPATHWrkoutp12ps

copy plotout MYPATHWrkoutp12plot

copy plotd MYPATHWrkoutp12csv

copy ft22d MYPATHWrkoutp12last

move 1plt MYPATHWrkoutp1plt

move 1plt2 MYPATHWrkoutp1plt2

del plotps

del plotd

del plotout

del expldat

del expd

del exp2d

del ft05d

del explotd

endlocal

rem PLOT6 Calc completed

JAEA-DataCode 2013-009

- 23 -

32 Execution in Linux

321 Example of Makefile for GNU Fortran 77 (g77) An example of Makefile of Gnu-make is shown which assumes the directory structure

shown in section 321 The makefile having the following contents is put just under the

directory $HOME$FEM7 and by executing ldquomake FEMAXI7rdquo or ldquomake EXPLOTrdquo

compilation can be performed with g77 In the case below compilation is performed with O2

optimization and static

FEMAXI-7 Makefile(GNU-make)

fortran compiler

FC = g77 -static

include directory

INC = INC

INCP = PLOT2inc

LIBP = PLOT2calcompa

fortran compile flag

OFLAG = -o

FFLAGS = -O2 -I$(INC) -w -fno-automatic -finit-local-zero

FFLAGSP = -O2 -I$(INCP) -w -fno-automatic -finit-local-zero

FFLAGL = -w -fno-automatic -finit-local-zero

FEM = FEM

PLOT2 = PLOT2

SRC = srcf

SRCFEM = $(SRC)femaxi7for

SRCPLOT= $(PLOT2)explot2for

CALCOMP= $(PLOT2)calcmpfor

OBJFEM = $(SRC)femaxi7o

OBJPLOT = $(PLOT2)explot2o

OBJCALCOMP = $(PLOT2)calcmpo

$(OBJFEM) $(SRCFEM)

$(FC) $(FFLAGS) $(OFLAG) $ -c $lt

$(OBJPLOT) $(SRCPLOT)

$(FC) $(FFLAGSP) $(OFLAG) $ -c $lt

$(OBJCALCOMP) $(CALCOMP)

$(FC) $(FFLAGL) $(OFLAG) $ -c $lt

$(LIBP) $(OBJCALCOMP)

ar cr $ $lt

FEMAXI7 $(OBJFEM)

$(FC) $(OBJFEM) $(FFLAGS) $(OFLAG) $(FEM)$

EXPLOT $(OBJPLOT) $(LIBP)

$(FC) $(OBJPLOT) $(OFLAG) $(PLOT2)$ $(LIBP)

JAEA-DataCode 2013-009

- 24 -

322 Basic process of execution -2- (Linux)

By executing a script file in a terminal emulator FEMAXI-7 and EXPLOT can be run In

the following explanation executing method is described on the assumption that the related

files FEM7 are present in the directory which is just below the home directory $HOMES$

The directory structure of Linux system for FEMAXI is similar to those of the Windows

system

[Attention] execution is capable of failure except the case where line feed encode is LF

(1) Process of FEMAXI-7 execution A) Activate the terminal emulator and move the current directory into $HOME$FEM7Wrk

by the command ldquocd FEM7Wrkrdquo

B) Activate FEMAXI by the script file femsh Put an input file eg ABCd05 under $HOME$FEM7Wrk and input ldquofemsh ABC 1rdquo in the terminal emulator The shell script is run ABCd05 is read and files ABC1 are output Here it is noted that by entering ldquofemsh ABCf05 1rdquo the system searches for ABCd05d05 and ldquoError stoprdquo occurs because such a file does not exist

C) After the completion of execution confirm if files ABC1out and ABC1plt are created in

$HOME$FEM7Wrkoutp

(2) Process of EXPLOT execution A) Activate the terminal emulator and move the current directory into $HOME$FEM7Wrk

by the command ldquocd FEM7Wrkrdquo

B) Activate EXPLOT by the script file explotsh If plt file of FEMAXI eg ABC1plt exists under the directory $HOME$FEM7Wrkoutp and EXPLOT input file explotd exists under the directory $HOME$FEM7Wrk input ldquoplotsh ABC1 drdquo in the terminal emulator Then shell-script is executed reads ldquoABC1pltrdquo and ldquoexplotdrdquo and creates a file ABC1 under the directory $HOME$FEM7Wrkoutp Here it is noted that by entering ldquoplotsh ABC1pltrdquo the system searches for ABC1pltplt and ldquoError stoprdquo occurs because such a file does not exist

C) After the completion of execution confirm if files ABC1plot ABC1ps and ABC1csv are

created in $HOME$FEM7Wrkoutp If ps2pdf has been installed in the system

ABC1pdf is also created

JAEA-DataCode 2013-009

- 25 -

(3) Contents of shell-script A) Execution of FEMAXI femsh

binsh

echo FEMAXI Execution Started

echo D05 $1d gtgt fnamed

echo OUT outp$1$2out gtgt fnamed

rm outp$1$2plt

rm outp$1$2plt2

echo PLT outp$1$2plt gtgt fnamed

echo FT11 outp$1$2ft11 gtgt fnamed

echo FT18 outp$1$2ft18 gtgt fnamed

echo FT20 outp$1$2max gtgt fnamed

echo PLUTN rbout$1FMdt gtgt fnamed

echo RODEX rbout$1rodex gtgt fnamed

echo FORM FEMformdata gtgt fnamed

echo FT89 FEMft89d gtgt fnamed

cp $1d05 $1d

FEMFEMAXI-7

rm fnamed

rm $1d

rm FT90d

rm ft10d

rm ft16d

rm ft17d

echo FEMAXI Calc completed

JAEA-DataCode 2013-009

- 26 -

B) Execution of EXPLOT plotsh

plotsh

echo PLOT Execution Started

mv outp$1plt $1plt

mv outp$1plt2 $1plt2

echo $1plt gtgt expd

cp explot$2 explotd

echo $1$2ps gt exp2d

PLOT2EXPLOT

cp plotps outp$1$2ps

cp plotout outp$1$2plot

cp plotd outp$1$2csv

cp ft22d outp$1$2last

mv $1plt outp$1plt

mv $1plt2 outp$1plt2

rm plotps

rm plotd

rm plotout

rm expldat

rm expd

rm exp2d

rm ft05d

rm explotd

echo PLOT6 Calc completed

ps2pdf outp$1$2ps outp$1$2pdf

JAEA-DataCode 2013-009

- 27 -

33 Performing Re-start function A new Re-start function has been implemented in FEMAXI-7 This function generates a result file ie Re-start file which stores the EOL conditions of fuel rod after calculation along base-irradiation history and can be read by FEMAXI-7 to perform re-start calculation Hereafter the first calculation to generate the Re-start file is referred to as ldquoBase calculationrdquo and the calculation following the re-start is referred to as ldquoRe-start calculationrdquo 331 Function to bridge full-length rod and short test rod calculations

In the analysis of a full length fuel rod which was base-irradiated in a commercial reactor and refabricated into a short instrumented rod to be test-irradiated in a test reactor a short rod geometry was obliged to be adopted from the beginning of base-irradiation by the analyses of previous versions of FEMAXI up to FEMAXI-6 This analytical restraint has been removed

(1) In base-irradiation calculation is performed with a full length rod geometry including

pellet stack length and plenum length etc(IFEMRD=1 or 0) In this case users have to

set a plural of segments in the axial direction of rod and this axial segmentation should be

conducted so that length and location of a short test rod portion are included in the axial

segments of base-irradiation analysis

(2) In the input file of FEMAXI where a full length rod is divided into 6 segments (more than 2 segments) by designating IREST=4 for example the rod conditions at the end of base-irradiation in all the segments are stored in Re-start file ft11 This file is usually generated in the directory WrkOUTP

332 Re-start calculation from base-irradiation to test-irradiation

(1) Renaming Re-start file Implication of the file name of ft11 is explained below Suppose a file Base1ft11 is generated after Base calculation(BC) This requires the input file name of Restart calculation (RC) to be Base1d05 However it often happens that RC is applied to test irradiation calculation and its input file is named Testd05 or something similar Consequently it is necessary to rename Base1ft11 into Testft11 If this Restart calculation uses a RODBURN result file the result file named baserodex exists in RBOUT Then it is necessary to make a duplicate of baserodex in another directory rename it into Testrodex or something similar and return it back to RBOUT Otherwise Re-start calculation will not run with input file Testd05

JAEA-DataCode 2013-009

- 28 -

It is often possible to use the same rodex file in both base calculation and Re-start calculation RODBURN performs calculation until the burnup which is to some extent higher than the burnup at EOL which is specified by input file On the other hand the additional burnup during the test irradiation (Re-start calculation) is not very large Accordingly in many cases the burnup extension in the Re-start irradiation falls within the range of burnup of rodex file calculated by RODBURN

Even if the burnup of test irradiation exceeds the maximum burnup of rodex the calculation will not be significantly affected for the following reason

If the burnup of FEMAXI calculation exceeds the upper bound recorded in rodex file FEMAXI continues calculation assuming that the power density profile in the radial direction of pellet remains to be the profile at the highest burnup recorded in the rodex file This is a good approximation because in high burn up region the power density profile has only a slight dependence on burnup extension

If the burnup of Re-start calculation exceeds markedly the upper bound recorded in rodex file of Base calculation the following convenient method is recommended In making rodex for Base calculation extend input irradiation history deliberately to attain much higher burnup than the EOL burnup of base irradiation After rodex is made eliminate the extended part of irradiation history of input file to perform Base calculation (2) Initial conditions of Re-start calculation If the segments for short re-fabricated rod are for example the 2nd to 5th segments of the full length rod by specifying ldquoIREST=5rdquo and ldquoTRSGT=2 5rdquo in the input file of test irradiation analysis the end-of-base-irradiation conditions of these segments ie sizes of pellet and cladding burnup profiles FGRs gap conditions etc are read from ft11 to be used as initial conditions of the analysis of fuel rod during test-irradiation Fig31 illustrates the relationship of rod segmentation for ldquoTRSGT=2 5rdquo

In this case plenum volume initial internal gas pressure and gas composition of test rod can be specified as a new set of initial conditions by name-list parameters in Re-start input file

Fig31 Axial segmentation of the full-length rod and re-fabricated short test-rod

Bottom Plenum re-fabricated zone

115mm 115mm 116mm Top segment 1

30mm Seg4 Seg3 Seg2

Full length rod

Short test rod

JAEA-DataCode 2013-009

- 29 -

as per usual Particularly the plenum volume has to be newly specified However values of initial gas pressure and gas composition are taken over from those in

ft11 if they are not newly specified by name-list parameters All the other conditions of fuel rod such as stress-strain of rod fission gas bubbles or accumulated amount of fission gas atoms power density profile in the radial direction of pellet etc are taken over from ft11

It is recommended that the formatted data of fuel rod specification (size shape) initial plenum volume initial internal pressure and gas composition in the input file of Re-start calculation be the same as those in the input file of Base calculation to circumvent misunderstanding As these data are read in Re-start calculation Re-start execution fails if they are not written in the input file However even if they are written they are not used as the initial values in Re-start calculation The initial values of these quantities in Re-start calculation are always fed by ft11 file

Here plenum volume internal gas pressure gas composition coolant conditions (equivalent diameter of flow area cross section area of flow fuel rod pitch) can be specified in input file as a new set of parameters for Re-start calculation (test irradiation) by using name-list parameters In this case the corresponding data stored in ft11 file are not used in calculation and quantities to be specified as initial conditions can be input by using some or all of the name-list parameters ITIME(n) GASPRN(n) GMIXN(n) DEN(n) FAREN(n) PITCHN(n) and PLENM(n) It is noted that when ITIME(n) is specified GASPRN(n) GMIXN(n) and PLENM(n) have to be specified invariably

All the other quantities such as stress-strain state of fuel rod conditions of fission gas bubbles and fission gas accumulation and power density in the radial direction of pellet are fed from ft11 file However either the data of power density profile vs burnup table which is attached at the last part of input file or the rodex file to be read by FEMAXI is always necessary in Re-start calculation

When IFEMRD=0 this Re-start calculation is also possible though the objective segment in which 2-D calculation is performed has to be the same segment that is specified by TRSGT If not error message is issued and calculation will not start

JAEA-DataCode 2013-009

- 30 -

333 Name-list parameters related to Re-start calculation

A group of name-list input parameters which are used in Re-start calculation function is

listed in Table 331

Table 331 Name-list parameters of FEMAXI-7 Restart function Parameter name Contents Default

Value

IREST

In FEMAXI-7 calculation (1) =0 Analysis only by FEMAXI-7

0

In FEMAXI-7 calculation (2) =4 generating Re-start file (ft11) for FEMAXI allowing the

designation of segments for refabricated short rod

In FEMAXI-7 Re-start calculation (3) =5 reading the restart file (ft11) generated by FEMAXI-7 to perform the FEMAXI calculation of test-irradiation for the axial segments designated by TRSGT However the objective segment for 2-D mechanical analysis in the base-irradiation calculation should be the same as the axial segment designated by TRSGT

TRSGT(2)

Input when IREST=5 in FEMAXI-7 Re-start calculation Otherwise error message is shown and calculation will start

Eg the number of segment is 10 in base-irradiation calculation and conditions of segments 4 to 6 are to be taken over TRSGT=46 is set If only 5th segment is the target TRSGT=5 is set

In performing the 2-D analysis designated objective segment No(specified by IFEM) has to be included in TRSGT For example in base-irradiation the objective segment is 5 (IFEM=5) and TRSGT=4 6 IFEM in Restart calculation is ldquoIFEM=2rdquo If this designation is inconsistent error message is shown and calculation will not start

0

IRTIME

When IRTIME=0 in the input file of Re-start calculation time (or burnup) has to be input as a sequential value from the beginning of base-irradiation

However if time is input burnup at EOL of base-irradiation calculation is taken over to be an initial burnup of Re-start calculation

When IRTIME=1 time at the start of Re-start calculation has to

be 0 and with this initial time=0 the Re-start irradiation history has to be given in input file However in Re-start calculation burnup at EOL of base-irradiation calculation is taken over and added to the initial burnup of Re-start input file

1

JAEA-DataCode 2013-009

- 31 -

334 Variables taken over and those not taken over in Re-start calculation

In performing Re-start calculation in FEMAXI-7 the following variables are taken over

from Base calculation to Re-start calculation They are explained in 6 groups classification

(1) Input variables given in fixed formats Variables given in fixed formats in input file of Base calculation are taken over to Re-start

calculation Accordingly fuel rod geometry except the designated axial segments is taken over

The other variables given in fixed formats eg coolant condition in the input file of Restart

calculation are also effective in Restart calculation Variables in fixed formats taken over in

Re-start calculation are listed in Table 332 Here the number of axial segments and IFEM

number for the objective segment are taken over as conditions of Base calculation to Re-start

calculation

Table 332 Variables in fixed formats taken over to Restart calculation

Name Content Name Content NAX Number of axial segments ENR U-235 enrichment (-) IFEM Number of objective segment FDENI Pellet theoretical density ratio (-)

MRASA Cladding material DZ Axial length of segment (cm) CDIN Cladding inner radius (cm) DISH Dish diameter (cm)

CDOUT Cladding outer radius (cm) DEPTH Dish depth (cm) IDISH Pellet dish specification DISHB Dish bottom circle diameter (cm) ICHAM Pellet chamfer specification PLENUM Plenum volume (cm3) PDIN Pellet center hole diameter (cm) GPIN Initial plenum gas pressure (MPa) PDIA Pellet diameter (cm) GMIXO Initial plenum gas composition (-)

PLENG Pellet length (cm) PWEIT Pellet total weight (g) CHAMR Chamfer width (cm) CHAMZ Chamfer depth (cm)

(2) Name-list input variables (parameters) Table 333 lists the name-list variables taken over from Base- to Re-start calculation 【Warning】 It is to be noted that if even one of these name-list variables (parameters) is

written in Re-start input file Re-start calculation never starts This is to circumvent the following situation if the same name-list variables as those used in Base calculation input file are explicitly written in Re-start input file with the different values from those in Base calculation or if some of the name-list variables are not written in Base calculation input file and are accepted as their default values in Base calculation while these name-list are explicitly written in Re-start input file with the different values from those in Base calculation

JAEA-DataCode 2013-009

- 32 -

FEMAXI neglects these values which are explicitly written in Re-start input file and takes over the values stored in Re-start file ft11 Here if users are not aware of this rule of Re-start calculation and have a false sense that Re-start calculation is performed with the parameter values written explicitly in Re-start input file the users will have inevitably a misunderstanding that the calculated results are obtained under the explicitly written values of parameters in Re-start input file This is a problem to be avoided so that the name-list input variables (parameters) listed in Table 333 must not be written in Re-start input file

Table 333 Name-list parameters and variables taken over from Base- to Restart calculation

(12) Name Content

PU PuO2 weight fraction (-) PUFIS Weight ratio of fissile Pu to total Pu(-)

AZ1 Ratio of length of element in the axial direction of half a pellet in the 2-D local mechanical analysis

ZR Zr-liner thickness (cm)

K1 Number of elements in the axial direction of half a pellet in the 2-D local mechanical analysis

ISHAPE Type of finite element used in the 2-D local mechanical analysis GD Gd2O3 concentration (wt fraction) DMAX Maximum fraction of volumetric shrinkage by densification () SBU Burnup of 90 completion of densification (MWdtUO2) TDNSF Pellet sintering temperature (K) GG Grain radius after heat treatment (m) GG0 Grain radius before heat treatment (m) SITIM Heat treatment time (hour) ADST Densification tuning factor A1 A1 in the swelling rate equation when IFSWEL=4 C1 C1 in the swelling rate equation when IFSWEL=4 BU1 BU1 in the swelling rate equation when IFSWEL=4 A2 A2 in the swelling rate equation when IFSWEL=4 SWSLD Factor to multiply the solid swelling rate 025 per 10E20 fissioncm3 RF Grain boundary gas bubble threshold radius (cm) FBCOV Fraction of grain boundary coverage by grain boundary lenticular gas bubbles CATEXF Axial growth factor fz in cladding irradiation growth equation COLDW Cladding cold work CW RX Multiplication factor for cladding irradiation growth rate GR Initial grain diameter of pellet (μm)

DD1 Adjustment factor for DMAX used in the merged model of densification and swelling

ALD Adjustment factor for α used in the merged model of densification and swelling

BU0 Baseline burnup used in the merged model of densification and swelling IFEMRD Option to activate 2-D local mechanical analysis

JAEA-DataCode 2013-009

- 33 -

Table 333 Name-list parameters and variables taken over from Base- to Restart calculation

(22) Name Content

LBU Option to use local burnup in burnup-dependent models MESH Option to select the number of pellet ring elements IDENSF Option to select pellet densification models IFSWEL Option to select pellet swelling models IGASP Option to select fission gas release model ICAGRW Option to select cladding irradiation growth model IRIM Option for additional FGR from high burnup structure DENSWL Option to activate the merged model of densification and swelling HBS Option to select the high burnup structure model RIMSWL Option for swelling model of high burnup structure NODEG Number of elements inside grain in fission gas diffusion model NODEH Number of elements inside grain in He gas diffusion model OXTH(IFEM) Initial oxide thickness of the objective segment (μm)

(3) Variables associated with the last stage of base irradiation (not name-list input parameters)

The variables which have the calculated values at the last stage of Base-irradiation are listed in Table 334

Table 334 Variables associated with the last stage of base irradiation Name Content

TIME Time (hour) PLHR Baseline linear power (Wcm) PCOOL Coolant pressure (Pa) FAI Fast neutron flux (ncm2s) FAIT Fast neutron fluence (ncm2) BUNP(NHIST) Baseline burnup (GJkgU)

(4) Variables taken over in thermal analysis (not name-list input parameters)

The variables which have the calculated values in thermal analysis at the last stage of Base-irradiation are listed in Table 335

Table 335 Variables of thermal analysis taken over to Restart calculation (15) Name Content

OXTHO Thickness of cladding outer oxide layer including plenum part (μm) OXTH2 Thickness of cladding inner oxide layer including plenum part (μm) CONCH Hydrogen concentration in cladding metallic part (ppm)

CONCO Hydrogen concentration at the previous time step in cladding metallic part (ppm)

JAEA-DataCode 2013-009

- 34 -

Table 335 Variables of thermal analysis taken over to Restart calculation (25) Name Content

IS Option to have a lower plenum NAX1 Number of segments in the axial direction of rod including plenum parts NPR Number of pellet ring elements in thermal analysis NRP Number of pellet ring elements in entire rod length mechanical analysis NC1 Number of cladding ring element nodes PIN Initial gas pressure in the plenum (Pa) GASPR Plenum gas pressure (Pa) PCOOLI Coolant initial pressure (Pa)

VTPLEN Value of plenum space volume divided by plenum gas temperature (cm3K)

XMOLO Initial number of moles of gas in plenum (mol) TOTMLO Number of moles of gas in plenum (mol) SUMHRS Number of moles of He (mol) SUMZRS Number of moles of fission gas (mol) FGRX Fission gas release rate () PLENLN Plenum length (cm) BU1 Average burnup over one segment (GJkgU) BR1F Local burnup (GJkgU) COLD Number density of atoms inside grain (at grain node) (atomscm3) BO Number of gas atoms in the grain boundary of one grain (atoms) TTALO Number of gas atoms inside grain (atoms) ABAR Radius of grain boundary gas bubble (cm) BBDEN Area number density of grain boundary gas bubbles (bubblesm2) AOLD Radius of intra-grain gas bubble (cm) ROLD Radius of FEM element node inside grain (cm) RLSD Amount of released fission gas atoms per one grain (atoms) GENED Amount of generated fission gas atoms per one grain (atoms) RFGRO FGR from high burnup structure (-) GRNS Pellet grain diameter (μm) BBLDO Number density of intra-grain gas bubbles (bubblescm3)

AMO Number density of fission gas atoms in intra-grain gas bubbles in pellet (atomscm3)

ABLD Number of grain boundary gas bubbles of one grain (bubblesgrain) TPOR Fission gas atoms density in the rim structure gas pore (atomscm3) RMPOR2 Gas pore swelling in the rim structure (-) TSWL Swelling by intra- and grain boundary gas bubbles (-)

BNMX Threshold number of area density of gas atoms in grain boundary (atomscm2)

BEFFO Effective burnup (GWdt) XV Rim transformation fraction in pellet (-) FPORE Fraction of fission gas atoms moved to rim gas pores (-) OPR Fraction of open porosity (-) RFGB Threshold radius of grain boundary bubble (cm)

P1 Internal pressure of intra-grain gas bubble and external pressure on the intra-grain bubble (dynecm2)

JAEA-DataCode 2013-009

- 35 -

Table 335 Variables of thermal analysis taken over to Restart calculation (35) Name Content

P2 Internal pressure of intra-grain gas bubble and external pressure on the grain boundary bubble (dynecm2)

TMDAT3(47) Volumetric strain induced by intra-grain gas bubbles () TMDAT3(49) Volumetric strain induced by grain boundary gas bubbles ()

TMDAT3(85) Number of generated fission gas atoms per unit volume of fuel (atomscm3)

TMDAT3(87) Number of generated fission gas atoms inside grain per unit volume of fuel grain (atomscm3)

TMDAT3(88) Number of generated fission gas atoms in intra-grain gas bubbles per unit volume of fuel (atomscm3)

TMDAT3(89) Number of intra-grain gas bubbles per unit volume of fuel (bubblescm3) TMDAT3(90) Number of fission gas atoms per unit area of grain boundary(atomscm2)

TMDAT3(91) Saturation (threshold) number of fission gas atoms per unit area of grain boundary (atomscm2)

TMDAT3(92) Number of gas bubbles per unit area of grain boundary (bubblescm2) TMDAT3(93) Covering fraction of grain boundary by grain boundary gas bubbles (-) TMDAT3(94) Saturation (threshold) radius of grain boundary gas bubbles (μm) RCII Initial inner radius of cladding (cm) RPOI Initial outer radius of pellet (cm) RPII Initial inner radius of pellet (cm) RCI Cladding inner radius (cm) RPO Outer radius of pellet (cm) RPI Inner radius of pellet (cm) TPSTG1 Pellet center temperature (K) CF Pellet-clad contact pressure (Pa) GAPI Initial gap width of pellet-clad (cm) GAP Pellet-clad gap width (cm) GAPO Pellet-clad gap width of previous time step (cm) GAPOO Array to store pellet-clad gap size data (cm) GHOT Pellet-clad gap width at hot stand-by (cm) TCSUF Temperature at the outer oxide surface of cladding (K) TPP1 Pellet temperature used in thermal analysis (K) TP1 Pellet temperature used in entire rod length mechanical analysis ((K) TC1 Cladding temperature (K) TCO Pellet center temperature at previous time step (K) TC Pellet center temperature (K) PGAS1 Amount of generated fission gas atoms (molcm) RGAS1 Amount of released fission gas (molcm) SIGM1 Pressure on grain boundary gas bubble (Pa) SIGA1 Pellet average internal stress (Pa) YS1 Pellet yield stress (Pa) GMIX Gap gas composition (-) GMIXO Initial gap gas composition (-) SOSW Solid swelling strain of pellet (-) URSW Gas bubble swelling strain of pellet (-) SUMSWO Radial displacement of pellet induced by swelling (cm)

JAEA-DataCode 2013-009

- 36 -

Table 335 Variables of thermal analysis taken over to Restart calculation (45) Name Content

SUMUSO Gas bubble swelling displacement of pellet at previous time step (cm) SUMUSW Gas bubble swelling displacement of pellet (cm) VGAP Space volume of P-C gap (cm3cm) VHOL Space volume of inner hole of pellet (cm3cm)

VFORM Space volumes associated with pellet shape such as dish chamfer pellet tilting etc (cm3cm)

SUMV Free space volume temperature inside fuel rod (cm3K) VOL Volume of active length part of fuel rod including internal space (m3) TPA Temperature of internal region of fuel rod (K) GMD Gas molar density at each axial segment (molm3) (=1He=2Xe) TMOL1 Molar number of gas at each axial segment (mol) (=1He=2Xe)

DZX Length of axial segment (cm) (including upper and lower plenum region)

POWER Linear heat rate (Wcm) AFIS Fission density (fissionscm3-s) AFAI Fast neutron flux (ncm2-s) AFAIT Fast neutron fluence (ncm2) TEMP Fuel( pellet cladding) temperature (K) PEX Displacement of pellet by thermal expansion (cm) PCR Displacement of pellet by creep (cm) PDN Displacement of pellet by densification (cm) PSW Displacement of pellet by swelling (cm) PRL Displacement of pellet by relocation (cm) PDS Total displacement of pellet (cm) CEX Displacement of cladding by thermal expansion (cm) CEL Elastic displacement of cladding (cm) CCR Creep displacement of cladding (cm) CDS Total displacement of cladding (cm) CFM Pellet-clad contact pressure (Pa) GAPX Pellet-clad gap width (cm)

PAS Displacement of pellet in the axial direction in the entire rod length mechanical analysis (cm)

CAS Displacement of cladding in the axial direction in the entire rod length mechanical analysis (cm)

SHFC Surface heat flux of cladding (Wcm2) SUCRP Creep displacement of pellet (cm) CCRP Creep strain displacement of cladding inner surface (cm) CCRPE Creep strain of cladding inner surface in the hoop direction (-) BD P-C bonding progress (hourMPa) BDO P-C bonding progress at previous time step (hourMPa) FDEN Pellet relative density (-)

ICLS Flag to indicate if the grain boundary bubble has made tunneling or not (=0tunneling =1not tunneling)

IGB Number of repetition of coalescence and closure of grain boundary bubbles when the bubbles make tunneling

RCIC Initial inner radius of cladding (cm)

JAEA-DataCode 2013-009

- 37 -

Table 335 Variables of thermal analysis taken over to Restart calculation (55) Name Content

RPIC Initial inner radius of pellet (cm) RPOC Initial outer radius of pellet (cm)

VCRC Relocation-induced space volume inside pellet at previous time step (cm3cm)

VCRCN Relocation-induced space volume inside pellet at current time step (cm3cm)

NPH Number of outermost element node for He release model FT Effective fluence of fast neutron (nm2) CW Cladding cold work (-) CTEMP Cladding temperature (K) RTEMP Cladding temperature changing rate (Ks) NPH Number of outermost mesh of fuel grain in He gas release model GASHE He gas partial pressure inside fuel rod (Pa) GASHEA He gas equilibrium pressure (Pa) TMLHE1 Molar number of He inside rod at previous time step (mol) TMLHE2 Molar number of He inside rod at current time step (mol) VOLHE Volume of He inside rod (cm3) HEDEN Concentration of He inside rod (atomscm3) RHOLD Nodal point radius inside grain for He diffusion calculation (cm) RHP Nodal coordinate values for He diffusion calculation (cm) HEOLD Number density of He in each nodal point inside grain (atomscm3) THALO Number of He atoms per one grain at previous time step (atoms) VOLM FEM element volume of pellet (cm3) GENEH Number of He atoms generated per one grain (atoms) DH0S Stored region of in-grain He diffusion coefficient (cm2s) DAH0S Stored region of in-grain He effective diffusion coefficient (cm2s) DBH0S Stored region of grain boundary He diffusion coefficient (cm2s) PGRH He generation rate at previous time step (atomscm3-s) PGRH2 He generation rate at current time step (atomscm3-s)

HEATM0 Initial numbers of generated He atoms in each ring element He atoms inside grain and He atoms at grain boundary (atoms)

HEATM Numbers of generated He atoms in each ring element He atoms inside grain and He atoms at grain boundary (atoms)

HEMOL0 Numbers of moles of generated He in each segment inside grain and at grain boundary at the beginning of time step (mol)

HEMOL1 Numbers of moles of generated He in each segment inside grain and at grain boundary at previous time step (mol)

HEGENE He generation density (atomscm3)

HEATMB Number of He atoms in the inside and outside regions of pellet at each segment (atoms)

HEATMB0 Initial number of He atoms in the inside and outside regions of pellet at each segment (atoms)

(5) Variables taken over in entire rod length (1-D) mechanical analysis (not name-list input parameters)

The variables which have the calculated values in the 1-D Entire Rod Length mechanical

JAEA-DataCode 2013-009

- 38 -

analysis at the last stage of Base-irradiation are listed in Table 336 Table 336 Variables taken over in ERL mechanical analysis (12)

Name Contents NR Number of elements in the radial direction of pellet and cladding KUNTS Counts of total time steps TEMPUO Upper plenum gas temperature at previous time step (K) TEMPLO Lower plenum gas temperature at previous time step (K) TBO Initial plenum gas temperature (K) TIMEOS Time at previous time step (hr) DTIMBS Time step increment at previous time step (hr) VS Fuel rod axial elongation (m) TEMPUS Upper plenum gas temperature at current time step (K) DTMPUS Upper plenum gas temperature increment (K) TEMPLS Lower plenum gas temperature at current time step (K) DTMPLS Lower plenum gas temperature increment (K) DTBOUS Difference between upper plenum gas temperature and room temperature (K) DTBOLS Difference between lower plenum gas temperature and room temperature (K) ALTSUS Thermal expansion strain of upper plenum spring (-) ALTCUS Thermal expansion strain of cladding of upper plenum (-) FWGZS Force imposed on the top end plane of upper plenum (N) FLZPS Force on lower plenum spring (N) FLZCS Force on cladding of lower plenum (N) FUZPS Upper plenum spring force (N) FUZCS Force on cladding of upper plenum (N) EPSR Relocation parameter EPSRR Relocation strain in the radial direction EPSRT Relocation strain in the circumferential direction PWEROS Linear heat rate (Wcm) BUS Segment average burnup (GJkgU) FISO Fission density (fisscm3-s) FAIS Fast neutron flux (ncm2-s) FAITS Fast neutron fluence (ncm2) DFAIS Fast neutron flux increment (ncm2-s) DFAITS Fast neutron fluence increment (ncm2) BR1S Local burnup (GJkgU) TEMPS Fuel temperature (K) DTEMPS Fuel temperature increment(K)

ICONTS P-C contact state(=0open gap =1pellet-clad bonded =2pellet-clad sliding =3 open gap but axial elongation is restricted by adjacent segment

FPRS P-C contact pressure (Pa) GAPS P-C gap width (cm) SWELS Swelling strain of pellet (-) EPSHTS Creep hardening strain at which Pughrsquos reversal occurs (-) EPSDNS Densification strain of pellet (-) PMS Direction of creep flow (=10tensile =00compressive)

IREVS In creep calculation of cladding =1 for adoption of Pughrsquos reversal =0 for non-adoption

JAEA-DataCode 2013-009

- 39 -

Table 336 Variables taken over in ERL mechanical analysis (22) Name Contents

SIGES Equivalent stress (Pa) SIGEBS Equivalent stress at previous time step (Pa) SIGYS Yield stress (Pa) EPSPS Equivalent plastic strain (-) EPSHPS Hot-pressing strain (-) EYNGS Youngrsquos modulus (Pa) EYNGBS Youngrsquos modulus at previous time step (Pa) US Node displacement (m) EPSTHS Thermal expansion strain (-) EPSCPS Creep strain at which Pughrsquos tensile reversal occurs (-) EPSCMS Creep strain at which Pughrsquos compressive reversal occurs (-) SIGS Stress (Pa) EPSCS Creep strain (-) EPSCBS Creep strain at previous time step (-) EPSHS Creep hardening strain (-) EPSS Total strain (-) EPSPVS Plastic strain (-) EPSES Elastic strain (-) EPSRLS Relocation strain (-) EPSDSS Densification + swelling strain (-) RS Ring element nodal coordinate value in the radial direction (m) IBD Flag to indicate P-C bonding state

(6) Variables taken over in 2-D local mechanical analysis when IFEMRD=0 (not name-list input parameters)

The variables which have the calculated values in the 2-D local mechanical analysis at the last stage of Base-irradiation are listed in Table 337 Table 337 Variables taken over in 2-D local mechanical analysis (12)

Name Content NOD2 Number of nodes NELM Number of elements NTEP Number of Gaussian points in the radial direction NRX Number of Gaussian points in the radial direction of pellet elements NRX1 NRX+1 ILOW Number of columns of Gaussian points in the radial direction ICOL Number of layers of Gaussian points in the axial direction NM Number of Gaussian points in the radial direction KL Number of Gaussian points in the axial direction I2 Number of pellet materials (UO2 and MOX) IFX Flag to indicate P-C contact state TEMP2 Temperature at Gaussian point in radial elements (K) EPSO2 Initial strain of element in the radial direction at Gaussian point (-) EPSTH Thermal strain in the radial direction at Gaussian point (-)

JAEA-DataCode 2013-009

- 40 -

Table 337 Variables taken over in 2-D local mechanical analysis (22) Name Content

EPSTA Thermal strain in the axial direction at Gaussian point (-) SMAX Swelling strain in the radial direction at Gaussian point (-) SWMAXI Swelling strain in the axial direction at Gaussian point (-) GRA1 Pellet grain size at Gaussian point (μm) CFU Pellet-clad contact pressure (Pa) CFV Pellet-clad frictional force in the axial direction (Pa) DELGP Pellet-clad radial gap size (cm) GAPGPX Distance between the contact pair of pellet and cladding (cm) SGN Direction of sliding VMU Frictional coefficient between pellet and cladding (-) NCNTB Table of variables of contact pairs composing gap element IALB Flag of contact state at pellet boundary NSO Contact state of the contact pair of pellet and cladding SBPON Contact force at the interface of one pellet and another (N) TU Nodal displacement (cm) XY0 Initial coordinates of nodal points (cm) EPSP Plastic strain of Gaussian point in the element (-) EPSE Elastic strain of Gaussian point in the element (-) EPSR Relocation strain of Gaussian point in the element (-) ZLOCA Information table of stressstrain etc at Gaussian points of elements IEP Flag to indicate elastic-plastic state (=0 elastic state =1plastic state) IRV YesNo flag of cladding creep reversal EPSRLI Initial relocation strains in the radial and circumferential directions of pellet (-) EPSRL Relocation strain of pellet at current time step (-) EPSGRS Upper limit of gas bubble swelling strain of pellet (-) ALC Coordinate value at the top of pellet when locking occurs (cm) EPSSWL Swelling strain of pellet (-) EPSSWS Solid swelling strain of pellet (-) EPSSWU Bubble gas swelling strain of pellet (-) EPSDEN Densification strain of pellet (-) EPSDNY Densification strain component of pellet (-) EPSSWY Swelling strain component of pellet (-) IPLIN Table of information to make shape map in 2-D mechanical analysis

IPELM Table of element number and its corresponding nodal number in 2-D mechanical analysis

JAEA-DataCode 2013-009

- 41 -

335 Explanations for sample Re-start calculations and method

(1) Explanation is given on the following Basic input data BBSd05 which is shown in

Table 338 Table 338 Basic input data set

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50 IRIM=1 RFGFAC=10

FRELOC=030 EPSRLZ=5D-3 IFSNT=2 IGRAIN=0 GR=64 GRWF=15

LBU=1 IPRO=0 R1=10 R2=10 ICAGRW=1 IHOT=1 BETAX=0002

ISPH=1 ICFL=1 IROD=0

ITIME(1)=10 GASPRN(1)=0641 PLENM(1)=8 GMIXN(11)=10 0 0 0

IFEMRD=0 IFEMOP=2 IDSELM=1 IDENSF=0 DMAX=520 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 RF=5E-5 IFSWEL=1 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100 CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10

IPTHEX=3 ATHEX=3561D-6 IRM=0 MESH=3 MOXP=0 IPLYG=1 IZYG=1

TCS=127315 IZOX=1 IST=1 ITEND=1 DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

5 3

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 025 1264 1300 005078 0947 415

111 003 0

219 009 10 00 00 00 3677 00

119

00 01 2196E+13 51315 33 1 4

09853 10044 10044 10085 09974 8

24 3000 20E+13

3560 3000 20E+13

35601 220 1210E+13

65600 220 1210E+13

65601 1758 9669E+12

9997 1758 9669E+12

99971 0 6578E+12 51315 33 1 4

10000 0 0 29815 01 1 4

09853 10044 10044 10085 09974

1000120 0 0 29815 01 1 4

09853 10044 10044 10085 09974

1000140 2 15E+13 29815 72 1 4

1039 1026 1017 0986 0932 106

1007595 20 15E+13 56095 72 1 4

1039 1026 1017 0986 0932 3

1007600 0 15E+13 56095 72 1 4

1007610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 42 -

(2) Base-calculation data before Re-start calculation (BBSd05) As shown in Table 339 Base calculation data are composed by the irradiation history

data It is important to designate ldquoIREST=4rdquo This case is run with IFEMRD=0 which

designates the 2-D local PCMI analysis concurrently with the 1-D entire rod length

mechanical analysis When ldquoIFEMRD=0rdquo is taken over to Re-start calculation both 1-D and

2-D mechanical analyses are performed

In this case no designations are given to ITIME(1)=10 GASPRN(1)=0641

PLENM(1)=8 and GMIXN(11)=10 0 0 0 Execution with ldquoTable 339 filerdquo results in a Re-start file BBSd11

Table339 Base calculation input data before Restart calculation

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GR=64 GRWF=15 LBU=1 IPRO=0 R1=10 R2=10 ICAGRW=1

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

IFEMRD=0 IFEMOP=2 IDSELM=1 IDENSF=0 DMAX=520 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 RF=5E-5 IFSWEL=1 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MESH=3 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=4 DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

5 3

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 025 1264 1300 005078 0947 415

111 003 0

219 009 10 00 00 00 3677 00

9

00 01 2196E+13 51315 33 1 4

09853 10044 10044 10085 09974 8

24 3000 20E+13

3560 3000 20E+13

35601 220 1210E+13

65600 220 1210E+13

65601 1758 9669E+12

9997 1758 9669E+12

99971 0 6578E+12 51315 33 1 4

10000 0 0 29815 01 1 4

09853 10044 10044 10085 09974

STOP

JAEA-DataCode 2013-009

- 43 -

(3) Sample test irradiation data in Re-start calculation A) A sample test irradiation data for Re-start calculation is shown in Table 3310 as BBSrd05 This case does not explicitly designates the 2-D mechanical analysis but performes both the 1-D and 2-D analyses It is important to set IRTIME=0 to perform Re-start calculation with continuous time from Base calculation At the beginning stage of Re-start calculation it is important to specify a new set of values of plenum volume gas pressure and gas composition ITIME(1)=1 GASPRN(1)=0641 PLENM(1)=8 and GMIXN(11)=10 0 0 0 Also it is important to set ldquoIREST=5rdquo to perform Re-start calculation In Table 3310 TRSGT=15 is set so that this is a normal Re-start calculation In other words number of axial segments is 5 which is identical to that of the Base calculation and performs calculation for axial segments 1 to 5

Table 3310 Test irradiation data for Restart calculation (BBSrd05)

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GRWF=15 IPRO=0 R1=10 R2=10

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

ITIME(1)=1 GASPRN(1)=0641 PLENM(1)=8 GMIXN(11)=10 0 0 0

IFEMOP=2 IDSELM=1 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=5 TRSGT=15 IWRES=0 IRTIME=0

DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

5 3

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 025 1264 1300 005078 0947 415

111 003 0

219 009 10 00 00 00 3677 00

110

1000120 0 0 29815 01 1 4

09853 10044 10044 10085 09974

1000140 2 15E+13 29815 72 1 4

1039 1026 1017 0986 0932 106

1007595 20 15E+13 56095 72 1 4

1039 1026 1017 0986 0932 3

1007600 0 15E+13 56095 72 1 4

1007610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 44 -

B) Next an example having ldquoIRTIME=1rdquo is shown in Table 3311 as BSqd05 It is

important to set IRTIME=1 to perform Re-start calculation with a new time which starts at the

beginning of Re-start calculation Similarly to Table 3310 at the beginning stage of

Re-start calculation it is important to specify a new set of values of plenum volume gas

pressure and gas composition Also Re-start calculation requires IREST=5 In Table 3311

TRSGT=1 5 is set just like Table 3310 and a normal Re-start calculation is performed for

the segments 1 to 5

Table3311 Test irradiation data for Restart calculation (BSqd05)

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GRWF=15 IPRO=0 R1=10 R2=10

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

ITIME(1)=1

GASPRN(1)=0641 PLENM(1)=8 GMIXN(11)=10 0 0 0

IFEMOP=2 IDSELM=1 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=5 TRSGT=15 IWRES=0 IRTIME=1

DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

5 3

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 025 1264 1300 005078 0947 415

111 003 0

219 009 10 00 00 00 3677 00

110

120 0 0 29815 01 1 4

09853 10044 10044 10085 09974

140 2 15E+13 29815 72 1 4

1039 1026 1017 0986 0932 106

7595 20 15E+13 56095 72 1 4

1039 1026 1017 0986 0932 3

7600 0 15E+13 56095 72 1 4

7610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 45 -

C) Next an example of input data of Re-start calculation for a short segment rod is shown in

Tables 3312 Table 3312 is the case where the third segment is used as a short test rod In

this case ldquoIREST=5rdquo and ldquoTRSGT=3rdquo are specified in the input file of Re-start calculation

Since this specifies one axial segment geometry the input data is required to match the

one-segment geometry In line with this modification of relative distribution of linear power

in the axial direction is required Also change of the objective segment No (IFEM) is

required for the 2-D local mechanical analysis It is important that IFEM (=3) which has been

specified in Base calculation be included in the range of TRSGT Similarly to Table 3310 at

the beginning stage of Re-start calculation it is important to specify a new set of values of

plenum volume gas pressure and gas composition

Table3312 Test irradiation data for Restart calculation (IBBSud05)

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GRWF=15 IPRO=0 R1=10 R2=10

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

ITIME(1)=1 GASPRN(1)=0641 PLENM(1)=2 GMIXN(11)=10 0 0 0

IFEMOP=2 IDSELM=1 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=5 TRSGT=3 IWRES=0 IRTIME=0

DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

1 1

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

111 003 0

219 009 10 00 00 00 00 00

110

1000120 0 0 29815 01 1 4

10044

1000140 2 15E+13 29815 72 1 4

1017 106

1007595 20 15E+13 56095 72 1 4

1017 3

1007600 0 15E+13 56095 72 1 4

1007610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 46 -

D) Next another example is shown in Table 3313 in which the 2nd 3rd and 4th segments are fabricated into a short test rod In this case ldquoIREST=5rdquo and ldquoTRSGT=2 4rdquo are set in the input file Accordingly this case has three axial-segment geometry so that the input data is required to match the three-segment geometry In line with this modification of relative distribution of linear power in the axial direction is required Also change of the objective segment No (IFEM) is required for the 2-D local mechanical analysis Specifically since the Base calculation has ldquoIFEM=3rdquo the Re-start calculation with IFEM=2 should be set because IFEM=3 denotes the second segment in TRSGT range ldquo2 3 4rdquo Similarly to Table 3310 at the beginning stage of Re-start calculation it is important to specify a new set of values of plenum volume gas pressure and gas composition

Table 3313 Test irradiation data for Restart calculation (BBSvd05)

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GRWF=15 IPRO=0 R1=10 R2=10

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

ITIME(1)=1 GASPRN(1)=0641 PLENM(1)=5 GMIXN(11)=10 0 0 0

IFEMOP=2 IDSELM=1 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=5 TRSGT=24 IWRES=0 IRTIME=0

DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

3 2

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

111 003 0

219 009 10 00 00 00 00 00

110

1000120 0 0 29815 01 1 4

10044 10044 10085

1000140 2 15E+13 29815 72 1 4

1026 1017 0986 106

1007595 20 15E+13 56095 72 1 4

1026 1017 0986 3

1007600 0 15E+13 56095 72 1 4

1007610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 47 -

(4) Method to perform Re-start calculation The ft11 file taken over to Re-start calculation is generated in WrkOUTP as eg

AA1ft11 as a result of Base calculation with input file AAd05

If the input file name of Re-start calculation is BBd05 rename AA1ft11 into BBft11 and type after prompt ldquofem BB 1rdquo Then FEMAXI-7 reads BBft11 and BBd05

performs Re-start calculation and generates the output file BB1out

34 Usage of output of burning analysis code RODBURN-1 In FEMAXI to take into account the changes of some fission product elements and

power density profile of fuel pellet with burnup in the radial direction the burning analysis

code RODBURN-1 can be used as a pre-processing code Calculated results by

RODBURN-1 are compared with those of other burning analysis code in the later sections of

this manual indicating a reasonable predictability

Table 341 shows the output physical quantities and formats of RODBURN-1 which are

read by FEMAXI These data are output for all time steps between historical input points

designated in the input data to RODBURN-1 In FEMAXI linear interpolation is performed

with respect to burnup for these data obtained in each time step and the interpolated values

are used for calculations

Details of items in Table 341 are described below

341 Record No and contents

Record No 1 a heat generation density profile in the radial direction is an output at each

time step at the axial segment having maximum burnup It is assumed that changes in the

heat-generation density profile depend not on the axial position of a segment but only on

burnup Since the information on a segment with maximum burnup is output a table of

burnup vs radial heat-generation-density profile regarding the entire burnup regions

necessary can be produced after completion of the entire time step of RODBURN

Record No 2 number of axial segments is the number of divisions in the axial direction of a

fuel rod in RODBURN

Record No 3 average burnup and the amount of generated He of each axial segment are

output Record Nos 4 and 5 are used to modify history data for input data of

FEMAXI

JAEA-DataCode 2013-009

- 48 -

Record No 4 average burnup average linear heat rate and average fast neutron flux are

output

Record No 5 axial linear heat rate relative to average linear heat rate is output in order to

obtain linear heat rate and fast neutron flux of each axial segment

Record No 6 axial coordinates of each axial segment used in RODBURN

Table 341 Output variables and format of RODBURN-1 Record No

Data No Data Item Unit Format Column Note

1 1 2~11

Maxburnup Radial heat generation density profile

MWdt-U

F102 10F63

1~10 11~70 Refer to 1)

2 1 Number of axial segments I5 1~5

3

1 2~13

Average burnup Molar amount of He gas

MWdt-U Mole

F102 12E124

1~10 11~154

Refer to 1) Number of axial

segments

4

1 2 3

Average burnup Average linear heat rate

Fast neutron flux

MWdt-U Wcm

2ncm timess

F102 E124 E124

1~10 11~22 23~34

Refer to 1)

5 1~12 Axial relative power profile 12F63 1~72 Number of axial

segments

6 1~12 Axial coordinates cm 12E124 1~144 Number of axial

segments Refer to 2)

1) burnup of an axial segment 2) boundary coordinates between n-th and (n+1)th segment

342 Usage of records in FEMAXI To use data obtained from RODBURN-1 in FEMAXI the average linear power of a fuel

rod must be input into FEMAXI When the average linear power-input history is given the

average burnup at each historical point of input is calculated in FEMAXI by accumulating the

average linear power

The heat generation density profile in the radial direction in FEMAXI which is originally

calculated by RODBURN-1 can be obtained by interpolating the data with burnup in the

table of burnup vs heat generation density profile The data are prepared from the

RODBURN data group for the Record No1

JAEA-DataCode 2013-009

- 49 -

(1) Power density profile when MESH=0

In the case where pellet stack is divided into iso-volume ring elements in RODBURN-1

input the calculated results cannot directly correspond to the iso-thickness ring elements of

FEMAXI which has MESH=0 designation In this case the results of RODBURN-1 are used

in FEMAXI by volume interpolation or volume averaging

(2) Power density profile when MESH=1 2 3 or 4 (Recommended)

When MESHge1 the thermal analysis treats pellet stack as an assemblage of N=36 or

more iso-volume ring elements In this case RODBURN-1 sets N=36 or more ring elements

for pellet stack and sets the number of radial division of output file table as N

(3) Burnup profile of pellet in the radial direction

The burnup profile in the radial direction of a pellet stack obtained in RODBURN is not

forwarded to FEMAXI but an identical quantity can be obtained in FEMAXI by

accumulating the heat generation density profile over time The heat generation density is

given by a relative rate ie density ratio when the heat generation density averaged over all

the ring elements is set to 1 Accordingly assuming the density ratio of the i-th ring element in the radial direction to be Ri the burnup increment ∆Bui of this element is given by

∆ ∆Bu R Bui i= for the burnup increment ∆Bu of each time step for each segment The

burnup of each element can be obtained by integration of the burnup increment∆Bui over

time

(4) Molar amount of generated He

The molar amount of He gas is obtained in FEMAXI by interpolating the average burnup

data vs number of He moles generated with average burnup in the table which is produced

for each axial segment from the data group of the Record No 3

(5) Fast neutron flux

Among the historical data given in the input for FEMAXI the average fast neutron flux and

axial relative power ratio are corrected using data from the Record Nos4 and 5 These two

values in the axial direction are obtained by interpolating the following data with average

JAEA-DataCode 2013-009

- 50 -

burnup in FEMAXI (1) table of the average burnup vs average fast neutron flux and (2)

table of the average burnup vs relative power ratio in the axial direction both of which are

produced using data groups of the Record Nos 4 and 5

However sometimes differences happen to exist in the average linear heat rate

corresponding to the same average burnup between RODBURN output and FEMAXI input

data Therefore the difference in the average fast neutron flux is if exists corrected using

FEMFEM ROD

ROD

PP

φ φ= (A12)

and then used in FEMAXI

Here φFEM average fast neutron flux used in FEMAXI

φROD average fast neutron flux output from RODBURN

PFEM average linear heat rate input to FEMAXI

PROD average linear heat rate output from RODBURN

In order to deal with the differences if exist in the axial segment division between

RODBURN and FEMAXI a re-mesh function for the axial direction has been incorporated in

FEMAXI Namely putting a data value of the i-th segment in RODBURN as φi and that of

the (i+1)th segment as φi+1 and putting that of the j-th segment in FEMAXI as φjrsquo the axial

power profile is obtained by

( ) ( )

( )prime =minus prime + prime minus

prime minus primeminus +

minus

φφ φ

ji j i j i i

j j

Z Z Z Z

Z Z1 1

1

(A13)

and the molar amount of generated He gas is obtained by

( )( )

( )( )prime =

minus prime

minus+

prime minus

minusminus

minus ++φ φ φj

i j

i ii

j i

i ii

Z ZZ Z

Z ZZ Z

1

1 11 (A14)

Here Zi and Zj are the axial coordinates obtained from Record No 6 in RODBURN-1

and the axial coordinate in FEMAXI respectively

In RODBURN-1 pellet radius is divided into equal-volume ring elements in many cases

for the analysis of the power profile which is different from the equi-distance division by the

selection of MESH=0 Therefore the calculated values from RODBURN-1 are used by

interpolating with volume or by volume-averaging for the ring elements in FEMAXI

To avoid accumulation of errors due to the extension of burnup and interpolation

between axial coordinates a compensation processing is performed for obtained data

JAEA-DataCode 2013-009

- 51 -

343 Making input file of RODBURN-1 by using FEMAXI

In making an input file for RODBURN-1 prior to FEMAXI calculation an averaged

linear heat rate (LHR) values over representative history points are required However it is

often difficult to obtain directly the averaged LHRs from the data of time-LHR pairs or

burnup-LHR pairs of FEMAXI input file To solve this problem the following function has

been implemented in FEMAXI

First make your input file eg AAd05 of FEMAXI with IROD=1 if your rod is

PWR UO2 type If not IROD=2 3 4 or 5 in accordance with your reactor type and fuel type

Then execute FEMAXI The code will not run normally but automatically give rise to rodin

file in Wrk directory Rename rodin to AArddat and execute RODBURN

The rodin file has all that are needed to perform burning calculation of AA rod with

its history of axial distribution of linear power for every burnup stage When IRODge1 in its

input file FEMAXI calculates the linear heat rate at every axial segment along the irradiation

(burnup) history if the relative power profile data is given in FEMAXI input file for the axial

segments and generates a series of figures of linear heat rate history including the axial power

profile in ldquorodinrdquo file RODBURN utilizes this series of figures and average LHR value is

multiplied by relative axial power figure at each axial segment and burning calculation is

performed

After RODBURN calculation you have AArodex file in RODEX directory Then

modify IROD=1 to IROD=0 and put IFLX= -2 in your input file of FEMAXI Then you

can perform FEMAXI calculation with the RODBURN result

35 Usage of output of burning analysis code PLUTON By assigning name-list parameter IFLX=-1 it is possible to read the PLUTON

result file of burning calculation (refer to section 24) The FEMAXI readable file of

PLUTON can be generated as FMdat by PLUTON To feed this file into FEMAXI the file

is renamed into FMdt and stored in the directory Wrkrbout as described in section

A644 Regarding the details of the PLUTON code see the reference 24

JAEA-DataCode 2013-009

- 52 -

351 Physical quantities of PLUTON output for FEMAXI The following relationship describes the transfer of physical quantities from PLUTON to

FEMAXI

(1) Among the various calculation conditions in FEMAXI the quantities required to be

inputted to PLUTON are given below

Time Linear power distribution

Coolant water temperature Fuel composition

Void fraction of coolant water Diameter and inner diameter of the pellet

Pellet density Plant type

(2) The physical quantities read into FEMAXI among the outputs of PLUTON are given

below

Power distribution in the radial direction of the pellet

Fast-neutron flux

Burnup distribution in the radial direction of the pellet

Generated quantities of fission gas atoms Xe and Kr

352 Structure of inputoutput files of PLUTON (1) In the output files of PLUTON the average burnup average fast-neutron flux and power

density are normalized to a linear power of 100Wcm These files have a simple ASCII

format In the example shown in Table 351 lines are used to separate data In practice data

are separated by blank spaces

(2) The power density and Xe-Kr ratio are tabulated as functions of pellet radius

(3) These tables are output for each step of average burnup and various physical quantities at

the middle burnup at each step are determined by interpolating the values with burnup on the

FEMAXI side In addition in FEMAXI all the physical quantities are used by multiplying

the ratio of linear power for each segment by that for 100Wcm Tables for each burnup step

are continuous from the top to the bottom and two blank rows are used to separate each

burnup step

(4) The burnup range (BOL-EOL) and step burnup (∆B) are assigned at the input of

PLUTON The step width is small initially and becomes large in the high-burnup period

JAEA-DataCode 2013-009

- 53 -

(5) The naming convention used for output files in PLUTON is XXX-FEMdat For example

when the file name of PLUTON is BK365inp the output file name is BK365-FEMdat

Table 351 shows a simplified image of the output file format of PLUTON

- - - - - - - - Continues to the last table - - - - - - - - - - - - - - -

Table 351 Image of table structure of PLUTON

Av Burnup-1 (MWdt) 00 Fast flux-1 1564E13 (ncm2s)

Radii (mm) Power density-1 (Wcm3) XeKr Ratio 00 344E2 6875 0232 348E2 - - -

0328 - -

351E2 - - -

- - -

4639 411E2 - - -

4645 423E2 - - -

Av Burnup-1 (MWdt) 50000 Fast flux-1 1589E13 (ncm2s)

Radii (mm) Power density-1 (Wcm3) XeKr Ratio 00 344E2 6810 0232 350E2 - - -

0328 - - -

352E2 - - -

- - -

4639 428E2 - - - 4645 445E2 - - -

Av Burnup-1 (MWdt) 100000 Fast flux-1 1625E13 (ncm2s)

Radii (mm) Power density-1 (Wcm3) XeKr Ratio 00 344E2 6725 0232 351E2 - - - 0328 - - -

354E2 - - -

- - -

4639 452E2 - - - 4645 523E2 - - -

JAEA-DataCode 2013-009

- 54 -

In addition hereafter the detailed contents and format of the inputoutput files of

PLUTON are shown

【Example of Input file -1-】 Input parameters for the PLUTON code Physical Parameters ______________________________________________________________________________ List of variables Units Values ______________________________________________________________________________ FRDENS fractional fuel density na 0955 Bustep burnup power-step increment GWdt 020 Burnup upper burnup limit GWdt 600 EnriU5 initial enrichment with U-235 fraction 0045 CDiam1 the outer clad diameter cm 1430 CDiam2 the inner clad diameter cm 1267 FDiam1 the outer fuel diameter cm 1237 FDiam2 the inner fuel diameter cm 00 WEPITH 0304 - PWRUO2 0366 - PWRMOX 018 WWERUO2 0307 WFast 2010 - PWRUO2 2390 - PWRMOX 1514 TWater water temperature K 560 DWater water density at lower end plug gcc 0860 Vratio fuel to water ratio by volume NA 0627 VVoids void fraction NA 0350 TFuelC fuel temperature in resonant region C-degree 550 QLLBOL BOL reference LHGR wcm 2500 ______________________________________________________________________________ WtThor thorium content wt fraction fraction 00 ______________________________________________________________________________ ContPu plutonium content wt frac 0000 WtSPOT wt of Pu-spots in matrix wt frac 0000 SpDIAM average size of Pu-rich particles micron 500 SPOTU8 fraction of uranium in Pu-spots fraction 0750 PuFrac239 fraction of Pu-239 in total Pu fraction 0681 PuFrac240 fraction of Pu-240 in total Pu fraction 0218 PuFrac241 fraction of Pu-241 in total Pu fraction 0073 Pufrac242 fraction of Pu-242 in total Pu fraction 0028 ______________________________________________________________________________ ContGd content of Gadolinium Oxide Gd2O3 wt frac 0000 GdX154 fraction of Gd-154 isotope 213 GdX155 fraction of Gd-155 isotope 1461 GdX156 fraction of Gd-156 isotope 2034 GdX157 fraction of Gd-157 isotope 1565 GdX158 fraction of Gd-158 isotope 2500 GdX159 fraction of Gd-159 isotope 0000 GdX160 fraction of Gd-160 isotope 2227 ______________________________________________________________________________ NRADI number of points in radial mesh layout 101 NRADIF number of radial points in output power profile 25 iMeshF index of mesh point layout in output power profile -1 ifFEMF index of FEMAXI-readable output format 1 ifRESI 0 = classical formular gt 0 Egiazarovs formular 1 ifEDGE 0 for volume 1 - for rim region 0 iMeshL -1 iPlant =1 (PWR) =2 (BWR) =3 (HBWR) =4 (Riso DR3) 2 ifPLUT =0 local calculations gt 0 full-scale calculations 0 ifREIR =0 no re-irradiation ifREIR gt 0 if re-irradiation 0 ifDEPL Print out index for Xe amp Kr data 1 ifPOIS Print index for poisoning FP (C=1 W=2 Y=3) 1 inPOIS PuMOX index for poisoning FP (M=1 S=2 A=3) 1 ifCLAD Cladding type 2 iQUICK = 0 for quick succession gt 0 for full succession 0 iTRANS = 0 simple TUR-group gt 0 for full TUR-group 0 inTRUG Print index for TU-Group (M=1 S=2 A=3) 3 ______________________________________________________________________________ FLARCRP BWRRp60dat FLARCPU BWRBu60dat

JAEA-DataCode 2013-009

- 55 -

FLARCBU BWRPu60dat FLPOISS BWRPs60dat FLPOISR BWRPr60dat FEMFORM FEMAXI-readable format BWRFM60dat ______________________________________________________________________________ MODELOP default options ______________________________________________________________________________

【Example output file corresponding to the example input -1-】 --------------------------------------- ------------------------------- ------------------------------- ------ SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 0 1000 2000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 1724E+13 1756E+13 1769E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 6635 6675 6714 3 --------------------------------------- ------------------------------- ------------------------------ ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0880 000 24776 3723 0874 087 24816 3698 0874 175 24858 3671 1 0245 0888 000 24775 3723 0882 088 24814 3698 0882 176 24857 3671 2 0316 0898 000 24773 3724 0893 089 24812 3699 0893 178 24855 3672 3 0374 0907 000 24771 3725 0902 090 24811 3700 0902 180 24853 3672 4 0424 0915 000 24769 3726 0911 091 24809 3700 0910 182 24852 3673 5 0469 0926 000 24767 3726 0922 092 24807 3701 0921 184 24851 3673 6 0510 0935 000 24766 3727 0931 093 24806 3702 0930 186 24849 3673 7 0548 0945 000 24764 3728 0941 094 24804 3702 0940 188 24848 3674 8 0583 0954 000 24762 3728 0951 095 24803 3703 0949 190 24847 3674 9 0616 0964 000 24761 3729 0961 096 24801 3703 0959 192 24845 3675 10 0648 0974 000 24759 3730 0971 097 24800 3704 0969 194 24844 3675 11 0678 0983 000 24757 3730 0981 098 24798 3704 0978 196 24843 3675 12 0707 0993 000 24756 3731 0991 099 24797 3705 0988 198 24842 3676 13 0735 1003 000 24754 3732 1001 100 24796 3705 0998 200 24841 3676 14 0762 1013 000 24753 3732 1012 101 24795 3706 1009 202 24841 3676 15 0787 1023 000 24752 3733 1022 102 24794 3706 1019 204 24840 3676 16 0812 1034 000 24750 3734 1033 103 24793 3706 1030 206 24841 3675 17 0837 1045 000 24749 3734 1045 104 24794 3706 1042 208 24842 3674 18 0860 1056 000 24749 3735 1057 106 24795 3706 1054 211 24845 3673 19 0883 1068 000 24748 3736 1070 107 24797 3705 1068 213 24851 3670 20 0906 1082 000 24748 3737 1085 108 24802 3703 1084 216 24860 3665 21 0927 1097 000 24750 3738 1103 110 24810 3700 1104 220 24877 3658 22 0949 1117 000 24753 3740 1127 112 24825 3694 1132 225 24904 3644 23 0970 1143 000 24759 3742 1161 115 24853 3684 1174 232 24955 3620 24 0990 1189 000 24773 3747 1226 121 24918 3658 1257 245 25066 3565 25 --------------------------------------- ------------------------------- ------------------------------- --------------------------------------- ------------------------------- ------------------------------- ----- SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 3000 4000 5000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 1784E+13 1799E+13 1816E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 6752 6790 6827 3 --------------------------------------- ------------------------------- ------------------------------- ----- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0875 262 24898 3645 0875 349 24937 3619 0876 436 24975 3594 1 0245 0882 264 24897 3645 0883 352 24936 3619 0884 440 24974 3594 2 0316 0893 267 24896 3645 0893 356 24935 3619 0893 445 24973 3594 3 0374 0902 270 24894 3646 0902 360 24934 3620 0902 450 24972 3595 4 0424 0910 273 24893 3646 0910 363 24933 3620 0910 454 24971 3594 5 0469 0920 276 24892 3646 0920 367 24932 3620 0920 459 24970 3594 6 0510 0929 279 24891 3646 0929 371 24931 3620 0928 464 24969 3594 7 0548 0939 281 24890 3647 0938 375 24930 3620 0937 468 24968 3594 8 0583 0948 284 24889 3647 0947 379 24929 3620 0946 473 24968 3594 9 0616 0957 287 24887 3647 0956 383 24928 3620 0955 478 24967 3594 10

JAEA-DataCode 2013-009

- 56 -

0648 0967 290 24886 3647 0965 386 24927 3620 0964 482 24966 3594 11 0678 0976 293 24886 3647 0974 390 24926 3620 0973 487 24966 3594 12 0707 0986 296 24885 3647 0984 394 24926 3620 0982 492 24966 3594 13 0735 0996 299 24884 3647 0993 398 24926 3620 0991 497 24966 3593 14 0762 1006 302 24884 3647 1003 402 24926 3619 1001 502 24967 3592 15 0787 1016 305 24885 3647 1013 406 24927 3618 1011 507 24968 3591 16 0812 1027 309 24886 3646 1024 411 24930 3617 1021 513 24971 3589 17 0837 1039 312 24889 3644 1036 415 24934 3614 1033 518 24976 3586 18 0860 1051 316 24894 3641 1049 420 24940 3611 1046 525 24984 3581 19 0883 1066 320 24902 3637 1063 426 24951 3604 1061 532 24998 3573 20 0906 1083 324 24916 3629 1082 432 24969 3595 1080 540 25019 3561 21 0927 1105 330 24939 3617 1106 440 24998 3579 1106 550 25054 3542 22 0949 1136 338 24978 3597 1140 451 25047 3552 1144 565 25112 3509 23 0970 1185 349 25047 3561 1196 468 25133 3505 1206 588 25211 3453 24 0990 1286 372 25195 3482 1313 502 25309 3406 1338 634 25411 3336 25 --------------------------------------- ------------------------------- ------------------------------- ---- --------------------------------------- ------------------------------- ------------------------------ ------ SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 6000 7000 8000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 1832E+13 1850E+13 1868E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 6863 6899 6935 3 --------------------------------------- ------------------------------- ------------------------------ ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0877 523 25011 3570 0878 611 25046 3547 0880 698 25080 3523 1 0245 0885 528 25010 3570 0886 616 25045 3546 0887 704 25079 3523 2 0316 0894 534 25009 3570 0895 623 25044 3546 0896 712 25078 3523 3 0374 0902 540 25008 3570 0903 629 25044 3546 0903 719 25078 3522 4 0424 0910 544 25008 3570 0910 635 25043 3546 0911 725 25078 3522 5 0469 0919 551 25007 3570 0919 642 25043 3545 0919 733 25077 3522 6 0510 0928 556 25006 3569 0928 648 25042 3545 0927 741 25077 3521 7 0548 0936 562 25006 3569 0936 655 25042 3545 0935 748 25076 3521 8 0583 0945 567 25005 3569 0944 661 25041 3545 0943 755 25076 3520 9 0616 0954 573 25004 3569 0952 667 25041 3544 0951 762 25076 3520 10 0648 0962 578 25004 3569 0961 674 25040 3544 0959 769 25075 3520 11 0678 0971 584 25004 3568 0969 680 25040 3543 0968 777 25075 3519 12 0707 0980 590 25004 3568 0978 687 25040 3543 0976 784 25076 3518 13 0735 0989 596 25004 3567 0987 694 25041 3542 0985 792 25077 3517 14 0762 0998 601 25005 3566 0996 701 25043 3540 0993 800 25079 3515 15 0787 1008 608 25008 3564 1005 708 25045 3538 1003 808 25082 3513 16 0812 1019 614 25011 3562 1016 715 25050 3535 1013 816 25087 3509 17 0837 1030 621 25017 3558 1027 723 25057 3531 1025 825 25095 3504 18 0860 1043 628 25027 3552 1041 732 25068 3524 1038 835 25107 3496 19 0883 1059 637 25042 3543 1057 742 25085 3513 1054 847 25127 3484 20 0906 1079 647 25067 3529 1078 755 25113 3497 1076 862 25157 3466 21 0927 1106 661 25107 3505 1107 771 25158 3470 1107 881 25206 3436 22 0949 1147 679 25173 3468 1151 794 25230 3428 1154 908 25285 3389 23 0970 1215 708 25284 3402 1224 830 25352 3354 1233 952 25416 3308 24 0990 1362 769 25503 3270 1385 906 25586 3209 1407 1045 25661 3151 25 --------------------------------------- ------------------------------- ------------------------------ ------ --------------------------------------- ------------------------------- ------------------------------ ------ SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 9000 10000 20000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 1888E+13 1907E+13 2146E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 6971 7005 7344 3 --------------------------------------- ------------------------------- ------------------------------ ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0881 786 25113 3501 0883 873 25144 3478 0900 1757 25421 3261 1 0245 0888 792 25112 3500 0889 881 25144 3478 0904 1770 25422 3259 2 0316 0896 801 25112 3500 0897 890 25144 3477 0909 1786 25422 3257 3

JAEA-DataCode 2013-009

- 57 -

0374 0904 809 25111 3499 0905 899 25143 3476 0914 1801 25422 3255 4 0424 0911 816 25111 3499 0911 906 25143 3476 0919 1814 25423 3253 5 0469 0920 825 25111 3498 0920 916 25143 3475 0924 1830 25424 3251 6 0510 0927 833 25110 3498 0927 925 25143 3474 0929 1845 25424 3249 7 0548 0935 841 25110 3497 0935 934 25143 3474 0933 1860 25425 3247 8 0583 0943 849 25110 3497 0942 942 25142 3473 0938 1874 25425 3245 9 0616 0950 857 25109 3496 0950 951 25142 3473 0943 1889 25425 3243 10 0648 0958 865 25109 3495 0957 960 25142 3472 0947 1904 25426 3241 11 0678 0966 873 25110 3495 0965 969 25143 3471 0952 1919 25428 3238 12 0707 0974 881 25110 3494 0972 978 25143 3469 0957 1934 25430 3235 13 0735 0983 890 25111 3492 0981 987 25145 3468 0963 1950 25433 3231 14 0762 0991 898 25114 3490 0989 996 25147 3466 0969 1967 25437 3226 15 0787 1000 907 25117 3488 0998 1006 25151 3463 0976 1985 25444 3220 16 0812 1010 917 25122 3484 1008 1017 25157 3458 0985 2004 25454 3212 17 0837 1022 927 25131 3478 1019 1028 25167 3452 0995 2027 25470 3200 18 0860 1035 938 25145 3469 1033 1041 25181 3442 1010 2053 25493 3182 19 0883 1052 952 25166 3456 1050 1056 25204 3428 1030 2087 25528 3157 20 0906 1075 969 25200 3435 1073 1075 25240 3405 1060 2133 25581 3119 21 0927 1107 991 25252 3403 1107 1101 25297 3370 1106 2198 25661 3063 22 0949 1156 1023 25337 3351 1159 1138 25386 3314 1180 2299 25779 2978 23 0970 1241 1075 25475 3263 1249 1199 25531 3220 1310 2470 25957 2848 24 0990 1427 1186 25731 3096 1446 1329 25794 3045 1590 2842 26235 2637 25 --------------------------------------- ------------------------------- ------------------------------ ------ --------------------------------------- ------------------------------- ------------------------------ ------ SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 30000 40000 50000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 2456E+13 2830E+13 3243E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 7681 8037 8419 3 --------------------------------------- ------------------------------- ------------------------------ ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0915 2655 25644 3042 0926 3566 25845 2802 0930 4485 26034 2550 1 0245 0918 2671 25645 3039 0927 3583 25846 2797 0929 4502 26036 2545 2 0316 0920 2691 25646 3035 0927 3605 25848 2791 0929 4524 26040 2537 3 0374 0923 2710 25647 3031 0928 3624 25850 2786 0928 4543 26043 2530 4 0424 0925 2726 25649 3027 0929 3642 25852 2781 0928 4561 26045 2524 5 0469 0928 2747 25650 3023 0929 3664 25854 2775 0927 4583 26048 2517 6 0510 0930 2765 25651 3020 0930 3683 25856 2769 0926 4601 26051 2510 7 0548 0933 2782 25652 3016 0930 3702 25858 2764 0925 4620 26054 2503 8 0583 0935 2800 25653 3012 0930 3721 25860 2758 0924 4639 26057 2497 9 0616 0937 2818 25654 3009 0931 3741 25862 2753 0924 4658 26061 2489 10 0648 0939 2837 25656 3004 0931 3760 25865 2747 0924 4678 26065 2482 11 0678 0942 2856 25658 3000 0932 3781 25868 2740 0925 4699 26071 2473 12 0707 0945 2875 25661 2994 0934 3802 25873 2732 0926 4722 26078 2464 13 0735 0949 2895 25665 2988 0936 3825 25879 2724 0929 4748 26087 2454 14 0762 0953 2917 25672 2981 0940 3851 25887 2714 0933 4777 26099 2442 15 0787 0959 2941 25681 2971 0945 3880 25899 2702 0940 4812 26115 2428 16 0812 0966 2968 25694 2959 0953 3915 25915 2687 0951 4856 26136 2410 17 0837 0977 3001 25713 2943 0965 3959 25939 2667 0967 4913 26166 2387 18 0860 0993 3043 25742 2919 0983 4017 25972 2639 0991 4992 26206 2357 19 0883 1016 3099 25784 2887 1010 4098 26020 2602 1028 5105 26260 2319 20 0906 1052 3177 25846 2840 1053 4215 26087 2551 1083 5269 26333 2268 21 0927 1108 3292 25936 2772 1120 4391 26181 2481 1165 5520 26427 2203 22 0949 1199 3475 26064 2676 1227 4673 26309 2387 1286 5916 26548 2119 23 0970 1356 3790 26243 2540 1406 5154 26477 2261 1382 6557 26699 2016 24 0990 1679 4463 26501 2339 1682 6141 26706 2090 1527 7715 26888 1885 25 --------------------------------------- ------------------------------- ------------------------------ ------

JAEA-DataCode 2013-009

- 58 -

--------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 60000 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 3637E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 8822 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0930 5407 26213 2310 1 0245 0929 5423 26217 2303 2 0316 0928 5444 26221 2295 3 0374 0926 5463 26224 2288 4 0424 0925 5479 26227 2282 5 0469 0924 5499 26231 2274 6 0510 0923 5517 26234 2267 7 0548 0922 5535 26239 2260 8 0583 0922 5553 26243 2252 9 0616 0922 5572 26249 2245 10 0648 0923 5593 26256 2236 11 0678 0925 5615 26264 2227 12 0707 0928 5640 26274 2217 13 0735 0934 5669 26287 2206 14 0762 0941 5705 26303 2192 15 0787 0953 5749 26324 2177 16 0812 0970 5806 26352 2158 17 0837 0995 5884 26389 2134 18 0860 1027 5992 26435 2105 19 0883 1056 6145 26495 2069 20 0906 1092 6363 26571 2024 21 0927 1147 6680 26665 1968 22 0949 1226 7155 26775 1902 23 0970 1340 7893 26897 1827 24 0990 1513 9214 27028 1742 25 --------------------------------------- --------

JAEA-DataCode 2013-009

- 59 -

【Example of input file -2-】 Inputs for FK-1 8x8BJ (Step I) Physical Parameters ______________________________________________________________________________ List of variables Units Values ______________________________________________________________________________ FRDENS fractional fuel density na 095 Bustep burnup power-step increment GWdt 020 Burnup burnup limit GWdt 4500 EnriU5 initial enrichment with U-235 fraction 0039 CDiam1 the outer clad diameter cm 1230 CDiam2 the inner clad diameter cm 1068 FDiam1 the outer fuel diameter cm 1044 FDiam2 the inner fuel diameter cm 000 WEPITH 0304 - PWRUO2 0366 - PWRMOX 018 WWERUO2 0307 WFast 2010 - PWRUO2 2390 - PWRMOX 1514 TWater water temperature K 560 DWater water density at lower end plug gcc 0860 Vratio fuel to water ratio by volume NA 0627 VVoids void fraction NA 0500 TFuelC fuel temperature in resonant region C-degree 550 QLLBOL BOL reference LHGR wcm 2300 ______________________________________________________________________________ WtThor thorium content wt fraction fraction 00 ______________________________________________________________________________ ContPu plutonium content wt frac 0000 WtSPOT wt of Pu-spots in matrix wt frac 0000 SpDIAM average size of Pu-rich particles micron 500 SPOTU8 fraction of uranium in Pu-spots fraction 0750 PuFrac239 fraction of Pu-239 in total Pu fraction 0681 PuFrac240 fraction of Pu-240 in total Pu fraction 0218 PuFrac241 fraction of Pu-241 in total Pu fraction 0073 Pufrac242 fraction of Pu-242 in total Pu fraction 0028 ______________________________________________________________________________ ContGd content of Gadolinium Oxide Gd2O3 wt frac 0000 GdX154 fraction of Gd-154 isotope 213 GdX155 fraction of Gd-155 isotope 1461 GdX156 fraction of Gd-156 isotope 2034 GdX157 fraction of Gd-157 isotope 1565 GdX158 fraction of Gd-158 isotope 2500 GdX159 fraction of Gd-159 isotope 0000 GdX160 fraction of Gd-160 isotope 2227 ______________________________________________________________________________ NRADI number of points in radial mesh layout 101 NRADIF number of radial points in output power profile 25 iMeshF index of mesh point layout in output power profile -1 ifFEMF index of FEMAXI-readable output format 1 ifRESI 0 = classical formular gt 0 Egiazarovs formular 1 ifEDGE 0 for volume 1 - for rim region 0 iMeshL -1 iPlant =1 (PWR) =2 (BWR) =3 (HBWR) =4 (Riso DR3) 2 ifPLUT =0 burnup calculations gt 0 TIME-POWER calculations 1 ifREIR =0 no re-irradiation ifREIR gt 0 if re-irradiation 0 ifDEPL Print out index for Xe amp Kr data 0 ifPOIS Print index for poisoning FP (C=1 W=2 Y=3) 0 inPOIS PuMOX index for poisoning FP (M=1 S=2 A=3) 0 ifCLAD Cladding type 2 iQUICK = 0 for quick succession gt 0 for full succession 0 iTRANS = 0 simple TUR-group gt 0 for full TUR-group 0 inTRUG Print index for TU-Group (M=1 S=2 A=3) 3 ______________________________________________________________________________ FLARCRP FK1_rpdat FLARCPU FK1_pudat FLARCBU FK1_budat FLPOISS FK1_Psdat FLPOISR FK1_Prdat FEMFORM FEMAXI-readable format FK1_FMdat ______________________________________________________________________________ MODELOP DEFAULT OPTIONS ______________________________________________________________________________

-Continues to next pagerarr

JAEA-DataCode 2013-009

- 60 -

Table 2 Design parameters FK-1 commercial base-irradiation ============================================================================== PARAMETER UNITS VALUES ______________________________________________________________________________ CLADmm Total Fuel Rod Length mm 39100 FUELmm Active Fuel Stack Length mm 38100 SYSMPa System pressure MPa 730 VELOCI Coolant velocity ms 252 DEPASS Passing diameter cm 1473 ACOREm Active core m 450 ifCLNT Index of Coolant (LW or HW) LW ifCIRC Index of Circulation (FC or NC) FC ------------------------------------------------------------------------------ NNODES Number of axial nodes in fuel rod representation 0 NCROSS Total number of specified cross-sections 0 ============================================================================== OUTPUT OPTIONS iMeshP Mesh poits layout in step-by-step output file -1 NMESHP Number of radial zones in step-by-step output file 25 iPRNTP Print out option for step-by-step output file On ============================================================================== RE-IRRADIATION OFF ============================================================================== Table 3 IRRADIATION HISTORY FK-1 ============================================================================= ns TIME | Linear Heat | Coolant | RES | FAST | REACTOR | Rate | temperature | factor | factor | index |----------------|---------------| | | iREIRR | QL Type | Inlet Delta | | | ----------------|----------------|---------------| | | [1]| EFPDs | Wcm | C - degree | | | ----------------------------------------------------------------------------- (1) (2) (3) (4) (5) (6) (7) (8) (9) ----------------------------------------------------------------------------- 0 0 20357 L 2780 80 0307 1514 0 1 377 20357 - - - - - 0 2 8651 20357 - - - - - 0 3 16926 20357 - - - - - 0 4 25200 20357 - - - - - 0 5 25536 22847 - - - - - 0 6 36457 22847 - - - - - 0 7 47378 22847 - - - - - 0 8 58300 22847 - - - - - 0 9 58656 21573 - - - - - 0 10 70704 21573 - - - - - 0 11 82752 21573 - - - - - 0 12 94800 21573 - - - - - 0 13 95235 17620 - - - - - 0 14 107190 17620 - - - - - 0 15 119145 17620 - - - - - 0 16 131100 17620 - - - - - 0 17 131487 19811 - - - - - 0 18 144191 19811 - - - - - 0 19 156895 19811 - - - - - 0 20 169600 19811 - - - - - 0 ============================================================================= ampstop ampStop ampSTOP

JAEA-DataCode 2013-009

- 61 -

【Output file corresponding to the input file -2-】 --------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 0 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 2865E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 6664 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0940 000 24771 3711 1 0245 0944 000 24771 3711 2 0316 0949 000 24770 3712 3 0374 0953 000 24769 3712 4 0424 0957 000 24768 3712 5 0469 0962 000 24767 3713 6 0510 0966 000 24766 3713 7 0548 0970 000 24765 3713 8 0583 0975 000 24764 3714 9 0616 0979 000 24764 3714 10 0648 0984 000 24763 3714 11 0678 0988 000 24762 3715 12 0707 0993 000 24761 3715 13 0735 0997 000 24761 3716 14 0762 1002 000 24760 3716 15 0787 1007 000 24759 3716 16 0812 1013 000 24759 3717 17 0837 1019 000 24759 3717 18 0860 1025 000 24759 3718 19 0883 1033 000 24760 3719 20 0906 1041 000 24761 3720 21 0927 1053 000 24764 3721 22 0949 1068 000 24768 3723 23 0970 1089 000 24776 3726 24 0990 1129 000 24791 3730 25 --------------------------------------- -------- --------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 2330 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 2947E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 6777 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0933 217 24897 3630 1 0245 0937 218 24897 3631 2 0316 0942 220 24896 3631 3 0374 0946 221 24895 3631 4 0424 0950 221 24895 3631 5 0469 0955 223 24894 3631 6 0510 0959 224 24893 3631 7 0548 0964 225 24893 3632 8 0583 0968 226 24892 3632 9 0616 0973 227 24892 3632 10 0648 0977 228 24892 3632 11 0678 0982 229 24891 3632 12 0707 0987 230 24891 3632 13 0735 0992 231 24892 3631 14 0762 0997 232 24893 3631 15 0787 1002 234 24894 3630 16 0812 1009 235 24897 3629 17 0837 1016 237 24901 3627 18 0860 1024 238 24907 3624 19 0883 1034 240 24916 3620 20 0906 1046 243 24930 3613 21 0927 1063 246 24951 3604 22 0949 1087 251 24983 3588 23 0970 1125 258 25037 3563 24 0990 1199 271 25144 3511 25 --------------------------------------- --------

Skipped to the last part rarr

JAEA-DataCode 2013-009

- 62 -

--------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 42434 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 4852E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 8508 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0924 3902 26082 2521 1 0245 0925 3911 26084 2518 2 0316 0925 3921 26085 2515 3 0374 0925 3930 26085 2512 4 0424 0925 3937 26086 2509 5 0469 0925 3947 26087 2506 6 0510 0925 3956 26088 2503 7 0548 0926 3965 26090 2500 8 0583 0926 3976 26092 2496 9 0616 0927 3986 26094 2492 10 0648 0929 3998 26097 2488 11 0678 0931 4011 26101 2483 12 0707 0934 4026 26106 2477 13 0735 0938 4044 26114 2470 14 0762 0943 4065 26123 2461 15 0787 0951 4093 26136 2450 16 0812 0962 4128 26154 2436 17 0837 0978 4175 26178 2417 18 0860 1000 4240 26210 2393 19 0883 1031 4328 26252 2362 20 0906 1075 4454 26308 2320 21 0927 1139 4638 26382 2267 22 0949 1234 4914 26476 2198 23 0970 1379 5355 26598 2110 24 0990 1569 6183 26763 1991 25 --------------------------------------- -------- --------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 45764 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 5054E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 8656 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0923 4207 26144 2436 1 0245 0924 4215 26145 2433 2 0316 0924 4226 26146 2429 3 0374 0923 4235 26147 2426 4 0424 0923 4242 26148 2424 5 0469 0923 4252 26149 2420 6 0510 0924 4261 26150 2417 7 0548 0924 4271 26152 2414 8 0583 0925 4281 26154 2410 9 0616 0926 4292 26157 2406 10 0648 0927 4304 26160 2401 11 0678 0929 4318 26165 2396 12 0707 0932 4334 26170 2390 13 0735 0937 4353 26178 2383 14 0762 0943 4376 26188 2374 15 0787 0951 4407 26202 2363 16 0812 0963 4446 26220 2348 17 0837 0980 4499 26245 2330 18 0860 1003 4570 26278 2306 19 0883 1036 4670 26321 2275 20 0906 1083 4811 26377 2235 21 0927 1150 5015 26449 2184 22 0949 1248 5323 26541 2119 23 0970 1391 5812 26658 2037 24 0990 1499 6688 26816 1927 25 --------------------------------------- --------

JAEA-DataCode 2013-009

- 63 -

353 Contents read by FEMAXI code

A handling method of physical quantities from PLUTON-PC read by FEMAXI is

explained

(1) Fast-neutron flux Since the value normalized to a linear power of 100Wcm is given as a function of

average burnup for fast neutrons the standard fast neutron flux is calculated using average

burnup and average linear power for each input time step and this result is given as the

fast-neutron flux for each input time step

(2) Radial power density distribution burnup distribution and generation of Xe-Kr These physical quantities represent the distributions in the radial direction of the pellet

the handling method differs depending on the pellet ring element number option (MESH) in

the thermal calculation of FEMAXI

A) When MESH=0

In this case the pellet is divided into 10 equal-volume ring elements Thus on the basis of

the output file table of PLUTON-PC (equal-volume element condition) the power density in

FEMAXI is calculated by multiplying the power density which is assigned to ring elements in

FEMAXI from the PLUTON-PC table by the ring volume of PLUTON-PC and by dividing

the result by the ring volume of FEMAXI See Fig351 and Table 352 When several

rings of PLUTON-PC correspond to the ring of FEMAXI the power density distribution is

calculated by volume-averaging each ring

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16

Radial element of PLUTON

Radial element of FEMAXI (MESH=0)

Fig351 An example of calculating the power density profile for FEMAXI from PLUTON result when MESH=0 If plural ring elements of PLUTON correspond to one single ring element of FEMAXI averaging over the ring elements is performed to obtain the power density of one element in FEMAXI

JAEA-DataCode 2013-009

- 64 -

Table 352 An example of radial profile conversion from PLUTON to FEMAXI in the case of MESH=0 (Note When plural ring elements of PLUTON correspond to a ring of

FEMAXI volume-averaging is performed)

PLUTON FEMAXI 1 rarr 1 1 rarr 2

1 2 rarr 3 2 rarr 4 3 rarr 5

4 5 rarr 6 5 6 rarr 7

7 8 9 rarr 8 9 10 11 12 rarr 9

12 13 14 15 16 rarr 10

B) When MESH=1 In this case the pellet stack of each axial segment is divided into 100 equal-volume ring

elements Therefore it is necessary to set the number of divisions in the radial direction

NRADIF of the PLUTON output file table as 100 In examples 1 and 2 of the input files of

PLUTON NRADIF=25 is adopted to simplify the appearance of the output file

Here the burnup distribution calculated in PLUTON is not used in FEMAXI because the

power density distribution is passed onto FEMAXI However since the local burnup is

calculated from the power history and density distribution in the radial direction in FEMAXI

the burnup distribution in FEMAXI is essentially an identical one to that obtained by

PLUTON

C) When MESH≧1 (Recommended)

When MESHge1 the pellet stack of each segment is divided into N ie 36 or more

equal-volume ring elements Accordingly it is necessary to match the number of radial

division NRADIF of output table of PLUTON-PC to N+1 because PLUTON-PC outputs the

values at the boundary of ring elements To obtain the average value in each ring element

from these N+1 boundary values it is necessary to make an average of the two values at the

boundaries of each element This averaging calculation is done manually In the example

input files ndashEx1- and ndashEx2- for PLUTON-PC NRADIF=25 is set for simplicity of output

file image Here the burnup profile obtained by PLUTON-PC is not used in FEMAXI

because FEMAXI calculates the burnup profile internally by integrating the power density

JAEA-DataCode 2013-009

- 65 -

profile fed from PLUTON-PC or other burning analysis code with time

354 Output file reading function of FEMAXI

It is important in the data reading processing in PLUTON to grasp the record numbers

written horizontally and the radial mesh numbers See Fig352 The horizontal record

number is determined by the value in column [A] The system reads the values encircled by

the mark as irec irec2 and irec3 from the left-hand side of column [A] The following is an

example for the case of three horizontal records

The program reads the section marked [A] into 120 columns and the locations marked by

correspond to columns 47 80 and 113 The value at each location is stored in variables irec

irec2 and irec3 respectively By the combination of these variables the number of records

written horizontally is determined When the combinations of irec irec2 and irec3 in the IF

statement are 1 0 0 0 2 0 and 0 0 3 the program is designed to read the record numbers 1

2 and 3 respectively

Upon the determination of horizontal record numbers the program reads the mesh number

in the radial direction of [B] stores it in variable imax and performs the reading process on

the basis of the number of meshes in the radial direction The data created by the process up to

this point is designated a group of data the process continues until the data is depleted --------------------------------------- ------------------------------- ------------------------------- --------

SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS

0 1000 2000 3

FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0

1724E+13 1756E+13 1769E+13 3

SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0

6635 6675 6714 3

--------------------------------------- ------------------------------- ------------------------------- --------

1 2 3 4 5 6 7 8 9 10 11 12 13 14

--------------------------------------- ------------------------------- ------------------------------- --------

Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS

relat Relative GWdtM Relative GWdtM Relative GWdtM 25

--------------------------------------- ------------------------------- ------------------------------- --------

0141 0880 000 24776 3723 0874 087 24816 3698 0874 175 24858 3671 1

0245 0888 000 24775 3723 0882 088 24814 3698 0882 176 24857 3671 2

0316 0898 000 24773 3724 0893 089 24812 3699 0893 178 24855 3672 3

0970 1143 000 24759 3742 1161 115 24853 3684 1174 232 24955 3620 24

0990 1189 000 24773 3747 1226 121 24918 3658 1257 245 25066 3565 25

--------------------------------------- ------------------------------- ------------------------------- --------

1 2 3

Fig352 Representative output image of PLUTON

larr[A]

larr[B]

JAEA-DataCode 2013-009

- 66 -

Table 353 shows the variable read in the program Figures 353 and 354 show the

correspondence between the locations of variables read and the output of the reading program

Table 353 Variables under which PLUTON data are stored x is total number of data

Variables to be stored During writing 1 bu(100) bu(x) 2 irec irec(x) 3 hgr(100) lhgr(x)larrreal declaration 4 fflux(100) f_flux(x) 5 xekr_r(100) xekr_r(x) 6 imax imax 7 radr(100) rad_r(imax) 8 fdr(100100) fdr(ximax) 9 bur(100100) bur(ximax)

--------------------------------------- --------

SECTION-AVERAGE BURNUP MWdtM RECORDS

0 1

FAST FLUX at LHGR = 100 Wcm ncm^2s 0

2865E+13 1

SECTION AVERAGE Xe-to-Kr RATIO 0

6664 1

--------------------------------------- --------

1 2 3 4 5 6

--------------------------------------- --------

Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS

relat Relative GWdtM 25

--------------------------------------- --------

0141 0940 000 24771 3711 1

0245 0944 000 24771 3711 2

0316 0949 000 24770 3712 3

0970 1089 000 24776 3726 24

0990 1129 000 24791 3730 25

--------------------------------------- --------

Fig353 Output image in the case where number of record in the lateral direction is 1

ibu(x)

irec

f_flux(x)

xekr_r(x)

imax

rad_r(imax) fdr(ximax)

bur(ximax)

lhgr_r(x)

imax lines

x is total number of data

N times repeated as one set of data

JAEA-DataCode 2013-009

- 67 -

--------------------------------------- ------------------------------- ------------------------------- --------

SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS

0 1000 2000 3

FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0

1724E+13 1756E+13 1769E+13 3

SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0

6635 6675 6714 3

--------------------------------------- ------------------------------- ------------------------------- --------

1 2 3 4 5 6 7 8 9 10 11 12 13 14

--------------------------------------- ------------------------------- ------------------------------- --------

Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS

relat Relative GWdtM Relative GWdtM Relative GWdtM 25

--------------------------------------- ------------------------------- ------------------------------- --------

0141 0880 000 24776 3723 0874 087 24816 3698 0874 175 24858 3671 1

0245 0888 000 24775 3723 0882 088 24814 3698 0882 176 24857 3671 2

0316 0898 000 24773 3724 0893 089 24812 3699 0893 178 24855 3672 3

0970 1143 000 24759 3742 1161 115 24853 3684 1174 232 24955 3620 24

0990 1189 000 24773 3747 1226 121 24918 3658 1257 245 25066 3565 25

--------------------------------------- ------------------------------- ------------------------------- --------

Fig

35

4(1

2)

O

utpu

t im

age

in th

e ca

se w

here

num

ber o

f rec

ord

in th

e la

tera

l dire

ctio

n is

3

ibu(

x)

lhgr

_r(x

)

f_flu

x(x

)

xekr

_r(x

)

fdr(

xim

ax)

bur

(x

imax

) ra

d_r(

imax

)

imax

irec3

imax

pie

ces

x is

tota

l num

ber o

f dat

a

irec2

ire

c

The

first

set

of

dat

a

JAEA-DataCode 2013-009

- 68 -

--------------------------------------- --------

SECTION-AVERAGE BURNUP MWdtM RECORDS

60000 1

FAST FLUX at LHGR = 100 Wcm ncm^2s 0

3637E+13 1

SECTION AVERAGE Xe-to-Kr RATIO 0

8822 1

--------------------------------------- --------

1 2 3 4 5 6

--------------------------------------- --------

Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS

relat Relative GWdtM 25

--------------------------------------- --------

0141 0930 5407 26213 2310 1

0245 0929 5423 26217 2303 2

0316 0928 5444 26221 2295 3

0970 1340 7893 26897 1827 24

0990 1513 9214 27028 1742 25

--------------------------------------- --------

Fig354 (22) Output image in the case where number of record in the lateral direction is 3

355 Unit conversion of burnup The unit of burnup is converted in FEMAXI as follows as required

(1) 1020 fissionscm3

Energy generated per fission 200 MeV 1020 fissionscm3=2x1028 eVcm3

Using 1 cm3=1096f (g) ftheoretical density ratio

1020 fissionscm3=1825x1027f eVg

Using 1 eV=1602x10-19 Joule 1020 fissionscm3=2924x108f Jouleg

Using 1 MWDtUO2=864x104JoulegUO2

1020 fissionscm3=3384x103f MWDtUO2

when f=095 1020 fissionscm3=3562x103 MWDtUO2

Using 1 MWDtUO2=11344 MWDtU

Finally 1020 fissionscm3=4040x103 MWDtU

n-th set of data

JAEA-DataCode 2013-009

- 69 -

(2) Conversion between burnup rate FIMA and burnup

FIMA=(Number of fissionsnumber of atoms of initial heavy elements)

Here the number of atoms of the initial heavy elements denotes the total number of atoms

contained in the fuel such as [fertile isotopes 238U and 240Pu] and [fissile isotopes]

1 1 225 9375 FIMA at burnup MWh kgU MWd teU= minus cong cong

10 100 at burnup GWd tUminus cong

(3) Conversion of BU2 (GJkgU) to BUC (1020fissionscm3) using subroutine FSWELL

From eq (A) above 1020fissionscm3=2924x108f JoulegUO2

1020 fissionscm3=2924f JoulekgUO2

Using 1 JouleKgUO2=11344 JouleKgU

1020fissionscm3=3317f JoulekgUO2

Thus the conversion coefficient is 3317f

36 Calculation examples by RODBURN-1 and PLUTON To evaluate the predictability of the RODBURN-1 code it is necessary to compare the

calculated results with measured data of profiles of burnup or generated elements concentration

in the radial direction However this work has to overcome a tough task to obtain reliable

measured data of irradiated fuel Here allowing the work to be considered in a separate chance

a comparison of calculations between RODBURN-1 and PLUTON codes is carried out as a

simplified assessment Results of the PLUTON code have been relatively well validated with

measured data(3X)

361 PWR fuels (1) Calculation conditions As calculation conditions of UO2 and MOX fuels of PWR fuel specs and irradiation

conditions shown in Tables 361 and 362 are assumed In the calculations of RODBURN-1

and PLUTON size of fuel and major nuclear element composition are the same though the

coolant condition is different due to the code models However the coolant condition has no

significant difference and almost equivalent if it is specified by rod pitch=127mm in

RODBURN-1 or by fuelwater volume ratio=06 in PLUTON

JAEA-DataCode 2013-009

- 70 -

Table 361 Conditions of sample calculation P-1R by RODBURN-1 UO2 MOX (PuO2 66 wt) Pellet diameter 82 mm

density 95 TD

Composition (enrichment)

235U = 4 238U = 96

235U =02 235U=998 239Pu=6534 240Pu=2368 241Pu=657 242Pu=349 236Pu=00 238Pu=091 243Pu=244Pu=245Pu=00

Cladding Outer diameter=97mm Inner diameter=84mm Burnup (GWdt) 0 about 85 GWdt Coolant condition Rod pitch = 127 mm

Table 362 Conditions of sample calculation P-1P by PLUTON UO2 MOX (PuO2 66 wt) Pellet diameter 82 mm

Density 95 TD

Composition (enrichment)

235U = 4 238U = 96

235U =2 235U=98 238Pu=11 239Pu=6534 240Pu=2368 241Pu=657 242Pu=349 236Pu=00 241Am=091 243Am=00

Cladding Outer diameter=97mm Inner diameter=84mm Burnup (GWdt) 0 about 85 GWdt Coolant condition FuelWater volume ratio = 06

(2) Calculated results

A) Results for PWR-UO2 fuel by RODBURN-1 calculation

Figs361 and 362 show respectively the profiles of relative power density and burnup of

UO2 fuel calculated by RODBURN-1 with burnup being a parameter In RODBURN-1

calculation is performed with a pellet which is divided into 36 iso-volume ring elements and

the calculated results corresponding to the half thickness position of each element are output

The symbols in the figure indicate the radial position of half thickness of ring elements In the

outer region of pellet relative power density is elevated with burnup due to Pu generation by

resonance absorption and fission of the generated Pu by thermal neutron Burnup is also

elevated in the outer region as a time-integral of power density

JAEA-DataCode 2013-009

- 71 -

Fig362 Profiles of burnup of PWR-UO2 pellet calculated by RODBURN-1

B) Results for PWR-MOX fuel by RODBURN-1 calculation

Figs363 and 364 show the profiles of relative power density and burnup of MOX fuel

calculated by RODBURN-1 with burnup being a parameter

0 1 2 3 4

10

15

20

25

RODBURN-1 18 GWdt 180 508 856

Rela

tive

heat

genera

tion d

ensi

ty

Radius of UO2 pellet (mm)

0 1 2 3 4

0

50

100

150

200

RODBURN-1 18 GWdt 180 508 856

Radius of UO2 pellet (mm)

Burn

up

(G

Wd

t)

Fig361 Profiles of power density of PWR-UO2 pellet calculated by RODBURN-1

JAEA-DataCode 2013-009

- 72 -

Fig364 Profiles of burnup of PWR-MOX pellet calculated by RODBURN-1

In the case of MOX fuel power density profile in the early stage of irradiation has a

relatively appreciable depression in the central region in comparison with that of UO2 pellet

because resonance reaction by Pu is large in the peripheral region of pellet

0 1 2 3 4

10

15

20

25

Rela

tive

heat

genera

tion d

ensi

ty

Radius of MOX pellet (mm)

RODBURN-1 18 GWdt 178 492 822

0 1 2 3 4

0

50

100

150

Radius of MOX pellet (mm)

RODBURN-1 18 GWdt 178 492 822

Burn

up

(G

Wd

t)

Fig363 Profiles of power density of PWR-MOX pellet calculated by RODBURN-1

JAEA-DataCode 2013-009

- 73 -

C) Results for PWR-UO2 and MOX fuels by PLUTON calculation

Figs365 and 366 show respectively the profiles of relative power density and burnup of

UO2 fuel calculated by PLUTON with burnup being a parameter Figs367 and 368 show

respectively the profiles of relative power density and burnup of MOX fuel calculated by

PLUTON with burnup being a parameter In PLUTON burning calculation is performed with a

pellet which is divided into 36 nodes (boundary) iso-volume ring elements and the calculated

results corresponding to the node position are output The symbols in the figure indicate the

radial position of the node

By comparing the results of two codes for UO2 fuel (Figs361 and 365) it is found that

the peaking of power density profile in the outer region of pellet is larger in PLUTON in low

burnup period than in RODBURN while this relative magnitude is reversed in RODBURN in

high burnup

On the other hand by comparing the results of MOX fuel (Figs363 and 366) it is found

that the depression of power density in the outer region of pellet is particularly larger in

PLUTON in high burnup period than RODBURN

0 1 2 3 4

10

15

20

25

PLUTON 2 GWdt 20 50 85

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of UO2 pellet (mm)Fig365 Profiles of power density of PWR- UO2 pellet calculated by PLUTON

JAEA-DataCode 2013-009

- 74 -

0 1 2 3 40

50

100

150

200 PLUTON

2 GWdt 20 50 85

Burn

up (

GW

dt)

Radius of UO2 pellet (mm)

0 1 2 3 4

10

15

20

PLUTON 2 GWdt 20 50 85

Rela

tive

heat

genera

tion d

ensi

ty

Radius of MOX pellet (mm)

0 1 2 3 40

50

100

150 PLUTON

2 GWdt 20 50 85

Burn

up (

GW

dt)

Radius of MOX pellet (mm)

Fig368 Profiles of burnup of PWR-MOX pellet calculated by PLUTON

Fig366 Profiles of burnup of PWR- UO2 pellet calculated by PLUTON

Fig367 Profiles of power density of PWR-MOX pellet calculated by PLUTON

JAEA-DataCode 2013-009

- 75 -

362 BWR fuels (1) Calculation conditions

As calculation conditions of UO2 and MOX fuels of BWR fuel specs and irradiation

conditions shown in Tables 363 and 364 are assumed Similarly to the calculations of WPR

fuels by RODBURN and PLUTON size of fuel and major nuclear element composition are the

same though the coolant condition is different due to the code models However the coolant

condition has no significant difference and almost equivalent if it is specified by rod

pitch=152mm in RODBURN or by fuelwater volume ratio=0627 in PLUTON

Table 364 Conditions of sample calculation by PLUTON UO2 MOX (PuO2 66 wt) Pellet diameter 948 mm

Density 95 TD

Composition (enrichment)

235U = 4 238U = 96

235U =2 235U=98 238Pu=11 239Pu=6534 240Pu=2368 241Pu=657 242Pu=349 236Pu=00 241Am=091 243Am=00

Cladding Outer diameter=1227mm inner diameter=1055mm Burnup (GWdt) 0 about 85 GWdt Coolant condition FuelWater volume ratio = 0627

Table 363 Conditions of sample calculation by RODBURN-1 UO2 MOX (PuO2 66 wt) Pellet diameter 948 mm

Density 95 TD

Composition (enrichment)

235U = 4 238U = 96

235U =02 235U=998 239Pu=6534 240Pu=2368 241Pu=657 242Pu=349 236Pu=00 238Pu=091 243Pu=244Pu=245Pu=00

Cladding Outer diameter=1227mm inner diameter=1055mm Burnup (GWdt) 0 about 85 GWdt Coolant condition Rod pitch = 152 mm

JAEA-DataCode 2013-009

- 76 -

(2) Calculated results

A) Result of the SWAT code

First a comparison is made between the results of RODBURN-1 and SWAT(31) Fig369

shows this comparison with respect to the relative power density profile at pellet average

burnup of 61 GWdt The results by the two codes have only a slight difference which suggest

that a simplified model of RODBURN-1 can give a satisfactory prediction in comparison with a

dedicated burning analysis code

B) Results for BWR-UO2 fuel by RODBURN-1 calculation

Figs3610 and 3611 show the profiles of relative power density and burnup of UO2 fuel

calculated by RODBURN-1 with burnup being a parameter In the outer region of pellet

relative power density is elevated with burnup due to Pu generation by resonance absorption

and fission of the generated Pu by thermal neutron Burnup is also elevated in the outer region

as a time-integral of power density

0 1 2 3 4 505

10

15

20

25 SWAT RODBURN-1

Rela

tive

Powe

r

Radius (mm)

FK series peaking profile 2004 June 8 (61GWdt)

Fig369 Comparison of power density profiles between the calculations of RODBURN-1 and SWAT

JAEA-DataCode 2013-009

- 77 -

C) Results for BWR-MOX fuel by RODBURN-1 calculation

Figs3612 and 3613 show respectively the profiles of relative power density and burnup

of BWR-MOX fuel calculated by RODBURN-1 with burnup being a parameter In the case of

MOX fuel power density profile in the early stage of irradiation has a relative depression in the

central region because resonance reaction by Pu is large in the peripheral region of pellet

00 01 02 03 04 05

10

15

20

25

RODBURN-1 19 GWdt 183 515 868

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of UO2 pellet (mm)

0 1 2 3 4 5

0

50

100

150

200

RODBURN-1 19 GWdt 183 515 868

Radius of UO2 pellet (mm)

Burn

up

(GW

dt)

Fig3610 Profiles of power density of BWR-UO2 pellet calculated by RODBURN-1

Fig3611 Profiles of burnup of BWR-UO2 pellet calculated by RODBURN-1

JAEA-DataCode 2013-009

- 78 -

Fig3613 Profiles of burnup of BWR-MOX pellet calculated by RODBURN-1

D) Results for BWR-UO2 and MOX fuels by PLUTON calculation

Figs3614 and 3615 show respectively the profiles of relative power density and burnup

of UO2 fuel calculated by PLUTON with burnup being a parameter Figs3616 and 3617

show respectively the profiles of relative power density and burnup of MOX fuel calculated by

Fig3612 Profiles of power density of BWR-MOX pellet calculated by RODBURN-1

0 1 2 3 4 5

10

15

20

25

RODBURN-1 18 GWdt 180 499 831

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of MOX pellet (mm)

0 1 2 3 4 5

0

50

100

150 RODBURN-1

19 GWdt 183 515 868

Burn

up

(GW

dt)

Radius of MOX pellet (mm)

JAEA-DataCode 2013-009

- 79 -

PLUTON with burnup being a parameter In PLUTON burning calculation is performed with a

pellet which is divided into 36 nodes iso-volume ring elements and the calculated results

corresponding to the node position are output The symbols in the figure indicate the radial

position of the node

By comparing the results of UO2 fuel (Fig3610 and 3614) it is found that the peaking

of power density profile in the outer region of pellet is larger in PLUTON in low burnup period

than in RODBURN while this relative magnitude is reversed in RODBURN in high burnup

On the other hand by comparing the results of MOX fuel (Figs3612 and 3616) the

depression in the outer region of pellet is particularly larger in PLUTON in high burnup period

than RODBURN

0 1 2 3 4 5

10

15

20

PLUTON 2 GWdt 20 50 85

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of UO2 pellet (mm)

Fig3614 Profiles of power density of BWR-UO2 pellet calculated by PLUTON

JAEA-DataCode 2013-009

- 80 -

0 1 2 3 4 50

50

100

150 PLUTON 2 GWdt 20 50 85

Radius of UO2 pellet (mm)

Burn

up

(GW

dt)

0 1 2 3 4 5

10

15

20

PLUTON 2 GWdt 20 50 85

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of MOX pellet (mm)

Fig3615 Profiles of burnup of BWR-UO2 pellet calculated by PLUTON

Fig3616 Profiles of power density of BWR-MOX pellet calculated by PLUTON

JAEA-DataCode 2013-009

- 81 -

Fig3617 Profiles of burnup of BWR-MOX pellet calculated by PLUTON

37 Usage of the Halden data-base TFDB

In Halden Project TEST-FUEL-DATA-BANK (TFDB) SYSTEM(32) has been produced

since 1985 and is available for utilizing the experimental data of HBWR Therefore a utility

program TF2FEM which processes TFDB data and generates irradiation history data applicable

to FEMAXI has been developed The major functions of TF2FEM include the following

It supports extraction of several hundred steps of records (history data points) representing

irradiation history from among a few hundred thousand records of TFDB

The extracted history data can be used as input history data for FEMAX

A data file to compare calculation results of FEMAXI with experimental data is also

produced from the TFDB data file

For details refer to TF2FEM Userrsquos Manual included in the code package

References 3 (31) KSuyama TIwasaki and NHirakawa Integrated Burnup Calculation Code System

SWAT JAERI-DataCode 97-047 (1997) [in Japanese] (32) Wiesenack W and Hustadnes V TEST-FUEL-DATA-BANK SYSTEM USER MANUAL

HWR-338 (1993)

0 1 2 3 4 50

50

100

150 PLUTON

2 GWdt 20 50 85

Burn

up

(GW

dt)

Radius of MOX pellet (mm)

JAEA-DataCode 2013-009

- 82 -

4 FEMAXI-7 Input manual

41 Explanation on the relationship of IS and IST

In the heat conduction calculation (thermal analysis) to reduce calculation time

steady-state mode and transient mode are interchanged depending on power conditions This

interchange is controlled by IS and IST which are further explained in sections 42 and 47

In sections 411 and 412 below detailed explanation about this method is given prior to the

entire description of input manual

411 Function of ISTATE value The steady-state mode uses a large time step increment while the transient mode uses a

sub-divided time step This time step size is controlled by an internal variable ISTATE The

ISTATE value is determined by the name-list parameters IS and IST and its function is

summarized in Table 41

Table 41 Function of ISTATE value IS is one of the options of heat conduction calculation and IST an option of internal gas

flow calculation ISTATE Function

0 Adoption of time stepΔt for steady-state mode with null specific heat

1 Adoption of time stepΔt for steady-state mode with null specific heat However Δt is sub-divided into a shorter one by the logics in gas flow calculation than the size of Δt when ISTATE=0

2 Adoption of time stepΔt for transient-state mode with non-zero specific heat Δt is further sub-divided in comparison with those when ISTATE=0 and 1

Here the steady-state mode calculation is to obtain a solution of temperature profile after

infinite length of time of fuel rod in the radial direction at each time step by assuming specific heat = 00 Namely by assuming Cv (volumetric specific heat[Jm3]) = 0 the heat conduction

equation Eq(411)

( ) ( ) ( ) ( ) ( ) [ ] vC T r T r t k T r T r t q r tt

partpart

= nabla sdotnabla + (411)

is transformed into

( ) ( ) ( )[ ] 0k T r T r t q r tnabla sdotnabla + = (412)

Solution of Eq(412) gives the steady-state temperature profile The purpose of this

method is to reduce calculation time by obtaining advantage from the fact that during a period

JAEA-DataCode 2013-009

- 83 -

of slow-changing power the steady-state solution makes a good approximation of the

temperature profile

On the other hand in the transient state calculation this steady-state approximation

cannot hold because rod power is varying with a significant magnitude Therefore Eq(411)

with non-zero specific heat is solved to obtain the temperature profile at each time step

412 Relationship between IS IST and ISTATE

IS and IST are independently determined variables Their values cannot be changed by

other input designations In the case of IS=0 2 3 and 4 the criteria to judge which one of 0

1 2 is set for ISTATE value is as follows

(1) ISTATE=2 is set when power change rate (up or down) exceeds 1Wcms

(2) When power change rate becomes less than 1Wcms and 100s elapses during the

period with ISTATE=2 ISTATE recovers to either ISTATE=0 or =1 in accordance

with the IST value See Table 42

(3) However the transient state addressed in (1) and (2) is induced solely by power

change It does not take into consideration of another type of transient state in which

fuel rod temperature is varied by the change of coolant flow rate

(4) When IS=3 or 4 since the boundary condition of heat conduction equation is the

input-specified temperature of cladding outer surface thermal hydraulic calculation of

coolant is usually not performed (IS3P=0(default) no calculation of thermal

hydraulics of coolant)

Table 42 Set values of ISTATE

IS IST

0 1 2 3 0 1 or 2 0 or 2 0 or 2 0 or 2 2 2 2 2 2

3 4 1 or 2 0 or 2 0 or 2 0 or 2

413 Options specified by IS and IST

IS an option parameter for heat conduction calculation IS = 0 steady-state calculation is performed with 0vC = No sub-division of time step size

is done = 2 transient state calculation is performed with 0vC gt Sub-division of time step size is

JAEA-DataCode 2013-009

- 84 -

automatically done depending on the power change

= 3 condition of fixed temperature at cladding outer surface

= 4 condition of fixed temperature at cladding outer surface

Note (1) IS=3 is the same option as IS=4 In the case in which input cladding temperature is not

varied from the preceding history point of input written in input file IS=4 can be input

to omit the line No13 in input file

(2) When IS is not specified in input file IS=0 is automaticaslly set as default value

(3) When IS is either 3 or 4 procedure for the specific heat and time step size ie setting

of ISTATE value follows Table 42

IST option for internal gas flow default is IST=1 =0 model of gas diffusion in the axial direction is applied

Calculation is performed to have an instantaneous equilibrium of pressure inside rod

within each time step by assuming instantaneous movement of gas the amount of which is

proportional to the fission gas fraction in total gas amount However since the gas

compision varies in every axial segment diffusion calculation among the segments is

concurrently done to attain an uniform composition distribution with time through several

time steps

=1 model of instantaneous pressure equilibrium and complete mixture of gas

Calculation of transferred amount of gas is performed to obtain an instantaneous

complete mixture of composition and pressure equilibrium as well inside fuel rod ie in

every axial segment and plenum

=3 model of gas isolation in each segment

After the instant when either the Pellet-Clad contact pressure exceeds GPCPR (MPa)

or BD which is the bonding progress factor exceeds BDTR (input specified value) in at

least one axial segments gas transfer in the axial direction is not taken into account and

calculation of gas release and pressure is performed independently in each segment In

other words neither pressure equilibrium nor diffusion of gas species are considered

among the axial segments as if each segment were isolated with respect to internal gas

However in the segment which is adjacent to the plenum pressure calculation is

done by taking account of the space volume and gas temperature in the plenum

In the cases other than the above situations the model of instantaneous pressure

JAEA-DataCode 2013-009

- 85 -

equilibrium and complete mixture of gas (IST=1) is applied 42 Fixed format input (1)

Line No SYMBOL (FORMAT)

1 MTITL(I) I=1 20 (20A4) Free title Free title can be input in 2th to 80th columns

2

yenINPUT Calculation conditions are designated by Name-list parameters

(2~80 columns) in between ldquoyenINPUTrdquo and ldquoENDrdquo yenEND

3

NAX IFEM (2I10) Fuel rod specifications NAX = number of axial segments (1leNAXle40) IFEM = the objective segment number (1 le IFEM1 le NAX) I=1bottom of rod I=NAX top

4 MRASA CDIN CDOUT (I10 2F100) Cladding specifications

MRASA = 0 helliphellip RA material = 1 helliphellip SR material CDIN = cladding inner diameter (cm) CDOUT = cladding outer diameter (cm)

5

The number of NAX required (I = 1 NAX) IDISH(I) ICHAM(I) PDIN(I) PDIA(I) PLENG(I) ENR(I) FDENI(I) DZ(I) (2I10 6F100)

Pellet specifications

Number of ring elements of pellet is selected by MESH

IDISH(I) = 0 helliphellip pellet without dish = 1 helliphellip pellet with dish on only one end face = 2 helliphellip pellet with one dish each end face ICHAM(I) = 0 helliphellip pellet without chamfer = 1 helliphellip pellet with chamfer PDIN (I) = pellet center hole diameter (cm) PDIA (I) = pellet diameter (cm) PLENG(I) = length of one pellet (cm) ENR (I) = U-235 enrichment (minus) FDENI(I) = pellet theoretical density ratio (minus)

DZ (I) = axial segment length of pellet stack part (cm)

6

Input only when IDISH = 1 or 2 DISH DEPTH DISHB (3F100) Dish specifications

DISH = dish diameter (cm) DEPTH = dish depth (cm) DISHB = dish bottom diameter (cm)

7 Input only when ICHAM = 1

CHAMR CHAMZ (2F100) Chamfer specifications

CHAMR = chamfer width (cm) CHAMZ = chamfer depth (cm)

8

PLENUM(2) GPIN (GMIXO(I) I=14) PWEIT PLENUM(1) (8F100) Plenum specifications

PLENUM(2) = upper plenum volume (cm3) GPIN= initial gas pressure (MPa) GMIXO(I) = initial gas composition (minus) i = 1hellipHe i = 2hellipN2 i = 3hellipKr i = 4hellipXe PWEIT = pellet total weight (g)

When the input value is 80 - 100TD of that calculated in the code burnup is calculated using the input value If the input value exceeds this range Error Stop occurs When it is blank the value is automatically calculated

PLENUM(1) = lower plenum volume (cm3)

JAEA-DataCode 2013-009

- 86 -

Fixed format input (2)

Line No SYMBOL (FORMAT)

9 NHIST (I10) Number of history

point Input NHIST (1ltNHIST le 1500) NHIST sets consisting of Lines 101112 and 13 are input

10

A1 B1 A2 A5 A3 A4 IT IP IS A6 (6F1003I5F50) History point data

A1 = time (IDAY=0hour =1day)

B1 = burnup (MWdtUO2 (IBUNP=0) MWdtU (IBUNP =1) GJkgU (IBUNP =2) GWd tUO2 (IBUNP=3)

Here either A1 (time) or B1 (burnup) should be designated If both are designated B1 is neglected

A2 = linear heat rate (Wcm)

A5 = fast neutron flux (ncm2-s) If no data or 0 are input the flux follows IFSINP A3 = coolant temperature (K) A4 = coolant pressure (MPa)

IT = 0 time (or burnup) represents the increment from the time step set at

IT=minus100 (when IT= -100 is not set it represents the time (or burnup)

elapsed from the initial time) = -100 time increment from the previous time step (or burnup increment) = 100 cancellation of the IT= -100 setting (time or burnup represents the

time (or burnup) that elapsed from the initial time)

IP = 0 history point without summary output = 1 history point with summary output IS = 0 steady-state calculation

= 2 transient state calculation = 3 condition of fixed temperature at cladding outer surface = 4 the same as IS=3 but input file format can be varied slightly

A6 = coolant velocity (ms) (ICLMAS=0) = coolant mass flow rate (kgcm2s) (ICLMAS=1)

Note If the initial values for A3 A4 and A6 are inputted they need not be inputted thereafter

JAEA-DataCode 2013-009

- 87 -

Fixed format input (3) Line No SYMBOL (FORMAT)

11

(RH(I) I=1 NAX) II ((8F80) 8F80 I6) Relative power profile in the axial direction

RH(I) = relative power of axial segment j (minus) (number of data NAX) II = number of history points at which similar relative power is input When II is designated as 2 or higher Line 11 is omitted for the input of later time step

II-1

When more than 2 values of II are inputted card 11 is omitted for the input of time step

II-1 thereafter In addition when II= 1 the output to II can be omitted

(II can be assigned starting from the right-hand side of each column between the 65th

column to the 70th column of the last card)

12

(RFAI(I) I=1 NAX) II ((8F80) 8F80 I6) Relative fast neutron flux in the axial direction

Input this line only when IRFAI=1 in Name-list Input is designated RFAI(I)=relative fast neutron flux at the axial segment I (-)

(NAX data values) NAX8 cards (rounded up) are required

II = the number of historical points for inputting identical fast- neutron fluxes

Here when more than two values are assigned to II thereafter line 12 is omitted

for the input of time steps of II-1 Furthermore when II=1 the input to II can be

omitted (II is assigned starting from the right-hand side of each column between the

65th column to the 70th column of the last line)

13

(CSTMP(I) I=1 NAX) (8F80) Cladding outer surface temperature

Input only when IS=3 in Line 10 CSTMP(I)=cladding outer surface temperature (K) at the axial segment I

(NAX data values) NAX8 cards (rounded up) are required Refer to ICTP and ICSTMP

14

BU (RRH(I) I=1 NP) ( F100 10F60 (10X 10F60) ) Relative power density profile in the radial direction

Input only when IFLXgt0 BU = burnup (unit is similar to that in Line 10)

BU = burnup (MWdtUO2 (IBUNP=0) MWdtU (IBUNP =1) GJkgU (IBUNP =2) GWd tUO2 (IBUNP=3) ) RRH(I) = power density profile of concentric ring element I

(arbitrary unit normalized by FEMAXI ) or =[power density in element I][pellet average power density] The input line number is designated by IFLX in NAMELIST When IFLXM=0 NP=10 number of iso-thickness ring elements

When IFLXM=1 NP=number of ring elements of pellet stack specified by MESH

15 IEND (A4) Input end line Input ldquoSTOPrdquo

JAEA-DataCode 2013-009

- 88 -

43 Name-list Input (1) Variable name Contents Default

value

Input options IBUNP Designation of unit of burnup (=0MWdtUO2 =1MWdt-U

=2GJkg-U =3GWdtUO2) 0

IDAY Unit of time for input history points (=0hr=1day) 0

ISEC(2 5)

During the period ISEC(1I) - ISEC(2I) time unit is changed to be second ISEC(1I) is the number of history point at which the change starts and ISEC(2I) is the number of history point at which the change ends The maximum number of the periods is five

100

IFLX

Number of power history points to designate the radial power profile If the numerical data are not given IFLX should be one of 0 -1 o -2 which corresponds to the following options = 0 Robertson model -1PLUTON results -2 RODBURN results

ge 1 number of burnup points at which the radial profile data are specified

When IFLX= -1 or -2 corresponding results files should exist in the WrkRBOUT Here when IFLX= -1 (fed from PLUTON file) the output file ldquoft51drdquo of PLUTON should be prepared in advance

0

IFLXM Option to specify the number of ring elements when IFLXgt0 =0 iso-thickness 10 ring elements =1 number of ring elements designated by MESH

1

FACHE When IFLXlt0 amount of He gas given by RODBURN calculation is multiplied by FACHE 10

ICLMAS Coolant unit option =0 flow rate is input in velocity (ms) =1 flow rate is input in mass flow rate (kgcm2s)

0

INPRD

Options for the fetching method of RODBURN results to FEMAXI-7 (Treatment of fast-neutron flux is designated by IFSNT)

INPRD=0 By interpolating the results of RODBURN (the radial and axial

profiles of power fast-neutron flux and He generation) with respect to space and burnup the data are arranged to correspond to the segments in the axial direction of FEMAXI-7

INPRD=1 An identical number of segments in the axial direction is

assumed for FEMAXI-7 and RODBURN The results from RODBURN (the radial and axial profiles of power fast-neutron flux and He generation) are used as data for the corresponding axial segments No spatial interpolation is performed Interpolation of burnup is performed

INPRD=2 The number of segments in the axial direction can be different

for FEMAXI-7 and RODBURN (interpolation processing is performed) With respect to the profiles of power and He generation in the radial direction the result of RODBURN is retrieved For the power profile in the axial direction the input to FEMAXI-7 is used

1

FAIW The fast-neutron flux for a linear power of 1Wcm ((ncm2-sec)(Wcm)) (Fast neutron flux data can be omitted if power history data is input)

5times1011

JAEA-DataCode 2013-009

- 89 -

Name-list Input (2)

Variable name Contents Default value

IPFLX When treating fast-neutron flux as such that is given by input and has a flat profile in the axial direction IPFLX=0 1

IFSNT

Option of fast neutron flux IFSNT=1 FAIW is used the default value of which is 5x1011(ncm2-s) IFSNT=2 Input value is usedWhen the input data is not given LHRtimes

FAIW is adopted IFSNT=3 the value given by RODBURN calculation is used IFSNT=4 a modified value which is given by RODBURN calculation

and is multiplied by FROD is used The default value of FROD is 001

2

FROD When IFSNT=4 fast neutron flux given by RODBURN calculation is multiplied by FROD 001

IRXE When IRXE=1 generated amount of Xe+Kr obtained by RODBURN-1 is used in FEMAXI-7 0

IROD

When IRODgt0 an input file ldquorodinrdquo for RODBURN is generated in the

Wrk directory and FEMAXI-7 calculation is not executed

IROD=1PWR =2BWR =3HaldenBWR =4PWR(MOX)

=5 BWR(MOX)

0

TMCHG Input time for calculation is multiplied by (10+TMCHG) 00 PWCHG Input linear power for calculation is multiplied by (10+TMCHG) 00

SELHST

At line 10 of input list when one of the three quantities A1(time) A2(linear power) and B1(burnup) is to be modified SELHIST is specified SELHIST =0 no modification =1 time is modified

=2linear power is modified =3 burnup is modified

0

STTHST Specifies either the starting time (when SELHIST=1) or burnup (when SELHIST=3) to be modified When SELHIST=2 it is designated either by A1 or B1 in the line No10

00

ENDHST Specifies either the end time (when SELHIST=1) or burnup (when SELHIST=3) to be modified When SELHIST=2 it is designated either by A1 or B1 in the line No10

00

FACHST

Magnification factor for time (when SELHIST=1) linear power (when SELHIST=2) and burnup (when SELHIST=3) In the case that SELHIST=1 and 3 all the input data of times and burnups after ENDHIST are gained by ENDHIST times (FACHST-1)

10

NDIV(1500) Assuming NDIV(I)=N is the input the time-step interval I from historical number I-1 is equally divided by N 15000

ICTP

When CSTMP assigned by line 13 is the cladding surface temperature ICTP=0 is assigned and when CSTEMP is the temperature at the interface of the metallic layer and outer surface oxide film ICTP= 1 is assigned

However even if the oxidation of cladding is not taken into consideration (ICORRO=0) but ICTP=1 a thin oxide film thickness (01microm) is assumed

1

ICSTMP When using degC as the unit for CSTMP which is assigned by the 12-th input line ICSTMP=1 is assigned When the unit is K ICSTMP=0 is assigned 0

JAEA-DataCode 2013-009

- 90 -

Name-list Input (3)

Variable name Contents Default value

IRLHR When IRLHR=0 the axial power profile input in FEMAXI-7 is used When IRLHR=1 the axial power profile obtained by RODBURN is used Effective only when NPRD= either 0 or 1

0

IRFAI

IRFAI is used to assigne the axial segment-wise fast-neutron flux distribution by input

When IRFAI=0 the relative distribution of fast-neutron flux is assumed the same as the relative distribution of linear power

When IRFAI=1 the relative distribution is assigned by the 12-th line of input The relative distribution should be specified by the line 12

When IRFAI= -1 the relative distribution obtained from RODBURN-1 is used

0

ITPLEN When ITPLEN = 1 is assigned the upper- and lower-plenum region temperatures are given by the [ coolant inlet temperature+DTPL] 0

FPLFAC(2) The ratio of fast-neutron fluxes in the upper and lower plenums to those in the adjacent segments of fuel stack (FPLFAC(1) upper-plenum region FPLFAC (2) lower-plenum region)

0505

IFSINP

Interpolation option of fast neutron fluxes at input history points =0 the fast flux at omitted input history points is the same as that at the

previous history point at which flux data is input =1 linear interpolation in terms of burnup is performed for omitted input

points =2 the fast flux dta ashould be input at all the history points They cannot

be omitted

2

ICTINP

Interpolation option of coolant inlet temperature at input history points =0 the temperature at omitted input history points is the same as that at

the previous history point at which temperature data is input =1 linear interpolation in terms of burnup is performed for omitted input

points

1

ICPINP

Interpolation option of coolant pressure at input history points =0 the pressure at omitted input history points is the same as that at the

previous history point at which temperature data is input =1 linear interpolation in terms of burnup is performed for omitted input

points

1

ICVINP

Interpolation option of coolant mass flow rate at input history points =0 the mass flow rate at omitted input history points is the same as that at

the previous history point at which temperature data is input =1 linear interpolation in terms of burnup is performed for omitted input

points

1

IRH

Interpolation option of axial power profile at input history points =0 the profile at omitted input history points is the same as that at the

previous history point at which temperature data is input =1 linear interpolation in terms of burnup is performed for omitted input

points

0

IBUOP

Option of time vsburnup at input history points IBUOP= -1 time is calculated with the input sets of burnup and linear power IBUOP=0 time is calculated with the input sets of burnup and average linear power IBUOP= n time is calculated with the input sets of burnup and linear power at n-th axial segment

-1

JAEA-DataCode 2013-009

- 91 -

Name-list Input (4) Variable name Contents Defauly

value

Calculation options

IFEMOP

= -1 only thermal analysis is executed (non-coupled calculation of thermal analysis and mechanical analysis)

= 0 coupled calculation of thermal analysis and mechanical analysis

IFEMRD designates the option of mechanical analysis

= 2 coupled calculation of thermal analysis and mechanical analysis IFEMRD designates the option of mechanical analysis

2

IFEMRD =0 2-D local mechanical analysis (Mechanical analysis II) =1 Entire rod length (ERL) mechanical analysis (Mechanical analysis I) 1

ZR

Thickness of Zr liner inside the cladding (cm) If cladding has no liner ZR=00 Restart calculation automatically takes over the value specified in

[Base-calculation]

00

IREST

In FEMAXI-7 calculation (1) =0 Analysis only by FEMAXI-7 =1 only 1-D calculation for FURBEL =2 generating Restart file (ft11) fro RANNS In this case the cladding has the same ring elements division as that of

RANNS

0 In FEMAXI-7 calculation (2) =4 generating Restart file (ft11) for FEMAXI and RANNS

allowing the designation of segments for refabricated short rod In FEMAXI-7 Re-start calculation (3) =5 reading the restart file (ft11) of FEMAXI-7 by FEMAXI-7 to

perform the calculation of test-irradiation for the axial segments designated by TRSGT However the objective segment for 2-D mechanical analysis in the base-irradiation calculation should be the same as the axial segment designated by TRSGT

JAEA-DataCode 2013-009

- 92 -

Name-list Input (5)

Variable name Contents Default value

TRSGT(2)

This is designated in the case where IREST=5 in FEMAXI If this condition is not met error message is issued and calculation will not start Ex suppose a rod has 10 axial segments in base-irradiation calculation and re-start calculation is performed for 4- 5- and 6-th segments ldquoTRSGT=4 6rdquo If only 5-th segment is dealt with ldquoTRSGT=5rdquo When IFEMRD=0 the objective segment (IFEM) in the base-irradiation calculation has to be cincluded in the designation by TRSGT For example in the case where IFEM=5 in base-irradiation and TRSGT=46 IFEM in restart calculation has to be IFEM=2 Otherwise error message is issued and no calculation will start

0 0

IRTIME

When IRTIME=0 in the input file of Re-start calculation time (or burnup) has to be input as a sequential value from the beginning of base-irradiation

However if time is input burnup at EOL of base-irradiation calculation is taken over to be an initial burnup of Re-start calculation

When IRTIME=1 time at the start of Restart calculation has to be 0 and

with this initial time=0 the Re-start irradiation history has to be given in input file However in Re-start calculation burnup at EOL of base-irradiation calculation is taken over and added to the initial burnup of Re-start input file

1

NAXSG

Option to select the method of axial force calculation in ERL mechanical analysis

NAXSG=0 in each axial segment axial force is transmitted to its lower adjacent segment Reaction force to the axial force at the segment-segment interface is not taken into consideration

NAXSG=2 each segment displaces independently In each segment axial

force is determined by PCMI within the segment irrespective of the PCMI conditions in the other segments

0

JAEA-DataCode 2013-009

- 93 -

Name-list Input (6)

Variable name Contents Default value

MESH

Number of ring elements of pellet stack 1-D thermal 1-D mechanical 2-Dlocal mechanical

MESH=0 iso-thickness10 iso-thickness 10 iso-thickness 5 MESH=1 iso-volume 36 iso-volume 18 iso-volume 9 MESH=2 iso-volume 72 iso-volume 18 iso-volume 9 MESH=3 iso-volume 36 iso-volume 36 iso-volume 18 MESH=4 iso-volume 72 iso-volume 36 iso-volume 18

However when HBS option (high burnup structure model) is designated MESHgt0 has to be set

When ISHAPE=1 is selected the above number of ring elements is doubled ( In RANNS when IRESTgt0 ldquoMESHrdquo value is automatically taken over from FEMAXI-7 ) Here number of cladding ring elements is irrespective of

ldquoMESHrdquo designation as follows For 1-D thermal and mechanical models 1) Cladding which has no Zr-liner

8 metallic elements + 2 outer oxide layers 2) Cladding with Zr-liner

2 liner elements + 8 metallic elements + 2 outer oxide layers For 2-D local mechanical model 3) Cladding which has no Zr-liner

4 metallic elements + 1 outer oxide layers 4) Cladding with Zr-liner

1 liner elements + 4 metallic elements + 1 outer oxide layers However when ISHAPE=1 the above number of elements is doubled Restart calculation automatically takes over the value specified in [Base-calculation]

3

ARC(4) When IFEMRD=0 ie in 2-D local mechanical analysis the ratio of four element widths in the radial direction can be given by ARC 410

AXBND When IFEMRD=0 ie in 2-D local mechanical analysis AXBEND=1 gives a boundary condition which allows the free displacement of each node in pellet upper end plane in the axial direction

0

INPCK Input data check option (=0 normal calculation =1 input check only) 0

ICHI

Elasticity calculation option when IFEMRD=0 = 0 normal calculation = 1 elasticity calculation only Neither creep nor plasticity is taken into

consideration

0

K1

Number of elements in the axial direction per half a pellet length in the local mechanical analysis (K1 le 5) When ISHAPE=1 this number is doubled ie K1times2 Restart calculation automatically takes over the value specified in [Base-calculation]

3

JAEA-DataCode 2013-009

- 94 -

Name-list Input (7)

Variable name Contents Default value

AZ1(5)

When IFEMRD=0 the ratio of element sizes in the axial direction can be given by AZ1 for the K1 elements per half a pellet length When ISHAPE=1 AZ1 is applied to each 2-element set That is AZ1(I) is applied to (2I-1)th and (2I )th elements Restart calculation automatically takes over the value specified in [Base-calculation]

510

IRM Option for the cladding material (=0 Zircaloy =1 Stainless) 0

ILOCK When IFEMRD=0 axial force treatment option ILOCK=0 locking model =2 no axial force is taken into account 0

IFIX When IFEMRD=0 if contact between pellet and cladding is always assumed as ldquobonding staterdquo designate IFIX=1 0

TLIM Truncation control of CPU time (When the execution time reaches TLIM (s) calculation is terminated by the code itself) 200000

IZERO

Option to calculate and output the quantities such as internal pressure inner space volume cladding size etc at zero-power state in the calculation along the input history data

=0 No calculation at zero-power =1 zero-power calculation is performed with zero-power state temperature

being assumed as TROOM =2 zero-power calculation is performed with zero-power state temperature

being assumed as that at start-up =3 zero-power calculation is performed with zero-power state temperature

being assumed as that of the coolant temperature at that time =4 zero-power calculation is performed with input designated temperature

TZERO

0

TZERO Zero-power state temperature used when IZERO=4 (K) 29115

IELAST

Option of elastic calculation in ERL mechanical analysis =0 regular analysis =1 plasticity and creep of the pellet and cladding are ignored =2 plasticity and creep of the pellet are ignored =3 plasticity and creep of the cladding are ignored

0

IS3P

Option to control the thermal-hydraulics calculation when using the input-specified condition for cladding surface temperature IS3P=0 no thermal-hydraulics calculation is performed

IS3P=1 thermal-hydraulics calculation is performed IS3P=2 when IHF=1 in order that calculation can be continued even if Na-coolant temperature becomes lower than 200oC at a certain history point mode change has to be done into IS=3 or =4 in which cladding surface temperature can be specified by input At the same time thermal calculation of Na-coolant is stopped at this history point

However even when IS3P=0 to perform mechanical calculation of creep down of cladding induced by external coolant pressure the coolant pressure values are maintained at the input values

0

ILNR When IFENRD=0 for stress calculation ILNR=1 Newton-Raphson method is applied ILNR=0 Newton-Raphson method is not applied

0

SIGNR When IFEMRD=0 SIGNR is a permissible error (MPa) for the stress calculated by Newton-Raphson method 01

JAEA-DataCode 2013-009

- 95 -

Name-list Input (8)

Variable name Contents Default value

Options for mechanical properties of cladding oxide and liner and options for hollow pellet

MATXO

=0 mechanical properties of ZrO2 are applied to those of the cladding outer oxide layer

=1 mechanical properties of cladding outer oxide kayer are replaced with those of Zircaloy by designating the values in FACXO

0

FACXO(5)

Option to multiply the mechanical properties values of cladding outer oxide layer by FACXO Effective when MATXO=1 (FACXO(1) Youngrsquos modulus FACXO(2) Poissonrsquos ratio FACXO(3) thermal expansion rate FACXO(4) creep rate FACXO(5) yield stress)

510

MATLNR

(Effective when ZRgt0) Option for mechanical propereties of Zr liner of cladding =0 mechanical properties of pure Zr are applied to the Zr liner =1 mechanical properties of liner are replaced with those of Zircaloy by

designating FACLNR

0

FACLNR(5)

(Effective when ZRgt0 and MATLNR=1) Option to multiply the mechanical properties values of cladding liner by FACLNR (FACLNR(1) Youngrsquos modulus FACLNR(2) Poissonrsquos ratio FACLNR(3) thermal expansion rate FACLNR(4) creep rate FACLNR(5)yield stress)

510

PDPRF

When both solid pellets and hollow pellets exist in one fuel rod power density profile in the radial direction of pellet is adjusted by taking account of the centerhole void

When PDPRF=0 the hollow pellet segment uses the profile in which the center part is eliminated from the solid pellet relative profile (average=10) Numerical output or plotted figure show the LHR which is calculated by this profile so that the LHR value is to a small extent lower due to the null power in the centerhole region

When PDPRF=1 the hollow pellet segment uses the power profile which is obtained by multiplying the profile of ldquoPDPRF=0rdquo with factor f(gt10) to hold the LHR unchanged as if the segment pellet were solid even in the presence of centerhole This factor is constant in the radial direction

0

MXHIST Maximun number of input history points 1500 LD Size of DIMENSION of real number array 4000000

LID Size of DIMENSIONof integer array 500000 【Note 1】The message ldquoDIMENSION AREA OVER FLOW LTSM =xxxxx LD =4000000rdquo is output and the program execution is terminated when LTSMgtLD To avoid this it is necessary to designate LD by name-list input to make LDgtLTSM At the same time ldquo4000000rdquo in the statement ldquoDIMENSION

ID(500000) D(4000000)rdquo in ldquomainforrdquo has to be changed into the value which is specified by LD and compilation of the source program has to be performed again 【Note 2】The message ldquoDIMENSION AREA OVER FLOW LASI=xxxxx LID =500000rdquo is output and the program execution is terminated when LASIgtLID To avoid this it is necessary to designate LID by name-list input to make LIDgtLASI At the same time ldquo5000000rdquo in the statement ldquoDIMENSION

ID(500000) D(4000000)rdquo in ldquomainforrdquo has to be changed into the value which is specified by LID and compilation of the source program has to be performed again

JAEA-DataCode 2013-009

- 96 -

Name-list Input (9) Variable name Contents Default

value

ITBFIX Option to make fuel temperature equal to coolant temperature at 0 power state Effective when ITBFIX=1 1

ISHAPE

Option for type of finite element in 2-D local mechanical analysis ISHAPE=1 Rectangular four-node element with linear shape function ISHAPE=2 Rectangular eight-node element with quadratic shape function Restart calculation automatically takes over the value specified in

[Base-calculation]

2

CHKVAL(10)

Upper limit of checking abnormal values CHKVAL(1) cladding equivalent stress (MPa) CHKVAL(2) pellet center temperature (oC) CHKVAL(3)cladding temperature (oC)

10000 30000 30000

70

ICHK(10) Option to continue calculation even if abnormal value is detected ICHK=0 calculation is continued ICHK ne 0 calculation is stopped

101

ICKOPT

Option to specify the time-step interval using check function argument for checking abnormal values =0 checking calculation only at the input history points

=1 checking calculation at all the time-steps = -n (when n 1 or n 10ne ne ) checking calculation at every n steps = -1 checking calculation at the time-steps exceeding DT_OUT except

the input history points DT_OUT is an option for putput = -10 checking calculation at all the time-steps from PLTIME(1) to

PLTIME(2) However input history points are always included in checking points PLTIME is an option for output

0

DDSIGE Maximum allowable change of equivalent stress in the iteration calculation of ERL (IFEMRD=1) mechanical analysis (MPa) 10

DDSIGE2 Maximum allowable change of equivalent stress in the iteration calculation of 2-D (IFEMRD=0) mechanical analysis (MPa) 100

DLSIGE Allowable error of the maximum change of equivalent stress in the iteration calculation of ERL (IFEMRD=1) mechanical analysis (MPa) 1000

DLSIGE2 Allowable error of the maximum change of equivalent stress in the iteration calculation of 2-D (IFEMRD=0) mechanical analysis (MPa) 2000

ISIGE

Option to continue calculation even if allowable error of the maximum change of equivalent stress is detected in the iteration calculation of ERL (IFEMRD=1) mechanical analysis ISIGE= -1 calculation continues without output of iteration process ISIGE= 0 calculation continues with a simplified output ISIGE= 2 calculation continues with detailed output ISIGE=1 calculation stops with detailed output

1

ISIGE2

Option to continue calculation even if allowable error of the maximum change of equivalent stress is detected in the iteration calculation of 2-D (IFEMRD=0) mechanical analysis ISIGE2= -1 calculation continues without output of iteration process ISIGE2= 0 calculation continues with a simplified output ISIGE2= 2 calculation continues with detailed output ISIGE2=1 calculation stops with detailed output

1

AJUDG1 Temperature error limit in the convergence calculation of temperature dependence of thermal conductivity (oC) 01

ICONVX Maximum number of times of the convergence calculation of temperature dependence of thermal conductivity 20

JAEA-DataCode 2013-009

- 97 -

Name-list Input (10) Variable name Contents Default

value

Calculation conditions

AJUDG2 Temperature error limit in the convergence calculation of gap thermal conductance (oC) 10

ICONV2 Maximum number of times of the convergence calculation of gap thermal conductance 100

AY Tilting of the pellet upper surface in the case of dished pellet AY=0 (cm) Effective only when IFEMRD=0 In a dished pellet AY=00 0002

TROOM Room temperature or fuel rod initial temperature (K) 29115

ITIME(20) An option for changing plenum gas pressure and gas composition A historical point number for changing is inputted to ITIME(I) (up to a

maximum of 20 ) 200

GASPRN(20) The plenum gas pressure (MPa) at a historical point number ITIME(I) is assigned by GASPRN(I) 2000

PLENM(20) The plenum volume (cm3) at a historical point number ITIME(I) is

assigned by PLENM(I) (Note this is not the volume of the fuel free space but the volume at the plenum part)

2000

GMIXN(4 20) Gas composition at history point number ITIME (minus) Molar ratios of gas

compositions at ITIME(I) are specified by GMIXN(1 I) to GMIXN(4 I) where 1 =He 2 = N2 3 =Kr 4 =Xe

8000

DEN(20) Equivalent diameter (cm) of coolant flow area at history point ITIME(I) is designated by DEN(I) At least more than one of DEN FAREAN and PITCHN have to be designated

2000

FAREAN(20) Cross sectional area of coolant channel (cm2) at ITIME(I) is designated by FAREAN(I) At least more than one of DEN FAREAN and PITCHN have to be designated

2000

PITCHN(20) Rod-to-rod pitch (cm) at ITIME(I) is designated by PITCHN(I) At least more than one of DEN FAREAN and PITCHN have to be designated 2000

GAPLK Minimum gap width at which axial force by PCMI is generated (microm) 30 XKSU Upper plenum spring constant (Nm) 15000 ALSU Upper plenum spring thermal expansion coefficient (1K) 15times10-5 XKSL Lower plenum spring constant (Nm) 25000 ALSL Lower plenum spring thermal expansion coefficient (1K) 15times10-5 AMU Friction coefficient between pellet and cladding (IFEMRD=0) 04 AMU2 Friction coefficient between pellet and cladding (IFEMRD=1) 04 DE Equivalent diameter of coolant channel (cm) 00 FAREA Cross sectional area of coolant channel (cm2) 00 PITCH Pitch between fuel rods (cm) (CDOUT cladding outer diameter (cm)) CDOUTtimes13

NRCZR Number of radial elements the metal wall of cladding in the entire rod length mechanical analysis 8

NRCOX Number of radial elements in the outer oxide layer of cladding in the entire rod length mechanical analysis 2

DTPL Temperature difference between gas inside the plenum and surrounding coolant (K) Plenum temperature = Coolant temperature + DTPL (K) 250

LBU

When LBU=1 is set calculation uses the local burnup in the radial direction of pellet and when LBU=1 calculation uses the average burnup

Restart calculation automatically takes over the value specified in [Base-calculation]

1

JAEA-DataCode 2013-009

- 98 -

Name-list Input (11) Variable name Contents Default

value

XLSZU

The axial length of the upper plenum part used in the entire length mechanical analysis (cm) When XLSZU is not assigned (XLSZU=00) it is given by the value obtained by dividing the upper-plenum volume PLENUM (2) which is

assigned by line 8 by 2cirπ ( cir = inner radius of cladding)

00

XLSZL

The axial length of the upper plenum part used in the entire length mechanical analysis (cm) When XLSZL is not assigned (XLSZL=00) it is given by the value obtained by dividing the upper-plenum volume PLENUM(1) which is assigned by line 8 by 2

cirπ ( cir = inner radius of cladding) When PLENUM (1)=00 no lower plenum is assumed to

exist even if XLSZL is designated

00

IRELCV

Option to take into account of the space volume (spaces of crack dish and chamfer) change inside pellet during irradiation IRELCV=0 not taken into account IRELCV=1 taken into account The code calculates the relocation strain relε in the radial circumferential

and axial directions This strain relε changes by the internal compressive stress inside pellet induced by power change

0

IQREAT Option for the reaction heat generated by oxidation of cladding IQREAT=0 not taken into account IQREAT =1taken into account 0

GAMHT When GAMHT=1 γ-heating is added to the thermal calculation of cladding 0

GAMHG γ-heating rate of cladding (Jg) effective when GAMHT=1 10

GAMRC Proportion factor of γ-heating rate of cladding to the metal density and pulse power effective when GAMHT=1 10

IHF When IHF=1 coolant is assumed to be Na 0

NUOP

Option for Nu number to be used in the equation of thermal conductance from claddint to Na coolant

When NUOP=1 80Pr)(Re030036 +=Nu

When NUOP=2 0870 0025PeNu = + Here Pe max(Re Pr 200)=

1

SUBCL When SUBCL=1 if the input-specified inlet coolant temperature exceeds the saturation temperature coolant density at the inlet is made equal to the density of liquid phase coolant at saturation temperature

1

JAEA-DataCode 2013-009

- 99 -

Name-list Input (12) Variable name Contents Default

value

Time step control DPXX Power increment width per unit time step (Wcm) 100 DPBU Burnup increment width per unit time step (MWdtUO2) 1000

IPH IPH=0 when the control of DPXX and DPBU is set to be the objective segment (IFEM) and IPH=1 when it is set to be the peak power segment 1

EFCOEF

Time step width determination factor due to creep

∆tE c

=sdot

sdotσ

εEFCOEF

where σ is equivalent stress E is Youngrsquos modulus and ε c is equivalent creep strain rate

01

MAXTM

Maximun number of time-step controls in one time-step in the ERL mechanical analysis This controls follow P-C contact state changes between contact and non-contact state and changes between plastic and elastic state changes

42

LCMAX Maximum number of judgments of clogged or sliding state of the contact between pellet and cladding when IFEMRD=1 10

LMAX Number of iterations in the Newton-Raphson method for deformation Calculationwhen IFEMRD=1 (LMAX le 100) 20

ITEND

Number of repetitions of Newton-Raohson method in the deformation calculation of 2-D local mechanical analysis ( IFENRD=0) where the first calculation is not included in the repetition so that ldquoITEND=Nrdquo means (N+1) times repetitions

1

ITIMY

Time step control option for elasticityplasticity judgment when IFEMRD=0 and 1

= -1 without time step control = 0 time step control is performed only upon the removal of load = 1 with time step control)

-1

JAEA-DataCode 2013-009

- 100 -

Name-list Input (13) Variable name Contents Default

value Options for pellet thermal conductivity

IPTHCN

Options for fuel pellet thermao conductivity models =1 MATPRO-09 =2 Washington =3 Hirai =4 Halden =5 Modified Hirai =6 Forsberg =7 Kjaer-Pedersen =8 BaronampCouty =9 OhiraampItagaki =10 Lucta MatzkeampHastings =11 Tverberg Amano Wiesenack (Gd-containing fuel) =12 Sontheimer Landskron Billaux (Gd-containing fuel) =13Fukushima (Gd-containing fuel) =14HiraiIshimoto (Gd-containing fuel) =15Daniel Baron (UO2 Gd-containing fuel ) =16 KitajimaampKinoshita =17 Wiesenack(Halden_New) =18 PNNL modified Halden model =90 Ohira amp Itgaki original =91 Ohira amp Itgaki latest model for UO2 and MOX =92 Modified ldquoOhira amp Itagaki modelrdquo in FRAPCON 33 =30Martin(MOX) =31MATPRO-11(MOX) =32Martin+Philipponneau(MOX) =33Duriez et al(MOX) =34Philipponneau(MOX) =35 Halden (new MOX) =36Daniel Baron (MOX Gd-containing fuel) =37 PNNL-modified Halden model in FRAPCON-2-3 =38 PNNL model in FRAPCON-3 based on the Duriez model

17

IZOX Option for thermal conductivity of cladding oxide layer model =1MATPRO-A(Zircaloy) =2MATPRO-11(Zircaloy) =41SUS304

2

ITMC Option for cladding thermal conductivity model =1MATPRO-09 (Zircaloy) =40SUS316 =41SUS304

1

Options for MOX fuel and parameters for pellet thermal conductivity

PU(40)

PuO2 weight fraction at each axial segment (-) It is assumed that segments of PU(I)gt0 have MOX fuel and segments of PU(I)=0 have UO2 fuel

Totally NAX number of PU(I) are designated

( )2

2 2

PuOPu= weight ratioUO +PuO

Restart calculation automatically takes over the value specified in [Base-calculation]

4000

PUFIS(40)

Fissile Pu concentration at each axial segment (-) PUFIS is weight fraction of fissile Pu to total weight of Pu Totally NAX

number of PUFIS(I) are designated Restart calculation automatically takes over the value specified in

[Base-calculation]

4000

JAEA-DataCode 2013-009

- 101 -

Name-list Input (14) Variable name Contents Default

value Y Value of y in MO2-y used when IPTHCN=15 and 36 00 LT Lattice spacing parameter used when IPTHCN=15 and 36 (Aring) 54702

GD Gd2O3 concentration (weight fraction) Restart calculation automatically takes over the value specified in

[Base-calculation] 00

FPTH Magnification factor for pellet thermal conductivity 10

CBU Burnup(MWdkg-UO2)-dependent parameter used when IPTHCN=11

00046 (UO2 fuel) 00056 (Gd-containing fuel)

CGD Gadolinia conc(wt)-dependent parameter used when IPTHCN=11 00066

SLB(6)

SLB(1)=a SLB(2)=b SLB(3)=Dbu SLB(4)=Dgd SLB(5)=Cbu SLB(6)=Cgd

Used when IPTHCN=12 See pellet thermal conductivity model described

in Chapter 4

00235 255times10-4

00949 042

10times10-4

956times10-4

M1

As one of the thermal conductivity models of MOX fuel the model of

IPTHCN=35 multiplies a factor KMOX on the thermal conductivity of UO2

fuel KMOX is assumed by the equation

1 12

(1 ) 1 exp BuM MBu

= minus minus minus +

KMOX and M1 is the value of M1

092

BUMOX KMOX is assumed by the equation

1 12

(1 ) 1 exp BuM MBu

= minus minus minus +

KMOX and BUMOX is the value of Bu2 400

KMOX

When the equation 1 12

(1 ) 1 exp BuM MBu

= minus minus minus +

KMOX is applied to

the other models of UO2 thermal conductivity (IPTHCN=1 -18) ie to use

the UO2 thermal conductivity models which are multiplied by KMOX as

MOX fuel thermal conductivity KMOX=1 is designated

0

JAEA-DataCode 2013-009

- 102 -

Name-list Input (15) Variable name Contents Default

value

IPRO

Option to specify the effect of pellet porosity p=10-D(I)Di (or theoretical density ratio D(I)) on the pellet thermal conductivity where Di is the initial density Refer to Eqs(2327) and (2328) =0 Initial porosity 0p assuming D(I)=Di is used

=1 Porosity defined by 0

0

swgVp p

V∆

= + is used

=2 Porosity defined by 00 0

dens hotV Vp pV V

∆ ∆= + + is used

=3 Porosity defined by 00 0 0

swg dens hotV V Vp pV V V

∆ ∆ ∆= + + + is used

where Di the initial theoretical density ratio 0p initial porosity

0

swgVV

∆ fission gas bubble swelling irrespective of IFSWEL

0

densVV

∆ densification calculated by the model designated by IDENSF

and 0

hotVV

∆ volumetric strain by hot-press

However this porosity calculation is not performed ring element-wise

It is performed at each axial segment and average porosity over one

segment is obtained Plot output is by IDNO=57 and pellet density =1-p

0

MPORO

Option for the effect of porosity on the thermal conductivity of pellet

=0 pellet thermal condcutivity at each axial segment is calculated by using the porosity which is designated by IPRO

=1 pellet thermal condcutivity at each axial segment is calculated by

using the ring-element-wise porosity 00 0

swg densV Vp pV V

∆ ∆= + +

Here definitions of swelling and densification are identical to those by IPRO However ring-element-wise change of porosity obtained by HBS model is independent from MPROR designation The effect of porosity by HBS model at eack ring element can be taken into account in calculation irrespective of MPORO designation

Corresponding plotter output is IDNO=257 total porosity IDNO=260 fission gas bubble porosity

0

JAEA-DataCode 2013-009

- 103 -

Name-list Input (16) Variable name Contents Default

value Options for density

IPDENS

In the mechanical analysis all factors concerning the pellet density ie 1D p= minus and 01Di p= minus are taken into account This option is to select

the factors to be output by plotter The porosity of pellet is obtained by one of the following equations

IPDENS=1 00 0

swg densV Vp pV V

∆ ∆= + +

=2 00 0 0

swg dens hotV V Vp pV V V

∆ ∆ ∆= + + +

=3 00 0 0 0

swg dens hot relV V V Vp pV V V V

∆ ∆ ∆ ∆= + + + +

=4 00 0 0 0 0

swg dens hot rel thV V V V Vp pV V V V V

∆ ∆ ∆ ∆ ∆= + + + + +

where Diinitial theoretical density ratio 0p initial porosity (1- Di)

0

swgVV

∆swelling calculated by the model designated by IFSWEL

0

densVV

∆ densification calculated by the model designated by IDENSF

0

hotVV

∆ hot-pressing

0

relVV

∆relocation-induced change and

0

thVV

∆ volumetric change by thermal expansion

The corresponding plotter outputs are

IDNO=79 segment average porosity designated by IPDENS

IDNO=80 segment average volumetric change designated by IPDENS

IDNO=281 pellet density change (D=1 - p) of each ring element of

segment designated by IPDENS=1

=282 pellet density change (D=1 - p) of each ring element of

segment designated by IPDENS=2

=283 pellet density change of each ring element of segment

designated by IPDENS=3

=284 pellet density change of each ring element of segment

designated by IPDENS=4

1

ICDENS Option for cladding density =1 Zircaloy =41 SUS304 1

JAEA-DataCode 2013-009

- 104 -

Name-list Input (17) Variable name Contents Default

value Options for specific heat

ISPH Option for equation of pellet specific heat =1 MATPRO-11 =30 MATPRO-11 =31 SGTE Database 1

ICSPH Option for equation of cladding specific heat =1 MATPRO-09 (Zircaloy) =41 MATPRO-A (SUS-304) 1

Options for gap thermal conductance

IGAPCN

Option of gap thermal conductance (IGAPCN=5 and 6 are thermally bonding models) =0 Modified Loss amp Stoute =1 MATPRO-09 =2 Loss amp Stoute =3 modified Dean =4 Modified Loss amp Stoute (new) =5 Bonding model 1 (combination of UO2+ZrO2+Open Gapcon) =6 Bonding model 2 (combination of UO2+ZrO2 only even if the gap is

re-opened) =7 gap conductance is fixed at the value specified by GAPCN

0

R1 (Used when IGAPCN = 0 or 2) pellet surface roughness (microm) 10 R2 (Used when IGAPCN = 0 or 2) cladding surface roughness (microm) 10

IAR

Option to change the second element of gas from the standard lsquoN2rsquo When using Ar in place of N2 IAR=rsquoARrsquo When IAR=rsquoARrsquo gas properties

such as GG2 AA2 BB2 and WW2 are automatically set When changing to the gas other than Ar the properties are required to be specified by input

lsquoN2rsquo

GG2 Jump distance between solid and gas (cm) which is used when IAR designates the gas other than N2 Default value is for Ar 50times10-4

AA2 Coefficient a in the equation K=aTb (Wm K) of gas thermal conductivity which is used when IAR designates the gas other than N2 Default value is for Ar

3421 times10-6

AB2 Coefficient b in the equation K=aTb (Wm K) of gas thermal conductivity which is used when IAR designates the gas other than N2 Default value is for Ar

0701

WW2 Molar mass of gas which is used when IAR designates the gas other than N2 Default value is for Ar 39948

OXEMS Oxide emissivity =1Zircaloy =41SUS304 =41SUS316 1

IXEKR XeKr ratio option =0XeKr=8713 =1 XeKr=8614 =2XeKr=16 =3 data from PLUTON is used ( effective only when IFLX= -1)

0

FACPC (Used when IGAPCN = 0 or ge 4) Solid-solid contact term of gap thermal conductance is multiplied by FACPC 10

PC0 (Used when IGAPCN = 4) Reference contact pressure when PCMI occurs 30 X When IGAPCN=4 an exponent for the contact pressure function 30 FACS (IGAPCN = 4) Multiplying factor for solid thermal conductance term 100

TGPG

Option for gap gas temperature TGPG=0 gap gas temperature is set to the average of temperatures at pellet outer surface and cladding inner surface TGPG=N (gt0) gap gas temperature is set to the average of temperatures at the N-th ring element of pellet

0

FGCN Multiplying factor to assume thermally isolated state of P-C gap 10 GAPCN Fixed gap thermal conductance used when IGAPCN=7 (Wcm2K) 05678

JAEA-DataCode 2013-009

- 105 -

Name-list Input (18) Variable name Contents Default

value Options for cladding surface heat transfer model

AKFAC Multiplying factor for the surface heat transfer coefficient of cladding 10

ISCNHAL When ISCNHAL=1 Halden empirical equation is used for the surface heat transfer of cladding Effective when IS=0 1 and 2 0

CSTEM Cladding surface temperature is fixed at the value specified by CSTEM if CSTEM(K) is input Effective when ISCNHAL=0 and IS=0 1 and 2 00

ITSAT

When ITSAT=0 and coolant inlet temperature is higher than [saturation temperature ndash 01] the coolant inlet temperature is set equal to [saturation temperature ndash 01] When ITSAT=1 the inlet temperature is used as is input and inflow of overheated steam is allowed in calculation

0

JL

Option for the surface heat transfer equations in nucleate boiling regime =0 Chenrsquos equation (mailnly for PWR) =1 Jens-Lottes equation (mainly for BWR)

Jens-Lottes equation is applicable to the nucleate boiling region which has a low void ratio (cross section of steamtotal flow cross section) and is used in mailny sub-cooled boiling of water Chenrsquos equation is an evaluation formula which is arranged on the basis of the overheating degree ΔTsat of conduting surface

1

ICFL

When ICFL=1 when the coolant temperature exceeds the cladding temperature in the calculation the cladding temperature is set equal to the coolant temperature and the material properties such as the enthalpy of coolant quality and void fraction are reset using the cladding temperature Option for transient calculation

0

DCNL

Diameter of channel inner tube (cm) When a fuel rod is irradiated inside an inner tube contained in a capsule heat flux loss ocurrs from coolant inside the inner tube to the outer space of the inner tube To approximate this situation the heat flux is calculated by specifying the inner diameter of inner tube coolant temperature at the inlet to the outer space of the inner tube and thermal conductance across the inner tube wall This mode is ON when DCNLgt0

00

TCEXT(20) Coolant inlet temperature (K) at the space outside the inner tube This is different from TCOOL 3000

ICINT(2) In the period between ICINT(1) and ICINT(2) heat outflux through the inner tube channel is taken into account Input the designated history point number to ICINT(1) and ICINT(2)

20

HX(20)

Surface heat conductance (Wcm2K) at the outer surface of the inner tube channel in the period specified by ICINT For example when ICINT(1)=5 and ICINT(2)=10 this period consists of 6 intervals from history point number 6 to 10 However as HX is interpolated with time during the period totally 7 values of HX are specified in HX(1) to HX(7) which is spanned from the beginning of history point 5 to the end of history point 10

2000

FACQJS Fraction of contribution by cladding outer surface heat flux to coolant enthalpy increase 10

JAEA-DataCode 2013-009

- 106 -

Name-list Input (19) Variable name Contents Default

value

Options for FGR model -1-

IGASP

Option for fission gas release model IGASP=0 equilibrium model of grain boundary gas bubbles +intra-grain

bubble model IGASP=2 rate-law model of grain boundary gas bubbles +intra-grain

bubble model Restart calculation automatically takes over the value specified in

[Base-calculation]

0

GBFIS

Option for intra-granular gas bubble model ie model for bubble radius and number density GBFIS=0 White+Tucker model GBFIS=1 Irradiation-induced dissolution model GBFIS=2 Pekka Loumlsoumlnen model

0

APORE (Effective when IGASP=0 or 2 and GBFIS=0) Initial radius of intra-granular gas bubble (nm) 10

KFIS (Effective when IGASP=0 or 2 and GBFIS=0) Exponent used in the equation to determine destruction rate of intra-granular bubbles 20

RFIS (Effective when IGASP=0 or 2 and GBFIS=1) Reference bubble radius (nm) used to determine destruction rate of intra-granular bubbles Initial radius of intra-granular gas bubble (nm)

200

GSV (Effective when IGASP=0 or 2 and GBFIS=1) Tuning factor of surface energy equation of UO2 041

KV (Effective when IGASP=0 2 and GBFIS=1) Tuning factor of vacancy diffusion coefficient 10

RADMG (Effective when GBFIS=2) Upper limit radius of intra-granular gas bubble (nm) 1000

GROU (Effective when GBFIS=2) Initial density of intra-granular gas bubble

0ρ (gcm3) 40

BBC (Effective when GBFIS=2) Parameter to adjust re-dissolution rate (cm3) 3times10-17

RROU (Effective when GBFIS=2) Threshold radius of intragrain bubble Rρ (nm)

under which the initial bubble density 0ρ is kept unchanged 100

NROU

(Effective when GBFIS=2) Value of Nρ in the equation below defining

the bubble density when intra bubble radius exceeds Rρ (RROU)

Namely when R Rρge 0

NiniRR

ρ

ρ ρ

=

10

IRIM

(Effective when IGASP=0 and 2 and only when HBS=0) Model option for (additional) fission gas release from rim region

=0 additional FGR from rim is not taken into account =1 Battelle model =2 Cunningham model

=3 Cunningham model applied to the outermost ring element only =4 Lassmann empirical model

Restart calculation automatically takes over the value specified in [Base-calculation]

1

JAEA-DataCode 2013-009

- 107 -

Name-list Input (20) Variable name Contents Default

value

Options for FGR model -2- BFCT Re-dissolution rate of in-grain bubbles into matrix is multiplied by BFCT 10

FFL Lower boundary value of fission rate F (fissionscm3s) in calculating the re-dissolution rate bprime of fission gas atoms from intra-grain bubbles to solid matrix

1013

IDCNST Option for models of fission gas atom diffusion constant equation =1 Turnbull et al =2 White amp Tucker =3 Kitajima amp Kinoshita =4 Modified Turnbull =5 White =6Kogai

1

IFIS Option for fixing the fission rate which is used in calculating fission gas

atom diffusion coefficient =0 fission rate is not fixed =1 fixed at 1019fissionsm3s

1

FACD Effective diffusion coefficient in grain is multiplied by FACD 10 DIFM Upper limit of fission gas atoms diffusion coefficient(cm2s) 10-8

AM1 When IDCNST=4 an adjusting factor of temperature dependent term of fission gas atoms diffusion coefficient 10

BM1 When IDCNST=4 an adjusting factor of temperature non-dependent term of fission gas atoms diffusion coefficient 10

FGDIFX Option to adjust the temperature dependence of fission gas atoms diffusion coefficient To adjust ie to mulpiply the term FGDIFX=1 is designated If not FGDIFX=0is designated

0

FGDIF0 Factor to multiply the term to adjust the temperature dependence of fission gas atoms diffusion coefficient 100

EFA Parameter a to adjust the temperature dependence of FGDIF0 60

ADDF Re-dissolution rate of gas atoms in grain boundary bubbles into grain matrix is multiplied by ADDF 90

FBSAT Amount of gas saturation at grain boundary is multiplied by FPSAT (Effective when IFSWEL=0 234 and 5) 10

PSAT Limiting pressure acting on grain boundary bubbles (Pa) (Effective when IPEXT=0 12 and 3) 108

RF

Upper limit of inter-grain gas bubble radius At this radius gas is released and bubble will not grow (cm) Restart calculation automatically takes over the value specified in

[Base-calculation]

50times10-5

FBCOV Fraction of coverage of inter-grain gas bubble on grain boundary surface

Restart calculation automatically takes over the value specified in [Base-calculation]

025

ALHOT (Used when IPEXT=1112 and 13) Hot press parameter for the average stress acting on the grain boundary bubbles

10-4

APEXT (Used when IPEXT=14) Pext average stress obtained in the entire rod length mechanical analysis is multiplied by APEXT 10

ISFTN Option for surface energy of pore in UO2 crystal ISFTN=0626 (ergcm2) ISFTN=1Hall and Mortimer model 0

JAEA-DataCode 2013-009

- 108 -

Name-list Input (21) Variable name Contents Default

value

Options for FGR model -3- OPORO Ratio of open bubbles at grain boundary to total open porosity 00 FGG Rate of grain growth sweeping of fission gas atom is multiplied by FGG 10

RFGFAC

Multiplying factor for the FGR from rim structure RFGFACne0 when additional fission gas release from rim region is

assumed RFGFAC=0 when no additional fission gas release is asssumed

10

FRMIN Minimum fission gas release rate () 05 THEATF Interpolation parameter used in in-grain diffusion equation θ 10 FMULT Fitting factor of time step width for fission gas release model 10

NODEG Number of in-grain meshes for fission gas release model (5 or less) Restart calculation automatically takes over the value specified in

[Base-calculation] 3

RREL Dividing ratio of in-grain element to be set for each NODEG-1 in fission gas atoms diffusion calculation (designates NODEG-1 number) 50 10

RB Thickness of grain boundary layer element for re-dissolution of fission gas atoms (cm) 20times10-6

FPMOX

To simulate the FGR of MOX fuel FGR which is calculated by FGR model as usual is multiplied by FPMOX However this only hypothetically increases the amount of released gas and the calculation of fission gas atoms diffusion inside grain is not affected

10

JAEA-DataCode 2013-009

- 109 -

Name-list Input (22) Variable name Contents Default

value

IPEXT

Option for the external pressure Pext acting on grain boundary bubbles

14

IPEXT=0 Pext =0 IPEXT=1 Pext=plenum pressure IPEXT=2 Pext=contact pressure between pellet and cladding IPEXT=3 Pext= max (plenum pressure contact pressure)

IPEXT=13 Pext= thermal stress calculated by the ERL mechanical analysis taking into account the plenum gas pressure and the contact pressure

IPEXT=14 Pext= average stress obtained by stress calculation in the ERL

mechanical analysis + plenum gas pressure

Only when IPEXT=14(default) Pext is set in the following way

Here Sav is the thermal stress which is calculated by the ERL mechanical

analysis as a hydrostatic compressive stress and usually a negative value

and the contact force is automatically included in the calculation of Sav

1) When IGASP=0 Pext=-Sav+plenum gas pressure is set When Sav is

positive ie tensile stress Sav=0 is set

2) When IGASP=2 Pext= -Sav+ plenum gas pressure is set However

when -Savlt0 or when Sav is a positive tensile stress and 2 0extPrγ

+ =

holds Pext is fixed at Pext =208rγ

minus times

ISIGOP ISIGOP=1 is set when evaluating Pext by adding correction on the basis of upper limit of gas bubble strain increment 0

FSIGM Tuning parameter to multiply Pext by FSIGM 10

IFBSAT IFBSAT=1 should be designated when gas saturation concentration at grainboundary is given by a certain fixed value ie FBSATS 0

FBSATS When IFBSAT=1 saturation concentration of gas atoms at grain boundary (atomscm2) 50times1015

JAEA-DataCode 2013-009

- 110 -

Name-list Input (23) Variable name Contents Default

value

Options for rate-law FGR model (IGASP=2) HP (Effective when IGASP=2) Parameter to adjust the increasing rate of radius

of grain boundary gas bubble in its grwoing stage 10

HN (Effective when IGASP=2) Parameter to adjust the decreasing rate of radius of grain boundary gas bubble in its shrinking stage 02

FGCND (Effective when IGASP=2) Parameter to adjust the gas migration conductance from grain boundary gas bubbles 10

NFC (Effective when IGASP=2) NFC (integer) value when assuming the volume of conduit of gas percolation from grain boundary bubbles as

0 ( ) ( )c c c eV V f F g σ= and 0( ) 1 exp[ ( ) ]NFCc c cf F F F= minus minus

10

NSC (Effective when IGASP=2) NSC (integer) value when assuming the volume of conduit of gas percolation from grain boundary bubbles as

0 ( ) ( )c c c eV V f F g σ= and 0 NSC( ) 1 exp[ ( ) ]e e eg σ σ σ= minus minus 10

SIG0 (Effective when IGASP=2) Value of 0

eσ (MPa) when assuming the volume of conduit of gas percolation from grain boundary bubbles as

0 ( ) ( )c c c eV V f F g σ= and 0 NSC( ) 1 exp[ ( ) ]e e eg σ σ σ= minus minus 100

FC1 (Effective when IGASP=2) Coverage ratio 0

cF (-) of grain boundary by grain boundary gas bubbles after one-time coalescence of grain boundary bubbles

085

FC2 (Effective when IGASP=2) Coverage ratio 0

cF (-) of grain boundary by grain boundary gas bubbles after two-times coalescences of grain boundary bubbles

09

FC3 (Effective when IGASP=2) Coverage ratio 0

cF (-) of grain boundary by grain boundary gas bubbles after three-times coalescences of grain boundary bubbles

095

FC4 (Effective when IGASP=2) Coverage ratio 0

cF (-) of grain boundary by grain boundary gas bubbles after four-times coalescences of grain boundary bubbles

099

RINIT (Effective when IGASP=2) Initail radius of grain boundary bubble (microm) 001

NGB (Effective when IGASP=2) Number of bubbles which coalesce into one large bubble when grain boundary bubbles make tunnel and become open to outer space

4

MGB (Effective when IGASP=2) Maximum number of repeated coalescences of grain boundary bubbles when grain boundary bubbles make tunnel and become open to outer space

10

TMG (Effective when IGASP=2) Pellet threshold temperature (K) under which no bubble coalescence ocurrs 12000

DVLTM (Effective when IGASP=2) Lower limit of temperature referred to by the grain bopundary diffusion coefficient of vacancy 10000

LRF (Effective when IGASP=2) LRF=1 is set if the grain boundary gas bubble is assumed to stop growing at the limiting radius RF 0

FCON (Effective when IGASP=2) Threshold coverage of grain boundary bubbles on grain boundary to allow the bubble coalescence to occur 03

JAEA-DataCode 2013-009

- 111 -

Name-list Input (24) Variable name Contents Default

value

Options for pellet swelling

IFSWEL

Option for pellet swelling model =0 Chubb amp Zimmermann+FEMAXI-III =1 solid fission products swelling+ gas bubble swelling =2 MATPRO-09 =3 Kosaka =4 Studsvik =5 Hollowell

Restart calculation automatically takes over the value specified in [Base-calculation]

0

STFCP (Used when either IFSWEL = 0 or IFSWEL=5) Contact pressure above which fission gas bubble swelling does not occur

(Pa) Used in ERL mechanical analysis 30times107

SPCON (Used when either IFSWEL = 0 or IFSWEL=5) Contact pressure above which fission gas bubble swelling does not occur

(Pa) Used in 2-D local mechanical analysis -106

SWSLD

When IFSWEL=0 factor to multiply the solid fission product swelling rate 025 per 1020 fissioncm3

Restart calculation automatically takes over the value specified in [Base-calculation]

10

FDENSF

When either IFSWEL=0 or =1 option for factor fD of density decrease induced by solid fission products swelling

FDENSF=0 01=Df FDENSF=1 0

10 swsD

VfV

∆= minus

0

FACP (When IFSWEL=1) Factor to multiply the contact pressure term of the external pressure on grain boundary gas bubble 10

A1

(Used when IFSWEL = 4) Value of A1 used in the equation ΔVV()=(A1-C1FGR())BU where 0≦BU≦BU1 Restart calculation automatically takes over the value specified in

[Base-calculation]

00965

C1

(Used when IFSWEL = 4) Value of C1 used in the equation ΔVV()=(A1-C1FGR())BU 0≦BU≦BU1 Restart calculation automatically takes over the value specified in

[Base-calculation]

0000459

BU1

(Used when IFSWEL = 4) Value of BU1 (MWdkgU) used in the equation ΔVV()=(A1-C1FGR())BU 0≦BU≦BU1 Restart calculation automatically takes over the value specified in

[Base-calculation]

570

A2

(Used when IFSWEL = 4) Value of A2 used in the equation ΔVV()=(A1-C1FGR())BU1+A2(BU-BU1) BU1ltBU Restart calculation automatically takes over the value specified in [Base-calculation]

0032

JAEA-DataCode 2013-009

- 112 -

Name-list Input (25) Variable name Contents Default

value

Options for densification of pellet

IDENSF

Option for equation of pellet densification =0FEMAXI-III =1Rolstad =2NRC =3Marlowe =4Halden =30 Schlemmer and Ichikawa Restart calculation automatically takes over the value specified in [Base-calculation]

0

DMAX(40)

(Used when IDENSF = 0 2 or 3) Upper limit of pellet volume shrinkage due to densification () at each axial segment Restart calculation automatically takes over the value specified in [Base-calculation]

4010

SBU

(Used when IDENSF = 0) Burnup at which 90 of densification is completed (MWdtUO2) Restart calculation automatically takes over the value specified in

[Base-calculation]

200000

TDNSF (Used when IDENSF = 1 or 3) Sintering temperature (K) Restart calculation automatically takes over the value specified in

[Base-calculation] 20000

GG (Used when IDENSF = 3) Crystal grain diameter after heat treatment (m) Restart calculation automatically takes over the value specified in

[Base-calculation] 10-5

GG0 (Used when IDENSF = 3) Initial crystal grain diameter (m) Restart calculation automatically takes over the value specified in

[Base-calculation] 80times10-6

SITIM (Used when IDENSF = 3) Heat treatment time (hr) Restart calculation automatically takes over the value specified in

[Base-calculation] 240

ADST Densification adjustment factor used when IDENSF=4 Restart calculation automatically takes over the value specified in

[Base-calculation] 06

JAEA-DataCode 2013-009

- 113 -

Name-list Input (26) Variable name Contents Default

value

Options for densification and swelling of pellet

DENSWL

Option for combination model of densification and swelling =0 combination model is not used Densification and swelling are

calculated independently from each other =1 combination model is used Restart calculation automatically takes over the value specified in [Base-calculation]

0

DD1

Assuming that densification is DS(vol) and swelling is SW(vol) the combined volume change VC(vol) is assumed as

1(1 )VC D d DS D SW= minus sdot sdot + sdot where 1( DD1)d = is an adjusting factor for the maximum volumetric shrinkage DMAX

Restart calculation automatically takes over the value specified in [Base-calculation]

13

ALD

ldquoDrdquo in the above equation is given by ( )10tan [ ]

05Bu Bu

π

minus sdot minus= +

ALD is the value of α in this equation Restart calculation automatically takes over the value specified in

[Base-calculation]

04

BU0

ldquoDrdquo in the above equation is given by ( )10tan [ ]

05Bu Bu

π

minus sdot minus= +

BU0 is the value of Bu0 a reference burnup in this equation(GWdt) Restart calculation automatically takes over the value specified in [Base-calculation]

250

Options for fuel grain growth

IGRAIN Option for equation representing UO2 grain growth =0 Itoh =1 Ainscough =2 MacEwan =3 Lyons =4 MATPRO-09 =5 MATPRO-11

0

GR Initial pellet grain size (μm) Restart calculation automatically takes over the value specified in

[Base-calculation] 100

GRWF (Used when IGRAIN = 0) Grain growth rate is multiplied by GRWF 15

AG (Used when IGRAIN = 0) Fitting parameter (grain growth suppression factor) 10

JAEA-DataCode 2013-009

- 114 -

Name-list Input (27) Variable name Contents Default

value

Options for fuel grain growth

IGRAIN Option for equation representing UO2 grain growth =0 Itoh =1 Ainscough =2 MacEwan =3 Lyons =4 MATPRO-09 =5 MATPRO-11

0

GR Initial pellet grain size (μm) Restart calculation automatically takes over the value specified in

[Base-calculation] 100

GRWF (Used when IGRAIN = 0) Grain growth rate is multiplied by GRWF 15

AG (Used when IGRAIN = 0) Fitting parameter (grain growth suppression factor) 10

Options for He release (Refer to [Note] in the next page) NTVHE Number of time points set by TVHE 0

TVHE(41100) TVHE(1 n) number of nth time points (hr) (mole) TVHE(i+1 n) molar amount of He generated in axial segment I at nth

time point 410000

HER

HER=1 He release rate is HERLS times as large as the FGR of Xe+Kr HER=2 option toi assume a fixed release rate ( HEC1 (Default=1000)) to the generated quantity of He irrespective of temperature and burnup HER=3 He absorption and release model

1

HERLS Multiplying factor for the ratio of He release rate to fission gas release rate (Effective when HER=1) 30

HEC1 He gas release rate is assumed as fixed at HEC1() of He generation quantity irrespective of temperature and burnup (Effective when HER=2)

1000

HEGEN (NHIST)

(Effective when HER=3) Option for specifying the time history of He generation quantity HEGEN (N) (N is history point number) is set Eg when

ldquoHEGEN(1)=12E13 HEGEN(4)=234E14rdquo are input at the first history point(initial stage) 12E13 atomscm3 and at the fourth history point 234E14 atomscm3 are designated and between these two points a linear interpolation is made with respect to time

HEGEN(1) is indispensable and initial spacial concentration in solid phase However if IHEGEN=1 is designated unit of HEGEN becomes atomsg-fuel

1500 00

IHEGEN (Effective when HER=3) IHEGEN designates unit of HEGEN IHEGEN=0 atomscm3 IHEGEN=1 atoms g-fuel 0

DHE1

(Effective when HER=3) D1 of the following He diffusion coefficient inside grain (lattice)

11 1 2exp ( ) (f )LAT

QD D f Bu fRT

= minus + +

(m2s) 8times10-7

JAEA-DataCode 2013-009

- 115 -

[Note] Explanation of absorptionrelease model of Helium in UO2 and MOX fuels

The model adopts the He generation quantity calculated by an external burning analysis

code as a function of initial composition of fuel burnup or time When HEAR=1(default=0)

this process is performed in FEMAXI-7 If HEAR=0 the calculation is not performed even if

the He quantity is input

The He generation data is fed to FEMAXI-7 by either designation by name-list parameter

HEGEN(time atomscc) or adding several data lines to the last part of input file and the code

calculates as a function of time the He generation quantity during a certain time-step ie

increment (atomscc-fuel) during the time step in each ring element of pellet

The He diffusion inside pellet is calculated by a concentration-gradient driven diffusion in

the radial direction of pellet assuming that an average concentration of He (atomscc-fuel) in

each ring element has a gradient in the radial direction of pellet Here the boundary

condition at the interface of pellet solid surface and gas phase (assuming that the He spacial

concentration is equal to that of the solid) initial spacial concentrations of He in solid and gas

phase (atomscc-fuel) are specified by input and calculation is performed with respect to

absorptionrelease of He across the pellet-gas phase in each axial segment to derive the He

concentration in gas phase and partial pressure (MPa) in whole rod including plenum space

The diffusion coefficient of He in solid has input options to specify the parameters consisting

of the equation

The solid-gas interface is basically assumed as the surface of outermost ring element of

pellet facing the gap gas (HEBDS=1) or in addition to this inner wall surface of centerhole

of pellet (HEBDS=2) On the other hand the direct absorption and release from the

designated ring elements to gas phase are taken into account That is the He concentration in

gas phase at temperature of each ring element or the He concentration in each ring element is

multiplied by factor HERFAC(I factor) where (I=1helliphellip36 0 le factor le 01 ) to calculate

the direct absorptionrelease at a certain time-step and to be reflected on the average He

concentration of each ring element in the diffusion calculation

JAEA-DataCode 2013-009

- 116 -

Name-list Input (28) Variable name Contents Default

value

QHE1

(Effective when HER=3) Q1 (calmol) of the following He diffusion coefficient inside fuel grain (lattice)

11 1 2exp ( ) (f )LAT

QD D f Bu fRT

= minus + +

460000

DLT (Effective when HER=3) Lower limit value of He diffusion coefficient inside fuel grain (lattice) (m2s)

706times10-17

DHEF1

(Effective when HER=3) 1( )f Bu (m2s) of the following He diffusion coefficient inside fuel grain (lattice)

11 1 2exp ( ) (f )LAT

QD D f Bu fRT

= minus + +

00

DHEF2

(Effective when HER=3) 2(f )f (m2s) of the following He diffusion coefficient inside fuel grain (lattice)

11 1 2exp ( ) (f )LAT

QD D f Bu fRT

= minus + +

00

NODEH

(Effective when HER=3) Number of elements inside grain in He release model (Max 50) Restart calculation automatically takes over the value specified in

[Base-calculation]

5

HESOL He solubility insolid fuel (spacial concentration atomscm3) 1027 High burnup (rim) structure model

HBS

HBS=0 high burnup model is not used HBS=1JAEA rim model with local burnup HBS=2 JAEA rim model with effective burnup

Effective burnup neffB (GWdtM) is defined as

11 0exp ( )n n n

eff eff nB B k T T t Bminus= sdot minus minus sdot ∆ + ∆

where neffB effective burnup at n-th time step (GWdtU)

nT local fuel temperature (K) at n-th time step This is assumed as

0nT T= when 0nT Tle

0T Reference temperature (K)

1k constant

t∆ time step increment (s) nB∆ burnup increment at n-th time step Restart calculation automatically takes over the value specified in [Base-calculation]

0

TSTD (Used when HBS=2) Reference temperature 0T (K) in calculating effective burnup

10000

KON1 (Used when HBS=2) A constant 1k to multiply the temperature dependent term of effective burnup

10-8

JAEA-DataCode 2013-009

- 117 -

Name-list Input (29) Variable name Contents Default

value

FPINF

(Used when HBS=1 or 2) Lassmann empirical model is applied to fission gas transfer from rim structure to pore Ratio FPOR of amount of gas transferred from solid matrix to the free space outside pellet to the total amount of fission gas atoms generated in the rim structure is expressed as a function of burnup Bu ( localBu or effB ) Here FPNF(wt) is used in the function as

( ) ( )( )1 0wt =FPINF+(GEN1times -FPINF)timesexp -GEN2times -Xe Bu Bu Bu

[ ]1FPOR Total Xe generation(Wt)= Xe

[ ]Total generation(wt) 00145 (GWdt)= sdotXe Bu

025

GEN1 (Used when HBS=1 or 2) Value of 1Gen in the above equation (wtGWdt) 00145

GEN2 (Used when HBS=1 or 2) Value of 2Gen in the above equation 01 BURMXE (Used when HBS=1 or 2) Value of Bu0 in the above equation (GWdt) 600

BKONA (Effective when HBS=1) Burnup at which rim structure transformation begins (GWdtU) 650

ARIM

(Effective when HBS=2) Value of α in the following equation assuming that the transformation ratio into rim structure is Xv

( )11tan

Xv effB Buα δ

π

minus minus= +

105

BURIMS (Effective when HBS=2) Value of 1Bu (GWdt) in the equation defining Xv the ratio of transformation into rim structure

600

DRIM (Effective when HBS=2) Value of δ in the equation defining Xv the ratio of transformation into rim structure

052

RMOGR

Option to specify the additional amount of FGR from the gas pores in the rim structure RMOGR=0 no additional FGR from the gas pores

RMOGR=1 additional FGR is evaluated assuming OPR=ATHMR where OPR is the fraction of open pores and 0 OPR ATHMR FPORle = le That is after the rim structure is formed OPR fraction of fission gas atoms generated in the rim structure is released to external space

RMOGR=2 open pore fraction OPR to the rim pore porosity rimp is given

as a function of rimp

003OPR (0 023)023 rim rimp p= sdot le le

( )( ) ( )OPR 003 015 003 100 23 023 024rim rimp p= + minus sdot minus le le

( )( ) ( )OPR 015 045 015 100 24 024 025rim rimp p= + minus sdot minus le le

1

JAEA-DataCode 2013-009

- 118 -

Name-list Input (30) Variable name Contents Default

value

ATHMR (Effective when RMOGR=1) Fraction of athermal release of gas (-) 00

RIMPRO (Used when HBSgt0) Option for pellet rim structure thermal conductivity model =0 Ikatsu model =1 Billaux model

0

BXEQ (Used when HBSgt0) The equivalent burnup Bx to calculate the thermal conductivity of the rim structure region (GWdtU) 400

RIMSWL

(Used when HBSgt0) Option for the swelling of the rim structure region When RIMSWL=1 the volumetric swelling rate of the rim structure region is assumed equal to [porosity + solid swelling] irrespective of the value of IFSWEL Restart calculation automatically takes over the value specified in [Base-calculation]

0

RMPST

Option for calculation of rim structure porosity rimP

RMPST=0 the porosity is not calculated but fixed at 050=rimP RMPST=1 NFD empirical corelation equation is used

Porosity in rim structure RMPOR() is defined as RMPOR = PORMAX (1- PG4)+PORMIN PG4sdot sdot

PORMAX = ( ) 221 2 PGBuBuPG +minussdot

PORMIN = ( ) 223 2 PGBuBuPG +minussdot where rimP =RMPORtimes001 and maximum value of rimP is assumed

as PMX RMPST=2Billaux model is used

tMGWdBPBuAPBPAPprim 1211 ltminussdot=

AP1 AP2 BP1 BP2 GWdtM= sdot minus le lerimp Bu Bu

PMX BP2 GWdtM= gtrimp Bu

Bu local burnup ( localBu or effB ) (GWdtM)

1

PG1 PG1 value ( (GWdtM)2) when RMPST=1 0005 PG2 PG2 value ( (GWdtM)2) when RMPST=1 25 PG3 PG3 value ( (GWdtM)2) when RMPST=1 00013 PG4 PG4 value (-) when RMPST=1 05 BUPOR BU2 value (GWdtM) when RMPST=1 400 AP1 AP1 value (GWdtM)-1 when RMPST=2 00024 AP2 AP2 value (-) when RMPST=2 0106 BP1 BP1 value (-) when RMPST=2 650 BP2 BP2 value (GWdtM ) when RMPST=2 1500 PMX When RMPST=1 or 2 maximum value of rimstructure porosity (-) 0254

JAEA-DataCode 2013-009

- 119 -

Name-list Input (31) Variable name Contents Default

value

Youngrsquos modulus option

IPLYG Option for equation of pellet Youngrsquos modulus

=1 MATPRO-09 =2 MATPRO-11 =30 MATPRO-11 2

FPYG Multiplying factor for pellet Youngrsquos modulus 10

IZYG Option for cladding Youngrsquos modulus =1 Fisher =2 MATPRO-A and -11 =41SUS304

2

FCYG Multiplying factor for cladding Youngrsquos modulus 10

CYNG Cladding Youngrsquos modulus is specified by input CYNG (Pa) If CYNG(gt0) is specified by input the Youngrsquos modulus is fixed at CYNG (Pa) 00

Poissonrsquos ratio option

IPOIS Option for pellet Poissonrsquos ratio =1 MATPRO-09 =30 MATPRO-11 =31 Nutt and Yamada

1

ICPOIS Option for cladding Poissonrsquos ratio =1 Fisher =40SUS316 =41SUS304

1

CPOIS Cladding Poissonrsquos ratio is specified by input CPOIS (-) If CPOIS(gt0) is specified by input the Poissonrsquos ratio is fixed at CPOIS 00

Thermal expansion option

IPTHEX

Option for pellet thermal expansion rate =0 or =1 MATPRO-09 =2 Burdick =3 Halden =4 Conway and Fincel =5 MATPRO-A =6 Martin

=30 MATPRO-11 =31 Martin and Tokar =32 MATPRO-A

0

FPTM Multiplying factor for pellet thermal expansion rate 10

ICATHX Option for cladding thermal expansion rate

=0 MATPRO-09 =1 Scott =2 MATPRO-A =3 MATPRO-11 =40SUS316 =41SUS304

0

ATHEX Thermal expansion coefficient of cladding in the axial direction (oC-1) (Used when ICATHX=0)

4441 times10-6

RTHEX Thermal expansion coefficient of cladding in the radial direction (oC-1) (Used when ICATHX=0)

6721 times10-6

OXTHM Option for thermal expansion rate of cladding oxide layer =1 MATPRO-A (ZrO2) =41SUS-304 =43 SUS316 1

FCTM Multiplying factor for cladding thermal expansion rate 10

JAEA-DataCode 2013-009

- 120 -

Name-list Input (32) Variable name Contents Default

value

Pellet crackrelocation option FRELOC Relocation parameter 05 EPSRLZ Relocation strain in the axial direction 0003

FACR It is assumed that pellet recovers its stiffness if crack space shrinks by FACR times the relocation strain in the radial direction 10

FACZ It is assumed that pellet recovers its stiffness if crack space shrinks by FACZ times the relocation strain in the axial direction 10

IURS When IURS=1 ε R which is assumed as the strain to recover completely the pellet stiffness includes gas bubble swelling and creep strains

0

IYNG Option for pellet crack model (mechanical model)

=0 sstiffness recovery is approximated by a quadratic function =1 by a linear function

1

ECRAC3 Pellet stiffness when pellet is completely cracked (Pa) (mechanical model) 20times109

EFAC Fraction of stiffness recovery of cracked pellet to the pellet Youngrsquos modulus (ERL mechanical analysis) 01

SIGFL Critical stresses PCθσ (MPa) of pellet fracture in the circumferential

direction The same value is applied to those in the radial and axial directions

100

DELTAR (NAX NHIST)

Adjustment quantity (microm) of thermal relocation of pellet of each axial segmentat at arbitrary history points

Assuming that the gap size is GAPi as a result of mechanical analysis at

history point ldquoi-steprdquo the thermal gap size GAP1i is given by

GAP1i=GAPi - Σi(DELTAR)

Here Σi(DELTAR) is the accumulated value of DELTAR until i-step (DefaultDELTAR(IZ IN)=0 (1 le IZ le NAX 1 le IN le NHIST)) However when the gap size comes to GAP1i= GAPi - Σi(DELTAR)=0 GAP1=0 is assumed even if DELTARgt0is designated after the i-step

Also Σi(DELTAR) is reset to null at the moment PCMI ocurrs in the mechanical analysis Σi(DELTAR)=0 is assumed even if DELTARgt0 is specified at the history points after the step at which gap reopens

All 00

Creep option

IPCRP

Option for pellet creep equation =1 MATPRO-09 =2 MATPRO-11 =4SKI model for UO2

=5 Halden UO2 Creep model =11 SKI-based MOX model (fH=1) =12 SKI-based MOX model (fH=2) =13 SKI-based MOX model (fH=3) =15 Halden MOX Creep model =30 MATPRO-11 (MOX)

4

FCRFAC Magnification factor for pellet creep equation in mechanical model 10

TCS Cut-off value of temperature in pellet creep calculation (K) in mechanical model 127315

JAEA-DataCode 2013-009

- 121 -

Name-list Input (33)

Variable name Contents Default value

CRFAC Magnification factor for cladding creep rate (mechanical analysis) 10

TCCS Upper cutoff temperature in cladding creep calculation (K) (mechanical analysis) 107315

FAIMAX Maximum limit value of fast neutron flux used in cladding corrosion calculation (ncm2s) common to thermal and mechanical analyses 1015

SIGMAX Upper cutoff value of equivalent stress (Pa) in cladding creep calculation (mechanical analysis) 4times108

CRPEQ

Option for cladding creep model =0 MATPRO-09 =1 Nen-an-sen =2Franklin

=3 McGrath(Halden) =40SUS316 =41SUS304 =43 SUS316(MRI)

3

HTCRP Option for cladding high temperature creep =1 Rosinger =20 Donaldson(Westinghouse) =21 Donaldson(Wolverine) =22 Donaldson(Sandvik (NRU))

1

HTCREP When high temperature creep model of cladding is used irrespective of temperature condition HTCRP=1 is to be designated 0

ICRP

When ICRP=0 out of the two creep equations ie one designated by CRPEQ and the other designated by HTCRP one equation which gives a faster creep rate than the other is used in calculation When ICRP=1 for the temperature under CRTEMP the equation designated by CRPEQ is used and over CRTEMP the other one designated by HTCRP is used

0

CRTEMP Temperature (oC) at which creep equation of Zircaloy is shifted from the one designated by CRPEQ to high temperature creep equation designated by HTCRP (Effective when ICRP=1)

4500

THETC Implicit solution parameter θ used in creep analysis ( 0 1θle le ) 10

IPUGH =1 Pughrsquos reversal method is adopted in the cladding creep calculation in

2-D local mechanical analysis =0Pughrsquos reversal method is not adopted

1

IPUGH2 =1 Pughrsquos method is adopted in the cladding creep calculation in ERL

mechanical analysis =0Pughrsquos reversal method is not adopted

0

ICC

Option for creep strain increment calculation ICC=0 creep strain increment is calculated by the creep rate with an

updated stress 11

11

+++

++ ∆=∆ ic

nnic

n t θεε ICC=1 creep strain increment is calculated by adding a correcting term

derived from updated stress to the approximated value at i-th step [ ] 1

1

11

1++++

++ +∆=∆ i

nic

nic

nic

n dC σεε θ

0

JAEA-DataCode 2013-009

- 122 -

Name-list Input (34) Variable name Contents Default

value

Plasticity option IFY Pellet plasticity model option =0 Rodford =1 Tachibana 1 FYIEF Option to multiply pellet yield stress by FYIEF 10

ICPLAS

Option for cladding stress-strain relationship =1 FEMAXI-III =2 MATPRO-11 =3 modified MATPRO-11 =4 Ohta model for PWR cladding =5 Ohta model for BWR cladding

=6 FRAPCON34 model =41SUS304

1

CWK (Effective when ICPLAS=2 or 3) Effective cold-work for strength coefficient K

(dimensionless cross section area) 00

CWN (Effective when ICPLAS=2 or 3) Effective cold-work for strain hardening exponent (cross sectional reduction ratio)

00

CW_INIT (Effective when ICPLAS=6) Initial value of effective cold-work (dimensionless cross section area) 05

IPLANT

Option to designate reactor type (Used when ICPLAS=6) =1HBWR(Zry-2) =2BWR(Zry-2) =3PWR(Zry-4) K(Zry) = 10 for Zry-4 K(Zry) =1305 for Zry-2 n(Zry) = 10 for Zry-4 n(Zry) = 16 for Zry-2

2

KF (Effective when ICPLAS= 3) Parameter to adjust the increment of K with burnup 10

ISTR Size K of yield curved surface of Zircaloy is assumed as 23344 (kgmm )YK σ= + when ISTRne0 0

FCYD Multiplying factor for cladding yield stress (except the Zr liner) 10

FCYDZR Multiplying factor for yield stress of cladding Zr liner 10

FCRN Multiplying factor for strain hardening exponent of cladding Zr liner 80

ISTRES

1) When ISTRES=1 (default) as per usual in FEMAXI-7 yielding of cladding and pellet is judged by equivalent stress

2) ISTRES=2 for cladding Eqs(1) and (2) are applied For pellet as per usual model of FEMAXI-7

3) ISTRES=3 for both cladding and pellet Eqs(1) and (2) are applied Eq(1) max STFACS σ= timesY Eq(2) eq maxh h ( )Sσprime = times

where maxS the largest stress of the principal stresses ( hoop stress

for cladding) σ Y yield stress eqσ equivalent stress

hprime yield function in the cases 1) 2) and 3) h yield function in the case 1)

1

STFAC

Relationship between maxS (largest principal stress) andσ Y (yield stress)

(above Eq(1)) where10 STFAC 115( 2 3)le le cong When STFACgt1 STFAC=1 is set and when STFAC ge 115 STFAC=115 is set

10

ISYD Option for strain rate dependence of yield stress

ISYD=1 strain rate dependence is taken into account ISYD=0 strain rate dependence is not taken into account

1

JAEA-DataCode 2013-009

- 123 -

Name-list Input (35) Parameters for Ohta model Parameter name Contents

PL1 Parameters for strength coefficient K

Parameter L1 of strength coefficient K Default value=1745 PL2 L2 Default value=2517 PL3 L3 Default value=526 PL4 L4 Default value=0748 PA1 A 1 Default value=3041233371times104 PA2 A 2 Default value=-8285933869times101 PA3 A 3 Default value=7490958541times10-2 PA4 A 4 Default value=-2242589096times10-5 PB1 B 1 Default value=33282432times102 PB2 B 2 Default value=298027653 PB3 B 3 Default value=-681286681times10-3 PB4 B 4 Default value=351229783times10-6 PH1 H 1 Default value=1times10-6 PH2 H 2 Default value=8775 PH3 H 3 Default value=8663 PH4 H 4 Default value=0341566 BL1 L1 Default value=1201 BL2 L2 Default value=2508 BL3 L3 Default value=1119 BL4 L4 Default value=0627 BA1 A 1 Default value=3656432405times104 BA2 A 2 Default value=-1361626514times102 BA3 A 3 Default value=1695545314times10-1 BA4 A 4 Default value=-7055897451times10-5 BA5 A 5 Default value=-3338799880times104 BA6 A 6 Default value=1330276514times102 BB1 B 1 Default value=-3617377246times104 BB2 B 2 Default value=1361156965times102 BB3 B 3 Default value=-1636731582times10-1 BB4 B 4 Default value=6386789409times10-5 BH1 H 1 Default value=1times10-6 BH2 H 2 Default value=4772 BH3 H 3 Default value=9740 BH4 H 4 Default value=5267783

PNC1 Parameters

for strain hardening exponent n

C 1 Default value=0213 PNC2 C 2 Default value=1808times10-4 PNC3 C 3 Default value=34708518times10-2 PNC4 C 4 Default value=49565251times10-4 PNC5 C 5 Default value=-50245302times10-7 PNC6 C 6 Default value=0027908

PA5 Parameters

for strain rate sensitivity exponent m

A 5 Default value=2063172161times101 PA6 A 6 Default value=-770455times10-2 PA7 A 7 Default value=9504843times10-5 PA8 A 8 Default value =-386096times10-8 PA9 A 9 Default value=-647times10-2

PA10 A 10 Default value0=2203times10-4

JAEA-DataCode 2013-009

- 124 -

Name-list Input (36) Variable name Contents Default

value

Pellet hot-press option BETAX Pellet hot press parameter α (in mechanical analysis) 0002

IHOT

This is effective in the entire-rod-length mechanical analysis model When IHOT=0 the pellet hot-press parameter is the same as the value of

BETAX When IHOT=1 the pellet hot-press parameter is given by

( )( )0

1 (1 )1 (1 )

s

s

D DD D

minus minus minusminus minus minus

BETAX

Here Dpellet theoretical density ratio(-) D0initial value of D Ds FDENH

0

IHPOP

This is effective in the local mechanical analysis model When IHOT=0 the pellet hot-press parameter α is 0 during non-contact

state and during contact state α is set equal to BETAX When IHOT=1 the pellet hot-press parameter is given by

( )( )0

1 (1 )1 (1 )

s

s

D DD D

minus minus minusminus minus minus

BETAX

Here Dpellet theoretical density ratio(-) D0initial value of D Ds FDENH

0

FDENH Ds in the equation above the maximum relative density of pellet attainable by hot-press Effective when IHOT=1 or IHPOP=1 10

Anisotropy parameter option H0(4) Anisotropy factor H0

(H0(1) fuel pellet H0(2)Zry(or SUS) H0(3) pure-Zr H0(4)ZrO2) 410

F0(4) Anisotropy factor F0

(F0(1) fuel pellet F0(2)Zry(or SUS) F0(3)pure-Zr F0(4)ZrO2) 410

G0(4) Anisotropy factor G0

(G0(1) fuel pellet G0(2)Zry(or SUS) G0(3)pure-Zr G0(4)ZrO2) 410

Pellet dishchamfer (buffer element) model option

IDSELM When IDSELM=0 elements for dish (chamfer) space are not used in the

ERLmechanical analysis geometry When IDSELM=1 they are used

0

BUFSP Percentage of the axial length of elements for dish (chamfer) space to the axial length of pellet-pellet gap () 10

Bonding model option

IBOND

Option for P-C bonding model (mechanical model) =0 model of mechanical bonding is not applied

=1 model of mechanical bonding is applied =2 during the mechanical analysis when [gap size]=[cladding inner

diameter]-[pellet outer diameter]gt0 and the gap opens the mechanical bonding model is cancelled and the axial displacement of pellet is allowed to be independent from that of cladding When the gap is closed again ie when the cladding inner diameter becomes equal to pellet outer diameter the model of mechanical bonding is applied again Namely the displacement of pellet outer surface in the axial direction is forced to be shared with that of the cladding inner surface

0

JAEA-DataCode 2013-009

- 125 -

Name-list Input (37) Variable name Contents Default

value

SBONDG A parameterθ for adjusting the gap conductance at bonding (thermal analysis)

001

ALBD An adjustment parameter α used when the gap is open in a segment in which bonding developed (applied to the gap thermal conductance model) 07

FBONDG A parameter F for adjusting gap conductance during bonding (applied to the gap thermal conductance model) 100

BDX A parameter for determining the maximum value of the extent of bonding

advancement (hour-MPa) (common in the gap thermal conductance model and mechanical bonding model)

1000000

BDTR

The value showing the advancement of bonding under the anchored state in the axial direction regardless of the presence or absence of contact due to the advancement of bonding or contacting pressure (common in the gap thermal conductance model and mechanical bonding model)

05

PN Option for PDOWN and PUP Effective when IBOND=1

=0 PDOWN and PUP do not become effective =1 PDOWN and PUP are effective

0

PDOWN

When the power decreases during the bonding state in the segment in which its contact pressure decreases below a certain threshold value the use of bonding is terminated and a regular ldquoanchor-sliderdquo evaluation is used Effective only when PDOWNgt0 (Pa) (in the mechanical analysis model)

00

PUP

When the power increases in the segment subjected to bonding conditions in the segment in which the contact pressure exceeds a certain threshold value the bonding is terminated and a regular ldquoanchor-sliderdquo evaluation is used Effective only when PUPgt0 (Pa) (in the mechanical analysis model)

00

Cladding irradiation growth option

ICAGRW

Cladding irradiation growth equation option = 0 irradiation growth is not applied =1 MATPRO-09 = 2 Manzel = 3 Hannerz = 4 Hesketh =41 SUS304 =43SUS316 Restart calculation automatically takes over the value specified in

[Base-calculation]

1

CATEXF (Used when ICAGRW = 1) Factor in the axial direction f Z Restart calculation automatically takes over the value specified in

[Base-calculation] 005

COLDW (Used when ICAGRW = 1) Cold work CW Restart calculation automatically takes over the value specified in

[Base-calculation] 081

RX Multiplying factor for irradiation growth of cladding oxide layer Restart calculation automatically takes over the value specified in

[Base-calculation] 10

JAEA-DataCode 2013-009

- 126 -

Name-list Input (38)

Variable name Contents Default value

Gas flow model option

IST

Option for internal gas flow See section 413 for detail =0 model of gas diffusion in the axial direction is applied

=1 model of instantaneous pressure equilibrium and complete mixture of gas

=3 model of gas isolation in each segment

1

GPCPR When IST=3 pellet-cladding contact pressure (MPa) at which conditions of no gas flow in the axial direction are set 100

BDTR2 When IST=3 bonding progress (-) at which conditions of no gas flow in the axial direction are set 09

GMIN Minimum value (cm) of gap width for the gap gas flow model 0001

THG1 Interpolation parameter θ1 of temperature and volume etc of gas Used in

the model of fission gas flow in the axial direction 10

THG2 Interpolation parameterθ 2 used in diffusion calculation of model of fission

gas flow in the axial direction 10

Cladding oxidation model option

ICORRO

Cladding outer surface corrosion model option =0 not considered =1 EPRI =2 MATPRO-A(PWR)

=3 MATPRO-A(BWR) =4NUPEC =6 NUREG-CR-7022 (Zircloy-4 in PWR condition) =7 NUREG-CR-7022 (M5 alloy in PWR condition) =8 NUREG-CR-7022 (ZIRLO in PWR condition) =9 NUREG-CR-7022 (Zircaloy-2 in BWR condition)

1

RCORRO Oxide layer growth adjustment factor to multiply the oxide layer growth rate by RCORRO 10

FCORRO Factor to increase the oxide layer growth rate Multiplication =(10+FCORRO) 00

PBR Piling-Bedworth ratio = volume expansion ratio of oxide to metal in Zircaloy Piling-Bedworth Ratio 156

PX Portion of volume expansion ratio X in the radial direction () where X=PBR-10 This volume expansion is due to oxidation 800

OXFAC Multiplying factor for the oxide thermal conductivity 10 OXTHMX Upper limit of oxide layer thickness in calculation (microm) 1000

OXTH(41) Initial oxide thickness of cladding outer surface at each axial segment (microm) Restart calculation automatically takes over the value specified in [Base-calculation]

4101

CNOX CNOX(microm-1) specifies the multiplying factor F for the equation of oxide thermal conductivity F=1-CNOXS where S is oxide thickness (microm) 00

JAEA-DataCode 2013-009

- 127 -

Name-list Input (39) Variable name Contents Default

value Dry-out experiment analysis option

IDRY Option for Dry-out analysis When IDRY=1 dry-out analysis is On 0

DII Inner diameter of inner tube (cm) 18

DIO Outer diameter of inner tube (cm) 20

DOI Inner diameter of outer tube (cm) 21

DOO Outer diameter of outer tube (cm) 23

DSI Inner diameter of capsule outer mantle (cm) 27

DSO Outer diameter of capsule outer mantle (cm) 32

T1IN Inlet temperature of heating steam (oC) 2900

T5IN Inlet temperature of circulating water (oC) 500

TBOUND Coolant water temperature (oC) 400

PRS1 Pressure of heating steam (MPa) 72

PRS3 Pressure of He layer (MPa) 01

PRS5 Pressure of circulating water (MPa) 72

V1 Flow velocity of heating steam (ms) 02

V2 Flow velocity of circulating water (ms) 001

FTH Adjustment factor for the thermal conductivity of He layer (-) 10

RHC Adjustment factor for the thermal conductivity of heating steam layer and for radiative heat transfer coefficient of circulating water (-) 10

DTDRY Maximum time step width in calculating temperatures in dry-out analysis (s) 01

IV1 When IV1=1 mass flow rates (kgs) of heating steam and circulating water are set equal and input of VI is ineffective 0

JAEA-DataCode 2013-009

- 128 -

Name-list Input (40) Variable name Contents Default

value

Numerical output and plotted figure output option

IPHIS

Option for summary output For the history point designated by IP=1 numerical output is given in detail In addition summary output is given for each calculated quantity as a function of time

IPHIS=0 summary output is given only for the history point designated by IP=1 IPHIS=1 summary output is given for all the history points irrespective of IP

0

IPRINT Output option (=0 no output =1 output) (1) Input data list 1 (2) Fuel design data 0 (3) Mesh coordinates data 0 (4) List of parameters 0 (5) History data 1 (6) Results of thermal analysis of each time step 1 (7) Results of mechanical analysis of each time step 1 (8) Summary of thermal analysis results for each segment (thermal analysis) 1 (9) Summary of mechanical analysis results for each segment (thermal analysis) 1 (10) Summary of fission gas release results for each segment (thermal analysis) 1 (11) Summary of fission gas release results for entire fuel rod (thermal analysis) 1

(12) Summary of deformation behavior of pelletcladding of each segment (mechanical model) 1

(13) Summary of pellet stress and strain of each segment (mechanical analysis) 1 (14) Summary of cladding stress-strain of each segment (mechanical analysis) 1 (15) Summary of major results (final information) 1 (16) Output of He generation quantity at each segment 0

(17) Output of relative power density profile in the radial direction of pellet stack at each axialsegment 0

(18) Output of relative power at each axial segment 0 (19) Summary of entire-fuel-rod strain and corrosion of the objective segment 1 (20) Summary of coolant and of cladding oxidation (thermal analysis) 0 (21) INDO table shown after the summary output 0

(22) Table of plotted history points shwon after IDNO table 0

JAEA-DataCode 2013-009

- 129 -

Name-list Input (41) Variable name Contents Default

value

IWNOD

Segment output option (= 0 no output = 1 output) For IPRINT(8) IPRINT(9) IPRINT(10) IPRINT(16) IPRINT(17) output

(including plotter output) is performed for segment I where IWNOD(I) = 1 and output is not performed for segment I where IWNOD(I) = 0 However if all IWNOD is 0 IWNOD(IFEM) = 1 is set only at segment

IFEM

400

IWTHE Thermal analysis output option (= 0 no output = 1 output) (Option when IPRINT(6) = 1)

(1) Fuel temperature 1

(2) Gap gas 0

(3) Grain radius 0

(4) Intra-grain gas bubble radius 0

(5) Intra-grain gas bubble density 0

(6) Intra-grain gas diffusion coefficient 0

(7) Intra-grain gas effective diffusion coefficient 0

(8) Number of gas atoms in grain 0

(9) Number of gas atoms at grain boundary 0

(10) Number of gas atoms released 0

(11) Number of gas atoms in grain and at grain boundary 0

(12) Number of gas atoms released in grain and at grain boundary 0

(13) Number of gas atoms generated 0

(14) Fission gas release rate 1

(15) Gas density at grain boundary 0

(16) Saturated gas density at grain boundary 0

(17) Average stress at grain boundary 0

(18) Burn-up 1

(19) Conditions for thermal calculation 1

(20) Representative output for thermal calculation 1

(21) Number of fission gas atoms solved in solid matrix UO2 0

(22) Number of fission gas atoms in intra-grain bubbles 0

(23) Radius of inter-grain gas bubble 0

(24) Gas-release threshold radius of inter-grain bubble 0

(25) Fraction of coverage on grain boundary by inter-grain bubbles 0

(26) Threshold fraction of coverage on grain boundary by inter-grain bubbles

0

(27) Number density of inter-grain gas bubbles 0 (28) Effective burnup 0 (29) Ratio of rim structure formation ( vX ratio) 0 (30) Porosity in rim structure and total porosity 0

JAEA-DataCode 2013-009

- 130 -

Name-list Input (42) Variable name Contents Default

value

IWFEM Output option for the Local Mechanical Analysis II (effective only when IFEMRD = 0) (= 0 no output = 1 output) (option used when IPRINT(7) = 1)

(1) Stress in the radial direction 0 (2) Stress in the axial direction 1 (3) Stress in the circumferential direction 1 (4) Shear stress 0 (5) Equivalent stress 1 (6) Yield stress 0 (7) Total strain in the radial direction 0 (8) Total strain in the axial direction 0 (9) Total strain in the circumferential direction 0 (10) Total shear strain 0 (11) Equivalent plastic strain 1 (12) Creep strain in the radial direction 0 (13) Creep strain in the axial direction 0 (14) Creep strain in the circumferential direction 1 (15) Shear creep strain 0 (16) Equivalent creep strain 0 (17) Elastic strain in the radial direction 0 (18) Elastic strain in the axial direction 0 (19) Elastic strain in the circumferential direction 0 (20) Shear elastic strain 0 (21) Thermal strain in the radial direction 0 (22) Thermal strain in the axial direction 0 (23) Densification strain 0 (24) Swelling strain 0 (25) Stiffness in the radial direction 0 (26) Stiffness in the axial direction 0 (27) Stiffness in the circumferential direction 0 (28) Creep rate in the radial direction 0 (29) Creep rate in the axial direction 0 (30) Creep rate in the circumferential direction 0 (31) Creep rate in the shear direction 0 (32) Equivalent creep rate 0 (33) Total strain rate in the radial direction 0 (34) Total strain rate in the axial direction 0 (35) Total strain rate in the circumferential direction 0 (36) Total strain rate in the shear direction 0 (37) Equivalent total strain rate 0 (38) Strain energy 0 (39) Temperature distribution in the radial direction 1 (40) Mechanical interaction between pelletcladding 1

JAEA-DataCode 2013-009

- 131 -

Name-list Input (43) Variable name Contents Default

value

IWFEM (continued)

Output option for the Local Mechanical Analysis II (effective only when IFEMRD = 0) (= 0 no output = 1 output) (option used when IPRINT(7) = 1)

(41) Mechanical interaction between pelletpellet 1 (42) Displacement of node 1 (43) Plot of ldquoPellet-Clad Mechanical Interactionrdquo 1 (44) Crack yielding map 1 (45) Mechanical calculation conditions 1

IWROD Output option for the Entire-Rod-Length Mechanical Analysis I (effective only when IFEMRD = 1) (= 0 no output = 1 output)

(This option is used when IPRINT(7) = 1)

(1) Stress in the radial direction 0 (2) Stress in the axial direction 0 (3) Stress in the circumferential direction 0 (4) Equivalent stress 0 (5) Yield stress 0 (6) Creep strain in the radial direction 0 (7) Creep strain in the axial direction 0 (8) Creep strain in the circumferential direction 0 (9) Creep hardening strain 0 (10) Equivalent plastic strain 0 (11) Swelling strain 1 (12) Total strain in the radial direction 0 (13) Total strain in the axial direction 0 (14) Total strain in the circumferential direction 0 (15) Thermal strain 0 (16) Temperature of element 0 (17) Pressure in the radial and axial directions 0 (18) Displacement in the radial and axial directions 1 (19) Elastic strain 0 (20) Relocation strain of pellet 0

JAEA-DataCode 2013-009

- 132 -

Name-list Input (44) Variable name Contents Default

value

MAVE

MAVE=1 average values of stress and strain obtained by ERL mechanical analysis of cladding in the radial direction are output as summary for each time step

MAVE=0 summary of stress and strain at the inner surface of cladding are output as usual

0

IFT90 Option for temperature used in PTEMP and to make a file of gap conductance The file is generated when IFT90=1 (Unit 90) 0

IWRIM Option for output of EXCEL file of rim structure model (Unit 17) IWRIM=0 output is Off IWRIM=1 output is On 0

IOUT18 Option to make Unit 18 (file of contour map of stress-strain ) IOUT18=0 file is not made IOUT18=1 file is made 0

IOUT20 Option to make Unit 20 (summary output file organizing the maximum values of calculated temperature etc ) IOUT20=0 file is not made IOUT20=1 file is made

0

IPLT Generation of FEMAXI-7 plotter data file (Unit 1)

When IPLT=0 no plotter data file is generated 1

IPLTB Format of plotter data file (Unit 1) IPLTB =0 binary format IPLTB =1 text format 0

IPLOPT

Option for the file of plotter output at time-steps =0 Calculated results are output to plotter file only at the designated

historical points of input

=1 gt1 Calculated results are output to plotter file at all the time steps

= -n ( 011 nene nn ) Calculated results are output to plotter file at every n time steps However in addition to this results are output to plotter file also at the designated historical points of input

= -1 calculated results are output at time steps exceeding DT_OUT except

at the input-designated history points = -10 calculated results are output at all the time steps from PLTIME(1) to

PLTIME(2) However results are always output at the designated historical points of input

0

DT_OUT Effective when IPLOPT= -1 Maximum interval time (hour) of plotter output which determines the interval time of plotting at the instants which are not specified by input history points

00

IWRES Option to output the summary of file contents taken over from FEMAXI calculation =0 no output =1 simplified output =2 detailed output 0

ITIM(2)

ITIM(1) is the history point number with which the plotter output file begins to be generated

ITIM(2) is the history point number with which the plotter output file is terminated

1 2000

JAEA-DataCode 2013-009

- 133 -

Name-list Input (45) Variable name Contents Default value

IDNO(800)

Index data of plotter data file When IZERO=0 IDNO(401) - IDNO(500) are set 0

IDNO(1) - IDNO(40) data as a function of time and burnup 61 0 1 30

1 20 21 240

IDNO(41) - IDNO(100) data as a function of time burnup and

axial position

21 20 1 30 21 20

1 0 1 30 1 40 71

30 1 260

IDNO(101) - IDNO(300) data as a function of time burnup and

axial and radial positions (in the entire length mechanical analysis)

51 0 1 380 1 30

1 20 1 60 1 0 1 30 1 20 111

1210

IDNO(301) - IDNO(400) data as a function of time burnup and

axial and radial positions (in the local mechanical analysis)

61 140 71 230 151350

IDNO(401) - IDNO(420) Zero-power data as a function of time and burnup 61140

IDNO(421) - IDNO(450) data as a function of time burnup and radial and axial positions at Zero Power condition 71 230

IDNO(451) - IDNO(500) Zero-power data as a function of time burnup and axial and radial positions 151 350

IDNO(501) - IDNO(800) data ata as a function of time burnup and axial and radial positions 3000

44 Plot data index IDNO IDNO(1) to IDNO(600) are index for the plotter file When IDNO(K)=0 is designated for

the K-th physical quantity shown in ldquoTables (1) - (XX) Physical Quantities of Y axis (1) -

(XX)rdquo which is shown in section A5 the calculated value for the K-th physical quantity is not

stored in the plotter data file when IDNO(K)=1 it is stored and can be output in graphics

45 Calculated physical quantities in ZERO power state In the analysis of fuel behavior sometimes it is required to obtain such data as net FGR

and net permanent deformation of cladding during on-power period while eliminating the

temperature-related factors such as thermal expansion To realize this an optional function

to calculate fuel states under ZERO power state (shut-down state) and output the data is

included This function calculates the change of such quantities under zero-power state as

internal pressure space volume and cladding dimension in a calculation along the power

history by designating the name-list parameter IZERO as 1 2 3 or 4 In addition when

IZERO is designated graphic output for zero-power state can be given

JAEA-DataCode 2013-009

- 134 -

46 Method to input history point data Here the method of production of history data (line numbers 10-11) of the input file is explained

461 Power history data The following items must be inputted as the power history data

A1 = time (hr) B1=burnup A2 = linear heat rate (Wcm) A5 = fast neutron flux (ncm2sdots)

A3 = coolant temperature (K) A4 = coolant pressure (MPa) IT = input generator IP = output

option IS = temperature calculation option A6 = coolant velocity (ms)

However since B1 (burnup) is determined by input of A1 (time) and vice versa either A1

or B1 should be input The unit of B1 is designated by IBUNP when IBUNP = 0 B1 is

MWdt-UO2 when IBUNP = 1 B1 is MWdt-U and when IBUNP = 2 B1 is GJkg-U

Using IT (input generator) input by incremental form is possible IT is selected from

among 0 100 and minus100 when IT = 0 is set A1 (or B1) is recognized as a time increment

from the previous history point (or burnup increment) when IT = 100 A1 (or B1) is

recognized as the time increment from the first history point (or burnup increment) IP is an

output option IP ge 1 designates history points for detailed output and IP = 0 designates

history points for simplified output only IS is a switching flag between steadyunsteady

status in temperature calculation since this switching is automatically performed in the code

input of IP is usually unnecessary -FORMAT (6F 100 2I5)

F100 F100 F100 F100 F100 F100 I5 I5 I5 F50

A1 B2 A2 A5 A3 A4 IT IP IS A6

462 Relative power profile Here the input method for relative power profile is explained RH is the relative

power in the axial direction and designates the power ratio for A2 (linear heat rate which is

given by the history data) at each axial segment Therefore the number of RH data to be

input is NAX (number of axial segments) whose maximum is 40 When an identical

relative power is inputted at history points the input can be omitted using II (history point

option) FORMAT (8F80 I6) 8F 80 I6

(RH(I) I=1 NAX) II

JAEA-DataCode 2013-009

- 135 -

463 Input method of power history For input of power history the power-history-point number pairs of data (combination of

power history data and relative power profile) must be input

Example of input (1)

An example of input for a case with one axial segment where the power is increased

from 0 to 500 Wcm during a period of 10 hr is shown below Here the following values

are used fast neutron flux=25times1013 (ncm2sdots) when 500 Wcm is reached coolant

temperature= 51315 (K) coolant pressure= 34 (MPa) and coolant velocity= 30 (ms)

Example of input (1)

5050505050505050

2

00 51315 34 1 30

10 2

100 5000 25E13 1

5050505050505050

In the first line NHIST = 2 is shown the number of history points is 2

In the second line a hot stand-by state is set in the initial history data Input for the hot

stand-by state is not necessary since the following default values are set time (A1) 10minus5 (hr)

linear heat rate (A2) 10minus3 (Wcm) fast neutron flux (A5) 2times101 (ncm2sdots)

In the third line RH(1) = 10 is set since this case deals with a calculation of 1 axial

segment for the input of relative power profile The history point option is set as II = 2

which means that the same relative power profile is used for the two history points

The fourth line shows input of A1 = 10 (hr) A2 = 500 (Wcm) and A5 = 25times1013

(ncm2sdots) for the history data of the second history point so that the time step is automatically

divided and at each division point values of time-dependent variables are obtained by linear

interpolation Input of coolant temperature and coolant pressure is omitted this means that

the same values as those for the first history point are used that is A3=51314 and A4 = 34

are input For the output option IP = 1 is set in the second and third lines therefore detailed

output is performed both in the hot stand-by state and when 500 Wcm is reached

Example of input (2)

An example with 12 axial segments is shown in which base irradiation is first performed

at 200 Wcm up to 20GWdtUO2 The power is decreased thereafter and then increased to

250 Wcm After conditioning for 72 hr the power is increased to 500 Wcm maintained for

JAEA-DataCode 2013-009

- 136 -

24 hr and finally the power is decreased Here the power increase rate is 200 Wcmsdothr in

every period

The following values are set fast neutron flux=1014 (ncm2sdots) when 500 Wcm is

reached coolant temperature = 51315 (K) coolant pressure = 34 (MPa) and coolant

velocity is constant at 30 (ms) The relative power profile is given for base irradiation and

for ramp irradiation During the base irradiation output of calculation results is performed

at 5GWdt-UO2 10GWdt-UO2 15GWdt-UO2 and at 20GWdt-UO2 and during the ramp

irradiation the output of calculation is also performed at every 50 Wcm power increment

above 250 Wcm When the power is maintained at 500 Wcm the output of calculation is

obtained after 1 3 6 12 and 24 hr

Example of input (2) 5050505050505050 21 00 0001 20E09 51315 34 2 30 077 085 090 092 094 096 098 100 102 105 110 115 7 10 2000 40E13 1 50000 100000 150000 200000 2000 40E13 1 10 0001 20E09 -100 1 10 0001 20E09 -100

093 094 095 096 097 098 099 100 101 102 104 106 14

125 2500 50E13 -100 720 2500 50E13 -100 1 025 -100 05 075 10 125 5000 10E14 1 10 -100 30 60 120 240 5000 10E14 1 25 0001 20E09 -100 1 STOP 5050505050505050

The simplified output is obtained for the 21 history points shown above Among these

history points IP ge 1 is designated only at points where detailed output is required here IP =

2 is inputted and detailed output information is obtained at history points after this designation

The unit of burnup should be MWdt-UO2 therefore IBUNP = 0

The first line shows the number of history points NHIST = 21

The second line shows the history data of the hot stand-by state

JAEA-DataCode 2013-009

- 137 -

Data in the third and fourth lines show that the same relative power profile is used from the

first history point to the 7th history point

The fifth line shows the second history point data of A1 = 1(hr) A2 = 200(Wcm) and A5

= 4times1013 (ncm2sdots) Coolant temperature and pressure are the same as those in the hot

stand-by state

The 6-th to 9-th lines show input to extend burnup up to 20 GWdtUO2 at 200 (Wcm) and

simplified output is obtained at 5 GWdtUO2 and at 15 GWdtUO2 A2 (linear heat rate) and

A5 (fast neutron flux) are obtained by interpolation During this stage A2 = 200 (Wcm)

and A5 = 4times1013 (ncm2sdots) are used

The 10-th line shows setting of IT = minus100 This means that the power was decreased to

0001 (Wcm) within 1 hr from the burnup of 20 GWdtUO2 shown in line 8

The 11-th line shows that the relative power profile was changed after the power leveled

off at 0001 (Wcm) for 1 hr

The 12-th and 13th lines show that the relative power profile given in the 12-13th lines is

applied from the 14-th history point up to the last (26-th) history point Here since a power

of 0 is not allowed a value of around 10minus3 (Wcm) must be set

The 14-th line shows that the power was increased to 250 (Wcm) within 125 hr and the

15-th line shows that the power was maintained at 250 (Wcm) for 72 hr

The 15-th to 20-th lines show that the power was increased by 50 Wcm within 025 hr

(200 Wcmsdothr) after being maintained at 250 (Wcm) for 72 hr Namely elapsed time at the

previous history point where IT = minus100 was designated (shown in the 14-th line) is given by

A1 Since the linear heat rate is given by the linear interpolation setting of A2 = 300 350

400 and 450 in lines 17-20 gives the same results Similarly the fast neutron flux used here

gives the same results by setting A5 = 6times1013 7times1013 8times1013 and 9times1013

The 21-25rd lines show history data which were set to obtain simplified output when the

power is maintained at 500 (Wcm) and at 1 3 6 and 12 hr from the starting time The

detailed output is obtained 24 hr after the starting time

The 26-th line shows that the power was decreased within a 25hr period starting from 24

hr from the starting time Here since the coolant temperature and pressure were set as

constant input for them at the second and later history points was omitted Also since

linear heat rate and fast neutron flux are obtained by linear interpolation input error occurs if

no power is generated at the last history point (Both values should not be zero)

JAEA-DataCode 2013-009

- 138 -

47 Setting of cladding outer surface temperature

In FEMAXI it is possible to simulate transition boiling and investigate changes in the

stress strain deformation oxidation buckling pellet surface temperature and internal

pressure while omitting the calculation of the heat transfer to coolant by designating a history

of the cladding outer surface temperature using input data

The cladding outer surface temperature is designated using IS of the history data IS is

an option to designate conditions of gas flow and heat transfer calculation

IS=0 Stable calculation (fission gas released inside a fuel rod is instantaneously and

completely mixed with gap gas and plenum gas Cladding temperature is calculated

without considering heat capacity of the gas)

IS=1 Gas flow calculation (fission gas flows inside the fuel rod and is distributed and

mixed with gap gas and plenum gas However heat capacity of the gas is not

considered in the calculation of the cladding temperature)

IS=2 Unsteady calculation (fission gas flows inside the fuel rod and distributed and

mixed with gap gas and plenum gas Heat capacity of the gas is considered in the

calculation of the cladding temperature)

In FEMAXI IS=3 is newly included for the heat transfer calculation in which the cladding

outer surface temperature is assigned

IS=3 Heat transfer calculation by designating the cladding outer surface temperature

At the history point where IS=3 is designated axial distribution of the cladding outer

surface temperature is designated by input

For the historical points in which IS=3 is assigned the axial distribution of the cladding

outer surface temperature can be assigned by input

JAEA-DataCode 2013-009

- 139 -

Table 471 shows an example of inputs when the cladding outer surface temperature is

not assigned (ISlt3) and Table 472 shows an example when the cladding outer surface

temperature is assigned (IS=3) Here the data for the cladding outer surface temperature are

described after inputting the power profile in the axial direction

Table 471 Example of inputs without designation of cladding outer surface temperature

TSURUGA 1 NEW TYPE (BWR 8X8)

$INPUT IBUNP=1ICK1=0GR=10IPLT=1BETAX=0002IFEMRD=0

R1=1EPSRLZ=5D-3IPLOPT=-5DMAX=1GRWF=1SBU=1D4FCRFAC=1

IWTHE=181IPTHCN=5BUMIN=50000BUMAX=200000IURS=0

ICORRO=1EFCOEF=1INPCK=0

$END

10 5 2

0 1058 1230

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

3235 03 10 00 00 00

9

0001 53D13 55035 6894 0 1974

10 10 10 10 10 10 10

10 10 10 9

100 2500 53D13 0

02777778 2500 53D13 -100 1

00027778 2500 53D13 -100 1

00005556 2500 53D13 -100 1

00416667 2500 53D13 -100 1

00005556 2500 53D13 -100 1

00027778 2500 53D13 -100 1

02777778 2500 53D13 -100 1

STOP

JAEA-DataCode 2013-009

- 140 -

Table 472 Example of inputs with designation of cladding outer surface temperature

TSURUGA 1 NEW TYPE (BWR 8X8)

$INPUT IBUNP=1ICK1=0GR=10IPLT=1BETAX=0002IFEMRD=0

R1=1EPSRLZ=5D-3IPLOPT=-5DMAX=1GRWF=1SBU=1D4FCRFAC=1

IWTHE=181IPTHCN=5BUMIN=50000BUMAX=200000IURS=0

ICORRO=1EFCOEF=1INPCK=0

$END

10 5 2

0 1058 1230

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

3235 03 10 00 00 00

9

0001 53D13 55035 6894 0 1974

10 10 10 10 10 10 10 10

10 10 9

100 2500 53D13 0

02777778 2500 53D13 -100 1 3

553 553 553 553 553 553 553 553 553 553

00027778 2500 53D13 -100 1 3

603 603 603 603 603 603 603 603 603 603

00005556 2500 53D13 -100 1 3

923 923 923 923 923 923 923 923 923 923

00416667 2500 53D13 -100 1 3

923 923 923 923 923 923 923 923 923 923

00005556 2500 53D13 -100 1 3

603 603 603 603 603 603 603 603 603 603

00027778 2500 53D13 -100 1 3

553 553 553 553 553 553 553 553 553 553

02777778 2500 53D13 -100 1 3

553 553 553 553 553 553 553 553 553 553

STOP

Cladding surface temperature IS

JAEA-DataCode 2013-009

- 141 -

5 Models and Input manual of RODBURN-1

51 General feature of RODBURN input format

Input method of RODBURN is described below Here the input method will change in accordance with the designation of Card No2 ldquoKREG1rdquo so that the method will be explained in the two cases ie KREG1gt0 and KREG1=0 In the case KREG1gt0 users can make input data and parameters at usersrsquo will while in the other case KREG1=0 users can make a standard default set of input data and parameters in an easy manner The case KREG1gt0 will be explained in the input-data-format (1) and the other case KREG1=0 will be explained in the input-data-format (2)

52 Some comments on the RODBURN code (Sept1998)

The RODBURN code has two types of versions One is based on the ORIGEN (ORIGEN79(51)) the other is based on ORIGEN2(52) The ORIGEN79-basis version has been released to the NEA Data_Bank as RODBURN-1 in which resonance absorption calculation uses the RABBLE code to replace (update) the cross section data of U-238(n γ) and Pu-240(n γ) The cross section library of ORIGEN79 is those for the fuel body region though it cannot deal with the cross section changes induced by self-shielding effect of 238U in every part of fuel region This drawback is supplemented by RABBLE(53) with ENDF-BIV(52) data On the other hand ORIGEN-2 used in RODBURN-2 targets the fuel body region In ORIGEN-2 a library is implemented which can give the cross section changes induced by averaged changes of nuclides during burning ORIGEN2 treats the spectrum by one-group approximation for usersrsquo convenience so that it cannot bring in the resonance calculation results (RABBLE results) Therefore RODBURN-2 is suitable for an overall trend of fuel change during burning but it cannot give the power density profile in the radial direction of fuel pellet This is contradictory with the basic purpose of such fuel performance code as FEMAXI

The bottom line is that RODBURN-1 using ORIGEN79 is appropriate for a fuel performance code If the cross section changes with burning are to be taken into account every one step of burning calculation should call RABBLE to update the cross section values However dependence of the resonance integral on burnup is not so strong Thus RODBURN-1 takes a simplified method which uses RABBLE calculation only once at zero-burnup Fig51 summarizes the structure of calculation flow and relationship among the roles of component codes

JAEA-DataCode 2013-009

- 142 -

Fig51 Calculation flow of RODBURN-1

INPUT (Spatial meshing of rod assignment of elements and materials and power history)

1 Resonance Integral in each mesh Separate resonance Parameters by ENDB-IV (05eV~352keV)

2 RABBLE

Microscopic cross-section

Infinite diluting cross- section by WIMS-D library (352keV~0821MeV)

1E Spectrum

Revision of ORIGEN resonance library of U Pu and their isotopes

Calculates amount of fissile material in the axial segment of rod

Specifies three group spectrum constants (thermal fast resonance) ORIGEN rarr PWR amp BWR

Determines thermal neutron flux profile in the radial direction by the table of representative profiles in PWR and BWR (WIMS-D ) Halden reactor larr Robertsonrsquos formula Fast and resonance flux larr average values

Calculates power per unit flux at all meshes

Calculates flux at all meshes

Burnup calculation by ORIGEN

Axial profile of linear heat rate

Output File

∆t increment

JAEA-DataCode 2013-009

- 143 -

53 Explanations of RODBURN-1 models and methods

RODBURN has several types of default profile of power distribution RODBURN does not perform a so-called neutron transport calculation which is conducted by some other dedicated burning analysis codes such as PLUTON or MICROS The following section is an excerpt translated from the original report of RODBURN written by MrMUchida in Japanese [MUchida and HSaito RODBURN A Code for Calculating Power Distribution in Fuel Rods JAERI-M 93-108 (1993)] - - - - - - - - - - - - - - - - - - - - - - - - Beginning of excerpt - - - - - - - - - - - - - - - - - - - - - - - - - 22 Method of radial power profile in RODBURN (1) In case when neutron flux is given In accordance with the logics of the ORIGEN code neutron flux is based on the thermal neutron flux The fast neutron flux and epithermal flux are calculated in proportion to the thermal flux using spectrum parameters The thermal flux is a function of time and axial and radial locations inside the rod (rz t)t tφ φ= (2) Here input quantity is an averaged neutron flux over radius and its relative profile in the axial direction

2

0

1(z t) (r z t) 2

prat t pr dr rφ φ =

int (3)

where pr is the pellet radius

The three spectrum parameters THERM RES and FAST are used in accordance with ORIGEN

0THERM4

TT

π= (4)

where T is thermal neutron temperature (K) and T0=29316K RES = [resonance neutron flux per unit lethargy][thermal neutron flux] (5) FAST = [Fast neutron flux][thermal neutron flux] (6)

Here upper limit of the thermal neutron region is set 05 eV lower limit of fast region is set 1 MeV These three constants are included in RODBURN for each reactor type They are listed in Table 51 For PWR and BWR the recommended values(55) of ORIGEN are adopted as they are For a heavy water reactor only the value for the Halden reactor is

JAEA-DataCode 2013-009

- 144 -

specified and the three constants are derived from of the spectrum distribution determined in the Halden Project However they would be substantially applicable to other heavy water reactor In the axial direction of rod these three group spectrum distributions are treated in a variable separation from space distribution That is if thermal flux is twice larger at a certain axial elevation than at the other elevation the resonance and fast fluxes are assumed also twice However in the radial direction of rod different procedure is done depending on spectrum Average figures over radius are used for the fast and resonance fluxes as

(rz t) (z t)fast fastφ φ= (rz t) (z t)resonance resonanceφ φ= (7)

Radial distribution of thermal flux can be depressed toward the center region when a fuel pellet has high enrichment Consequently for the radial distribution of thermal flux several pre-calculated relative profiles depending on the reactor type and enrichment level are included in RODBURN and they are used by interpolation with respect to actual enrichment These relative profile figures are listed in Table 52 The profiles in the Halden reactor are listed in Table 53 In the initial stage of irradiation the enrichment is uniform in the radial direction However with burnup distribution of residual U-235 becomes non-uniform Moreover generation of Pu is much more non-uniform However in the code these non-uniformities are neglected and average concentrations of fissile materials at a certain axial elevation are used to interpolate the figures in the Table Here Pu-238 and Pu-241 is assumed as equivalent to U-235 The relative figures of thermal flux in Table 2 have been calculated by the WIMS-D code(54) The figure of a heavy water reactor has been derived on the basis of the following method recommended by the Halden Project

0(r) ( )therm CI rφ κ= (8)

where C is a normalization constant Io is a modified Vessel function r is radius (cm) and κis the reverse of diffusion distance (cm-1) given by

08 082 0190328( ) 054 ( )pdκ ερ ερminus= + (9)

where ε is enrichment () ρ is theoretical density ratio of pellet and pd is pellet

diameter (cm) The resonance absorption by U-238 has a strong self-shielding effect due to its high concentration so that the Pu generation is much deviated to the outer region of pellet

JAEA-DataCode 2013-009

- 145 -

Amount of Pu-240 is not so large even in MOX fuel nevertheless the resonance cross section (resonance reaction rate) is still larger As stated in the former section such distributions as those which are steeply deviated to the surface region cannot be dealt with by ORIGEN Therefore the RODBURN code has implemented the resonance calculation code RABBLE as one of the components and let RABBLE to calculate the resonance integral of the above two elements for each of the radially-divided sections in the first step of the whole burning process calculation In the ORIGEN calculation following this first calculation for the two elements U-238 and Pu-240 only the calculated results by RABBLE are used instead of the ORIGEN library data (2) In case when linear power history is given There are some cases of fuel experiments in which only history of the average power of rod is reported In this case also it is necessary to calculate the power density profile and changes of fissile and fission-product elements composition To cope with such a case in a simplified and convenient manner this ldquolinear power history is givenrdquo option has been implemented In this option contrary to the ordinary calculation steps the code calculates the neutron flux which corresponds to the input average power history However in general a reported power history is often a result of calculating Pu buildup on some appropriate assumption so that it is preferable to execute repeated calculations using the condition of section (1) ie ldquowhen neutron flux is givenrdquo under the assumption of history of an absolute value of neutron flux to confirm the reported average power history 1) Expression of neutron flux profile Since RODBURN does not perform a concurrent process of reactor physics calculation and burning analysis calculation it is necessary to assume the neutron flux profile in a reasonable way The fast and resonance fluxes are similarly to section (1) assumed uniform in the radial direction The thermal flux profile is determined by referring to the Table 52 in accordance with the fissile materials concentrations The axial profile is assumed to have an identical shape similarly to section (1) The simplest shape in the axial direction is a cosine profile This profile is modified in order to express a profile which is different to some extent

cos

( )cos

m

b t

m

b t

z zAL

z tz z

L

πδ δ

φαπ

δ δ

minus + + =

minus + +

(10)

( ) 2m b tz L δ δ= + + (11) where A is a normalizing constant L is an axial length of fuel stack z is a distance from

JAEA-DataCode 2013-009

- 146 -

bottom of pellet stack bδ and tδ are ldquoextrapolating distancerdquo from the top end and bottom end respectively α is a constant to express ldquoa slightly flattened profile in comparison with the cosine profilerdquo and it can be varied within the range of 0 1αle lt When 0α = the denominator of Eq(10) is 10 so that the profile becomes the cosine profile itself With increasing α the profile is flattened The two bδ and tδ ldquoextrapolating distancesrdquo aim to express a special type of irradiation condition in test reactor rather than the ldquoextrapolating distancerdquo usually used in reactor physics In irradiation experiments of fuel it often occurs that a test rod shorter than the height of reactor core is set at the axial elevation deviated from the mid-height position of the reactor core In such a case the neutron flux profile can be expressed by designating the two extrapolating distances independently It is also possible to calculate the profile shape in advance and to input the shape as a series of numerical values In both the cases the relative profile of neutron flux in the axial direction can be changed a few times during the irradiation time 2) Calculation of the absolute neutron flux At the beginning of each time step concentration of every element is given at all the (r z) locations The cross section is fixed Also the neutron relative profile is given Assuming that this relative profile is expressed by a normalizing distribution function F(r z) total heat generation corresponding to the neutron flux averaged over entire fuel rod can be obtained by

0 0 ( )f fQ E F r z dvφ σ= int (12)

where fσ is fission cross section and fE is energy per one fission Assuming that the total

heat generation corresponding to the input average linear heat rate is Q an actual average neutron flux is simply

00

QQ

φ φ=

(13)

Neutron flux at each position is determined by this equation using F(r z) However in fact these calculations are performed by taking into account of every element fast neutron and thermal neutron Now that the local neutron flux is obtained ORIGEN calculates the changes of amount of every element during the time step so that ORIGEN is called again after the calculation of Eq(12) Here it is to be noted that during one time step in the input data a constant heat generation rate is assumed In the ORIGEN calculation amount of elements changes during one time step and in accordance with these changes an accumulated heat generation ie burn-up is calculated Therefore if time step increment is too large some discrepancy is capable of

JAEA-DataCode 2013-009

- 147 -

being generated among the input data burn-up and element concentrations To avoid this RODBURN re-divides the input time step into a number of small periods to prevent a too long time step

Table 51 Three group-constants of spectrum

Reactor type THERM RES FAST

PWR 0701 0304 2010

BWR 0676 0307 1514

HWR 0450 0100 1500

PWR (MOX) 0592 0366 2390

BWR (MOX) 0632 0355 1694

Table 52 Thermal neutron flux profile in the radial direction

In the Halden water reactor

Radius (mm)

Thermal neutron flux profile (Enrichment dependent) 1 3 5 7

201 1000 1000 1000 1000 284 1008 1025 1045 1068 347 1014 1043 1077 1117 401 1020 1060 1109 1165 449 1026 1078 1141 1216 491 1032 1096 1174 1267 531 1038 1114 1207 1319 567 1043 1132 1241 1372 602 1049 1150 1276 1428 634 1055 1168 1310 1483

JAEA-DataCode 2013-009

- 148 -

Tabl

e 5

3 T

herm

al n

eutro

n flu

x pr

ofile

s de

pend

ing

on e

nric

hmen

t R

adiu

s (m

m)

PW

R (U

rani

um)

PW

R (M

OX)

1

3

5

7

0

25

378

7

31

1

083

127

0

985

09

64

09

44

09

23

09

96

09

01

07

98

07

03

183

0

987

0

968

0

950

0

932

0

996

0

911

0

819

0

731

2

25

09

89

09

74

09

59

09

44

09

97

09

26

08

47

07

74

259

0

992

0

981

0

970

0

958

0

998

0

945

0

886

0

826

2

90

09

95

09

89

09

82

09

76

09

98

09

67

09

30

08

90

318

0

999

0

998

0

997

0

996

1

000

0

993

0

982

0

966

3

43

100

4 1

009

1

014

1

019

1

001

1

024

1

045

1

059

3

67

100

9 1

021

1

034

1

046

1

003

1

060

1

120

1

175

3

89

101

6 1

037

1

058

1

079

1

005

1

104

1

216

1

325

4

10

102

5 1

059

1

093

1

127

1

008

1

168

1

355

1

551

Rad

ius

(mm

)

B

WR

(Ura

nium

)

BWR

(MO

X)

1

3

5

7

025

3

78

731

10

83

1

90

09

90

09

77

09

64

09

51

09

93

08

44

06

98

05

70

268

0

992

0

980

0

968

0

957

0

994

0

861

0

728

0

609

3

29

09

93

09

83

09

74

09

64

09

95

08

85

07

71

06

68

379

0

995

0

988

0

980

0

973

0

996

0

914

0

825

0

740

4

24

09

97

09

93

09

88

09

84

09

98

09

49

08

90

08

29

465

0

999

0

998

0

998

0

997

1

000

0

989

0

968

0

937

5

02

10

02

10

05

10

09

10

12

10

02

10

37

10

61

10

72

537

1

006

1

014

1

021

1

029

1

004

1

094

1

178

1

246

5

69

10

10

10

24

10

37

10

51

10

08

11

64

13

28

14

80

600

1

016

1

038

1

060

1

082

1

012

1

265

1

553

1

847

- -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- -

End

of e

xcer

pt

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

JAEA-DataCode 2013-009

- 149 -

54 Explanation of neutron flux control by ldquoALPH(K) EXTL(K) EXTT(K) K=1 NDISTrdquo Option for IDIST

IDIST allows an option to give the shape of axial profile of thermal neutron It allows to

select the shape of either (deformed) cosine curve or input numerical figure When IDIST=0

input of (ALPH(K) EXTL(K) EXTT(K) K=1 NDIST) is necessary This line is input

NDSIT times (=total number of profile patterns)

ALPH(I) flattening constant of the I-th pattern where 0≦ALPH(I)lt1

EXTL(I) Lower ldquoextrapolating distancerdquo (cm)

EXTT(I) Upper ldquoextrapolating distancerdquo (cm)

These are the constants used in the following equation to modify the cosine profile If

they are all set 0 a simple cosine profile is obtained Fig52 below shows as an example with A=10 L=10 bδ =05 tδ =05 and Zm=10 some profile shape patterns in which α is

parametrically changed When αgt0 a deformed cosine curve is given

Fig52 Example of profile shape with A=10 L=10 bδ =05 tδ =05 Zm=10 and α

which is parametrically changed

0

02

04

06

08

1

12

0 05 1 15 2 25

φ(z)

z

0012502503750506250750875

L (fuel active length)

Z=Zm

( ) cos cosm m

b t b t

z z z zz t AL L

ϕ π απδ δ δ δ

minus minus = + + + +

EXTT (δt)

EXTL (δb)

α

coscos)(

++

minus

++

minus=

tb

m

tb

m

Lzz

LzzAtz

δδαπ

δδπφ

JAEA-DataCode 2013-009

- 150 -

55 Some important input name-list parameters of FEMAXI-7 for usage of RODBURN-1

Name-list

input parameter

Contents Default value

IFLX

Number of power history points to designate the radial power profile If the numerical data are not given IFLX should be one of 0 -1 o -2 which corresponds to the following options

= 0 Robertson model -1PLUTON results -2 RODBURN results When IFLX=-1 or -2 corresponding results files should exist in the WrkRBOUT

0

FACHE When IFLXlt0 amount of He gas given by RODBURN calculation is multiplied by FACHE 10

IRH

Interpolation option of axial power profile = 0 the profile at omitted input points is the same as that in the previous

stage = 1 linear interpolation in terms of burnup is performed for omitted input

points

0

INPRD

Options for the fetching method of RODBURN results to FEMAXI-6 (Treatment of fast-neutron flux is designated by IFSNT)

INPRD=0 By interpolating the results of RODBURN (the radial and axial

profiles of power fast-neutron flux and He generation) with respect to space and burnup the data are arranged to correspond to the segments in the axial direction of FEMAXI

INPRD=1 An identical number of segments in the axial direction is assumed

for FEMAXI and RODBURN The results from RODBURN (the radial and axial profiles of power fast-neutron flux and He generation) are used as data for the corresponding axial segments No spatial interpolation is performed Interpolation of burnup is performed

INPRD=2 The number of segments in the axial direction can be different for

FEMAXI and RODBURN (interpolation processing is performed) With respect to the profiles of power and He generation in the radial direction the result of RODBURN is retrieved For the power profile in the axial direction the input to FEMAXI is used

1

IROD

When IRODgt0 an original input file ldquorodinrdquo for RODBURN is generated in the Wrk directory and FEMAXI calculation is not executed Users can modify the contents of this file and rename it to be used in RODBURN calculation eg ldquorodinrdquo to ldquoABCrddatrdquo

IROD=1PWR =2BWR =3Halden BWR =4PWR(MOX) =5 BWR(MOX)

0

JAEA-DataCode 2013-009

- 151 -

56 RODBURN Input data format (1) (When KREGI gt0 value is given in line No2)

Line No Variables FORMAT Content

1 TITLE 18A4 Title of calculation

2

MODEL

10I6

Reactor type option 1=PWR 2=BWR

3=Halden WR 4=PWR(MOX) 5=BWR(MOX)

MESHZ Number of axial zones ( le 40)

KREG1

Number of radial regions ( le 39 including coolant region

for resonance calculation) In the case of ldquoKREG1=0rdquo

follow the input-data format (2)

MESHR

Number of pellet regions in the radial regions ( le 36)

(Each axial zone can have different materials such as

enriched U natural U etc but each axial zone has to

have the same number of regions)

IOPT

Option to designate the irradiation history

=0 average thermal neutron flux is input

=1 average linear heat rate (Wcm) is input

IDIST

Option to designate axial profile of either thermal

neutron flux or linear heat rate

=0 (deformed ) cosine profile is input

=1 Numerical values are input

(Note even if IOPT=1 IDIST and related array data

should be given by either the line 15 or 16)

MODEL2 [can be omitted if reactor type is not changed]

Option to designate the change of reactor type in the

course of irradiation

Reactor type 1=PWR 2=BWR 3=Halden WR

4=PWR(MOX) 5=BWR(MOX)

Here MODEL2=MODEL is possible

KREG2 [can be omitted if reactor type is not changed]

Number of radial regions ( le 39 including coolant

region for resonance calculation) in MODEL2

However if MODEL2 is not designated or if

resonance calculation is not done in MODEL2 KREG2

is not designated

IFLPW IFLPW=0 axial profile of thermal neutron flux is input

IFLPW=1 axial profile of linear heat rate is input

ISTOP ISTOP=0 Regular calculation

ISTOP=1 Input checking calculation

JAEA-DataCode 2013-009

- 152 -

RODBURN Input data format (1_continued) (When KREGIgt0 value is given in line No2)

Line No Variables FORMAT Content

3 ZMESH(I)

I=1 MESHZ 9F84

Upper end coordinate value of each axial zone of active

length (cm)

4

RMIN

RMAX2(I)

I=1 KREG1

F80 8F80

( 8X 8F80)

RMIN fuel pellet inner radius (cm)

RMAX2(I) outer radius of each region (cm)

(ie center hole is not included in the ldquoregionsrdquo)

5 TEMP(I)

I=1 KREG1

8X 8F80

( 8X 8F80)

Temperature at each region (K)

(Rough values independent of time and axial zone)

6 NMIX I6 Total number of ldquomixturerdquo with different composition

7

(NUCLX(I)

CONCEX(I)

I=17)

7(I3 F73)

This line is repeated NMIX times consecutively

Each line corresponds to one mixture and specifies

maximum 7 nuclides

NUCLX(I) nuclides number below

CONCEX(I) concentration (gcm3)

Nuclides number

1 = 238U 2 = 240Pu 3 = H 4 = D

5 = 16O 6 = He 7 = Zr-2 8 = Zr-4

9 = 235U 10 = 239Pu 11 = 241Pu 12 = 242Pu

8

MIX(IJ)

I=1 KREG1

J=1 MESHZ)

30I2

This line is repeated MESHZ times consecutively

Each line corresponds to each axial zone In each line

specify what ldquomixturerdquo exists in each radial region from

inner region to outer region (The order to specify the

mixture in the line 7 is ldquomixture numberrdquo)

Only if KREG2ne0 designate the lines 9 to 13 Otherwise skip to the line 14

9

RMIN

RMAX3(I)

I=1 KREG2

F80 8F80

( 8X 8F80)

Radius of each region after reactor type change

RMIN pellet inner radius (cm)

RMAX3(I) outer radius of each region (cm)

(Center hole is not included in the ldquoregionsrdquo

Here pellet regions up to MESHR should be given

the same values as RMAX2(I) )

10 TEMP2(I)

I=1 KREG2

8X 8F80

( 8X 8F80)

Temperature at each region after reactor type change(K)

(Rough values independent of time and axial zone)

11 NMIX I6 Total number of ldquomixturerdquo with different composition

after reactor type change

JAEA-DataCode 2013-009

- 153 -

RODBURN Input data format (1_continued) (When KREGIgt0 value is given in line No2)

Line No Variables FORMAT Content

12

(NUCLX(I)

CONCEX(I)

I=1 7)

7(I3 F73)

This line is repeated NMIX times consecutively

Each line corresponds to one mixture and specifies

maximum 7 nuclides after reactor type change

NUCLX(I) nuclides number below

CONCEX(I) concentration (gcm3)

Nuclides number

1 = 238U 2 = 240Pu 3 = H 4 = D

5 = 16O 6 = He 7 = Zr-2 8 = Zr-4

9 = 235U 10 = 239Pu 11 = 241Pu 12 = 242Pu

Here number and concentrations of nuclides in pellet

should be the same as those specified in the line 7

13

(MIX2(I J)

I=1 KREG2

J=1 MESHZ)

30I2

This line is repeated MESHZ times consecutively

Each line corresponds to each axial zone In each line

specify what ldquomixturerdquo exists in each radial region from

inner region to outer region after reactor type change

(The order to specify the mixture in the line 12 is

ldquomixture numberrdquo However regions of pellet should

have the same data as those specified in the line 8)

14 NDIST I6

Number of patterns of axial profile of either neutron

flux (IFLPW=0) or linear heat rate (IFLPW=1) The

patterns can be specified at each time step

15

(ALPH(K)

EXTL(K)

EXTT(K)

K=1 NDIST)

3F84

(Not necessary when IDIST=1)

This line is input NDIST times consecutively

ALPH(I) Constant of averaging of the I-th pattern

where 0 le ALPH(I) lt 1

EXTL(I) Lower region extrapolation distance (cm)

EXTT(I) Upper region extrapolation distance (cm) (Theses constants modify the cosine profile If all the

values are set equal to 0 a normal cosine profile is given as input) See the explanation in section 54

16

(FLUXZ(IK)

I=1 MESHZ

K=1 NDIST)

12F82

(Not necessary when IDIST=0)

This line is input NDIST times consecutively

IFLPW=0 axial profile of thermal neutron flux is input

IFLPW=1 axial profile of linear heat rate is input

JAEA-DataCode 2013-009

- 154 -

RODBURN Input data format (1_continued) (When KREGIgt0 value is given in line No2)

17 ISTP DTIME I6 E125

ISTP Number of time steps ( le 200) DTIME The longest period of time step (day)

The ldquonumber of time stepsrdquo specified here is the times of specifying the approximate pattern of output power history Total period of irradiation can be one single time step The code automatically divides each input step period into the period which is not longer than DTIME

It is better to specify the length of DTIME to be less than the period during which irradiation is less than 1times1020ncm2 within the 200 time steps

18

(TIMX(I)

KDIS(I)

PLHR(I 1)

PLHR(I 2)

ICHG

I=1ISTP)

E125 I6

2E125 I6

(Input ISTP times consecutively) TIMX(I) end of I-th step (day) KDIS(I) Number of the I-th step pattern of either thermal neutron flux profile or linear heat rate profile (variable ldquokrdquo in the lines 15 and 16)

PLHR(I 1) PLHR(I 2) Average powers at the beginning and end of the I-th step respectively

IOPT = 0 average thermal neutron flux (ncm2s) IOPT = 1 average linear heat rate (Wcm) ICHG when MODEL2 gt 0 ICHG=1 should be

designated at the time TIMX(I) when reactor type changes In other cases ICHG is not designated

19 NPRINT I6 Total number of time steps at which the results are

printed out Besides these the final result is printed out additionally

20 TIMPRN(I) I=1 NPRINT

9F82 Tine of print-out of numerical results (day) From the

first step after TIMPRN(I) results are printed out sequentially

21 IDIMPR(I) I=1 NPRINT

9I8

Corresponding to the line 20 specify what type of output is printed out IDIMPR=1 only 1-dimensional data is output (Eg axial zone-wise averaged burnup are printed

out for all the axial zones) =2 1-dimensional data and (r z) distributions of

power generation variables Limited to the axial zones which are specified by the line 22

=3 In addition to the above 2-dimensional nuclides contents are output (Limited to the axial zones which are specified by the line 22)

22 IZD2(I) I=1 12

12I6 The axial zone numbers for the 2-dimensional output are specified sequentially as needed

23 STOP A4 To define the end of the input data ldquoSTOPrdquo should be input from the 1-st column to the 4-th column

JAEA-DataCode 2013-009

- 155 -

57 RODBURN Input data format (2) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

1 TITLE 18A4 Title of calculation

2

MODEL

10I6

Reactor type option 1=PWR 2=BWR

3=Halden WR 4=PWR(MOX) 5=BWR(MOX)

MESHZ Number of axial zones ( le 40)

KREG1 Specify ldquoKREG1=0rdquo This gives KREG1=MESHR+3

MESHR

Number of pellet regions in the radial regions ( le 36)

Each axial zone can have different materials such as

enriched U natural U etc but each axial zone has to

have the same number of regions

IOPT

Option to designate the irradiation history

=0 average thermal neutron flux is input

=1 average linear heat rate (Wcm) is input

IDIST

Option to designate axial neutron flux profile (or

power profile)

=0 (deformed ) cosine profile is input

=1 Numerical values are input

(Note even if IOPT=1 IDIST and related array data

should be given by either the line 10 or 11)

MODEL2 [can be omitted if reactor type is not changed]

Option to designate the change of reactor type in the

course of irradiation

Reactor type 1=PWR 2=BWR 3=Halden WR

4=PWR(MOX) 5=BWR(MOX)

Here MODEL2=MODEL is possible

KREG2 [can be omitted if reactor type is not changed]

Number of radial regions ( le 39 including coolant

region for resonance calculation) in MODEL2

However if MODEL2 is not designated or if

resonance calculation is not done in MODEL2 KREG2

is not designated

IFLPW

IFLPW=0 axial profile of thermal neutron flux is input

(eg Halden Reactor)

IFLPW=1 axial profile of linear heat rate is input

ISTOP ISTOP=0 Regular calculation

ISTOP=1 Input checking calculation

JAEA-DataCode 2013-009

- 156 -

RODBURN Input data format (2-continued) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

3

IAUTO

7I6

IAUTO=0 Input the nuclides number and concentrations

of mixtures in each of the pellet cladding and coolant

regions

IAUTO=1 default values are set (notes 1 2 and 8)

IPTCH1

Option before reactor type change

IPTCH1=0 input the outer diameter of coolant boundary

IPTCH1=1 input fuel rod pitch

IZR1

(note 1)

Cladding material option before reactor type change

(IZR1=2 Zry-2 IZR1=4 Zry-4)

IHD1

(note 2)

Coolant option before reactor type change

(IHD1=0 H2O IHD1=1 D2O)

IPTCH2

(note 6)

Option after reactor type change

IPTCH2=0 input the outer diameter of coolant

boundary

IPTCH2=1 input fuel rod pitch

IZR2 (note 1) Cladding material option after reactor type change

(IZR2=2 Zry-2 IZR2=4 Zry-4)

IHD2 (note 2) Coolant option after reactor type change

(IHD2=0 H2O IHD2=1 D2O)

4

ZLENG

(note 3)

7F80

Active length of fuel rod (cm)

PDIN Pellet inner diameter (cm) PDIA

(note 4) Pellet outer diameter (cm) CDOUT1

(note 5) Cladding outer diameter before reactor type change (cm)

PITCH1 (note 6)

Coolant boundary diameter before reactor type change

(IPTCH1=0) or fuel rod pitch (IPTCH1=1) (cm) CDOUT2

(note 5) Cladding outer diameter after reactor type change (cm)

PITCH2 (note 6)

Coolant boundary diameter after reactor type change

(IPTCH2=0) or fuel rod pitch (IPTCH2=1) (cm)

JAEA-DataCode 2013-009

- 157 -

RODBURN Input data format (2-continued) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

5

(note 7)

TP1

8F80

Pellet center temperature before reactor type change (K)

TS1 Pellet surface temperature before reactor type change(K)

TC1 Cladding temperature before reactor type change (K)

TW1 Coolant temperature before reactor type change (K)

TP2 Pellet center temperature after reactor type change (K)

TS2 Pellet surface temperature after reactor type change (K)

TC2 Cladding temperature after reactor type change (K)

TW2 Coolant temperature after reactor type change (K)

When IAUTO=0 specify the lines 6 and 7 When IAUTO=1 specify the line 8

6

(NUCLX(I)

CONCEX(I)

I=17)

7(I3 F73)

This line is repeated three times consecutively

Each line corresponds to one mixture and specifies

max7 nuclides before reactor type change

NUCLX(I) nuclides number below

CONCEX(I) concentration (gcm3)

Nuclides number

1 = 238U 2 = 240Pu 3 = H 4 = D

5 = 16O 6 = He 7 = Zr-2 8 = Zr-4

9 = 235U 10 = 239Pu 11 = 241Pu 12 = 242Pu

Only when KREG2gt0 specify the line 7

7

(NUCLX(I)

CONCEX(I)

I=1 7)

7(I3 F73)

This line is repeated three times consecutively

Each line corresponds to one mixture and specifies

max7 nuclides after reactor type change

NUCLX(I) nuclides number below

CONCEX(I) concentration (gcm3)

Nuclides number

1 = 238U 2 = 240Pu 3 = H 4 = D

5 = 16O 6 = He 7 = Zr-2 8 = Zr-4

9 = 235U 10 = 239Pu 11 = 241Pu 12 = 242Pu

Here number and concentrations of nuclides in pellet

should be the same as those specified in the line 6

JAEA-DataCode 2013-009

- 158 -

RODBURN Input data format (2-continued) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

When IAUTO=1 specify the line 8

8

(note 8)

FDEN 6F80

Pellet theoretical density ratio (-)

FU235 U-235enrichment (-)

FPUO2

[If fuel contains no Pu this line can be omitted]

PuO2 weight ratio

+ 22

2

PuOUOPuO (-)

FPU240 Pu-240 weight ratio

minus totPuPu240

(-)

FPU241 Pu-241 weight ratio

minus totPuPu241

(-)

FPU242 Pu-242 weight ratio

minus totPuPu242

(-)

9 NDIST I6

Total number of patterns of the axial profiles of either

neutron flux (IFLPW=0) or linear heat rate

(IFLPW=1) This can be specifies at each time step

10

(ALPH(K)

EXTL(K)

EXTT(K)

K=1 NDIST)

3F84

(Not necessary when IDIST=1) This line is input NDIST times consecutively ALPH(I) Constant of averaging of the I-th pattern where 0 le ALPH(I) lt 1 EXTL(I) Lower region extrapolation distance (cm) EXTT(I) Upper region extrapolation distance (cm) (This modifies the cosine profile If all the values are set equal to 0 a normal cosine profile is given as input)

See the explanation in section 54

11 (FLUXZ (I K)

I=1 MESHZ) 12F82

(Not necessary when IDIST=0)

This line is input NDIST times consecutively

IFLPW=0 axial profile of thermal neutron flux is input

IFLPW=1 axial profile of linear heat rate is input

12 ISTP DTIME I6 E125

ISTP Number of time steps ( le 200)

DTIME The longest period of time step (day) The ldquonumber of time stepsrdquo specified here is the times of specifying the approximate pattern of output power history Total period of irradiation can be one single time step The code automatically divides each input step into sub-steps which are not longer than DTIME It is better to specify the length of DTIME to be less than the period during which irradiation is less than 1 times

1020ncm2 within the 200 time steps

JAEA-DataCode 2013-009

- 159 -

RODBURN Input data format (2-continued) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

13

(TIMX(I)

KDIS(I)

PLHR(I 1)

PLHR(I 2)

ICHG

I=1 ISTP)

E125 I6

2E125 I6

This line is input ISTP times consecutively

TIMX(I) end of I-th step (day)

KDIS(I) Number of the I-th step pattern of either

thermal neutron flux profile or linear heat rate profile

(variable ldquoKrdquo in the lines 10 and 11)

PLHR(I 1) PLHR(I 2) Average powers at the

beginning and end of the I-th step respectively

IOPT = 0 average thermal neutron flux (ncm2s)

IOPT = 1 average linear heat rate (Wcm)

ICHG when MODEL2 ne 0 ICHG=1 should be

designated at the time TIMX(I) when reactor type

changes In other cases ICHG is not designated

14 NPRINT I6

Total number of time steps at which the results are

printed out Besides these the final result is printed out

additionally

15 TIMPRN(I)

I=1 NPRINT 9F82

Tine of print-out of numerical results (day)

(From the first step after TIMPRN(I) results are printed

out sequentially)

16 IDIMPR(I)

I=1 NPRINT 9I8

Corresponding to the line 15 specify what type of

output is printed out IDIMPR=1 only 1-dimensional data is output (Eg axial zone-wise averaged burnup are printed

out for all the axial zones) =2 1-dimensional data and (r z) distributions

of power generation variables Limited to the axial zones which are specified by the line 17

=3 In addition to the above 2-dimensional

nuclides contents are output (Limited to the axial

zones which are specified by the line 15)

17 IZD2(I)

I=1 12 12I6

The axial zone numbers for the 2-dimensional output are

specified sequentially as needed

18 STOP A4 To define the end of the input data ldquoSTOPrdquo should be

input from the 1-st column to the 4-th column

JAEA-DataCode 2013-009

- 160 -

(note 1) Densities of Zry-2 and Zry-4 are assumed as 655 (gcm3)

(note 2) In light water (H2O) density of H= 0079(gcm3) density of O=0631(gcm3)

In heavy water (D2O) density of D= 01807(gcm3) density of O=07226(gcm3)

(note 3) Length of each axial zone is given by equally dividing the total active length of rod by

ldquoMESHZrdquo

(note 4) Pellet is divided into equal-volume ring elements The number of the ring elements is

specified by ldquoMESHRrdquo

(note 5) It is assumed that a cladding has one region

(note 6) It is assumed that coolant has two regions When rod-to-rod pitch is specified coolant

outer boundary radius r is given by PITCHrπ

=

(note 7)

Approximating the temperature distribution inside a pellet by a quadrature function gives

the temperature of i-th region from the center as

( )2

12lowast

minuslowastminusminus=

MESHRITTTT sPPi

Where TP pellet center temperature and Ts pellet surface temperature

(note 8)

Calculation method of element compositions (gcc) of fuel pellet are described below

(1) Calculation of theoretical density of MOX fuel Assuming the theoretical density of MOX fuel as ρ weight ratio of UO2 as

2UOF

weight ratio of PuO2 as2PuOF volume ratio of UO2 as

2UOV and volume ratio of PuO2

as 2PuOV the followings hold

1

1

22

22

222

222

=+

=+

sdot=sdot

sdot=sdot

PuOUO

PuOUO

UOUOUO

PuOPuOPuO

FF

VV

FV

FV

ρρ

ρρ

where2UOρ =1096(gcc)

2PuOρ =1146(gcc) Eliminating 2UOV

2PuOV and 2UOF

from the above Eqs and solution with respect to ρ gives

( )2222

22

PuOUOPuOPuO

PuOUO

F ρρρρρ

ρminus+

sdot=

(2) Calculation of each weight ratio

Each weight ratio is defined as follows 2

2 2

2

2 2

2

2

UO

PuO

UOFUO PuO

PuOFUO PuO

=+

=+

235

235 235 238

238

238 235 238

U

U

UFU U

UFU U

=+

=+

JAEA-DataCode 2013-009

- 161 -

(note 8)

PuPuPuPuPuF

PuPuPuPuPuF

PuPuPuPuPuF

PuPuPuPuPuF

Pu

Pu

Pu

Pu

242241240239

242

242

242241240239

241

241

242241240239

240

240

242241240239

239

239

+++=

+++=

+++=

+++=

2

2

PuOPuF

UOUF

Pu

U

=

=

Here values of 2PuOF FU235 FPu240 FPu241 and FPu242 are given by input

As a result FUO2 FU238 and FPu239 are determined by the above equations

Also for FU and FPu th next equations hold

235 238

235 238

239 240 241 242

239 240 241 242

235 238235 238 32

239 240 241 242239 240 241 242 32

U UU

U U

Pu Pu Pu PuPu

Pu Pu Pu Pu

F FFF F

F F F FFF F F F

sdot + sdot=

sdot + sdot +sdot + sdot + sdot + sdot

=sdot + sdot + sdot + sdot +

Therefore each elemental composition (concentration) can be determined by the

following equations

( ) ( )

235 235

238 238

239 239

240 240

241 241

242 242

2

2

2

2

2

2

2 21 1

U U U UO D

U U U UO D

Pu Pu Pu PuO D

Pu Pu Pu PuO D

Pu Pu Pu PuO D

Pu Pu Pu PuO D

o U UO Pu PuO D

F F F F

F F F F

F F F F

F F F F

F F F F

F F F F

F F F F F

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= minus + minus sdot sdot

where FD is the pellet theoretical density ratio (-)

References 5 (51) Bell MJ ldquoORIGEN ndash The ORNL Isotope Generation and Depletion Coderdquo

ORNL-4628 (1973) (52) Croff AG ldquoORIGEN2- A Revised and Updated Version of the Oal Ridge Isotope

Generation and Depletion Coderdquo ORNL-5621 (1980)

JAEA-DataCode 2013-009

- 162 -

(53) Kier PH and Robba AA ldquoRABBLE A Program for Computation of Resonance Absorption in Multiregion Reactor Cellsrdquo ANL-7326 (1967)

(54) WIMS-D IAEA Nuclear Data Services httpwww-ndsiaeaorg (55) Croff AG et al ldquoRevised uranium-plutonium cycle PWR and BWR models for the

ORIGEN computer coderdquo ORNLTM-6051 (1978)

(56) ENDF-BIV IAEA Nuclear Data services httpwww-ndsiaeaorg

JAEA-DataCode 2013-009

- 163 -

6 Input Manual of Plotting Control Program EXPLOT

61 Input parameters for EXPLOT Line No SYMBOL (FORMAT) 1 Comments 2 ISET () Total number of figures Input ISET-sets consisting of the following lines IRNUM ITOPT NOLINE () Function setting

3

IRNUM number of lines drawn in one figure (max 5 lines)

ITOPT designation of graph type ITOPT = 0 X axis represents time burnup or linear heat rate ITOPT = 1 X axis represents coordinates in the radial or axial direction (relative value

is allowed) ITOPT = 2 Construct a diagram for comparison of calculated values with measured

values (in this case maximum value of IRNUM becomes 4 since one line is used for the measured values)

ITOPT=3 X axis represents either radius or axial coordinate Designation method of ITIM in line 7 is different from the case of ITOPT=1

NOLINE Grid line (broken line) option = 0 Grid line is not plotted = 1 Grid line is plotted =2 Grid line is plotted When once or more in ISET-sets lines NOLINE=2 is designated the corresponding CSV file is output with sets of the radial and axial coordinates time and physical quantity = -1 When once or more in ISET-sets lines NOLINE= -1 is designated the PS file is not generated = -2 When once or more in ISET-sets lines NOLINE= -1 is designated the PS file is not

generated but CSV file is output with sets of the radial and axial coordinates time and physical quantity

Accordingly when once or more in ISET-sets lines NOLINElt0 is designated the PS file is not generated

JAEA-DataCode 2013-009

- 164 -

IXOPT IXOPT2 IYOPT2 IYNUM (IYOPT(I) I=1 IYNUM) () Axis setting

4

IXOPT setting of the contents of X axis (set when ITOPT = 0 or 2) = 1 time = 2 coordinates in the radial direction (minus) (set when ITOPT = 1) = 3 coordinates in the axial direction (minus) (set when ITOPT = 1) = 4 burnup (at the objective segment set by IXOPT2) = 5 linear heat rate (at the objective segmentWcm) = 6 burnup (average on all axial segments set by IXOPT2) =7 linear heat rate (average on all axial segmentsWcm) =8 elapsed time from the point designated by ITIM(1) in the input line 7 =9 energy density (calg-fuel) IXOPT2 setting of units for time and burnup Setting of units when X axis represents time (IXOPT = 1) (Dummy when IXOPTgt1 ) IXOPT2 = 0 hour IXOPT2 = 1 day IXOPT2 = 2 Min IXOPT2 = 3 sec IXOPT2 = 4 msec Setting of units when X axis represents burnup (IXOPT = 4 or 6) (Dummy when IXOPT is neither 4 nor 6) IXOPT2 =0 MWd tUO2 IXOPT2 =4 MWd tMOX IXOPT2 =2 MWd tU IXOPT2 =5 GWd tMOX IXOPT2 =1 GWd tUO2 IXOPT2 =6 MWd tHM

IXOPT2 =3 GWd tU IXOPT2 =7 GWd tHM IYOPT2 setting of units for time and burnup Setting of units when Y axis represents time (IYOPT(I)=1 or 12) IYOT2 =0 MWd tUO2 IYOPT2 =4 MWd tMOX IYOT2 =2 MWd tU IYOPT2 =5 GWd tMOX

IYOPT2 =1 GWd tUO2 IYOPT2 =6 MWd tHM IYOPT2 =3 GWd tU IYOPT2 =7 GWd tHM

IYNUM number of Y axes When more than 2 physical properties are set for Y axis

(IYNUM ≧2) IYNUM = IRNUM must be set since one graph is drawn for one Y axis (IYOPT(I) I = 1 IYNUM) select contents of Y axis from Tables 1 to 9 and input the

physical quantity number

(IYOPT(I) I=1 IRNUM) Input the IDNO number of physical quantity of Y axis selected from Table (1) to (3)

(Note) 1) Designation of IXOPT=19 has the same effect as that which is given by designation of IXOPT=8 or IXOPT2=4 and the time is in elapsed time (ms) 2) HM is the sum of weight of U and Pu in MOX fuel

5 (IR(I) I = 1 IRNUM) () Radial mesh number (IR(I) I = 1 IRNUM) radial mesh number is set for each figure When setting is not necessary input 1

JAEA-DataCode 2013-009

- 165 -

6

(IZ(I) I = 1 IRNUM) () Axial segment number (IZ(I) I = 1 IRNUM) Set the segment number in the axial direction for each figure Input 1 when setting is not necessary

7

(ITIM(I) I = 0 1) or (ITIM(I) I = 1 RNUM) () Time step number (When ITOPT = 0 input (ITIM(I) I = 12)) ITIM(1) = set a time step number for starting point of the figure ITIM(2) = set a time step number for end point of the figure (When ITOPT = 1 input (ITIM(I) I = 1 RNUM)) Set time step numbers for each figure (When ITOPT=3 input (ITIM(I) I=1 IRNUM)) Set the time of output Unit is specified by

IXOPT2 ITIM is a real number Example when IRNUM=3 IXOPT2=3 (unit is sec) and ldquoITIM(1)=00 ITIM(2)=10 ITIM(3)=20rdquo is input by Line No7 the plot program finds the history points which are given at the closest time to 00s 10sand 20s and outputs figures at these history points

8

X0 XM XNUM IXN IFLAG(6) () Setting of X-axis scale This line is a DUMMY when IXOPT=2 or 3 X0 minimum value of X-axis scale (IFLAGne3) XM maximum value of X-axis scale (IFLAGne3) XNUM increment of X-axis scale (IFLAGne3) IXN number of digits after decimal point on X axis (IFLAGne3) Example IXN = minus1 for 10 IXN = 1 for 100 IXN = 2 for 1000 IFLAG setting of X-axis scale =3 automatic scaling is applied to X axis ne3 X axis is drawn with designated scaling by input

9

IYNUM lines are required (I = 1 IYNUM) Y0(I) YM(I) YNUM(I) IYN(I) IFLAG(I) () Setting of Y-axis scale

Y0(I) minimum value of Y-axis scale YM(I) maximum value of Y-axis scale YNUM(I) increment of Y-axis scale IYN(I) number of digits after decimal point on Y axis (input in the same manner as for IXN) IFLAG(I) option for Y-axis scale = 0 scale is expressed with real numbers (decimal number expression) = 1 scale is expressed with floating format = 2 logarithmic scaling is used for Y axis = 3 automatic scaling is applied to Y axis

When IFLAG(I) = 3 Y0 to IYN are DUMMY since automatic scaling is selected When IFLAG(I)=2 user can designate a semi-logarithmic scaling For example if user

wants to plot with the Y-axis of 107 to 1013 scale range designate ldquoY0(I)=7 YM(I)=13 YNUM(I)=1rdquo where IYN(I) is dummy

Note 1) Data specified by asterisk () are input with free format

JAEA-DataCode 2013-009

- 166 -

62 Tables of IDNOs classified by variables

Table (1) Physical Quantities of Y axis (1) ()designated by IXOPT2

Group No Item Unit Std-Out

A Data regarding time and burnup

1 2 3

Rod average burnup Fission gas release rate Rod internal pressure

() ()

(MPa)

4 Plenum volume (cm3)

5

Pellet elongation (when IFEMRD=1) at the objective segment designated by IFEM)

()

6 7 8

Cladding elongation at plenum top (IFEMRD=1) Maximum change of cladding outer radius Average linear heat rate in the axial direction

() (microm)

(Wcm)

times

9 10

Average iodine concentration Maximum iodine concentration

(gcm2) (gcm2)

times

times

11 12 13

Average change in cladding outer radius Coolant inlet temperature Coolant pressure

(microm) (C)

(MPa)

times

times

14

Coolant velocity or mass flow rate (designated by input parameter)

(ms) or (kgcm2s)

times

15 Average fast neutron flux in the axial direction (1013ncm2s)

16 17 18

Average fast neutron fluence in the axial direction Pellet elongation (IFEMRD=0) Cladding elongation (IFEMRD=0)

(1020ncm2) () ()

19

Cladding max change of outer diameter at zero power state (IFEMRD=0)

(microm) times

20

Cladding average change of outer diameter at zero power state (IFEMRD=0)

(microm) times

21 22

Pellet elongation (IFEMRD=1) Cladding elongation at plenum top (IFEMRD=1)

(mm) (mm)

times

times

23 --- 28 Not used

29 30

Coolant mass flow rate He gas release rate

(kgm2s) ()

times

times

[Note] 1) Std-Out (Standard output states) indicates the default state of output O mark

= output X mark = not output They are standard output from FEMAXI by setting default

states of IDNO in making the plotter data file Regarding IDNO number items marked by times

eg pellet elongation when plotted output of pellet elongation is needed it is necessary to set

IDNO(21)=1 in input file of FEMAXI

2) When calculating a case with long power history in FEMAXI the size of the plot data file

sometimes becomes substantially large To avoid this unnecessary items among items

marked by should be set as IDNO()=0 Whereby the plot file size can be minimized Here

JAEA-DataCode 2013-009

- 167 -

indicates each item number in the figure

3) When IFEMRD=0 items 5 and 6 are elongations at the objective segment

4) IDNO=7 and 11 are the displacement at the outer surface of oxide of cladding When the

displacement at the metal part of cladding ie at the interface of metal-oxide IDNO=174

is used

Here IDNO=19 and 20 are results of 2-D local mechanical analysis In this analysis no

oxide layer is taken into account so that cladding outer radius displacement (metal-oxide

interface) is implicitly assumed to be equal to the displacement at outer oxide surface

When IFEMRD=1 ie entire rod length (ERL) mechanical analysis solely IDNO=17

to 20 which are used in the 2-D local mechanical analysis are given the results of ERL

analysis

JAEA-DataCode 2013-009

- 168 -

Table (2) Physical Quantities of Y axis (2) ()designated by IXOPT2 Group No Item Unit Std-Out

B1 Data regarding time burnup

and axial location

41 Linear heat rate (thermal analysis=TA) (Wcm)

42 Burnup (TA) ()

43 Diameter gap width (mechanical analysis when IFEMRD=0 gap at each axial segment and when IFEMRD=1 gap at each node couple is output sequentially)

(microm) times

44 45

PCMI contact pressure (When IFEMRD=0) Fission gas release rate

(MPa) ()

times

46 Frictional force between pellet and cladding in the axial direction (When IFEMRD=0)

(MPa) times

47 Pellet elongation (When IFEMRD=0) () times

48

Cladding elongation (Items 47 and 48 are output by the mechanical analysis When IFEMRD=0 elongation at each axial segment is obtained when IFEMRD=1 the same values in the axial direction are output)

() times

49 50 51 52 53 54

Gap conductance (TA) Coolant temperature (TA) Cladding inner surface temperature (TA) Cladding outer surface temperature (TA) Pellet center temperature (TA) Pellet outer surface temperature (TA)

(Wcm2C) (C) (C) (degC) (degC) (degC)

times times times

55 56 57 58 59 60

Cladding outer radius change(the same as 43) Composition of Xe + Kr (TA) Pellet density (TA) Cladding metal-oxide interface temperature Cladding outer oxide layer thickness Coolant enthalpy

(microm) ()

(TD) (C)

(microm) (kJkg)

times times times times

61 62 63 64 65

Coolant quality Cladding outer surface heat flux Cladding outer surface heat transfer coefficient Fast neutron flux Fast neutron fluence

(-) (Wcm2)

(Wcm2C) (1013ncm2s) (1020ncm2)

times times times

66 67 68 69

Pellet power density Gap size Pellet densification strain (ΔVV) Rim thickness

(Wcm3) (microm)

(001) (microm)

70 Additional FGR from rim structure ()

Note 1) When the 2-D local mechanical analysis is performed (IFEMRD=0) items 47 and 48 are uniform values in the axial direction and items 43 44 46 55 and 68 are the values which are obtained with respect to half a pellet length of the objective segment The others are obtained with respect to the 1-D entire rod length mechanical analysis (IFEMRD=1) 2) IDNO=55 cladding outer diameter displacement (metal-oxide interface) = displacement at outer oxide surface

JAEA-DataCode 2013-009

- 169 -

Table (3) Physical Quantities of Y axis (3) Group No Item Unit Std-

Out

B2 Data regarding time burnup

and axial location

71 72 73 74 75

Molar quantity of released Xe Molar quantity of released Kr Molar quantity of released He Contact pressure in the radial direction (IFEMRD=1) Frictional force in the axial direction (IFEMRD=1)

(001mol) (001mol) (001mol) (MPa) (MPa)

times times times

times

76 77 78 79 80

Pellet elongation (IFEMRD=1) Cladding elongation (IFEMRD=1) Cladding outer oxide surface diameter change (IFEMRD=1) Pellet porosity deignated by IPDENS Pellet volume change deignated by IPDENS

() ()

(microm) () ()

times

times

times

times

times

81 82 83 84 85

Pellet diameter change (IFEMRD=1) Pellet diameter strain (IFEMRD=1) Pellet-clad bonding progress ( 0 BD 1le le ) Intra-granular gas bubble radius (average) Volumetric strain by intra-granular gas bubbles(average)

(microm) () ( - ) ( o

A ) ()

times

times

times

times

times

86 87 88 89 90

Inter-granular gas bubble radius (average) Volumetric strain by inter-granular gas bubbles(average) Pellet radial displacement (IFEMRD=1) Elastic component of pellet radial displacement Thermal component of pellet radial displacement

(microm) ()

(microm) (microm) (microm)

times

times

times times times

91 92 93 94 95

Relocation component of pellet radial displacement Densification component of pellet radial displacement Swelling component of pellet radial displacement Creep component of pellet radial displacement Pellet axial displacement

(microm) (microm) (microm) (microm) (microm)

times

times times times times

96 97 98 99 100

Cladding inner surface radial displacement Elastic component of cladding radial displacement Thermal component of cladding radial displacement Creep component of cladding radial displacement Cladding axial displacement

(microm) (microm) (microm) (microm) (microm)

times times

times times times

(Note) The items 88 to 100 are obtained with respect to entire rod length (IFEMRD=1)

JAEA-DataCode 2013-009

- 170 -

Table (4) Physical Quantities of Y axis (4) ()designated by IXOPT2 Group NO Item Unit Std-

Out C1 Data regarding time burnup locations in the axial and radial directions

101 102 103 104 105

Pellet local burnup Pellet power density Pellet node temperature Cladding node temperature Pellet element temperature

() (Wcm3)

(C) (C) (C)

106 107 108 109 110

Cladding element average temperature Fission gas release rate Pellet grain diameter Pellet equivalent stress Pellet average stress

(C) ()

(microm) (MPa) (MPa)

times times times times

111 112 113 114 115

Pellet stress in the radial direction Pellet stress in the circumferential direction Pellet stress in the axial direction Pellet strain in the radial direction Pellet strain in the circumferential direction

(MPa) (MPa) (MPa)

() ()

times times times times times

116 117 118 119 120

Pellet strain in the axial direction Pellet elastic strain in the radial direction Pellet elastic strain in the circumferential direction Pellet elastic strain in the axial direction Pellet thermal expansion strain in the radial direction

() () () () ()

times times times times times

121 122 123 124 125

Pellet thermal expansion strain in the axial direction Pellet densification volumetric strain(ΔVV) Pellet swelling strain(ΔLL) Pellet equivalent creep strain Pellet creep strain in the axial direction

() () () () ()

times times times times times

126 127 128 129 130

Pellet creep strain in the axial direction Pellet creep strain in the axial direction Pellet equivalent plastic strain Pellet plastic strain in the radial direction Pellet plastic strain in the circumferential direction

() () () () ()

times times times times times

131 132 133 134 135

Pellet plastic strain in the axial direction Pellet displacement in the radial direction Pellet displacement in the axial direction Pellet radial displacement by elastic strain Pellet axial displacement by elastic strain

() (microm) (microm) (microm) (microm)

times times times times times

136 137 138 139 140

Pellet radial displacement by thermal strain Pellet axial displacement by thermal strain Pellet radial displacement by densification Pellet axial displacement by densification Pellet radial displacement by swelling

(microm) (microm) (microm) (microm) (microm)

times times times times times

(Note) When the local mechanical analysis is performed (IFEMRD=0) values of stress strain and displacement are obtained with respect to half a pellet length of the objective segment When entire rod length mechanical analysis is performed (IFEMRD=1) they are obtained with respect to the entire rod length

JAEA-DataCode 2013-009

- 171 -

Table (5) Physical Quantities of Y axis (5) ()designated by IXOPT2 Group No Item Unit Std-

Out

C2

Data regarding time burnup locations in the axial and radial directions

141 142 143 144 145

Pellet axial displacement by swelling Pellet radial displacement by creep Pellet axial displacement by creep Pellet radial displacement by plastic strain Pellet axial displacement by plastic strain

(microm) (microm) (microm) (microm) (microm)

times times times times times

146 147 148 149 150

Radius of intra-granular gas bubble Volumetric strain by intra-granular gas bubble Radius of inter-granular gas bubble Volumetric strain by inter-granular gas bubble Absolute value of pellet yield stress

( A )

() (microm) ()

(MPa)

times times times times times

151 152 153 154 155

Cladding equivalent stress Cladding average stress Cladding stress in the radial direction Cladding stress in the circumferential direction Cladding stress in the axial direction

(MPa) (MPa) (MPa) (MPa) (MPa)

times times times

156 157 158 159 160

Cladding strain in the radial direction Cladding strain in the circumferential direction Cladding strain in the axial direction Cladding elastic strain in the radial direction Cladding elastic strain in the circumferential direction

() () () () ()

times times times times

161 162 163 164 165

Cladding elastic strain in the axial direction Cladding thermal strain in the radial direction Cladding thermal strain in the axial direction Cladding average axial thermal strain (Note) Cladding axial irradiation growth strain

() () () () ()

times times times times

166 167 168 169 170

Cladding equivalent creep strain Cladding creep strain in the radial direction Cladding creep strain in the circumferential direction Cladding creep strain in the axial direction Cladding equivalent plastic strain

() () () () ()

times times times times

171 172 173 174 175

Cladding plastic strain in the radial direction Cladding plastic strain in the circumferential direction Cladding plastic strain in the axial direction Cladding radial displacement Sum of cladding axial displacements in each segment

() () ()

(microm) (microm)

times times

176 177 178 179 180

Cladding radial displacement by elastic strain Cladding axial displacement by elastic strain Cladding radial displacement by thermal strain Cladding axial displacement by thermal strain Cladding axial displacement by irradiation growth strain

(microm) (microm) (microm) (microm) (microm)

(Note1) Cladding average thermal strain of item 159 is obtained with respect to time burnup and radial location (Note2) The above table represents the data of both the mechanical analysis and thermal analysis for the entire length model The data of the average thermal strain in the axial direction of the cladding 164 represent those with respect to time burnup and the location in the radial direction

JAEA-DataCode 2013-009

- 172 -

Table (6) Physical Quantities of Y axis (6) Group No Item Unit Std-

Out

C2

Data regarding time burnup locations in the axial and radial directions

181 182 183 184

Cladding radial displacement by creep strain Cladding axial displacement by creep strain Cladding radial displacement by plastic strain Cladding axial displacement by plastic strain

(microm) (microm) (microm) (microm)

185 186 187

Number of generated fission gas atoms per unit volume of fuel Number of fission gas atoms per unit volume inside grain Number of fission gas atoms per unit volume of solid matrix

(atomscm3) (atomscm3) (atomscm3)

times times times

188 Number of fission gas atoms in the intra-grain bubbles per unit volume of fuel

(atomscm3) times

189 190

Number of intra-grain bubbles per unit volume Number of fission gas atoms per unit area of grain surface

bubblescm3 (atomscm2)

times times

191

Saturation number of fission gas atoms per unit area of grain surface

(atomscm2) times

192 193 194

Number of gas bubbles per unit area of grain surface Coverage fraction of inter-granular bubbles on grain surface Saturation radius of inter-granular gas bubble

bubblescm2 (-) (microm)

times times times

195 196 197

Nominal diffusion coefficient of fission gas atoms Effective diffusion coefficient of fission gas atoms Pellet theoretical density designated by IPDENS

(cm2s) (cm2s) (TD)

times times times

198 --- 200 Not used

201 Difference between element-average temperature of cladding and cladding outer surface temperature (oC) times

202 --- 222 Not used 223 Pellet yield stress (MPa) times 224 Cladding yield stress (MPa) times

225 --- 227 Not used 228 229 230

Pellet relocation strain in the radial direction Pellet relocation strain in the hoop direction Pellet relocation strain in the axial direction

() () ()

times times times

231 232

Pellet radial displacement induced by relocation Pellet axial displacement induced by relocation

(microm) (microm)

times times

233 Cladding outer surface displacement by waterside oxidation (microm) times 234 Pellet densification strain + swelling strain () 235 Apparent stiffness of pellet in the radial direction (GPa) 236 Apparent stiffness of pellet in the circumferential direction (GPa) 237 Apparent stiffness of pellet in the axial direction (GPa) 238 Youngrsquos modulus of cladding (GPa) 239 Poissonrsquos ratio of cladding (-) 240 Strain-hardening exponent of cladding (-) 241 Youngrsquos modulus of pellet (GPa) 242 Poissonrsquos ratio of pellet (-) 243 Thermal conductivity of cladding (WcmK) 244 Specific heat of pellet (JkgK) 245 Specific heat of cladding (JkgK) 246 Pellet melting point depending on the axial position (ordmC) 247 Gap size depending on the radial and axial positions (microm) 248 Deviation stress of cladding in the radial direction (MPa) 249 Deviation stress of cladding in the circumferential direction (MPa) 250 Deviation stress of cladding in the axial direction (MPa)

JAEA-DataCode 2013-009

- 173 -

Table (7) Physical Quantities of Y axis (7) (Note) Number of radial elements of IDNO=251- 300 depends on the designation of MESH

Group No Item Unit Std-Out

C2

Data regarding time burnup locations in the axial and radial directions

251 252 253 254

Fuel pellet local burnup Fuel pellet effective burnup Pellet ring element average temperature Fuel pellet thermal conductivity

(MWdt) (MWdt)

(oC) (WcmK)

times times times times

255 256

Cladding heat generation density by γ-heating Fraction of rim structure volume ( vX ratio)

(Wcm3) (-)

times times

257 Total porosity of fuel (0

0 0

swg densV Vp pV V

∆ ∆= + + ) () times

258 259 260

Rim structure porosity Open porosity in rim structure Porosity by fission gas bubbles

() () ()

times times times

261 Total volumetric swelling of pellet () times

262 263 264 265

Re-dissolution ratio b of fission gas atoms into solid matrix Re-dissolution ratioαinto solid matrix in rate-law model Fraction of gas atoms trapped by intra-granular gas bubbles g Stiffness fraction of dish element (buffer space)

(1s) (1s) (1s) (-)

times times times times

266 267

Displacement of pellet solid elements in the axial direction Volumetric fraction of dish space element to the initial value

(microm) (-)

times times

268 Not used

269 Ratio of amount of fission gas atoms in intra-grain gas bubbles to the total amount of generated fission gas atoms () times

270 Fission gas atoms in grain boundary gas bubbles in unit volume of pellet (atomscm3) times

271 Grain boundary inventory of fission gas atoms (atoms) times

272 Number density of grain boundary gas bubbles in pellet (bubblescm3) times

273 Ratio of amount of fission gas in grain boundary gas bubbles to the total amount of generated fission gas atoms () times

274 Fission gas atoms density inside the pores in rim structure (atomscm3) times

275 Grain diameter of fuel pellet (microm) times

276 277

Volumetric swelling of gas pores in rim structure --------- Not used -------------

()

times

278 Heat generation density of fuel pellet (Wcm3) times

279 280 281

Nodal temperature of pellet ring element Amount of released gas atoms per unit volume of pellet Pellet theoretical density designated by IPDENS=1

(oC) (atomscm3)

(TD)

times times times

282 283 284

Pellet theoretical density designated by IPDENS=2 Pellet theoretical density designated by IPDENS=3 Pellet theoretical density designated by IPDENS=4

(TD) (TD) (TD)

times times times

285 Ratio of amount of fission gas atoms retained in the solid phase of rim structure (-) times

286

Fraction of transferred amount of gas atoms from solid phase of rim structure to gas pores

(-) (cm2s)

times times

287 288

Nominal diffusion coefficient of He gas atoms (when HER=3) Effective diffusion coefficient of He gas atoms (when HER=3) (cm2s) times

times 289 -------------- Not used -----------------

290 He gas atoms generation rate per unit volume of fuel pellet (atomscm3s) times

JAEA-DataCode 2013-009

- 174 -

Table (8) Physical Quantities of Y axis (8) ()designated by IXOPT2

[Note] Number of radial elements of IDNO=251- 300 depends on the designation of MESH IDNO=301- 324 are of the data of 2-D local mechanical analysis They are output only when IFEMRD=0 Stress strain and displacement correspond to the values in half a pellet length geometry

Group IDNO Item Unit Std-Out

C2

Data regarding time burnup locations in the axial and radial directions

291 Internal pressure of grain boundary gas bubble (MPa) times

292 Overpressure of grain boundary gas bubbles (MPa) times

293 Intra-grain gas bubble pressure (MPa) times 294 Number density of He gas atoms at grain boundary (atomscm3) times

295 -296 - - - - - Not used - - - - -

297 He atoms density inside grain (when HER=3) (atomscm3) times

298 Average density of He atoms inside grain (when HER=3) (atomscm3) times 299 He gas release rate (when HER=3) () times 300 Void fraction of coolant water (-) times 301 Local burnup () 302 Heat generation density of fuel pellet (Wcm3) 303 Nodal temperature of pellet ring element (oC) 304 Nodal temperature of cladding ring element (oC) 305 Pellet element average temperature (oC) 306 Cladding element average temperature (oC) times 307 Fission gas release rate () 308 Pellet grain diameter (microm) times 309 Pellet equivalent stress (MPa) times 310 Pellet average (hydrostatic) stress (MPa) times 311 Pellet stress in the radial direction (MPa) times 312 Pellet stress in the circumferential direction (MPa) times 313 Pellet stress in the axial direction (MPa) times 314 Pellet strain in the radial direction () times 315 Pellet strain in the circumferential direction () times 316 Pellet strain in the axial direction () times 317 Pellet elastic strain in the radial direction () times 318 Pellet elastic strain in the circumferential direction () times 319 Pellet elastic strain in the axial direction () times 320 Pellet thermal strain I the radial direction () times 321 Pellet thermal strain in the axial direction () times 322 Pellet densification volumetric strain (ΔVV) () times 323 Pellet swelling strain (ΔLL) () times 324 Pellet equivalent creep strain () times 325 Pellet creep strain in the radial direction () times 326 Pellet creep strain in the circumferential direction () times 327 Pellet creep strain in the axial direction () times 328 Pellet equivalent plastic strain () times 329 Pellet plastic strain in the radial direction () times 330 Pellet plastic strain in the circumferential direction () times 331 Pellet plastic strain in the axial direction () times 332 Pellet radial displacement (microm) times

JAEA-DataCode 2013-009

- 175 -

Table (9) Physical Quantities of Y axis (9) IDNO=325- 365 are of the data of 2-D local mechanical analysis They are output only when IFEMRD=0 Stress strain and displacement correspond to the values in half a pellet length geometry

Group IDNO Item Unit Std-Out

C3

Data regarding time burnup locations in the axial and radial directions

333 Pellet axial displacement (microm) times 334 Pellet radial displacement by elastic strain (microm) times

335 Pellet axial displacement by elastic strain (microm) times 336 Pellet radial displacement by thermal strain (microm) times 337 Pellet axial displacement by thermal strain (microm) times 338 Pellet radial displacement by densification (microm) times 339 Pellet axial displacement by densification (microm) times 340 Pellet radial displacement by swelling (microm) times 341 Pellet axial displacement by swelling (microm) times 342 Pellet radial displacement by creep (microm) times 343 Pellet axial displacement by creep (microm) times 344 Pellet radial displacement by plastic strain (microm) times 345 Pellet axial displacement by plastic strain (microm) times

346 347348 349 350

Cladding equivalent stress Cladding average stress Cladding stress in the radial direction Cladding stress in the circumferential direction Cladding stress in the axial direction

(MPa) (MPa) (MPa) (MPa) (MPa)

times times times

351 352 353 354 355

Cladding strain in the radial direction Cladding strain in the circumferential direction Cladding strain in the axial direction Cladding elastic strain in the radial direction Cladding elastic strain in the circumferential direction

() () () () ()

times times times times

356 357 358 359 360

Cladding elastic strain in the axial direction Cladding thermal strain in the radial direction Cladding thermal strain in the axial direction Cladding average axial thermal strain (Note) Cladding axial irradiation growth strain

() () () () ()

times times times times

361 362 363 364 365

Cladding equivalent creep strain Cladding creep strain in the radial direction Cladding creep strain in the circumferential direction Cladding creep strain in the axial direction Cladding equivalent plastic strain

() () () () ()

times times times times

JAEA-DataCode 2013-009

- 176 -

Table (10) Physical Quantities of Y axis (10)

[Note] IDNO=366-400 are results in the case of ldquoIFEMRD=0rdquo ie in the 2-D Local

PCMI analysis Stress strain and displacement are values for the half-length pellet geometry

Group IDNO Item Unit Std-Out

C4

Data regarding time burnup locations in the axial and radial directions

366 Cladding plastic strain in the radial direction ()

367 368

Cladding plastic strain in the circumferential direction Cladding plastic strain in the axial direction

() ()

times times

369 370

Cladding radial displacement Cladding axial displacement

(microm) (microm)

371 372 373 374

Cladding radial displacement by elastic strain Cladding axial displacement by elastic strain Cladding radial displacement by thermal strain Cladding axial displacement by thermal strain

(microm) (microm) (microm) (microm)

375 376 377 378 379

Cladding axial displacement by irradiation growth strain Cladding radial displacement by creep strain Cladding axial displacement by creep strain Cladding radial displacement by plastic strain Cladding axial displacement by plastic strain

(microm) (microm) (microm) (microm) (microm)

380 Pellet yield stress (MPa) times

381 Cladding yield stress (MPa) times

382 Pellet relocation strain in the radial direction () times

383 Pellet relocation strain in the hoop direction () times

384 Pellet relocation strain in the axial direction () times

385 Pellet radial displacement induced by relocation (microm) times

386 Pellet axial displacement induced by relocation (microm) times

387 Cladding outer surface displacement caused by waterside oxidation

(microm) times

388 Pellet radial displacement calculated from strain (microm) times

389 Pellet axial displacement calculated from strain (microm) times

390 Cladding radial displacement calculated from strain (microm) times

391 Cladding axial displacement calculated from strain (microm) times

392 Pellet nodal coordinate value in the radial direction (mm) times

393 Pellet nodal coordinate value in the axial direction (mm) times

394 Cladding nodal coordinate value in the radial direction (mm) times

395 Cladding nodal coordinate value in the axial direction (mm) times

396 Densification and swelling strains of pellet () times

397 Shear stress in pellet (MPa) times

398 Shear stress in cladding (MPa) times

399 Shear strain in pellet () times

400 Shear strain in cladding () times

JAEA-DataCode 2013-009

- 177 -

Table (11) Physical Quantities of Y axis (11)

Group IDNO Item Unit Std-Out

A

Data regarding time and burnup

401 Plenum volume at zero power state (cm3) times 402 Pellet elongation at zero power state (IFEMRD=1) () times

403 Cladding max change of outer diameter at zero power state (IFEMRD=1)

(microm)

times

404 Cladding average change of outer diameter at zero power state (IFEMRD=1)

(microm)

times

405 Cladding elongation at zero power state (IFEMRD=1) () times

406 Cladding internal pressure at zero power state (MPa) times

407 Pellet elongation at zero power state (IFEMRD=0) () times

408 Cladding max change of outer diameter at zero power state (IFEMRD=0)

(microm)

times

409

Cladding average change of outer diameter at zero power state (IFEMRD=0)

(microm)

times

410 Cladding elongation at zero power state (IFEMRD=0) () times

411 - 420 - - - - - Not used - - - - - -

Table (12) Physical Quantities of Y axis (12)

Group IDNO Item Unit Std-

Out B Data

regarding time

burnup and axial elevation

421 Diametral gap size at zero power state (IFEMRD=0) (microm) times

422 PCMI pressure at zero power state(IFEMRD=0) (MPa) times

423 Pellet elongation at zero power state(IFEMRD=0) () times

424 Cladding elongation at zero power state(IFEMRD=0) () times

425 Cladding outer diameter change at zero power (IFEMRD=0) (microm) times

426 Pellet density at zero power state (TD) times

427 Diametral gap size by thermal model at zero power state (IFEMRD=1)

(microm) times

428 PCMI pressure at zero power state(IFEMRD=1) (MPa) times

429 Pellet elongation at zero power state(IFEMRD=1) () times

430 Cladding elongation at zero power state(IFEMRD=1) () times

431 Cladding outer diameter change at zero power (IFEMRD=1)

(microm) times

432 - 450 - - - - - Not used - - - - - -

(Note) When IZEROgt0 the Std-Out is O (output) for all the items of 401 to 406 and 421 to 427

JAEA-DataCode 2013-009

- 178 -

Table (13) Physical Quantities of Y axis (13)

(Note) When IZEROgt0 the Std-Out is O (output) for all the items of 451 to 465 The data 451-465 are for the entire rod length mechanical analysis irrespective of IFEMRD

Group IDNO Item Unit Std-

Out C Data

regarding time

burnup axial and radial locations

451 452 453

Pellet radial strain at zero power state Pellet circumferential strain at zero power state Pellet axial strain at zero power state

() () ()

times times times

454 455 456

Pellet swelling strain at zero power state Pellet radial displacement at zero power state Pellet axial displacement at zero power state

() (microm) (microm)

times times times

457 Pellet radial displacement by swelling at zero power state (microm) times

458 459 460 461

Pellet axial displacement by swelling at zero power state Cladding radial strain at zero power state Cladding circumferential strain at zero power state Cladding axial strain at zero power state

(microm) () () ()

times times

times times

462 Cladding axial strain by irradiation growth at zero power state () times

463 464

Cladding radial displacement at zero power state Cladding axial displacement at zero power state

(microm) (microm)

times

times 465

Cladding axial displacement by irradiation growth at zero power state

(microm) times

466 ndash470 - - - - - Not used - - - - - -

471 472 473

Pellet radial strain at zero power state Pellet circumferential strain at zero power state Pellet axial strain at zero power state

() () ()

times times times

474 475 476

Pellet swelling strain at zero power state Pellet radial displacement at zero power state Pellet axial displacement at zero power state

() (microm) (microm)

times times times

477 Pellet radial displacement by swelling at zero power state (microm) times

478 Pellet axial displacement by swelling at zero power state (microm) times 479 480 481

Cladding radial strain at zero power state Cladding circumferential strain at zero power state Cladding axial strain at zero power state

() () ()

times times times

482 Cladding axial strain by irradiation growth at zero power state () times 483 484

Cladding radial displacement at zero power state Cladding axial displacement at zero power state

(microm) (microm)

times

times

485 Cladding axial displacement by irradiation growth at zero power state

(microm) times

486 ndash500 - - - - - Not used - - - - - -

JAEA-DataCode 2013-009

- 179 -

Table (14) Physical Quantities of Y axis (14) [Note] Number of radial elements of IDNO=501 - 600 depends on the designation of MESH

Group DNO Item Unit Std-Out

C Data

regarding time

burnup axial and radial locations

501 Amount of He generation per unit volume of pellet (atomscm3) times 502

-508 - - - - - Not used - - - - - -

509 He partial pressure in plenum as a function of time and burnup (MPa) times

510 He gas density in plenum as a function of time and burnup (atomscm3

) times

511 -512 - - - - - Not used - - - - - -

513 Plenum gas temperature as a function of time and burnup (oC) times

514 -529 - - - - - Not used - - - - - -

530 Internal pressure at each axial segment as a function of time burnup and axial coordinate MPa times

531-533 - - - - - Not used - - - - - -

534 Segment averaged amount of He generation as a function of time burnup and axial coordinate (atomscm3) times

535 Segment averaged release rate of He as a function of time burnup and axial coordinate () times

536 Number of generated He atoms at each axial segment as a function of time burnup and axial coordinate (atoms) times

537-540 - - - - - Not used - - - - - -

541 Pellet shear creep strain (2-D local mechanical model) () times 542 Pellet shear plastic strain (2-D local mechanical model) () times 543 Pellet shear elastic strain (2-D local mechanical model) () times 544 Pellet shear relocation strain (2-D local mechanical model) () times 545 Cladding shear creep strain (2-D local mechanical model) () times 546 Cladding shear plastic strain (2-D local mechanical model) () times 547 Cladding shear elastic strain (2-D local mechanical model) () times 548 Heating steam layer temperature (Dry-out model) (oC) times

549 Flow inner tube temperature (Dry-out model) (oC) times

550 He gas layer temperature (Dry-out model) (oC) times

551 Flow outer tube temperature (Dry-out model) (oC) times

552 Circulating water temperature (Dry-out model) (oC) times

553 Capsule outer mantle pipe temperature (Dry-out model) (oC) times

554-555 - - - - - Not used - - - - - -

JAEA-DataCode 2013-009

- 180 -

Table (15) Physical Quantities of Y axis (15) [Note] Number of radial elements of IDNO=501 - 600 depends on the designation of MESH

Group IDNO Item Unit Std-Out

C Data

regarding time

burnup axial and

radial ocations

556 Axial coordinate of top height of buffer element of each axial segment (mm) times

557 Axial coordinate of top height of pellet stack of each axial segment (mm) times

558 - - - - - -Not used - - - - - - - -

559 Pellet stack total (elastic+plastic) elongation excluding thermal expansion component () times

560 Cladding total (elastic+plastic) elongation excluding thermal expansion component () times

561 Volume of released fission gas at 1 atm 0 oC (mm3) times 562 Volume of released He gas at 1atm 0oC (mm3) times

563 Pellet peak temperature highest temperature of pellet stack ring element at a certain axial segment (oC) times

564 Location of peak temperature the radial coordinate value of mid-thickness of pellet stack ring element having the highest temperature IDNO=563 in a certain axial segment

(mm) times

565 Average hydrogen concentration H in cladding (wtppm) times

566 Pre-crack depth a1 (derived from the least square approximation curve of data of high burnup PWR fuels subjected to the NSRR experiments)

(microm) times

567 Pre-crack depth a2 (derived from an upper envelope curve of data of high burnup PWR fuels subjected to the NSRR experiments )

(microm) times

568 Effective fast neutron fluence (ncm2) times 569 Coefficient of cladding cold-work (-) times 570 Cladding temperature used to evaluate IDNO=568 and 569 (oC) times

571 Cladding temperature change rate used to evaluate IDNO=568 and 569 (oCs) times

572 Gas phase volume of plenum (cm3) times

573 Ratio of amount of fission gas atoms retained inside grains to the total generation of fission gas atoms () times

574 Ratio of amount of fission gas atoms retained at grain boundary to the total generation of fission gas atoms () times

575 -582 - - - - - Not used - - - - - -

583 Temperature at the most-heated segment of cladding () times

584 -592 - - - - - Not used - - - - - -

593 Additional FGR from rim structure (depending on the radial element and axial segment) () times

594 Ratio of amount of fission gas atoms generated in rim structure to the total amount of generated fission gas atoms in pellet (depending on the radial element and axial segment)

() times

595 - 598 - - - - - Not used - - - - - -

599 Critical heat flux (Wcm2) times 600 - - - - - Not used - - - - - -

JAEA-DataCode 2013-009

- 181 -

Table (16) Physical Quantities of Y axis (16) [Note] Number of radial elements of IDNO=701 - 708 depends on the designation of MESH

Group IDNO Item Unit Std-Out

C

Data regarding time burnup axial and radial locations

701 Ratio of amount of fission gas atoms retained in solid phase to the total amount of generated fission gas atoms for each axial segment

() times

702 Ratio of amount of fission gas atoms in rim pores to the total amount of generated fission gas atoms for each axial segment () times

703 Ratio of amount of fission gas atoms in grain boundary bubbles to the total amount of generated fission gas atoms for each axial segment

() times

704 Ratio of amount of fission gas atoms in grain boundary bubbles to the total amount of generated fission gas atoms in a rod () times

705 Ratio of amount of fission gas atoms in rim pores to the total amount of generated fission gas atoms in a rod () times

706 Ratio of amount of fission gas atoms retained in solid phase to the total amount of generated fission gas atoms in a rod () times

707 Ratio of amount of fission gas atoms in intra-grain gas bubbles to the total amount of generated fission gas atoms in a rod () times

708 Ratio of amount of fission gas atoms retained inside pellets to the total amount of generated fission gas atoms in a rod () times

JAEA-DataCode 2013-009

- 182 -

63 Plotting the quantities with common Y-axis To plot the following data in a single picture IYNUM=1 is to be designated so that Y-

axis is drawn by a common scale

Physical quantity of Y-axis IDNO Burnup 1 42 101

Fission gas release rate 2 45 70 107 255 573 574 Rod internal pressure 3 406 Rod internal free volume 4 401 572 Elongations of pellet and cladding 5 6 17 18 47 48 402 405 423 424 Cladding outer diameter change 7 11 19 20 55 78 403 404 425 431 Pellet stack displacement in the axial direction 133 266

Linear heat rate 8 41 Iodine concentration 9 10 Temperature 12 50 51 52 53 54 58 Gap size 43 67 421 427 PCMI pressure 44 46 422 428 Molar amount of released fission gas 71 72 73 Stress 109-113 309-313 Strain 114-131 156-173 451-454 459-462 Displacement 132-145 174-184 455-458 463-465 Radius of inter-granular gas bubble 148194 Number density of gas atoms in grain 185-188 264 - 266 270 274 Surface number density of gas atoms in grain boundary 190 191 Diffusion constant of fission gas atoms 195196 Pellet temperature 53 54 103 105 253 279 303 305 Cladding temperature 51 52 58 104 106 304 306 Cladding deviation stress 248 - 250 Fast neutron fluence 16 65 568

Example Specifying the IRNUM=number of plotted figures and IYNUM=1

401 the first ldquo4rdquo is IRNUM the number of figures 133151525354 fuel temperature the fourth ldquo1rdquo is IYNUM the number of Y-axis 1111 Specifying the radial ring number 1111 Specifying the axial segment number 11000 00 30 05 13 2780 28801003 ldquoIYNUM=1rdquo allows only one line for Y-axis scale

JAEA-DataCode 2013-009

- 183 -

64 Explanation on the physical quantities of Y-axis (3) (4) C Group

In the following explanation thermal analysis is identical irrespective of IFEMRD value

designated by input Also fission gas release rate (Item No107) is an exception of the explanation because it is always output at each axial segment

641 Physical quantities of pellet (1) In thermal analysis and ERL mechanical analysis

Displacement stress strain etc are evaluated at points indicated bytimesmarks which are the Gaussrsquos integral (Gaussian) points Here temperature is either the value at node or element average value When assigning the plotting positions IR and IZ assign the location of point in the radial and axial directions respectively Physical quantities evaluated at nodal points should be specified by IRrsquo=IR+1

When MESH=3 IR=1 to 36 and IZ= designated axial segments in both thermal analysis

and ERL mechanical analysis An example of ring element division of pellet stack is shown

in Fig61

[In case of 36 radial divisions] IR= 1 2 3 4 5 hellip 33 34 35 36

times times times times times times times times times times 8 (No of Axial

times times times times times times times times times times 7 segments

times times times times times times times times times times 6 ≦40)

times times times times times times times times times times 5

times times times times times times times times times times 4

times times times times times times times times times times 3

times times times times times times times times times times 2

times times times times times times times times times times IZ=1 Center line of Pellet Fig61 Numbering of elements and location of Gaussian points in the case where

pellet stack is divided into 36 ring elements in the radial direction and 8 segments in the axial direction

JAEA-DataCode 2013-009

- 184 -

(2) 2-D local mechanical analysis

Displacement stress strain etc are evaluated at points indicated bytimesmarks which are the Gaussrsquos integral (Gaussian) points Here temperature is either the value at node or element average value When assigning the plotting positions IR and IZ assign the location of point in the radial and axial directions respectively Physical quantities evaluated at nodal points should be specified by IRrsquo=IR+1

When MESH=3 and outputting the physical quantities of each element IR=1 to 36 (18 ring elements) and IZ=1 to 6 (three elements)

When MESH=3 and outputting the physical quantities at nodal points of each element IR=1 to 37 and IZ=1 to 7

An example of ring element division of half a pellet length is shown in Fig62

[In case of 18 radial elements] IR= 1 2 3 4 5 33 34 35 36

times times times times times times times times times times 6

times times times times times times times times times times 5

times times times times times times times times times times 4 Half a pellet length

times times times times times times times times times times 3

times times times times times times times times times times 2

times times times times times times times times times times 1=IZ

Center line of Pellet

Fig62 Numbering of elements and location of Gaussian points in the case where half a pellet geometry is divided into 18 ring elements in the radial direction and 5 elements in the axial direction

JAEA-DataCode 2013-009

- 185 -

642 Physical quantities of cladding

(1) Model 1 ERL mechanical analysis (IFEMRD=1) Displacement stress strain etc are evaluated at points indicated bytimesmarks which are

the Gaussrsquos integral (Gaussian) points Here temperature is either the value at node or element average value When assigning the plotting positions IR and IZ assign the location of point in the radial and axial directions respectively

A cladding with no Zr-liner has 10 ring elements consisting of 8 elements for metallic

part and 2 elements for outer surface oxide Accordingly with respect to Gaussian points and

temperatures IR=1 to 8 are for the metallic elements and IR=9 and 10 are for the outer oxide

However a cladding with Zr-liner has 12 ring elements consisting of 2 elements for Zr-

liner 8 elements for metallic part and 2 elements for outer surface oxide Accordingly with

respect to Gaussian points and temperatures IR=1 to 2 are for the Zr-liner elements IR=3 to

10 are for the metallic elements and IR=11 and 12 are for the outer oxide Physical quantities evaluated at nodal points should be specified by IRrsquo=IR+1

The standard setting of ring element division of cladding in the 1-D ERL and thermal

analyses is shown in Fig63

Standard setting (No of Axial segments≦40) IR= 1 2 3 4 5 6 7 8 9 10

times times times times times times times times times times IZ= 8

times times times times times times times times times times 7

times times times times times times times times times times 6

times times times times times times times times times times 5

times times times times times times times times times times 4

times times times times times times times times times times 3

times times times times times times times times times times 2

Inner surface times times times times times times times times times times 1

of cladding Metal Oxide Fig63 Numbering of elements and location of Gaussian points in the cladding segment

which has 8 ring elements of metal part and two outer oxide elements

JAEA-DataCode 2013-009

- 186 -

(2) Mode 2 3 2-D local mechanical analysis (IFEMRD=0) Stress strain etc evaluated at points indicated bytimesmarks which are the Gaussrsquos integral

points Here temperature is either the value at node or element average value Displacement is evaluated at nodal points and output

Fig64 shows an example which has 5 ring elements ie 4 metallic elements and one outer oxide element The inner element is ignored in the 2-D mechanical analysis

Here if cladding has Zr-liner the inner elements 1 and 2 is assigned to Zr-liner so that IR=1 and 2 are the Zr-liner elements IR=3 to 10 are metallic elements and IR=11 and 12 are outer oxide elements

Physical quantities evaluated at nodal points should be specified by both IRrsquo=IR+1 and IZrsquo=IZ+1

The standard setting of ring element division of cladding in the 2-D local mechanical

analysis is shown in Fig63

[In case of 5 radial elements] IR= 1 2 3 4 5 6 7 8 9 10

times times times times times times times times times times 6

times times times times times times times times times times 5

times times times times times times times times times times 4 Half a pellet length

times times times times times times times times times times 3

times times times times times times times times times times 2

times times times times times times times times times times 1=IZ

Metal Oxide Inner surface of cladding

Fig64 Numbering of elements and location of Gaussian points in the cladding segment

which corresponds to half a pellet length and has 4 ring elements of metal part one outer oxide ring element and 6 axial elements

JAEA-DataCode 2013-009

- 187 -

7 Sample InputOutput (numerical and plotted outputs)

71 FEMAXI-7 numerical output image of ldquoABC1outrdquo

FUEL ELEMENT MODELING BY AXI SYMMETRIC FINITE ELEMENT METHOD - - - --- - - - VERSION 11 MECHANICAL ANALISYS MODE WHOLE ROD (IFEMRD = 1) RUN DATE 13MAR04 START TIME 194833 ( INPUT FILE NAME = ft05d ) 1 I N P U T D A T A L I S T ------------------------------- 1 2 3 4 5 6 7 8 CARD NO 5050505050505050 1 PWR-type Rod Sample Case (January 2012) 2 ampINPUT IBUNP=1IDAY=1IRH=1 TROOM=2951 DTPL=200 ICORRO=2 PX=990 3 PITCH=16 IPUGH=1 TLIM=1000 IFLX=-2 INPRD=2 RCORRO=04 4 IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=1FAIW=5E11 5 IGRAIN=0 GR=100 GRWF=15 LBU=1 IPRO=0 R1=10 R2=10 ICAGRW=1 6 IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0 7 8 IFEMRD=1 IFEMOP=2 IDSELM=1 IDENSF=0 DMAX=1020 FDENSF=0 9 IPEXT=14 IDCNST=1 IPTHCN=17 IFSWEL=4 A1=006 ICPLAS=3 10 IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001 11 MATXO=2 FACXO=01 01 01 100 01 12 CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6 13 IRM=0 MESH=3 MOXP=0 IPLYG=1 IZYG=1 TCS=177315 IZOX=1 IST=1 14 15 IPRINT=11001 IPLOPT=5 DPBU=100 16 IWTHE=100190130 31 17 IWROD(1)=31 80 31 000100 18 IDNO(1)=81 60 51 200 19 IDNO(41)=101 01111 301 401101150130101 20 IDNO(81)=1 190 21 IDNO(101)=10 3101 30101101 601 801100 1130 22 IDNO(151)=20 61 30110101 3010011 401 210 23 ampEND 24 10 6 25 1 083 097 26 2 0 00 082 10 004 095 10 27 2 0 00 082 10 004 095 10 28 2 0 00 082 10 004 095 10 29 2 0 00 082 10 004 095 10 30 2 0 00 082 10 004 095 10 31 2 0 00 082 10 004 095 10 32 2 0 00 082 10 004 095 10 33 2 0 00 082 10 004 095 10 34 2 0 00 082 10 004 095 10 35 2 0 00 082 10 004 095 10 36 06218 0021 00 37 80 10 10 00 00 00 5500 00 38 23 39 00 01 55815 154 1 304 40 620 865 1000 1149 1190 1163 1005 0931 41 786 541 8 42 100 1145 43 150000 2500

JAEA-DataCode 2013-009

- 188 -

44 200000 2700 45 250000 2900 1 46 280000 2700 47 300000 2600 48 305000 1000 49 305010 10 1 50 656 903 1098 1167 1201 1174 1073 0959 51 817 581 8 52 305100 1000 53 350000 2000 1 54 400000 2200 55 420000 2100 56 460000 2050 57 490000 1900 58 500000 1800 59 500100 60 1 60 798 1002 1104 1128 1122 1104 1086 1032 61 912 708 7 62 501100 1700 1 63 520000 1600 64 550000 1500 65 570000 1400 66 598999 1100 55815 154 1 304 67 599000 1100 55815 154 1 304 68 STOP 5050505050505050 1 0---------------------------------------------------------------------------------- PWR-type Rod Sample Case (January 2012) ---------------------------------------------------------------------------------- INPUT DATA 0(1) PELLET SPECIFICATIONS ---- 0 NODE DIAMETER (CM) SHAPE U-235 FRACTIONAL ONE PELLET NODE INSIDE OUTSIDE CHAMF DISH ENRICH DENSITY LENGTH (CM) LENGTH (CM) 1 0000 0820 0040 0950 1000 10000 2 0000 0820 0040 0950 1000 10000 3 0000 0820 0040 0950 1000 10000 4 0000 0820 0040 0950 1000 10000 5 0000 0820 0040 0950 1000 10000 6 0000 0820 0040 0950 1000 10000 7 0000 0820 0040 0950 1000 10000 8 0000 0820 0040 0950 1000 10000 9 0000 0820 0040 0950 1000 10000 10 0000 0820 0040 0950 1000 10000 DISH DIAMETER (CM) = 0622 DISH DEPTH (CM) = 0021 DISH BOTTOM (CM) = 0000 PELLET TOTAL WEIGHT (GRAM) = 550000 GRAIN SIZE (MICRON) = 10000 MAXIMUM FRACTIONAL DENSITY = 0970 SATURATE BURNUP (MWDTUO2) = 20000000 (2) OTHERS CLAD MATERIAL IS STRESS RELIEVED ZIRCALOY CLAD INSIDE DIAMETER (CM) = 0830 CLAD OUTSIDE DIAMETER (CM) = 0970 THERMAL RELOCATION (-) = 0300 UPPER PLENUM VOLUME (CM3) = 8000 LOWER PLENUM VOLUME (CM3) = 0000 INITIAL GAS PRESSURE (MPA) = 1000 INITIAL GAS COMPOSITION (PERCENT) HELIUM = 1000 N2 = 00 KRYPTON = 00 XENON = 00 PELLET SURFACE ROUGHNESS (CM) = 00001 CLADDING SURFACE ROUGHNESS (CM) = 00001 ROOM TEMPERATURE (DEGK) = 29510 1 HISTORY DATA (1) STAGE TIME BURNUP LHR COOLANT COOLANT COOLANT FAST NEUTRON HISTRY PRINT SSUS NO TEMP PRESS VELOCITY FLUX OPTION OPTION OPTION (NHIST) (H M S MS) (MWDTUO2) (MWDTU) (GJKGU) (WCM) (DEGK) (MPA) (MS) (NCM2S) (0=OFF) (1=ON) (1=0N) ------- -------------- ---------------------------- ------- -------- ------- ---------- ------------ ------ ------ ------ 1 0 0 0 0 00 00 000 00 55815 1540 30400 5000D+09 0 1 0 2 201920424 88 100 086 1145 55815 1540 30400 5725D+13 0 0 0 3 95903137860 132222 150000 129600 2500 55815 1540 30400 1250D+14 0 0 0 4 11828 8 2729 176296 200000 172800 2700 55815 1540 30400 1350D+14 0 0 0 5 139055442965 220370 250000 216000 2900 55815 1540 30400 1450D+14 0 1 0 6 151523443106 246815 280000 241920 2700 55815 1540 30400 1350D+14 0 0 0 7 1603044 1696 264444 300000 259200 2600 55815 1540 30400 1300D+14 0 0 0 8 163535637288 268852 305000 263520 1000 55815 1540 30400 5000D+13 0 0 0 9 163561451942 268861 305010 263529 10 55815 1540 30400 5000D+11 0 1 0 10 1637659 3825 268940 305100 263606 1000 55815 1540 30400 5000D+13 0 0 0 11 198595338887 308519 350000 302400 2000 55815 1540 30400 1000D+14 0 1 0 12 226301552534 352593 400000 345600 2200 55815 1540 30400 1100D+14 0 0 0 13 237123830796 370222 420000 362880 2100 55815 1540 30400 1050D+14 0 0 0 14 259553826231 405481 460000 397440 2050 55815 1540 30400 1025D+14 0 0 0 15 27723 4 0609 431926 490000 423360 1900 55815 1540 30400 9500D+13 0 0 0

JAEA-DataCode 2013-009

- 189 -

16 28352 056896 440741 500000 432000 1800 55815 1540 30400 9000D+13 0 0 0 17 283643137758 440829 500100 432086 60 55815 1540 30400 3000D+12 0 1 0 18 284964457773 441710 501100 432950 1700 55815 1540 30400 8500D+13 0 1 0 19 298293257924 458370 520000 449280 1600 55815 1540 30400 8000D+13 0 0 0 20 320813533 18 484815 550000 475200 1500 55815 1540 30400 7500D+13 0 0 0 21 336862948372 502444 570000 492480 1400 55815 1540 30400 7000D+13 0 0 0 22 3638551 9574 528007 598999 517535 1100 55815 1540 30400 5500D+13 0 1 0 23 363855730374 528007 599000 517536 1100 55815 1540 30400 5500D+13 0 1 0 LAST STAGE NUMBER = 23 ---------------------------- HISTORY DATA LIST (MODIFIED BY RODBURN OUTPUT RESULT) 1 HISTORY DATA (1) STAGE TIME BURNUP LHR COOLANT COOLANT COOLANT FAST NEUTRON HISTRY PRINT SSUS NO TEMP PRESS VELOCITY FLUX OPTION OPTION OPTION (NHIST) (H M S MS) (MWDTUO2) (MWDTU) (GJKGU) (WCM) (DEGK) (MPA) (MS) (NCM2S) (0=OFF) (1=ON) (1=0N) ------- -------------- ---------------------------- ------- -------- ------- ---------- ------------ ------ ------ ------ 1 0 0 0 0 00 00 000 00 55815 1540 30400 4625D+09 0 1 0 2 201920424 82 93 080 1059 55815 1540 30400 5296D+13 0 0 0 3 95903137860 123995 140667 121536 2359 55815 1540 30400 1180D+14 0 0 0 4 11828 8 2729 165727 188010 162441 2565 55815 1540 30400 1282D+14 0 0 0 5 139055442965 207733 235664 203613 2773 55815 1540 30400 1386D+14 0 1 0 6 151523443106 233063 264399 228441 2591 55815 1540 30400 1296D+14 0 0 0 7 1603044 1696 250005 283620 245047 2502 55815 1540 30400 1251D+14 0 0 0 8 163535637288 254247 288432 249205 963 55815 1540 30400 4814D+13 0 0 0 9 163561451942 254256 288442 249213 10 55815 1540 30400 4815D+11 0 1 0 10 1637659 3825 254332 288528 249288 963 55815 1540 30400 4815D+13 0 0 0 11 198595338887 292666 332016 286862 1943 55815 1540 30400 9714D+13 0 1 0 12 226301552534 335695 380831 329038 2158 55815 1540 30400 1079D+14 0 0 0 13 237123830796 353018 400483 346017 2068 55815 1540 30400 1034D+14 0 0 0 14 259553826231 387863 440013 380171 2034 55815 1540 30400 1017D+14 0 0 0 15 27723 4 0609 414169 469856 405955 1896 55815 1540 30400 9478D+13 0 0 0 16 28352 056896 422972 479842 414583 1799 55815 1540 30400 8996D+13 0 0 0 17 283643137758 423060 479942 414670 60 55815 1540 30400 2999D+12 0 1 0 18 284964457773 423941 480941 415533 1699 55815 1540 30400 8497D+13 0 1 0 19 298293257924 440594 499834 431856 1599 55815 1540 30400 7997D+13 0 0 0 20 320813533 18 467028 529822 457766 1499 55815 1540 30400 7497D+13 0 0 0 21 336862948372 484651 549814 475039 1399 55815 1540 30400 6997D+13 0 0 0 22 3638551 9574 510203 578801 500084 1100 55815 1540 30400 5498D+13 0 1 0 23 363855730374 510203 578802 500085 1100 55815 1540 30400 5498D+13 0 1 0 LAST STAGE NUMBER = 23 ---------------------------- 1 OUTPUT ---STAGE--- 1 IFEM = 6 ---------------------------------------------------------------------------------------------------- |THERMAL ANALYSIS INFORMATION | | STAGE NO 1 | | TIME (HMSMS) 0 0 0 0 | | COOLANT TEMPERATURE 28500 DEGC | | COOLANT PRESSURE 154D+01 MPA | ---------------------------------------------------------------------------------------------------- LHR BURN UP GAP CONDUCTANCE (WCM2-K) TEMPERATURE (C) CLEARANCE CONTACT NODE (WCM) (MWDTU) TOTAL GAS SOLID RAD PC PS CI CO (MICRONS) FORCE(MPA) NODE 10 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 10 9 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 9 8 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 8 7 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 7 6 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 6 5 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 5 4 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 4 3 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 3 2 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 2 1 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 1 BURN UP PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) (FISSCC THERMAL DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE CSFR PFAC 1020) EXPANS CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 9 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 8 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 7 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 6 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 5 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 4 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 3 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 2 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 1 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 CLAD SURFACE COOLANT COOLANT COOLANT CLAD SURFACE CLAD SURFACE HEAT TRANS CLAD OUTER CORROSION NODE TEMP(C) TEMP(C) ENTHALPY(JKG) QUALTY(-) HF(WCM2) COEF(WCM2K) MODE (MICROND) THICKNESS(MIC)

JAEA-DataCode 2013-009

- 190 -

10 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 9 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 8 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 7 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 6 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 5 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 4 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 3 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 2 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 1 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 MODE1 SINGLE PHASE FORCED CONVECTION (DITTUS-BOELTER) MODE2 NUCLEATE BOILING (JENS-LOTTES) MODE3 HIGH-FLOW TRANSITION BOILING(MODIFIED CONDIE BENGSTON) MODE4 HIGH-FLOW FILM BOILING(CONDIE BENGSTON) MODE5 LOW-FLOW POST-CHF TRANSITION AND FILM BOILING MODE6 CONDENSATION 0 INITIAL GAS (MOL) = 414D-03 0 FISSION GAS RESULT 0 LOCAL FISSION GAS RELEASE FRACTION (AXIAL NODE) 1 000500 2 000500 3 000500 4 000500 5 000500 6 000500 7 000500 8 000500 9 000500 10 000500 0 ROD AVERAGE FISSION GAS = 000500 FRACTIONS OF GAS MIXTURE (PERCENT) AXIAL NODE RELEASE FRACTION 1 2 3 4 5 6 7 8 9 10 ROD GAS PRESSURE ( MPA ) = 1938 HE 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 ROD GAS VOLUME ( CM3 ) = 9908 N2 00 00 00 00 00 00 00 00 00 00 (GAPPLENUM)= 2159 7749 KR 00 00 00 00 00 00 00 00 00 00 TOTAL GAS ( MOL ) = 414D-03 XE 00 00 00 00 00 00 00 00 00 00 ROD PRS(MPA) 1938 1938 1938 1938 1938 1938 1938 1938 1938 1938 0 RELEASED IODINE ( GRAMCM2 ) = 274D-24 (AVERAGE) 345D-24 (PEAK) 0 (MOL) HE N2 KR XE TOTAL PRODUCED GAS 130D-24 000D+00 130D-17 870D-17 100E-16 RELEASED GAS 195D-26 000D+00 168D-23 113D-22 130E-22 ROD GAS 414D-03 000D+00 168D-23 113D-22 414E-03 0 RADIAL TEMPERATURE DISTRIBUTION AT AXIAL NODE OF 6 PELLET GAP CLAD 1234567891011 123 285 285 285 285 285 285 285 285 285 285 285 285 285 285 === OPTIONAL OUTPUT (IN ELEMENT AVERAGE) === ---------------------------------------------------------------------------------------------------- | TEMPERATURE DISTRIBUTION IN THE FUEL (DEGC) IWTHE= 1 | ---------------------------------------------------------------------------------------------------- SEG 10 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 9 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 8 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 7 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 6 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 5 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 4 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 3 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 2 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 1 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 ---------------------------------------------------------------------------------------------------- | RADIUS OF INTRAGRANULAR GAS BUBBLE (ANGSTROM) IWTHE= 4 | ---------------------------------------------------------------------------------------------------- SEG 10 000 000 000 000 000 000 000 000 000 000 9 000 000 000 000 000 000 000 000 000 000 8 000 000 000 000 000 000 000 000 000 000 7 000 000 000 000 000 000 000 000 000 000 6 000 000 000 000 000 000 000 000 000 000 5 000 000 000 000 000 000 000 000 000 000 4 000 000 000 000 000 000 000 000 000 000 3 000 000 000 000 000 000 000 000 000 000 2 000 000 000 000 000 000 000 000 000 000 1 000 000 000 000 000 000 000 000 000 000 ---------------------------------------------------------------------------------------------------- | FISSION GAS RELEASE RATE IN A RING () IWTHE= 14 | ---------------------------------------------------------------------------------------------------- SEG 10 050 050 050 050 050 050 050 050 050 050 9 050 050 050 050 050 050 050 050 050 050 8 050 050 050 050 050 050 050 050 050 050 7 050 050 050 050 050 050 050 050 050 050 6 050 050 050 050 050 050 050 050 050 050 5 050 050 050 050 050 050 050 050 050 050 4 050 050 050 050 050 050 050 050 050 050 3 050 050 050 050 050 050 050 050 050 050 2 050 050 050 050 050 050 050 050 050 050 1 050 050 050 050 050 050 050 050 050 050 ---------------------------------------------------------------------------------------------------- BURNUP DISTRIBUTION IN THE FUEL (MWDT) IWTHE= 18 ---------------------------------------------------------------------------------------------------- SEG 10 00 00 00 00 00 00 00 00 00 00 9 00 00 00 00 00 00 00 00 00 00 8 00 00 00 00 00 00 00 00 00 00 7 00 00 00 00 00 00 00 00 00 00 6 00 00 00 00 00 00 00 00 00 00 5 00 00 00 00 00 00 00 00 00 00 4 00 00 00 00 00 00 00 00 00 00 3 00 00 00 00 00 00 00 00 00 00 2 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00

JAEA-DataCode 2013-009

- 191 -

================================================================================================================================== MECHANICAL ANALYSIS INFORMATION OUTPUT STAGE NUMBER = 1 TIME = 0 H 0 M 0 S 00 MS ROD GAS PRESS(MPA) = 1938 COOLANT PRESS(MPA) = 15400 AXIAL FORCE(N) = -6479344 ================================================================================================================================== ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ SEG LHR B U R N U P FAST NEUTRON FLUX FAST NEUTRON FLUENCE FISSION RATE (WCM) (GJKGU) (MWDTU) (MWDTUO2) (FISSCC) (NCM2SEC) (NCM2) (FISSCCSEC) ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ 10 00 200860D-15 232477D-14 204924D-14 579572D+02 270500D+09 973800D+03 319723D+08 9 00 291823D-15 337758D-14 297727D-14 842040D+02 393000D+09 141480D+04 464514D+08 8 00 345658D-15 400067D-14 352651D-14 997378D+02 465500D+09 167580D+04 550207D+08 7 00 373132D-15 431866D-14 380682D-14 107665D+03 502500D+09 180900D+04 593940D+08 6 00 431794D-15 499761D-14 440530D-14 124592D+03 581500D+09 209340D+04 687315D+08 5 00 441818D-15 511364D-14 450758D-14 127484D+03 595000D+09 214200D+04 703272D+08 4 00 426596D-15 493745D-14 435227D-14 123092D+03 574500D+09 206820D+04 679041D+08 3 00 371276D-15 429717D-14 378788D-14 107130D+03 500000D+09 180000D+04 590985D+08 2 00 321154D-15 371705D-14 327651D-14 926673D+02 432500D+09 155700D+04 511202D+08 1 00 230191D-15 266425D-14 234848D-14 664205D+02 310000D+09 111600D+04 366410D+08 ---------------------------------------------------------------------------------------------------- STRESS(RADIAL) (MPA) IWROD= 1 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 SEGMENT NUM 10 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 9 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 8 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 7 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 6 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 5 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 4 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 3 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 2 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 1 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 ---------------------------------------------------------------------------------------------------- STRESS(HOOP) (MPA) IWROD= 2 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 7 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00

JAEA-DataCode 2013-009

- 192 -

1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 SEGMENT NUM 10 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 9 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 8 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 7 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 6 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 5 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 4 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 3 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 2 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 1 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 ---------------------------------------------------------------------------------------------------- STRESS(AXIAL) (MPA) IWROD= 3 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 9 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 8 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 7 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 6 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 5 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 4 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 3 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 2 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 1 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 SEGMENT NUM 10 -519 -519 -519 -519 -519 -519 -519 -519 50 50 9 -519 -519 -519 -519 -519 -519 -519 -519 50 50 8 -519 -519 -519 -519 -519 -519 -519 -519 50 50 7 -519 -519 -519 -519 -519 -519 -519 -519 50 50 6 -519 -519 -519 -519 -519 -519 -519 -519 50 50 5 -519 -519 -519 -519 -519 -519 -519 -519 50 50 4 -519 -519 -519 -519 -519 -519 -519 -519 50 50 3 -519 -519 -519 -519 -519 -519 -519 -519 50 50 2 -519 -519 -519 -519 -519 -519 -519 -519 50 50 1 -519 -519 -519 -519 -519 -519 -519 -519 50 50 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(RADIAL) (001) IWROD= 12 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 9 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 8 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 7 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 6 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 5 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 4 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 3 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 2 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 1 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 SEGMENT NUM 10 240 237 234 231 228 225 223 221 -177 -177 9 240 237 234 231 228 225 223 221 -177 -177

JAEA-DataCode 2013-009

- 193 -

8 240 237 234 231 228 225 223 221 -177 -177 7 240 237 234 231 228 225 223 221 -177 -177 6 240 237 234 231 228 225 223 221 -177 -177 5 240 237 234 231 228 225 223 221 -177 -177 4 240 237 234 231 228 225 223 221 -177 -177 3 240 237 234 231 228 225 223 221 -177 -177 2 240 237 234 231 228 225 223 221 -177 -177 1 240 237 234 231 228 225 223 221 -177 -177 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(HOOP) (001) IWROD= 13 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 9 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 8 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 7 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 6 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 5 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 4 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 3 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 2 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 1 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 SEGMENT NUM 10 75 79 82 85 88 90 93 95 96 96 9 75 79 82 85 88 90 93 95 96 96 8 75 79 82 85 88 90 93 95 96 96 7 75 79 82 85 88 90 93 95 96 96 6 75 79 82 85 88 90 93 95 96 96 5 75 79 82 85 88 90 93 95 96 96 4 75 79 82 85 88 90 93 95 96 96 3 75 79 82 85 88 90 93 95 96 96 2 75 79 82 85 88 90 93 95 96 96 1 75 79 82 85 88 90 93 95 96 96 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(AXIAL) (001) IWROD= 14 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 9 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 8 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 7 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 6 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 5 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 4 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 3 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 2 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 1 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 SEGMENT NUM 10 75 75 75 75 75 75 75 75 75 75 9 75 75 75 75 75 75 75 75 75 75 8 75 75 75 75 75 75 75 75 75 75 7 75 75 75 75 75 75 75 75 75 75 6 75 75 75 75 75 75 75 75 75 75 5 75 75 75 75 75 75 75 75 75 75 4 75 75 75 75 75 75 75 75 75 75 3 75 75 75 75 75 75 75 75 75 75

JAEA-DataCode 2013-009

- 194 -

2 75 75 75 75 75 75 75 75 75 75 1 75 75 75 75 75 75 75 75 75 75 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 9 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 8 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 7 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 6 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 5 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 4 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 3 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 2 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 1 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 (R-DIRECTION OF Cladding) 10 31 33 35 37 39 41 43 45 47 47 47 9 31 33 35 37 39 41 43 45 47 47 47 8 31 33 35 37 39 41 43 45 47 47 47 7 31 33 35 37 39 41 43 45 47 47 47 6 31 33 35 37 39 41 43 45 47 47 47 5 31 33 35 37 39 41 43 45 47 47 47 4 31 33 35 37 39 41 43 45 47 47 47 3 31 33 35 37 39 41 43 45 47 47 47 2 31 33 35 37 39 41 43 45 47 47 47 1 31 33 35 37 39 41 43 45 47 47 47 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 772674 (Plenum) 10 5414193 753509 9 4872774 678158 8 4331355 602807 7 3789935 527456 6 3248516 452105 5 2707097 376754 4 2165677 301403 3 1624258 226053 2 1082839 150702 1 541419 75351 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT INCREMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 9 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 8 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 7 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 6 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314

JAEA-DataCode 2013-009

- 195 -

5 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 4 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 3 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 2 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 1 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 (R-DIRECTION OF Cladding) 10 31 33 35 37 39 41 43 45 47 47 47 9 31 33 35 37 39 41 43 45 47 47 47 8 31 33 35 37 39 41 43 45 47 47 47 7 31 33 35 37 39 41 43 45 47 47 47 6 31 33 35 37 39 41 43 45 47 47 47 5 31 33 35 37 39 41 43 45 47 47 47 4 31 33 35 37 39 41 43 45 47 47 47 3 31 33 35 37 39 41 43 45 47 47 47 2 31 33 35 37 39 41 43 45 47 47 47 1 31 33 35 37 39 41 43 45 47 47 47 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 772674 (Plenum) 10 5414193 753509 9 4872774 678158 8 4331355 602807 7 3789935 527456 6 3248516 452105 5 2707097 376754 4 2165677 301403 3 1624258 226053 2 1082839 150702 1 541419 75351 STAGE NO 1 PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) CLEARANCE CONTACT THERMAL ELASTIC DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE (MICRONS) FORCE(MPA) EXPANS DEFORM CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 9 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 8 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 7 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 6 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 5 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 4 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 3 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 2 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 1 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 OUTPUT ---STAGE--- 245 IFEM = 6 ---------------------------------------------------------------------------------------------------- |THERMAL ANALYSIS INFORMATION | | STAGE NO 245 | | TIME (HMSMS) 139055442965 | | COOLANT TEMPERATURE 28500 DEGC | | COOLANT PRESSURE 154D+01 MPA | ---------------------------------------------------------------------------------------------------- LHR BURN UP GAP CONDUCTANCE (WCM2-K) TEMPERATURE (C) CLEARANCE CONTACT NODE (WCM) (MWDTU) TOTAL GAS SOLID RAD PC PS CI CO (MICRONS) FORCE(MPA) NODE 10 1664 139916 2202 2198 0000 00043 7375 3823 3532 3253 2311 0000 10 9 2353 200109 4987 3357 0061 00047 9618 3956 3774 3385 0000 8141 9 8 2766 236006 6250 3446 0067 00050 11233 4093 3923 3470 0000 9306 8 7 3076 259181 6921 3494 0068 00053 12522 4205 4033 3534 0000 9540 7 6 3399 292014 7687 3535 0065 00056 14005 4335 4164 3618 0000 9354 6 5 3477 298764 7775 3545 0065 00056 14343 4351 4178 3620 0000 9477 5 4 3375 289333 7481 3503 0062 00054 13823 4281 4107 3562 0000 8991 4 3 3133 261438 6714 3467 0065 00052 12651 4158 3978 3467 0000 9267 3 2 2599 220676 5349 3367 0062 00047 10420 3945 3758 3327 0000 8608 2 1 1884 159197 3062 3050 0004 00042 7860 3727 3490 3172 0000 0576 1 BURN UP PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) (FISSCC THERMAL DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE CSFR PFAC 1020) EXPANS CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 00000 00000 346 1956 -142 -2035 1123 1244 2128 908 -368 -2965 -2641 9 00000 00000 495 2684 -1053 -2338 1606 1126 1827 970 -113 -3777 -3173 8 00000 00000 584 3300 -1916 -2451 1894 1131 1748 1008 -085 -3905 -3252 7 00000 00000 641 3849 -2657 -2505 2080 1139 1713 1036 -084 -3960 -3287 6 00000 00000 723 4556 -3814 -2564 2344 1140 1471 1070 -093 -4200 -3529 5 00000 00000 739 4726 -4054 -2574 2398 1139 1431 1073 -090 -4243 -3569

JAEA-DataCode 2013-009

- 196 -

4 00000 00000 716 4458 -3697 -2560 2322 1144 1493 1054 -101 -4158 -3507 3 00000 00000 647 3896 -2702 -2510 2098 1142 1740 1020 -090 -3915 -3260 2 00000 00000 546 2967 -1397 -2407 1771 1129 1861 963 -100 -3749 -3139 1 00000 00000 394 2083 -195 -2152 1278 1205 2182 894 -344 -3143 -2818 CLAD SURFACE COOLANT COOLANT COOLANT CLAD SURFACE CLAD SURFACE HEAT TRANS CLAD OUTER CORROSION NODE TEMP(C) TEMP(C) ENTHALPY(JKG) QUALTY(-) HF(WCM2) COEF(WCM2K) MODE (MICROND) THICKNESS(MIC) 10 3215 2968 132152D+06 -0313(MSUBCOOL) 534824D+01 215763D+00 1 180640D-02 658399 9 3310 2959 131682D+06 -0317(MSUBCOOL) 756199D+01 215472D+00 1 300755D-02 941862 8 3361 2948 131084D+06 -0324(MSUBCOOL) 888938D+01 215103D+00 1 412772D-02 1163614 7 3395 2935 130401D+06 -0331(MSUBCOOL) 988361D+01 214685D+00 1 520368D-02 1328893 6 3430 2921 129644D+06 -0338(MSUBCOOL) 109188D+02 214225D+00 1 700957D-02 1626736 5 3428 2906 128841D+06 -0347(MSUBCOOL) 111703D+02 213740D+00 1 705977D-02 1625651 4 3399 2891 128040D+06 -0355(MSUBCOOL) 108430D+02 213260D+00 1 575005D-02 1422411 3 3349 2876 127279D+06 -0363(MSUBCOOL) 100673D+02 212808D+00 1 407496D-02 1104054 2 3257 2863 126609D+06 -0369(MSUBCOOL) 835237D+01 212412D+00 1 240772D-02 791306 1 3139 2853 126085D+06 -0375(MSUBCOOL) 605449D+01 212104D+00 1 130984D-02 517308 0 INITIAL GAS (MOL) = 414D-03 0 FISSION GAS RESULT 0 LOCAL FISSION GAS RELEASE FRACTION (AXIAL NODE) 1 000500 2 000500 3 001515 4 005243 5 007439 6 005951 7 001292 8 000500 9 000500 10 000500 0 ROD AVERAGE FISSION GAS = 002837 FRACTIONS OF GAS MIXTURE (PERCENT) AXIAL NODE RELEASE FRACTION 1 2 3 4 5 6 7 8 9 10 ROD GAS PRESSURE ( MPA ) = 2493 HE 900 900 900 900 900 900 900 900 900 900 ROD GAS VOLUME ( CM3 ) = 9031 N2 00 00 00 00 00 00 00 00 00 00 (GAPPLENUM)= 1326 7705 KR 13 13 13 13 13 13 13 13 13 13 TOTAL GAS ( MOL ) = 432D-03 XE 87 87 87 87 87 87 87 87 87 87 ROD PRS(MPA) 2493 2493 2493 2493 2493 2493 2493 2493 2493 2493 0 RELEASED IODINE ( GRAMCM2 ) = 922D-06 (AVERAGE) 240D-05 (PEAK) 0 (MOL) HE N2 KR XE TOTAL PRODUCED GAS 753D-05 000D+00 200D-03 134D-02 154E-02 RELEASED GAS 187D-06 000D+00 566D-05 379D-04 437E-04 ROD GAS 414D-03 000D+00 566D-05 379D-04 432E-03 0 RADIAL TEMPERATURE DISTRIBUTION AT AXIAL NODE OF 6 PELLET GAP CLAD 1234567891011 123 1401 1389 1357 1302 1227 1133 1022 895 755 605 433 416 388 362 === OPTIONAL OUTPUT (IN ELEMENT AVERAGE) === ---------------------------------------------------------------------------------------------------- | TEMPERATURE DISTRIBUTION IN THE FUEL (DEGC) IWTHE= 1 | ---------------------------------------------------------------------------------------------------- SEG 10 73551 72777 71242 68962 65967 62292 57977 53065 47590 41474 9 95854 94584 92066 88339 83465 77521 70599 62799 54202 44636 8 111919 110298 107088 102339 96136 88588 79831 70009 59245 47287 7 124739 122842 119084 113521 106255 97420 87188 75745 63255 49407 6 139497 137303 132947 126487 118032 107739 95815 82499 68002 51914 5 142861 140598 136102 129431 120693 110052 97723 83958 68981 52362 4 137688 135519 131216 124836 116488 106330 94567 81432 67131 51262 3 126020 124080 120235 114544 107112 98079 87623 75938 63198 49083 2 103833 102368 99465 95171 89561 82732 74800 65889 56103 45226 1 78367 77457 75652 72976 69465 65168 60137 54429 48092 41021 ---------------------------------------------------------------------------------------------------- | RADIUS OF INTRAGRANULAR GAS BUBBLE (ANGSTROM) IWTHE= 4 | ---------------------------------------------------------------------------------------------------- SEG 10 236 236 236 236 237 238 239 241 245 260 9 250 249 245 241 240 241 242 244 248 267 8 429 410 352 292 256 243 242 244 248 269 7 797 762 646 487 341 261 243 243 247 269 6 1141 1136 1073 885 621 371 260 246 249 273 5 1137 1141 1129 978 704 416 269 246 249 273 4 1136 1119 1028 831 575 348 256 245 249 272 3 837 801 680 512 354 263 242 242 246 268 2 297 290 269 251 243 241 242 244 248 268 1 238 238 238 239 239 240 241 243 247 264 ---------------------------------------------------------------------------------------------------- | FISSION GAS RELEASE RATE IN A RING () IWTHE= 14 | ---------------------------------------------------------------------------------------------------- SEG 10 050 050 050 050 050 050 050 050 050 050 9 050 050 050 050 050 050 050 050 050 050 8 050 050 050 050 050 050 050 050 050 050 7 1586 1363 663 090 050 050 050 050 050 050 6 5579 5124 3776 2259 715 050 050 050 050 050 5 6538 6169 4727 2842 1114 061 050 050 050 050 4 4973 4571 3384 2006 502 050 050 050 050 050 3 1866 1630 876 139 050 050 050 050 050 050 2 050 050 050 050 050 050 050 050 050 050 1 050 050 050 050 050 050 050 050 050 050 ---------------------------------------------------------------------------------------------------- BURNUP DISTRIBUTION IN THE FUEL (MWDT) IWTHE= 18 ---------------------------------------------------------------------------------------------------- SEG 10 128403 128525 128726 128963 129226 129511 129822 130159 130515 130887 9 181416 181652 181976 182343 182745 183175 183640 184142 184669 185216 8 212546 212866 213272 213724 214214 214735 215298 215901 216533 217188 7 232465 232844 233307 233817 234366 234948 235574 236245 236946 237672 6 260453 260926 261474 262069 262705 263375 264094 264862 265664 266493 5 266174 266667 267234 267846 268501 269189 269927 270716 271539 272390 4 258177 258642 259183 259771 260400 261062 261773 262534 263327 264148

JAEA-DataCode 2013-009

- 197 -

3 234397 234783 235252 235767 236322 236910 237542 238220 238928 239661 2 199294 199576 199947 200362 200814 201295 201816 202376 202962 203571 1 145500 145656 145894 146171 146477 146807 147167 147556 147966 148393 ================================================================================================================================== MECHANICAL ANALYSIS INFORMATION OUTPUT STAGE NUMBER = 245 TIME = 13905 H 54 M 42 S9651 MS ROD GAS PRESS(MPA) = 2493 COOLANT PRESS(MPA) = 15400 AXIAL FORCE(N) = -6458962 ================================================================================================================================== ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ SEG LHR B U R N U P FAST NEUTRON FLUX FAST NEUTRON FLUENCE FISSION RATE (WCM) (GJKGU) (MWDTU) (MWDTUO2) (FISSCC) (NCM2SEC) (NCM2) (FISSCCSEC) ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ 10 1664 120888D+03 139916D+04 123334D+04 348815D+20 831989D+13 293344D+21 983386D+12 9 2353 172895D+03 200109D+04 176393D+04 498879D+20 117654D+14 420078D+21 139064D+13 8 2766 203909D+03 236006D+04 208035D+04 588370D+20 138323D+14 495608D+21 163493D+13 7 3076 223932D+03 259181D+04 228463D+04 646146D+20 153807D+14 543515D+21 181795D+13 6 3399 252300D+03 292014D+04 257405D+04 728000D+20 169942D+14 613706D+21 200867D+13 5 3477 258132D+03 298764D+04 263355D+04 744827D+20 173857D+14 627896D+21 205494D+13 4 3375 249984D+03 289333D+04 255042D+04 721315D+20 168744D+14 607926D+21 199451D+13 3 3133 225883D+03 261438D+04 230453D+04 651773D+20 156647D+14 547649D+21 185152D+13 2 2599 190664D+03 220676D+04 194522D+04 550153D+20 129941D+14 463175D+21 153587D+13 1 1884 137546D+03 159197D+04 140329D+04 396883D+20 941785D+13 333962D+21 111316D+13 ---------------------------------------------------------------------------------------------------- STRESS(RADIAL) (MPA) IWROD= 1 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -11 -11 -10 -10 -10 -10 -09 -09 -09 -08 -08 -08 -07 -07 -07 -06 -06 -06 -05 -05 -05 -05 -04 -04 -04 -03 -03 -03 -03 -02 -02 -02 -01 -01 -01 -00 9 -84 -84 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -84 -84 -85 -85 -85 -85 -85 -85 -85 -85 -85 -84 -84 -83 -83 8 -83 -84 -84 -84 -84 -84 -84 -85 -85 -85 -85 -85 -85 -85 -85 -85 -85 -85 -86 -86 -87 -88 -89 -90 -90 -91 -92 -92 -92 -93 -93 -93 -94 -94 -94 -94 7 -57 -59 -62 -65 -68 -70 -72 -74 -75 -76 -77 -77 -78 -79 -79 -80 -81 -82 -83 -84 -86 -87 -88 -89 -90 -91 -92 -92 -93 -94 -94 -95 -95 -95 -96 -96 6 -67 -67 -67 -67 -67 -66 -65 -65 -65 -66 -67 -69 -70 -72 -74 -75 -77 -78 -79 -81 -82 -83 -84 -85 -86 -87 -88 -88 -89 -90 -91 -91 -92 -93 -93 -94 5 -71 -71 -71 -71 -72 -72 -72 -71 -71 -72 -73 -74 -75 -77 -78 -80 -81 -82 -83 -84 -85 -86 -87 -88 -88 -89 -90 -90 -91 -92 -92 -93 -93 -94 -95 -95 4 -58 -58 -58 -58 -56 -55 -55 -56 -58 -59 -61 -62 -64 -65 -67 -69 -71 -72 -74 -75 -76 -78 -79 -80 -81 -82 -83 -84 -85 -86 -87 -87 -88 -89 -90 -90 3 -50 -52 -56 -59 -63 -65 -68 -69 -71 -72 -73 -74 -75 -76 -76 -77 -78 -79 -80 -81 -83 -84 -85 -86 -87 -88 -89 -89 -90 -91 -91 -92 -92 -93 -93 -93 2 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -84 -85 -86 -86 -87 -87 -87 -88 -88 -88 -88 -88 -88 -88 -88 -87 1 -20 -20 -19 -19 -19 -18 -18 -18 -17 -17 -17 -16 -16 -15 -15 -14 -14 -13 -13 -12 -12 -12 -11 -11 -11 -10 -10 -09 -09 -09 -08 -08 -07 -07 -06 -06 SEGMENT NUM 10 -34 -49 -64 -78 -93 -107 -120 -141 -154 -154 9 -108 -114 -119 -125 -130 -135 -141 -149 -154 -154 8 -119 -123 -127 -132 -136 -140 -144 -150 -154 -154 7 -121 -125 -129 -133 -137 -141 -144 -150 -154 -154 6 -120 -124 -127 -131 -135 -139 -144 -150 -154 -154 5 -121 -125 -128 -132 -136 -140 -144 -150 -154 -154 4 -116 -121 -125 -129 -133 -138 -143 -149 -154 -154 3 -119 -123 -127 -131 -135 -139 -144 -150 -154 -154 2 -113 -118 -122 -127 -132 -137 -142 -149 -154 -154 1 -39 -53 -67 -81 -94 -108 -121 -141 -154 -154 ---------------------------------------------------------------------------------------------------- STRESS(HOOP) (MPA) IWROD= 2 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -11 -10 -09 -08 -08 -07 -06 -05 -04 -03 -02 -01 00 01 02 03 04 05 06 07 06 06 08 09 11 12 13 15 16 17 18 20 21 22 23 25 9 -84 -84 -84 -84 -84 -84 -84 -85 -85 -85 -86 -86 -86 -87 -87 -88 -88 -89 -89 -100 -108 -107 -104 -101 -98 -94 -91 -87 -83 -78 -72 -64 -56 -47 -37 -27 8 -83 -85 -86 -87 -87 -87 -88 -88 -88 -88 -89 -89 -90 -90 -91 -92 -93 -102 -117 -124 -127 -128 -126 -125 -123 -121 -119 -117 -114 -111 -109 -108 -107 -105 -102 -97 7 -57 -69 -80 -87 -91 -94 -95 -96 -96 -96 -96 -97 -97 -97 -98 -109 -124 -132 -136 -137 -138 -138 -137 -136 -135 -134 -133 -131 -129 -127 -125 -122 -121 -122 -122 -122 6 -67 -67 -68 -69 -62 -50 -61 -73 -83 -89 -94 -105 -116 -123 -127 -128 -129 -130 -130 -130 -131 -131 -131 -131 -131 -131 -132 -132 -133 -133 -134 -135 -135 -138 -142 -148 5 -71 -72 -72 -74 -75 -77 -68 -66 -77 -88 -100 -111 -118 -122 -124 -125 -125 -125 -125 -126 -126 -126 -126 -125 -125 -126 -126 -126 -127 -128 -129 -130 -132 -135 -139 -145 4 -58 -59 -59 -51 -42 -53 -66 -78 -86 -91 -94 -96 -105 -117 -124 -128 -129 -130 -131 -132 -132 -133 -133 -133 -133 -133 -133 -134 -134 -135 -135 -135 -136 -139 -144 -150 3 -50 -63 -75 -85 -91 -94 -96 -96 -97 -97 -97 -97 -97 -97 -98 -103 -119 -129 -133 -135 -136 -136 -135 -134

JAEA-DataCode 2013-009

- 198 -

-133 -131 -130 -128 -126 -124 -121 -120 -120 -121 -121 -121 2 -83 -84 -84 -84 -84 -84 -85 -85 -85 -86 -86 -86 -87 -87 -88 -89 -89 -90 -96 -112 -118 -118 -116 -113 -111 -108 -104 -101 -98 -95 -91 -86 -80 -72 -62 -50 1 -20 -19 -18 -17 -16 -15 -14 -13 -11 -10 -08 -06 -04 -03 -01 -00 01 02 03 04 02 03 04 06 08 09 11 12 14 16 17 19 20 22 23 25 SEGMENT NUM 10 -854 -872 -891 -910 -929 -947 -966 -978 -164 -165 9 -399 -410 -422 -434 -446 -460 -473 -484 -157 -157 8 -341 -349 -358 -368 -378 -388 -399 -407 -157 -157 7 -328 -337 -346 -355 -364 -374 -384 -392 -157 -157 6 -328 -339 -351 -363 -376 -389 -403 -415 -157 -157 5 -321 -331 -343 -355 -368 -382 -396 -408 -157 -157 4 -345 -357 -370 -383 -397 -412 -427 -440 -157 -158 3 -339 -349 -359 -369 -380 -391 -403 -412 -157 -157 2 -370 -381 -393 -405 -418 -432 -446 -458 -157 -157 1 -796 -820 -845 -870 -895 -919 -944 -963 -163 -163 ---------------------------------------------------------------------------------------------------- STRESS(AXIAL) (MPA) IWROD= 3 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 00 00 00 00 00 00 00 00 -10 -11 -10 -09 -08 -06 -05 -04 -03 -02 -00 00 01 02 03 04 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -29 -44 -43 -37 -30 -23 -17 -10 -04 00 03 06 09 12 15 18 21 8 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -27 -56 -67 -71 -71 -67 -63 -58 -52 -45 -37 -28 -18 -08 -00 04 09 14 19 7 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -31 -60 -73 -78 -81 -82 -81 -78 -74 -70 -65 -60 -53 -46 -37 -27 -15 -03 03 10 16 6 -64 -64 -64 -62 -48 -00 -00 -00 -00 -00 -07 -30 -49 -60 -66 -69 -70 -70 -70 -70 -69 -68 -65 -62 -58 -54 -50 -45 -40 -34 -27 -18 -08 01 09 17 5 -69 -69 -69 -69 -68 -64 -43 -12 -08 -18 -33 -46 -56 -61 -64 -65 -65 -64 -64 -62 -61 -59 -56 -52 -49 -45 -40 -35 -30 -24 -18 -10 -02 05 13 21 4 -56 -55 -54 -38 -00 -00 -00 -00 -00 -00 -00 -03 -27 -48 -60 -65 -68 -69 -70 -70 -69 -68 -65 -62 -59 -55 -50 -45 -40 -33 -25 -15 -04 04 11 19 3 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -17 -50 -66 -73 -76 -77 -76 -72 -68 -64 -58 -52 -45 -37 -27 -15 -04 03 09 16 22 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -20 -51 -61 -61 -56 -50 -43 -35 -27 -19 -10 -03 02 05 09 13 17 20 1 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -08 -28 -32 -31 -29 -28 -26 -24 -23 -21 -19 -17 -15 -12 -10 -08 -06 SEGMENT NUM 10 -442 -458 -475 -491 -507 -522 -538 -553 -159 -159 9 -428 -445 -462 -480 -498 -517 -537 -556 -159 -159 8 -394 -410 -427 -445 -463 -482 -503 -523 -158 -159 7 -367 -383 -399 -417 -436 -455 -475 -496 -158 -158 6 -333 -348 -365 -383 -401 -421 -443 -465 -158 -158 5 -327 -343 -359 -377 -396 -416 -437 -459 -158 -158 4 -342 -359 -377 -396 -416 -437 -460 -484 -158 -158 3 -372 -389 -407 -427 -447 -468 -490 -513 -158 -158 2 -406 -424 -442 -461 -481 -502 -523 -545 -158 -159 1 -411 -430 -448 -467 -485 -503 -521 -539 -159 -159 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(RADIAL) (001) IWROD= 12 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 631 617 605 593 582 571 560 549 539 529 520 511 502 493 484 476 467 459 451 443 453 447 436 425 415 405 396 387 379 370 363 355 348 341 334 328 9 586 569 554 539 525 511 498 485 472 460 448 436 424 413 402 391 381 370 360 368 410 395 367 343 320 300 282 266 252 240 228 218 208 200 192 185 8 526 515 503 491 478 465 452 440 429 418 408 398 389 380 371 363 355 359 408 492 556 531 482 437 395 356 321 290 262 239 220 205 192 179 168 157 7 327 449 490 500 494 482 467 451 436 422 409 397 386 376 367 374 416 484 569 662 722 685 618 555 497 443 393 347 306 269 238 213 195 180 167 154 6 -235 -39 97 183 288 499 605 628 616 591 564 554 566 593 633 687 748 815 889 970 1010 950 858 772 691 616 546 481 420 365 316 274 240 217 200 183 5 -346 -85 97 232 325 403 490 583 614 612 607 613 629 657 697 747 804 866 937 1013 1050 986 889 798 713 635 562 493 431 373 322 279 244 222 203 187 4 -192 -24 73 188 475 624 663 654 627 596 566 538 527 544 579 628 689 758 832 915 960 902 813 729 651 578 511 449 392 340 295 257 229 210 194 178 3 309 471 526 539 534 520 502 484 466 450 435 421 408 397 386 382 412 471 552 643 700 662 595 532 474 420 371 326 286 252 225 205 189 175 162 150 2 595 576 560 545 530 515 501 487 474 462 449 438 426 415 404 394 383 373 370 416 470 450 412 378 346 318 293 271 253 237 223 210 199 189 180 172 1 667 650 635 621 607 594 580 567 555 543 531 520 510 499 489 479 469 460 450 442 457 450 436 423

JAEA-DataCode 2013-009

- 199 -

410 398 387 376 365 355 345 336 327 318 310 301 SEGMENT NUM 10 1033 993 958 924 892 862 833 796 -187 -187 9 1293 1245 1201 1160 1121 1083 1047 1002 -19 -19 8 1404 1352 1305 1261 1218 1178 1139 1090 50 51 7 1475 1421 1372 1325 1280 1238 1197 1146 92 93 6 1612 1553 1500 1449 1400 1354 1310 1254 183 184 5 1633 1573 1519 1467 1418 1371 1327 1270 198 199 4 1586 1528 1475 1424 1376 1330 1287 1232 171 172 3 1453 1398 1349 1303 1259 1216 1176 1125 84 84 2 1299 1250 1206 1163 1123 1085 1048 1002 -09 -09 1 1071 1029 992 956 921 889 858 819 -150 -151 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(HOOP) (001) IWROD= 13 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 631 628 625 621 617 613 609 605 602 598 594 591 587 584 581 577 574 571 568 565 562 559 556 554 551 548 545 543 540 537 534 531 529 526 523 520 9 586 583 578 573 569 564 559 554 550 545 541 536 532 528 523 519 515 511 507 503 501 498 496 493 489 486 482 478 474 470 467 463 459 455 451 447 8 526 524 521 517 513 509 505 501 497 493 489 485 482 478 474 471 467 464 462 462 463 465 466 466 465 463 461 458 455 451 447 444 440 436 432 428 7 327 348 375 394 406 414 419 422 423 423 423 422 421 419 418 416 416 417 420 425 431 438 442 446 447 448 447 446 444 441 438 434 431 427 423 420 6 -235 -201 -150 -105 -65 -21 24 65 99 127 149 167 183 198 213 227 242 258 274 291 308 324 337 348 356 361 366 368 370 370 370 369 367 365 362 360 5 -346 -301 -233 -171 -118 -72 -30 09 45 75 101 124 144 163 181 199 217 235 253 272 290 308 322 333 342 348 353 356 358 359 359 358 356 354 352 350 4 -192 -163 -121 -82 -34 22 72 112 144 170 190 206 219 231 243 255 267 280 294 309 325 339 351 360 367 372 375 377 378 377 376 375 373 370 368 365 3 309 336 373 398 415 425 432 436 439 440 440 440 439 437 436 434 433 433 435 439 445 451 455 457 458 458 456 455 452 449 445 442 438 434 430 426 2 595 592 586 581 576 571 566 561 556 551 547 542 538 533 529 525 520 516 512 509 508 506 505 502 499 496 493 489 485 481 476 472 468 464 460 456 1 667 664 659 654 650 645 640 636 631 627 622 618 614 610 606 602 598 594 590 586 583 580 577 574 570 567 564 561 557 554 550 547 544 540 537 534 SEGMENT NUM 10 -619 -588 -560 -533 -509 -485 -463 -433 -415 -414 9 -743 -704 -670 -638 -607 -579 -551 -514 -491 -491 8 -761 -719 -683 -649 -617 -586 -557 -518 -493 -493 7 -768 -726 -688 -653 -619 -588 -558 -517 -492 -491 6 -825 -778 -738 -699 -663 -629 -596 -552 -524 -524 5 -834 -787 -746 -707 -670 -635 -603 -558 -530 -529 4 -820 -774 -734 -696 -660 -626 -594 -551 -523 -523 3 -762 -720 -683 -648 -615 -584 -554 -514 -489 -489 2 -735 -696 -662 -630 -599 -571 -544 -507 -484 -484 1 -661 -628 -599 -571 -545 -521 -498 -466 -447 -447 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(AXIAL) (001) IWROD= 14 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 947 928 909 890 872 855 838 821 805 790 775 761 747 734 721 708 696 684 672 660 590 572 569 566 564 561 558 556 554 551 549 547 545 543 541 538 9 1884 1830 1778 1726 1676 1627 1579 1532 1486 1441 1398 1355 1313 1273 1233 1194 1156 1119 1083 960 845 817 811 806 800 795 790 786 782 777 773 769 765 760 756 751 8 2858 2759 2667 2580 2495 2414 2335 2259 2184 2111 2040 1971 1904 1838 1774 1712 1651 1517 1360 1191 1049 1009 1002 995 988 980 972 964 955 947 940 933 926 920 912 904 7 4034 3742 3528 3360 3219 3094 2979 2872 2769 2671 2575 2483 2393 2306 2220 2051 1881 1708 1527 1339 1184 1139 1133 1126 1119 1111 1103 1094 1084 1074 1063 1053 1044 1035 1026 1015 6 5631 5384 5130 4891 4634 4328 4015 3791 3615 3465 3303 3113 2926 2742 2556 2365 2172 1977 1778 1575 1412 1363 1358 1352 1345 1338 1330 1322 1312 1302 1290 1277 1263 1251 1239 1225 5 5743 5499 5255 5006 4762 4512 4264 4024 3804 3599 3402 3209 3020 2832 2640 2446 2250 2052 1851 1647 1483 1434 1428 1422 1416 1409 1401 1392 1383 1372 1359 1346 1332 1320 1307 1291 4 5598 5340 5098 4838 4437 4071 3820 3632 3475 3337 3209 3077 2892 2709 2527 2343 2153 1960 1764 1563 1401 1354 1348 1341 1335 1327 1319 1310 1300 1288 1276 1263 1250 1239 1226 1210 3 4159 3816 3573 3389 3238 3107 2988 2878 2773 2673 2576 2482 2390 2301 2215 2079 1907 1736 1557 1371 1217 1173 1166 1159 1152 1143 1134 1125 1114 1103 1093 1084 1075 1065 1055 1042 2 2286 2215 2146 2079 2014 1951 1889 1829 1770 1713 1657 1602 1549 1497 1447 1397 1349 1303 1200 1050 920 886 880 873 866 860 853 846 841 835 830 825 820 814 808 802 1 1044 1019 995 972 949 927 906 885 864 845 826 808 791 774 758 742 727 712 697 654 558 537 534 531 528 526 523 520 517 514 511 508 506 503 500 497 SEGMENT NUM 10 352 352 352 352 352 352 352 352 352 352 9 317 317 317 317 317 317 317 317 317 317 8 276 276 276 276 276 276 276 276 276 276 7 247 247 247 247 247 247 247 247 247 247

JAEA-DataCode 2013-009

- 200 -

6 210 210 210 210 210 210 210 210 210 210 5 205 205 205 205 205 205 205 205 205 205 4 219 219 219 219 219 219 219 219 219 219 3 255 255 255 255 255 255 255 255 255 255 2 317 317 317 317 317 317 317 317 317 317 1 368 368 368 368 368 368 368 368 368 368 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 -00 43 61 74 85 94 102 110 117 123 129 134 139 144 149 153 157 161 165 169 172 175 179 182 185 188 191 193 196 198 200 203 205 207 209 211 213 2311 9 -00 40 56 68 78 87 94 101 107 112 117 122 126 131 134 138 141 145 148 150 153 156 159 162 164 167 169 171 172 174 175 177 178 179 181 182 183 -0000 8 -00 36 50 61 70 78 85 91 96 101 106 110 114 118 122 125 128 131 134 137 141 145 149 153 156 159 161 163 165 167 168 170 171 172 173 174 175 0000 7 00 22 35 46 55 63 70 76 82 87 91 96 100 104 107 110 114 117 121 126 131 136 141 146 150 153 156 159 161 163 164 166 167 168 169 170 171 0000 6 00 -16 -17 -15 -12 -07 00 08 16 23 30 36 41 47 52 58 64 70 77 84 92 99 106 112 118 123 127 130 134 136 139 140 142 144 145 146 147 0000 5 00 -24 -26 -24 -20 -14 -09 -02 05 12 19 26 32 38 44 50 57 64 71 78 86 94 101 107 113 118 122 126 129 132 134 136 138 140 141 142 143 -0000 4 -00 -13 -14 -12 -09 -01 08 17 25 32 39 45 50 56 61 66 71 77 83 90 97 104 111 117 122 126 130 134 136 139 141 143 145 146 147 148 149 -0000 3 00 21 34 46 56 64 72 79 85 90 95 100 104 108 112 115 118 122 126 130 135 140 145 149 153 156 159 162 164 166 167 169 170 171 172 173 174 0000 2 -00 41 57 69 79 88 95 102 108 114 119 123 128 132 136 139 143 146 149 152 155 159 162 165 168 170 172 174 176 178 179 180 182 183 184 185 186 -0000 1 -00 46 64 78 89 99 108 115 122 129 135 141 146 151 155 160 164 168 172 175 179 182 185 189 192 194 197 200 202 204 207 209 211 213 215 216 218 0000 (R-DIRECTION OF Cladding) 10 -264 -255 -362 -469 -576 -684 -791 -899 -243 -211 -178 9 -317 -306 -413 -521 -628 -736 -845 -953 -298 -252 -205 8 -325 -313 -421 -529 -638 -747 -857 -967 -314 -256 -198 7 -329 -316 -425 -534 -644 -754 -864 -975 -324 -258 -192 6 -353 -339 -449 -560 -671 -782 -894 -1007 -359 -278 -197 5 -357 -343 -453 -563 -674 -786 -897 -1009 -361 -281 -200 4 -351 -337 -446 -555 -665 -775 -885 -996 -345 -274 -204 3 -326 -313 -421 -528 -636 -745 -853 -962 -308 -253 -199 2 -314 -303 -408 -515 -621 -728 -835 -943 -285 -246 -207 1 -282 -272 -378 -483 -589 -695 -802 -909 -249 -224 -199 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 2904804 (Plenum) 10 8359666 2766703 9 7936580 2414740 8 7279799 2097697 7 6464730 1821543 6 5538076 1574351 5 4402830 1364513 4 3197476 1159485 3 2066647 940601 2 1099513 685300 1 386120 368351 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT INCREMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 2311 9 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 8 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 7 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000

JAEA-DataCode 2013-009

- 201 -

6 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 5 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 4 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 3 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 2 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 1 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 (R-DIRECTION OF Cladding) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 8 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 7 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 6 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 5 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 4 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 3 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 1 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- -0433 (Plenum) 10 -0495 -0495 9 -0503 -0503 8 -0496 -0496 7 -0468 -0468 6 -0421 -0421 5 -0302 -0302 4 -0161 -0161 3 -0059 -0059 2 -0018 -0018 1 -0003 -0003 STAGE NO 245 PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) CLEARANCE CONTACT THERMAL ELASTIC DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE (MICRONS) FORCE(MPA) EXPANS DEFORM CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 2311 0000 1956 -017 -143 -2035 1123 1244 2128 908 -368 -2978 -2641 9 -0000 8141 2684 -185 -1065 -2338 1606 1126 1827 970 -113 -3780 -3173 8 -0000 9306 3300 -191 -1934 -2451 1894 1131 1748 1008 -085 -3908 -3252 7 0000 9540 3849 -165 -2685 -2505 2080 1139 1713 1036 -084 -3963 -3287 6 0000 9354 4556 -163 -3842 -2564 2344 1140 1471 1070 -093 -4207 -3529 5 -0000 9477 4726 -173 -4085 -2574 2398 1139 1431 1073 -090 -4250 -3569 4 -0000 8991 4458 -147 -3724 -2560 2322 1144 1493 1054 -101 -4165 -3507 3 0000 9267 3896 -155 -2732 -2510 2098 1142 1740 1020 -090 -3919 -3260 2 -0000 8608 2967 -186 -1413 -2407 1771 1129 1861 963 -100 -3752 -3139 1 -0000 0576 2083 -034 -197 -2152 1278 1205 2182 894 -344 -3156 -2818

OUTPUT ---STAGE--- 314 to 530 are skipped OUTPUT ---STAGE--- 618 IFEM = 6 ---------------------------------------------------------------------------------------------------- |THERMAL ANALYSIS INFORMATION | | STAGE NO 618 | | TIME (HMSMS) 3638551 9574 | | COOLANT TEMPERATURE 28500 DEGC | | COOLANT PRESSURE 154D+01 MPA | ---------------------------------------------------------------------------------------------------- LHR BURN UP GAP CONDUCTANCE (WCM2-K) TEMPERATURE (C) CLEARANCE CONTACT NODE (WCM) (MWDTU) TOTAL GAS SOLID RAD PC PS CI CO (MICRONS) FORCE(MPA) NODE 10 779 367727 9573 1237 0033 00034 5022 3225 3194 3062 0000 5971 10 9 1003 503959 9542 1242 0022 00036 5969 3344 3304 3136 0000 4827 9 8 1135 585050 9534 1246 0017 00038 6610 3429 3383 3196 0000 4043 8 7 1195 635879 9531 1250 0014 00039 6963 3480 3432 3237 0000 3668 7 6 1214 687736 9529 1252 0012 00040 7203 3530 3480 3285 0000 3223 6 5 1234 702118 9528 1255 0012 00040 7311 3537 3487 3288 0000 3360 5 4 1241 688741 9524 1254 0014 00039 7257 3499 3449 3247 0000 3799 4 3 1214 645320 9521 1249 0016 00038 6996 3436 3387 3186 0000 4222 3 2 1102 555299 9526 1245 0022 00036 6345 3338 3293 3108 0000 5156 2 1 878 416184 9550 1240 0033 00034 5329 3212 3177 3028 0000 6422 1 BURN UP PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS)

JAEA-DataCode 2013-009

- 202 -

(FISSCC THERMAL DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE CSFR PFAC 1020) EXPANS CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 00000 00000 910 1265 -869 -2648 2827 1164 1650 822 -138 -3787 -3350 9 00000 00000 1247 1528 -2705 -2707 3813 1186 1051 851 -177 -4320 -3949 8 00000 00000 1448 1719 -3904 -2720 4356 1204 609 872 -204 -4716 -4391 7 00000 00000 1573 1830 -4700 -2725 4659 1217 246 885 -220 -5048 -4754 6 00000 00000 1702 1911 -5595 -2728 4910 1234 -292 899 -240 -5541 -5292 5 00000 00000 1737 1945 -5704 -2728 4973 1230 -311 900 -239 -5562 -5311 4 00000 00000 1704 1923 -5328 -2728 4914 1216 -036 889 -224 -5312 -5036 3 00000 00000 1597 1835 -4579 -2725 4710 1211 413 872 -206 -4898 -4587 2 00000 00000 1374 1632 -3115 -2717 4163 1187 1091 847 -171 -4285 -3909 1 00000 00000 1030 1342 -1189 -2678 3185 1164 1733 817 -122 -3719 -3267 CLAD SURFACE COOLANT COOLANT COOLANT CLAD SURFACE CLAD SURFACE HEAT TRANS CLAD OUTER CORROSION NODE TEMP(C) TEMP(C) ENTHALPY(JKG) QUALTY(-) HF(WCM2) COEF(WCM2K) MODE (MICROND) THICKNESS(MIC) 10 3014 2897 128360D+06 -0351(MSUBCOOL) 250161D+01 213451D+00 1 832580D-03 1816573 9 3044 2893 128150D+06 -0354(MSUBCOOL) 322089D+01 213326D+00 1 113146D-02 2701414 8 3059 2888 127899D+06 -0356(MSUBCOOL) 364308D+01 213176D+00 1 144000D-02 3534076 7 3063 2883 127625D+06 -0359(MSUBCOOL) 383222D+01 213013D+00 1 169268D-02 4261788 6 3060 2877 127342D+06 -0362(MSUBCOOL) 389336D+01 212845D+00 1 204166D-02 5404631 5 3058 2872 127054D+06 -0365(MSUBCOOL) 395675D+01 212674D+00 1 206684D-02 5447848 4 3054 2866 126763D+06 -0368(MSUBCOOL) 397981D+01 212502D+00 1 176148D-02 4552731 3 3044 2861 126474D+06 -0371(MSUBCOOL) 389750D+01 212332D+00 1 138437D-02 3411536 2 3023 2856 126202D+06 -0374(MSUBCOOL) 353955D+01 212172D+00 1 100819D-02 2274658 1 2984 2851 125969D+06 -0376(MSUBCOOL) 282018D+01 212036D+00 1 719173D-03 1438407 0 INITIAL GAS (MOL) = 414D-03 0 FISSION GAS RESULT 0 LOCAL FISSION GAS RELEASE FRACTION (AXIAL NODE) 1 001306 2 004371 3 009150 4 012529 5 014209 6 012980 7 008746 8 004846 9 002029 10 000517 0 ROD AVERAGE FISSION GAS = 007950 FRACTIONS OF GAS MIXTURE (PERCENT) AXIAL NODE RELEASE FRACTION 1 2 3 4 5 6 7 8 9 10 ROD GAS PRESSURE ( MPA ) = 3869 HE 555 555 555 555 555 555 555 555 555 555 ROD GAS VOLUME ( CM3 ) = 8502 N2 00 00 00 00 00 00 00 00 00 00 (GAPPLENUM)= 1295 7207 KR 58 58 58 58 58 58 58 58 58 58 TOTAL GAS ( MOL ) = 655D-03 XE 387 387 387 387 387 387 387 387 387 387 ROD PRS(MPA) 3869 3869 3869 3869 3869 3869 3869 3869 3869 3869 0 RELEASED IODINE ( GRAMCM2 ) = 635D-05 (AVERAGE) 123D-04 (PEAK) 0 (MOL) HE N2 KR XE TOTAL PRODUCED GAS 374D-04 000D+00 490D-03 328D-02 381E-02 RELEASED GAS 462D-05 000D+00 390D-04 261D-03 304E-03 ROD GAS 418D-03 000D+00 390D-04 261D-03 655E-03 0 RADIAL TEMPERATURE DISTRIBUTION AT AXIAL NODE OF 6 PELLET GAP CLAD 1234567891011 123 720 717 707 690 666 635 598 553 501 440 353 348 338 328 === OPTIONAL OUTPUT (IN ELEMENT AVERAGE) === ---------------------------------------------------------------------------------------------------- | TEMPERATURE DISTRIBUTION IN THE FUEL (DEGC) IWTHE= 1 | ---------------------------------------------------------------------------------------------------- SEG 10 50137 49790 49097 48058 46674 44945 42870 40441 37627 34186 9 59563 59065 58068 56574 54584 52096 49108 45604 41527 36389 8 65952 65354 64158 62365 59974 56985 53392 49173 44250 37944 7 69470 68820 67520 65570 62969 59716 55803 51201 45821 38860 6 71864 71185 69827 67788 65067 61660 57557 52723 47055 39644 5 72934 72237 70844 68753 65962 62467 58257 53296 47476 39848 4 72394 71698 70308 68220 65434 61948 57749 52805 47010 39435 3 69794 69130 67803 65812 63156 59835 55838 51139 45643 38518 2 63308 62740 61605 59902 57634 54798 51392 47394 42735 36803 1 53189 52782 51969 50751 49129 47102 44670 41821 38518 34434 ---------------------------------------------------------------------------------------------------- | RADIUS OF INTRAGRANULAR GAS BUBBLE (ANGSTROM) IWTHE= 4 | ---------------------------------------------------------------------------------------------------- SEG 10 345 345 345 346 347 349 351 355 362 399 9 389 389 389 390 391 393 396 400 409 457 8 411 411 412 413 414 416 419 424 434 488 7 402 404 414 423 427 429 432 437 448 506 6 367 371 386 407 429 442 445 451 462 523 5 362 365 378 401 427 444 449 454 466 528 4 374 378 392 412 432 442 445 451 462 523 3 400 403 413 424 429 432 435 440 451 509 2 403 403 404 405 406 408 411 415 425 477 1 361 362 362 363 364 366 368 372 380 421 ---------------------------------------------------------------------------------------------------- | FISSION GAS RELEASE RATE IN A RING () IWTHE= 14 | ---------------------------------------------------------------------------------------------------- SEG 10 050 050 050 050 050 050 050 050 050 055 9 050 050 050 050 050 050 050 050 050 483 8 050 050 050 050 050 050 050 050 050 1382 7 1312 1165 685 165 050 050 050 050 050 2533 6 3549 3378 2746 1748 643 053 050 050 050 2856 5 3896 3771 3233 2209 953 092 050 050 050 2949 4 3282 3099 2459 1509 493 050 050 050 050 2863 3 1513 1360 856 247 050 050 050 050 050 2591 2 050 050 050 050 050 050 050 050 050 1261 1 050 050 050 050 050 050 050 050 050 301 ---------------------------------------------------------------------------------------------------- BURNUP DISTRIBUTION IN THE FUEL (MWDT) IWTHE= 18 ----------------------------------------------------------------------------------------------------

JAEA-DataCode 2013-009

- 203 -

SEG 10 324005 324729 325496 326304 327154 328039 328982 329986 331030 332107 9 434959 436249 437487 438743 440035 441356 442749 444225 445754 447329 8 499245 500925 502484 504043 505632 507245 508938 510728 512579 514487 7 538963 540903 542676 544438 546226 548035 549928 551928 553995 556126 6 579130 581344 583344 585321 587320 589338 591444 593669 595967 598336 5 590217 592509 594573 596611 598670 600747 602914 605203 607566 610003 4 579907 582127 584131 586112 588116 590137 592248 594477 596779 599153 3 546300 548289 550103 551904 553729 555576 557507 559547 561656 563829 2 475797 477330 478768 480212 481690 483193 484772 486445 488174 489956 1 363908 364819 365744 366702 367702 368735 369831 370996 372205 373452 ================================================================================================================================== MECHANICAL ANALYSIS INFORMATION OUTPUT STAGE NUMBER = 618 TIME = 36385 H 51 M 9 S5743 MS ROD GAS PRESS(MPA) = 3869 COOLANT PRESS(MPA) = 15400 AXIAL FORCE(N) = -8371215 ================================================================================================================================== ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ SEG LHR B U R N U P FAST NEUTRON FLUX FAST NEUTRON FLUENCE FISSION RATE (WCM) (GJKGU) (MWDTU) (MWDTUO2) (FISSCC) (NCM2SEC) (NCM2) (FISSCCSEC) ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ 10 779 317716D+03 367727D+04 324145D+04 916754D+20 389400D+13 770095D+21 460259D+12 9 1003 435421D+03 503959D+04 444231D+04 125639D+21 501600D+13 105619D+22 592876D+12 8 1135 505483D+03 585050D+04 515711D+04 145855D+21 567600D+13 122644D+22 670886D+12 7 1195 549399D+03 635879D+04 560516D+04 158526D+21 597300D+13 133246D+22 705990D+12 6 1214 594204D+03 687736D+04 606226D+04 171454D+21 607200D+13 144275D+22 717692D+12 5 1234 606630D+03 702118D+04 618904D+04 175040D+21 617100D+13 147295D+22 729393D+12 4 1241 595072D+03 688741D+04 607113D+04 171705D+21 620400D+13 144460D+22 733294D+12 3 1214 557557D+03 645320D+04 568838D+04 160880D+21 607200D+13 135167D+22 717692D+12 2 1102 479778D+03 555299D+04 489486D+04 138438D+21 551100D+13 116373D+22 651383D+12 1 878 359583D+03 416184D+04 366858D+04 103756D+21 438900D+13 871773D+21 518766D+12 ---------------------------------------------------------------------------------------------------- STRESS(RADIAL) (MPA) IWROD= 1 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -36 -36 -37 -37 -38 -38 -39 -39 -40 -40 -41 -42 -42 -43 -43 -44 -45 -45 -46 -46 -47 -48 -49 -49 -50 -51 -52 -52 -53 -54 -55 -56 -57 -58 -59 -60 9 -23 -24 -24 -25 -25 -26 -26 -27 -27 -28 -28 -29 -29 -30 -31 -31 -32 -32 -33 -34 -34 -35 -35 -36 -37 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -48 8 -15 -15 -16 -16 -17 -17 -17 -18 -19 -19 -20 -20 -21 -21 -22 -22 -23 -23 -24 -24 -25 -26 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -39 -40 7 -11 -11 -11 -12 -12 -13 -13 -13 -14 -14 -15 -15 -16 -16 -17 -17 -18 -18 -19 -20 -21 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -35 -36 6 -05 -05 -06 -06 -07 -07 -08 -08 -09 -09 -10 -10 -11 -11 -12 -13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -20 -21 -22 -23 -24 -25 -27 -28 -29 -30 -32 5 -06 -06 -06 -07 -07 -08 -08 -09 -09 -10 -10 -11 -11 -12 -13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -20 -21 -22 -23 -24 -25 -26 -28 -29 -30 -32 -33 4 -09 -09 -09 -10 -10 -11 -11 -12 -12 -13 -14 -14 -15 -15 -16 -17 -17 -18 -19 -20 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -31 -32 -33 -35 -36 -38 3 -11 -12 -12 -13 -13 -14 -14 -15 -15 -16 -16 -17 -18 -18 -19 -20 -21 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -35 -36 -37 -39 -40 -42 2 -21 -21 -22 -22 -23 -23 -24 -24 -25 -25 -26 -26 -27 -28 -28 -29 -30 -31 -31 -32 -33 -34 -35 -36 -37 -38 -39 -41 -42 -43 -44 -45 -47 -48 -50 -51 1 -36 -37 -37 -37 -38 -39 -39 -40 -40 -41 -41 -42 -43 -43 -44 -44 -45 -46 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -62 -63 -64 SEGMENT NUM 10 -101 -108 -114 -120 -127 -133 -139 -148 -154 -154 9 -91 -99 -107 -114 -122 -129 -136 -147 -154 -154 8 -84 -93 -101 -110 -118 -126 -134 -146 -154 -154 7 -80 -90 -99 -108 -116 -125 -133 -146 -154 -154 6 -76 -87 -96 -105 -114 -123 -132 -145 -154 -154 5 -78 -88 -97 -106 -115 -124 -133 -146 -154 -154 4 -82 -91 -100 -108 -117 -125 -134 -146 -154 -154 3 -85 -94 -102 -111 -119 -127 -135 -146 -154 -154 2 -94 -102 -109 -116 -123 -130 -137 -147 -154 -154 1 -105 -112 -117 -123 -129 -134 -140 -148 -154 -154 ---------------------------------------------------------------------------------------------------- STRESS(HOOP) (MPA) IWROD= 2 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -36 -38 -40 -41 -43 -45 -47 -48 -50 -52 -54 -56 -59 -61 -63 -66 -68 -71 -73 -76 -76 -79 -82 -85 -88 -91 -94 -98 -102 -105 -109 -114 -118 -123 -128 -134 9 -23 -25 -27 -28 -30 -32 -33 -35 -37 -39 -41 -43 -46 -48 -50 -53 -55 -58 -59 -53 -56 -60 -63 -67 -71 -75 -80 -84 -89 -95 -101 -111 -126 -136 -146 -158 8 -15 -17 -18 -19 -21 -23 -24 -26 -28 -30 -32 -34 -36 -38 -37 -38 -40 -44 -47 -50 -54 -57 -61 -65 -69 -73 -78 -83 -88 -94 -100 -107 -114 -123 -133 -147 7 -11 -12 -13 -15 -16 -18 -19 -21 -23 -22 -24 -26 -29 -31 -34 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -76 -81 -87 -92 -99 -105 -113 -122 -132 -146 6 -05 -07 -08 -09 -11 -12 -14 -16 -18 -20 -22 -24 -26 -28 -31 -33 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -77 -82 -88 -94 -100 -108 -116 -126 -139

JAEA-DataCode 2013-009

- 204 -

5 -06 -07 -09 -10 -12 -13 -15 -17 -19 -20 -22 -25 -27 -29 -32 -34 -37 -40 -43 -46 -50 -53 -57 -61 -65 -70 -75 -80 -85 -91 -97 -104 -112 -121 -132 -145 4 -09 -10 -12 -13 -15 -17 -18 -20 -22 -24 -27 -29 -31 -34 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -76 -81 -87 -92 -98 -105 -112 -120 -129 -139 -153 3 -11 -14 -15 -17 -18 -20 -21 -22 -25 -28 -30 -33 -35 -38 -41 -44 -47 -50 -54 -57 -61 -65 -69 -74 -78 -83 -88 -94 -100 -106 -113 -120 -128 -137 -148 -161 2 -21 -23 -24 -26 -28 -29 -31 -33 -35 -37 -39 -41 -44 -46 -48 -53 -57 -61 -65 -69 -73 -77 -81 -85 -90 -94 -100 -105 -110 -116 -122 -129 -136 -144 -154 -166 1 -36 -38 -40 -42 -43 -45 -47 -49 -51 -53 -55 -58 -60 -62 -65 -68 -70 -73 -75 -80 -85 -89 -93 -96 -100 -104 -109 -113 -117 -122 -127 -133 -139 -145 -152 -160 SEGMENT NUM 10 -450 -461 -473 -485 -496 -508 -519 -527 -162 -162 9 -524 -535 -546 -557 -568 -579 -589 -596 -163 -164 8 -569 -581 -593 -606 -618 -631 -644 -652 -163 -164 7 -593 -605 -618 -631 -644 -657 -671 -680 -164 -165 6 -627 -639 -651 -664 -677 -690 -703 -712 -164 -166 5 -619 -631 -643 -656 -668 -681 -694 -703 -164 -166 4 -589 -600 -612 -625 -637 -650 -663 -672 -164 -165 3 -554 -567 -580 -593 -607 -621 -634 -645 -163 -164 2 -498 -510 -522 -534 -546 -559 -571 -580 -163 -163 1 -420 -431 -444 -456 -468 -480 -493 -502 -162 -162 ---------------------------------------------------------------------------------------------------- STRESS(AXIAL) (MPA) IWROD= 3 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08 08 09 09 09 10 10 11 11 12 12 12 13 13 13 10 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 32 34 34 34 34 35 35 35 35 36 36 35 -00 -00 -00 -00 -00 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21 21 20 20 19 19 18 18 17 17 16 16 16 16 16 16 16 16 17 18 16 7 00 00 00 00 00 00 00 00 00 14 15 15 15 14 13 12 11 11 10 09 08 07 07 06 05 05 04 04 03 03 02 02 02 02 02 03 6 18 17 16 15 14 13 12 11 10 09 08 07 07 06 05 04 03 02 01 00 -01 -02 -03 -04 -05 -06 -08 -09 -10 -11 -12 -13 -14 -15 -15 -13 5 15 14 13 12 11 10 09 09 08 07 06 05 04 03 02 01 00 -01 -02 -03 -05 -06 -08 -09 -11 -12 -14 -16 -18 -20 -22 -24 -26 -28 -29 -29 4 12 11 10 09 08 07 06 05 04 03 02 02 01 -00 -01 -02 -03 -05 -06 -08 -10 -12 -14 -16 -18 -20 -22 -24 -27 -29 -31 -34 -36 -38 -40 -40 3 12 00 00 00 00 00 00 07 06 05 03 02 01 00 -01 -02 -03 -04 -06 -08 -09 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -34 -35 -34 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 03 01 00 -01 -02 -03 -05 -06 -07 -08 -09 -10 -11 -12 -12 -13 -13 -14 -13 -12 -10 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 15 14 12 11 11 10 10 10 10 10 10 10 10 10 11 11 11 12 SEGMENT NUM 10 -428 -443 -458 -474 -489 -504 -519 -533 -160 -160 9 -439 -457 -474 -492 -509 -527 -545 -562 -160 -161 8 -436 -453 -471 -489 -507 -526 -545 -564 -161 -161 7 -427 -444 -461 -479 -497 -515 -533 -552 -161 -162 6 -420 -436 -453 -469 -486 -504 -521 -539 -161 -162 5 -408 -424 -439 -456 -472 -488 -505 -523 -161 -162 4 -390 -406 -422 -437 -454 -470 -487 -504 -161 -162 3 -383 -399 -416 -433 -451 -469 -487 -505 -161 -161 2 -396 -413 -430 -447 -465 -483 -501 -519 -160 -161 1 -427 -443 -458 -474 -490 -505 -521 -537 -161 -161 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(RADIAL) (001) IWROD= 12 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 383 387 390 393 396 399 402 404 407 409 411 413 415 417 419 420 422 423 425 425 441 444 437 430 423 417 411 406 401 397 393 389 386 382 379 376 9 01 31 58 83 108 133 157 181 205 228 250 272 294 315 336 357 376 395 417 505 595 602 584 568 553 542 532 525 520 518 517 521 533 545 560 574 8 -392 -323 -269 -221 -175 -132 -90 -48 -07 33 73 112 150 188 243 340 455 590 722 855 955 954 915 878 844 812 784 757 733 711 693 680 671 668 670 676 7 -1088 -728 -535 -411 -327 -264 -211 -163 -117 -47 60 164 275 393 521 656 784 911 1041 1174 1268 1257 1203 1152 1104 1062 1019 978 939 903 869 839 813 793 779 771 6 -1717 -1315 -1008 -778 -590 -425 -281 -144 -16 107 230 354 477 594 711 832 955 1081 1209 1341 1432 1421 1360 1300 1241 1184 1131 1079 1031 986 943 905 871 842 822 814 5 -1948 -1463 -1087 -767 -526 -340 -186 -48 78 200 321 441 556 670 787 908 1031 1155 1284 1416 1507 1493 1432 1368 1306 1246 1189 1135 1083 1036 992 951 913 880 853 835 4 -1554 -1197 -947 -745 -571 -411 -253 -115 09 126 246 371 500 626 747 870 995 1123 1253 1386 1480 1465 1405 1347 1289 1232 1177 1126 1078 1033 991 951 915 882 856 838

JAEA-DataCode 2013-009

- 205 -

3 -1131 -819 -572 -422 -325 -255 -200 -137 -42 69 174 284 397 516 639 773 902 1029 1160 1291 1385 1374 1316 1262 1212 1165 1118 1074 1032 992 955 921 891 864 841 821 2 -169 -125 -88 -52 -17 17 51 84 117 149 181 212 242 272 306 396 502 621 756 890 989 992 954 919 886 855 826 800 775 751 730 712 694 679 666 658 1 334 343 351 359 367 374 381 388 395 401 408 414 419 425 430 435 440 445 461 539 623 632 614 597 582 567 553 539 527 515 505 494 485 476 467 459 SEGMENT NUM 10 1226 1184 1146 1111 1077 1045 1015 974 16 15 9 1539 1488 1443 1400 1359 1320 1282 1233 261 261 8 1759 1701 1649 1600 1554 1510 1469 1413 431 430 7 1907 1845 1789 1736 1686 1639 1594 1534 546 544 6 2097 2028 1968 1910 1856 1804 1754 1688 693 691 5 2091 2023 1962 1904 1850 1798 1748 1682 686 684 4 1986 1920 1862 1807 1755 1706 1659 1596 603 602 3 1814 1754 1700 1649 1602 1556 1513 1455 471 471 2 1516 1466 1420 1378 1337 1298 1261 1212 242 241 1 1210 1168 1131 1096 1063 1031 1001 961 05 05 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(HOOP) (001) IWROD= 13 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 383 384 385 386 387 388 389 390 391 392 393 394 395 395 396 397 398 398 399 400 401 402 402 403 404 404 404 404 404 404 404 404 403 403 403 403 9 01 06 15 23 32 40 49 57 65 73 81 89 97 105 113 121 128 136 143 151 161 171 181 189 197 204 210 216 222 227 231 236 241 245 250 254 8 -392 -380 -361 -343 -326 -310 -294 -278 -263 -248 -234 -219 -205 -191 -176 -161 -144 -125 -103 -80 -56 -32 -10 09 27 43 57 70 82 93 103 112 121 129 137 145 7 -1088 -1026 -937 -865 -806 -757 -716 -679 -647 -616 -586 -555 -523 -491 -457 -423 -388 -352 -316 -279 -242 -206 -174 -145 -119 -95 -73 -54 -36 -19 -04 09 22 34 45 55 6 -1717 -1648 -1540 -1440 -1350 -1270 -1196 -1129 -1065 -1005 -948 -892 -839 -787 -737 -687 -639 -591 -543 -496 -449 -405 -365 -328 -295 -265 -238 -214 -191 -171 -152 -135 -119 -104 -90 -78 5 -1948 -1865 -1733 -1609 -1495 -1394 -1303 -1221 -1146 -1077 -1011 -949 -890 -834 -779 -725 -673 -622 -572 -522 -473 -426 -384 -345 -311 -279 -251 -225 -201 -180 -160 -142 -125 -110 -96 -82 4 -1554 -1493 -1399 -1313 -1236 -1165 -1098 -1035 -976 -919 -865 -813 -762 -712 -663 -615 -567 -520 -473 -427 -381 -337 -297 -261 -229 -199 -172 -148 -126 -106 -87 -70 -55 -40 -27 -15 3 -1131 -1078 -993 -916 -852 -798 -752 -712 -674 -637 -600 -563 -526 -489 -452 -414 -375 -336 -297 -258 -218 -181 -146 -115 -88 -62 -39 -19 00 18 34 48 61 74 85 96 2 -169 -161 -149 -137 -125 -113 -101 -90 -78 -67 -55 -44 -33 -22 -11 01 14 30 48 68 90 111 130 148 163 177 190 201 212 221 230 238 245 252 258 263 1 334 336 338 341 344 346 349 351 353 356 358 361 363 365 367 369 372 374 376 379 384 390 395 399 403 407 410 412 414 416 418 419 420 421 422 422 SEGMENT NUM 10 -786 -748 -714 -682 -651 -623 -595 -558 -534 -534 9 -926 -879 -837 -798 -761 -726 -692 -647 -617 -616 8 -1029 -976 -929 -885 -843 -803 -765 -714 -680 -679 7 -1114 -1056 -1006 -958 -913 -870 -829 -773 -736 -734 6 -1240 -1177 -1121 -1069 -1019 -971 -926 -864 -824 -820 5 -1245 -1181 -1126 -1073 -1023 -976 -931 -869 -828 -825 4 -1180 -1120 -1067 -1017 -969 -924 -882 -823 -785 -782 3 -1075 -1020 -972 -926 -882 -841 -802 -748 -714 -712 2 -916 -870 -829 -790 -754 -719 -686 -641 -612 -611 1 -766 -729 -695 -664 -634 -606 -579 -542 -519 -519 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(AXIAL) (001) IWROD= 14 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 1451 1432 1413 1394 1376 1358 1340 1322 1305 1288 1270 1253 1236 1220 1203 1187 1171 1155 1139 1123 1129 1115 1110 1104 1098 1092 1085 1078 1071 1064 1055 1047 1037 1025 1011 983 9 3146 3089 3033 2977 2922 2868 2815 2762 2709 2657 2606 2556 2506 2457 2408 2361 2313 2267 2212 2252 2130 2094 2086 2078 2068 2057 2045 2031 2014 1994 1968 1763 1719 1677 1630 1581 8 4500 4392 4294 4202 4113 4027 3943 3861 3779 3699 3619 3541 3463 3387 3289 3245 3081 2893 2710 2519 2359 2309 2304 2298 2291 2284 2276 2267 2257 2245 2231 2214 2194 2171 2140 2082 7 6183 5744 5439 5218 5048 4909 4786 4674 4567 4506 4338 4168 3988 3802 3603 3398 3201 3004 2804 2599 2429 2374 2371 2367 2363 2358 2353 2346 2339 2331 2321 2309 2294 2276 2252 2220 6 6939 6708 6477 6250 6022 5793 5564 5337 5116 4900 4685 4470 4257 4052 3849 3644 3437 3229 3018 2803 2627 2571 2569 2567 2564 2561 2557 2553 2548 2542 2535 2526 2514 2497 2474 2441 5 6958 6726 6495 6264 6035 5808 5582 5356 5133 4912 4693 4476 4265 4059 3851 3642 3432 3221 3007 2790 2612 2553 2553 2551 2549 2547 2545 2542 2538 2534 2529 2522 2512 2497 2475 2444 4 6826 6594 6364 6134 5903 5667 5425 5195 4979 4769 4558 4344 4128 3915 3708 3502 3294 3085 2874 2658 2481 2422 2421 2420 2417 2414 2411 2408 2404 2399 2394 2386 2376 2362 2341 2313 3 6349 5923 5569 5318 5129 4978 4849 4750 4575 4385 4203 4018 3829 3636 3438 3229 3026 2825 2622 2415 2242 2186 2184 2181 2178 2175 2171 2166 2161 2155 2147 2138 2126 2111 2091 2065 2 3834 3759 3685 3612 3541 3470 3401 3332 3264 3197 3130 3065 3000 2936 2894 2744 2584 2413 2226 2039 1879 1828 1824 1820 1815 1810 1805 1798 1790 1780 1770 1757 1742 1725 1706 1681

JAEA-DataCode 2013-009

- 206 -

1 1865 1837 1809 1782 1755 1728 1702 1676 1650 1625 1600 1575 1550 1526 1502 1478 1455 1431 1469 1355 1234 1196 1192 1188 1183 1179 1174 1168 1162 1156 1150 1142 1135 1127 1118 1108 SEGMENT NUM 10 439 439 439 439 439 439 439 439 439 439 9 347 347 347 347 347 347 347 347 347 347 8 278 278 278 278 278 278 278 278 278 278 7 243 243 243 243 243 243 243 243 243 243 6 208 208 208 208 208 208 208 208 208 208 5 226 226 226 226 226 226 226 226 226 226 4 257 257 257 257 257 257 257 257 257 257 3 297 297 297 297 297 297 297 297 297 297 2 385 385 385 385 385 385 385 385 385 385 1 461 461 461 461 461 461 461 461 461 461 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 26 37 46 53 59 65 70 75 80 85 89 93 97 101 105 109 112 116 119 122 126 129 132 135 138 141 144 146 149 151 154 156 158 161 163 165 0000 9 00 00 01 02 04 05 07 10 12 14 17 19 22 25 28 31 34 37 40 44 48 52 57 61 65 69 72 76 79 82 86 89 92 95 99 102 105 -0000 8 00 -27 -36 -42 -46 -49 -51 -52 -52 -52 -52 -51 -50 -49 -47 -45 -42 -38 -33 -27 -21 -14 -07 -00 06 12 17 23 28 32 37 41 45 49 53 57 61 0000 7 00 -74 -95 -107 -114 -119 -123 -126 -128 -129 -130 -129 -128 -125 -121 -117 -111 -104 -97 -89 -80 -70 -61 -52 -44 -36 -29 -22 -16 -10 -04 01 06 11 16 20 25 -0000 6 -00 -117 -155 -176 -191 -200 -206 -210 -212 -212 -211 -209 -205 -200 -195 -188 -181 -173 -164 -155 -144 -134 -123 -113 -104 -96 -88 -80 -73 -66 -60 -54 -49 -44 -39 -34 -29 0000 5 00 -133 -175 -198 -212 -221 -226 -228 -229 -228 -226 -222 -218 -212 -206 -199 -191 -183 -173 -163 -152 -141 -130 -119 -110 -101 -92 -84 -77 -70 -63 -57 -51 -46 -41 -36 -31 0000 4 -00 -106 -140 -161 -174 -183 -189 -193 -194 -194 -193 -190 -186 -182 -176 -169 -162 -153 -144 -134 -123 -112 -101 -91 -82 -73 -65 -57 -49 -42 -36 -30 -24 -19 -13 -08 -04 0000 3 00 -77 -100 -113 -121 -126 -130 -132 -134 -134 -134 -132 -129 -125 -120 -115 -108 -100 -92 -83 -73 -62 -52 -43 -34 -25 -18 -10 -03 03 10 16 21 27 32 37 41 0000 2 -00 -12 -15 -17 -18 -18 -18 -17 -16 -15 -13 -11 -09 -07 -04 -02 02 06 11 17 24 32 39 46 52 58 64 70 75 80 84 89 93 97 101 105 109 0000 1 -00 23 33 40 47 53 58 63 68 73 77 81 86 90 94 97 101 105 109 112 116 121 126 130 134 138 142 146 149 153 156 159 162 165 168 171 173 0000 (R-DIRECTION OF Cladding) 10 -335 -324 -439 -554 -669 -784 -900 -1016 -376 -285 -195 9 -395 -381 -501 -621 -741 -861 -982 -1103 -473 -338 -204 8 -439 -424 -548 -673 -798 -924 -1050 -1176 -557 -381 -204 7 -475 -459 -588 -718 -848 -978 -1109 -1241 -631 -418 -206 6 -529 -511 -648 -786 -924 -1062 -1201 -1340 -747 -477 -207 5 -531 -513 -650 -788 -927 -1066 -1205 -1344 -752 -480 -208 4 -504 -486 -617 -749 -881 -1013 -1146 -1279 -673 -446 -219 3 -459 -443 -566 -690 -813 -938 -1062 -1187 -565 -395 -225 2 -391 -378 -494 -610 -727 -844 -962 -1079 -443 -329 -216 1 -327 -316 -428 -540 -652 -765 -877 -990 -344 -272 -201 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 3320349 (Plenum) 10 17978018 3139625 9 17011895 2700241 8 15111354 2353547 7 13062890 2075605 6 10982299 1832555 5 8725090 1624646 4 6498207 1399120 3 4400904 1142594 2 2524119 845249 1 972466 460642 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT INCREMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000

JAEA-DataCode 2013-009

- 207 -

8 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 7 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 6 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 5 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 4 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 3 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 1 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 (R-DIRECTION OF Cladding) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 8 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 7 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 6 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 5 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 4 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 3 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 1 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 1253 (Plenum) 10 1222 1222 9 1090 1090 8 0947 0947 7 0808 0808 6 0680 0680 5 0592 0592 4 0511 0511 3 0425 0425 2 0307 0307 1 0154 0154 STAGE NO 618 PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) CLEARANCE CONTACT THERMAL ELASTIC DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE (MICRONS) FORCE(MPA) EXPANS DEFORM CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 0000 5971 1265 -090 -869 -2648 2827 1164 1650 822 -138 -3787 -3350 9 -0000 4827 1528 -063 -2705 -2707 3813 1186 1051 851 -177 -4321 -3949 8 -0000 4043 1719 -045 -3905 -2720 4356 1204 609 872 -204 -4717 -4391 7 -0000 3668 1830 -035 -4700 -2725 4659 1217 246 885 -220 -5049 -4754 6 -0000 3223 1911 -024 -5595 -2728 4910 1234 -292 899 -240 -5542 -5292 5 0000 3360 1945 -026 -5704 -2728 4973 1230 -311 900 -239 -5564 -5311 4 -0000 3799 1923 -032 -5328 -2728 4914 1216 -036 889 -224 -5313 -5036 3 -0000 4222 1835 -039 -4579 -2725 4710 1211 413 872 -206 -4899 -4587 2 -0000 5156 1632 -059 -3115 -2717 4163 1187 1091 847 -171 -4286 -3909 1 -0000 6422 1342 -091 -1190 -2678 3185 1164 1733 817 -122 -3719 -3267 OUTPUT ---STAGE--- 619 IFEM = 6 ---------------------------------------------------------------------------------------------------- |THERMAL ANALYSIS INFORMATION | | STAGE NO 619 | | TIME (HMSMS) 363855730374 | | COOLANT TEMPERATURE 28500 DEGC | | COOLANT PRESSURE 154D+01 MPA | ---------------------------------------------------------------------------------------------------- LHR BURN UP GAP CONDUCTANCE (WCM2-K) TEMPERATURE (C) CLEARANCE CONTACT NODE (WCM) (MWDTU) TOTAL GAS SOLID RAD PC PS CI CO (MICRONS) FORCE(MPA) NODE 10 779 367728 9573 1237 0033 00034 5022 3225 3194 3062 0000 5970 10 9 1003 503960 9542 1242 0022 00036 5968 3344 3304 3136 0000 4827 9 8 1135 585051 9534 1246 0017 00038 6610 3429 3383 3196 0000 4043 8 7 1195 635880 9531 1250 0014 00039 6963 3480 3432 3237 0000 3668 7 6 1214 687737 9529 1252 0012 00040 7203 3529 3480 3285 0000 3224 6 5 1234 702119 9528 1255 0012 00040 7311 3537 3487 3288 0000 3360 5 4 1241 688742 9524 1254 0014 00039 7257 3499 3449 3247 0000 3800 4 3 1214 645321 9521 1249 0016 00038 6996 3436 3387 3186 0000 4222 3

JAEA-DataCode 2013-009

- 208 -

2 1102 555300 9526 1245 0022 00036 6345 3338 3293 3108 0000 5156 2 1 878 416184 9550 1240 0033 00034 5329 3212 3177 3028 0000 6422 1 BURN UP PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) (FISSCC THERMAL DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE CSFR PFAC 1020) EXPANS CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 00000 00000 910 1265 -869 -2648 2827 1164 1649 822 -138 -3787 -3351 9 00000 00000 1247 1528 -2705 -2707 3813 1186 1051 851 -177 -4321 -3949 8 00000 00000 1448 1719 -3905 -2720 4356 1204 609 872 -204 -4717 -4391 7 00000 00000 1574 1830 -4700 -2725 4659 1217 246 885 -220 -5049 -4754 6 00000 00000 1702 1911 -5595 -2728 4910 1234 -292 899 -240 -5542 -5292 5 00000 00000 1737 1945 -5704 -2728 4973 1230 -311 900 -239 -5564 -5311 4 00000 00000 1704 1923 -5328 -2728 4914 1216 -036 889 -224 -5313 -5036 3 00000 00000 1597 1835 -4579 -2725 4710 1211 413 872 -206 -4899 -4587 2 00000 00000 1374 1632 -3115 -2717 4163 1187 1091 847 -171 -4286 -3909 1 00000 00000 1030 1342 -1190 -2678 3185 1164 1733 817 -122 -3719 -3267 CLAD SURFACE COOLANT COOLANT COOLANT CLAD SURFACE CLAD SURFACE HEAT TRANS CLAD OUTER CORROSION NODE TEMP(C) TEMP(C) ENTHALPY(JKG) QUALTY(-) HF(WCM2) COEF(WCM2K) MODE (MICROND) THICKNESS(MIC) 10 3014 2896 128346D+06 -0352(MSUBCOOL) 250161D+01 213443D+00 1 831541D-03 1816577 9 3043 2892 128137D+06 -0354(MSUBCOOL) 322089D+01 213318D+00 1 113010D-02 2701419 8 3059 2888 127887D+06 -0356(MSUBCOOL) 364307D+01 213169D+00 1 143834D-02 3534082 7 3062 2882 127615D+06 -0359(MSUBCOOL) 383220D+01 213007D+00 1 169085D-02 4261795 6 3060 2877 127333D+06 -0362(MSUBCOOL) 389335D+01 212839D+00 1 203958D-02 5404640 5 3058 2872 127047D+06 -0365(MSUBCOOL) 395673D+01 212670D+00 1 206495D-02 5447857 4 3054 2866 126758D+06 -0368(MSUBCOOL) 397979D+01 212499D+00 1 176017D-02 4552738 3 3044 2861 126471D+06 -0371(MSUBCOOL) 389749D+01 212330D+00 1 138362D-02 3411542 2 3022 2856 126200D+06 -0374(MSUBCOOL) 353954D+01 212171D+00 1 100823D-02 2274663 1 2984 2851 125968D+06 -0376(MSUBCOOL) 282018D+01 212035D+00 1 719058D-03 1438410 0 INITIAL GAS (MOL) = 414D-03 0 FISSION GAS RESULT 0 LOCAL FISSION GAS RELEASE FRACTION (AXIAL NODE) 1 001306 2 004371 3 009150 4 012529 5 014209 6 012980 7 008746 8 004846 9 002029 10 000517 0 ROD AVERAGE FISSION GAS = 007950 FRACTIONS OF GAS MIXTURE (PERCENT) AXIAL NODE RELEASE FRACTION 1 2 3 4 5 6 7 8 9 10 ROD GAS PRESSURE ( MPA ) = 3869 HE 555 555 555 555 555 555 555 555 555 555 ROD GAS VOLUME ( CM3 ) = 8502 N2 00 00 00 00 00 00 00 00 00 00 (GAPPLENUM)= 1295 7207 KR 58 58 58 58 58 58 58 58 58 58 TOTAL GAS ( MOL ) = 655D-03 XE 387 387 387 387 387 387 387 387 387 387 ROD PRS(MPA) 3869 3869 3869 3869 3869 3869 3869 3869 3869 3869 0 RELEASED IODINE ( GRAMCM2 ) = 635D-05 (AVERAGE) 123D-04 (PEAK) 0 (MOL) HE N2 KR XE TOTAL PRODUCED GAS 374D-04 000D+00 490D-03 328D-02 381E-02 RELEASED GAS 462D-05 000D+00 390D-04 261D-03 304E-03 ROD GAS 418D-03 000D+00 390D-04 261D-03 655E-03 0 RADIAL TEMPERATURE DISTRIBUTION AT AXIAL NODE OF 6 PELLET GAP CLAD 1234567891011 123 720 717 707 690 666 635 598 553 501 440 353 348 338 328 === OPTIONAL OUTPUT (IN ELEMENT AVERAGE) === ---------------------------------------------------------------------------------------------------- | TEMPERATURE DISTRIBUTION IN THE FUEL (DEGC) IWTHE= 1 | ---------------------------------------------------------------------------------------------------- SEG 10 50133 49786 49093 48054 46670 44942 42867 40437 37624 34184 9 59559 59061 58065 56571 54581 52093 49105 45601 41524 36386 8 65949 65351 64155 62361 59971 56982 53389 49170 44248 37942 7 69467 68817 67517 65567 62966 59713 55800 51199 45819 38858 6 71861 71183 69824 67786 65065 61658 57555 52722 47053 39643 5 72931 72235 70842 68751 65960 62466 58255 53295 47475 39847 4 72392 71697 70306 68218 65433 61946 57748 52804 47009 39434 3 69792 69129 67802 65810 63155 59833 55837 51138 45642 38517 2 63307 62739 61604 59901 57632 54797 51391 47393 42735 36803 1 53187 52781 51968 50750 49128 47102 44669 41821 38518 34434 ---------------------------------------------------------------------------------------------------- | RADIUS OF INTRAGRANULAR GAS BUBBLE (ANGSTROM) IWTHE= 4 | ---------------------------------------------------------------------------------------------------- SEG 10 345 345 345 346 347 349 351 355 362 399 9 389 389 389 390 391 393 396 400 409 457 8 411 411 412 413 414 416 419 424 434 488 7 402 404 414 423 427 429 432 437 448 506 6 367 371 386 407 429 442 445 451 462 523 5 362 365 378 401 427 444 449 454 466 528 4 374 378 392 412 432 442 445 451 462 523 3 400 403 413 424 429 432 435 440 451 509 2 403 403 404 405 406 408 411 415 425 477 1 361 362 362 363 364 366 368 372 380 421 ---------------------------------------------------------------------------------------------------- | FISSION GAS RELEASE RATE IN A RING () IWTHE= 14 | ---------------------------------------------------------------------------------------------------- SEG 10 050 050 050 050 050 050 050 050 050 055 9 050 050 050 050 050 050 050 050 050 483 8 050 050 050 050 050 050 050 050 050 1382 7 1312 1165 685 165 050 050 050 050 050 2533 6 3549 3378 2746 1748 643 053 050 050 050 2856 5 3896 3771 3233 2209 953 092 050 050 050 2949 4 3282 3099 2459 1509 493 050 050 050 050 2863 3 1513 1360 856 247 050 050 050 050 050 2591 2 050 050 050 050 050 050 050 050 050 1261 1 050 050 050 050 050 050 050 050 050 301

JAEA-DataCode 2013-009

- 209 -

---------------------------------------------------------------------------------------------------- BURNUP DISTRIBUTION IN THE FUEL (MWDT) IWTHE= 18 ---------------------------------------------------------------------------------------------------- SEG 10 324006 324729 325496 326304 327155 328040 328983 329987 331030 332108 9 434960 436250 437488 438744 440036 441357 442750 444226 445754 447330 8 499246 500926 502485 504044 505633 507246 508938 510729 512580 514488 7 538964 540904 542677 544439 546227 548036 549928 551929 553996 556127 6 579130 581345 583345 585322 587321 589339 591445 593670 595968 598337 5 590218 592510 594574 596612 598671 600748 602915 605204 607567 610004 4 579907 582128 584132 586113 588117 590138 592249 594478 596780 599154 3 546300 548290 550104 551904 553730 555577 557507 559548 561656 563830 2 475797 477330 478768 480213 481690 483194 484773 486445 488175 489957 1 363909 364820 365744 366703 367703 368736 369832 370997 372205 373452 ================================================================================================================================== MECHANICAL ANALYSIS INFORMATION OUTPUT STAGE NUMBER = 619 TIME = 36385 H 57 M 30 S3744 MS ROD GAS PRESS(MPA) = 3869 COOLANT PRESS(MPA) = 15400 AXIAL FORCE(N) = -8369844 ================================================================================================================================== ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ SEG LHR B U R N U P FAST NEUTRON FLUX FAST NEUTRON FLUENCE FISSION RATE (WCM) (GJKGU) (MWDTU) (MWDTUO2) (FISSCC) (NCM2SEC) (NCM2) (FISSCCSEC) ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ 10 779 317717D+03 367728D+04 324145D+04 916756D+20 389400D+13 770096D+21 460259D+12 9 1003 435422D+03 503960D+04 444232D+04 125639D+21 501600D+13 105619D+22 592876D+12 8 1135 505484D+03 585051D+04 515712D+04 145855D+21 567600D+13 122645D+22 670886D+12 7 1195 549400D+03 635880D+04 560517D+04 158527D+21 597300D+13 133247D+22 705990D+12 6 1214 594204D+03 687737D+04 606227D+04 171455D+21 607200D+13 144275D+22 717692D+12 5 1234 606631D+03 702119D+04 618905D+04 175040D+21 617100D+13 147296D+22 729393D+12 4 1241 595073D+03 688742D+04 607114D+04 171705D+21 620400D+13 144460D+22 733294D+12 3 1214 557558D+03 645321D+04 568839D+04 160881D+21 607200D+13 135167D+22 717692D+12 2 1102 479779D+03 555300D+04 489486D+04 138438D+21 551100D+13 116373D+22 651383D+12 1 878 359583D+03 416184D+04 366859D+04 103756D+21 438900D+13 871774D+21 518766D+12 ---------------------------------------------------------------------------------------------------- STRESS(RADIAL) (MPA) IWROD= 1 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -36 -36 -37 -37 -38 -38 -39 -39 -40 -40 -41 -42 -42 -43 -43 -44 -45 -45 -46 -46 -47 -48 -48 -49 -50 -51 -52 -52 -53 -54 -55 -56 -57 -58 -59 -60 9 -23 -24 -24 -25 -25 -26 -26 -27 -27 -28 -28 -29 -29 -30 -31 -31 -32 -32 -33 -34 -34 -35 -35 -36 -37 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -48 8 -15 -15 -16 -16 -17 -17 -17 -18 -18 -19 -20 -20 -21 -21 -22 -22 -23 -23 -24 -24 -25 -26 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -39 -40 7 -11 -11 -11 -12 -12 -13 -13 -13 -14 -14 -15 -15 -16 -16 -17 -17 -18 -18 -19 -20 -21 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -35 -36 6 -05 -05 -06 -06 -07 -07 -08 -08 -09 -09 -10 -10 -11 -11 -12 -13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -20 -21 -22 -23 -24 -25 -27 -28 -29 -30 -32 5 -06 -06 -06 -07 -07 -08 -08 -09 -09 -10 -10 -11 -11 -12 -13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -20 -21 -22 -23 -24 -25 -26 -28 -29 -30 -32 -33 4 -09 -09 -09 -10 -10 -11 -11 -12 -12 -13 -14 -14 -15 -15 -16 -17 -17 -18 -19 -20 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -31 -32 -33 -35 -36 -38 3 -11 -12 -12 -13 -13 -14 -14 -15 -15 -16 -16 -17 -18 -18 -19 -20 -21 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -35 -36 -37 -39 -40 -42 2 -21 -21 -22 -22 -23 -23 -24 -24 -25 -25 -26 -26 -27 -28 -28 -29 -30 -31 -31 -32 -33 -34 -35 -36 -37 -38 -39 -41 -42 -43 -44 -45 -47 -48 -50 -51 1 -36 -37 -37 -37 -38 -39 -39 -40 -40 -41 -41 -42 -43 -43 -44 -44 -45 -46 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -62 -63 -64 SEGMENT NUM 10 -101 -108 -114 -120 -127 -133 -139 -148 -154 -154 9 -91 -99 -107 -114 -122 -129 -136 -147 -154 -154 8 -84 -93 -101 -110 -118 -126 -134 -146 -154 -154 7 -80 -90 -99 -108 -116 -125 -133 -146 -154 -154 6 -76 -87 -96 -105 -114 -123 -132 -145 -154 -154 5 -78 -88 -97 -106 -115 -124 -133 -146 -154 -154 4 -82 -91 -100 -108 -117 -125 -134 -146 -154 -154 3 -85 -94 -102 -111 -119 -127 -135 -146 -154 -154 2 -94 -102 -109 -116 -123 -130 -137 -147 -154 -154 1 -105 -112 -117 -123 -129 -134 -140 -148 -154 -154 ---------------------------------------------------------------------------------------------------- STRESS(HOOP) (MPA) IWROD= 2 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -36 -38 -40 -41 -43 -45 -47 -48 -50 -52 -54 -56 -59 -61 -63 -66 -68 -71 -73 -76 -76 -79 -82 -85 -88 -91 -94 -98 -102 -105 -109 -114 -118 -123 -128 -134 9 -23 -25 -27 -28 -30 -32 -33 -35 -37 -39 -41 -43 -46 -48 -50 -53 -55 -58 -59 -53 -56 -60 -63 -67 -71 -75 -80 -84 -89 -95 -101 -111 -126 -136 -146 -158 8 -15 -17 -18 -19 -21 -23 -24 -26 -28 -30 -32 -34 -36 -38 -37 -38 -40 -44 -47 -50 -54 -57 -61 -65 -69 -73 -78 -83 -88 -94 -100 -107 -114 -123 -133 -147 7 -11 -12 -13 -15 -16 -18 -19 -21 -23 -22 -24 -26 -29 -31 -34 -36 -39 -42 -45 -48 -52 -55 -59 -63

JAEA-DataCode 2013-009

- 210 -

-67 -72 -76 -81 -87 -92 -99 -105 -113 -122 -132 -146 6 -05 -07 -08 -09 -11 -12 -14 -16 -18 -20 -22 -24 -26 -28 -31 -33 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -77 -82 -88 -94 -100 -108 -116 -126 -139 5 -06 -07 -09 -10 -12 -13 -15 -17 -19 -20 -22 -25 -27 -29 -32 -34 -37 -40 -43 -46 -50 -53 -57 -61 -65 -70 -75 -80 -85 -91 -97 -104 -112 -121 -132 -145 4 -09 -10 -12 -13 -15 -17 -18 -20 -22 -24 -27 -29 -31 -34 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -76 -81 -87 -92 -98 -105 -112 -120 -129 -139 -153 3 -11 -14 -15 -17 -18 -20 -21 -22 -25 -28 -30 -33 -35 -38 -41 -44 -47 -50 -54 -57 -61 -65 -69 -74 -78 -83 -88 -94 -100 -106 -113 -120 -128 -137 -148 -161 2 -21 -23 -24 -26 -28 -29 -31 -33 -35 -37 -39 -41 -44 -46 -48 -53 -57 -61 -65 -69 -73 -77 -81 -85 -90 -94 -100 -105 -110 -116 -122 -129 -136 -144 -154 -166 1 -36 -38 -40 -42 -43 -45 -47 -49 -51 -53 -55 -58 -60 -62 -65 -68 -70 -73 -75 -80 -85 -89 -93 -96 -100 -104 -109 -113 -117 -122 -127 -133 -139 -145 -152 -160 SEGMENT NUM 10 -450 -462 -473 -485 -496 -508 -519 -527 -162 -162 9 -524 -535 -546 -557 -568 -579 -590 -596 -163 -164 8 -569 -581 -593 -606 -618 -631 -644 -652 -163 -164 7 -593 -605 -618 -631 -644 -657 -671 -680 -164 -165 6 -627 -639 -651 -664 -677 -690 -703 -712 -164 -166 5 -619 -631 -643 -656 -668 -681 -694 -703 -164 -166 4 -589 -600 -612 -625 -637 -650 -663 -672 -164 -165 3 -554 -567 -580 -593 -607 -621 -634 -645 -163 -164 2 -498 -510 -522 -534 -546 -559 -571 -580 -163 -163 1 -420 -431 -444 -456 -468 -480 -493 -502 -162 -162 ---------------------------------------------------------------------------------------------------- STRESS(AXIAL) (MPA) IWROD= 3 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08 08 09 09 09 10 10 11 11 12 12 12 13 13 13 10 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 32 34 34 34 34 34 35 35 35 35 36 35 00 00 00 00 -00 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21 21 20 20 19 19 18 18 17 17 16 16 16 16 16 16 16 16 17 18 16 7 00 00 00 00 00 00 00 00 00 14 15 15 15 14 13 12 11 11 10 09 08 07 07 06 05 05 04 04 03 03 02 02 02 02 02 03 6 18 17 16 15 14 13 12 11 10 09 08 07 07 06 05 04 03 02 01 00 -01 -02 -03 -04 -05 -06 -08 -09 -10 -11 -12 -13 -14 -15 -15 -13 5 15 14 13 12 11 10 09 09 08 07 06 05 04 03 02 01 00 -01 -02 -03 -05 -06 -08 -09 -11 -12 -14 -16 -18 -20 -22 -24 -26 -28 -29 -29 4 12 11 10 09 08 07 06 05 04 03 02 02 01 -00 -01 -02 -03 -05 -06 -08 -10 -12 -14 -16 -18 -20 -22 -24 -27 -29 -31 -34 -36 -38 -40 -40 3 11 00 00 00 00 00 00 07 06 05 03 02 01 00 -01 -02 -03 -04 -06 -08 -09 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -34 -35 -34 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 03 01 00 -01 -02 -03 -05 -06 -07 -08 -09 -10 -11 -12 -12 -13 -13 -13 -13 -12 -10 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 15 14 12 11 11 10 10 10 10 10 10 10 10 10 11 11 11 12 SEGMENT NUM 10 -428 -443 -458 -474 -489 -504 -519 -533 -160 -160 9 -439 -457 -474 -492 -509 -527 -545 -562 -160 -161 8 -436 -453 -471 -489 -507 -526 -545 -564 -161 -161 7 -427 -444 -461 -479 -497 -515 -533 -552 -161 -162 6 -420 -436 -453 -469 -486 -504 -521 -539 -161 -162 5 -408 -424 -439 -456 -472 -488 -505 -523 -161 -162 4 -390 -406 -422 -437 -454 -470 -487 -504 -161 -162 3 -383 -400 -416 -433 -451 -469 -487 -505 -161 -161 2 -396 -413 -430 -447 -465 -483 -501 -519 -160 -161 1 -427 -443 -458 -474 -490 -505 -521 -537 -161 -161 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(RADIAL) (001) IWROD= 12 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 383 387 390 393 396 399 402 404 407 409 411 413 415 417 419 420 422 423 425 425 441 444 437 430 423 417 411 406 401 397 393 389 386 382 379 376 9 01 31 58 83 108 133 157 181 205 228 250 272 294 315 336 357 376 395 417 505 595 602 584 568 553 542 532 525 520 518 517 521 533 545 560 574 8 -392 -323 -269 -221 -176 -132 -90 -48 -07 33 73 112 150 188 243 340 455 590 722 855 955 954 915 878 844 812 784 757 733 711 693 680 671 668 670 676 7 -1088 -728 -535 -411 -327 -264 -211 -163 -117 -47 60 164 275 393 521 656 784 911 1041 1174 1268 1257 1203 1152 1104 1062 1019 978 939 903 869 839 813 793 779 771 6 -1717 -1315 -1008 -778 -590 -425 -281 -144 -16 107 230 354 477 594 711 832 955 1081 1209 1341 1432 1421 1360 1300 1241 1184 1131 1079 1031 986 943 905 871 842 822 814 5 -1948 -1463 -1087 -767 -526 -340 -186 -48 78 200 321 441 556 670 787 908 1031 1155 1284 1416 1507 1493 1432 1368

JAEA-DataCode 2013-009

- 211 -

1306 1246 1189 1135 1083 1036 992 951 913 880 853 835 4 -1554 -1197 -947 -745 -571 -411 -253 -115 09 126 246 371 500 626 747 870 995 1123 1253 1386 1480 1465 1405 1347 1289 1232 1177 1126 1078 1033 991 951 915 882 856 838 3 -1131 -819 -572 -422 -325 -255 -200 -137 -42 69 174 284 397 516 639 773 902 1029 1160 1291 1385 1374 1316 1262 1212 1165 1118 1074 1032 992 955 921 891 864 841 821 2 -169 -125 -88 -52 -17 17 51 84 117 149 181 212 242 272 306 396 502 621 756 890 989 992 954 919 886 855 826 800 775 751 730 712 694 679 666 658 1 334 343 351 359 367 374 381 388 395 401 408 414 419 425 430 435 440 445 461 539 623 632 614 598 582 567 553 539 527 515 505 494 485 476 467 459 SEGMENT NUM 10 1226 1184 1146 1111 1077 1045 1015 974 16 15 9 1539 1488 1443 1400 1359 1320 1282 1233 261 261 8 1759 1701 1649 1600 1554 1510 1469 1413 431 430 7 1907 1845 1789 1736 1686 1639 1594 1534 546 544 6 2097 2028 1968 1910 1856 1804 1754 1688 693 691 5 2091 2023 1962 1904 1850 1798 1748 1682 686 684 4 1986 1920 1862 1807 1755 1706 1659 1596 603 602 3 1814 1754 1700 1650 1602 1556 1513 1455 471 471 2 1516 1466 1420 1378 1337 1298 1261 1212 242 241 1 1210 1168 1131 1096 1063 1031 1001 961 05 05 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(HOOP) (001) IWROD= 13 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 383 384 385 386 387 388 389 390 391 392 393 394 395 395 396 397 398 398 399 400 401 402 402 403 404 404 404 404 404 404 404 404 403 403 403 403 9 01 06 15 23 32 40 49 57 65 73 81 89 97 105 113 121 128 136 143 151 161 171 181 189 197 204 210 216 222 227 231 236 241 245 250 254 8 -392 -380 -361 -343 -326 -310 -294 -278 -263 -248 -234 -219 -205 -191 -176 -161 -144 -125 -103 -80 -56 -32 -10 09 27 43 57 70 82 93 103 112 121 129 137 145 7 -1088 -1026 -937 -865 -806 -758 -716 -679 -647 -616 -586 -555 -523 -491 -458 -423 -388 -352 -316 -279 -242 -206 -174 -145 -119 -95 -73 -54 -36 -19 -04 09 22 34 45 55 6 -1717 -1648 -1540 -1440 -1350 -1270 -1196 -1129 -1065 -1005 -948 -892 -839 -787 -737 -687 -639 -591 -543 -496 -449 -405 -365 -328 -295 -265 -238 -214 -191 -171 -152 -135 -119 -104 -90 -78 5 -1948 -1865 -1733 -1609 -1495 -1394 -1303 -1221 -1146 -1077 -1011 -949 -890 -834 -779 -725 -673 -622 -572 -522 -473 -426 -384 -345 -311 -279 -251 -225 -201 -180 -160 -142 -125 -110 -96 -82 4 -1554 -1493 -1399 -1313 -1236 -1165 -1098 -1035 -975 -919 -865 -813 -762 -712 -663 -615 -567 -520 -473 -427 -381 -337 -297 -261 -229 -199 -172 -148 -126 -106 -87 -70 -55 -40 -27 -15 3 -1131 -1078 -993 -916 -852 -798 -752 -712 -674 -637 -600 -563 -526 -489 -452 -414 -375 -336 -297 -258 -218 -181 -146 -115 -88 -62 -39 -19 00 18 34 48 61 74 85 96 2 -169 -161 -149 -137 -125 -113 -101 -90 -78 -67 -55 -44 -33 -22 -11 01 14 30 48 68 90 111 130 148 163 177 190 201 212 221 230 238 245 252 258 263 1 334 336 338 341 344 346 349 351 353 356 358 361 363 365 367 369 372 374 376 379 384 390 395 399 403 407 410 412 414 416 418 419 420 421 422 422 SEGMENT NUM 10 -786 -748 -714 -682 -651 -623 -595 -558 -535 -534 9 -926 -879 -837 -798 -761 -726 -692 -647 -617 -616 8 -1029 -976 -929 -885 -843 -803 -766 -714 -680 -679 7 -1114 -1056 -1006 -958 -913 -870 -829 -773 -736 -734 6 -1240 -1177 -1121 -1069 -1019 -971 -926 -864 -824 -820 5 -1245 -1181 -1126 -1073 -1023 -976 -931 -869 -828 -825 4 -1180 -1120 -1067 -1017 -969 -924 -882 -823 -785 -782 3 -1075 -1020 -972 -926 -882 -841 -802 -748 -714 -712 2 -916 -870 -829 -790 -754 -719 -686 -641 -612 -611 1 -766 -729 -695 -664 -634 -606 -579 -542 -519 -519 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(AXIAL) (001) IWROD= 14 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 1451 1432 1413 1394 1376 1358 1340 1322 1305 1288 1270 1253 1236 1220 1203 1187 1171 1155 1139 1123 1129 1115 1110 1104 1098 1092 1085 1078 1071 1063 1055 1047 1037 1025 1010 982 9 3145 3089 3033 2977 2922 2868 2815 2762 2709 2657 2606 2556 2506 2457 2408 2361 2313 2267 2212 2251 2130 2094 2086 2077 2068 2057 2045 2031 2014 1994 1968 1763 1719 1677 1630 1581 8 4500 4392 4294 4202 4113 4027 3943 3861 3779 3699 3619 3541 3463 3387 3289 3245 3081 2893 2709 2519 2359 2309 2304 2298 2291 2284 2276 2267 2257 2245 2231 2214 2194 2171 2140 2081 7 6183 5744 5439 5218 5048 4909 4786 4674 4567 4505 4337 4167 3988 3802 3603 3398 3201 3004 2803 2599 2429 2374 2371 2367 2363 2358 2353 2346 2339 2331 2321 2309 2294 2276 2252 2220 6 6938 6708 6477 6250 6022 5792 5564 5337 5116 4900 4685 4470 4257 4052 3849 3644 3437 3229 3018 2803 2627 2571 2569 2567 2564 2561 2557 2553 2548 2542 2535 2526 2514 2497 2474 2441 5 6958 6726 6495 6264 6035 5808 5582 5356 5133 4912 4693 4476 4265 4059 3851 3642 3432 3221 3007 2790 2612 2554 2553 2551 2549 2547 2545 2542 2538 2535 2529 2522 2512 2497 2475 2444 4 6826 6593 6364 6134 5903 5667 5425 5195 4979 4769 4558 4344 4128 3915 3708 3502 3294 3085 2874 2658 2481 2422 2421 2420 2417 2414 2411 2408 2404 2400 2394 2387 2376 2362 2342 2314 3 6348 5923 5569 5318 5129 4978 4849 4750 4575 4385 4203 4018 3829 3636 3438 3229 3026 2825 2622 2415 2242 2186 2184 2181

JAEA-DataCode 2013-009

- 212 -

2178 2175 2171 2166 2161 2155 2147 2138 2126 2111 2091 2065 2 3834 3759 3685 3612 3541 3470 3401 3332 3264 3197 3130 3065 3000 2936 2893 2744 2584 2413 2226 2039 1879 1828 1824 1820 1815 1810 1805 1798 1790 1780 1770 1757 1743 1726 1706 1681 1 1865 1837 1809 1782 1755 1728 1702 1676 1650 1625 1600 1575 1550 1526 1502 1478 1455 1431 1468 1355 1234 1196 1192 1188 1183 1179 1174 1168 1162 1156 1150 1142 1135 1127 1118 1108 SEGMENT NUM 10 439 439 439 439 439 439 439 439 439 439 9 347 347 347 347 347 347 347 347 347 347 8 278 278 278 278 278 278 278 278 278 278 7 243 243 243 243 243 243 243 243 243 243 6 208 208 208 208 208 208 208 208 208 208 5 226 226 226 226 226 226 226 226 226 226 4 257 257 257 257 257 257 257 257 257 257 3 297 297 297 297 297 297 297 297 297 297 2 385 385 385 385 385 385 385 385 385 385 1 461 461 461 461 461 461 461 461 461 461 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 26 37 46 53 59 65 70 75 80 85 89 93 97 101 105 109 112 116 119 122 126 129 132 135 138 141 144 146 149 151 154 156 158 161 163 165 0000 9 00 00 01 02 04 05 07 10 12 14 17 19 22 25 28 31 34 37 40 44 48 52 57 61 65 69 72 76 79 82 86 89 92 95 99 102 105 -0000 8 00 -27 -36 -42 -46 -49 -51 -52 -52 -52 -52 -51 -50 -49 -47 -45 -42 -38 -33 -27 -21 -14 -07 -00 06 12 17 23 28 32 37 41 45 49 53 57 61 -0000 7 00 -74 -95 -107 -114 -119 -123 -126 -128 -129 -130 -129 -128 -125 -121 -117 -111 -104 -97 -89 -80 -70 -61 -52 -44 -36 -29 -22 -16 -10 -04 01 06 11 16 20 25 0000 6 -00 -117 -155 -176 -191 -200 -206 -210 -212 -212 -211 -209 -205 -200 -195 -188 -181 -173 -164 -155 -144 -134 -123 -113 -104 -96 -88 -80 -73 -66 -60 -54 -49 -44 -39 -34 -29 0000 5 00 -133 -175 -198 -212 -221 -226 -228 -229 -228 -226 -222 -218 -212 -206 -199 -191 -183 -173 -163 -152 -141 -130 -119 -110 -101 -92 -84 -77 -70 -63 -57 -51 -46 -41 -36 -31 0000 4 -00 -106 -140 -161 -174 -183 -189 -193 -194 -194 -193 -190 -186 -182 -176 -169 -162 -153 -144 -134 -123 -112 -101 -91 -82 -73 -65 -57 -49 -42 -36 -30 -24 -19 -13 -08 -04 0000 3 00 -77 -100 -113 -121 -126 -130 -132 -134 -134 -134 -132 -129 -125 -120 -115 -108 -100 -92 -83 -73 -62 -52 -43 -34 -25 -18 -10 -03 03 10 16 21 27 32 37 41 0000 2 -00 -12 -15 -17 -18 -18 -18 -17 -16 -15 -13 -11 -09 -07 -04 -02 02 06 11 17 24 32 39 46 52 58 64 70 75 80 84 89 93 97 101 105 109 0000 1 -00 23 33 40 47 53 58 63 68 73 77 81 86 90 94 97 101 105 109 112 116 121 126 130 134 138 142 146 149 153 156 159 162 165 168 171 173 -0000 (R-DIRECTION OF Cladding) 10 -335 -324 -439 -554 -669 -784 -900 -1016 -375 -285 -195 9 -395 -381 -501 -621 -741 -861 -982 -1103 -473 -338 -203 8 -439 -424 -548 -673 -798 -924 -1050 -1176 -557 -381 -204 7 -475 -459 -588 -718 -848 -978 -1109 -1240 -631 -418 -206 6 -529 -511 -648 -786 -924 -1062 -1201 -1340 -747 -477 -207 5 -531 -513 -650 -788 -927 -1065 -1205 -1344 -752 -480 -208 4 -504 -486 -617 -749 -881 -1013 -1146 -1279 -673 -446 -219 3 -459 -443 -566 -690 -813 -938 -1062 -1187 -565 -395 -225 2 -391 -378 -494 -610 -727 -844 -962 -1079 -443 -329 -216 1 -327 -316 -428 -540 -652 -764 -877 -990 -344 -272 -201 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 3320391 (Plenum) 10 17978029 3139636 9 17011908 2700254 8 15111368 2353561 7 13062903 2075618 6 10982308 1832563 5 8725095 1624651 4 6498211 1399123 3 4400908 1142598 2 2524124 845254 1 972470 460646 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT INCREMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000

JAEA-DataCode 2013-009

- 213 -

9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 8 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 7 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 6 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 3 00 -00 -00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 1 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 00 00 00 00 00 00 -0000 (R-DIRECTION OF Cladding) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 8 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 7 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 6 -00 00 00 00 00 00 00 00 00 00 00 5 00 00 00 00 00 00 00 00 00 00 00 4 00 00 00 00 00 00 00 00 00 00 00 3 00 00 00 00 00 00 00 00 00 00 00 2 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 0042 (Plenum) 10 0011 0011 9 0014 0014 8 0014 0014 7 0012 0012 6 0008 0008 5 0005 0005 4 0003 0003 3 0005 0005 2 0005 0005 1 0004 0004 STAGE NO 619 PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) CLEARANCE CONTACT THERMAL ELASTIC DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE (MICRONS) FORCE(MPA) EXPANS DEFORM CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 0000 5970 1265 -090 -869 -2648 2827 1164 1649 822 -138 -3787 -3351 9 -0000 4827 1528 -063 -2705 -2707 3813 1186 1051 851 -177 -4321 -3949 8 -0000 4043 1719 -045 -3905 -2720 4356 1204 609 872 -204 -4717 -4391 7 -0000 3668 1830 -035 -4700 -2725 4659 1217 246 885 -220 -5049 -4754 6 -0000 3224 1911 -024 -5595 -2728 4910 1234 -292 899 -240 -5542 -5292 5 0000 3360 1945 -026 -5704 -2728 4973 1230 -311 900 -239 -5564 -5311 4 0000 3800 1923 -032 -5328 -2728 4914 1216 -036 889 -224 -5313 -5036 3 -0000 4222 1835 -039 -4579 -2725 4710 1211 413 872 -206 -4899 -4587 2 0000 5156 1632 -059 -3115 -2717 4163 1187 1091 847 -171 -4286 -3909 1 -0000 6422 1342 -091 -1190 -2678 3185 1164 1733 817 -122 -3719 -3267 ------------------------------------------------------------------------------------------------------------------- | RESULTS OF THERMAL ANALYSIS THERMAL INFORMATION ( SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | T H E R M A L I N F O R M A T I O N ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | TEMPERATURE GAP CONDUCTANCE RADIAL CONTACT PROD FISS IODN CPU NO HEAT | FUEL FUEL CLAD CLAD TOTAL GAS SOLID BONDING GAP PRESS GAS GAS REL TIME RATE (MWD | CENTER SURFACE INNER OUTER (WCM2 (WCM2 (WCM2 RATIO SIZE (XE+KR) REL (10-5 (HRMSMS) (WCM) TU) | (DEGC)(DEGC)(DEGC)(DEGC) C) C) C) (-) (MIC) (MPA)(10-3MOL)() GCM2)(SEC) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 2850 2850 2850 2850 0602 060 000 0000 0 323 00 000 050 0000 0 245 139055442965 3399 292014| 14005 4335 4164 3618 7687 354 006 0667 1 00 94 190 595 2397 12 314 163561451942 12 356537| 2881 2856 2856 2854 6119 123 000 0842 0 55 00 232 775 3809 15 363 198595338887 2316 408858| 10360 3925 3828 3452 9134 282 005 0925 1 00 82 266 755 4256 18 513 283643137758 66 578551| 3054 2887 2883 2872 6939 108 000 1000 0 29 00 377 920 7345 25 |

JAEA-DataCode 2013-009

- 214 -

530 284964457773 1877 579655| 9437 3830 3754 3454 9600 191 002 1000 1 00 53 378 921 7367 26 618 3638551 9574 1214 687736| 7203 3530 3480 3285 9529 125 001 1000 1 00 32 448 1298 12313 30 619 363855730374 1214 687737| 7203 3529 3480 3285 9529 125 001 1000 1 00 32 448 1298 12313 30 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF THERMAL ANALYSIS MECHANICAL INFORMATION ( SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | F U E L O U T E R S U R F A C E | RADIAL GAP | CLAD INNER SURFACE ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | THERMAL CREEP DENSIFI SWELL RELOCA RADIAL | RAD CONTACT|THERMAL ELASTIC CREEP RADIAL NO HEAT | EXPAN -CATION -ING -TION DISPLA | GAP PRESS | EXPAN DEFORM DISPLA RATE (MWD | -SION -CEMENT | | -SION -ATION -CEMENT (HRMSMS) (WCM) TU) | (MIC) (MIC) (MIC) (MIC) (MIC) (MIC) | (MIC) (MPA)| (MIC) (MIC) (MIC) (MIC) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 729 000 000 000 1345 2074 | 323 00 | 734 -407 000 306 245 139055442965 3399 292014| 4556 -3814 -2564 2344 1140 1471 | 00 94 | 1070 -093 -4200 -3529 314 163561451942 12 356537| 737 -4304 -2639 2835 2962 -222 | 55 00 | 735 -332 -4725 -4671 363 198595338887 2316 408858| 2983 -4067 -2674 3241 1143 467 | 00 82 | 985 -107 -5049 -4533 513 283643137758 66 578551| 777 -5410 -2720 4406 2290 -546 | 29 00 | 742 -342 -5260 -5252 | | | 530 284964457773 1877 579655| 2665 -5407 -2720 4413 1199 105 | 00 53 | 969 -213 -5264 -4895 618 3638551 9574 1214 687736| 1911 -5595 -2728 4910 1234 -292 | 00 32 | 899 -240 -5541 -5292 619 363855730374 1214 687737| 1911 -5595 -2728 4910 1234 -292 | 00 32 | 899 -240 -5542 -5292 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF THERMAL ANALYSIS FISSION GAS INFORMATION ( SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | F U E L C E N T E R | | F U E L - C L A D ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | FUEL GRAIN BUBBLE BUBBLE DIFFUS DIFFUS GAS SATURA | LOCAL |FISSON AMOUNT XE+KR NO HEAT | CENTER RADIUS RADIUS DENSITY COEFF COEFF DENSAT -TION | FGR AT| GAS OF GAS IN GAP RATE (MWD | TEMP (10D14 EFFECT BOUND DENS | CENTER| REL IN GAP (HRMSMS) (WCM) TU) | (DEGC) (MIC) (ANGST) BCM3) (10D-16 CM2S) (10D13 ATCM2) | () | () (10-3MOL) () ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 2850 50 00 193532 02 02 00 2610 | 050 | 050 009 000 245 139055442965 3399 292014| 14005 53 114 42205 454 298 2317 2317 | 5579 | 595 003 999 314 163561451942 12 356537| 2881 54 22 130136 02 02 438 2811 | 6489 | 775 008 1504 363 198595338887 2316 408858| 10360 54 28 119001 03 03 563 2368 | 5712 | 755 004 1611 513 283643137758 66 578551| 3054 54 33 109726 02 02 1074 3047 | 4151 | 920 008 2948 | | | 530 284964457773 1877 579655| 9437 54 33 109523 02 02 978 1806 | 4144 | 921 005 2956 618 3638551 9574 1214 687736| 7203 54 37 103495 02 02 1080 2151 | 3549 | 1298 007 4451 619 363855730374 1214 687737| 7203 54 37 103495 02 02 1080 2151 | 3549 | 1298 007 4451 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF THERMAL ANALYSIS FISSION GAS INFORMATION ( WHOLE FUEL ROD ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | F U E L R O D ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | AMOUNT OF GAS FRACTION OF GAS MIXTURE FISSION INNER NO HEAT | PRODUCE RELEASE PLENUM GAP TOTAL IN GAS GAS RATE (MWD (10D20 | (XE+KR) (XE+KR) FUEL ROD HE N2 KR XE RELEASE PRESS (HRMSMS) (WCM) TU) FISSCC)| (10D-3 MOLE) () () () () () (MPA) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00 000 | 000 000 324 090 414 10000 000 000 000 050 194 245 139055442965 3399 235664 582 | 1535 044 391 040 432 9587 000 131 878 284 249 314 163561451942 12 288442 713 | 1879 069 379 077 457 9070 000 197 1315 368 228 363 198595338887 2316 332016 821 | 2163 075 401 048 449 9232 000 217 1449 346 258 513 283643137758 66 479942 1186 | 3127 158 440 089 530 7853 000 389 2602 507 286 | 530 284964457773 1877 480941 1189 | 3133 159 465 055 520 8002 000 398 2661 507 308 618 3638551 9574 1214 578801 1431 | 3771 300 575 080 655 6390 000 595 3983 795 387 619 363855730374 1214 578802 1431 | 3771 300 575 080 655 6390 000 595 3983 795 387 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF FEM MECHANICAL ANALYSIS FUEL AND CLAD DEFORMATIONS ( ANALYZED SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | DIAMETRAL FUEL TOP | DIAMETRAL GAP | DIAMETRAL CLADDING | DIA RIDGE ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | AXIAL AXIAL RADIAL RADIAL| RADIAL CONTACT CONTACT| AXIAL RADIAL RADIAL | RIDGE RIDGE NO HEAT | DIPS DIPS DIPS DIPS | GAP AT PRESS PRESS | DISP DISP DISP |HEIGHT HEIGHT RATE (MWD | CENTER SURF INNER OUTER | TOP AXIAL RADIAL | AT TOP OUTTOP OUTMID| MAX TOP-MID (HRMSMS) (WCM) TU) | (MM) (MM) (MIC) (MIC) | (MIC) (MPA) (MPA) | (MM) (MIC) (MIC) | (MIC) (MIC) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 5414 5414 00 415 | 646 00 00 | 0773 93 93 | 00 00 245 139055442965 3399 292014| 8360 8360 00 294 | 00 13 94 | 2905 -394 -394 | 00 00 314 163561451942 12 356537| 7785 7785 00 -44 | 110 00 00 | 2647 -556 -556 | 00 00 363 198595338887 2316 408858| 10858 10858 00 93 | -00 07 82 | 2880 -490 -490 | 00 00 513 283643137758 66 578551| 14128 14128 00 -109 | 59 00 00 | 2986 -494 -494 | 00 00 | | | | 530 284964457773 1877 579655| 15224 15224 -00 21 | 00 08 53 | 3149 -418 -418 | 00 00 618 3638551 9574 1214 687736| 17978 17978 -00 -58 | -00 05 32 | 3320 -415 -415 | 00 00

JAEA-DataCode 2013-009

- 215 -

619 363855730374 1214 687737| 17978 17978 -00 -58 | -00 05 32 | 3320 -414 -414 | 00 00 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF FEM MECHANICAL ANALYSIS STRESSES AND STRAINS IN FUEL ( ANALYZED SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | T O P A N D I N N E R O F F U E L ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | CIRCUM AXIAL RADIAL CIRCUM AXIAL RADIAL EQUIV EQUIV CIRCUM AXIAL RADIAL EQUIV NO HEAT | TOTAL TOTAL TOTAL CREEP CREEP CREEP CREEP PLAST STRESS STRESS STRESS STRESS RATE (MWD | STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN (HRMSMS) (WCM) TU) |(001) (001) (001) (001)(001)(001)(001)(001) (MPA) (MPA) (MPA) (MPA) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 51 68 51 0 -0 0 0 0 00 -00 00 00 245 139055442965 3399 292014| -24 563 -24 -208 364 -208 381 0 -67 -64 -67 14 314 163561451942 12 356537| -135 556 -135 -249 407 -249 437 0 118 154 118 36 363 198595338887 2316 408858| -106 561 -106 -244 398 -244 428 0 -65 -00 -65 65 513 283643137758 66 578551| -173 656 -173 -300 499 -300 533 0 68 96 68 28 | 530 284964457773 1877 579655| -143 671 -143 -300 499 -300 533 0 -12 -14 -12 04 618 3638551 9574 1214 687736| -172 694 -172 -314 526 -314 560 0 -05 18 -05 23 619 363855730374 1214 687737| -172 694 -172 -314 526 -314 560 0 -05 18 -05 23 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF FEM MECHANICAL ANALYSIS STRESSES AND STRAINS IN CLAD ( ANALYZED SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | T O P A N D I N N E R O F C L A D D I N G ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | CIRCUM AXIAL RADIAL CIRCUM AXIAL RADIAL EQUIV EQUIV CIRCUM AXIAL RADIAL EQUIV NO HEAT | TOTAL TOTAL TOTAL CREEP CREEP CREEP CREEP PLAST STRESS STRESS STRESS STRESS RATE (MWD | STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN (HRMSMS) (WCM) TU) |(001) (001) (001) (001)(001)(001)(001)(001) (MPA) (MPA) (MPA) (MPA) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 8 8 24 -0 0 0 0 0 -997 -519 -49 821 245 139055442965 3399 292014| -78 21 155 -101 -26 128 135 0 -339 -348 -124 220 314 163561451942 12 356537| -104 16 169 -114 -33 147 154 0 -792 -360 -44 650 363 198595338887 2316 408858| -101 18 182 -122 -34 156 164 0 -386 -411 -115 284 513 283643137758 66 578551| -117 17 191 -127 -42 169 176 0 -836 -428 -51 680 | 530 284964457773 1877 579655| -109 20 195 -127 -42 169 176 0 -560 -368 -97 403 618 3638551 9574 1214 687736| -118 21 203 -134 -44 177 185 0 -639 -436 -87 484 619 363855730374 1214 687737| -118 21 203 -134 -44 177 185 0 -639 -436 -87 484 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF FEM MECHANICAL ANALYSIS FUEL AND CLAD DEFORMATIONS ( WHOLE FUEL ROD ) | | AND THERMAL ANALYSIS FUEL FREE VOLUME AND CLADDING OXIDATION INFORMATION | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | F U E L R O D | OXIDE THICKNESS ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP FLUEN | CLAD FUEL CLAD INNER FUEL PLENUM | OXIDE OXIDE NO HEAT CE(10 | DIA AXIAL AXIAL GAS FREE VOLUME | THICK THICK RATE (MWD (MWDT) E19N | DISP DISP DISP PRESSURE VOLUME | AVE MAX (HRMSMS) (WCM) TUO2) CM2) | (MIC) (001) (001) (MPA) (CM3) (CM3) | (MIC) (MIC) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00 00 00 | 933 5414 673 1938 9908 7749 | 0100 0100 245 139055442965 2773 207733 235664 6137 | -3957 8360 2531 2493 9031 7705 | 11180 16267 314 163561451942 10 254256 288442 7483 | -5276 7785 2306 2280 9303 7722 | 14973 22739 363 198595338887 1943 292666 332016 8592 | -4666 10858 2509 2584 8906 7568 | 17212 26062 513 283643137758 60 423060 479942 12145 | -4913 14128 2601 2863 8871 7397 | 28099 44001 | | 530 284964457773 1699 423941 480941 12169 | -4196 15224 2743 3082 8601 7347 | 28163 44092 618 3638551 9574 1100 510203 578801 14427 | -4169 17978 2893 3869 8502 7207 | 34844 54478 619 363855730374 1100 510203 578802 14428 | -4167 17978 2893 3869 8502 7207 | 34844 54479 ----------------------------------------------------------------------------------------------------------------------------------- INS1M= 0 INS2M= 0 INS3M= 0 ----------------------------- --- Calculation completed --- -----------------------------

72 Plotting control data file image of ldquoexplotABCrdquo

Sample Case Plotting Control

16

101

63018 Average LHR

JAEA-DataCode 2013-009

- 216 -

1

1

12000

5155620513

00600513

301

6301646464 Fast Flux

111

357

12000

5155620513

00600513

301

6301535353 Pellet center temperature

111

357

12000

5155620513

00600513

301

6301545454 Pellet surface temperature

101010

357

12000

5155620513

00600513

101

63012 Fission Gas Relase Rate

1

2

12000

5155620513

00600513

101

63013 Rod Internal Pressure

1

1

12000

5155620513

351050513

301

6301676767 Gap width

111

357

JAEA-DataCode 2013-009

- 217 -

12000

5155620513

00600513

301

6301494949 Gap Conductance

111

357

12000

5155620513

00600513

301

6301787878 Cladding Outer surface Diameter change

111

357

12000

5155620513

00600513

301

6301154154154 Cladding Hoop Stress

555

357

12000

7180724010-13

00600513

301

6301818181 Pellet Diameter change

111

357

12000

5155620513

00600513

311

2331101101101 Pellet local burnup

111

555

10 15200

5155620513

00600513

101

63016 Cladding Average elongation

1

1

12000

5155620513

JAEA-DataCode 2013-009

- 218 -

020800523

301

6301525252 Clad outer temperature

111

357

12000

5155620513

00600513

301

6301505050 Coolant temperature

111

1510

12000

5155620513

00600513

301

6301595959 Oxide thickness

111

357

1 1000

5155620513

00600513

73 Images of plotted output ldquoABC1ABCpdfrdquo

JAEA-DataCode 2013-009

- 219 -

JAEA-DataCode 2013-009

- 220 -

JAEA-DataCode 2013-009

- 221 -

JAEA-DataCode 2013-009

- 222 -

JAEA-DataCode 2013-009

- 223 -

JAEA-DataCode 2013-009

- 224 -

74 Example of numerical output of HBS model The result file which is generated by the High burnup structure formation model has a format of the ASCII table so as to be read by EXCEL or other gpaphical plotting softwares A sample of this file is presented in Figs 741 (12) and (22) Time Step No 431 time(hr)= 4807920 Segment No 1 2 3 4 5 6 7 8 9 10 11 12 Burnup(MWdt) 66214 247436 345140 407444 451814 472564 479751 481165 444920 399073 311228 114811 Power(Wcm) 47 47 47 47 47 47 47 47 47 47 47 47 Pellet Radius(cm) Local Burnup (MWdtU) 02600 59535 223747 312851 369954 410759 429871 436494 437799 404413 362269 281870 103406 06277 59535 223747 312851 369954 410759 429871 436494 437799 404413 362269 281870 103406 08180 59535 223747 312851 369954 410759 429871 436494 437799 404414 362269 281870 103406

51346 89214 369653 529193 630008 699531 731078 741868 743986 688916 616560 473792 161066 51608 90464 379943 546566 651956 724293 756951 768099 770286 713281 637905 488643 164049 51870 91755 390889 565226 675618 751010 784867 796398 798661 739569 660907 504550 167162 Pellet Radius(cm) Effective Burnup (GWdtU) 02600 5953 22374 16846 11614 4517 4131 4261 4698 5208 10668 21238 10340 06277 5953 22374 16901 12376 4782 4145 4279 4782 5305 12739 21263 10340 08180 5953 22374 16962 13210 5135 4161 4298 4865 5422 15584 21292 10340

51346 8921 36964 52917 62998 69950 73105 74184 74395 68889 61653 47377 16106 51608 9046 37993 54654 65193 72426 75692 76806 77025 71325 63788 48862 16404 51870 9175 39087 56520 67559 75098 78483 79636 79863 73954 66088 50453 16715

Pellet Radius(cm) Pellet Temperature (C) 00000 2970 2933 2924 2945 2984 3040 3100 3155 3183 3193 3201 3254 05200 2970 2932 2924 2944 2983 3039 3099 3154 3182 3192 3200 3253 07354 2969 2932 2923 2943 2982 3038 3098 3153 3181 3192 3200 3253

51477 2925 2870 2853 2867 2902 2956 3015 3070 3101 3116 3132 3204 51739 2925 2870 2852 2866 2901 2954 3014 3069 3100 3115 3131 3203 52000 2924 2869 2851 2865 2899 2953 3013 3067 3099 3114 3130 3203 Pellet Radius(cm) Pellet Thermal Conductivity (WcmK) 02600 07561 05572 04876 04514 04286 04185 04150 04142 04312 04549 05082 06871 06277 07561 05572 04876 04514 04286 04185 04150 04142 04312 04549 05082 06871 08180 07561 05572 04876 04514 04286 04185 04150 04142 04312 04549 05083 06871

50550 07158 04685 03935 03574 03359 03268 03237 03231 03386 03612 04156 06263 51608 07089 04459 03676 03308 03127 03102 03104 03104 03142 03347 03906 06139 51870 07070 04398 03605 03237 03104 03119 03134 03137 03107 03275 03838 06106

Fig741 (12) Example of HBS model output (ft17d)

JAEA-DataCode 2013-009

- 225 -

Pellet Radius(cm) Pellet Porosity () 02600 300 300 300 300 300 300 300 300 300 300 300 300 06277 300 300 300 300 300 300 300 300 300 300 300 300 08180 300 300 300 300 300 300 300 300 300 300 300 300

51346 300 300 300 300 302 313 321 323 301 300 300 300 51608 300 300 300 300 309 338 356 360 305 300 300 300 51870 300 300 300 300 331 391 423 430 319 300 300 300 Pellet Radius(cm) Pellet xv ratio () 02600 00 00 00 00 00 00 00 00 00 00 00 00 06277 00 00 00 00 00 00 00 00 00 00 00 00 08180 00 00 00 00 00 00 00 00 00 00 00 00

50281 00 00 00 00 00 00 00 00 00 00 00 00 50550 00 00 00 00 00 03 13 17 00 00 00 00 50816 00 00 00 00 00 39 84 96 00 00 00 00 51082 00 00 00 00 17 171 281 307 04 00 00 00 51346 00 00 00 00 112 481 692 739 54 00 00 00 51608 00 00 00 00 372 1070 1413 1487 232 00 00 00 51870 00 00 00 16 909 2031 2520 2621 643 01 00 00 Pellet Radius(cm) Fission Gas Release ratio () 02600 50 50 50 50 50 165 215 221 50 50 50 50 06277 50 50 50 50 50 149 193 200 50 50 50 50 08180 50 50 50 50 50 146 190 197 50 50 50 50

50281 50 50 50 50 50 50 50 50 50 50 50 50 50550 50 50 50 50 50 50 50 50 50 50 50 50 50816 50 50 50 50 50 907 906 911 50 50 50 50 51082 50 50 50 50 752 1018 1090 1104 50 50 50 50 51346 50 50 50 50 806 1018 1090 1104 646 50 50 50 51608 50 50 50 50 806 1018 1090 1104 735 50 50 50 51870 50 50 50 50 806 1018 1090 1104 735 50 50 50

Fig741 (22) Example of HBS model output (ft17d)

JAEA-DataCode 2013-009

- 226 -

75 Sample inputoutput of RODBURN-1

(1) input data file ABCrddat PWR-type Rod Sample Case (May 2011) 1 10 -2 36 1 1 0 0 1 0 1 1 4 0 100000 0000 0820 0970 1600 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 127315 77315 61315 59315 09500 00000 09600 00400 22 0670 0935 1081 1242 1286 1257 1086 1006 0850 0585 0676 0936 1111 1227 1267 1238 1100 1001 0849 0594 0678 0937 1120 1222 1260 1232 1105 0999 0849 0597 0679 0937 1130 1217 1254 1226 1109 0998 0849 0600 0680 0938 1136 1214 1250 1222 1112 0997 0849 0602 0681 0938 1139 1212 1248 1220 1114 0996 0848 0603 0681 0938 1140 1212 1247 1219 1114 0996 0848 0603 0681 0938 1140 1212 1247 1219 1114 0996 0848 0603 0681 0938 1140 1212 1247 1219 1114 0996 0849 0603 0709 0953 1132 1192 1218 1192 1108 1005 0864 0628 0739 0970 1123 1171 1185 1162 1100 1014 0880 0655 0751 0976 1119 1162 1173 1151 1098 1018 0887 0666 0775 0990 1112 1145 1147 1127 1092 1025 0900 0687 0792 0999 1106 1133 1129 1110 1088 1031 0909 0703 0798 1002 1104 1128 1123 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 22 2000 010

JAEA-DataCode 2013-009

- 227 -

0846831 1 001 10591 399605366 2 10805 23591 492838987 3 23746 25646 579413064 4 25814 27726 631357510 5 27834 25914 667947308 6 25981 25019 681414387 7 25035 9629 681510390 8 9629 096 682374416 9 096 9629 827495656 10 9714 19427 942927758 11 19615 21577 988026812 12 21660 20675 1081485092 13 20833 20337 1155127851 14 20453 18956 1181334058 15 18992 17992 1181855365 16 17993 600 1187364624 17 600 16993 1242897959 18 16993 15994 1336733088 19 15994 14994 1403604099 20 14994 13994 1516077261 21 13994 10996 1516081668 22 10996 10996 1 758041 3 1 2 3 4 5 6 7 8 9 10 STOP

(2) Output file ABCrdout ==================================================================================================================================

==

==================================================================================================================================

==================================================================================================================================

RRRRRRRR BBBBBBBB 111

RR RR BB BB 1111

RR RR BB BB 11

RR RR BB BB 11

RRRRRRRR BBBBBBBB 11

RRRR BB BB 11

RR RR BB BB 11

RR RR BB BB 11

RR RR BBBBBBBB 111111

==================================================================================================================================

==================================================================================================================================

RODBURN PWR-type Rod Sample Case (May 2011) VERSION 12 (Septembar 2005)

INPUT FILECFEM_ranwrkABCd RUN DATE11MAY12 START TIME144735

IPRIN(1)= 6

I N P U T D A T A L I S T

-------------------------------

1 2 3 4 5 6 7 8

CARD NO 5050505050505050

1 PWR-type Rod Sample Case (May 2011)

2 1 10 -2 36 1 1 0 0 1 0

3 1 1 4 0

4 100000 0000 0820 0970 1600

5 10000 10000 10000 10000 10000 10000 10000 10000 10000

6 10000

7 127315 77315 61315 59315

8 09500 00000

9 09600 00400

10 22

JAEA-DataCode 2013-009

- 228 -

11 0670 0935 1081 1242 1286 1257 1086 1006 0850

12 0585

13 0676 0936 1111 1227 1267 1238 1100 1001 0849

14 0594

15 0678 0937 1120 1222 1260 1232 1105 0999 0849

16 0597

17 0679 0937 1130 1217 1254 1226 1109 0998 0849

18 0600

19 0680 0938 1136 1214 1250 1222 1112 0997 0849

20 0602

21 0681 0938 1139 1212 1248 1220 1114 0996 0848

22 0603

23 0681 0938 1140 1212 1247 1219 1114 0996 0848

24 0603

25 0681 0938 1140 1212 1247 1219 1114 0996 0848

26 0603

27 0681 0938 1140 1212 1247 1219 1114 0996 0849

28 0603

29 0709 0953 1132 1192 1218 1192 1108 1005 0864

30 0628

31 0739 0970 1123 1171 1185 1162 1100 1014 0880

32 0655

33 0751 0976 1119 1162 1173 1151 1098 1018 0887

34 0666

35 0775 0990 1112 1145 1147 1127 1092 1025 0900

36 0687

37 0792 0999 1106 1133 1129 1110 1088 1031 0909

38 0703

39 0798 1002 1104 1128 1123 1104 1086 1032 0912

40 0708

41 0798 1002 1104 1128 1122 1104 1086 1032 0912

42 0708

43 0798 1002 1104 1128 1122 1104 1086 1032 0912

44 0708

45 0798 1002 1104 1128 1122 1104 1086 1032 0912

46 0708

47 0798 1002 1104 1128 1122 1104 1086 1032 0912

48 0708

49 0798 1002 1104 1128 1122 1104 1086 1032 0912

50 0708

5050505050505050

RODBURN PWR-type Rod Sample Case (May 2011) VERSION 12

I N P U T D A T A L I S T

-------------------------------

1 2 3 4 5 6 7 8

CARD NO 5050505050505050

51 0798 1002 1104 1128 1122 1104 1086 1032 0912

52 0708

53 0798 1002 1104 1128 1122 1104 1086 1032 0912

54 0708

55 22 2000 010

56 0846831 1 001 10591

57 399605366 2 10805 23591

58 492838987 3 23746 25646

59 579413064 4 25814 27726

60 631357510 5 27834 25914

61 667947308 6 25981 25019

62 681414387 7 25035 9629

63 681510390 8 9629 096

64 682374416 9 096 9629

65 827495656 10 9714 19427

66 942927758 11 19615 21577

67 988026812 12 21660 20675

68 1081485092 13 20833 20337

69 1155127851 14 20453 18956

70 1181334058 15 18992 17992

71 1181855365 16 17993 600

72 1187364624 17 600 16993

73 1242897959 18 16993 15994

74 1336733088 19 15994 14994

75 1403604099 20 14994 13994

76 1516077261 21 13994 10996

JAEA-DataCode 2013-009

- 229 -

77 1516081668 22 10996 10996

78 1

79 758041

80 3

81 1 2 3 4 5 6 7 8 9 10

82 STOP

5050505050505050

RODBURN PWR-type Rod Sample Case (May 2011) VERSION 12

PWR-type Rod Sample Case (May 2011)

CONTROL DATA

1 MODEL =1PWR =2BWR =3HWR =4PWR(MOX) =5BWR(MOX)

10 MESHZ NUMBER OF AXIAL MESHES(=lt 40)

-2 KREG1 NUMBER OF RADIAL MESHES(=lt 39)

36 MESHR NUMBER OF PELLET RADIAL MESHES(=lt 36)

1 IOPT POWER HISTORY DATA OPTION (0INPUT AVERAGE THERMAL FLUX)

(1INPUT AVERAGE POWER DENSITY (WCM))

1 IDIST AXIAL DISTRIBUTION INPUT OPTION(0COSINE1INPUT)

0 MODEL2 =1PWR =2BWR =3HWR =4PWR(MOX) =5BWR(MOX)

0 KREG2 NUMBER OF RADIAL MESHES FOR MODEL2(=lt 39)

(0DOES NOT CALCULATE BY RABBLE)

1 IFLPW =0AXIAL FLUX DISTRIBUTION =1AXIAL POWER DISTRIBUTION

0 ISTOP =0NOMAL CALCULATION =1INPUT DATA CHECK

SPECTRAL INDICES

THERM = 07010 RES = 03040 FAST = 20100

CONTROL DATA 2

1 IAUTO =0NUCLIDE NUM amp CONC INPUT =1AUTO GENERATE

1 IPTCH1 =0BOUNDARY DIAMETER INPUT =1FUEL ROD PITCH INPUT

4 IZR1 =2ZIRCALOY-2 =4ZIRCALOY-4

0 IHD1 =0H2O(COOLANT) =1D2O(COOLANT)

0 IPTCH2 =0BOUNDARY DIAMETER INPUT =1FUEL ROD PITCH INPUT

0 IZR2 =2ZIRCALOY-2 =4ZIRCALOY-4

0 IHD2 =0H2O(COOLANT) =1D2O(COOLANT)

FUEL PIN SIZE

1000000 ZLENG FUEL ACTIVE LENGTH (CM)

00000 PDIN PELLET INNER DIAMETER (CM)

08200 PDIA PELLET OUTER DIAMETER (CM)

09700 CDOUT1 CLADDING OUTER DIAMETER (CM)

16000 PITCH1 FUEL ROD PITCH (CM)

00000 CDOUT2 CLADDING OUTER DIAMETER (CM)

00000 PITCH2 FUEL ROD PITCH (CM)

AXIAL DISTANCE FOR EACH MESH(CM)

1000E+01 2000E+01 3000E+01 4000E+01 5000E+01 6000E+01 7000E+01 8000E+01 9000E+01 1000E+02

RADIAL DISTANCE FOR EACH MESH(CM)

0000E+00 6833E-02 9664E-02 1184E-01 1367E-01 1528E-01 1674E-01 1808E-01 1933E-01 2050E-01 2161E-01 2266E-01

2367E-01 2464E-01 2557E-01 2647E-01 2733E-01 2817E-01 2899E-01 2979E-01 3056E-01 3131E-01 3205E-01 3277E-01

3348E-01 3417E-01 3484E-01 3551E-01 3616E-01 3680E-01 3743E-01 3805E-01 3866E-01 3925E-01 3984E-01 4043E-01

4100E-01

FUEL MATRIALS(1)

09500 FDEN FUEL FRACTIONAL DENSITY (-)

00000 FPUO2 PUO2 WEIGHT FRACTION (WT FRAC)

FUEL MATRIALS(2)

09600 FU238 U238U-TOTAL (WT FRAC)

00400 FU235 U235U-TOTAL (WT FRAC)

00000 FU232 U232U-TOTAL (WT FRAC)

JAEA-DataCode 2013-009

- 230 -

00000 FU233 U233U-TOTAL (WT FRAC)

00000 FU234 U234U-TOTAL (WT FRAC)

00000 FU236 U236U-TOTAL (WT FRAC)

00000 FU237 U237U-TOTAL (WT FRAC)

00000 FU239 U239U-TOTAL (WT FRAC)

00000 FU240 U240U-TOTAL (WT FRAC)

NUCLIDE NUMBER AND CONCENTRATION(GCC)

MIXTURE NO NUCLIDE CONCENTRATION

1 U238 8810E+00

1 U235 3671E-01

1 O 1235E+00

2 ZR-4 6550E+00

3 H 7900E-02

3 O 6310E-01

ARRAY DESCRIPTION OF MIXTURE

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

VOLUME(CM3) OF FUEL SEGMENT

RADIAL

AXIAL 1 2 3 4 5 6 7 8 9 10

1 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

2 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

3 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

4 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

5 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

6 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

7 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

8 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

9 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

10 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

RADIAL

AXIAL 11 12 13 14 15 16 17 18 19 20

1 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

2 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

3 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

4 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

5 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

6 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

7 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

8 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

9 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

10 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

RADIAL

AXIAL 21 22 23 24 25 26 27 28 29 30

1 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

2 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

3 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

4 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

5 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

6 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

7 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

8 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

9 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

10 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

FUEL PELLET TOTAL WEIGHT (GRAM) = 549859

JAEA-DataCode 2013-009

- 231 -

NUMBER OF PATTERNS FOR AXIAL FLUX DISTRIBUTION NDIST = 22

INPUT AXIAL POWER DISTRIBUTION

1 6700E-01 9350E-01 1081E+00 1242E+00 1286E+00 1257E+00 1086E+00 1006E+00 8500E-01 5850E-01

2 6760E-01 9360E-01 1111E+00 1227E+00 1267E+00 1238E+00 1100E+00 1001E+00 8490E-01 5940E-01

3 6780E-01 9370E-01 1120E+00 1222E+00 1260E+00 1232E+00 1105E+00 9990E-01 8490E-01 5970E-01

4 6790E-01 9370E-01 1130E+00 1217E+00 1254E+00 1226E+00 1109E+00 9980E-01 8490E-01 6000E-01

5 6800E-01 9380E-01 1136E+00 1214E+00 1250E+00 1222E+00 1112E+00 9970E-01 8490E-01 6020E-01

6 6810E-01 9380E-01 1139E+00 1212E+00 1248E+00 1220E+00 1114E+00 9960E-01 8480E-01 6030E-01

7 6810E-01 9380E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9960E-01 8480E-01 6030E-01

8 6810E-01 9380E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9960E-01 8480E-01 6030E-01

9 6810E-01 9380E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9960E-01 8490E-01 6030E-01

10 7090E-01 9530E-01 1132E+00 1192E+00 1218E+00 1192E+00 1108E+00 1005E+00 8640E-01 6280E-01

11 7390E-01 9700E-01 1123E+00 1171E+00 1185E+00 1162E+00 1100E+00 1014E+00 8800E-01 6550E-01

12 7510E-01 9760E-01 1119E+00 1162E+00 1173E+00 1151E+00 1098E+00 1018E+00 8870E-01 6660E-01

13 7750E-01 9900E-01 1112E+00 1145E+00 1147E+00 1127E+00 1092E+00 1025E+00 9000E-01 6870E-01

14 7920E-01 9990E-01 1106E+00 1133E+00 1129E+00 1110E+00 1088E+00 1031E+00 9090E-01 7030E-01

15 7980E-01 1002E+00 1104E+00 1128E+00 1123E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

16 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

17 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

18 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

19 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

20 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

21 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

22 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

NORMALIZED POWER DISTRIBUTION

1 6701E-01 9352E-01 1081E+00 1242E+00 1286E+00 1257E+00 1086E+00 1006E+00 8502E-01 5851E-01

2 6761E-01 9361E-01 1111E+00 1227E+00 1267E+00 1238E+00 1100E+00 1001E+00 8491E-01 5941E-01

3 6781E-01 9371E-01 1120E+00 1222E+00 1260E+00 1232E+00 1105E+00 9991E-01 8491E-01 5971E-01

4 6791E-01 9371E-01 1130E+00 1217E+00 1254E+00 1226E+00 1109E+00 9981E-01 8491E-01 6001E-01

5 6800E-01 9380E-01 1136E+00 1214E+00 1250E+00 1222E+00 1112E+00 9970E-01 8490E-01 6020E-01

6 6811E-01 9381E-01 1139E+00 1212E+00 1248E+00 1220E+00 1114E+00 9961E-01 8481E-01 6031E-01

7 6811E-01 9382E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9962E-01 8482E-01 6031E-01

8 6811E-01 9382E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9962E-01 8482E-01 6031E-01

9 6811E-01 9381E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9961E-01 8491E-01 6031E-01

10 7089E-01 9529E-01 1132E+00 1192E+00 1218E+00 1192E+00 1108E+00 1005E+00 8639E-01 6279E-01

11 7391E-01 9701E-01 1123E+00 1171E+00 1185E+00 1162E+00 1100E+00 1014E+00 8801E-01 6551E-01

12 7509E-01 9759E-01 1119E+00 1162E+00 1173E+00 1151E+00 1098E+00 1018E+00 8869E-01 6659E-01

13 7750E-01 9900E-01 1112E+00 1145E+00 1147E+00 1127E+00 1092E+00 1025E+00 9000E-01 6870E-01

14 7920E-01 9990E-01 1106E+00 1133E+00 1129E+00 1110E+00 1088E+00 1031E+00 9090E-01 7030E-01

15 7982E-01 1002E+00 1104E+00 1128E+00 1123E+00 1104E+00 1086E+00 1032E+00 9123E-01 7082E-01

16 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

JAEA-DataCode 2013-009

- 232 -

17 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

18 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

19 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

20 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

21 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

22 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

DTIME(DAY) = 2000 ZMAX(CM) = 10000 ISTP = 22 DINCR= 010

ISTP KDIS TIMX(DAY) PLHR(WCM)

1 1 085 001 10591

2 2 39961 10805 23591

3 3 49284 23746 25646

4 4 57941 25814 27726

5 5 63136 27834 25914

6 6 66795 25981 25019

7 7 68141 25035 9629

8 8 68151 9629 096

9 9 68237 096 9629

10 10 82750 9714 19427

11 11 94293 19615 21577

12 12 98803 21660 20675

13 13 108149 20833 20337

14 14 115513 20453 18956

15 15 118133 18992 17992

16 16 118186 17993 600

17 17 118736 600 16993

18 18 124290 16993 15994

19 19 133673 15994 14994

20 20 140360 14994 13994

21 21 151608 13994 10996

22 22 151608 10996 10996

ISTEP KDIS TIMX(DAY) PLHR(WCM) POWER(MW)

1 1 085 5295 000529

2 2 2078 11124 001112

3 2 4072 11763 001176

4 2 6066 12402 001240

5 2 8060 13041 001304

6 2 10054 13680 001368

7 2 12047 14320 001432

8 2 14041 14959 001496

9 2 16035 15598 001560

10 2 18029 16237 001624

11 2 20023 16877 001688

12 2 22016 17516 001752

13 2 24010 18155 001816

14 2 26004 18794 001879

15 2 27998 19434 001943

16 2 29992 20073 002007

17 2 31985 20712 002071

18 2 33979 21351 002135

19 2 35973 21991 002199

20 2 37967 22630 002263

21 2 39961 23269 002327

22 3 41825 23934 002393

23 3 43690 24314 002431

24 3 45555 24694 002469

25 3 47419 25073 002507

26 3 49284 25453 002545

27 4 51015 26003 002600

28 4 52747 26385 002638

JAEA-DataCode 2013-009

- 233 -

29 4 54478 26767 002677

30 4 56210 27150 002715

31 4 57941 27532 002753

32 5 59673 27514 002751

33 5 61404 26874 002687

34 5 63136 26234 002623

35 6 64965 25738 002574

36 6 66795 25257 002526

37 7 68141 17329 001733

38 8 68151 4862 000486

39 9 68237 4862 000486

40 10 70051 10322 001032

41 10 71865 11536 001154

42 10 73679 12751 001275

43 10 75494 13965 001396

44 10 77308 15179 001518

45 10 79122 16393 001639

46 10 80936 17608 001761

47 10 82750 18822 001882

48 11 84673 19777 001978

49 11 86597 20103 002010

50 11 88521 20430 002043

51 11 90445 20757 002076

52 11 92369 21084 002108

53 11 94293 21411 002141

54 12 95796 21498 002150

55 12 97299 21170 002117

56 12 98803 20841 002084

57 13 100672 20783 002078

58 13 102541 20684 002068

59 13 104410 20585 002059

60 13 106279 20486 002049

61 13 108149 20387 002039

62 14 109990 20266 002027

63 14 111831 19892 001989

64 14 113672 19517 001952

65 14 115513 19143 001914

66 15 116823 18736 001874

67 15 118133 18237 001824

68 16 118186 9293 000929

69 17 118736 8793 000879

70 18 120588 16820 001682

71 18 122439 16487 001649

72 18 124290 16154 001615

73 19 126166 15888 001589

74 19 128043 15688 001569

75 19 129920 15488 001549

76 19 131797 15288 001529

77 19 133673 15088 001509

78 20 135345 14863 001486

79 20 137017 14613 001461

80 20 138689 14363 001436

81 20 140360 14113 001411

82 21 142235 13739 001374

83 21 144110 13239 001324

84 21 145984 12740 001274

85 21 147859 12240 001224

86 21 149733 11741 001174

87 21 151608 11241 001124

88 22 151608 10992 001099

89 22 153503 18560 001856

90 22 155398 18560 001856

91 22 157293 18560 001856

92 22 159189 18560 001856

93 22 161084 18560 001856

94 22 162979 18560 001856

95 22 164874 18560 001856

96 22 166769 18560 001856

RODBURN SUB CODE RABBLE INPUT CONDITION amp CALCULATION RESULT

NO CELL REGIONS = 39 NO MATERIALS = 12

NO COMPOSITIONS = 39 NO RESONANT MATERIALS = 2

JAEA-DataCode 2013-009

- 234 -

NO BROAD GROUPS = 12 LETHARGY WIDTH INTER GROUP =0100000E-01

NO INTERMEDIATE GROUPS = 885 RESONANCETEST = 0500E-02 (BARNS)

CIRCULARIZED CELL WITH COSINE INTERFACE CURRENTS

REGION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

COMPOSITION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

OUTER DIMENSION 0068 0097 0118 0137 0153 0167 0181 0193 0205 0216 0227 0237 0246 0256 0265 0273 0282 0290

TEMPERATURE 1266 1252 1238 1225 1211 1197 1183 1169 1155 1141 1127 1113 1100 1086 1072 1058 1044 1030

REGION 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

REGION 37 38 39

COMPOSITION 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

COMPOSITION 37 38 39

OUTER DIMENSION 0298 0306 0313 0320 0328 0335 0342 0348 0355 0362 0368 0374 0380 0387 0393 0398 0404 0410

OUTER DIMENSION 0485 0694 0903

TEMPERATURE 1016 1002 988 975 961 947 933 919 905 891 877 863 850 836 822 808 794 780

TEMPERATURE 613 593 593

MATERIAL RES MASS SIG POT SIG A 1V SIG F 1V COMPOSITIONDENSITY

(AMU) (BARNS) (BARNS) (BARNS) 1 2 3 4 5

U238 190 238051E+02 118230E+01 000000E+00 000000E+00 222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 000000E+00 000000E+00 000000E+00

P240 200 240054E+02 109860E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

H 0 100783E+00 204280E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 472045E-02 472045E-02

D 0 201431E+00 559400E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

O 0 159949E+01 290700E+00 000000E+00 000000E+00 464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 000000E+00 237570E-02 237570E-02

HE 0 400259E+00 136800E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

ZR-2 0 913870E+01 647900E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

JAEA-DataCode 2013-009

- 235 -

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

ZR-4 0 913950E+01 647900E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 431582E-02 000000E+00 000000E+00

U235 0 235044E+02 115000E+01 000000E+00 000000E+00 940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 000000E+00 000000E+00 000000E+00

P239 0 239053E+02 112930E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

P241 0 241057E+02 125660E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

P242 0 242059E+02 123160E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

BROAD GROUP NO INTER GROUPS NO FINE GPINTER GP MAXIMUN ENERGY (EV) MINIMUM ENERGY (EV)

1 45 20 03519E+04 02244E+04

2 45 20 02244E+04 01431E+04

3 45 20 01431E+04 09123E+03

4 91 20 09123E+03 03672E+03

5 90 20 03672E+03 01493E+03

6 68 20 01493E+03 07564E+02

7 45 20 07564E+02 04823E+02

8 55 20 04823E+02 02783E+02

9 55 20 02783E+02 01605E+02

10 48 20 01605E+02 09934E+01

11 90 20 09934E+01 04039E+01

12 208 20 04039E+01 05046E+00

ABSORPTION 1 GROUPS

U238 11032E+00 11164E+00 11273E+00 11378E+00 11482E+00 11585E+00 11692E+00 11803E+00 11916E+00 12031E+00

12152E+00 12279E+00 12414E+00 12563E+00 12720E+00 12888E+00 13066E+00 13259E+00 13469E+00 13700E+00

13951E+00 14229E+00 14544E+00 14901E+00 15314E+00 15785E+00 16351E+00 17048E+00 17931E+00 19097E+00

20711E+00 23069E+00 26701E+00 32670E+00 43343E+00 63435E+00 00000E+00 00000E+00 00000E+00

P240 54437E+02 54422E+02 54412E+02 54398E+02 54386E+02 54375E+02 54364E+02 54354E+02 54344E+02 54333E+02

54323E+02 54312E+02 54301E+02 54292E+02 54282E+02 54273E+02 54263E+02 54252E+02 54241E+02 54230E+02

54219E+02 54207E+02 54194E+02 54181E+02 54168E+02 54152E+02 54136E+02 54118E+02 54098E+02 54077E+02

54054E+02 54027E+02 53994E+02 53955E+02 53902E+02 53823E+02 00000E+00 00000E+00 00000E+00

FISSION 1 GROUPS

U238 89217E-05 89168E-05 89130E-05 89097E-05 89066E-05 89037E-05 89009E-05 88980E-05 88953E-05 88927E-05

JAEA-DataCode 2013-009

- 236 -

88900E-05 88874E-05 88846E-05 88816E-05 88787E-05 88757E-05 88728E-05 88699E-05 88669E-05 88639E-05

88608E-05 88577E-05 88546E-05 88513E-05 88480E-05 88447E-05 88411E-05 88373E-05 88333E-05 88289E-05

88241E-05 88186E-05 88122E-05 88045E-05 87943E-05 87797E-05 00000E+00 00000E+00 00000E+00

P240 23082E-01 23089E-01 23094E-01 23098E-01 23103E-01 23107E-01 23112E-01 23116E-01 23121E-01 23125E-01

23129E-01 23134E-01 23139E-01 23144E-01 23149E-01 23155E-01 23161E-01 23166E-01 23172E-01 23179E-01

23185E-01 23192E-01 23200E-01 23207E-01 23216E-01 23224E-01 23233E-01 23243E-01 23254E-01 23266E-01

23279E-01 23295E-01 23312E-01 23331E-01 23353E-01 23376E-01 00000E+00 00000E+00 00000E+00

ABSORPTION RESONANCE INTEGRAL

U238 14935E+01 15122E+01 15276E+01 15424E+01 15570E+01 15715E+01 15865E+01 16021E+01 16180E+01 16340E+01

16509E+01 16687E+01 16877E+01 17084E+01 17304E+01 17538E+01 17786E+01 18054E+01 18347E+01 18667E+01

19016E+01 19402E+01 19839E+01 20333E+01 20905E+01 21555E+01 22338E+01 23300E+01 24517E+01 26125E+01

28349E+01 31596E+01 36597E+01 44817E+01 59527E+01 87265E+01 00000E+00 00000E+00 00000E+00

P240 72101E+03 72125E+03 72145E+03 72155E+03 72166E+03 72176E+03 72187E+03 72199E+03 72209E+03 72217E+03

72226E+03 72235E+03 72245E+03 72259E+03 72272E+03 72286E+03 72298E+03 72310E+03 72321E+03 72333E+03

72344E+03 72355E+03 72366E+03 72377E+03 72388E+03 72395E+03 72404E+03 72412E+03 72420E+03 72429E+03

72439E+03 72449E+03 72460E+03 72473E+03 72489E+03 72506E+03 00000E+00 00000E+00 00000E+00

FISSION RESONANCE INTEGRAL

U238 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03

12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03

12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03

12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 00000E+00 00000E+00 00000E+00

P240 30572E+00 30600E+00 30620E+00 30639E+00 30656E+00 30672E+00 30689E+00 30705E+00 30721E+00 30737E+00

30752E+00 30768E+00 30785E+00 30803E+00 30821E+00 30840E+00 30858E+00 30877E+00 30896E+00 30916E+00

30936E+00 30957E+00 30979E+00 31001E+00 31025E+00 31048E+00 31073E+00 31100E+00 31129E+00 31161E+00

31197E+00 31238E+00 31284E+00 31339E+00 31406E+00 31490E+00 00000E+00 00000E+00 00000E+00

TIME STEP NO 44 TIME = 77308 DAYS FLUX = 29345E+13 NCM2SEC

RADAIL DISTRIBUTION AXIAL SEGMENT NO 1 AXIAL COODINATE(CM) = 500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 0048 26083E-05 17781E+02 26057E-02 19355E+04 17060E+04 17231E+13 23886E+13 17778E+21

2 0084 26154E-05 17829E+02 26095E-02 19383E+04 17084E+04 17230E+13 23884E+13 17777E+21

3 0108 26223E-05 17876E+02 26143E-02 19419E+04 17116E+04 17241E+13 23899E+13 17791E+21

4 0128 26294E-05 17924E+02 26198E-02 19460E+04 17152E+04 17256E+13 23920E+13 17810E+21

5 0145 26368E-05 17975E+02 26257E-02 19504E+04 17191E+04 17274E+13 23945E+13 17833E+21

6 0160 26445E-05 18027E+02 26321E-02 19551E+04 17232E+04 17295E+13 23975E+13 17859E+21

7 0174 26526E-05 18082E+02 26389E-02 19601E+04 17277E+04 17319E+13 24007E+13 17888E+21

8 0187 26612E-05 18141E+02 26462E-02 19656E+04 17325E+04 17344E+13 24043E+13 17921E+21

9 0199 26700E-05 18201E+02 26539E-02 19713E+04 17376E+04 17372E+13 24081E+13 17955E+21

10 0211 26791E-05 18263E+02 26619E-02 19772E+04 17428E+04 17400E+13 24120E+13 17991E+21

11 0221 26885E-05 18327E+02 26702E-02 19834E+04 17482E+04 17430E+13 24161E+13 18028E+21

12 0232 26985E-05 18395E+02 26789E-02 19898E+04 17539E+04 17460E+13 24203E+13 18067E+21

13 0242 27090E-05 18467E+02 26880E-02 19966E+04 17599E+04 17491E+13 24246E+13 18106E+21

14 0251 27205E-05 18545E+02 26977E-02 20038E+04 17662E+04 17524E+13 24292E+13 18148E+21

15 0260 27326E-05 18628E+02 27079E-02 20114E+04 17729E+04 17558E+13 24340E+13 18191E+21

16 0269 27455E-05 18716E+02 27187E-02 20194E+04 17800E+04 17594E+13 24388E+13 18235E+21

17 0278 27589E-05 18807E+02 27299E-02 20277E+04 17873E+04 17629E+13 24437E+13 18280E+21

18 0286 27733E-05 18905E+02 27418E-02 20366E+04 17951E+04 17665E+13 24488E+13 18328E+21

19 0294 27889E-05 19011E+02 27547E-02 20461E+04 18035E+04 17704E+13 24541E+13 18377E+21

20 0302 28059E-05 19127E+02 27685E-02 20564E+04 18126E+04 17745E+13 24598E+13 18430E+21

21 0309 28246E-05 19255E+02 27834E-02 20675E+04 18224E+04 17789E+13 24659E+13 18486E+21

22 0317 28452E-05 19396E+02 27998E-02 20796E+04 18331E+04 17836E+13 24725E+13 18545E+21

23 0324 28682E-05 19552E+02 28176E-02 20929E+04 18447E+04 17886E+13 24793E+13 18607E+21

24 0331 28936E-05 19725E+02 28368E-02 21071E+04 18573E+04 17934E+13 24861E+13 18669E+21

25 0338 29223E-05 19921E+02 28581E-02 21230E+04 18712E+04 17984E+13 24929E+13 18733E+21

26 0345 29545E-05 20141E+02 28817E-02 21405E+04 18867E+04 18035E+13 25000E+13 18799E+21

27 0352 29926E-05 20400E+02 29086E-02 21605E+04 19043E+04 18087E+13 25073E+13 18868E+21

28 0358 30386E-05 20714E+02 29402E-02 21839E+04 19250E+04 18142E+13 25149E+13 18938E+21

29 0365 30968E-05 21110E+02 29793E-02 22130E+04 19506E+04 18207E+13 25239E+13 19020E+21

30 0371 31728E-05 21628E+02 30290E-02 22499E+04 19831E+04 18280E+13 25339E+13 19110E+21

31 0377 32759E-05 22331E+02 30944E-02 22985E+04 20259E+04 18357E+13 25447E+13 19206E+21

32 0384 34240E-05 23341E+02 31858E-02 23664E+04 20858E+04 18441E+13 25564E+13 19312E+21

33 0390 36491E-05 24875E+02 33218E-02 24674E+04 21748E+04 18534E+13 25692E+13 19430E+21

34 0396 40146E-05 27367E+02 35378E-02 26278E+04 23162E+04 18633E+13 25830E+13 19558E+21

35 0401 46609E-05 31773E+02 39137E-02 29070E+04 25623E+04 18739E+13 25975E+13 19693E+21

36 0407 58652E-05 39982E+02 46091E-02 34236E+04 30176E+04 18849E+13 26129E+13 19836E+21

RADAIL DISTRIBUTION AXIAL SEGMENT NO 2 AXIAL COODINATE(CM) = 1500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

JAEA-DataCode 2013-009

- 237 -

1 0048 34307E-05 23387E+02 35511E-02 26377E+04 23249E+04 25874E+13 35866E+13 25823E+21

2 0084 34432E-05 23472E+02 35578E-02 26427E+04 23294E+04 25874E+13 35867E+13 25822E+21

3 0108 34543E-05 23548E+02 35655E-02 26484E+04 23344E+04 25889E+13 35887E+13 25840E+21

4 0128 34653E-05 23622E+02 35738E-02 26546E+04 23398E+04 25908E+13 35914E+13 25866E+21

5 0145 34764E-05 23698E+02 35826E-02 26611E+04 23456E+04 25932E+13 35947E+13 25897E+21

6 0160 34876E-05 23774E+02 35919E-02 26680E+04 23516E+04 25958E+13 35983E+13 25932E+21

7 0174 34993E-05 23854E+02 36018E-02 26753E+04 23581E+04 25987E+13 36023E+13 25972E+21

8 0187 35116E-05 23938E+02 36124E-02 26832E+04 23651E+04 26019E+13 36068E+13 26015E+21

9 0199 35243E-05 24025E+02 36234E-02 26914E+04 23723E+04 26053E+13 36115E+13 26061E+21

10 0211 35373E-05 24113E+02 36348E-02 26999E+04 23798E+04 26090E+13 36165E+13 26109E+21

11 0221 35509E-05 24206E+02 36467E-02 27087E+04 23875E+04 26127E+13 36217E+13 26159E+21

12 0232 35653E-05 24304E+02 36591E-02 27180E+04 23957E+04 26165E+13 36271E+13 26210E+21

13 0242 35806E-05 24408E+02 36723E-02 27277E+04 24043E+04 26205E+13 36326E+13 26264E+21

14 0251 35972E-05 24522E+02 36864E-02 27382E+04 24135E+04 26247E+13 36384E+13 26319E+21

15 0260 36148E-05 24642E+02 37012E-02 27492E+04 24232E+04 26290E+13 36444E+13 26377E+21

16 0269 36335E-05 24769E+02 37169E-02 27609E+04 24335E+04 26334E+13 36505E+13 26436E+21

17 0278 36532E-05 24904E+02 37332E-02 27730E+04 24442E+04 26379E+13 36567E+13 26497E+21

18 0286 36744E-05 25048E+02 37507E-02 27860E+04 24556E+04 26425E+13 36630E+13 26559E+21

19 0294 36976E-05 25206E+02 37695E-02 28000E+04 24680E+04 26473E+13 36697E+13 26626E+21

20 0302 37230E-05 25379E+02 37900E-02 28151E+04 24813E+04 26526E+13 36770E+13 26696E+21

21 0309 37509E-05 25569E+02 38121E-02 28316E+04 24959E+04 26583E+13 36849E+13 26771E+21

22 0317 37817E-05 25780E+02 38365E-02 28497E+04 25118E+04 26644E+13 36934E+13 26851E+21

23 0324 38163E-05 26015E+02 38632E-02 28696E+04 25293E+04 26707E+13 37022E+13 26934E+21

24 0331 38549E-05 26279E+02 38924E-02 28912E+04 25484E+04 26769E+13 37108E+13 27017E+21

25 0338 38990E-05 26579E+02 39250E-02 29154E+04 25697E+04 26832E+13 37195E+13 27102E+21

26 0345 39488E-05 26919E+02 39613E-02 29424E+04 25935E+04 26896E+13 37284E+13 27191E+21

27 0352 40082E-05 27323E+02 40033E-02 29736E+04 26210E+04 26962E+13 37375E+13 27281E+21

28 0358 40806E-05 27817E+02 40532E-02 30107E+04 26537E+04 27032E+13 37471E+13 27376E+21

29 0365 41726E-05 28444E+02 41156E-02 30570E+04 26945E+04 27114E+13 37586E+13 27485E+21

30 0371 42936E-05 29269E+02 41958E-02 31166E+04 27470E+04 27208E+13 37716E+13 27606E+21

31 0377 44593E-05 30399E+02 43028E-02 31961E+04 28171E+04 27308E+13 37854E+13 27737E+21

32 0384 46989E-05 32032E+02 44543E-02 33086E+04 29163E+04 27415E+13 38003E+13 27878E+21

33 0390 50648E-05 34526E+02 46818E-02 34776E+04 30652E+04 27532E+13 38165E+13 28036E+21

34 0396 56612E-05 38592E+02 50468E-02 37487E+04 33042E+04 27657E+13 38339E+13 28207E+21

35 0401 67168E-05 45787E+02 56863E-02 42237E+04 37229E+04 27790E+13 38522E+13 28387E+21

36 0407 86747E-05 59134E+02 68719E-02 51044E+04 44991E+04 27928E+13 38715E+13 28577E+21

=================== Skipped =====================

RADAIL DISTRIBUTION AXIAL SEGMENT NO 9 AXIAL COODINATE(CM) = 8500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 0048 31326E-05 21354E+02 32309E-02 23999E+04 21153E+04 22565E+13 31280E+13 22976E+21

2 0084 31429E-05 21425E+02 32366E-02 24041E+04 21190E+04 22565E+13 31280E+13 22975E+21

3 0108 31524E-05 21490E+02 32433E-02 24090E+04 21234E+04 22578E+13 31298E+13 22992E+21

4 0128 31619E-05 21555E+02 32505E-02 24144E+04 21282E+04 22596E+13 31323E+13 23015E+21

5 0145 31716E-05 21621E+02 32583E-02 24202E+04 21333E+04 22618E+13 31353E+13 23044E+21

6 0160 31815E-05 21688E+02 32666E-02 24263E+04 21387E+04 22642E+13 31387E+13 23076E+21

7 0174 31919E-05 21759E+02 32754E-02 24329E+04 21444E+04 22669E+13 31425E+13 23112E+21

8 0187 32028E-05 21833E+02 32848E-02 24399E+04 21506E+04 22699E+13 31466E+13 23151E+21

9 0199 32140E-05 21910E+02 32947E-02 24473E+04 21571E+04 22731E+13 31510E+13 23193E+21

10 0211 32255E-05 21988E+02 33049E-02 24549E+04 21638E+04 22765E+13 31557E+13 23238E+21

11 0221 32376E-05 22070E+02 33156E-02 24628E+04 21708E+04 22799E+13 31604E+13 23283E+21

12 0232 32503E-05 22157E+02 33267E-02 24710E+04 21780E+04 22835E+13 31653E+13 23330E+21

13 0242 32638E-05 22249E+02 33384E-02 24797E+04 21857E+04 22871E+13 31704E+13 23379E+21

14 0251 32785E-05 22349E+02 33510E-02 24891E+04 21939E+04 22910E+13 31758E+13 23430E+21

15 0260 32940E-05 22455E+02 33642E-02 24989E+04 22026E+04 22950E+13 31814E+13 23483E+21

16 0269 33106E-05 22568E+02 33782E-02 25093E+04 22117E+04 22991E+13 31870E+13 23537E+21

17 0278 33279E-05 22686E+02 33927E-02 25200E+04 22212E+04 23032E+13 31928E+13 23592E+21

18 0286 33465E-05 22813E+02 34082E-02 25316E+04 22314E+04 23075E+13 31986E+13 23650E+21

19 0294 33668E-05 22951E+02 34250E-02 25440E+04 22424E+04 23120E+13 32049E+13 23711E+21

20 0302 33890E-05 23102E+02 34431E-02 25575E+04 22542E+04 23168E+13 32115E+13 23775E+21

21 0309 34134E-05 23269E+02 34627E-02 25720E+04 22671E+04 23220E+13 32188E+13 23843E+21

22 0317 34404E-05 23453E+02 34842E-02 25880E+04 22812E+04 23277E+13 32266E+13 23917E+21

23 0324 34706E-05 23659E+02 35078E-02 26055E+04 22966E+04 23335E+13 32347E+13 23993E+21

24 0331 35043E-05 23888E+02 35334E-02 26246E+04 23134E+04 23392E+13 32426E+13 24068E+21

25 0338 35426E-05 24149E+02 35620E-02 26458E+04 23321E+04 23450E+13 32506E+13 24146E+21

26 0345 35857E-05 24443E+02 35937E-02 26694E+04 23529E+04 23510E+13 32589E+13 24227E+21

27 0352 36370E-05 24793E+02 36304E-02 26966E+04 23769E+04 23571E+13 32674E+13 24311E+21

28 0358 36995E-05 25219E+02 36737E-02 27288E+04 24052E+04 23635E+13 32763E+13 24397E+21

29 0365 37788E-05 25760E+02 37277E-02 27689E+04 24406E+04 23711E+13 32868E+13 24497E+21

30 0371 38829E-05 26469E+02 37970E-02 28203E+04 24859E+04 23797E+13 32987E+13 24608E+21

31 0377 40251E-05 27439E+02 38890E-02 28887E+04 25462E+04 23889E+13 33115E+13 24727E+21

32 0384 42303E-05 28838E+02 40188E-02 29851E+04 26311E+04 23988E+13 33252E+13 24856E+21

33 0390 45434E-05 30972E+02 42130E-02 31294E+04 27583E+04 24096E+13 33402E+13 25001E+21

JAEA-DataCode 2013-009

- 238 -

34 0396 50533E-05 34448E+02 45241E-02 33604E+04 29620E+04 24212E+13 33563E+13 25157E+21

35 0401 59560E-05 40601E+02 50680E-02 37644E+04 33181E+04 24335E+13 33733E+13 25323E+21

36 0407 76333E-05 52035E+02 60761E-02 45133E+04 39781E+04 24463E+13 33911E+13 25497E+21

RADAIL DISTRIBUTION AXIAL SEGMENT NO10 AXIAL COODINATE(CM) = 9500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 0048 23272E-05 15864E+02 23063E-02 17131E+04 15100E+04 14776E+13 20483E+13 15444E+21

2 0084 23328E-05 15902E+02 23093E-02 17153E+04 15119E+04 14776E+13 20482E+13 15443E+21

3 0108 23386E-05 15942E+02 23134E-02 17184E+04 15146E+04 14785E+13 20495E+13 15455E+21

4 0128 23446E-05 15983E+02 23181E-02 17218E+04 15177E+04 14799E+13 20514E+13 15472E+21

5 0145 23509E-05 16026E+02 23232E-02 17256E+04 15210E+04 14815E+13 20537E+13 15493E+21

6 0160 23575E-05 16071E+02 23286E-02 17297E+04 15246E+04 14834E+13 20563E+13 15516E+21

7 0174 23645E-05 16119E+02 23345E-02 17341E+04 15285E+04 14856E+13 20593E+13 15542E+21

8 0187 23720E-05 16169E+02 23409E-02 17388E+04 15326E+04 14879E+13 20625E+13 15570E+21

9 0199 23797E-05 16222E+02 23476E-02 17438E+04 15370E+04 14903E+13 20659E+13 15601E+21

10 0211 23876E-05 16276E+02 23546E-02 17489E+04 15416E+04 14929E+13 20695E+13 15633E+21

11 0221 23958E-05 16332E+02 23618E-02 17543E+04 15463E+04 14956E+13 20732E+13 15666E+21

12 0232 24044E-05 16391E+02 23693E-02 17599E+04 15512E+04 14983E+13 20769E+13 15701E+21

13 0242 24136E-05 16453E+02 23772E-02 17658E+04 15564E+04 15011E+13 20809E+13 15736E+21

14 0251 24235E-05 16521E+02 23857E-02 17720E+04 15619E+04 15041E+13 20850E+13 15773E+21

15 0260 24340E-05 16592E+02 23945E-02 17786E+04 15677E+04 15072E+13 20893E+13 15811E+21

16 0269 24451E-05 16668E+02 24038E-02 17855E+04 15738E+04 15104E+13 20937E+13 15850E+21

17 0278 24567E-05 16747E+02 24135E-02 17927E+04 15801E+04 15136E+13 20981E+13 15891E+21

18 0286 24690E-05 16831E+02 24238E-02 18004E+04 15869E+04 15169E+13 21027E+13 15933E+21

19 0294 24824E-05 16922E+02 24349E-02 18086E+04 15942E+04 15203E+13 21075E+13 15977E+21

20 0302 24970E-05 17022E+02 24468E-02 18175E+04 16020E+04 15240E+13 21126E+13 16024E+21

21 0309 25130E-05 17131E+02 24597E-02 18270E+04 16104E+04 15280E+13 21181E+13 16074E+21

22 0317 25306E-05 17251E+02 24737E-02 18374E+04 16196E+04 15323E+13 21241E+13 16127E+21

23 0324 25502E-05 17384E+02 24889E-02 18487E+04 16295E+04 15367E+13 21302E+13 16182E+21

24 0331 25717E-05 17531E+02 25053E-02 18609E+04 16402E+04 15411E+13 21363E+13 16237E+21

25 0338 25959E-05 17696E+02 25234E-02 18743E+04 16521E+04 15456E+13 21425E+13 16294E+21

26 0345 26231E-05 17881E+02 25434E-02 18892E+04 16652E+04 15502E+13 21489E+13 16353E+21

27 0352 26550E-05 18099E+02 25661E-02 19060E+04 16800E+04 15550E+13 21555E+13 16414E+21

28 0358 26935E-05 18361E+02 25925E-02 19257E+04 16973E+04 15599E+13 21624E+13 16477E+21

29 0365 27420E-05 18692E+02 26251E-02 19499E+04 17187E+04 15658E+13 21705E+13 16549E+21

30 0371 28050E-05 19121E+02 26664E-02 19805E+04 17457E+04 15723E+13 21795E+13 16629E+21

31 0377 28903E-05 19703E+02 27203E-02 20206E+04 17810E+04 15793E+13 21892E+13 16715E+21

32 0384 30123E-05 20534E+02 27954E-02 20764E+04 18302E+04 15868E+13 21997E+13 16809E+21

33 0390 31972E-05 21795E+02 29065E-02 21589E+04 19029E+04 15952E+13 22113E+13 16914E+21

34 0396 34968E-05 23837E+02 30822E-02 22894E+04 20179E+04 16042E+13 22238E+13 17028E+21

35 0401 40259E-05 27444E+02 33868E-02 25156E+04 22174E+04 16137E+13 22370E+13 17149E+21

36 0407 50121E-05 34167E+02 39493E-02 29335E+04 25857E+04 16237E+13 22508E+13 17276E+21

AMOUNT(G-ATOMCC) ON AXIAL MESH= 1 500 CM TIME STEP= 44 77308 DAYS

NUCLIDE RADIAL 1 RADIAL 2 RADIAL 3 RADIAL 4 RADIAL 5 RADIAL 6 RADIAL 7 RADIAL 8 RADIAL 9 RADIAL 10

0048 0084 0108 0128 0145 0160 0174 0187 0199 0211

1 H2 12004E-07 12032E-07 12065E-07 12100E-07 12137E-07 12176E-07 12219E-07 12264E-07 12311E-07 12360E-07

2 He 12192E-06 12195E-06 12207E-06 12223E-06 12243E-06 12264E-06 12288E-06 12314E-06 12342E-06 12378E-06

6 C 11812E-06 11812E-06 11821E-06 11834E-06 11849E-06 11866E-06 11886E-06 11907E-06 11930E-06 11954E-06

8 O 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02

33 As 17694E-10 17750E-10 17803E-10 17859E-10 17916E-10 17975E-10 18037E-10 18102E-10 18170E-10 18240E-10

34 Se 37094E-06 37132E-06 37188E-06 37251E-06 37321E-06 37397E-06 37478E-06 37566E-06 37659E-06 37755E-06

35 Br 10683E-06 10696E-06 10714E-06 10734E-06 10756E-06 10779E-06 10804E-06 10831E-06 10860E-06 10890E-06

36 Kr 27288E-05 27307E-05 27339E-05 27377E-05 27420E-05 27466E-05 27517E-05 27572E-05 27629E-05 27689E-05

37 Rb 24114E-05 24128E-05 24155E-05 24187E-05 24223E-05 24262E-05 24305E-05 24352E-05 24401E-05 24452E-05

38 Sr 66199E-05 66242E-05 66316E-05 66405E-05 66505E-05 66612E-05 66730E-05 66858E-05 66993E-05 67133E-05

39 Y 74449E-06 74514E-06 74604E-06 74701E-06 74820E-06 74947E-06 75078E-06 75215E-06 75362E-06 75514E-06

40 Zr 22930E-04 22952E-04 22985E-04 23024E-04 23066E-04 23111E-04 23160E-04 23214E-04 23270E-04 23328E-04

41 Nb 29834E-06 29890E-06 29951E-06 30016E-06 30085E-06 30157E-06 30234E-06 30314E-06 30400E-06 30487E-06

42 Mo 18218E-04 18243E-04 18277E-04 18314E-04 18355E-04 18399E-04 18445E-04 18495E-04 18549E-04 18604E-04

43 Tc 47116E-05 47185E-05 47272E-05 47370E-05 47476E-05 47589E-05 47711E-05 47841E-05 47978E-05 48120E-05

44 Ru 10367E-04 10391E-04 10419E-04 10450E-04 10482E-04 10516E-04 10552E-04 10591E-04 10632E-04 10674E-04

45 Rh 20747E-05 20795E-05 20849E-05 20906E-05 20965E-05 21028E-05 21094E-05 21165E-05 21239E-05 21314E-05

46 Pd 33496E-05 33658E-05 33828E-05 34010E-05 34200E-05 34398E-05 34609E-05 34834E-05 35071E-05 35313E-05

47 Ag 17637E-06 17772E-06 17903E-06 18041E-06 18179E-06 18321E-06 18481E-06 18645E-06 18808E-06 18978E-06

48 Cd 14558E-06 14647E-06 14741E-06 14841E-06 14938E-06 15051E-06 15170E-06 15289E-06 15419E-06 15543E-06

49 In 54463E-08 54686E-08 54896E-08 55108E-08 55327E-08 55551E-08 56030E-08 56280E-08 56538E-08 56803E-08

50 Sn 15913E-06 15976E-06 16037E-06 16101E-06 16176E-06 16247E-06 16327E-06 16408E-06 16492E-06 16586E-06

51 Sb 52543E-07 52755E-07 53019E-07 53238E-07 53468E-07 53709E-07 53965E-07 54239E-07 54492E-07 54843E-07

52 Te 21026E-05 21070E-05 21122E-05 21179E-05 21240E-05 21304E-05 21372E-05 21445E-05 21522E-05 21601E-05

53 I 10117E-05 10142E-05 10171E-05 10201E-05 10230E-05 10263E-05 10298E-05 10335E-05 10374E-05 10416E-05

54 Xe 20909E-04 20941E-04 20982E-04 21029E-04 21080E-04 21134E-04 21193E-04 21256E-04 21322E-04 21390E-04

55 Cs 11370E-04 11387E-04 11408E-04 11431E-04 11456E-04 11482E-04 11511E-04 11541E-04 11573E-04 11606E-04

JAEA-DataCode 2013-009

- 239 -

56 Ba 49350E-05 49427E-05 49526E-05 49636E-05 49755E-05 49880E-05 50018E-05 50167E-05 50321E-05 50481E-05

57 La 50292E-05 50357E-05 50445E-05 50544E-05 50652E-05 50769E-05 50894E-05 51027E-05 51170E-05 51316E-05

58 Ce 11810E-04 11825E-04 11845E-04 11868E-04 11893E-04 11919E-04 11948E-04 11979E-04 12011E-04 12044E-04

59 Pr 46537E-05 46591E-05 46667E-05 46753E-05 46847E-05 46946E-05 47055E-05 47173E-05 47297E-05 47425E-05

60 Nd 13871E-04 13887E-04 13910E-04 13936E-04 13965E-04 13996E-04 14029E-04 14065E-04 14103E-04 14142E-04

61 Pm 80504E-06 80628E-06 80756E-06 80887E-06 81022E-06 81156E-06 81303E-06 81458E-06 81618E-06 81787E-06

62 Sm 25161E-05 25204E-05 25257E-05 25310E-05 25386E-05 25455E-05 25528E-05 25599E-05 25683E-05 25769E-05

63 Eu 38719E-06 38811E-06 38928E-06 39060E-06 39185E-06 39344E-06 39517E-06 39697E-06 39891E-06 40091E-06

64 Gd 12073E-06 12124E-06 12199E-06 12270E-06 12333E-06 12413E-06 12498E-06 12591E-06 12681E-06 12782E-06

65 Tb 27282E-08 27469E-08 27655E-08 27845E-08 28037E-08 28241E-08 28456E-08 28695E-08 28932E-08 29730E-08

92 U 37615E-02 37613E-02 37610E-02 37607E-02 37604E-02 37601E-02 37597E-02 37594E-02 37590E-02 37586E-02

93 Np 84230E-06 84328E-06 84502E-06 84709E-06 84942E-06 85196E-06 85473E-06 85774E-06 86090E-06 86419E-06

94 Pu 16893E-04 17039E-04 17167E-04 17293E-04 17420E-04 17547E-04 17680E-04 17820E-04 17962E-04 18108E-04

95 Am 74370E-07 75029E-07 75721E-07 76533E-07 77361E-07 78233E-07 79101E-07 80027E-07 81057E-07 82055E-07

96 Cm 91222E-08 92027E-08 92957E-08 94095E-08 95326E-08 97248E-08 98495E-08 99839E-08 10129E-07 10276E-07

NUCLIDE RADIAL 11 RADIAL 12 RADIAL 13 RADIAL 14 RADIAL 15 RADIAL 16 RADIAL 17 RADIAL 18 RADIAL 19 RADIAL 20

0221 0232 0242 0251 0260 0269 0278 0286 0294 0302

1 H2 12411E-07 12464E-07 12521E-07 12581E-07 12645E-07 12712E-07 12782E-07 12857E-07 12938E-07 13026E-07

2 He 12412E-06 12443E-06 12476E-06 12510E-06 12546E-06 12583E-06 12629E-06 12671E-06 12713E-06 12759E-06

6 C 11979E-06 12004E-06 12031E-06 12058E-06 12087E-06 12116E-06 12146E-06 12178E-06 12211E-06 12246E-06

8 O 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02

33 As 18312E-10 18389E-10 18470E-10 18558E-10 18651E-10 18750E-10 18854E-10 18964E-10 19085E-10 19216E-10

34 Se 37856E-06 37960E-06 38069E-06 38185E-06 38307E-06 38435E-06 38567E-06 38708E-06 38859E-06 39022E-06

35 Br 10921E-06 10953E-06 10986E-06 11022E-06 11060E-06 11100E-06 11141E-06 11185E-06 11232E-06 11283E-06

36 Kr 27751E-05 27816E-05 27884E-05 27954E-05 28030E-05 28108E-05 28189E-05 28274E-05 28365E-05 28464E-05

37 Rb 24506E-05 24561E-05 24618E-05 24679E-05 24743E-05 24809E-05 24878E-05 24950E-05 25028E-05 25111E-05

38 Sr 67278E-05 67429E-05 67588E-05 67755E-05 67930E-05 68113E-05 68301E-05 68500E-05 68713E-05 68942E-05

39 Y 75671E-06 75836E-06 76008E-06 76199E-06 76393E-06 76595E-06 76804E-06 77020E-06 77258E-06 77514E-06

40 Zr 23388E-04 23451E-04 23517E-04 23586E-04 23660E-04 23737E-04 23817E-04 23901E-04 23993E-04 24090E-04

41 Nb 30578E-06 30673E-06 30774E-06 30881E-06 30994E-06 31114E-06 31240E-06 31376E-06 31521E-06 31679E-06

42 Mo 18662E-04 18721E-04 18784E-04 18851E-04 18921E-04 18995E-04 19072E-04 19154E-04 19242E-04 19338E-04

43 Tc 48268E-05 48422E-05 48584E-05 48758E-05 48940E-05 49132E-05 49331E-05 49544E-05 49773E-05 50020E-05

44 Ru 10717E-04 10763E-04 10812E-04 10864E-04 10918E-04 10976E-04 11036E-04 11100E-04 11170E-04 11245E-04

45 Rh 21395E-05 21478E-05 21566E-05 21660E-05 21761E-05 21867E-05 21976E-05 22095E-05 22224E-05 22363E-05

46 Pd 35567E-05 35833E-05 36115E-05 36418E-05 36739E-05 37079E-05 37437E-05 37821E-05 38236E-05 38690E-05

47 Ag 19156E-06 19349E-06 19551E-06 19767E-06 19995E-06 20242E-06 20501E-06 20777E-06 21084E-06 21411E-06

48 Cd 15694E-06 15841E-06 15997E-06 16161E-06 16314E-06 16488E-06 16683E-06 16907E-06 17117E-06 17353E-06

49 In 57082E-08 57373E-08 57682E-08 58018E-08 58372E-08 58978E-08 59375E-08 59803E-08 60268E-08 60556E-08

50 Sn 16677E-06 16772E-06 16873E-06 16981E-06 17103E-06 17229E-06 17348E-06 17477E-06 17625E-06 17780E-06

51 Sb 55276E-07 55652E-07 55928E-07 56251E-07 56694E-07 57438E-07 57809E-07 58244E-07 58786E-07 59382E-07

52 Te 21685E-05 21772E-05 21863E-05 21961E-05 22064E-05 22174E-05 22288E-05 22409E-05 22542E-05 22685E-05

53 I 10460E-05 10504E-05 10549E-05 10598E-05 10650E-05 10705E-05 10764E-05 10830E-05 10899E-05 10974E-05

54 Xe 21462E-04 21536E-04 21614E-04 21698E-04 21786E-04 21878E-04 21974E-04 22076E-04 22187E-04 22306E-04

55 Cs 11641E-04 11677E-04 11714E-04 11754E-04 11797E-04 11842E-04 11889E-04 11939E-04 11992E-04 12050E-04

56 Ba 50647E-05 50824E-05 51008E-05 51201E-05 51407E-05 51624E-05 51847E-05 52086E-05 52346E-05 52625E-05

57 La 51469E-05 51627E-05 51792E-05 51972E-05 52160E-05 52356E-05 52562E-05 52781E-05 53013E-05 53267E-05

58 Ce 12079E-04 12115E-04 12154E-04 12194E-04 12237E-04 12282E-04 12329E-04 12378E-04 12432E-04 12489E-04

59 Pr 47559E-05 47698E-05 47844E-05 47998E-05 48162E-05 48335E-05 48512E-05 48702E-05 48907E-05 49125E-05

60 Nd 14183E-04 14226E-04 14270E-04 14318E-04 14368E-04 14420E-04 14474E-04 14532E-04 14594E-04 14661E-04

61 Pm 81959E-06 82139E-06 82326E-06 82532E-06 82757E-06 82988E-06 83228E-06 83494E-06 83778E-06 84085E-06

62 Sm 25863E-05 25958E-05 26056E-05 26164E-05 26276E-05 26394E-05 26517E-05 26646E-05 26785E-05 26936E-05

63 Eu 40312E-06 40538E-06 40762E-06 40999E-06 41259E-06 41518E-06 41793E-06 42088E-06 42407E-06 42767E-06

64 Gd 12893E-06 13013E-06 13118E-06 13229E-06 13344E-06 13468E-06 13597E-06 13750E-06 13902E-06 14072E-06

65 Tb 29993E-08 30269E-08 30554E-08 30868E-08 31864E-08 32218E-08 32592E-08 33008E-08 33997E-08 34476E-08

92 U 37582E-02 37578E-02 37573E-02 37568E-02 37563E-02 37558E-02 37552E-02 37546E-02 37539E-02 37532E-02

93 Np 86767E-06 87121E-06 87491E-06 87884E-06 88296E-06 88719E-06 89165E-06 89619E-06 90127E-06 90662E-06

94 Pu 18261E-04 18422E-04 18593E-04 18780E-04 18977E-04 19187E-04 19408E-04 19648E-04 19909E-04 20193E-04

95 Am 83127E-07 84245E-07 85462E-07 86731E-07 88263E-07 89699E-07 91210E-07 92897E-07 94675E-07 96705E-07

96 Cm 10452E-07 10619E-07 10793E-07 10979E-07 11201E-07 11471E-07 11734E-07 11990E-07 12254E-07 12562E-07

NUCLIDE RADIAL 21 RADIAL 22 RADIAL 23 RADIAL 24 RADIAL 25 RADIAL 26 RADIAL 27 RADIAL 28 RADIAL 29 RADIAL 30

0309 0317 0324 0331 0338 0345 0352 0358 0365 0371

1 H2 13121E-07 13226E-07 13341E-07 13466E-07 13606E-07 13762E-07 13943E-07 14157E-07 14424E-07 14767E-07

2 He 12811E-06 12864E-06 12921E-06 12988E-06 13048E-06 13121E-06 13195E-06 13274E-06 13368E-06 13487E-06

6 C 12283E-06 12322E-06 12363E-06 12404E-06 12447E-06 12491E-06 12536E-06 12584E-06 12637E-06 12697E-06

8 O 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02

33 As 19360E-10 19520E-10 19697E-10 19894E-10 20117E-10 20368E-10 20664E-10 21022E-10 21475E-10 22068E-10

34 Se 39197E-06 39388E-06 39594E-06 39814E-06 40057E-06 40323E-06 40625E-06 40974E-06 41404E-06 41944E-06

35 Br 11338E-06 11397E-06 11462E-06 11532E-06 11609E-06 11694E-06 11790E-06 11903E-06 12041E-06 12217E-06

36 Kr 28569E-05 28683E-05 28805E-05 28934E-05 29076E-05 29230E-05 29401E-05 29596E-05 29834E-05 30132E-05

37 Rb 25200E-05 25297E-05 25400E-05 25509E-05 25628E-05 25756E-05 25899E-05 26061E-05 26258E-05 26503E-05

38 Sr 69186E-05 69454E-05 69739E-05 70041E-05 70369E-05 70727E-05 71126E-05 71582E-05 72136E-05 72823E-05

39 Y 77791E-06 78090E-06 78425E-06 78777E-06 79172E-06 79598E-06 80078E-06 80648E-06 81343E-06 82239E-06

40 Zr 24196E-04 24311E-04 24434E-04 24567E-04 24712E-04 24871E-04 25052E-04 25261E-04 25517E-04 25839E-04

JAEA-DataCode 2013-009

- 240 -

41 Nb 31853E-06 32043E-06 32254E-06 32483E-06 32733E-06 33023E-06 33358E-06 33765E-06 34266E-06 34916E-06

42 Mo 19440E-04 19552E-04 19674E-04 19806E-04 19951E-04 20112E-04 20296E-04 20510E-04 20775E-04 21112E-04

43 Tc 50286E-05 50578E-05 50896E-05 51239E-05 51621E-05 52043E-05 52527E-05 53094E-05 53796E-05 54690E-05

44 Ru 11327E-04 11417E-04 11516E-04 11623E-04 11743E-04 11877E-04 12031E-04 12214E-04 12444E-04 12740E-04

45 Rh 22514E-05 22680E-05 22862E-05 23062E-05 23288E-05 23538E-05 23831E-05 24183E-05 24624E-05 25196E-05

46 Pd 39181E-05 39724E-05 40321E-05 40981E-05 41728E-05 42566E-05 43541E-05 44709E-05 46176E-05 48079E-05

47 Ag 21770E-06 22164E-06 22596E-06 23093E-06 23648E-06 24281E-06 25039E-06 25946E-06 27073E-06 28551E-06

48 Cd 17624E-06 17906E-06 18221E-06 18585E-06 18977E-06 19426E-06 19931E-06 20562E-06 21366E-06 22327E-06

49 In 61107E-08 61716E-08 62614E-08 63373E-08 63643E-08 64400E-08 65543E-08 67132E-08 68880E-08 71162E-08

50 Sn 17954E-06 18146E-06 18363E-06 18596E-06 18858E-06 19154E-06 19488E-06 19910E-06 20416E-06 21079E-06

51 Sb 60039E-07 60752E-07 61545E-07 62364E-07 63318E-07 64213E-07 65521E-07 67071E-07 69170E-07 71942E-07

52 Te 22839E-05 23008E-05 23194E-05 23396E-05 23622E-05 23877E-05 24173E-05 24520E-05 24955E-05 25509E-05

53 I 11052E-05 11140E-05 11235E-05 11339E-05 11458E-05 11593E-05 11745E-05 11926E-05 12156E-05 12446E-05

54 Xe 22434E-04 22575E-04 22727E-04 22893E-04 23075E-04 23278E-04 23509E-04 23781E-04 24117E-04 24544E-04

55 Cs 12113E-04 12181E-04 12256E-04 12337E-04 12427E-04 12527E-04 12643E-04 12778E-04 12947E-04 13162E-04

56 Ba 52927E-05 53254E-05 53613E-05 54000E-05 54429E-05 54904E-05 55448E-05 56085E-05 56877E-05 57888E-05

57 La 53539E-05 53835E-05 54158E-05 54508E-05 54891E-05 55316E-05 55802E-05 56364E-05 57065E-05 57955E-05

58 Ce 12552E-04 12620E-04 12694E-04 12773E-04 12861E-04 12959E-04 13070E-04 13199E-04 13360E-04 13563E-04

59 Pr 49361E-05 49620E-05 49899E-05 50199E-05 50529E-05 50893E-05 51307E-05 51785E-05 52373E-05 53121E-05

60 Nd 14734E-04 14812E-04 14897E-04 14989E-04 15090E-04 15201E-04 15328E-04 15475E-04 15656E-04 15885E-04

61 Pm 84416E-06 84786E-06 85191E-06 85646E-06 86159E-06 86743E-06 87432E-06 88269E-06 89328E-06 90688E-06

62 Sm 27097E-05 27274E-05 27468E-05 27676E-05 27906E-05 28161E-05 28451E-05 28788E-05 29217E-05 29749E-05

63 Eu 43147E-06 43562E-06 44001E-06 44478E-06 45021E-06 45617E-06 46281E-06 47071E-06 48052E-06 49274E-06

64 Gd 14261E-06 14483E-06 14700E-06 14952E-06 15234E-06 15551E-06 15902E-06 16326E-06 16835E-06 17529E-06

65 Tb 35009E-08 35601E-08 36254E-08 36988E-08 38359E-08 39302E-08 40407E-08 41746E-08 43961E-08 46193E-08

92 U 37525E-02 37516E-02 37507E-02 37497E-02 37485E-02 37472E-02 37457E-02 37439E-02 37417E-02 37388E-02

93 Np 91231E-06 91848E-06 92520E-06 93217E-06 93982E-06 94808E-06 95724E-06 96764E-06 98026E-06 99581E-06

94 Pu 20503E-04 20846E-04 21232E-04 21664E-04 22162E-04 22725E-04 23398E-04 24219E-04 25255E-04 26617E-04

95 Am 98928E-07 10134E-06 10407E-06 10727E-06 11072E-06 11443E-06 11894E-06 12420E-06 13094E-06 13964E-06

96 Cm 12982E-07 13363E-07 13788E-07 14333E-07 14891E-07 15456E-07 16231E-07 17055E-07 18099E-07 19512E-07

NUCLIDE RADIAL 31 RADIAL 32 RADIAL 33 RADIAL 34 RADIAL 35 RADIAL 36

0377 0384 0390 0396 0401 0407

1 H2 15225E-07 15872E-07 16846E-07 18408E-07 21150E-07 26185E-07

2 He 13618E-06 13783E-06 14016E-06 14343E-06 14898E-06 15890E-06

6 C 12761E-06 12831E-06 12910E-06 12995E-06 13085E-06 13180E-06

8 O 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02

33 As 22873E-10 24030E-10 25791E-10 28653E-10 33718E-10 43157E-10

34 Se 42654E-06 43631E-06 45059E-06 47302E-06 51170E-06 58285E-06

35 Br 12446E-06 12766E-06 13238E-06 13984E-06 15277E-06 17657E-06

36 Kr 30512E-05 31024E-05 31765E-05 32914E-05 34859E-05 38381E-05

37 Rb 26814E-05 27231E-05 27834E-05 28758E-05 30324E-05 33168E-05

38 Sr 73699E-05 74888E-05 76601E-05 79250E-05 83748E-05 91917E-05

39 Y 83396E-06 84998E-06 87366E-06 91123E-06 97581E-06 10951E-05

40 Zr 26258E-04 26834E-04 27680E-04 29011E-04 31305E-04 35515E-04

41 Nb 35786E-06 37040E-06 38927E-06 41966E-06 47321E-06 57277E-06

42 Mo 21555E-04 22174E-04 23094E-04 24554E-04 27087E-04 31766E-04

43 Tc 55869E-05 57520E-05 59977E-05 63887E-05 70700E-05 83312E-05

44 Ru 13134E-04 13693E-04 14536E-04 15891E-04 18262E-04 22669E-04

45 Rh 25963E-05 27057E-05 28711E-05 31387E-05 36095E-05 44877E-05

46 Pd 50649E-05 54304E-05 59856E-05 68822E-05 84696E-05 11437E-04

47 Ag 30560E-06 33472E-06 37890E-06 45077E-06 57838E-06 81745E-06

48 Cd 23756E-06 25756E-06 28793E-06 33712E-06 42363E-06 58460E-06

49 In 73864E-08 78318E-08 83957E-08 91017E-08 11156E-07 14745E-07

50 Sn 21976E-06 23285E-06 25194E-06 28311E-06 33813E-06 44240E-06

51 Sb 75335E-07 80235E-07 87284E-07 99065E-07 11941E-06 15762E-06

52 Te 26246E-05 27296E-05 28858E-05 31365E-05 35755E-05 43926E-05

53 I 12836E-05 13386E-05 14216E-05 15553E-05 17905E-05 22290E-05

54 Xe 25106E-04 25891E-04 27060E-04 28918E-04 32152E-04 38134E-04

55 Cs 13447E-04 13847E-04 14446E-04 15400E-04 17066E-04 20155E-04

56 Ba 59228E-05 61104E-05 63892E-05 68328E-05 76031E-05 90287E-05

57 La 59126E-05 60756E-05 63185E-05 67036E-05 73705E-05 86016E-05

58 Ce 13830E-04 14203E-04 14755E-04 15632E-04 17155E-04 19965E-04

59 Pr 54100E-05 55459E-05 57467E-05 60642E-05 66132E-05 76245E-05

60 Nd 16184E-04 16600E-04 17213E-04 18185E-04 19864E-04 22964E-04

61 Pm 92553E-06 95251E-06 99389E-06 10611E-05 11796E-05 14032E-05

62 Sm 30461E-05 31442E-05 32917E-05 35245E-05 39303E-05 46812E-05

63 Eu 50901E-06 53188E-06 56590E-06 61965E-06 71247E-06 88410E-06

64 Gd 18432E-06 19744E-06 21693E-06 24850E-06 30265E-06 40406E-06

65 Tb 49204E-08 54122E-08 61346E-08 72825E-08 93608E-08 13364E-07

92 U 37349E-02 37294E-02 37211E-02 37077E-02 36841E-02 36403E-02

93 Np 10154E-05 10416E-05 10791E-05 11360E-05 12309E-05 13999E-05

94 Pu 28487E-04 31202E-04 35360E-04 42152E-04 54210E-04 76692E-04

95 Am 15139E-06 16802E-06 19337E-06 23436E-06 30703E-06 44362E-06

96 Cm 21399E-07 23980E-07 28039E-07 34667E-07 46580E-07 69077E-07

JAEA-DataCode 2013-009

- 241 -

=================== Skipped =========================

TIME STEP NO 96 TIME = 166769 DAYS FLUX = 51255E+13 NCM2SEC

RADAIL DISTRIBUTION AXIAL SEGMENT NO 1 AXIAL COODINATE(CM) = 500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 0048 33671E-05 22953E+02 54785E-02 40694E+04 35869E+04 33859E+13 46935E+13 46119E+21

2 0084 33855E-05 23078E+02 54941E-02 40810E+04 35971E+04 33868E+13 46948E+13 46122E+21

3 0108 34006E-05 23181E+02 55093E-02 40922E+04 36070E+04 33886E+13 46972E+13 46151E+21

4 0128 34149E-05 23279E+02 55247E-02 41037E+04 36171E+04 33905E+13 46999E+13 46190E+21

5 0145 34290E-05 23375E+02 55406E-02 41155E+04 36275E+04 33926E+13 47028E+13 46235E+21

6 0160 34428E-05 23469E+02 55570E-02 41276E+04 36382E+04 33947E+13 47057E+13 46287E+21

7 0174 34571E-05 23566E+02 55742E-02 41404E+04 36495E+04 33970E+13 47090E+13 46344E+21

8 0187 34720E-05 23668E+02 55925E-02 41540E+04 36615E+04 33996E+13 47126E+13 46406E+21

9 0199 34874E-05 23773E+02 56114E-02 41681E+04 36739E+04 34026E+13 47167E+13 46474E+21

10 0211 35031E-05 23881E+02 56309E-02 41826E+04 36866E+04 34059E+13 47212E+13 46546E+21

11 0221 35198E-05 23994E+02 56513E-02 41977E+04 37000E+04 34094E+13 47261E+13 46620E+21

12 0232 35374E-05 24114E+02 56728E-02 42137E+04 37141E+04 34130E+13 47311E+13 46697E+21

13 0242 35562E-05 24242E+02 56955E-02 42305E+04 37289E+04 34166E+13 47362E+13 46776E+21

14 0251 35766E-05 24381E+02 57200E-02 42488E+04 37450E+04 34203E+13 47413E+13 46858E+21

15 0260 35981E-05 24528E+02 57459E-02 42680E+04 37619E+04 34241E+13 47466E+13 46943E+21

16 0269 36210E-05 24684E+02 57734E-02 42884E+04 37799E+04 34280E+13 47519E+13 47030E+21

17 0278 36454E-05 24850E+02 58021E-02 43097E+04 37987E+04 34320E+13 47574E+13 47119E+21

18 0286 36719E-05 25031E+02 58330E-02 43327E+04 38190E+04 34362E+13 47632E+13 47211E+21

19 0294 37009E-05 25229E+02 58666E-02 43577E+04 38410E+04 34408E+13 47696E+13 47310E+21

20 0302 37330E-05 25447E+02 59033E-02 43849E+04 38650E+04 34459E+13 47767E+13 47415E+21

21 0309 37680E-05 25686E+02 59433E-02 44146E+04 38912E+04 34515E+13 47844E+13 47528E+21

22 0317 38067E-05 25950E+02 59874E-02 44473E+04 39200E+04 34573E+13 47926E+13 47648E+21

23 0324 38503E-05 26247E+02 60362E-02 44836E+04 39520E+04 34633E+13 48008E+13 47773E+21

24 0331 38995E-05 26582E+02 60903E-02 45238E+04 39874E+04 34691E+13 48089E+13 47896E+21

25 0338 39561E-05 26968E+02 61515E-02 45692E+04 40275E+04 34750E+13 48170E+13 48022E+21

26 0345 40203E-05 27406E+02 62201E-02 46202E+04 40724E+04 34809E+13 48252E+13 48152E+21

27 0352 40973E-05 27931E+02 63010E-02 46803E+04 41253E+04 34869E+13 48336E+13 48285E+21

28 0358 41919E-05 28576E+02 63984E-02 47527E+04 41891E+04 34933E+13 48424E+13 48425E+21

29 0365 43120E-05 29394E+02 65212E-02 48439E+04 42695E+04 35010E+13 48531E+13 48588E+21

30 0371 44703E-05 30474E+02 66811E-02 49626E+04 43742E+04 35098E+13 48653E+13 48770E+21

31 0377 46883E-05 31960E+02 68976E-02 51234E+04 45160E+04 35192E+13 48783E+13 48966E+21

32 0384 50046E-05 34116E+02 72079E-02 53539E+04 47191E+04 35291E+13 48921E+13 49177E+21

33 0390 54880E-05 37411E+02 76782E-02 57033E+04 50270E+04 35398E+13 49069E+13 49411E+21

34 0396 62740E-05 42769E+02 84388E-02 62682E+04 55250E+04 35512E+13 49226E+13 49662E+21

35 0401 76543E-05 52178E+02 97761E-02 72615E+04 64005E+04 35631E+13 49392E+13 49927E+21

36 0407 10168E-04 69315E+02 12244E-01 90950E+04 80166E+04 35757E+13 49566E+13 50206E+21

=================== Skipped =========================

AMOUNT(G-ATOMCC) ON AXIAL MESH= 10 9500 CM TIME STEP= 96 166769 DAYS

NUCLIDE RADIAL 1 RADIAL 2 RADIAL 3 RADIAL 4 RADIAL 5 RADIAL 6 RADIAL 7 RADIAL 8 RADIAL 9 RADIAL 10

0048 0084 0108 0128 0145 0160 0174 0187 0199 0211

1 H2 24619E-07 24713E-07 24803E-07 24895E-07 24990E-07 25089E-07 25192E-07 25302E-07 25416E-07 25533E-07

2 He 36404E-06 36490E-06 36593E-06 36704E-06 36823E-06 36948E-06 37089E-06 37235E-06 37386E-06 37542E-06

6 C 26040E-06 26040E-06 26057E-06 26080E-06 26108E-06 26138E-06 26173E-06 26211E-06 26251E-06 26294E-06

8 O 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02

33 As 21222E-10 21337E-10 21435E-10 21527E-10 21619E-10 21710E-10 21804E-10 21903E-10 22005E-10 22109E-10

34 Se 66222E-06 66351E-06 66484E-06 66623E-06 66769E-06 66920E-06 67081E-06 67252E-06 67430E-06 67614E-06

35 Br 19229E-06 19271E-06 19315E-06 19360E-06 19406E-06 19455E-06 19506E-06 19561E-06 19617E-06 19676E-06

36 Kr 46606E-05 46668E-05 46736E-05 46809E-05 46887E-05 46968E-05 47053E-05 47145E-05 47241E-05 47340E-05

37 Rb 41448E-05 41498E-05 41555E-05 41616E-05 41680E-05 41747E-05 41820E-05 41897E-05 41977E-05 42060E-05

38 Sr 10835E-04 10849E-04 10864E-04 10880E-04 10897E-04 10915E-04 10934E-04 10954E-04 10975E-04 10997E-04

39 Y 93636E-06 93796E-06 93947E-06 94099E-06 94253E-06 94412E-06 94585E-06 94763E-06 94947E-06 95136E-06

40 Zr 40853E-04 40927E-04 41005E-04 41087E-04 41173E-04 41262E-04 41357E-04 41457E-04 41562E-04 41671E-04

41 Nb 22604E-06 22697E-06 22773E-06 22846E-06 22919E-06 22990E-06 23064E-06 23142E-06 23222E-06 23303E-06

42 Mo 34694E-04 34780E-04 34867E-04 34957E-04 35052E-04 35149E-04 35252E-04 35361E-04 35475E-04 35592E-04

43 Tc 85310E-05 85531E-05 85750E-05 85974E-05 86207E-05 86447E-05 86700E-05 86969E-05 87247E-05 87534E-05

44 Ru 20364E-04 20438E-04 20511E-04 20585E-04 20661E-04 20739E-04 20822E-04 20909E-04 20999E-04 21092E-04

45 Rh 32023E-05 32153E-05 32269E-05 32383E-05 32498E-05 32613E-05 32734E-05 32862E-05 32992E-05 33125E-05

46 Pd 10367E-04 10428E-04 10486E-04 10546E-04 10609E-04 10672E-04 10739E-04 10810E-04 10884E-04 10960E-04

47 Ag 44148E-06 44511E-06 44838E-06 45162E-06 45493E-06 45830E-06 46182E-06 46551E-06 46928E-06 47320E-06

48 Cd 53894E-06 54323E-06 54733E-06 55143E-06 55541E-06 55964E-06 56414E-06 56897E-06 57388E-06 57914E-06

49 In 65149E-08 64972E-08 65294E-08 65611E-08 65919E-08 66227E-08 66545E-08 66878E-08 66767E-08 67109E-08

50 Sn 36650E-06 36814E-06 36999E-06 37183E-06 37370E-06 37561E-06 37762E-06 37967E-06 38185E-06 38396E-06

JAEA-DataCode 2013-009

- 242 -

51 Sb 11171E-06 11235E-06 11291E-06 11360E-06 11428E-06 11506E-06 11586E-06 11672E-06 11748E-06 11820E-06

52 Te 41795E-05 41943E-05 42086E-05 42232E-05 42382E-05 42537E-05 42701E-05 42875E-05 43053E-05 43237E-05

53 I 19898E-05 19979E-05 20051E-05 20127E-05 20206E-05 20284E-05 20369E-05 20457E-05 20549E-05 20642E-05

54 Xe 39501E-04 39608E-04 39715E-04 39827E-04 39944E-04 40064E-04 40191E-04 40327E-04 40468E-04 40613E-04

55 Cs 20564E-04 20619E-04 20673E-04 20727E-04 20783E-04 20840E-04 20900E-04 20964E-04 21030E-04 21098E-04

56 Ba 10162E-04 10189E-04 10216E-04 10245E-04 10275E-04 10306E-04 10338E-04 10374E-04 10410E-04 10447E-04

57 La 92023E-05 92244E-05 92466E-05 92695E-05 92934E-05 93180E-05 93443E-05 93721E-05 94009E-05 94305E-05

58 Ce 19786E-04 19833E-04 19880E-04 19928E-04 19979E-04 20031E-04 20086E-04 20144E-04 20205E-04 20267E-04

59 Pr 84807E-05 84989E-05 85177E-05 85369E-05 85574E-05 85785E-05 86008E-05 86245E-05 86492E-05 86746E-05

60 Nd 27202E-04 27260E-04 27321E-04 27385E-04 27451E-04 27520E-04 27593E-04 27671E-04 27752E-04 27836E-04

61 Pm 69667E-06 69905E-06 70096E-06 70272E-06 70445E-06 70613E-06 70787E-06 70965E-06 71147E-06 71330E-06

62 Sm 52034E-05 52173E-05 52312E-05 52449E-05 52598E-05 52752E-05 52917E-05 53087E-05 53267E-05 53449E-05

63 Eu 11064E-05 11103E-05 11142E-05 11183E-05 11226E-05 11272E-05 11320E-05 11370E-05 11423E-05 11478E-05

64 Gd 55703E-06 55932E-06 56235E-06 56517E-06 56855E-06 57196E-06 57538E-06 57910E-06 58337E-06 58753E-06

65 Tb 79826E-08 80406E-08 80990E-08 81519E-08 83162E-08 83769E-08 84376E-08 85005E-08 86130E-08 86837E-08

92 U 36846E-02 36840E-02 36834E-02 36829E-02 36823E-02 36817E-02 36811E-02 36804E-02 36797E-02 36790E-02

93 Np 22631E-05 22649E-05 22678E-05 22713E-05 22751E-05 22792E-05 22838E-05 22888E-05 22939E-05 22994E-05

94 Pu 23060E-04 23253E-04 23417E-04 23576E-04 23735E-04 23893E-04 24057E-04 24229E-04 24404E-04 24582E-04

95 Am 60636E-06 61173E-06 61700E-06 62234E-06 62789E-06 63360E-06 63967E-06 64614E-06 65283E-06 65972E-06

96 Cm 20581E-06 20768E-06 20973E-06 21177E-06 21399E-06 21642E-06 21893E-06 22165E-06 22443E-06 22719E-06

NUCLIDE RADIAL 11 RADIAL 12 RADIAL 13 RADIAL 14 RADIAL 15 RADIAL 16 RADIAL 17 RADIAL 18 RADIAL 19 RADIAL 20

0221 0232 0242 0251 0260 0269 0278 0286 0294 0302

1 H2 25655E-07 25784E-07 25921E-07 26068E-07 26225E-07 26390E-07 26562E-07 26748E-07 26952E-07 27173E-07

2 He 37706E-06 37884E-06 38072E-06 38266E-06 38470E-06 38690E-06 38914E-06 39154E-06 39421E-06 39702E-06

6 C 26339E-06 26384E-06 26432E-06 26481E-06 26532E-06 26585E-06 26638E-06 26693E-06 26752E-06 26814E-06

8 O 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02

33 As 22219E-10 22335E-10 22458E-10 22592E-10 22734E-10 22885E-10 23045E-10 23219E-10 23409E-10 23619E-10

34 Se 67806E-06 68007E-06 68226E-06 68455E-06 68696E-06 68950E-06 69216E-06 69500E-06 69823E-06 70159E-06

35 Br 19737E-06 19801E-06 19868E-06 19941E-06 20018E-06 20099E-06 20184E-06 20276E-06 20375E-06 20482E-06

36 Kr 47444E-05 47552E-05 47666E-05 47788E-05 47918E-05 48053E-05 48194E-05 48345E-05 48508E-05 48686E-05

37 Rb 42147E-05 42238E-05 42333E-05 42435E-05 42543E-05 42655E-05 42772E-05 42897E-05 43033E-05 43180E-05

38 Sr 11020E-04 11044E-04 11069E-04 11096E-04 11125E-04 11155E-04 11186E-04 11219E-04 11255E-04 11295E-04

39 Y 95335E-06 95543E-06 95764E-06 96003E-06 96253E-06 96519E-06 96804E-06 97104E-06 97430E-06 97787E-06

40 Zr 41784E-04 41902E-04 42028E-04 42162E-04 42304E-04 42454E-04 42610E-04 42777E-04 42959E-04 43156E-04

41 Nb 23390E-06 23480E-06 23578E-06 23684E-06 23797E-06 23915E-06 24043E-06 24181E-06 24332E-06 24499E-06

42 Mo 35715E-04 35843E-04 35979E-04 36125E-04 36280E-04 36443E-04 36614E-04 36798E-04 36997E-04 37214E-04

43 Tc 87834E-05 88149E-05 88483E-05 88843E-05 89223E-05 89625E-05 90048E-05 90500E-05 90991E-05 91527E-05

44 Ru 21190E-04 21292E-04 21400E-04 21518E-04 21642E-04 21773E-04 21911E-04 22059E-04 22220E-04 22396E-04

45 Rh 33265E-05 33412E-05 33568E-05 33739E-05 33919E-05 34111E-05 34314E-05 34534E-05 34773E-05 35032E-05

46 Pd 11040E-04 11123E-04 11212E-04 11308E-04 11410E-04 11517E-04 11630E-04 11752E-04 11884E-04 12028E-04

47 Ag 47728E-06 48157E-06 48618E-06 49111E-06 49632E-06 50190E-06 50773E-06 51407E-06 52095E-06 52845E-06

48 Cd 58467E-06 59033E-06 59654E-06 60264E-06 60935E-06 61619E-06 62421E-06 63249E-06 64163E-06 65148E-06

49 In 67510E-08 67889E-08 68293E-08 68734E-08 69200E-08 69663E-08 70190E-08 70802E-08 71424E-08 72107E-08

50 Sn 38632E-06 38873E-06 39144E-06 39430E-06 39732E-06 40047E-06 40397E-06 40774E-06 41175E-06 41613E-06

51 Sb 11906E-06 12018E-06 12106E-06 12191E-06 12294E-06 12396E-06 12490E-06 12604E-06 12728E-06 12867E-06

52 Te 43431E-05 43633E-05 43850E-05 44083E-05 44328E-05 44587E-05 44859E-05 45152E-05 45469E-05 45818E-05

53 I 20741E-05 20844E-05 20953E-05 21071E-05 21195E-05 21328E-05 21467E-05 21617E-05 21786E-05 21968E-05

54 Xe 40765E-04 40924E-04 41093E-04 41275E-04 41467E-04 41671E-04 41883E-04 42111E-04 42359E-04 42629E-04

55 Cs 21170E-04 21245E-04 21324E-04 21410E-04 21501E-04 21597E-04 21698E-04 21806E-04 21923E-04 22051E-04

56 Ba 10487E-04 10528E-04 10571E-04 10618E-04 10668E-04 10720E-04 10775E-04 10834E-04 10897E-04 10966E-04

57 La 94613E-05 94941E-05 95283E-05 95654E-05 96046E-05 96461E-05 96893E-05 97358E-05 97862E-05 98413E-05

58 Ce 20333E-04 20401E-04 20474E-04 20553E-04 20636E-04 20723E-04 20815E-04 20913E-04 21020E-04 21136E-04

59 Pr 87012E-05 87290E-05 87584E-05 87902E-05 88236E-05 88590E-05 88961E-05 89357E-05 89787E-05 90257E-05

60 Nd 27924E-04 28015E-04 28112E-04 28216E-04 28326E-04 28441E-04 28563E-04 28693E-04 28834E-04 28988E-04

61 Pm 71522E-06 71726E-06 71944E-06 72183E-06 72439E-06 72708E-06 73001E-06 73319E-06 73668E-06 74050E-06

62 Sm 53638E-05 53840E-05 54066E-05 54293E-05 54535E-05 54795E-05 55064E-05 55353E-05 55668E-05 56015E-05

63 Eu 11535E-05 11595E-05 11660E-05 11729E-05 11801E-05 11878E-05 11957E-05 12045E-05 12139E-05 12240E-05

64 Gd 59188E-06 59626E-06 60139E-06 60634E-06 61186E-06 61782E-06 62414E-06 63083E-06 63786E-06 64549E-06

65 Tb 87552E-08 88272E-08 89091E-08 90333E-08 91292E-08 92250E-08 93328E-08 94422E-08 96788E-08 98576E-08

92 U 36783E-02 36775E-02 36767E-02 36758E-02 36749E-02 36739E-02 36729E-02 36718E-02 36706E-02 36692E-02

93 Np 23051E-05 23109E-05 23169E-05 23233E-05 23300E-05 23370E-05 23442E-05 23518E-05 23598E-05 23684E-05

94 Pu 24769E-04 24966E-04 25175E-04 25404E-04 25645E-04 25902E-04 26174E-04 26468E-04 26788E-04 27138E-04

95 Am 66698E-06 67457E-06 68266E-06 69138E-06 70066E-06 71046E-06 72077E-06 73191E-06 74404E-06 75725E-06

96 Cm 23021E-06 23332E-06 23679E-06 24035E-06 24423E-06 24823E-06 25243E-06 25712E-06 26239E-06 26787E-06

NUCLIDE RADIAL 21 RADIAL 22 RADIAL 23 RADIAL 24 RADIAL 25 RADIAL 26 RADIAL 27 RADIAL 28 RADIAL 29 RADIAL 30

0309 0317 0324 0331 0338 0345 0352 0358 0365 0371

1 H2 27414E-07 27680E-07 27906E-07 28232E-07 28603E-07 29017E-07 29506E-07 30096E-07 30844E-07 31815E-07

2 He 40016E-06 40358E-06 40738E-06 41136E-06 41579E-06 42072E-06 42644E-06 43351E-06 44216E-06 45326E-06

6 C 26882E-06 26953E-06 27027E-06 27101E-06 27176E-06 27254E-06 27334E-06 27418E-06 27515E-06 27624E-06

8 O 77158E-02 77158E-02 77158E-02 77157E-02 77158E-02 77157E-02 77157E-02 77157E-02 77157E-02 77157E-02

33 As 23848E-10 24101E-10 24387E-10 24708E-10 25077E-10 25495E-10 25996E-10 26610E-10 27391E-10 28420E-10

34 Se 70524E-06 70926E-06 71363E-06 71856E-06 72396E-06 73006E-06 73719E-06 74580E-06 75651E-06 77059E-06

35 Br 20600E-06 20729E-06 20872E-06 21029E-06 21206E-06 21404E-06 21636E-06 21915E-06 22265E-06 22720E-06

JAEA-DataCode 2013-009

- 243 -

36 Kr 48880E-05 49093E-05 49326E-05 49578E-05 49861E-05 50175E-05 50540E-05 50971E-05 51510E-05 52207E-05

37 Rb 43340E-05 43515E-05 43707E-05 43916E-05 44149E-05 44407E-05 44705E-05 45060E-05 45504E-05 46073E-05

38 Sr 11337E-04 11384E-04 11435E-04 11491E-04 11553E-04 11622E-04 11703E-04 11799E-04 11919E-04 12073E-04

39 Y 98176E-06 98605E-06 99081E-06 99613E-06 10022E-05 10089E-05 10168E-05 10263E-05 10383E-05 10540E-05

40 Zr 43370E-04 43606E-04 43866E-04 44151E-04 44471E-04 44828E-04 45244E-04 45743E-04 46369E-04 47176E-04

41 Nb 24681E-06 24883E-06 25110E-06 25366E-06 25660E-06 25993E-06 26393E-06 26884E-06 27510E-06 28350E-06

42 Mo 37450E-04 37710E-04 37997E-04 38314E-04 38672E-04 39072E-04 39541E-04 40103E-04 40809E-04 41725E-04

43 Tc 92110E-05 92753E-05 93467E-05 94254E-05 95145E-05 96144E-05 97318E-05 98733E-05 10051E-04 10283E-04

44 Ru 22588E-04 22800E-04 23034E-04 23294E-04 23590E-04 23921E-04 24311E-04 24781E-04 25375E-04 26149E-04

45 Rh 35317E-05 35633E-05 35986E-05 36380E-05 36835E-05 37349E-05 37962E-05 38711E-05 39657E-05 40900E-05

46 Pd 12186E-04 12360E-04 12553E-04 12768E-04 13011E-04 13284E-04 13606E-04 13996E-04 14487E-04 15127E-04

47 Ag 53664E-06 54571E-06 55586E-06 56712E-06 58008E-06 59473E-06 61213E-06 63333E-06 66017E-06 69522E-06

48 Cd 66217E-06 67412E-06 68747E-06 70184E-06 71814E-06 73678E-06 75865E-06 78488E-06 81804E-06 86181E-06

49 In 72929E-08 73527E-08 74134E-08 75339E-08 77230E-08 81064E-08 84522E-08 86790E-08 89630E-08 93242E-08

50 Sn 42090E-06 42589E-06 43163E-06 43817E-06 44553E-06 45384E-06 46370E-06 47548E-06 49026E-06 50971E-06

51 Sb 13021E-06 13201E-06 13408E-06 13632E-06 13885E-06 14189E-06 14509E-06 14896E-06 15363E-06 16036E-06

52 Te 46197E-05 46615E-05 47078E-05 47590E-05 48171E-05 48825E-05 49595E-05 50522E-05 51696E-05 53230E-05

53 I 22163E-05 22377E-05 22615E-05 22874E-05 23173E-05 23504E-05 23905E-05 24382E-05 24998E-05 25793E-05

54 Xe 42922E-04 43246E-04 43605E-04 43998E-04 44443E-04 44941E-04 45523E-04 46223E-04 47104E-04 48248E-04

55 Cs 22192E-04 22345E-04 22517E-04 22706E-04 22921E-04 23162E-04 23446E-04 23790E-04 24223E-04 24787E-04

56 Ba 11042E-04 11125E-04 11217E-04 11317E-04 11430E-04 11557E-04 11705E-04 11883E-04 12107E-04 12397E-04

57 La 99012E-05 99672E-05 10040E-04 10120E-04 10211E-04 10313E-04 10431E-04 10574E-04 10753E-04 10987E-04

58 Ce 21263E-04 21402E-04 21556E-04 21726E-04 21918E-04 22132E-04 22385E-04 22689E-04 23070E-04 23565E-04

59 Pr 90766E-05 91325E-05 91944E-05 92628E-05 93394E-05 94253E-05 95256E-05 96458E-05 97967E-05 99924E-05

60 Nd 29155E-04 29339E-04 29541E-04 29764E-04 30014E-04 30294E-04 30621E-04 31012E-04 31503E-04 32140E-04

61 Pm 74472E-06 74940E-06 75468E-06 76066E-06 76779E-06 77587E-06 78574E-06 79797E-06 81360E-06 83429E-06

62 Sm 56386E-05 56795E-05 57249E-05 57750E-05 58315E-05 58945E-05 59691E-05 60577E-05 61711E-05 63164E-05

63 Eu 12352E-05 12476E-05 12612E-05 12759E-05 12927E-05 13112E-05 13329E-05 13590E-05 13920E-05 14343E-05

64 Gd 65415E-06 66309E-06 67348E-06 68431E-06 69670E-06 71035E-06 72594E-06 74495E-06 76839E-06 79904E-06

65 Tb 10045E-07 10205E-07 10387E-07 10587E-07 10822E-07 11121E-07 11549E-07 11929E-07 12446E-07 13119E-07

92 U 36678E-02 36662E-02 36645E-02 36625E-02 36603E-02 36578E-02 36549E-02 36513E-02 36469E-02 36411E-02

93 Np 23778E-05 23881E-05 23988E-05 24100E-05 24222E-05 24352E-05 24496E-05 24658E-05 24857E-05 25100E-05

94 Pu 27518E-04 27939E-04 28413E-04 28947E-04 29563E-04 30260E-04 31096E-04 32119E-04 33411E-04 35111E-04

95 Am 77168E-06 78764E-06 80544E-06 82515E-06 84752E-06 87268E-06 90240E-06 93833E-06 98366E-06 10429E-05

96 Cm 27381E-06 28045E-06 28778E-06 29577E-06 30488E-06 31515E-06 32717E-06 34163E-06 35986E-06 38377E-06

NUCLIDE RADIAL 31 RADIAL 32 RADIAL 33 RADIAL 34 RADIAL 35 RADIAL 36

0377 0384 0390 0396 0401 0407

1 H2 33059E-07 34949E-07 37815E-07 43025E-07 51286E-07 67947E-07

2 He 46840E-06 48922E-06 52040E-06 57045E-06 65726E-06 81926E-06

6 C 27741E-06 27867E-06 28006E-06 28157E-06 28316E-06 28483E-06

8 O 77157E-02 77157E-02 77157E-02 77157E-02 77157E-02 77157E-02

33 As 29835E-10 31891E-10 35031E-10 40142E-10 49144E-10 65641E-10

34 Se 78925E-06 81595E-06 85611E-06 92063E-06 10340E-05 12431E-05

35 Br 23333E-06 24208E-06 25531E-06 27659E-06 31423E-06 38353E-06

36 Kr 53136E-05 54447E-05 56422E-05 59575E-05 65068E-05 75183E-05

37 Rb 46832E-05 47901E-05 49499E-05 52056E-05 56517E-05 64717E-05

38 Sr 12279E-04 12571E-04 13008E-04 13709E-04 14935E-04 17189E-04

39 Y 10753E-05 11057E-05 11521E-05 12267E-05 13579E-05 15998E-05

40 Zr 48262E-04 49805E-04 52129E-04 55872E-04 62433E-04 74548E-04

41 Nb 29491E-06 31147E-06 33687E-06 37830E-06 45140E-06 58593E-06

42 Mo 42963E-04 44732E-04 47408E-04 51731E-04 59328E-04 73381E-04

43 Tc 10596E-04 11045E-04 11726E-04 12826E-04 14763E-04 18349E-04

44 Ru 27200E-04 28704E-04 30994E-04 34699E-04 41226E-04 53308E-04

45 Rh 42608E-05 45080E-05 48870E-05 55047E-05 65983E-05 86259E-05

46 Pd 15996E-04 17243E-04 19139E-04 22212E-04 27637E-04 37707E-04

47 Ag 74327E-06 81267E-06 91846E-06 10902E-05 13940E-05 19570E-05

48 Cd 91996E-06 10044E-05 11318E-05 13394E-05 17057E-05 23848E-05

49 In 99755E-08 10704E-07 11841E-07 13990E-07 17625E-07 23512E-07

50 Sn 53610E-06 57394E-06 63189E-06 72577E-06 89027E-06 11955E-05

51 Sb 16999E-06 18381E-06 20376E-06 23477E-06 29069E-06 39156E-06

52 Te 55304E-05 58291E-05 62819E-05 70150E-05 83022E-05 10686E-04

53 I 26858E-05 28402E-05 30748E-05 34541E-05 41267E-05 53734E-05

54 Xe 49791E-04 51996E-04 55330E-04 60710E-04 70167E-04 87665E-04

55 Cs 25553E-04 26651E-04 28319E-04 31021E-04 35787E-04 44606E-04

56 Ba 12788E-04 13346E-04 14189E-04 15548E-04 17936E-04 22349E-04

57 La 11302E-04 11751E-04 12431E-04 13530E-04 15460E-04 19029E-04

58 Ce 24234E-04 25189E-04 26634E-04 28971E-04 33078E-04 40666E-04

59 Pr 10257E-04 10633E-04 11202E-04 12120E-04 13732E-04 16714E-04

60 Nd 32996E-04 34216E-04 36057E-04 39025E-04 44233E-04 53860E-04

61 Pm 86310E-06 90531E-06 97051E-06 10777E-05 12675E-05 16194E-05

62 Sm 65124E-05 67948E-05 72215E-05 79118E-05 91246E-05 11373E-04

63 Eu 14915E-05 15733E-05 16966E-05 18955E-05 22444E-05 28919E-05

64 Gd 83941E-06 89647E-06 98209E-06 11209E-05 13634E-05 18068E-05

65 Tb 14019E-07 15373E-07 17361E-07 20634E-07 26525E-07 37184E-07

JAEA-DataCode 2013-009

- 244 -

92 U 36332E-02 36219E-02 36047E-02 35769E-02 35281E-02 34380E-02

93 Np 25406E-05 25809E-05 26378E-05 27232E-05 28634E-05 31068E-05

94 Pu 37448E-04 40839E-04 46023E-04 54456E-04 69298E-04 96489E-04

95 Am 11232E-05 12387E-05 14146E-05 17005E-05 22058E-05 31488E-05

96 Cm 41593E-06 46204E-06 53163E-06 64430E-06 84319E-06 12168E-05

AXIAL DISTRIBUTION

AXIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 500 15017E-03 15017E+02 22775E+00 46992E+04 41420E+04 34521E+13 49566E+13 50206E+21

2 1500 18971E-03 18971E+02 30218E+00 62348E+04 54955E+04 50697E+13 72281E+13 73190E+21

3 2500 20979E-03 20979E+02 35032E+00 72282E+04 63711E+04 59420E+13 84717E+13 89546E+21

4 3500 21457E-03 21457E+02 37105E+00 76559E+04 67482E+04 61827E+13 88150E+13 96838E+21

5 4500 21344E-03 21344E+02 37715E+00 77816E+04 68590E+04 61768E+13 88065E+13 99002E+21

6 5500 20991E-03 20991E+02 36944E+00 76227E+04 67189E+04 60412E+13 86131E+13 96267E+21

7 6500 20627E-03 20627E+02 34456E+00 71093E+04 62663E+04 58100E+13 82835E+13 87543E+21

8 7500 19563E-03 19563E+02 31750E+00 65509E+04 57742E+04 53420E+13 76163E+13 78292E+21

9 8500 17223E-03 17223E+02 27397E+00 56528E+04 49825E+04 43853E+13 62656E+13 64099E+21

10 9500 13296E-03 13296E+02 20122E+00 41517E+04 36594E+04 28535E+13 41122E+13 42862E+21

SUM AVE SUM AVE AVE AVE AVE AVE

189468E-02 189468E+02 313514E+01 646871E+04 570171E+04 512553E+13 553675E+13 777844E+21

CPU TIME = 416 (sec)

JAEA-DataCode 2013-009

- 245 -

8 Manual for modification of materials properties models

This modification manual for material properties is intended to be a guide for users to enable the addition of new material values to FEMAXI-7

81 Materials properties subroutines

Table 811 shows a list of subroutines (functions) which define the material properties used in FEMAXI-7 When users wish to add a new material property the relevant subroutines are modified The table below shows the modification method

Table 811 List of subroutines for materials properties in FEMAXI-7

Materials Properties Pellet Gap Cladding

Thermal conductivity PTHCON - CTHCON Specific heat PHCAP - CHCAP

Thermal expansion PTHEX - CTHEX Youngrsquos modulus FELMOD - CELMOD

Poissonrsquos ratio FPOIR - CPOIR

Creep

FCREEP CREEP1 CREEP2 XCREP1 XCREP2

New subroutine (FCPEQ_)

CCREEP CREEP1 CREEP2 XCREP1 XCREP2

New subroutine (CCPEQ_)

Swelling FSWELL - - Densification PDENS - -

Plasticity FYIE

FHSOFT FTSOFT

- CYLD

Grain growth GRAIN - - Melting point TMELT - -

Fission gas release FISGAS - - Corrosion rate - - CORRO

Irradiation growth - - CAGROW Gap thermal conductance - GAPCON -

Fission gas diffusion coefficient DIFC - -

He-Xe mutual diffusion coefficient - DIFCON -

JAEA-DataCode 2013-009

- 246 -

82 Method of addition and modification of models

821 Density (1) Pellet density

Addition of a new model of pellet theoretical density ratio uses FUNCTION PDEN

Table 821 shows the arguments of FUNCTION PDEN By using the arguments pellet

theoretical density ratio is defined as PDEN Here the theoretical density ratio is given by

pellet theoretical densitytimes pellet relative density (FDEN) FUNCTION PDEN assumes

the theoretical density ratio of UO2 as 1096 gcm3 that of PuO2 as 1146 gcm3 and that of

Gd2O3 as 820 gcm3 No modification options using materials properties number are

introduced Table 821 Arguments of FUNCTION PDEN

Argument s Content Unit PDEN Theoretical density of pellet gcm3 GD weight fraction of Gd2O3 wt frac

PU weight fraction of PuO2 wt frac

(2) Cladding density Addition of cladding density model uses FUNCTION CDENS Table 822 lists the arguments of FUNCTION CDENS Assignment starting at ICDENS=4 allows a definition of new model

Table 822 Arguments of FUNCTION CDENS (ICDENS is transferred as one of the COMMON variables)

Argument s Content Unit CDENS Cladding density gcm3

ICDENS Option for cladding density ICDENS=1 Zircaloy ICDENS=2 SUS-304 ICDENS=3 SUS-316

TK Temperature K

822 Thermal conductivity

(1) Thermal conductivity of fuel FUNCTION PTHCON is used for the addition of fuel thermal conductivity Table 823

shows the contents of common variables (or arguments or independent variables) of

JAEA-DataCode 2013-009

- 247 -

FUNCTION PTHCON The thermal conductivity is defined as PTHCON using the common variables shown in Table 823 [Note] Since the thermal conductivity must be a continuous function the function value should not jump at the boundary of temperature regions To ensure the continuity of the functions arrangements such as selecting the larger of two functions must be made in function-overlapping regions Furthermore when variables other than common variables are required it is recommended to assign the variable using COMMON variables

Here when defining the material properties of UO2 pellets the assignment should start at IPTHCN=16 and when defining those of MOX pellets the assignment should start at IPTHCN=34

Table 823 Arguments of FUNCTION PTHCON

Argument s Content Unit PTHCON Thermal conductivity of fuel pellet Wcm-K

IPTHCN

Options for the fuel thermal conductivity Since IPTHCN=1-18 30-38 and 90-92 are already used use the number which is different from these IPTHCN numbers when adding new models IPTHCN=1-29 are assigned to UO2 pellets At present IPTHCN=1-15 are used start from IPTHCN=16 when adding new models

IPTHCN=30- are intended for MOX pellets At present IPTHCN=30-33 are used start at IPTHCN=34 when adding new models

IGD

Options for the thermal conductivity of fuel containing Gd At present IGD=1-2 is used the assignment should start at IGD=3 Here IGD and IPTHCN are independent the thermal conductivity of pellets containing Gd can be defined using IPTHCN without any problems

TEMP Temperature K FDEN Pellet relative density -

BURNUP Burnup MWdt

GD Weight fraction of Gd2O3 - Y Y in MO(2-Y) eg Y=0001 when UO2001 -

PU Weight fraction of PuO2 -

PUM Molar fraction of PuO2 -

JAEA-DataCode 2013-009

- 248 -

(2) Cladding thermal conductivity

FUNCTION CTHCON is used for the addition of the cladding thermal conductivity The common variables of FUNCTION CTHCON are shown in Table 824 The thermal conductivity is defined as CTHCON using the common variables shown in the table [Note] Similar caution to PTHCON applies also to CTHCON ITMC designates materials option and IZOX designates options for oxide layer

Table 824 Arguments of FUNCTION CTHCON (containing COMMON variables)

Arguments Content Unit CTHCON Cladding thermal conductivity Wcm-K

IZYM

Cladding material option automatically set by the code IZYM=1 Zircaloy IZYM=2 Pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

ITMC

Options for the cladding thermal conductivity ITMC=0 - 19 are assigned to Zircaloy At present ITMC=1 and 2 are used Start from ITMC=3 when adding new models ITMC=20 - 29 are assigned to pure Zirconium (currently there is only one option thus no selection flag is available) ITMC=40 - 49 are assigned to stainless steel At present ITMC=40 - 43 are used Start from ITMC=44 when adding new models

IZOX

Options for cladding oxide IZOX=0 - 29 are assigned to Zircaloy At present IZOX=1 and 2 are used Start from IZOX=3 when adding new models IZOX=40 - 49 are assigned to stainless steel

CT Temperature K

OXTH Oxide layer thickness mm

BU Burnup GJkgU

FAIT Fast neutron fluence ncm2

JAEA-DataCode 2013-009

- 249 -

823 Specific heat (1) Specific heat of fuel pellet

FUNCTION PHCAP is used for the addition of specific heat Table 825 presents the common variables for FUNCTION PHCAP The specific heat of fuel is defined in the name of PHCAP using the common variables in the table [Note] Users should make the specific heat equation as continuous a function as possible Furthermore if new variables are required in addition to arguments the addition should be carried out using COMMON variables Here when defining the material property of UO2 pellets the assignment should start at ISPH=2 and when defining those of MOX pellets the assignment should start at ISPH=33 Table 825 Arguments in FUNCTION PHCAP

Arguments Content Unit PHCAP Fuel pellet specific heat JKg-K

ISPH

Options for the fuel specific heat ISPH=1-29 are allocated to UO2 At present ISPH=1 is used When adding new models start at ISPH=2 ISPH=30- are assigned to MOX pellets At present ISPH=30-32 are used When adding new models start at ISPH=33

TK Temperature K PU Weight fraction of PuO2 - PUM Molar fraction of PuO2 -

(2) Cladding specific heat

FUNCTION CHCAP is used for the addition of specific heat Table 826 presents the common variables for FUNCTION CHCAP Currently no options for the cladding specific heat are used

Table 826 Arguments in FUNCTION CHCAP

Arguments Content Unit CHCAP Cladding specific heat JKg-K

IZYM Cladding materials option IZYM=1 Zircaloy IZYM=2 Pure zirconium IZYM=3 ZrO2 IZYM=4 Stainless steel

T Temperature K

JAEA-DataCode 2013-009

- 250 -

824 Thermal expansion (1) Thermal expansion of fuel pellet

FUNCTION PTHEX is used for the addition of the fuel thermal expansion Table 827 shows common variables for FUNCTION PTHEX Using the common variables shown in Table 827 the fuel expansion is defined using PTHEX [Note] Users should make the function as continuous as possible The thermal expansion is defined in terms of a sentential function and is determined in terms of the thermal expansion increments which are obtained by taking the difference between the expansions before and after a time step When there are variables in addition to arguments it is convenient to add them using the common variables When defining the material properties of UO2 pellets the assignment should start at IPTHEX=6 and when defining those of MOX pellets the assignment should start at IPTHEX=33 Table 827 Arguments in FUNCTION PTHEX

Arguments Content Unit PTHEX Pellet thermal expansion -

IPTHEX

Options for pellet thermal expansion IPTHEX=1 - 29 are assigned to UO2 pellet At present IPTHEX=1 - 5 are used When adding new models start at IPTHEX=6 IPTHEX=30- are assigned to MOX pellet At present IPTHEX=30 - 32 are used When adding new models start at IPTHEX=33

TEMPR Temperature at present time step K TEMPO Temperature at previous time step K PU Weight fraction of PuO2 - PUM Molar fraction of PuO2 - Y Y in MO(2-Y) eg Y=0001 in UO2001 -

(2) Thermal expansion of cladding

SUBROUTINE CTHEX is used for the addition of cladding thermal expansion Table 828 presents the arguments in SUBROUTINE CTHEX The cladding thermal expansion is defined using the arguments as CDTHEX in the radial direction and as CATHEX in the axial direction The model calculates the thermal expansion increment by obtaining the difference of thermal expansion values between the present and previous time steps [Note] Users should make the equation as continuous a function as possible Furthermore if new variables are required in addition to arguments the addition should be carried out using COMMON variables

JAEA-DataCode 2013-009

- 251 -

Table 828 Arguments and Common Variables of SUBROUTINE CTHEX Arguments Content Unit CDTHEX Cladding thermal expansion in the radial direction - CATHEX Cladding thermal expansion in the axial direction - IZYM Cladding material option

IZYM=1Zircaloy IZYM=2pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

ICATHX Cladding thermal expansion material option ICATHX=0 - 19 for Zircaloy At present CATHX=1-3 are used When adding new models start at ICATHX=4 ICATHX=20 - 29 for pure zirconium ICATHX=30 - 39 for ZrO2 ICATHX=40 - 49 for stainless steel

TEMP2 Temperature at the present time step K TEMP1 Temperature at the previous time step K

825 Youngrsquos modulus (1) Youngrsquos modulus of fuel pellet

FUNCTION FELMOD is used for the addition of pellet Youngrsquos modulus Table 829 presents the arguments in the FUNCTION The pellet Youngrsquos modulus is defined as FELMOD

[Note] Users should make the equation as continuous a function as possible Furthermore if new variables are required in addition to arguments the addition should be carried out using COMMON variables When defining the material properties of UO2 pellets the assignment should start at IPLYG=3 and when defining those of MOX pellets the assignment should start at IPLYG=31 Table 829 Arguments in FUNCTION FELMOD

Arguments Content Unit FELMOD Youngrsquos modulus Nm2

IPLYG Options for pellet Youngrsquos modulus IPLYG=1 - 29 are assigned to UO2 pellet

At present IPLYG=1 - 2 are used When adding new models start at IPLYG=3 IPLYG=30- are assigned to MOX pellet

At present IPLYG=30 are used When adding new models start at IPLYG=31

FTEMP Temperature K FRADEN Pellet relative density (Theoretical density ratio) - PU PuO2 weight fraction -

JAEA-DataCode 2013-009

- 252 -

(2) Youngrsquos modulus of cladding

FUNCTION CELMOD is used for the addition of cladding Youngrsquos modulus Table 8210 presents the arguments in the FUNCTION The cladding Youngrsquos modulus is defined as CELMOD

[Note] Users should make the Youngrsquos modulus equation as continuous a function as

possible Furthermore if new variables are required in addition to arguments it is preferable to transfer them as COMMON variables Table 8210 Arguments in FUNCTION CELMOD

Arguments Content Unit CELMOD Cladding Youngrsquos modulus Nm2

IZYM

Cladding material option automatically set by the code IZYM=1Zircaloy IZYM=2pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

IZYG

Cladding Youngrsquos modulus option IZYG=0 - 19 for Zircaloy At present IZYG=1 and 2are used Start at IZYG=3 when adding new models IZYG=20 - 29 for pure zirconium IZYG=30 - 39 for ZrO2 IZYG=40 - 49 for stainless steel At present IZYG=40-43 are used Start at IZYG=44 when adding new models

CTEMP Temperature K FAIT Fast neutron fluence ncm2

826 Poissonrsquos ratio (1) Poissonrsquos ratio of fuel pellet

FUNCTION FPOIR is used for the addition of pellet Poissonrsquos ratio Table 8211 presents the arguments in the FUNCTION The pellet Poissonrsquos ratio is defined as FPOIR

[Note] If new variables are required in addition to arguments the addition should be carried out using COMMON variables When defining the material properties of UO2 pellets the assignment should start at IPOIS=2 and when defining those of MOX pellets the assignment should start at IPOIS=32

JAEA-DataCode 2013-009

- 253 -

Table 8211 Arguments in FUNCTION FPOIR

Arguments Content Unit FPOIR Poissonrsquos ratio of pellet -

IPOIS

Options for pellet Poissonrsquos ratio IPOIS=1 - 29 are assigned to UO2 pellet

At present IPOIS=1 is used When new models are added the assignment should start at IPOIS=2 IPLYG=30- are assigned to MOX pellet At present IPOIS=30 - 31 are used When new models are added the assignment should start at IPOIS=32

FTEMP Temperature K FDEN Pellet theoretical density ratio -

F (U(1-f) Pu(f))O2 molar fraction -

(2) Poissonrsquos ratio of cladding

FUNCTION CPOIR is used for the addition of cladding Poissonrsquos ratio Table 8212 presents the arguments in the FUNCTION The cladding Poissonrsquos ratio is defined as CPOIR

[Note] If new variables are required in addition to arguments the addition should be

carried out using COMMON variables

Table 8212 Arguments in FUNCTION CPOIR Arguments Content Unit CELMOD Cladding Poissonrsquos ratio - IZYM Cladding material option

IZYM=1Zircaloy IZYM=2pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

ICPOIS Cladding Poissonrsquos ratio option ICPOIS=0 - 19 for Zircaloy ICPOIS 20 - 29 for pure zirconium ICPOIS =30 - 39 for ZrO2 ICPOIS =40 - 49 for stainless steel At present ICPOIS=40 -43 are used Start at ICPOIS=44 when adding new models

CTEMP Temperature K

JAEA-DataCode 2013-009

- 254 -

827 Creep

(1) Creep in fuel pellets For the addition of a pellet creep equation a subroutine FCPEQyen is produced

Currently FCPEQ1-FCPEQ3 have been used thus the subroutine should start at FCPEQ4 To prepare FCPEQ4 existing FCPEQ1 and FCPEQ2 are reused in the case of UO2 fuel

and FCPEQ3 can be reused in the case of MOX fuel In FCPEQ4 among the subroutine variables FFUNG FS FH GFUNC GS and GH

must be redefined The contents of these variables are shown in Table 8213 Of these variables it is common to neglect strain hardening In such cases users can assign 0 to GFUNC GS and GH Accordingly values should be assigned to FFUNG FS and FH only

1) Since FFUNC is the effective creep strain rate in which time t is eliminated from the original creep rate equation (1hr) the creep rate equation is defined using FFUNC 2) Since FS is a differential term corresponding to the effective stress of effective creep strain rate it is defined by differentiating FFUNC by effective stress SIGE Here the unit used for SIGE is Pa When other units are used in the defining equation it is important to convert the unit 3) FH is a differential term for the equation representing creep hardening strain in general FH=0 The correction method in the case when creep hardening strain is taken into consideration is described in the cladding creep item

The correction of five subroutines is required to call FCPEQ4 after the preparation of subroutine FCPEQ4 These are the subroutines for the simplified thermal analysis FCREEP subroutines for mechanical analysis of the entire fuel rod XCREP1 and XCREP2 and subroutines for the local mechanical analysis CREEP1 and CREEP2

Method for correcting subroutine FCREEP

In the case of UO2 fuel add the following at the location required ELSEIF(IPCRPEQ3) THEN CALL FCPEQ4

1 (FFUNCF1 F2 F3 GFUNCGS GH EPSH DEPSHTEMP FIS

2 FDI GR SIGE FCRFACTHETC DTIME TCS NST 3 )

In the case of MOX fuel add the following at the location required ELSEIF(IPCRPEQ30) THEN CALL FCPEQ4

1 (FFUNCF1 F2 F3 GFUNCGS GH EPSH DEPSHTEMP FIS

2 FDI GR PU SIGE FCRFACTHETC DTIME TCSNST3 )

JAEA-DataCode 2013-009

- 255 -

In subroutine XCREEP1 the same correction for FCREEP should apply however the last common variable is set to 1 instead of 3 The method for correcting subroutine XCREP2 is the same as that used for XCREP1 and there are two items to be corrected The common variables of FCPEQ4 in the first correction are 2 and the last common variable of FCPEQ4 in the second correction is 3

The method for correcting subroutine CREEP1 is the same as that applied to XCREP1 Similar to XCREP1 the last common variable of FCPEQ4 is 1

The method for correcting subroutine CREEP2 is the same as that applied to XCREP2 and the number of corrections is 1 In this case the last common variable of FCPEQ4 is 2

When defining the material values of UO2 pellets start at IPCRP=3 and for MOX pellets start at IPCRP=31 Table 8213 Arguments in SUBROUTINE FCPEQ_ (12)

Arguments Content Unit FFUNC Pellet creep strain rate 1hr

F1 Constituent parameter F1 of creep-induced stress-strain matrix [ ]cC -

F2 Constituent parameter F2 of creep-induced stress-strain matrix [ ]cC -

F3 Adjustment factor parameter F3 for strain-hardening in creep strain

GFUNC Creep strain-hardening rate 1hr

GS Differential term by stress in creep strain-hardening rate 1(hrPa)

GH Differential term by strain-hardening in creep strain-hardening rate 1hr

EPSH Creep hardening strain at the start of time step -

DEPSH Increment of creep hardening strain (The initial Gaussian value is 0 )

TEMP Temperature K FIS Fission rate Fissionscm3-s FDI Initial theoretical density ratio of pellet - GR Grain diameter in pellet μm

SIGE Equivalent stress Pa FCRFAC Adjustment factor for creep strain rate - THETC Implicit solution parameter ( )10 leleθ - DTIME Time increment hr

JAEA-DataCode 2013-009

- 256 -

Table 8213 Arguments in SUBROUTINE FCPEQ_ (22)

Arguments Content Unit TCS Cut-off temperature level K NST Historical point number - IFLG Calculation option to select calculating items - PU Weight fraction of PuO2 - FS Differential term by stress in creep strain rate 1(hrPa) FH Differential term by hardening strain in creep strain rate 1hr

(2) Cladding creep For the addition of the creep equation of cladding subroutine CCPEQ is prepared

Currently CCPEQ1-CCPEQ8 are in use the new subroutine should be prepared starting at CCPEQ9

When preparing CCPEQ9 the existing CCPEQ1 and CCPEQ2 are reused for Zircaloy during normal operation periods the existing CCPEQ3 can be reused for ZrO2 the existing CCPEQ4 and CCPEQ5 can be reused for high-temperature Zircaloy and CCPEQ6 and CCPEQ7 can be reused for stainless steel

In CCPEQ9 among subroutine variables FFUNC FS FH GFUNC GS and GH must be redefined The contents of these variables are shown in Table 8214

1) FFUNC is the effective creep strain rate (1hr) in which t is eliminated from the original equation The creep rate equation is defined using FFUNC

2) Since FS is the differential term corresponding to the effective stress in the effective creep strain rate equation it is defined by differentiating FFUNC by effective stress (SIGE) However since the unit used for SIGE is Pa it is important to convert the unit when other units are used in the defining equation

3) H is the differential term corresponding to the creep strain hardening equation it is obtained by preparing the differential term for the strain hardening

4) Regarding GFUNG GS and GH depending on the creep equation there are three cases the method of addition is the same manner as in FFUNG FS and FH the addition is carried out by removing the thermal creep portion and the addition is carried out without considering strain hardening GFUNC is defined in accordance with the above description GS is given by the equation which is obtained by differentiating GFUNC with respect to effective strain GH is given by the equation which is obtained by differentiating GFUNC with respect to creep hardening

JAEA-DataCode 2013-009

- 257 -

The analytical derivation of these equations is shown below using an example of the Franklin model (CRPEQ=2)

1 expm p ncreep c

QmA tT

e e φ σminus = = sdot sdot sdot sdot minus

exp

m c

p nt

QAT

e

φ σ=

sdot sdot sdot minus

11

expm

p nmcQt AT

e φ σminus

= sdot sdot sdot minus

FFUNC

111

111

exp

exp

mp nmc c

nmp mmc

Qm AT

Qm AT

e e φ σ

e φ σ

minus

minus

= sdot sdot sdot minus

= sdot sdot minus

FS

11 11 exp

nmpc mmc

Qn AT

e e φ σσ

minusminus part = sdot sdot minus sdot part

FH

11

11

( 1) exp

( 1) exp

mp nc mc

c

nmp mmc

Qm AT

Qm AT

e e φ σe

e φ σ

minus

minus

part = minus sdot sdot sdot sdot minus part

= minus sdot sdot sdot minus sdot

As described after preparation of CCPEQ9 corrections of five subroutines are required to call FCPEQ4 These are subroutines for the simplified thermal analysis CCREEP subroutines for the entire length mechanical analysis XCREP1 and XCREP2 and subroutines for the local mechanical analysis CREEP1 and CREEP2 The correction method is the same as that used for fuel creep thus the explanation is omitted

The flag for the selection of a creep equation for Zircaloy during a normal operation period is CRPEQ (integer variable) currently CRPEQ=1 is used the new addition should start at CRPEQ=2 In the case of ZrO2 there is no flag Therefore for example assuming that the selection flag in the existing equation is CRPEQ=30 the flag for the selection of a new creep equation should start from CRPEQ=31

JAEA-DataCode 2013-009

- 258 -

The flag for the selection of a creep equation for Zircaloy at high temperature is given by the HTCRP (integer) variable since at present HTCRP=1 20 21 and 22 are used the assignment of the creep equation selection flag should start with HTCRP=3

The flag for the selection of a creep equation for stainless steel is given by CRPEQ (integer variable) since at present CRPEQ=40 is used CRPEQ=42 should be used for the assignment of the creep equation selection flag

Table 8214 Arguments in SUBROUTINE CCPEQ_ Arguments Content Unit FFUNC Cladding creep strain rate 1hr

F1 Constituent parameter F1 in creep stress-strain matrix of [ ]cC -

F2 Constituent parameter F2 in creep stress-strain matrix of [ ]cC -

F3 Adjusting parameter F3 by strain-hardening due to creep strain - GFUNC Cladding creep strain hardening rate 1hr

GS Stress-differential term of cladding creep strain hardening rate 1(hrPa)

GH Strain-hardening-differential term of cladding creep strain hardening rate 1hr

EPSH Creep hardening strain at the start of time step -

DEPSH Increment of creep hardening strain (The initial Gaussian value is 0 ) -

TEMP Temperature K

FAI Fast neutron flux ncm2-s

SIGE Equivalent stress Pa

CRFAC Adjusting parameter for cladding creep strain rate -

THETC Implicit solution parameter ( )10 leleθ -

DTIME Time increment hour

NST Number of historical input point -

IFLG Calculation option to select calculating items -

FS Stress-differential term of cladding creep strain rate 1(hrPa)

FH Differential term by hardening strain in creep strain rate 1hr

828 Fuel pellet swelling For the addition of a pellet swelling equation SUBROUTINE FSWELL is used

Table 8215 shows the arguments for subroutine FSWELL The swelling strain of pellets is defined using the arguments listed in Table 8215 as SSW and USW

SSW represents solid swelling strain and USW represents gas bubble swelling strain When there is no difference between the equations representing the solid strain and bubble

JAEA-DataCode 2013-009

- 259 -

strain SSW is defined but USW is set to 0 The total swelling strain is given by SSW+USW Also when solid swelling strain and bubble swelling strain are each defined as the total swelling the solid swelling strain is given as SSW and [bubble swelling ndash solid swelling strain] is given as USW However when USWlt0 USW=0

Since the strain is a linear strain when the strain is defined by the volumetric strain the obtained values should be reduced to 13 and the resulting values should be assigned to SSW and USW

[Note] The users should make the swelling equation as continuous a function as possible Also a string dependency of the bubble swelling equation on temperature occasionally causes a problem in the numerical convergence of the gap conductance calculation Measures to avoid the very strong dependence of the swelling equation on temperature should be taken When variables other than common variables are required it is recommended that they are referred to via COMMON variables The addition of a model can start at IFSWEL=5

Table 8215 Arguments in SUBROUTINE FSWELL Arguments Content Unit SSW Pellet solid swelling strain - USW Pellet gas bubble swelling strain -

IFSWEL

Options for pellet swelling model IFSWEL=0 - 29 are assigned to UO2 pellet At present IFSWEL=1- 4 is used When adding new models start at IFSWEL=5 IFSWEL=30- are assigned to MOX pellet

Currently there is no distinction between UO2 model and MOX model for swelling For MOX also IFSWEL=0 - 4 are used When adding new models for MOX start at IFSWEL=30

BU2 Burnup GJKg-U DBU Burnup increment GJKg-U TEMP Temperature K FDEN Pellet theoretical density ratio -

FDENI Initial theoretical density ratio of pellet -

GR Grain diameter of fuel mm

PO Plenum gas pressure Pa SWO Pellet swelling strain at the previous time step -

I Mesh number in the radial direction -

NODE Axial segment number - IFLG Calculation option in the case of IFSWEL=1 -

JAEA-DataCode 2013-009

- 260 -

829 Densification

FUNCTION DENSF is used for the addition of pellet densification model Table 8216 presents the arguments in the FUNCTION The pellet densification strain is defined as DENSF Since the strain is a linear strain when strain is defined as a volumetric strain the one-third of the volumetric strain is given to DENSF [Note] The users should make the swelling equation as continuous a function as possible If new variables are required in addition to arguments the addition should be carried out using COMMON variables When defining the material properties of UO2 pellets the assignment should start at IDENSF=5 and when defining those of MOX pellets the assignment should start at IDENSF=31 Table 8216 Arguments in FUNCTION DENSF

Arguments Content Unit DENSF Pellet densification strain - IDENSF Options for pellet densification model

IDENSF=0 - 29 are assigned to UO2 pellet At present IDENSF=1 - 4 are used When adding new models start at IDENSF=5 IDENSF=30- are assigned to MOX pellet Currently there is no distinction between UO2 model and MOX model for swelling For MOX also IDENSF=1-4 are used When adding new models for MOX start at IDENSF=31

BU Burnup MWdt SITIM Sintering time hr DMAX Maximum volumetric strain by densification -

TDNSF Sintering temperature K

GG Pellet grain diameter m GG0 Initial grain diameter m FDEN Pellet theoretical density ratio

8210 Plasticity (1) Plasticity of fuel

FUNCTION FYIE SUBROUTINE FTSOFT and SUBROUTINE FHSOFT should be corrected when adding the plastic equation of the pellet FUNCTION FYIE provides the yield stress (Pa) to the FYIE SUBROUTINE FTSOFT provides the differential term of

JAEA-DataCode 2013-009

- 261 -

the temperature of the yield stress of the pellet (PaK) to H2 SUBROUTINE FHSOFT provides the differential term due to the plastic strain of the yield stress of the pellet to H1

Tables 8217 to 8219 show arguments for FUNCTION FYIE SUBROUTINE FTSOFT and SUBROUTINE FHSOFT When defining material property equations the definition should start with IFY=2 At present there is no distinction between UO2 and MOX fuels [Note] The yield stress must be represented by a continuous function

Table 8217 Arguments in FUNCTION FYIE

Arguments Content Unit FYIE Pellet yield stress Pa

IFY Pellet plasticity model option IFY=0 - 29 are assigned to UO2 pellets Currently IFY=1 is used when adding a new subroutine start at IFY=2 IFY=30 is assigned to MOX pellets Currently there is no setting for MOX If a new addition is required it should start at IFY=30

TEMP Temperature K EPSP Pellet equivalent plastic strain -

FYIEF Option to magnify the pellet yield stress by FYIEF times -

Table 8218 Arguments in SUBROUTINE FTSOFT Arguments Content Unit H2 Temperature-differential term of pellet yield stress PaK

IFY Pellet plasticity model option IFY=0 - 29 are assigned to UO2 pellets Currently IFY=1 is used when adding a new subroutine the assignment should start at IFY=2 IFY=30- is assigned to MOX pellets Currently there is no setting for MOX If a new addition is required it should start at IFY=30

TEM3 Temperature K EPSP3 Pellet equivalent plastic strain -

JAEA-DataCode 2013-009

- 262 -

Table 8219 Arguments in SUBROUTINE FHSOFT Arguments Content Unit H2 Equivalent plastic strain-differential term of pellet yield stress Pa

IFY Pellet plasticity model option IFY=0 - 29 are assigned to UO2 pellets Currently IFY=1 is used when adding a new subroutine the assignment should start at IFY=2 IFY=30- is assigned to MOX pellets Currently there is no setting for MOX If a new addition is required it should start at IFY=30

TEM3 Temperature K

(2) Cladding plasticity

FUNCTION CYID should be corrected when adding the plastic equation of cladding As the FUNCTION CYID has five ldquoENTRY POINTrdquo each ENTRY POINT should be given a necessary materials property model The five ldquoENTRY POINTrdquo are

CYIE (02 Yield stress) CRN(Strain-hardening exponent) CDKDT(Temperature-differential term of cladding 02 strength) CDNDT(Temperature-differential term of cladding strain-hardening exponent) CDEDT(Temperature-differential term of cladding Youngrsquos modulus)

Arguments of each ldquoENTRY POINTrdquo is presented in Tables 8220 - 8224 【Note】02 strength and strain-hardening exponent should be a continuous function

Table 8220 Arguments in FUNCTION CYIE Arguments Content Unit CYIE Cladding 02 strength Pa

IZYM Cladding material option IZYM=1Zircaloy IZYM=2pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

ICPLAS Cladding Plasticity option ICPOIS=0 - 19 for Zircaloy ICPOIS 20 - 29 for pure zirconium ICPOIS =30 - 39 for ZrO2 ICPOIS =40 - 49 for stainless steel

TEMP Temperature K FAIT Fast neutron fluence ncm2 FAI Fast neutron flux ncm2-s EPSDOT Strain rate 1hr MRASA Material flag of Zircaloy cladding

(=0Re-crystallized =1Stress-relieved) -

JAEA-DataCode 2013-009

- 263 -

Table 8221 Arguments in FUNCTION CRN Arguments Content Unit CRN Cladding strain-hardening exponent -

IZYM See Table 8220 -

ICPLAS See Table 8220 -

TEMP Temperature K FAIT Fast neutron fluence ncm2

Table 8222 Arguments in FUNCTION CDKDT

Arguments Content Unit CDKDT Temperature-differential term of cladding 02

strength PaK

IZYM See Table 8220 -

ICPLAS See Table 8220 -

TEMP Temperature K FAIT Fast neutron fluence ncm2

Table 8223 Arguments in FUNCTION CDNDT

Arguments Content Unit CDNDT Temperature-differential term of cladding

strain-hardening exponent 1K

IZYM See Table 8220 -

ICPLAS See Table 8220 -

TEMP Temperature K FAIT Fast neutron fluence ncm2

Table 8224 Arguments in FUNCTION CDEDT

Arguments Content Unit

CDEDT Temperature-differential term of cladding Youngrsquos modulus

PaK

IZYM See Table 8220 -

ICPLAS See Table 8220 - TEMP Temperature K FAIT Fast neutron fluence ncm2

JAEA-DataCode 2013-009

- 264 -

8211 Grain growth FUNCTION GRAIN is used for the addition of pellet grain growth model Table 8225

presents the arguments in the FUNCTION The pellet grain growth is defined as GRAIN [Note] In many cases the grain growth function is defined by the n-th power of time In

such cases first the time elapsed is calculated by the difference between the initial grain size and the current grain size assuming that the temperature at the current step is continuous Then time increments of grain size are integrated for all steps during the time elapsed and the grain size at the end of the current step is obtained At present there is no distinction between the growth rates of UO2 and MOX fuels When variables need to be added to common variables it is recommended that the users add them using COMMON variables The addition of a model can be started at IGRAIN=6

Table 8225 Arguments in FUNCTION GRAIN

Arguments Content Unit GRAIN Grain diameter of fuel pellet cm IGRAIN Grain growth model option

IGRAIN=0 - 29 are assigned to UO2 pellets Currently IGRAIN=0 - 5 are used when adding a new subroutine the assignment should start at IGRAIN=6 IGRAIN=30- is assigned to MOX pellets Currently there is no distinction between UO2 and MOX If a new addition is required it should start at IGRAIN=30 for MOX

GRNO Grain diameter at the start of time step cm TEMP Temperature K BURN Burnup MWdt GR0 Initial grain diameter cm DTIME Time step width sec

BO Fission gas atom density at grain boundary atomscm2

SAT Saturation value of fission gas atom at grain boundary atomscm2

8212 Melting point Since the equation of the fuel melting point has currently no options it is necessary to

set a new selection flag and add a new model The fuel melting point model is defined by FUNCTION TMELT Table 8226 shows the arguments for FUNCTION TMELT

JAEA-DataCode 2013-009

- 265 -

Table 8226 Arguments in FUNCTION TMELT Arguments Content Unit TMELT Melting point of fuel pellet K F Molar fraction of PuO2 - BU Burnup MWdt

8213 Fission gas release rate and diffusion coefficient Since a mechanistic model has been adopted for the fission gas release it is not easy to

add another type of model FUNCTION DIFC is used for the addition of the equation for the intra-granular diffusion coefficient of fission gas atoms Table 8227 shows the arguments used in FUNCTION DIFC The diffusion coefficient of fission gas DIFC is defined using the arguments in Table 8227

The model option is IDCNST At present since model equations up to IDCNST=1-3 have been used a new model can be introduced starting at IDCNST=4 Here when a new variable is required for a new model it is recommended that the users define the new variable using the COMMON variables

Table 8227 Arguments in FUNCTION DIFC

Arguments Content Unit DIFC Diffusion coefficient of fission gas atom cm2s IDCNST Option for equation of diffusion coefficient of fission gas atom -

TEMP Temperature K

8214 Cladding waterside corrosion SUBROUTINE CORRO is used for the addition of cladding waterside corrosion rate

equation Table 8228 presents the arguments in the SUBROUTINE The corrosion rate is defined as CORRD Table 8228 Arguments in SUBROUTINE CORRO ( including COMMON)(12)

Arguments Content Unit CORRD Cladding waterside corrosion rate daym m

IZYM Cladding material option IZYM=3 Zircaloy IZYM=4 stainless steel

ICORRO Corrosion model option ICORRO=0-39 is assigned to Zircaloy ICORRO=40- is assigned to stainless steel

JAEA-DataCode 2013-009

- 266 -

Table 8228 Arguments in SUBROUTINE CORRO ( including COMMON) (22)

Arguments Content Unit TEMP0 Cladding surface temperature K

OXTH Oxide layer thickness mm

QF Surface heat flux Wcm2

FAIX Fast neutron flux ncm2-s

DTD Time increment day

FCORRO Adjusting factor for cladding corrosion rate -

DTIME Time increment Hr

8215 Cladding irradiation growth FUNCTION CAGROW is used for the addition of the cladding irradiation growth model Table 8229 shows the arguments used in FUNCTION CAGROW The strain increment of the cladding irradiation growth is defined by CAGROW using the arguments listed in Table 8229 Since CAGROW is given as a function of the irradiation it is defined by the difference between the irradiation growth strain up to the previous time step and the current strain Option for irradiation growth of cladding is designated by ICAGRW At present ICAGRW=0 - 4 are used a new model should start at ICAGRW=5 Table 8229 Arguments in FUNCTION CAGROW

Arguments Content Unit CAGROW Cladding irradiation growth increment -

ICAGRW Option for irradiation growth model -

FAIT Fast neutron fluence at current time step ncm2 DFAIT Fast neutron fluence increment ncm2

8216 Gap thermal conductance

SUBROUTINE GAPCON is used for the addition of the cladding gap thermal conductance model Table 8230 shows the arguments used in GAPCON The gap thermal conductance GCOND(GCONS GCONG GCONR) is defined by GAPCON using the arguments listed in Table 8230

The model option is IGAPCN At present since model equations up to IGAPCN=1-6 have been used a new model can be introduced starting at IGAPCN=7 Here when a new variable is required for a new model it is recommended that the users define a new variable using the COMMON variables

JAEA-DataCode 2013-009

- 267 -

Table 8230 Arguments in SUBROUTINE GAPCON

Arguments Content Unit PST Pellet surface temperature K CST Cladding surface temperature K GAPE Pellet-cladding gap width cm FDEN Burnup GJKg-U R01 Pellet surface roughness cm R02 Cladding surface roughness cm PCON Contact pressure Pa

GASPR Plenum pressure Pa

GMIX(4) Molar ratio of rare gases (=1He =2N2 =3Kr =4Xe)

LL Count number of iteration calculation -

MRASA Cladding material (=0Re-crystallized =1Stress-relieved)

GCOND Gap thermal conductance (output) Wcm2-K

GCONS Gap conductance by contact (output) Wcm2-K GCONG Gap conductance by gas conduction (output) Wcm2-K GCONR Gap conductance by radiation heat transfer (output) Wcm2-K FAI Fast neutron flux ncm2-s FAIT Fast neutron fluence ncm2 BURN Burnup GJKg-U PDIA Pellet diameter cm ENR Pellet enrichment - NODE Axial segment number - IGAPCN Option for gap conductance model -

8217 He-Xe gas inter-diffusion coefficient

FUNCTION DIFCON is used t for the addition of the inter-diffusion constant of He-Xe Table 8231 shows the arguments used in FUNCTION DIFCON The constant is defined by the arguments listed in Table 8231

Since the model option is not used currently it is necessary to introduce a new option parameter of model Here when a new variable is required for a new model it is recommended that the users define a new variable using the COMMON variables

JAEA-DataCode 2013-009

- 268 -

Table 8231 Arguments in FUNCTION DIFCON Arguments Content Unit DIFCON Inter-diffusion constant of Xe-Kr cm2s AN Molecular density molem3 TK Temperature K

83 Method of incorporating a new surface heat transfer

model

In order to incorporate a new cladding surface heat transfer model into FEMAXI-6 it

is necessary to alter four subroutines and add one new subroutine

The common method of adding a new name-list parameter input variable is shown below

(1) Add a COMMON variable (include statement) to ldquoBLOCK DATA

(2) Add a COMMON variable (include statement) to ldquoMAINrdquo

(3) Add a COMMON statement (include statement) to the subroutine using the

variable

(1) Addition of COMMON variables

A new file (eg IHCOEF) in the folder INC is added IHCOEF file

(2) Modification of ldquoBLOCK DATArdquo A new COMMON variable ldquoIHNEWrdquo is added to BLOCK DATArdquo Default value of

ldquoIHNEWrdquo is 0

BLOCK DATA include lsquoIHCOEFrsquo DATA IHNEW 0

IHCOEF IHNEW Surface heat transfer model option COMMONIHCOEF IHNEW

JAEA-DataCode 2013-009

- 269 -

(3) Modification of ldquoMAINrdquo

Add a new COMMON variable ldquoIHNEWrdquo In addition add a name-list parameter If ldquoIHNEW=1rdquo is assigned in the input file the code uses a new model

PROGRAM MAIN

C1220new include lsquoIHCOEFrsquo C1220new C NAMELISTINPUT C1220new IHNEW C1220new C

(4) Modification of subroutine ldquoCONTROLrdquo

1) Add a new COMMON variable ldquoIHNEWrdquo (include statement)

2) If IHNEW is not 0 ICSTge 4 holds The numbers from ICST=0 to ICST=3 have

already been used For example for the selected input values of IHNEWgt0 if a line

of statement ldquoICST=IHNEW+3rdquo is added the new model can be used by specifying the

value of ldquoIHNEWrdquo to 1 2 or 3

SUBROUTINE CONTROL

C1220new

include lsquoIHCOEFrsquo

ICST = 0

IF(CSTEMNE00) ICST = 3

IF(ISCNHALEQ1) ICST = 2

IF(ISTATEGE3) THEN

JAEA-DataCode 2013-009

- 270 -

ICST = 1

END IF

C1220new

IF(IHNEWNE0) ICST = IHNEW + 3

C1220new

IF(ISTNE0 AND ISTATEEQ0) ISTATE = 1

C

(5) Modification of ldquoUSTEMPrdquo

Prepare a new subroutine ldquoTSUR3rdquo and call this subroutine when ICST=4 between

ldquoC1220newArdquo and ldquoC1220newBrdquo as specified in the list below The required

arguments should be written

TCOL (NODE)= coolant temperature (K) at axial node number ldquoNODErdquo HCOEF (NODE)= cladding surface heat transfer coefficient (Wcm2-K) at axial node number ldquoNODErdquo rarrThis is used to output the results

SHF = heat flux (Wcm2) PCOOL = coolant pressure (Pa) TSUR = cladding surface temperature (K) and PSTG=Local linear heat rate (Wcm) at axial node number

ldquoNODErdquo

In subroutine ldquoTSUR3rdquo HCOEF and TSUR are calculated

SUBROUTINE USTEMP

C

IF(SHFLT00) SHF=00

IF(ICFLNE0 AND TSURLTTB(NODE)) TSUR = TB(NODE)

GO TO 334

C

322 CONTINUE

When ICST=1(ISTATE=3condition of fixed temperature at

cladding outer surface) substitute the cladding outer surface

temperature into TCOL

IF(ICSTEQ1) THEN

JAEA-DataCode 2013-009

- 271 -

ICTP=0(If CSTMP is the cladding surface temperature)

IF(ICTPEQ0 OR ICORROEQ0) THEN

TSUR = CSTMP(NODE)

TB(NODE)=TSUR

ELSE

ICTP=1(If CSTMP is temperature at metal-oxide interface)

TSUR = CSTMP(NODE)-PSTG(2PITHCON(NE))

1

DLOG(RTP(NODTNODE)RTP(NENODE))

TB(NODE)=TSUR

ENDIF

When ICST=2 (ISCNHAL=1the Halden equation is used)

substitute the cladding surface temperature into TCOL

ELSEIF(ICSTEQ2) THEN

CALL TSUR2(PSTGTCOL(NODE)TSUR)

TB(NODE)=TSUR

When ICST=3(input by CSTEM) substitute the cladding surface

temperature into TCOL

ELSEIF(ICSTEQ3) THEN

TSUR = CSTEM

TB(NODE)=TSUR

C1220newA

ELSEIF(ICSTEQ4) THEN

CALL

TSUR3(PSTGTCOL(NODE)HCOEF(NODE)SHFPCOOLTSURICST)

C1220newB

ELSE

WRITE(66150) ICSTIS3PNODETSURTB(NODE)

6150 FORMAT( ICST OPTION ERROR ---gt PROGRAM ATOP IN USTEMP

1 ICSTIS3PNODETSURTB=3I52F102)

STOP

ENDIF

JAEA-DataCode 2013-009

- 272 -

(6) Making ldquoTSUR3rdquo

A new heat transfer coefficient is prepared by this new subroutine For example in the Jens-Lottes equation ldquoFLMrdquo is the thermal conductivity (Wcm2-K) This equation requires that the cladding surface temperature be determined Thus it must be set as ldquoTSURH=TC+SHFFLMrdquo Furthermore the unit of ldquoHCOEFrdquo is converted to (Wm2-K) to conform to the output requirement

C1220new

SUBROUTINE TSUR3(PSTGTCHCOEFSHFPCOOLTSURHICST)

IMPLICIT DOUBLE PRECISION (A-HO-Z)

C----------------------------------------------------------

C THIS SUBROUTINE CALCURATES CLAD SURFACE TEMPERATURE BASED

C ON NEW MODEL (USING JENS-LOTTES EQUATION OR OTHER NEW

C EQUATION)

C

C ltlt INPUT gtgt

C PSTG LOCAL LINEAR HEAT RATE (WCM)

C TC COOLANT TEMPERATURE FROM SUFCN(INPUT)[K]

C SHF SURFACE HEAT FLUX (WCM2)

C PCOOL COOLANT PRESSURE (Pa)

C

C ltlt OUTPUT gtgt

C TSURH CLAD SURFACE TEMPERATURE (K)

C HCOEF HEAT TRANSFER COEFFICIENT (WM2-K)

C

C-----------------------------------------------------------

C

IF(ICSTEQ4) THEN

FLM = 01263D0DEXP( PCOOL6201D6 )SHF075D0

ELSEIF (ICSTEQ5) THEN

C ----[EQUATION FOR HANARO CONDITION]----

ENDIF

TSURH = TC + SHFFLM

HCOEF = FLM10D4

C

RETURN

END

JAEA-DataCode 2013-009

- 273 -

Appendix

A1 Title list for plotted figures

A2 Relationship between IDNO and array variables

A3 Subroutine list A4 Subroutine tree

JAEA-DataCode 2013-009

- 274 -

A1 Title list for plotted figures

TableA11 (16) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

1 AVERAGE BURNUP (MWDTM) 51 CLAD INNER TEMPERATURE (C)

2 AVERAGE FISSION GAS RELEASE () 52 CLAD SURFACE TEMPERATURE (C)

3 PLENUM PRESSURE (MPA) 53 PELLET CENTER TEMPERATURE (C)

4 ROD FREE VOLUME (CC) 54 PELLET SURFACE TEMPERATURE (C)

5 PELLET ELONGATION () 55 CLAD OUTER DIAMETER CHANGE (MIC)

6 CLAD ELONGATION () 56 XE+KR ()

7 CLAD MAXIMUM DIAMETER CHANGE (MIC) 57 FUEL FRACTIONAL DENSITY (TD)

8 AVERAGE LINEAR HEAT RATE (WCM) 58 ZRYZRY-OXIDE BOUNDARY TEMPERATURE (C)

9 AVERAGE RELEASED IODINE (GCM2) 59 ZRY OUTER OXIDE THICKNESS (MIC)

10 PEAK RELEASED IODINE (GCM2) 60 COOLANT ENTHALPY (KJKG)

11 CLAD AVERAGE DIAMETER CHANGE (MIC) 61 COOLANT QUALTY (-)

12 COOLANT INLET TEMPERATURE (C) 62 CLAD SURFACE HEAT FLUX (WCM2)

13 COOLANT PRESSURE (MPA) 63 CLAD FILM CONDUCTANCE (WCM2-C)

14 COOLANT VELOCITY (MS) 64 FAST NEUTRON FLUX (NCM2-S)

15 FAST NEUTRON FLUX (NCM2-S) 65 FAST NEUTRON FLUENCE (NCM2)

16 AVERAGE FLUENCE (NCM2) 66 PELLET AVERAGE POWER DENSITY (WCM3)

17 FUEL ELONGATION () 67 MECHANICAL DIAMETER GAP (MIC)

18 CLAD ELONGATION () 68 PELLET DENSIFICATION dVV ()

19 CLAD MAXIMUM DIAMETER CHANGE (MIC) 69 RIM LAYER THICKNESS (MIC)

20 CLAD AVERAGE DIAMETER CHANGE (MIC) 70 ADDITIONAL FGR FROM RIM ()

21 PELLET ELONGATION (MM) 71 RELEASED XE GAS (MOL)

22 CLAD ELONGATION (MM) 72 RELEASED KR GAS (MOL)

23 ENERGY DEPOSITION (JG-FUEL) 73 RELEASED HE GAS (MOL)

24 CLAD AXIAL LOAD (N) 74 THERMAL PCMI PRESSURE (MPA)

25 CLAD RADIAL STRAIN ENERGY (J) 75 PELLET-CLAD FRICTIONAL PRESSURE (MPA)

26 CLAD CIRCUM STRAIN ENERGY (J) 76 PELLET ELONGATION ()

27 CLAD AXIAL STRAIN ENERGY (J) 77 CLADDING AXIAL ELONGATION ()

28 CLAD EQUIVALENT STRAIN ENERGY (J) 78 CLAD OUTER DIAMETER CHANGE (MIC)

29 COOLANT MASS FLOW RATE (KGM2S) 79 PELLET POROSITY ()

30 AVERAGE HE GAS RELEASE () 80 PELLET VOLUME CHANGE ()

31 ZRY INNER OXIDE THICKNESS (MIC) 81 PELLET OUTER DIAMETER CHANGE (MIC)

32 ZRY INNER ALPHA LAYER (MIC) 82 PELLET OUTER STRAIN ()

33 ZRY OUTER ALPHA LAYER (MIC) 83 BONDING RATIO (-)

34 ENERGY DEPOSITION (JG-FUEL) 84 INTRAGRANULAR BUBBLE RADIUS (ANGSTROM)

35 ZRY BETA LAYER THICKNESS (MIC) 85 INTRAGRANULAR BUBBLE dVV ()

36 ZRY BETA LAYER UNDER OXB (MIC) 86 INTERGRANULAR BUBBLE RADIUS (MIC)

37 CLAD RADIAL STRAIN ENERGY (J) 87 INTERGRANULAR BUBBLE dVV ()

38 CLAD CIRCUM STRAIN ENERGY (J) 88 PELLET OUTER RADIAL DISP (MIC)

39 CLAD AXIAL STRAIN ENERGY (J) 89 PELLET ELASTIC RADIAL DISP (MIC)

40 CLAD EQUIVALENT STRAIN ENERGY (J) 90 PELLET THERMAL RADIAL DISP (MIC)

41 LINEAR HEAT RATE (WCM) 91 PELLET RELOCATION RADIAL DISP (MIC)

42 BURNUP (MWDTU) 92 PELLET DENSIFICATION RADIAL DISP (MIC)

43 DIAMETER GAP WIDTH (MIC) 93 PELLET SWELLING RADIAL DISP (MIC)

44 LOCAL FEM PCMI PRESSURE (MPA) 94 PELLET CREEP RADIAL DISP (MIC)

45 FISSION GAS RELEASE () 95 PELLET AXIAL DISPLACEMENT (MIC)

46 FUEL-CLAD FRICTIONAL PRESSURE (MPA) 96 CLAD INNER RADIAL DISP (MIC)

47 PELLET ELONGATION () 97 CLAD ELASTIC RADIAL DISP (MIC)

48 CLADDING AXIAL ELONGATION () 98 CLAD THERMAL RADIAL DISP (MIC)

49 GAP CONDUCTANCE (WCM2-C) 99 CLAD CREEP RADIAL DISP (MIC)

50 COOLANT TEMPERATURE (C) 100 CLAD AXIAL DISPLACEMENT (MIC)

JAEA-DataCode 2013-009

- 275 -

TableA11 (26) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

101 BURNUP (MWDTM) 151 CLAD EQUIVALENT STRESS (MPA)

102 PELLET AVERAGE POWER DENSITY (WCM3) 152 CLAD AVERAGE STRESS (MPA)

103 PELLET NODAL TEMPERATURE (C) 153 CLAD RADIAL STRESS (MPA)

104 CLAD NODAL TEMPERATURE (C) 154 CLAD CIRCUM STRESS (MPA)

105 PELLET ELEMENT TEMPERATURE (C) 155 CLAD AXIAL STRESS (MPA)

106 CLAD ELEMENT TEMPERATURE (C) 156 CLAD RADIAL STRAIN ()

107 FISSION GAS RELEASE () 157 CLAD CIRCUM STRAIN ()

108 PELLET GRAIN DIAMETER (MIC) 158 CLAD AXIAL STRAIN ()

109 PELLET EQUIVALENT STRESS (MPA) 159 CLAD RADIAL ELASTIC STRAIN ()

110 PELLET AVERAGE STRESS (MPA) 160 CLAD CIRCUM ELASTIC STRAIN ()

111 PELLET RADIAL STRESS (MPA) 161 CLAD AXIAL ELASTIC STRAIN ()

112 PELLET CIRCUM STRESS (MPA) 162 CLAD RADIAL THERMAL STRAIN ()

113 PELLET AXIAL STRESS (MPA) 163 CLAD AXIAL THERMAL STRAIN ()

114 PELLET RADIAL STRAIN () 164 CLAD AVERAGE AXIAL THERMAL STRAIN ()

115 PELLET CIRCUM STRAIN () 165 CLAD AXIAL IRRADIATION GROWTH STRAIN()

116 PELLET AXIAL STRAIN () 166 CLAD EQUIVALENT CREEP STRAIN ()

117 PELLET RADIAL ELASTIC STRAIN () 167 CLAD RADIAL CREEP STRAIN ()

118 PELLET CIRCUM ELASTIC STRAIN () 168 CLAD CIRCUM CREEP STRAIN ()

119 PELLET AXIAL ELASTIC STRAIN () 169 CLAD AXIAL CREEP STRAIN ()

120 PELLET RADIAL THERMAL STRAIN () 170 CLAD EQUIVALENT PLASTIC STRAIN ()

121 PELLET AXIAL THERMAL STRAIN () 171 CLAD RADIAL PLASTIC STRAIN ()

122 PELLET DENSIFICATION dVV() 172 CLAD CIRCUM PLASTIC STRAIN ()

123 PELLET SWELLING STRAIN () 173 CLAD AXIAL PLASTIC STRAIN ()

124 PELLET EQUIVALENT CREEP STRAIN () 174 CLAD RADIAL DISPLACEMENT (MIC)

125 PELLET RADIAL CREEP STRAIN () 175 CLAD AXIAL DISPLACEMENT (MIC)

126 PELLET CIRCUM CREEP STRAIN () 176 CLAD RADIAL ELASTIC DISP (MIC)

127 PELLET AXIAL CREEP STRAIN () 177 CLAD AXIAL ELASTIC DISP (MIC)

128 PELLET EQUIVALENT PLASTIC STRAIN () 178 CLAD RADIAL THERMAL DISP (MIC)

129 PELLET RADIAL PLASTIC STRAIN () 179 CLAD AXIAL THERMAL DISP (MIC)

130 PELLET CIRCUM PLASTIC STRAIN () 180 CLAD AXIIRRADIATION GROWTH DISP (MIC)

131 PELLET AXIAL PLASTIC STRAIN () 181 CLAD RADIAL CREEP DISP (MIC)

132 PELLET RADIAL DISPLACEMENT (MIC) 182 CLAD AXIAL CREEP DISP (MIC)

133 PELLET AXIAL DISPLACEMENT (MIC) 183 CLAD RADIAL PLASTIC DISP (MIC)

134 PELLET RADIAL ELASTIC DISP (MIC) 184 CLAD AXIAL PLASTIC DISP (MIC)

135 PELLET AXIAL ELASTIC DISP (MIC) 185 PRODUCED FISSION GAS DENSITY (ATOMSCM3)

136 PELLET RADIAL THERMAL DISP (MIC) 186 FISSION GAS DENSITY IN GRAIN (ATOMSCM3)

137 PELLET AXIAL THERMAL DISP (MIC) 187 FISSION GAS IN SOLID MATRIX (ATOMSCM3)

138 PELLET RADIAL DENSIFICATION DISP (MIC) 188 FISSION GAS IN INTRA BUBBLE (ATOMSCM3)

139 PELLET AXIAL DENSIFICATION DISP (MIC) 189 INTRA FG BUBBLE DENSITY (BUBBLESCM3)

140 PELLET RADIAL SWELLING DISP (MIC) 190 FISSION GAS DENSITY IN BOUND (ATOMSCM2)

141 PELLET AXIAL SWELLING DISP (MIC) 191 SATURATED FG DENSITY IN BOUND(ATOMSCM2)

142 PELLET RADIAL CREEP DISP (MIC) 192 INTER FG BUBBLE DENSITY (BUBBLESCM2)

143 PELLET AXIAL CREEP DISP (MIC) 193 COVERING RATIO OVER BOUND (-)

144 PELLET RADIAL PLASTIC DISP (MIC) 194 LIMIT OF INTER BUBBLE RADIUS (MIC)

145 PELLET AXIAL PLASTIC DISP (MIC) 195 DIFFUSION COEFFICIENT (CM2S)

146 INTRAGRANULAR BUBBLE RADIUS (ANGSTROM) 196 EFFECTIVE DIFFUSION COEFFICIENT (CM2S)

147 INTRAGRANULAR BUBBLE dVV () 197 FUEL FRACTIONAL DENSITY (TD)

148 INTERGRANULAR BUBBLE RADIUS (MIC) 198 OXIDE CONCENTRATION (MGCM3)

149 INTERGRANULAR BUBBLE dVV () 199 OXIDE CONCENTRATION (MGCM3)

150 PELLET YIELD STRESS (ORIGINAL) (MPA) 200 OXIDE CONCENTRATION (MGCM3)

JAEA-DataCode 2013-009

- 276 -

TableA11 (36) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

201 CLAD TEMP - CLAD SURFACE TEMP (C) 251 LOCAL BURNUP (MWDT)

202 RADIAL STRAIN ENERGY DENSITY (KJM3) 252 LOCAL EFFECTIVE BURNUP (MWDTM)

203 CIRCUM STRAIN ENERGY DENSITY (KJM3) 253 PELLET ELEMENT TEMPERATURE (C)

204 AXIAL STRAIN ENERGY DENSITY (KJM3) 254 PELLET THERMAL CONDUCTIVITY (WCM-K)

205 EQIVALENT STRAIN ENERGY DENSITY (KJM3) 255 CLAD POWER DENSITY FOR GAMMA HEAT(WCM3)

206 CLAD RADIAL STRAIN ENERGY (J) 256 PELLET XV RATIO (-)

207 CLAD CIRCUM STRAIN ENERGY (J) 257 PELLET TOTAL POROSITY ()

208 CLAD AXIAL STRAIN ENERGY (J) 258 PELLET RIM LAYER POROSITY ()

209 CLAD EQUIVALENT STRAIN ENERGY (J) 259 PELLET RIM OPEN POROSITY ()

210 FAILURE CRITERIA CSED (KJM3) 260 PELLET GAS BUBBLE POROSITY ()

211 PELLET RADIAL STRAIN RATE (1S) 261 PELLET TOTAL SWELLING ()

212 PELLET CIRCUM STRAIN RATE (1S) 262 RATE OF RE-DISSOLUTION OF GAS b(1S)

213 PELLET AXIAL STRAIN RATE (1S) 263 RATE OF RE-DISSOLUTION OF GAS alpha(1S)

214 PELLET EQUIVALENT STRAIN RATE (1S) 264 RATE OF TRAPPING GAS INTRA BUBBLES (1S)

215 CLAD RADIAL STRAIN RATE (1S) 265 BUFFER ELEMENT STIFFNESS FRACTION (-)

216 CLAD CIRCUM STRAIN RATE (1S) 266 PELLET ELEMENT AXIAL DISPLACEMENT (MIC)

217 CLAD AXIAL STRAIN RATE (1S) 267 BUFFER ELEMENT VOLUME FRACTION (-)

218 CLAD EQUIVALENT STRAIN RATE (1S) 268 ------NON USE---------------------------

219 CLAD RADIAL CREEP RATE (1S) 269 FISSION GAS IN INTRA BUBBLE RATIO ()

220 CLAD CIRCUM CREEP RATE (1S) 270 FISSION GAS IN INTER BUBBLE (ATOMSCM3)

221 CLAD AXIAL CREEP RATE (1S) 271 FISSION GAS IN INTER BUBBLE (ATOMS)

222 CLAD EQUIVALENT CREEP RATE (1S) 272 INTER FG BUBBLE DENSITY (BUBBLESCM3)

223 PELLET YIELD STRESS (MPA) 273 FISSION GAS IN INTER BUBBLE RATIO ()

224 CLAD YIELD STRESS (MPA) 274 FISSION GAS IN RIM PORE (ATOMSCM3)

225 PELELT ENTHALPY (JG-FUEL) 275 PELLET GRAIN DIAMETER (MIC)

226 CLAD ENTHALPY (JG-FUEL) 276 RIM PORE BUBBLE SWELLING dVV ()

227 FUEL(PELLET+CLAD) ENTHALPY (JG-FUEL) 277 THERMAL+BUBBLE SWELLING STRAIN ()

228 PELLET RADIAL RELOCATION STRAIN () 278 PELLET POWER DENSITY (WCM3)

229 PELLET CIRCUM RELOCATION STRAIN () 279 PELLET NODAL TEMPERATURE (C)

230 PELLET AXIAL RELOCATION STRAIN () 280 RELEASED FISSION GAS DENSITY (ATOMSCM3)

231 PELLET RADIAL RELOCATION DISP (MIC) 281 FUEL DENSITY (TD) (IPDENS=1)

232 PELLET AXIAL RELOCATION DISP (MIC) 282 FUEL DENSITY (TD) (IPDENS=2)

233 CLAD RADIAL CORROSION DISP (MIC) 283 FUEL DENSITY (TD) (IPDENS=3)

234 DENSIFICATION+SWELLING STRAIN () 284 FUEL DENSITY (TD) (IPDENS=4)

235 PELLET RADIAL ELAST MODULUS (GPA) 285 SATURATED MATRIX FP GAS FRACTION (-)

236 PELLET CIRCUM ELAST MODULUS (GPA) 286 RIM GAS PORE TRANSPORT FRACTION (-)

237 PELLET AXIAL ELAST MODULUS (GPA) 287 HE DIFFUSION COEF (CM2S)

238 CLAD ELASTIC MODULUS (GPA) 288 HE EFFECTIVE DIFFUSION COEF (CM2S)

239 CLAD POISSONS RATIO (-) 289 HE GRAIN BOUNDARY DIFFUSION COEF(CM2S)

240 CLAD HARDENING EXPONENT N (-) 290 HE GENERATE RATE (ATOMSCM3-S)

241 PELLET ELASTIC MODULUS (GPA) 291 INTER-GRAIN BUBBLE PRESSURE (MPA)

242 PELLET POISSONS RATIO (-) 292 INTER-GRAIN BUBBLE OVER-PRESSURE (MPA)

243 CLAD THERMAL CONDUCTIVITY (WCM-K) 293 INTEA-GRAIN BUBBLE PRESSURE (MPA)

244 PELLET SPECIFIC HEAT CAPACITY (JKG-K) 294 HE DENSITY IN BOUNDARY (ATMSCM3)

245 CLAD SPECIFIC HEAT CAPACITY (JKG-K) 295 BOUNDARY ELEMENT TEMPERATURE (C)

246 PELLET MELTING TEMPERATURE (C) 296 BOUNDARY ELEMENT VOLUME (CM3)

247 DIAMETER GAP WIDTH (MIC) 297 HE DENSITY IN GRAIN (ATOMSCM3)

248 CLAD RADIAL DEVIATION STRESS (MPA) 298 HE AVERAGE DENSITY IN GRAIN (ATOMSCM3)

249 CLAD CIRCUM DEVIATION STRESS (MPA) 299 HE GAS RELEASE ()

250 CLAD AXIAL DEVIATION STRESS (MPA) 300 COOLANT VOID FRACTION (-)

JAEA-DataCode 2013-009

- 277 -

TableA11 (46) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

301 BURNUP (MWDTU) 351 CLAD RADIAL STRAIN ()

302 PELLET AVERAGE POWER DENSITY (WCM3) 352 CLAD CIRCUM STRAIN ()

303 PELLET NODAL TEMPERATURE (C) 353 CLAD AXIAL STRAIN ()

304 CLAD NODAL TEMPERATURE (C) 354 CLAD RADIAL ELASTIC STRAIN ()

305 PELLET ELEMENT TEMPERATURE (C) 355 CLAD CIRCUM ELASTIC STRAIN ()

306 CLAD ELEMENT TEMPERATURE (C) 356 CLAD AXIAL ELASTIC STRAIN ()

307 FISSION GAS RELEASE () 357 CLAD RADIAL THERMAL STRAIN ()

308 PELLET GRAIN DIAMETER (MIC) 358 CLAD AXIAL THERMAL STRAIN ()

309 PELLET EQUIVALENT STRESS (MPA) 359 CLAD AVERAGE AXIAL THERMAL STRAIN ()

310 PELLET AVERAGE STRESS (MPA) 360 CLAD AXIAL IRRADIATION GROWTH STRAIN()

311 PELLET RADIAL STRESS (MPA) 361 CLAD EQUIVALENT CREEP STRAIN ()

312 PELLET CIRCUM STRESS (MPA) 362 CLAD RADIAL CREEP STRAIN ()

313 PELLET AXIAL STRESS (MPA) 363 CLAD CIRCUM CREEP STRAIN ()

314 PELLET RADIAL STRAIN () 364 CLAD AXIAL CREEP STRAIN ()

315 PELLET CIRCUM STRAIN () 365 CLAD EQUIVALENT PLASTIC STRAIN ()

316 PELLET AXIAL STRAIN () 366 CLAD RADIAL PLASTIC STRAIN ()

317 PELLET RADIAL ELASTIC STRAIN () 367 CLAD CIRCUM PLASTIC STRAIN ()

318 PELLET CIRCUM ELASTIC STRAIN () 368 CLAD AXIAL PLASTIC STRAIN ()

319 PELLET AXIAL ELASTIC STRAIN () 369 CLAD RADIAL DISPLACEMENT (MIC)

320 PELLET RADIAL THERMAL STRAIN () 370 CLAD AXIAL DISPLACEMENT (MIC)

321 PELLET AXIAL THERMAL STRAIN () 371 CLAD RADIAL ELASTIC DISP (MIC)

322 PELLET DENSIFICATION dVV () 372 CLAD AXIAL ELASTIC DISP (MIC)

323 PELLET SWELLING STRAIN () 373 CLAD RADIAL THERMAL DISP (MIC)

324 PELLET EQUIVALENT CREEP STRAIN () 374 CLAD AXIAL THERMAL DISP (MIC)

325 PELLET RADIAL CREEP STRAIN () 375 CLAD AXIAL IRRADIATION GROWTH DISP(MIC)

326 PELLET CIRCUM CREEP STRAIN () 376 CLAD RADIAL CREEP DISP (MIC)

327 PELLET AXIAL CREEP STRAIN () 377 CLAD AXIAL CREEP DISP (MIC)

328 PELLET EQUIVALENT PLASTIC STRAIN () 378 CLAD RADIAL PLASTIC DISP (MIC)

329 PELLET RADIAL PLASTIC STRAIN () 379 CLAD AXIAL PLASTIC DISP (MIC)

330 PELLET CIR PLASTIC STRAIN () 380 PELLET YIELD STRESS (MPA)

331 PELLET AXIAL PLASTIC STRAIN () 381 CLAD YIELD STRESS (MPA)

332 PELLET RADIAL DISPLACEMENT (MIC) 382 PELLET RADIAL RELOCATION STRAIN ()

333 PELLET AXIAL DISPLACEMENT (MIC) 383 PELLET CIRCUM RELOCATION STRAIN ()

334 PELLET RADIAL ELASTIC DISP (MIC) 384 PELLET AXIAL RELOCATION STRAIN ()

335 PELLET AXIAL ELASTIC DISP (MIC) 385 PELLET RADIAL RELOCATION DISP (MIC)

336 PELLET RADIAL THERMAL DISP (MIC) 386 PELLET AXIAL RELOCATION DISP (MIC)

337 PELLET AXIAL THERMAL DISP (MIC) 387 CLAD RADIAL CORROSION DISP (MIC)

338 PELLET RADIAL DENSIFICATION DISP (MIC) 388 PELLET RADIAL DISPLACEMENT (MIC)

339 PELLET AXIAL DENSIFICATION DISP (MIC) 389 PELLET AXIAL DISPLACEMENT (MIC)

340 PELLET RADIAL SWELLING DISP (MIC) 390 CLAD RADIAL DISPLACEMENT (MIC)

341 PELLET AXIAL SWELLING DISP (MIC) 391 CLAD AXIAL DISPLACEMENT (MIC)

342 PELLET RADIAL CREEP DISP (MIC) 392 PELLET RADIAL COORDINATE (MM)

343 PELLET AXIAL CREEP DISP (MIC) 393 PELLET AXIAL COORDINATE (MM)

344 PELLET RADIAL PLASTIC DISP (MIC) 394 CLAD RADIAL COORDINATE (MM)

345 PELLET AXIAL PLASTIC DISP (MIC) 395 CLAD AXIAL COORDINATE (MM)

346 CLAD EQUIVALENT STRESS (MPA) 396 DENSIFICATION+SWELLING STRAIN ()

347 CLAD AVERAGE STRESS (MPA) 397 PELLET SHEAR STRESS (MPA)

348 CLAD RADIAL STRESS (MPA) 398 CLAD SHEAR STRESS (MPA)

349 CLAD CIRCUM STRESS (MPA) 399 PELLET SHEAR STRAIN ()

350 CLAD AXIAL STRESS (MPA) 400 CLAD SHEAR STRAIN ()

JAEA-DataCode 2013-009

- 278 -

TableA11 (56) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

401 ROD FREE VOLUME (0 POWER) (CC) 451 PELLET RADIAL STRAIN (0 POWER) ()

402 FUEL ELONGATION (0 POWER) () 452 PELLET CIRCUM STRAIN (0 POWER) ()

403 CLAD MAX DIAMETER CHANGE(0 POWER) (MIC) 453 PELLET AXIAL STRAIN (0 POWER) ()

404 CLAD AVE DIAMETER CHANGE(0 POWER) (MIC) 454 PELLET SWELL STRAIN (0 POWER) ()

405 CLAD ELONGATION (0 POWER) () 455 PELLET RADIAL DISP (0 POWER) (MIC)

406 PLENUM PRESSURE (0 POWER) (MPA) 456 PELLET AXIAL DISP (0 POWER) (MIC)

407 FUEL ELONGATION (0 POWER) () 457 PELLET RADIAL SWELL DISP(0 POWER) (MIC)

408 CLAD MAX DIAMETER CHANGE(0 POWER) (MIC) 458 PELLET AXIAL SWELL DISP (0 POWER) (MIC)

409 CLAD AVE DIAMETER CHANGE(0 POWER) (MIC) 459 CLAD RADIAL STRAIN (0 POWER) ()

410 CLAD ELONGATION (0 POWER) () 460 CLAD CIRCUM STRAIN (0 POWER) ()

411 ------NON USE--------------------------- 461 CLAD AXIAL STRAIN (0 POWER) ()

412 ------NON USE--------------------------- 462 CLAD AXIAL GROWTH STRAIN (0 POWER) ()

413 ------NON USE--------------------------- 463 CLAD RADIAL DISP (0 POWER) (MIC)

414 ------NON USE--------------------------- 464 CLAD AXIAL DISP (0 POWER) (MIC)

415 ------NON USE--------------------------- 465 CLAD AXIAL GROWTH DISP (0 POWER) (MIC)

416 ------NON USE--------------------------- 466 ------NON USE---------------------------

417 ------NON USE--------------------------- 467 ------NON USE---------------------------

418 ------NON USE--------------------------- 468 ------NON USE---------------------------

419 ------NON USE--------------------------- 469 ------NON USE---------------------------

420 ------NON USE--------------------------- 470 ------NON USE---------------------------

421 DIAMETER GAP WIDTH (0 POWER) (MIC) 471 PELLET RADIAL STRAIN (0 POWER) ()

422 PCMI PRESSURE (0 POWER) (MPA) 472 PELLET CIRCUM STRAIN (0 POWER) ()

423 PELLET ELONGATION (0 POWER) () 473 PELLET AXIAL STRAIN (0 POWER) ()

424 CLAD ELONGATION (0 POWER) () 474 PELLET SWELL STRAIN (0 POWER) ()

425 CLAD OUT DIAMETER CHANGE (0 POWER) (MIC) 475 PELLET RADIAL DISP (0 POWER) (MIC)

426 FUEL FRACTINAL DENSITY (0 POWER) (TD) 476 PELLET AXIAL DISP (0 POWER) (MIC)

427 DIAMETER GAP WIDTH (0 POWER) (MIC) 477 PELLET RADIAL SWELL DISP (0 POWER) (MIC)

428 PCMI PRESSURE (0 POWER) (MPA) 478 PELLET AXIAL SWELL DISP (0 POWER) (MIC)

429 PELLET ELONGATION (0 POWER) () 479 CLAD RADIAL STRAIN (0 POWER) ()

430 CLAD ELONGATION (0 POWER) () 480 CLAD CIRCUM STRAIN (0 POWER) ()

431 CLAD OUT DIAMETER CHANGE(0 POWER) (MIC) 481 CLAD AXIAL STRAIN (0 POWER) ()

432 ------NON USE--------------------------- 482 CLAD AXIAL GROWTH STRAIN (0 POWER) ()

433 ------NON USE--------------------------- 483 CLAD RADIAL DISP (0 POWER) (MIC)

434 ------NON USE--------------------------- 484 CLAD AXIAL DISP (0 POWER) (MIC)

435 ------NON USE--------------------------- 485 CLAD AXIAL GROWTH DISP (0 POWER) (MIC)

436 ------NON USE--------------------------- 486 ------NON USE---------------------------

437 ------NON USE--------------------------- 487 ------NON USE---------------------------

438 ------NON USE--------------------------- 488 ------NON USE---------------------------

439 ------NON USE--------------------------- 489 ------NON USE---------------------------

440 ------NON USE--------------------------- 490 ------NON USE---------------------------

441 ------NON USE--------------------------- 491 CLAD TEMPERATURE (C)

442 ------NON USE--------------------------- 492 CLAD CIRCUM STRESS (MPA)

443 ------NON USE--------------------------- 493 CLAD Lr of FAC (-)

444 ------NON USE--------------------------- 494 CLAD Kr of FAC (-)

445 ------NON USE--------------------------- 495 CLAD Lr of A(Lr_Kr) (-)

446 ------NON USE--------------------------- 496 CLAD Kr of A(Lr_Kr) (-)

447 ------NON USE--------------------------- 497 CLAD KI of FAC (MPam12)

448 ------NON USE--------------------------- 498 ------NON USE---------------------------

449 ------NON USE--------------------------- 499 ------NON USE---------------------------

450 ------NON USE--------------------------- 500 ------NON USE---------------------------

JAEA-DataCode 2013-009

- 279 -

TableA11 (66) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

501 PRODUCED HE DENSITY (ATOMSCM3) 551 OUTER TUBE TEMPERATURE (C)

502 PRODUCED HE(Cm-242) (ATOMSCM3) 552 LOOP WATER TEMPERATURE (C)

503 PRODUCED HE(Cm-244) (ATOMSCM3) 553 CAPSULE CYLINDER TEMPERATURE (C)

504 PRODUCED HE(O-16) (ATOMSCM3) 554 ENERGY DEPOSITION (JG-FUEL)

505 PRODUCED HE(T-fiss) (ATOMSCM3) 555 FLOW OUT ENTHALPY (JG-FUEL)

506 PRODUCED HE(ALHPA) (ATOMSCM3) 556 AXIAL UPPER END COORDINATE (MM)

507 Cm-242 DENSITY (ATOMSCM3) 557 AXIAL PELLET ELEM UPPER END COORDI(MM)

508 Cm-244 DENSITY (ATOMSCM3) 558 GRAIN SEPARATION RADIAL COORDINATE (MM)

509 PLENUM HE GAS PRESSURE (MPA) 559 PELLET ELONGATION (ELASTIC+PLASTIC) ()

510 PLENUM HE DENSITY (ATOMSCM3) 560 CLAD ELONGATION (ELASTIC+PLASTIC) ()

511 GAS BUBBLE INNER FORCE (DYNE) 561 RELEASED FP GAS VOLUME (NTP) (MM3)

512 GRAIN COMBINE RESISTANCE (DYNE) 562 RELEASED HE GAS VOLUME (NTP) (MM3)

513 PLENUM TEMPERATURE (C) 563 PELLET MAXIMUM TEMPERATURE (C)

514 PRODUCED HE(Pu-238) (ATOMSCM3) 564 PELLET MAXIMUM TEMPERATURE POSITION

(MM)

515 Pu-238 DENSITY (ATOMSCM3) 565 CLAD AVERAGE HYDROGEN DENSITY (WTPPM)

516 HE GENERATE RATE(Cm-242) (ATOMSCM3-S) 566 PROSPECTIVE CLAD CRACK LENGTH A1 (MIC)

517 HE GENERATE RATE(Cm-244) (ATOMSCM3-S) 567 PROSPECTIVE CLAD CRACK LENGTH A2 (MIC)

518 HE GENERATE RATE(Pu-238) (ATOMSCM3-S) 568 EFFECTIVE FAST FLUENCE (NCM2)

519 HE GENERATE RATE(O-16) (ATOMSCM3-S) 569 EFFECTIVE COLD WORK (-)

520 HE GENERATE RATE(T-fiss) (ATOMSCM3-S) 570 CLADDING TEMPERATURE (C)

521 Am-241 DENSITY (ATOMSCM3) 571 AVERAGE RATE OF CHANGE OF CLAD

TEMP(CS)

522 Am-243 DENSITY (ATOMSCM3) 572 PLENUM VOLUME (CC)

523 Np-237 DENSITY (ATOMSCM3) 573 AVERAGE FISSION GAS RATIO IN GRAIN ()

524 Pu-239 DENSITY (ATOMSCM3) 574 AVERAGE FISSION GAS RATIO IN BOUNDARY()

525 Pu-240 DENSITY (ATOMSCM3) 575 J-INTEGRAL (kNm)

526 Pu-241 DENSITY (ATOMSCM3) 576 SCALE OF NOTCH LENGTH TO RING THICK (-)

527 Pu-242 DENSITY (ATOMSCM3) 577 INTERNAL RADIUS (MM)

528 NEUTRON FLUX (NCM2-S) 578 RING THICKNESS (MM)

529 NEUTRON FLUENCE (NCM2) 579 TEMPERATURE AT THE TIP OF CRACK (C)

530 INNER GAS PRESSURE (MPA) 580 INTERNAL STRAIN ()

531 PELLET SWELLING STRAIN(CLUSTER BUILD)() 581 ------NON USE---------------------------

532 HE SOLUBILITY (ATOMSCM3) 582 ------NON USE---------------------------

533 DEPOSITED HE UNDER SUPER-SAT(ATOMSCM3) 583 ------NON USE---------------------------

534 SEG AV PRODUCED HE DENSITY (ATOMSCM3) 584 ------NON USE---------------------------

535 SEGMENT AVERAGE HE GAS RELEASE () 585 ------NON USE---------------------------

536 PRODUCED HE (ATOMS) 586 ------NON USE---------------------------

537 RELEASED HE (ATOMS) 587 ------NON USE---------------------------

538 RELEASED HE FROM INNER BOUNDARY (ATOMS) 588 ------NON USE---------------------------

539 RELEASED HE FROM OUTER BOUNDARY (ATOMS) 589 ------NON USE---------------------------

540 HE GENERATE RATE(ALHPA) (ATOMSCM3-S) 590 ------NON USE---------------------------

541 PELLET SHEAR CREEP STRAIN () 591 ------NON USE---------------------------

542 PELLET SHEAR PLASTIC STRAIN () 592 ------NON USE---------------------------

543 PELLET SHEAR ELASTIC STRAIN () 593 ------NON USE---------------------------

544 PELLET SHEAR RELOCATION STRAIN () 594 ------NON USE---------------------------

545 CLAD SHEAR CREEP STRAIN () 595 ------NON USE---------------------------

546 CLAD SHEAR PLASTIC STRAIN () 596 ------NON USE---------------------------

547 CLAD SHEAR ELASTIC STRAIN () 597 ------NON USE---------------------------

548 HEATING STEAM LAYER TEMPERATURE (C) 598 CLAD SURFACE VAPOR FILM HEAT

FLUX(WCM2)

549 INNER TUBE TEMPERATURE (C) 599 CRITICAL HEAT FLUX (WCM2)

550 HELIUM GAS LAYER TEMPERATURE (C) 600 FILM THICKNESS (MIC)

JAEA-DataCode 2013-009

- 280 -

Table A12 Title list for X-axis of plotted figures

NO X-axis title

1 TIME (HOUR)

2 RADIAL COORDINATE (MM)

3 AXIAL COORDINATE (MM)

4 BURNUP (MWDTUO2)

5 LINEAR HEAT RATE (WCM)

6 AVERAGE BURNUP (MWDTUO2)

7 AVERAGE LINEAR HEAT RATE (WCM)

8 TIME (SEC)

9 ENERGY DEPOSITION (JG-FUEL)

10 ENERGY DEPOSITION (JG-FUEL)

11 TIME (DAY)

12 TIME (MIN)

13 BURNUP (GWDTUO2)

14 BURNUP (MWDTU)

15 BURNUP (GWDTU)

16 AVERAGE BURNUP (GWDTUO2)

17 AVERAGE BURNUP (MWDTU)

18 AVERAGE BURNUP (GWDTU)

19 TIME (MS)

20 RADIAL COORDINATE (MM)

21 RADIAL COORDINATE (CM)

22 R-COORDINATE IN A GRAIN (MIC)

23 BURNUP (MWDTMOX)

24 AVERAGE BURNUP (MWDTMOX)

25 BURNUP (GWDTMOX)

26 BURNUP (MWDTM)

27 BURNUP (GWDTM)

28 AVERAGE BURNUP (GWDTMOX)

29 AVERAGE BURNUP (MWDTHM)

30 AVERAGE BURNUP (GWDTHM)

JAEA-DataCode 2013-009

- 281 -

Table A13 Title list for Y-axis of plotted figures (Group output)

NO MYTITL1

1 BURNUP (MWDTUO2)

2 BURNUP (GWDTUO2)

3 BURNUP (MWDTU)

4 BURNUP (GWDTU)

5 FISSON GAS RELEASE ()

6 PLENUM PRESSURE (MPA)

7 PLENUM VOLUME (CC)

8 ELONGATION ()

9 CLAD OUTER DIA CHANGE (MIC)

10 LINEAR HEAT RATE (WCM)

11 RELEASED IODINE (GCM2)

12 TEMPERATURE (C)

13 DIAMETER GAP (MIC)

14 PCMI PRESSURE (MPA)

15 RELEASED FP GAS (001MOL)

16 STRESS (MPA)

17 PELLET STRESS (MPA)

18 CLAD STRESS (MPA)

19 STRAIN ()

20 PELLET STRAIN ()

21 CLAD STRAIN ()

22 DISPLACEMENT (MIC)

23 RADIAL DISPLACEMENT (MIC)

24 AXIAL DISPLACEMENT (MIC)

25 COOLANT MASS FLUX (KGCM2-S)

26 INTERGRANULAR BUBBLE RADIUS (MIC)

27 FG DENSITY IN GRAIN (ATOMSCM3)

28 FG DENSITY IN BOUND (ATOMSCM2)

29 DIFFUSION COEFFICIENT (CM2S)

30 ENTHALPY (JG-FUEL)

31 PELLET TEMPERATURE (C)

32 CLADDING TEMPERATURE (C)

33 PRODUCED HE DENSITY (ATOMSCM3)

34 CLAD DEVIATION STRESS (MPA)

35 GRSEP MDL DEFINED FORCE (DYNE)

36 HE GENERATE RATE (ATOMSCM3-S)

37 MINOR ACTINIDE DENSITY (ATOMSCM3)

38 PRODUCED OR RELEASED HE (ATOMS)

39 PELLET AXIAL DISPLACEMENT (MIC)

40 PELLET AXIAL COORDINATE (MM)

41 BURNUP (MWDTMOX)

42 BURNUP (GWDTMOX)

43 BURNUP (MWDTHM)

44 BURNUP (GWDTHM)

45 INCIPIENT CRACK LENGTH (MIC)

46 FAST NEUTRON FLUENCE (NEUTRONCM2)

47 ------NON USE---------------------------

48 ------NON USE---------------------------

49 ------NON USE---------------------------

50 ------NON USE---------------------------

JAEA-DataCode 2013-009

- 282 -

A2 Relationship between IDNO and array variables

Table A21 Relationship of IDNO for FEMAXI-7 (and RANNS) IDNO Array variable name COMMON name 1- 30 TMDAT1 (40) OUTPL

31 - 40 TMDAT11 (10NNZ1) OUTPL2 41 - 100 TMDAT2 (60NNZ1) OUTPL

101 - 250 TMDAT3 (150NPC1) - 251 - 300 TMDAT9 (50NPB1) - 301 - 400 TMDAT7 (100NM211) - 401 - 420 TMDAT4 (20) OUTPL 421 - 450 TMDAT5 (30NNZ1) OUTPL 451 - 470 TMDAT6 (50NPC1) - 471 - 490 TMDAT8 (50NM211) - 491 - 500 TMDAT12 (10NNZ) OUTPL2 501 - 600 TMDAT13 (100NRBNNZ) OUTPL2

NNZ=42 NNZ1=43 NPC=NPR1(73) NPB=NPR2(74) NM21=NN2+1(73) Here NNZ= 42 ie number of segments in the axial direction (up to 40) + upper and lower plenums NPR1 number of ring elements of pellet stack in thermal model and entire rod length mechanical model number of ring elements (up to 72) +1 NN As the number of ring elements in the radial direction of pellet in local mechanical analysis model is 36 and the number of Gaussian points in each element is 2 NN2 is the total number of Gaussian points in the ring elements of pellet and NN2+1 is the total number of nodes in the ring elements in the local mechanical analysis model

Table A22 Relationship of IDNO for EXPLOT IDNO Array variable name

1 ndash 30 TDATA1 (30) 31 - 40 TDATA8 (10NNZ1)

41 - 100 TDATA2 (60NNZ1) 101 - 250 TDATA3 (15073NNZ)

(198 ndash 200) TDATA9 (8013NNZ1) 251 - 300 TDAT10 (5074NNZ)

251 ndash 300 (IDR=14) TDAT12 (10172NNZ) 301 - 400 TDATA7 (10073NNZ) 401 - 420 TDATA4 (20) 421 - 450 TDATA5 (30NNZ1) 451 - 490 TDATA6 (4073NNZ) 491 - 500 TDAT11 (10NNZ1) 501 - 600 TDAT13 (10074NNZ)

NNZ=42 NNZ1=43

JAEA-DataCode 2013-009

- 283 -

A3 Subroutine list

Table A3 lists the FEMAXI-7 subroutines which are classified in terms of their analytical functions The abbreviations in the table are as follows

P Program controlling routines plotter routines and other auxiliary function

subroutines which are not included in the description of analytical models T Subroutines used in the thermal analysis models M1 Subroutines used in the entire rod length mechanical analysis model M2 Subroutines used in the 2-D local mechanical analysis model

Table A3 Subroutine and functions of FEMAXI-7

Name Function P T M1 M2 AAZERO Zero setting of common areas ABNDTA Routine to check if abnormal value is obtained or not ADBU Calc of burnup increment from time history increment ADRESP Calc of address in the matrix in contact state ADRESS Calc of address in matrix ADTM Calc of time history increment from burnup increment

AMDIF Calc of number density of fission gas atoms in intra-grain bubbles (rate-law model)

ANDIF Calc of number density of intra-grain gas bubbles (rate-law model) BBL Calc of intra-grain bubble radius BBL2 Auxiliary routine for calc of intra-grain bubble radius BBR Calc of intra-grain bubble radius (rate-law model)

BBR2 Auxiliary routine for calc of intra-grain bubble radius (rate-law model)

BDMAT Formation of [B]T[D] matrix BFMAX Calc of saturated number density of gas atoms at grain boundary BLOCKDATA Block data list BLR2 Calc of internal gas pressure of lenticular (grain boundary) bubbles BMAT Formation of [B] matrix

BOUNDF Calc of nodal force on the upper surface of pellet in the axial direction

BUFSTF Setting the spring constants of dish element (FEMAXI) and buffer element (RANNS)

BURNUP Calc of burnup CAGROW Calc of cladding irradiation growth in the axial direction calequilibrbl Calc of bubble radius in equilibrium state CANDM Calc of fission gas release model

CANDMH Calc of He diffusion inside grain with boundary condition of He concentration at grain boundary

CANDMT Calc of fission gas release model (rate-law model) CANEAL Calc of effective fast neutron fluence and cold work

JAEA-DataCode 2013-009

- 284 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

CCPEQ1 Cladding creep model CCPEQ2 Cladding creep model CCPEQ3 Cladding creep model CCPEQ4 Cladding creep model CCPEQ5 Cladding creep model CCPEQ6 Cladding creep model CANEAL Calc of effective fast neutron fluence and cold work CCPEQ1 Cladding creep model CCPEQ2 Cladding creep model CCPEQ3 Cladding creep model CCPEQ4 Cladding creep model CCPEQ5 Cladding creep model CCPEQ6 Cladding creep model CCPEQ7 Cladding creep model CCPEQ8 Cladding creep model CCPEQ9 Cladding creep model CCPEQ10 Cladding creep model (dummy) CCREEP Calc of cladding creep strain CDEDT Calc of temperature-differential term of cladding Youngrsquos moduli CDENS Cladding density

CDNDT Calc of temperature differential term of strain-hardening of cladding

CELMOD Cladding Youngrsquos modulus

CFRFZ Calc of forces at inner surface of cladding in the radial and axial directions

CDNDT Calc of temperature-differential term of cladding strain-hardening exponent n

CHCAP Calc of cladding volumetric specific heat CHKDTA Routine to check if abnormal value is obtained or not

CHKNAME Check routine for name-list variables at the beginning of Re-start calculation

CHSOFT Calc of stress-differential term of cladding yield function CLBDF Calc of contact force on the upper surface of pellet

CLDKDT Temperature-differential term of 02 ultimate strength of cladding

CLEAR Zero setting of real number areas CLEARB Zero setting of region of COMMONOTHER CLEARG Zero setting of region of COMMONGAUSS CLOXD Routine of cladding oxidation

CMAT Calc of effective Youngrsquos moduli of pellet and cladding and Poissonrsquos ratio

CMAT1 Formation of pellet [C] matrix CMAT2 Formation of cladding [C] matrix

JAEA-DataCode 2013-009

- 285 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

CMHARD Calc of cladding Mayer hardness CNSTR Setting of displacement increment COLECT Calc of total stiffness matrix and loading vector

COMV2 Convergence routine for coupled calc of thermal and mechanical analyses

CONST1 Composition of the total matrix CONSTF Routine of controlling the composition of total matrix CONSTR Setting of the composition of total matrix and boundary conditions CONTROL Control of entire program

COORDI Setting of shape coordinates for FEM in the local mechanical analysis by quadratic elements

COORDI1 Setting of shape coordinates for FEM in the local mechanical analysis by linear elements

CORRO Calc of cladding outer surface oxidation rate CPOIR Calc of Poissonrsquos ratio of cladding CPUGH Control routine of Pughrsquos reversal method CRACK Setting of pellet crack status CREEP1 Formation of [Cc] matrix and creep strain vector cε∆ CREEP2 Formation of creep strain increment cε∆ of cladding CRN Cladding hardening exponent CTHCON Calc of cladding thermal conductivity CTHEX Cladding thermal expansion CTSOFT Calc of temperature differential term in cladding yield function CUBIC1 Calc of bubble radius as the largest real root of cubic equation CUBIC2 Calc of bubble radius as the largest real root of cubic equation CYIE Calc of Zircaloy yield stress (02 proof stress) CYIEZ Zr liner yield stress (02 proof stress) CYIE2 Calc of Zircaloy yield stress (size of yield surface at ε p ) DATE2 Date of calculation DEFBET Setting the pellet hot-press parameter DELTAN FEM mesh element data in the local mechanical analysis by

quadratic elements

DELTAN1 FEM mesh element data in the local mechanical analysis by linear elements

DENSF Pellet densification model DEVSIG Deviation stress DFCLAD Formation of loading vector of cladding DFCLAD2 Formation of loading vectors in cladding DFPLT Formation of loading vector of pellet DFX Determines the size of cladding yield surface DIFC Diffusion coefficient of FISSION atom in pellet grains DIFCON Xe-He mutual diffusion coefficient

JAEA-DataCode 2013-009

- 286 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

DIFH Diffusion coefficient of He inside grain DIFV Diffusion coefficient of vacancy DLAX Solving the asymmetrical matrix DOT Routine for Pughrsquos reversal method in cladding creep DPMAT Formation of [DP] matrix DPST Calc of ∆ε p

DRYUPD Updating the temperature distribution of cladding temperature control geometry

ELMLP1 Control of formation of element stiffness matrix and loading vector ELMLP2 Control of calculation of stress-strain of elements EPTODP Calc of displacement from the strain at power (hot) state EQIEPS Calc of equivalent strain EQISIG Calc of equivalent stress EQSCAL Convergence calculation of size of yield surface at ε p ERF The Error function ERFUNC The Error function ESMAT Formation of element stiffness matrix EXTSTR Calc of thermal stress on the intra-granular gas bubbles FCP Calc of coolant specific heat FCPEQ1 Pellet creep model FCPEQ2 Pellet creep model FCPEQ3 Pellet creep model FCPEQ4 Pellet creep model FCPEQ5 Pellet creep model FCPEQ11 Pellet creep model FCPEQ15 Pellet creep model FCREEP Calc of pellet creep strain (MATPRO-09) FDIST Calc of flux depression in pellet in the radial direction FDISTF Calc of flux depression in pellet in the radial direction FELMOD Calc of pellet Youngrsquos modulus FEMAXI Main routine of local mechanical analysis FEMISS Calc of pellet emissivity

FEMRDS Updating and outputting the Entire rod length mechanical analysis and making Re-start file to be taken over to RANNS

FEMROD Main routine of entire length mechanical analysis FGPRO Calc of fission gas generation FGPROR Calc of the yield of Xe and Kr FGRELN Calc of fission gas release rate at each element of pellet FHSOFT Calc of stress-differential term of pellet yield functionσ y FIRSTSTEP Setting of initial conditions of transient FGR model FISRAT Calc of fission density

JAEA-DataCode 2013-009

- 287 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

FLMCON Calc of cladding surface heat transfer coefficient by Jens-Lottes equation

FLOAD Calc of element loading vector FLXDEP Calc of flux depression in pellet in the radial direction FORCE Calc of total external force vector FPOIR Poissonrsquos ratio of pellet FPRES1 Calc of effective width of surface node in linear element FPRES2 Calc of effective width of surface nodes FSWELL Pellet swelling model FTSOFT Calc of temperature-differential term of pellet yield function σY FX Routine to determine the size of cladding yield surface FYIE Pellet yield stress (02 proof stress) GAPCON Calc of gap conductance GAPCON _NSR77 Calc of gap thermal conductance by Ross and Stoute model

GAPELN Contact judgment of pelletclad and pelletpellet GAPMOD Convergence calculation of gap conductance GASFLW Model of gas flow and diffusion in P-C gap space

GAULP1 Formation of stiffness matrix and loading vectors at gauss point in element

GAULP2 Calc of stress-strain at gauss point in element

GBCLS Calc of re-closure of grain boundary gas bubbles in rate-law model

GBCONB Calc of radius of bubble resulted from bubble coalescence GPSSET Setting of boundary conditions GRAIN Calc of pellet grain growth GTHCON Thermal conductivity of gases GTHCON _NSR77 Thermal conductivity of gases

GVISCO Viscosity coefficient of gases HBSPRT Generation of output file of HBS model HEADER Title of the local mechanical analysis HELRLS Routine of calc of He gas release HEPRO Properties of He gas (thermal conductivity specific heat density) HEUPD Time-step wise updating of the variables related to He model HFACT Determining the width of element for dish space HMOD4 Equation of transient boiling+ film boiling (RELAP-5)

HOKAN Interpolation between the 100 equal-volume ring elements and 10 equal-thickness ring elements in a pellet

HOKAN1 Interpolation routine used in reading PLUTON results

HOKAN2 Interpolation routine for power density profile in the radial direction of pellet

HOKAN5 Interpolation between iso-volumetric ring element geometry and iso-thickness ring element geometry of pellet stack

JAEA-DataCode 2013-009

- 288 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

HOKANB Calc of fraction of rim structure formation HOTVOL Auxiliary routine to calculate plenum volume

HTRMOD Calc of cladding surface heat transfer coefficient depending on the coolant condition

ICLEAR Zero setting of integer areas INIDRY Setting of initial values of variables of dry-out model

INIFEM Setting of initial values of variables of entire rod length mechanical model

INIGAS Calc of plenum gas pressure and volume in hot stand-by condition INIMAT Calc of [C] matrix INIRDT Setting of initial values of variables of thermal analysis INISET Setting of initial values of variables in coordinates INISTR Calc of initial strain INPGER Generator of historical input data INPHIS Input routine of power history INPHS Input history routine for auxiliary use in INPHIS INPIMG Print-out of input data image INPPLU Input routine for the PLUTON code INPR Radial meshing in the local mechanical analysis INPROD Input routine for output file of the RODBURN code INPUT1 Input routine for thermal analysis INTG Calc of the coefficient matrices [A] and [E] for fission gas release INTGH Calc of the coefficient matrix [H] for fission gas release INTGX Volumetric integral of residual fission gas in pellet grains INTPLT Routine of quadratic interpolation

INTRA3 Calc of fission gas atoms diffusion inside grain for intra-grain gas bubble growth model

INV3 Inverse matrix of 3times3 symmetrical matrix INVERS Inverse matrix of 4times4 symmetrical matrix JACK1 Jacobian of linear elements JACK2 Jacobian of quadratic elements

JUDGE Obtaining control factor for the minimum time-step used in the changes of contact-to-non-contact and elastic-to-plastic states

JUDGFS Routine to judge the bonding-or-sliding state for each contact pair in every axial segment

KOGAI_PARAM Setting the parameters of Kogai FGR model KOGAI_RBDOT Calc of bubble radius growth of Kogai FGR model KOGAIMODEL Main routine of Kogai FGR model

LASSEM Option for additional FGR from rim structure Lassmann empirical model

LINSET Setting of node array variables at outer surface in the 2-D local mechanical model for quadratic elements

LINSET1 Setting of node array variables at outer surface in the local mechanical model for linear elements

JAEA-DataCode 2013-009

- 289 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

LOCALI Storage and extract of information at gauss point MAIN Main routine MAKEH Calc of heat transfer coefficient h MATDAT Setting of materials properties for heat conduction calc MATDEF Determination of materials properties option MDEPS0 Calc of initial strain in rod entire length analysis

MDEPSP Calc of initial strain of plenum part in entire rod length mechanical analysis

MDSIG Calc of stress in the rod entire length analysis MESHP Element digitization of pellet into 100 equal-volume rings MODIFY Setting of contact boundary conditions in local mechanical analysis MODSET Calc of total matrix area in local mechanical analysis MOVE Storage of total matrix (entire length analysis) NCOUPL Initial setting of contact pair in local mechanical analysis NR Obtaining the solution of fifth-degree equation by Newton method

NVACAN Determining the intra-grain gas bubble number density in the gas bubble growth model

OpenInputFiles Routine for setting open statements OPTSO2 Solution of asymmetrical matrix OPTSOL Solution of symmetrical matrix OUTELM Output of stress and strain at Gaussrsquos point in element OUTELM1 Output of stress and strain at Gaussrsquos point in linear element

OUTEM Auxiliary routine for the output of stress and strain at Gaussrsquos point in element

OUTEM1 Auxiliary routine for the output of stress and strain at Gaussrsquos point in linear elements

OUTEM2 Auxiliary routine for the output of stress and strain at Gaussrsquos point in element

OUTEM3 Auxiliary routine for the output of stress and strain at Gaussrsquos point in linear elements

OUTND Auxiliary routine for output of nodal displacement OUTND1 Auxiliary routine for output of nodal displacement OUTND3 Auxiliary routine for the output of nodal displacement in linear

elements

OUTND4 Auxiliary routine for the output of nodal displacement in linear elements

OUTNOD Output of nodal displacement OUTNOD1 Output for nodal displacement in linear elements OUTP Output of time-dependent variables in the entire length analysis

OUTP1 Output of time-dependent variables in the local mechanical analysis

OUTP2 Summary output of deformation information which is given by the entire length mechanical analysis to the thermal analysis model

JAEA-DataCode 2013-009

- 290 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

OUTPT0 Final summary output 0 OUTPT1 Final summary output 1 OUTPT2 Final summary output 2 OUTPT3 Final summary output 3 P1 Shape function of linear element P2 Shape function of quadratic element PDATA1 Output of stress and strain at Gaussrsquos point in element PDATA1A Routine to store data for plotting output in linear elements PDATA2 Output of stress and strain at Gaussrsquos point in element PDATA2A Routine to store data for plotting output in linear elements PDATA3 Output of stress and strain at Gaussrsquos point in element PDATA3A Routine to store data for plotting output in linear elements PDEN Pellet theoretical density PDENS Densification strain of pellet PEXT14 Calc of external pressure imposed on grain boundary gas bubbles

when IPEXT=14

PFRFZ Calc of pellet axial force PHCAP Specific volumetric heat of pellet PHIST Time step control PJUMP Initial relocation PLFZ Calc of axial force in entire rod length mechanical analysis PLOTLN Mapping of gap contact state PLOTLN1 Mapping of gap contact state in linear elements PLOUT PLUTON output file PLUTN2 Routine for reading the PLUTON result output file POLATE Interpolating routine used in calc of viscosity coefficient of gas POROST Calc of total porosity in pellet stack elements POWDIS Calc of power distribution PREEPS Setting of boundary condition for calc of initial strain increment

PREPCM Setting the values of coordinate displacement function volume etc at current time step

PRERDT Setting the initial state of updated time-step PRHIS2 Output routine for power history PRINT0 Output of input data of thermal calculation PRINT1 Output of time-dependent variables in thermal analysis PRINT2 Output of time-dependent variables in gap gas state PRINT3 Output of time-dependent temperature distribution PRINT5 Detailed output of time-dependent variables in thermal analysis PRIOPT Output of all the optional parameters PROBD1 Setting of pellet axial force condition PROBDF Judgment of pelletpellet contact state PROBTY Judgment of yieldunloading state

JAEA-DataCode 2013-009

- 291 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

PROFIL Address calculation by profile method PSTPCM Control of the output routine of entire length mechanical analysis PSWELL Pellet swelling strain PTHCON UO2 pellet thermal conductivity PTHEX Pellet thermal expansion PUGH Calc of cladding creep by Pughrsquos reversal method

PX1 partpartξN of linear element in FEM

PX2 partpartξN of the quadric finite element in FEM

PY1 partpartηN of linear element in FEM

PY2 partpartηN of the quadric finite element

RDGAS1 Setting of time step width for gas transfer calculation in the axial direction

RDGAS2 Diffusion and flow transfer of gas in the axial direction RDTEMP Control of entire thermal analysis RDTUPD Routine for updating variables related to thermal analysis

READFM Reading routine from Re-start file in entire rod length mechanical analysis

READFM2 Reading routine from Re-start file in local mechanical analysis READRD Reading routine from Re-start file in thermal analysis REDIS Calc of re-dissolution rate of fission gas atoms to solid phase REDSTR Re-distribution of fission gas density after grain growth of pellet REDTIT Reading of the title sentence

REMESH Re-sizing of the cladding elements by the progress of the waterside corrosion

REMSH2 Re-sizing of the cladding elements by the progress of the waterside corrosion (for ten ring elements)

REPLG Updating of the stress and strain at Gauss points REPLN Updating of the force and displacement at nodal points RIMFGR Calc of additional FGR from rim layer RIMPOR Calc of gas pores in rim structure RMESH Calc of radial coordinate by re-sizing of cladding elements

RMESHB Setting the initial coordinate values of the radial ring element of cladding

RMESHC Calc of the radial coordinate values of cladding in ERL mechanical model

RMESHP Calc of the radial coordinate values of pellet in ERL mechanical model

RODXE Calc of yield of Xe+Kr generation from RODBURN result file

RWPCM Storing and resetting of initial values in the entire length mechanical analysis

SATP Determination of saturation temperature enthalpy and specific volume of saturated water and steam by given pressure

JAEA-DataCode 2013-009

- 292 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

SATT Determination of pressure enthalpy and specific volume of saturated water and steam by given temperature

SAVFM1 Setting of the output variables in local mechanical analysis

SAVFM2 Setting of the plotting output variables in local mechanical analysis

SAVFM3 Setting of the plotting output variables in local mechanical analysis by linear elements

SAVPM1 Setting of the output variables in entire length mechanical analysis

SAVPM2 Setting of the plotting output variables in entire length mechanical analysis

SAVRD1 Setting of the output variables in thermal analysis SAVRD2 Setting of the plotting output variables in thermal analysis SBES0 0-th Bessel function SBES1 Primary Bessel function SCNHAL Calc of cladding surface temperature and heat transfer coefficient SCRITH Calc of coolant critical heat flux SDENS Calc of Na (sodium) density SECOND2 Counting the calculation time (sec) SETR Re-division of FEM elements in grain after grain growth in pellet

SETR0 Setting of initial values of variables in coordinate inside grain of pellet

SETRH0 Setting of initial values of variables in coordinate inside grain of pellet for He diffusion calc

SHAPE1 Linear shape function SHAPE2 Quadratic shape function SHCAP Specific heat of Na SNDPLT Making of the output file for plotting SOLFEM Solution routine of stiffness matrix SOLVE Solver for fission gas atoms diffusion calculation of 3 elements SOLVE2 Solver for fission gas release calculation

SOLVF1 Solution of bonded state of pellet-cladding gap by setting boundary conditions

SOLVF2 Setting of sliding state between pellet and cladding SOLVF3 Setting of bonded state between pellet and cladding

SPROP Calculation of coolant specific heat thermal conductivity and viscosity coefficient

SSMAT Formation of total matrix for each segment STABL Calc of coolant temperature enthalpy specific volume and quality STBLDT Routine to read steam table STBLED Routine to output steam table STBLER Routine to output the error message of steam table STBLNC Setting of steam table caption

JAEA-DataCode 2013-009

- 293 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

STBLPR Determination of index of pressure table in steam table STBLTM Determination of index of temperature table in steam table

STEAM Calc of temperatures enthalpies specific heats and specific volumes of saturated water and steam

STEAMZ Calc of coolant enthalpy and specific volume from temperature and pressure

STHCON Thermal conductivity of Na

STMSI Conversion of quantities calculated by STEAM into SI unit expression

STMZSI Conversion of quantities calculated by STEAMZ into SI unit expression

STRESS Stress strain calculation

STVSH Calc of Na enthalpy from Na temperature or calc of Na temperature from Na enthalpy

SUFCN0 Calc of coolant enthalpy at each axial node

SUFCNA Calc of enthalpy of Na coolant at each axial coordinate

SUFCND Determination of cladding outer surface temperature in dry-out experiment condition

SUFCNH Calc of surface heat transfer coefficient by judging coolant state

SUFCNH2 Determination of cladding outer surface heat transfer coefficient to Na coolant by judging the Na condition

SUFCNS Calc of coolant enthalpy at each axial node at initial state

SUSPRO Materials properties of SUS316 thermal conductivity specific heat and density

TEMP1D One dimensional heat conduction calculation

TEMPIP Setting temperature burnup and pellet density for the calc of local mechanical analysis

TERP04 Routine for linear interpolation of area variables THGAP Calc of gap width at zero-power state THGAP1 Routine to transfer the results of entire length mechanical analysis to

thermal analysis

THGAP2 Setting of the results of entire length mechanical analysis THGAPN Deformation calculation in thermal analysis TIMEB Time step control by pelletpellet contact in the axial direction TIMEG Time step control by pelletclad contact in the radial direction TIMER Main routine for time step control TIMEY Time step control by plasticityunloading TMELT Calc of pellet melting point TMSTP Determination of time step in entire length analysis

TSUR2 Halden empirical equation to determine cladding surface temperature

uffelen _dGasNR Fission gas release rate by Van Uffelen model

JAEA-DataCode 2013-009

- 294 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

UPDPCM Updating of values of entire length mechanical analysis with updating of time step

USMESH Meshing for heat conduction calculation USTEMP Main routine for heat conduction calculation

USTEMP2 Calc of temperature distribution of temperature controlling system of cladding

VLUME0 Calc of plenum volume at zero-power state VLUME2 Calc of plenum space volume in entire length mechanical analysis VLUMES Calc of plenum volume VOID Calc of coolant quality and void fraction

WATER Properties of water and steam thermal conductance thermal conductivity constant pressure specific heat density

WATER0 Properties of water and steam constant pressure specific heat and density

WRITFM Setting routine for initial conditions of the FURBEL code

WRITFM2 Writing output routine for Re-start calc of FEMAXI-7 in 2-D local mechanical analysis

WRITRD Writing output routine for Re-start calc of FEMAXI-7 in thermal analysis

WTMAT Calc of coolant thermal conductivity Prandtle number and viscosity coefficient

WTMAT2 Calc of coolant surface tension WTMAT3 Calc of coolant thermal expansion

WTSAT Calc of coolant saturation temperature specific volume enthalpy and density

WTTMP Calc of temperature-specific volume of water and steam XBDMAT [B]T[D] matrix XBMAT [B] matrix XCHSFT Calculation of stress differential term of cladding yield function

XCREP1 Making the [CC] matrix of cladding creep and Δεc vector XCPEP2 Creep strain rate of claddingε c (MATPRO-09)

XCPEQ2 Calc of )( fc =ε and partpartσ

partpartε

f fc

in cladding creep

XDPMAT [DP] matrix XDPST Calc of equivalent plastic strain increment XDVSIG Deviation stress XELML1 Formation of element matrix and loading vector XELML2 Calc of stress and strain in element XELMP1 Calc of the element matrix and load vector in plenum region XELMP2 Calc of the stress and strain of elements in plenum region XEQEPS Equivalent strain XEQSIG Equivalent stress XESMAT Element stiffness matrix

JAEA-DataCode 2013-009

- 295 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

XFLOAD Element loading vector XIODD Calc of Iodine concentration XPJUMP Initial relocation XPRBTY Judgment of plasticityunloading XPSWEL Pellet swelling strain XPUGH Pughrsquos reversal method for cladding creep

XPURSW Routine controlling the strain change in the time-step of pellet gas bubble swelling calc

ZOEMIS Emissivity of Zirconium oxide layer

JAEA-DataCode 2013-009

- 296 -

A4 Subroutine tree Subroutine tree is described below to show the FEMAXI-7 structure clearly MAIN------SECOND2 |---OPENINPUTFILES |---HEADER----TIME | |--DATE2----DATE_AND_TIME |---INPIMG |---AAZERO----CLEARG | |--CLEARB | |--ICLEAR |---CHKNAME |---INPUT1----PDEN | |--PRINT0 | |--INIDRY----WATER0(4) |---CONTROL---INPGER----HFACT | |--INPR | |--LINSET | |--PLOTLN | |--LINSET1 | |--PLOTLN1 | |--COORDI | |--COORDI1 | |--OUTNOD----OUTND | | |--OUTND3 | |--OUTNOD1---OUTND1 | | |--OUTND4 | |--DELTAN | |--DELTAN1 | |--NCOUPL | |--GPSSET | |--MODSET | |--FPRES2 | |--FPRES1 | |--PRIOPT | |--INPHIS----INPHS | | |--ADBU | | |--ADTM | | |--CDENS-----CDNDT | | |--PRHIS2 | |--INPPLU----PLUTN2----PLOUT | | |--HOKAN1 | | |--HOKAN2 | |--INPROD----ADBU | |--PRHIS2 | |--HOKAN | |--RODXE-----FGPROR |--INISET |--PHIST-----FISRAT | |--ADTM |--RDTEMP(1) |--READFM2 |--FEMAXI(3) |--SAVFM1----OUTPT0----OUTNOD----OUTND | | |--OUTND3

JAEA-DataCode 2013-009

- 297 -

| |--OUTNOD1---OUTND1 | | |--OUTND4 | |--OUTELM----OUTEM | | |--OUTEM2 | |--OUTELM1---OUTEM1 | |--OUTEM3 |--SECOND2 |--SAVFM2----PDATA1 | |--PDATA2 | |--PDATA3 | |--EPTODP | |--PTHEX | |--CTHEX | |--CELMOD |--SAVFM3----PDATA1A | |--PDATA2A | |--PDATA3A | |--EPTODP | |--PTHEX | |--CTHEX | |--CELMOD |--SNDPLT |--ABNDTA----CHKDTA |--WRITFM2 |--OUTPT1----GRAIN |--OUTPT2 |--OUTPT3 (1) RDTEMP----GRAIN |--INIRDT----READRD | |--SETR0 | |--PJUMP-----CELMOD | | |--CPOIR | | |--CTHEX | | |--PTHEX | |--INIGAS | |--FISRAT | |--SETRH0 | |--SUFCNS----WTSAT-----STMSI(5) | |--STMZSI(6) |--HOKAN |--RDGAS1----DIFCON |--PRERDT----STMZSI(6) | |--SDENS | |--SUFCN0----WTSAT-----STMSI(5) | | |--VOID------WTTMP-----STMZSI(6) | | |--STEAMZ(6) | |--STVSH | |--SUFCNA----STVSH | | |--SDENS | |--FISRAT | |--BURNUP | |--FLXDEP----FDISTF----SBES0 | | |--FDIST-----SBES0 | | | |--SBES1 | | |--HOKAN5

JAEA-DataCode 2013-009

- 298 -

| |--FGPRO | |--HOKAN | |--CANEAL | |--TEMP1D----USTEMP----USMESH | |--DRYUPD | |--TSUR2 | |--MATDAT----TMELT | | |--PTHCON | | |--PHCAP | | |--CTHCON | | |--CHCAP | | |--CDENS-----CDNDT | | |--HOKANB | | |--GAPCON----CELMOD | | |--CRN | | |--CYIE | | |--PTHCON | | |--CTHCON | | |--GTHCON | | |--GAPCON_NSR77----GTHCON | | |--GVISCO | | |--FEMISS | | |--ZOEMIS | |----FLMCON | |----POWDIS | |----SUFCNH----SCRITH----WTMAT2 | | |--HTRMOD----WTMAT | | |--WTMAT2 | | |--TERP04 | | |--STMSI | | |--HMOD4 | | |--WTMAT3 | |----SUFCNH2---STHCON | | |--SDENS | | |--SHCAP | |----SUFCND----USTEMP2---MAKEH | |--WATER0(4) | |--DLAX |----THGAPN----PDENS | |--DENSF | |--PTHEX | |--FSWELL | |--CELMOD | |--CPOIR | |--CTHEX | |--FELMOD | |--CRN | |--CYIE | |--CCREEP----CCPEQ1 | | |--CCPEQ2 | | |--CCPEQ8 | | |--CCPEQ9 | | |--CCPEQ4 | | |--CCPEQ5 | | |--CCPEQ7 | | |--CCPEQ3

JAEA-DataCode 2013-009

- 299 -

| |--FCREEP----FCPEQ1 | |--FCPEQ2 | |--FCPEQ4 | |--FCPEQ5 | |--FCPEQ11 | |--FCPEQ15 | |--FCPEQ3 |----THGAP1----PTHEX | |--FSWELL |----SECOND2 |----GAPMOD |----PEXT14 |----FGRELN----MESHP | |--RIMFGR | |--LASSEM | |--FCREEP----FCPEQ1 | | |--FCPEQ2 | | |--FCPEQ4 | | |--FCPEQ5 | | |--FCPEQ11 | | |--FCPEQ15 | | |--FCPEQ3 | |--CANDMT----REDIS | |--DIFC | |--GBCLS | |--BFMAX | |--GRAIN | |--SETR | |--REDSTR | |--INTGH | |--INTGX | |--INTRA3----REDIS | | |--SOLVE | | |--SOLVE2 | | |--INTGX | | |--INTRAB----BBL------BBL2 | | |--ANDIF | | |--NVACAN---NR | | |--AMDIF----REDIS | |--ERFUNC | |--BLR2 | |--FIRSTSTEP----KOGAI_PARAM | | |--CALEQUILIBRBL---CUBIC2 | |--KOGAIMODEL---KOGAI_PARAM | | |--CALEQUILIBRBL---CUBIC2 | | |--UFFELEN_DGASNR | |--GBCONB |----POROST----PDENS | |--DENSF |----HELRLS----CANDMH----SETR | |--INTG | |--INTGH | |--DIFH | |--SOLVE2 | |--INTGX |----VLUMES----HOTVOL----PTHEX | |--CAGROW

JAEA-DataCode 2013-009

- 300 -

|----VLUME2----CAGROW |----RDGAS2----GASFLW----DIFCON |----CLOXD-----CORRO-----CTHCON |----CONV2 |----FEMROD(2) |----THGAP2----PTHEX |----RDTUPD----HEUPD | |--DRYUPD | |--XIODD |----TEMPIP----REMESH2 | |--INTPLT |----SAVRD1----HOKAN |----PRINT1----PRINT2 | |--PRINT3 | |--PRINT5----GRAIN | |--HOKAN |----SAVRD2----HOKAN | |--THGAP-----PTHEX | | |--CELMOD | | |--CPOIR | | |--CTHEX | | |--FELMOD | |--VLUME0----PTHEX |----HBSPRT |----WRITRD |----FEMRDS----FISRAT |--FEMROD(2) |--THGAP2----PTHEX (2) FEMROD------INIFEM----READFM | |--RWPCM | |--RMESH-----RMESHP | |--RMESHC | |--RMESHB----RMESHP | |--RMESHC |----RWPCM |----TMSTP |----PREPCM----XBMAT |----MDEPSP----CTHEX | |--CAGROW |----PREEPS |----MDEPS0----PDENS | |--DENSF | |--XPSWEL----XPURSW | |--XPJUMP----CELMOD | | |--CPOIR | | |--CTHEX | | |--PTHEX | |--PTHEX | |--CTHEX | |--CAGROW |----MATDEF----DEFBET |----XELMP1----XEQSIG | |--CMAT2-----CELMOD | | |--CPOIR | |--XCREP1(7)

JAEA-DataCode 2013-009

- 301 -

| |--INV3 | |--XBDMAT | |--XESMAT |----XELML1----XEQSIG | |--CMAT1-----FELMOD | | |--FPOIR | |--XCREP1(7) | |--CMAT2-----CELMOD | | |--CPOIR | |--INV3 | |--XDPMAT----XEQSIG | | |--FHSOFT | | |--FTSOFT | | |--CHSOFT----CELMOD | | | |--CYIE | | | |--CRN | | |--EQSCAL----FX | | |--DFX | | |--CTSOFT----CELMOD | | | |--CYIE | | | |--CRN | | | |--CLDKDT | | | |--CDNDT | | | |--CDEDT | | |--EQSCAL----FX | | |--DFX | | |--XDVSIG | |--BUFSTF | |--XBDMAT | |--XESMAT | |--XFLOAD |----SSMAT |----DFPLT |----DFCLAD |----DFCLAD2 |----CONSTF----ADRESS | |--CONSTR | |--SOLVF1----OPTSOL | |--SOLVF2----OPTSO2 | |--SOLVF3----OPTSOL | |--ADRESP | |--CONST1 |----SOLFEM----OPTSOL | |--OPTSO2 | |--CNSTR |----XELMP2----MDSIG | |--XEQSIG | |--XCREP2(8) |----XELML2----MDSIG | |--XDPST-----XEQSIG | | |--XDVSIG | | |--FHSOFT | | |--FTSOFT | | |--CHSOFT----CELMOD | | | |--CYIE | | | |--CRN | | |--EQSCAL----FX

JAEA-DataCode 2013-009

- 302 -

| | |--DFX | | |--CTSOFT----CELMOD | | |--CYIE | | |--CRN | | |--CLDKDT | | |--CDNDT | | |--CDEDT | | |--EQSCAL----FX | | |--DFX | |--XEQSIG | |--XPRBTY----FYIE | | |--CYIE2-----CELMOD | | |--CYIE | | |--CRN | | |--EQSCAL----FX | | |--DFX | |--XCREP2(8) |----JUDGFS----PFRFZ |----JUDGE |----SECOND2 |----UPDPCM |----REMESH |----OUTP2 |----PSTPCM----CFRFZ | |--PLFZ | |--OUTP1-----OUTP | |--SAVPM1 | |--OUTP2 | |--SAVPM2----EPTODP | |--PTHEX | |--CTHEX | |--CELMOD |----WRITFM (3) FEMAXI------INISTR----PDENS | |--DENSF | |--PSWELL | |--PTHEX | |--PJUMP-----CELMOD | | |--CPOIR | | |--CTHEX | | |--PTHEX | |--CTHEX | |--CAGROW | |--CELMOD |----GPSSET |----PROFIL |----FORCE |----ELMLP1----LOCALI----CLEARG | |--SHAPE1----JACK1-----PX1 | | | |--PY1 | | |--P1 | | |--PX1 | | |--PY1 | |--SHAPE2----JACK2-----PX2 | | | |--PY2

JAEA-DataCode 2013-009

- 303 -

| | |--P2 | | |--PX2 | | |--PY2 | |--GAULP1----CLEARB | | |--BMAT | | |--INIMAT----CMAT------FELMOD | | | |--FPOIR | | | |--CELMOD | | | |--CPOIR | | |--CREEP1----EQISIG | | | |--DEVSIG | | | |--FCPEQ1 | | | |--FCPEQ2 | | | |--FCPEQ4 | | | |--FCPEQ5 | | | |--FCPEQ11 | | | |--FCPEQ15 | | | |--FCPEQ3 | | | |--CCPEQ1 | | | |--CCPEQ2 | | | |--CCPEQ8 | | | |--CCPEQ9 | | | |--CCPEQ4 | | | |--CCPEQ5 | | | |--CCPEQ7 | | | |--CCPEQ3 | | |--INVERS | | |--DPMAT-----EQISIG | | | |--FHSOFT | | | |--FTSOFT | | | |--CHSOFT----CELMOD | | | | |--CYIE | | | | |--CRN | | | | |--EQSCAL----FX | | | | |--DFX | | | |--CTSOFT----CELMOD | | | | |--CYIE | | | | |--CRN | | | | |--CLDKDT | | | | |--CDNDT | | | | |--CDEDT | | | | |--EQSCAL----FX | | | | |--DFX | | | |--DEVSIG | | |--BDMAT | | |--ESMAT | | |--FLOAD | |--COLECT |----MODIFY |----GAPELN----OPTSO2 |----ELMLP2----LOCALI----CLEARG | |--GAULP2----CLEARB | | |--BMAT | | |--STRESS | | |--EQISIG | | |--DPST------DEVSIG | | | |--FHSOFT

JAEA-DataCode 2013-009

- 304 -

| | | |--FTSOFT | | | |--CHSOFT----CELMOD | | | | |--CYIE | | | | |--CRN | | | | |--EQSCAL----FX | | | | |--DFX | | | |--CTSOFT----CELMOD | | | |--CYIE | | | |--CRN | | | |--CLDKDT | | | |--CDNDT | | | |--CDEDT | | | |--EQSCAL----FX | | | |--DFX | | |--CREEP2----EQISIG | | | |--DEVSIG | | | |--FCPEQ1 | | | |--FCPEQ2 | | | |--FCPEQ4 | | | |--FCPEQ5 | | | |--FCPEQ11 | | | |--FCPEQ15 | | | |--FCPEQ3 | | | |--CCPEQ1 | | | |--CCPEQ2 | | | |--CCPEQ8 | | | |--CCPEQ9 | | | |--CCPEQ4 | | | |--CCPEQ5 | | | |--CCPEQ7 | | | |--CCPEQ3 | | |--CRACK | | |--PROBTY----FYIE | | | |--CYIE2-----CELMOD | | | |--CYIE | | | |--CRN | | | |--EQSCAL----FX | | | |--DFX | | |--FYIE | | |--CYIE2-----CELMOD | | | |--CYIE | | | |--CRN | | | |--EQSCAL----FX | | | |--DFX | | |--BOUNDF | |--CLBDF |----PROBDF |----PROBD1 |----TIMER-----TIMEG | |--TIMEB | |--TIMEY |----EQISIG |----SECOND2 |----REPLN |----REPLG-----LOCALI----CLEARG | |--CRACK | |--EQISIG

JAEA-DataCode 2013-009

- 305 -

|----CPUGH-----LOCALI----CLEARG |--PUGH------EQIEPS |--DOT (4) WATER0------WTSAT----STMSI(5) |--WTMAT |--FCP-------STBLPR----STBLDT | | |--STBLER | |--STBLTM----STBLER |--STMZSI(6) (5) STMSI-------STEAM----SATT------STBLDT | |--STBLER |--FCP-------STBLPR----STBLDT | | |--STBLER | |--STBLTM----STBLER |--SATP------STBLTS----STBLDT | |--STBLER |--WTMAT (6) STMZSI----STEAMZ-----SATP------STBLTS----STBLDT | |--STBLER |--STMPT------STBLER |--STBLTS----STBLDT | |--STBLER |--STBLTM----STBLER (7) XCREP1------XEQSIG |----XDVSIG |----FCPEQ1 |----FCPEQ2 |----FCPEQ4 |----FCPEQ5 |----FCPEQ11 |----FCPEQ15 |----FCPEQ3 |----CCPEQ1 |----CCPEQ2 |----CCPEQ8 |----CCPEQ9 |----CCPEQ4 |----CCPEQ5 |----CCPEQ7 |----CCPEQ3 (8) XCREP2------XEQSIG |----XDVSIG |----FCPEQ1 |----FCPEQ2 |----FCPEQ4 |----FCPEQ5 |----FCPEQ11

JAEA-DataCode 2013-009

- 306 -

|----FCPEQ15 |----FCPEQ3 |----CCPEQ1 |----CCPEQ2 |----CCPEQ8 |----CCPEQ9 |----CCPEQ4 |----CCPEQ5 |----CCPEQ7 |----CCPEQ3

国際単位系(SI)

乗数  接頭語 記号 乗数  接頭語 記号

1024 ヨ タ Y 10-1 デ シ d1021 ゼ タ Z 10-2 セ ン チ c1018 エ ク サ E 10-3 ミ リ m1015 ペ タ P 10-6 マイクロ micro1012 テ ラ T 10-9 ナ ノ n109 ギ ガ G 10-12 ピ コ p106 メ ガ M 10-15 フェムト f103 キ ロ k 10-18 ア ト a102 ヘ ク ト h 10-21 ゼ プ ト z101 デ カ da 10-24 ヨ ク ト y

表5SI 接頭語

名称 記号 SI 単位による値

分 min 1 min=60s時 h 1h =60 min=3600 s日 d 1 d=24 h=86 400 s度 deg 1deg=(π180) rad分 rsquo 1rsquo=(160)deg=(π10800) rad秒 rdquo 1rdquo=(160)rsquo=(π648000) rad

ヘクタール ha 1ha=1hm2=104m2

リットル Ll 1L=11=1dm3=103cm3=10-3m3

トン t 1t=103 kg

表6SIに属さないがSIと併用される単位

名称 記号 SI 単位で表される数値

電 子 ボ ル ト eV 1eV=1602 176 53(14)times10-19Jダ ル ト ン Da 1Da=1660 538 86(28)times10-27kg統一原子質量単位 u 1u=1 Da天 文 単 位 ua 1ua=1495 978 706 91(6)times1011m

表7SIに属さないがSIと併用される単位でSI単位で表される数値が実験的に得られるもの

名称 記号 SI 単位で表される数値

キ ュ リ ー Ci 1 Ci=37times1010Bqレ ン ト ゲ ン R 1 R = 258times10-4Ckgラ ド rad 1 rad=1cGy=10-2Gyレ ム rem 1 rem=1 cSv=10-2Svガ ン マ γ 1γ=1 nT=10-9Tフ ェ ル ミ 1フェルミ=1 fm=10-15mメートル系カラット 1メートル系カラット = 200 mg = 2times10-4kgト ル Torr 1 Torr = (101 325760) Pa標 準 大 気 圧 atm 1 atm = 101 325 Pa

1cal=41858J(「15」カロリー)41868J(「IT」カロリー)4184J(「熱化学」カロリー)

ミ ク ロ ン micro 1 micro =1microm=10-6m

表10SIに属さないその他の単位の例

カ ロ リ ー cal

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できるしかし接頭語を付した単位はもはや コヒーレントではない(b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で量についての情報をつたえるために使われる

 実際には使用する時には記号rad及びsrが用いられるが習慣として組立単位としての記号である数字の1は明 示されない(c)測光学ではステラジアンという名称と記号srを単位の表し方の中にそのまま維持している

(d)ヘルツは周期現象についてのみベクレルは放射性核種の統計的過程についてのみ使用される

(e)セルシウス度はケルビンの特別な名称でセルシウス温度を表すために使用されるセルシウス度とケルビンの

  単位の大きさは同一であるしたがって温度差や温度間隔を表す数値はどちらの単位で表しても同じである

(f)放射性核種の放射能(activity referred to a radionuclide)はしばしば誤った用語でrdquoradioactivityrdquoと記される

(g)単位シーベルト(PV200270205)についてはCIPM勧告2(CI-2002)を参照

(a)量濃度(amount concentration)は臨床化学の分野では物質濃度

  (substance concentration)ともよばれる(b)これらは無次元量あるいは次元1をもつ量であるがそのこと   を表す単位記号である数字の1は通常は表記しない

名称 記号SI 基本単位による

表し方

秒ルカスパ度粘 Pa s m-1 kg s-1

力 の モ ー メ ン ト ニュートンメートル N m m2 kg s-2

表 面 張 力 ニュートン毎メートル Nm kg s-2

角 速 度 ラジアン毎秒 rads m m-1 s-1=s-1

角 加 速 度 ラジアン毎秒毎秒 rads2 m m-1 s-2=s-2

熱 流 密 度 放 射 照 度 ワット毎平方メートル Wm2 kg s-3

熱 容 量 エ ン ト ロ ピ ー ジュール毎ケルビン JK m2 kg s-2 K-1

比熱容量比エントロピー ジュール毎キログラム毎ケルビン J(kg K) m2 s-2 K-1

比 エ ネ ル ギ ー ジュール毎キログラム Jkg m2 s-2

熱 伝 導 率 ワット毎メートル毎ケルビン W(m K) m kg s-3 K-1

体 積 エ ネ ル ギ ー ジュール毎立方メートル Jm3 m-1 kg s-2

電 界 の 強 さ ボルト毎メートル Vm m kg s-3 A-1

電 荷 密 度 クーロン毎立方メートル Cm3 m-3 sA表 面 電 荷 クーロン毎平方メートル Cm2 m-2 sA電 束 密 度 電 気 変 位 クーロン毎平方メートル Cm2 m-2 sA誘 電 率 ファラド毎メートル Fm m-3 kg-1 s4 A2

透 磁 率 ヘンリー毎メートル Hm m kg s-2 A-2

モ ル エ ネ ル ギ ー ジュール毎モル Jmol m2 kg s-2 mol-1

モルエントロピー モル熱容量ジュール毎モル毎ケルビン J(mol K) m2 kg s-2 K-1 mol-1

照射線量(X線及びγ線) クーロン毎キログラム Ckg kg-1 sA吸 収 線 量 率 グレイ毎秒 Gys m2 s-3

放 射 強 度 ワット毎ステラジアン Wsr m4 m-2 kg s-3=m2 kg s-3

放 射 輝 度 ワット毎平方メートル毎ステラジアン W(m2 sr) m2 m-2 kg s-3=kg s-3

酵 素 活 性 濃 度 カタール毎立方メートル katm3 m-3 s-1 mol

表4単位の中に固有の名称と記号を含むSI組立単位の例

組立量SI 組立単位

名称 記号

面 積 平方メートル m2

体 積 立法メートル m3

速 さ 速 度 メートル毎秒 ms加 速 度 メートル毎秒毎秒 ms2

波 数 毎メートル m-1

密 度 質 量 密 度 キログラム毎立方メートル kgm3

面 積 密 度 キログラム毎平方メートル kgm2

比 体 積 立方メートル毎キログラム m3kg電 流 密 度 アンペア毎平方メートル Am2

磁 界 の 強 さ アンペア毎メートル Am量 濃 度 (a) 濃 度 モル毎立方メートル molm3

質 量 濃 度 キログラム毎立法メートル kgm3

輝 度 カンデラ毎平方メートル cdm2

屈 折 率 (b) (数字の) 1 1比 透 磁 率 (b) (数字の) 1 1

組立量SI 基本単位

表2基本単位を用いて表されるSI組立単位の例

名称 記号他のSI単位による

表し方SI基本単位による

表し方平 面 角 ラジアン(b) rad 1(b) mm立 体 角 ステラジアン(b) sr(c) 1(b) m2m2

周 波 数 ヘルツ(d) Hz s-1

ントーュニ力 N m kg s-2

圧 力 応 力 パスカル Pa Nm2 m-1 kg s-2

エ ネ ル ギ ー 仕 事 熱 量 ジュール J N m m2 kg s-2

仕 事 率 工 率 放 射 束 ワット W Js m2 kg s-3

電 荷 電 気 量 クーロン A sC電 位 差 ( 電 圧 ) 起 電 力 ボルト V WA m2 kg s-3 A-1

静 電 容 量 ファラド F CV m-2 kg-1 s4 A2

電 気 抵 抗 オーム Ω VA m2 kg s-3 A-2

コ ン ダ ク タ ン ス ジーメンス S AV m-2 kg-1 s3 A2

バーエウ束磁 Wb Vs m2 kg s-2 A-1

磁 束 密 度 テスラ T Wbm2 kg s-2 A-1

イ ン ダ ク タ ン ス ヘンリー H WbA m2 kg s-2 A-2

セ ル シ ウ ス 温 度 セルシウス度(e) Kンメール束光 lm cd sr(c) cd

スクル度照 lx lmm2 m-2 cd放射性核種の放射能( f ) ベクレル(d) Bq s-1

吸収線量 比エネルギー分与カーマ

グレイ Gy Jkg m2 s-2

線量当量 周辺線量当量 方向

性線量当量 個人線量当量シーベルト(g) Sv Jkg m2 s-2

酸 素 活 性 カタール kat s-1 mol

表3固有の名称と記号で表されるSI組立単位SI 組立単位

組立量

名称 記号 SI 単位で表される数値

バ ー ル bar 1bar=01MPa=100kPa=105Pa水銀柱ミリメートル mmHg 1mmHg=133322Paオングストローム Å 1Å=01nm=100pm=10-10m海 里 M 1M=1852mバ ー ン b 1b=100fm2=(10-12cm)2=10-28m2

ノ ッ ト kn 1kn=(18523600)msネ ー パ Npベ ル B

デ ジ ベ ル dB

表8SIに属さないがSIと併用されるその他の単位

SI単位との数値的な関係は    対数量の定義に依存

名称 記号

長 さ メ ー ト ル m質 量 キログラム kg時 間 秒 s電 流 ア ン ペ ア A熱力学温度 ケ ル ビ ン K物 質 量 モ ル mol光 度 カ ン デ ラ cd

基本量SI 基本単位

表1SI 基本単位

名称 記号 SI 単位で表される数値

エ ル グ erg 1 erg=10-7 Jダ イ ン dyn 1 dyn=10-5Nポ ア ズ P 1 P=1 dyn s cm-2=01Pa sス ト ー ク ス St 1 St =1cm2 s-1=10-4m2 s-1

ス チ ル ブ sb 1 sb =1cd cm-2=104cd m-2

フ ォ ト ph 1 ph=1cd sr cm-2 104lxガ ル Gal 1 Gal =1cm s-2=10-2ms-2

マ ク ス ウ ェ ル Mx 1 Mx = 1G cm2=10-8Wbガ ウ ス G 1 G =1Mx cm-2 =10-4Tエルステッド( c ) Oe 1 Oe  (1034π)A m-1

表9固有の名称をもつCGS組立単位

(c)3元系のCGS単位系とSIでは直接比較できないため等号「   」

   は対応関係を示すものである

(第8版2006年改訂)

この印刷物は再生紙を使用しています

  • Man-0_Title_Contents
  • Man-1_2_3_File System
    • CFem7
    • CFem7
      • Man-4_FEMAXI_Inp Manual
        • Fixed format input (2)
        • Fixed format input (3)
        • 43 Name-list Input (1)
        • Name-list Input (2)
        • Name-list Input (3)
        • 【Note 1】The message ldquoDIMENSION AREA OVER FLOW LTSM =xxxxx LD =4000000rdquo is output and the program execution is terminated when LTSMgtLD To avoid this it is necessary to designate LD by name-list input to make LDgtLTSM At the same time ldquo4000000rdquo i
        • 【Note 2】The message ldquoDIMENSION AREA OVER FLOW LASI=xxxxx LID =500000rdquo is output and the program execution is terminated when LASIgtLID To avoid this it is necessary to designate LID by name-list input to make LIDgtLASI At the same time ldquo5000000rdquo
        • Name-list Input (9)
        • Name-list Input (11)
        • Name-list Input (12)
        • Name-list Input (13)
        • Name-list Input (14)
        • Name-list Input (15)
        • Name-list Input (16)
        • Name-list Input  (17)
        • Name-list Input (18)
        • Name-list Input (19)
        • Name-list Input (21)
        • Name-list Input (22)
        • Name-list Input (23)
        • Name-list Input (24)
        • Name-list Input (25)
        • Name-list Input (26)
        • Name-list Input (27)
        • [Note] Explanation of absorptionrelease model of Helium in UO2
        • and MOX fuels
        • Name-list Input (28)
        • Name-list Input (29)
        • Name-list Input (30)
        • Name-list Input (31)
        • Name-list Input (32)
        • Name-list Input (33)
        • Name-list Input (34)
        • Name-list Input (35) Parameters for Ohta model
        • Name-list Input (36)
        • Name-list Input (37)
        • Name-list Input (38)
        • Name-list Input (40)
        • Name-list Input (41)
        • Name-list Input (42)
        • Name-list Input (43)
        • Name-list Input (44)
        • Name-list Input (45)
          • 45 Calculated physical quantities in ZERO power state
            • -FORMAT (6F 100 2I5)
            • Example of input (1)
            • 2
            • Example of input (2)
            • 21
            • 10
            • 30
            • STOP
              • 47 Setting of cladding outer surface temperature
                  • Man-5_RB_Input Manual
                    • 1 Resonance Integral in each mesh
                    • 2 RABBLE
                    • ORIGEN rarr PWR amp BWR
                      • Man-6_Plot_manual
                        • C2
                        • C2
                        • C2
                        • C2
                        • C3
                        • C4
                          • Man-7_Sample_IO
                          • Man-8_Matpro_modify
                          • App1_2_Title_IDNO
                          • App3_Sub_List
                            • A3  Subroutine list
                              • App4_Sub_Tree
                                • MAIN------SECOND2
                                • |---OPENINPUTFILES
                                • |---HEADER----TIME
                                • | |--DATE2----DATE_AND_TIME
                                • |---INPIMG
                                • |---AAZERO----CLEARG
                                • | |--CLEARB
                                • | |--ICLEAR
                                • |---CHKNAME
                                • |---INPUT1----PDEN
                                • | |--PRINT0
                                • | |--INIDRY----WATER0(4)
                                • |---CONTROL---INPGER----HFACT
                                • | |--INPR
                                • | |--LINSET
                                • | |--PLOTLN
                                • | |--LINSET1
                                • | |--PLOTLN1
                                • | |--COORDI
                                • | |--COORDI1
                                • | |--OUTNOD----OUTND
                                • | | |--OUTND3
                                • | |--OUTNOD1---OUTND1
                                • | | |--OUTND4
                                • | |--DELTAN
                                • | |--DELTAN1
                                • | |--NCOUPL
                                • | |--GPSSET
                                • | |--MODSET
                                • | |--FPRES2
                                • | |--FPRES1
                                • | |--PRIOPT
                                • | |--INPHIS----INPHS
                                • | | |--ADBU
                                • | | |--ADTM
                                • | | |--CDENS-----CDNDT
                                • | | |--PRHIS2
                                • | |--INPPLU----PLUTN2----PLOUT
                                • | | |--HOKAN1
                                • | | |--HOKAN2
                                • | |--INPROD----ADBU
                                • | |--PRHIS2
                                • | |--HOKAN
                                • | |--RODXE-----FGPROR
                                • |--INISET
                                • |--PHIST-----FISRAT
                                • | |--ADTM
                                • |--RDTEMP(1)
                                • |--READFM2
                                • |--FEMAXI(3)
                                • |--SAVFM1----OUTPT0----OUTNOD----OUTND
                                • | | |--OUTND3
                                • | |--OUTNOD1---OUTND1
                                • | | |--OUTND4
                                • | |--OUTELM----OUTEM
                                • | | |--OUTEM2
                                • | |--OUTELM1---OUTEM1
                                • | |--OUTEM3
                                • |--SECOND2
                                • |--SAVFM2----PDATA1
                                • | |--PDATA2
                                • | |--PDATA3
                                • | |--EPTODP
                                • | |--PTHEX
                                • | |--CTHEX
                                • | |--CELMOD
                                • |--SAVFM3----PDATA1A
                                • | |--PDATA2A
                                • | |--PDATA3A
                                • | |--EPTODP
                                • | |--PTHEX
                                • | |--CTHEX
                                • | |--CELMOD
                                • |--SNDPLT
                                • |--ABNDTA----CHKDTA
                                • |--WRITFM2
                                • |--OUTPT1----GRAIN
                                • |--OUTPT2
                                • |--OUTPT3
                                • (1) RDTEMP----GRAIN
                                • |--INIRDT----READRD
                                • | |--SETR0
                                • | |--PJUMP-----CELMOD
                                • | | |--CPOIR
                                • | | |--CTHEX
                                • | | |--PTHEX
                                • | |--INIGAS
                                • | |--FISRAT
                                • | |--SETRH0
                                • | |--SUFCNS----WTSAT-----STMSI(5)
                                • | |--STMZSI(6)
                                • |--HOKAN
                                • |--RDGAS1----DIFCON
                                • |--PRERDT----STMZSI(6)
                                • |     |--SDENS
                                • | |--SUFCN0----WTSAT-----STMSI(5)
                                • | | |--VOID------WTTMP-----STMZSI(6)
                                • | | |--STEAMZ(6)
                                • | |--STVSH
                                • | |--SUFCNA----STVSH
                                • | | |--SDENS
                                • | |--FISRAT
                                • | |--BURNUP
                                • | |--FLXDEP----FDISTF----SBES0
                                • | | |--FDIST-----SBES0
                                • | | | |--SBES1
                                • | | |--HOKAN5
                                • | |--FGPRO
                                • | |--HOKAN
                                • | |--CANEAL
                                • |
                                • |--TEMP1D----USTEMP----USMESH
                                • | |--DRYUPD
                                • | |--TSUR2
                                • | |--MATDAT----TMELT
                                • | | |--PTHCON
                                • | | |--PHCAP
                                • | | |--CTHCON
                                • | | |--CHCAP
                                • | | |--CDENS-----CDNDT
                                • | | |--HOKANB
                                • | | |--GAPCON----CELMOD
                                • | | |--CRN
                                • | | |--CYIE
                                • | | |--PTHCON
                                • | | |--CTHCON
                                • | | |--GTHCON
                                • | | |--GAPCON_NSR77----GTHCON
                                • | | |--GVISCO
                                • | | |--FEMISS
                                • | | |--ZOEMIS
                                • | |----FLMCON
                                • | |----POWDIS
                                • | |----SUFCNH----SCRITH----WTMAT2
                                • | | |--HTRMOD----WTMAT
                                • | | |--WTMAT2
                                • | | |--TERP04
                                • | | |--STMSI
                                • | | |--HMOD4
                                • | | |--WTMAT3
                                • | |----SUFCNH2---STHCON
                                • | | |--SDENS
                                • | | |--SHCAP
                                • | |----SUFCND----USTEMP2---MAKEH
                                • | |--WATER0(4)
                                • | |--DLAX
                                • |----THGAPN----PDENS
                                • | |--DENSF
                                • | |--PTHEX
                                • | |--FSWELL
                                • | |--CELMOD
                                • | |--CPOIR
                                • | |--CTHEX
                                • | |--FELMOD
                                • | |--CRN
                                • | |--CYIE
                                • | |--CCREEP----CCPEQ1
                                • | | |--CCPEQ2
                                • | | |--CCPEQ8
                                • | | |--CCPEQ9
                                • | | |--CCPEQ4
                                • | | |--CCPEQ5
                                • | | |--CCPEQ7
                                • | | |--CCPEQ3
                                • | |--FCREEP----FCPEQ1
                                • | |--FCPEQ2
                                • | |--FCPEQ4
                                • | |--FCPEQ5
                                • | |--FCPEQ11
                                • | |--FCPEQ15
                                • | |--FCPEQ3
                                • |----THGAP1----PTHEX
                                • | |--FSWELL
                                • |----SECOND2
                                • |----GAPMOD
                                • |----PEXT14
                                • |----FGRELN----MESHP
                                • | |--RIMFGR
                                • | |--LASSEM
                                • | |--FCREEP----FCPEQ1
                                • | | |--FCPEQ2
                                • | | |--FCPEQ4
                                • | | |--FCPEQ5
                                • | | |--FCPEQ11
                                • | | |--FCPEQ15
                                • | | |--FCPEQ3
                                • | |--CANDMT----REDIS
                                • | |--DIFC
                                • | |--GBCLS
                                • | |--BFMAX
                                • | |--GRAIN
                                • | |--SETR
                                • | |--REDSTR
                                • | |--INTGH
                                • | |--INTGX
                                • | |--INTRA3----REDIS
                                • | | |--SOLVE
                                • | | |--SOLVE2
                                • | | |--INTGX
                                • | | |--INTRAB----BBL------BBL2
                                • | | |--ANDIF
                                • | | |--NVACAN---NR
                                • | | |--AMDIF----REDIS
                                • | |--ERFUNC
                                • | |--BLR2
                                • | |--FIRSTSTEP----KOGAI_PARAM
                                • | | |--CALEQUILIBRBL---CUBIC2
                                • | |--KOGAIMODEL---KOGAI_PARAM
                                • | | |--CALEQUILIBRBL---CUBIC2
                                • | | |--UFFELEN_DGASNR
                                • | |--GBCONB
                                • |----POROST----PDENS
                                • | |--DENSF
                                • |----HELRLS----CANDMH----SETR
                                • | |--INTG
                                • | |--INTGH
                                • | |--DIFH
                                • | |--SOLVE2
                                • | |--INTGX
                                • |----VLUMES----HOTVOL----PTHEX
                                • | |--CAGROW
                                • |----VLUME2----CAGROW
                                • |----RDGAS2----GASFLW----DIFCON
                                • |----CLOXD-----CORRO-----CTHCON
                                • |----CONV2
                                • |----FEMROD(2)
                                • |----THGAP2----PTHEX
                                • |----RDTUPD----HEUPD
                                • | |--DRYUPD
                                • | |--XIODD
                                • |----TEMPIP----REMESH2
                                • | |--INTPLT
                                • |----SAVRD1----HOKAN
                                • |----PRINT1----PRINT2
                                • | |--PRINT3
                                • | |--PRINT5----GRAIN
                                • | |--HOKAN
                                • |----SAVRD2----HOKAN
                                • | |--THGAP-----PTHEX
                                • | | |--CELMOD
                                • | | |--CPOIR
                                • | | |--CTHEX
                                • | | |--FELMOD
                                • | |--VLUME0----PTHEX
                                • |----HBSPRT
                                • |----WRITRD
                                • |----FEMRDS----FISRAT
                                • |--FEMROD(2)
                                • |--THGAP2----PTHEX
                                • (2) FEMROD------INIFEM----READFM
                                • | |--RWPCM
                                • | |--RMESH-----RMESHP
                                • | |--RMESHC
                                • | |--RMESHB----RMESHP
                                • | |--RMESHC
                                • |----RWPCM
                                • |----TMSTP
                                • |----PREPCM----XBMAT
                                • |----MDEPSP----CTHEX
                                • | |--CAGROW
                                • |----PREEPS
                                • |----MDEPS0----PDENS
                                • | |--DENSF
                                • | |--XPSWEL----XPURSW
                                • | |--XPJUMP----CELMOD
                                • | | |--CPOIR
                                • | | |--CTHEX
                                • | | |--PTHEX
                                • | |--PTHEX
                                • | |--CTHEX
                                • | |--CAGROW
                                • |----MATDEF----DEFBET
                                • |----XELMP1----XEQSIG
                                • | |--CMAT2-----CELMOD
                                • | | |--CPOIR
                                • | |--XCREP1(7)
                                • | |--INV3
                                • | |--XBDMAT
                                • | |--XESMAT
                                • |----XELML1----XEQSIG
                                • | |--CMAT1-----FELMOD
                                • | | |--FPOIR
                                • | |--XCREP1(7)
                                • | |--CMAT2-----CELMOD
                                • | | |--CPOIR
                                • | |--INV3
                                • | |--XDPMAT----XEQSIG
                                • | | |--FHSOFT
                                • | | |--FTSOFT
                                • | | |--CHSOFT----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | | |--CTSOFT----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | | |--CLDKDT
                                • | | | |--CDNDT
                                • | | | |--CDEDT
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | | |--XDVSIG
                                • | |--BUFSTF
                                • | |--XBDMAT
                                • | |--XESMAT
                                • | |--XFLOAD
                                • |----SSMAT
                                • |----DFPLT
                                • |----DFCLAD
                                • |----DFCLAD2
                                • |----CONSTF----ADRESS
                                • | |--CONSTR
                                • | |--SOLVF1----OPTSOL
                                • | |--SOLVF2----OPTSO2
                                • | |--SOLVF3----OPTSOL
                                • | |--ADRESP
                                • | |--CONST1
                                • |----SOLFEM----OPTSOL
                                • | |--OPTSO2
                                • | |--CNSTR
                                • |----XELMP2----MDSIG
                                • | |--XEQSIG
                                • | |--XCREP2(8)
                                • |----XELML2----MDSIG
                                • | |--XDPST-----XEQSIG
                                • | | |--XDVSIG
                                • | | |--FHSOFT
                                • | | |--FTSOFT
                                • | | |--CHSOFT----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | | |--CTSOFT----CELMOD
                                • | | |--CYIE
                                • | | |--CRN
                                • | | |--CLDKDT
                                • | | |--CDNDT
                                • | | |--CDEDT
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | |--XEQSIG
                                • | |--XPRBTY----FYIE
                                • | | |--CYIE2-----CELMOD
                                • | | |--CYIE
                                • | | |--CRN
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | |--XCREP2(8)
                                • |----JUDGFS----PFRFZ
                                • |----JUDGE
                                • |----SECOND2
                                • |----UPDPCM
                                • |----REMESH
                                • |----OUTP2
                                • |----PSTPCM----CFRFZ
                                • | |--PLFZ
                                • | |--OUTP1-----OUTP
                                • | |--SAVPM1
                                • | |--OUTP2
                                • | |--SAVPM2----EPTODP
                                • | |--PTHEX
                                • | |--CTHEX
                                • | |--CELMOD
                                • |----WRITFM
                                • (3) FEMAXI------INISTR----PDENS
                                • | |--DENSF
                                • | |--PSWELL
                                • | |--PTHEX
                                • | |--PJUMP-----CELMOD
                                • | | |--CPOIR
                                • | | |--CTHEX
                                • | | |--PTHEX
                                • | |--CTHEX
                                • | |--CAGROW
                                • | |--CELMOD
                                • |----GPSSET
                                • |----PROFIL
                                • |----FORCE
                                • |----ELMLP1----LOCALI----CLEARG
                                • | |--SHAPE1----JACK1-----PX1
                                • | | | |--PY1
                                • | | |--P1
                                • | | |--PX1
                                • | | |--PY1
                                • | |--SHAPE2----JACK2-----PX2
                                • | | | |--PY2
                                • | | |--P2
                                • | | |--PX2
                                • | | |--PY2
                                • | |--GAULP1----CLEARB
                                • | | |--BMAT
                                • | | |--INIMAT----CMAT------FELMOD
                                • | | | |--FPOIR
                                • | | | |--CELMOD
                                • | | | |--CPOIR
                                • | | |--CREEP1----EQISIG
                                • | | | |--DEVSIG
                                • | | | |--FCPEQ1
                                • | | | |--FCPEQ2
                                • | | | |--FCPEQ4
                                • | | | |--FCPEQ5
                                • | | | |--FCPEQ11
                                • | | | |--FCPEQ15
                                • | | | |--FCPEQ3
                                • | | | |--CCPEQ1
                                • | | | |--CCPEQ2
                                • | | | |--CCPEQ8
                                • | | | |--CCPEQ9
                                • | | | |--CCPEQ4
                                • | | | |--CCPEQ5
                                • | | | |--CCPEQ7
                                • | | | |--CCPEQ3
                                • | | |--INVERS
                                • | | |--DPMAT-----EQISIG
                                • | | | |--FHSOFT
                                • | | | |--FTSOFT
                                • | | | |--CHSOFT----CELMOD
                                • | | | | |--CYIE
                                • | | | | |--CRN
                                • | | | | |--EQSCAL----FX
                                • | | | | |--DFX
                                • | | | |--CTSOFT----CELMOD
                                • | | | | |--CYIE
                                • | | | | |--CRN
                                • | | | | |--CLDKDT
                                • | | | | |--CDNDT
                                • | | | | |--CDEDT
                                • | | | | |--EQSCAL----FX
                                • | | | | |--DFX
                                • | | | |--DEVSIG
                                • | | |--BDMAT
                                • | | |--ESMAT
                                • | | |--FLOAD
                                • | |--COLECT
                                • |----MODIFY
                                • |----GAPELN----OPTSO2
                                • |----ELMLP2----LOCALI----CLEARG
                                • | |--GAULP2----CLEARB
                                • | | |--BMAT
                                • | | |--STRESS
                                • | | |--EQISIG
                                • | | |--DPST------DEVSIG
                                • | | | |--FHSOFT
                                • | | | |--FTSOFT
                                • | | | |--CHSOFT----CELMOD
                                • | | | | |--CYIE
                                • | | | | |--CRN
                                • | | | | |--EQSCAL----FX
                                • | | | | |--DFX
                                • | | | |--CTSOFT----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | | |--CLDKDT
                                • | | | |--CDNDT
                                • | | | |--CDEDT
                                • | | | |--EQSCAL----FX
                                • | | | |--DFX
                                • | | |--CREEP2----EQISIG
                                • | | | |--DEVSIG
                                • | | | |--FCPEQ1
                                • | | | |--FCPEQ2
                                • | | | |--FCPEQ4
                                • | | | |--FCPEQ5
                                • | | | |--FCPEQ11
                                • | | | |--FCPEQ15
                                • | | | |--FCPEQ3
                                • | | | |--CCPEQ1
                                • | | | |--CCPEQ2
                                • | | | |--CCPEQ8
                                • | | | |--CCPEQ9
                                • | | | |--CCPEQ4
                                • | | | |--CCPEQ5
                                • | | | |--CCPEQ7
                                • | | | |--CCPEQ3
                                • | | |--CRACK
                                • | | |--PROBTY----FYIE
                                • | | | |--CYIE2-----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | | |--EQSCAL----FX
                                • | | | |--DFX
                                • | | |--FYIE
                                • | | |--CYIE2-----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | | |--EQSCAL----FX
                                • | | | |--DFX
                                • | | |--BOUNDF
                                • | |--CLBDF
                                • |----PROBDF
                                • |----PROBD1
                                • |----TIMER-----TIMEG
                                • | |--TIMEB
                                • | |--TIMEY
                                • |----EQISIG
                                • |----SECOND2
                                • |----REPLN
                                • |----REPLG-----LOCALI----CLEARG
                                • | |--CRACK
                                • | |--EQISIG
                                • |----CPUGH-----LOCALI----CLEARG
                                • |--PUGH------EQIEPS
                                • |--DOT
                                • (4) WATER0------WTSAT----STMSI(5)
                                • |--WTMAT
                                • |--FCP-------STBLPR----STBLDT
                                • | | |--STBLER
                                • | |--STBLTM----STBLER
                                • |--STMZSI(6)
                                • (5) STMSI-------STEAM----SATT------STBLDT
                                • | |--STBLER
                                • |--FCP-------STBLPR----STBLDT
                                • | | |--STBLER
                                • | |--STBLTM----STBLER
                                • |--SATP------STBLTS----STBLDT
                                • | |--STBLER
                                • |--WTMAT
                                • (6) STMZSI----STEAMZ-----SATP------STBLTS----STBLDT
                                • | |--STBLER
                                • |--STMPT------STBLER
                                • |--STBLTS----STBLDT
                                • | |--STBLER
                                • |--STBLTM----STBLER
                                • (7) XCREP1------XEQSIG
                                • |----XDVSIG
                                • |----FCPEQ1
                                • |----FCPEQ2
                                • |----FCPEQ4
                                • |----FCPEQ5
                                • |----FCPEQ11
                                • |----FCPEQ15
                                • |----FCPEQ3
                                • |----CCPEQ1
                                • |----CCPEQ2
                                • |----CCPEQ8
                                • |----CCPEQ9
                                • |----CCPEQ4
                                • |----CCPEQ5
                                • |----CCPEQ7
                                • |----CCPEQ3
                                • (8) XCREP2------XEQSIG
                                • |----XDVSIG
                                • |----FCPEQ1
                                • |----FCPEQ2
                                • |----FCPEQ4
                                • |----FCPEQ5
                                • |----FCPEQ11
                                • |----FCPEQ15
                                • |----FCPEQ3
                                • |----CCPEQ1
                                • |----CCPEQ2
                                • |----CCPEQ8
                                • |----CCPEQ9
                                • |----CCPEQ4
                                • |----CCPEQ5
                                • |----CCPEQ7
                                • |----CCPEQ3
Page 3: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes

i

JAEA-DataCode 2013-009

InputOutput Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes

Motoe SUZUKI Hiroaki SAITOU Yutaka UDAGAWA and Fumihisa NAGASE

Reactor Safety Research Unit Nuclear Safety Research Center Japan Atomic Energy Agency

Tokai-mura Naka-gun Ibaraki-ken

(Received April 18 2013)

A light water reactor fuel analysis code FEMAXI-7 has been developed as an extended

version from the former version FEMAXI-6 for the purpose of analyzing the fuel behavior in

normal conditions and in anticipated transient conditions Numerous functional improvements

and extensions have been incorporated in FEMAXI-7 which are fully disclosed in the code

model description published in the form of another JAEA-DataCode report

The present manual which is the very counterpart of this description document gives

detailed explanations of files and operation method of FEMAXI-7 code and its related codes

methods of inputoutput sample InputOutput methods of source code modification

subroutine structure and internal variables in a specific manner in order to facilitate users to

perform fuel analysis by FEMAXI-7

Keywords LWR Fuel Code Analysis FEM Analysis Numerical Stability Fission Gas Release PCMI Burn-up

ITOCHU Techno-Solutions Corporation (Tokyo)

ii

JAEA-DataCode 2013-009

軽水炉燃料解析コード FEMAXI-7 および関連コードの入出力マニュアル

日本原子力研究開発機構安全研究センター

原子炉安全研究ユニット

鈴木 元衛斎藤 裕明宇田川 豊永瀬 文久

(2013 年 4 月 18 日受理)

FEMAXI-7 は軽水炉燃料の通常運転時及び過渡条件下のふるまい解析を目的と

するコードとして前バージョン FEMAXI-6 に対して多くの機能の追加改良を実施

した高度化バージョンであるこのモデルと内部構造機能の詳細に関する文書は別

の JAEA-DataCode として刊行される本マニュアルはこれと対をなすもので

FEMAXI-7 及び関連コードのファイルの内容入出力の方法サンプル入出力ソー

スの修正方法サブルーチン構造内部変数などについて詳述しFEMAXI-7 による

燃料解析の具体的方法を説明したものである

原子力科学研究所(駐在)319-1195 茨城県那珂郡東海村白方白根 2-4

伊藤忠テクノソリューションズ株式会社

JAEA-DataCode 2013-009

iii

Contents

1Introduction 1

2 Execution file system 1

21 Files of FEMAXI -7 and EXPLOT 1

22 Files of burning analysis code RODBURN-1 2

23 Files of burning analysis code PLUTON 2

24 Compiling source code 3

241 Compiling by Compaq DVF 3

242 Compiling by Intel VF 95 (or upper) 8

243 Compiling by Linux-GNU Fortrang77 13

References 1 and 2 14

3 Execution of program 15

31 On Windows-PC 15

311 Directory structure for Compaq compiler 15

312 Directory structure for Intel compiler 16

313 Basic process of executing the program -1- (Windows) 17

32 Execution in Linux 23

321 Example of Makefile for GNU Fortran 77 (g77) 23

322 Basic process of execution -2- (Linux) 24

33 Performing Re-start function 27

331 Function to bridge full-length rod and short test rod calculations 27

332 Re-start calculation from base-irradiation to test-irradiation 27

333 Name-list parameters related to Re-start calculation 30

334 Variables taken over and those not taken over in Re-start calculation 31

335 Explanations for sample Re-start calculations and method 41

34 Usage of output of burning analysis code RODBURN-1 47

341 Record No and contents 47

342 Usage of records in FEMAXI 48

343 Making input file of RODBURN-1 by using FEMAXI 51

35 Usage of output of burning analysis code PLUTON 51

351 Physical quantities of PLUTON output for FEMAXI 52

352 Structure of inputoutput files of PLUTON 52

353 Contents read by FEMAXI code 63

354 Output file reading function of FEMAXI 65

JAEA-DataCode 2013-009

iv

355 Unit conversion of burnup 68

36 Calculation examples by RODBURN-1 and PLUTON 69

361 PWR fuels 69

362 BWR fuels 75

37 Usage of the Halden data-base TFDB 81

References 3 81

4 FEMAXI-7 Input manual 82

41 Explanation on the relationship of IS and IST 82

411 Function of ISTATE value 82

412 Relationship between IS IST and ISTATE 83

413 Options specified by IS and IST 83

42 Fixed format input 85

43 Name-list Input 88

44 Plot data index IDNO 133

45 Calculated physical quantities in ZERO power state 133

46 Method to input history point data 134

461 Power history data 134

462 Relative power profile 134

463 Input method of power history 135

47 Setting of cladding outer surface temperature 138

5 Models and Input manual of RODBURN-1 141

51 General feature of RODBURN input format 141

52 Some comments on the RODBURN code (Sept1998) 141

53 Explanations of RODBURN-1 models and methods 143 54 Explanation of neutron flux control by ldquoALPH(K) EXTL(K) EXTT(K)

K=1 NDISTrdquo Option for IDIST 149

55 Some important input name-list parameters of FEMAXI-7 for usage

of RODBURN-1 150

56 RODBURN Input data format (1) 151

57 RODBURN Input data format (2) 155

References 5 161

6 Input Manual of Plotting Control Program EXPLOT 163

61 Input parameters for EXPLOT 163

62 Tables of IDNOs classified by variables 166

JAEA-DataCode 2013-009

v

63 Plotting the quantities with common Y-axis 182 64 Explanation on the physical quantities of Y-axis (3) (4)C Group 183

641 Physical quantities of pellet 183

642 Physical quantities of cladding 185

7 Sample InputOutput (numerical and plotted outputs) 187

71 FEMAXI-7 numerical output image of ldquoABC1outrdquo 187 72 Plotting control data file image of ldquoexplotABCrdquo 215

73 Images of plotted output ldquoABC1ABCpdfrdquo 218

74 Example of numerical output of HBS model 224

75 Sample inputoutput of RODBURN-1 226

8 Manual for modification of materials properties models 245

81 Materials properties subroutines 245

82 Method of addition and modification of models 246

821 Density 246

822 Thermal conductivity 246

823 Specific heat 249

824 Thermal expansion 250

825 Youngrsquos modulus 251

826 Poissonrsquos ratio 252

827 Creep 254

828 Fuel pellet swelling 258

829 Densification 260

8210 Plasticity 260

8211 Grain growth 264

8212 Melting point 264

8213 Fission gas release rate and diffusion coefficient 265

8214 Cladding waterside corrosion 265

8215 Cladding irradiation growth 266

8216 Gap thermal conductance 266

8217 He-Xe gas inter-diffusion coefficient 267

83 Method of incorporating a new surface heat transfer model 268

Appendix 273

JAEA-DataCode 2013-009

vi

目 次 1はじめに 1

2 実行ファイルシステム 1

21 FEMAXI -7 および EXPLOT のファイル 1

22 燃焼計算コード RODBURN-1 のファイル 2

23 燃焼計算コード PLUTON のファイル 2

24 ソースコードのコンパイル 3

241 Compaq DVF によるコンパイル 3

242 Intel VF 95 (or upper)によるコンパイル 8

243 Linux-GNU Fortrang77 でのコンパイル 13

参考文献 1 2 14

3 プログラムの実行 15

31 Windows-PC の場合 15

311 Compaq compiler の場合のディレクトリ構造 15

312 Intel compiler の場合のディレクトリ構造 16

313 基本的な実行の順序 -1-(Windows) 17

32 Linux での実行 23

321 GNU Fortran 77 (g77) の場合の Makefile 例 23

322 基本的な実行の順序 -2-(Linux) 24

33 Re-start 機能の実行 27

331 長尺燃料棒と短尺試験燃料棒の計算をつなぐ計算 27

332 ベース照射から試験照射への Re-start 計算 27

333 Re-start 計算に関係する Name-list パラメータ 30

334 Re-start 計算に引き継がれる変数と引き継がれない変数 31

335 サンプル Re-start 計算と方法の説明 41

34 燃焼計算コード RODBURN-1 の出力の利用 47

341 レコード Noと内容 47

342 FEMAXI でのレコード利用法 48

343 FEMAXI を用いて RODBURN-1 の入力ファイルを作る方法 51

35 燃焼計算コード PLUTON の出力の利用 51

JAEA-DataCode 2013-009

vii

351 PLUTON と FEMAXI の物理量の関係 52

352 PLUTON の入出力ファイルの構造 52

353 FEMAXI コードに読み込まれる内容 63

354 FEMAXI による出力ファイル読み込み機能 65

355 燃焼度の単位変換 68

36 RODBURN-1 と PLUTON の計算例 69

361 PWR 燃料 69

362 BWR 燃料 75

37 Halden データベース TFDB の利用 81

参考文献 3 81

4 FEMAXI-7 入力マニュアル 82

41 IS と IST の関係に関する説明 82

411 ISTATE 値の機能 82

412 IS IST および ISTATE の間の関係 83

413 IS と IST によって指定されるオプション 83

42 固定フォーマット入力 85

43 Name-list 入力 88

44 プロットデータインデックス IDNO 133

45 ZERO パワー状態の計算データ 133

46 履歴データの入力方法 134

461 出力の履歴点データ 134

462 発熱密度プロファイル 134

463 出力履歴の入力方式 135

47 被覆管外表面温度の入力設定モード 138

5 RODBURN-1 のモデルと入力 141

51 RODBURN 入力フォーマットの一般的特徴 141

52 RODBURN コードに関するコメント 141

53 RODBURN-1 のモデルと方法の説明 143

JAEA-DataCode 2013-009

viii

54 ldquoALPH(K) EXTL(K) EXTT(K) K=1 NDISTrdquo IDIST オプションによる

中性子束制御の説明 149

55 RODBURN-1 を使う際の FEMAXI-7 のいくつかの重要な

name-list パラメータ 150

56 RODBURN 入力データフォーマット(1) 151

57 RODBURN 入力データフォーマット(2) 155

参考文献 5 161

6 プロット制御プログラム EXPLOT 入力マニュアル 163

61 EXPLOT の入力パラメータ 163

62 変数によって分類された IDNO のテーブル 166

63 Y 軸共通物理量プロットの使用法 182

64 プロットデータの Y 軸物理量(3)(4)C グループに関する説明 183

641 ペレット物理量 183

642 被覆管物理量 185

7 サンプル入出力(数値出力+プロット図) 187

71 FEMAXI-7 数値出力 ABC1out イメージ 187

72 プロット出力制御データ explotABC イメージ 215

73 プロット出力 ABC1ABCpdf イメージ 218

74 HBS モデルの出力数値ファイル例 224

75 RODBURN-1 入出力サンプルケース 226

8 物性値モデルの修正マニュアル 245

81 物性値ルーチン 245

82 物性値の追加修正方法 246

821 密度 246

822 熱伝導率 246

823 比熱 249

824 熱膨張 250

825 ヤング率 251

JAEA-DataCode 2013-009

ix

826 ポアソン比 252

827 クリープ 254

828 スエリング 258

829 焼きしまり 260

8210 塑性 260

8211 結晶粒成長 264

8212 融点 264

8213 FP ガス放出率と拡散係数 265

8214 被覆管腐食 265

8215 被覆管照射成長 266

8216 ギャプコンダクタンス 266

8217 He-Xe ガス相互拡散係数 267

83 新しい表面熱伝達モデルの組み込み法 268

付録 273

This is a blank page

JAEA-DataCode 2013-009

- 1 -

1 Introduction Fuel analysis code FEMAXI-7 is the latest version which has been extended to cope with a wide variety of LWR fuel behavior analyses by using related auxiliary codes system and compilers The present manual makes a pair with another JAEA-DataCode 2013-005(11) a model description of FEMAXI-7

The authors hope that this manual will serve for a wide circle of users in understanding and operating FEMAXI-7 with proficiency Users are recommended to ask JAEA freely concerning the contents when they come across any problem

2 Execution file system The method of installing FEMAXI(21) system into Windows PC and Linux systems and

execution of the program are explained

21 Files of FEMAXI-7 and EXPLOT The source files of FEMAXI-7 and plotting program EXPLOT consist of the files listed in

Table 211 and Table 212 The source file group of FEMAXI-7 is represented by

Femaxi7FOR in Table 211 and the group of EXPLOT is listed in Table212 A sample

calculation case ID is named ldquoABCrdquo corresponding to the sample case presented later in

chapter 7 FEMAXI-7 reads the input file name from a file-name-description file fnamed

and opens the required files The file names are specified including the path and designated in

the order of the unit No listed in Table 211 (Refer to section 311 )

Table 211 FEMAXI-7 files Unit No File (default name) Contents

Femaxi7FOR Source code including all the modules

- fem2exe Executable program

5 ABCd05 (ft05d) Sample input file

6 ABCout (ft06d) Sample numerical output file

7 ABCplt (expldat) Sample plotting data file

9 fnamed File-name-description file

55 formdata Name-list input format file

89 ft89d Steam table library file

Since EXPLOT uses calcomp-compatible instructions it is necessary to link the program

with a calcomp compatible library pltcmplib (in Linux calcmpa) in compiling

explotfor

JAEA-DataCode 2013-009

- 2 -

Table 212 EXPLOT files Unit No File (default name) Contents

- explotfor explot2exe Source executable program

5 pltcal8lib (or calcmpa) Calcomp-compatible library

6 explotd Plotting control file

7 ABCplot ABCps ABCpdf Sample output Explained in Chap7

22 Files of burning analysis code RODBURN-1 RODBURN-1 is a simplified and convenient burning analysis code for LWR fuel rods(21)

The source files of RODBURN-1 are listed in Table 221 This code calculates the power

density profile in the radial direction of pellet as a function of average burnup and concurrently

calculates the generated amounts of fission products and He RODBURN-1 uses a

file-name-description file rfnamed similarly to FEMAXI

FEMAXI and RODBURN open the files collectively at the head of main program

Accordingly it is easy for users to change the default file names and path to adjust them to their

own system circumstances

Table 221 RODBURN-1 files Unit No File name (default name) Contents

- rodburnfor

rodburnexe

RODBURN source executable program

5 ABCrddat Input data file (sample) (renamed from rodin) 6 ABCrdout Numerical output file (sample) 7 ABCrodex Result data file to be read by FEMAXI 9 rfnamed File-name-description file 1 ft01d RABBLE(23) original library 1 2 ft02d RABBLE original library 2

60 EJU268 Resonance parameters for U-268 and group cross section of WIMS69(24)

61 EJPU240 Resonance parameters for Pu-240 and group cross section of WIMS69

66 origend ORIGEN(25) code library

23 Files of burning analysis code PLUTON PLUTON (=PLUTON-PC) is a burning analysis code for LWR fuels(22) This code has a

variety of calculation contents and output formats by using more precise models and methods

than those of RODBURN When a result file generated by PLUTON is used by FEMAXI-7

JAEA-DataCode 2013-009

- 3 -

either one of two methods should be selected to write the numerical figures of the result file at

the end of input file of FEMAXI or to read the result file into FEMAXI To read the result file

file fmdt is read which is given from PLUTON In an example shown later it has a unit No

of 51 to be read as ABCfmdt

24 Compiling source code 241 Compiling by Compaq DVF

It was a standard compiling method for FEMAXI-V and -6 EXPLOT RODBURN and

PLUTON to be compiled with Compaq Digital Visual Fortran 61 or Upper-version (CDVF)

However CDVF has been discontinued Accordingly hereafter Intelreg Visual Fortran

(IVF)(27) is used as a standard compiler for FEMAXI-7 EXPLOT RODBURN and PLUTON

Nevertheless compiling method with CDVF is explained first as there may be still not so

small a number of users of CDVF The compiling options of CDVF are shown below for

Windows PC (2000 XP Vista and Windows 7) Here the optimization parameter for CDVF

compiling is ldquoFull optimizationrdquo

(1) Basic method on the basis of Developer Studio In the following example Compaq Visual Fortran Standard Edition 660 (English

version) is used The example is also applicable to Compaq Visual Fortran Ver 61 or Upper

1) Making a new project To form a new project open a new project making pane by selecting the menu

[File][New] Select [Fortran Console Application] by [Projects] tab and input [Project

name] eg if the source is FEMAXI ldquoFEMrdquo

Input the directory name in [Location] where project is generated or select a parent

directory name under which the project directory name is input then click [OK] In the

example below ldquoCFEM7rdquo is selected and the project directory is named ldquoCFEM7FEMrdquo

then [OK] is clicked In the next selection pane select [An empty project] click [Finish] and

click [OK] in the pane [New Project Information]

JAEA-DataCode 2013-009

- 4 -

2) Designation of source code Designate the source code in ldquoFile Viewrdquo pane If no ldquoFile Viewrdquo pane is shown show the

pane by selecting [View][Workspace] In the pane extend the workspace files selected in

the previous process 1) Right click on [Source Files] and select [Add Files to Folder] and

then select the source files by [Insert Files into Project] In the example below the compile

target code is FEMAXI-7 and ldquoFEMAXI7FORrdquo is selected

3) Change into Release mode Change the build configuration into ldquoReleaserdquo mode Select the menu [Build][Set

Active Configuration] open [Set Active Project Configuration] pane and change the mode into [FEM - Win32 Release]

JAEA-DataCode 2013-009

- 5 -

4) Designation of other INCLUDE directories If there are some INCLUDE files in a directory except the directory directly under the

project directory it is necessary to designate the INCLUDE directory one more time

This process is as follows select [Project][Settings] to open the pane [Project

Settings] Set [Settings For] into [Win32 Release] (or to [All Configurations] ) and select

the uppermost ranked project name in the file structure viewing pane below Change the

pane into [Fortran] tab and change [Category] into [Preprocessor] Input the directory name

which has the INCLUDE files into [INCLUDE and USE Paths] In this example ldquoINCrdquo is

designated

JAEA-DataCode 2013-009

- 6 -

5) Libraries

For EXPLOT it is necessary to designate a calcomp library for compiling before building Detailed procedure is explained in the next sections (3) and (4)

6) Building the executable files

Perform building to make an executable program by selecting [Build][Build FEMexe (=executable program name)]

7) Confirmation of executable program generation Confirm that the executable program has been generated under ldquoReleaserdquo directory in the

project directory (2) Designation method of linking Calcomp library in Developer Studio

In EXPLOT either one of the two following methods is used in designating the calcomp

JAEA-DataCode 2013-009

- 7 -

library It is not necessary to use both the methods at the same time

1) Addition of library file by changing link setting Link pltcal by adding library file in setting the link of project By selecting

[Project][Settings] open the pane [Project Settings] Select [Win32 Release] (or [All

Configurations]) and select the uppermost project name (ldquoexplot2rdquo) in the directory

structure table pane shown below Shift to the tab [Link] put a half space after the already

registered library in [Objectlibrary modules] and input the library path ie in this example

ldquopltcal8librdquo for this file is stored just under the project directory

2) Addition of library file by adding resource file

Addition of library file to Resource File allows the link Right-click [Resource Files] in

View Files pane select [Add Files to Folder] and open [Insert Files into Project] pane

Change the [File type] into [Library Files(lib)] and select ldquopltcal8librdquo

JAEA-DataCode 2013-009

- 8 -

242 Compiling by Intel VF 95 (or upper)

Method to compile the source by Intel Visual Fortran(27) is described below It is necessary

to change the settings of retention of error check variables and local variables from the initial

settings which is different from the situation in Compaq Visual Fortran

(1) Basic method of compiling FEMAXI-7 on Visual Studio In the following example Intel Visual Fortran Compose XE 2011 on Microsoft Visual

Studio 2010 is used This example is also applicable to Intel Visual Fortran 95 without

significant changes

1) Making project Select [File][New Project] extend [Intel(R) Visual Fortran] and select [Console

Application] and select [Empty Project] Put a project name eg [FEM] and location of the

project and click [OK]

JAEA-DataCode 2013-009

- 9 -

2) Addition of source files Right-click the [source files] of the project in [Solution Explorer] select

[Addition][Existing files] A file pane opens Select source files and click [Addition]

3) Change into Release mode Change the build-configuration into Release mode by opening [Build] pane

[Configuration Manager]

JAEA-DataCode 2013-009

- 10 -

4) Addition of include file Method A Select [Project][Properties] Spread [Fortran] of configuration properties and

designate the include file names or their directory name by clicking [General][Additional Include Directories]

Method B Add the include files to the [Header Files] in Solution Explorer pane

5) Change of settings to cover fortran 77

When compiling FEMAXI-7 EXPLOT and RODBURN by Intel Fortran the following

changes are needed because the source files are partly written in Fortan77 Since PLUTON is

written in Fortran 90 these changes are not necessary

Select [Project][Properties] and spread [Fortran]

i) Spread [Diagnostics][Language Usage Warnings] input [No] in [Check Routine Interfaces]

JAEA-DataCode 2013-009

- 11 -

ii) [Data][Local Variable Storage] change to [All Variables SAVE (Qsave)]

iii ) Open [External Procedure] confirm that [Calling Convention] is [Default]

JAEA-DataCode 2013-009

- 12 -

iv) [Run-time]input [No] in [Check Array and String Bounds]

v) Spread [Diagnostic][General] input [No] in [Interface Block Generation]

This option is not present in Intel Visual Fortran Composer XE 2011

When all the changes are done click [Apply]

6) Making an executable file Make an executable program by [Build][Build Project name]

(2) Method of compiling EXPLOT on Visual Studio 1) Addition of source file and library file Similarly to the case of FEMAXI-7 above add the source code and library by using [Solution Explorer] pane

JAEA-DataCode 2013-009

- 13 -

2) Change of settings to cover fortran 77 All the changes described above in 5) for FEMAXI-7 should be also applied to EXPLOT 3) Making an executable file

Make an executable program by [Build][Build Project name] 243 Compiling by Linux-GNU Fortran g77

To execute FEMAXI-7 on Linux compiling procedure by g77 which can be obtained for

free is explained Only FEMAXI and EXPLOT are assured to be successfully built by g77

(1) FEMAXI compiling

In an usual setting of g77 initialization and retention of local variables is not conducted so that it is necessary to add retention of local variables as optional arguments(-fno-automatic)

and initialization (-finit-local-zero) when compiling Accordingly femaxi7FOR is compiled

by the commands below to make an executable program FEMAXI-7

g77 -o FEMAXI-7 -fno-automatic -finit-local-zero femaxi7FOR (2) Building the executable file of EXPLOT

CALCOMP-compatible library calcmpa is generated from source file calcmpfor

g77 -fno-automatic -finit-local-zero -o calcompfor -c calcmpo ar cr calcmpo calcmpa

By linking CALCOMP-compatible library link is carried out

g77-o EXPLOT -fno-automatic -finit-local-zero explot2for calcmpa

JAEA-DataCode 2013-009

- 14 -

References 1 and 2 (11) M Suzuki H Saitou Y Udagawa and F Nagase Light Water Reactor Fuel Analysis

Code FEMAXI-7 Model and Structure JAEA-DataCode 2013 ndash 005(2013) (21) MSuzuki HSaitou YUdagawa ldquoLight Water Reactor Fuel Analysis Code

FEMAXI-7Model and Structurerdquo JAEA-DataCode 2010-035 (2011) [in Japanese] (22) MUchida HSaitou ldquoRODBURN A Code for Calculating Power Distribution in Fuel

Rodsrdquo JAERI-M 93-108 (1993) [in Japanese] (23) PHKier and AARobba ldquoRABBLE A Program for Computation of Resonance

Absorption in Multi-region Reactor Cellsrdquo ANL-7326 (1967) (24) WIMS-D IAEA Nuclear Data services httpwww-ndsiaeaorg (25) MJBell ldquoORIGEN-The ORNL ISOTOPE GENERATION AND DEPLETION CODErdquo

ORNL-4628 (1973) (26) SLemehov and MSuzuki ldquoPLUTON ndash Three-Group Neutronic Code for Burnup

Analysis of Isotope Generation and Depletion in Highly Irradiated LWR Fuel Rods JAERI-DataCode 2001-025 (2001)

(27) Intel reg Visual Fortran Composer XE 2011 Windows httpwwwxlsoftcomjpproductsintelcompilersfcwindexhtmltab=0

JAEA-DataCode 2013-009

- 15 -

FemReleasefem2exe FEMdsp FEMdsw FEMopt FEMplg of Compaq DVF

formdata (description of output variables) ft89d Fem srcf INC (source and include files)

3 Execution of program

31 On Windows-PC 311 Directory structure for Compaq compiler

An example of directory structure and file configuration is shown for Windows system assuming that the parent directory CFem7 is located on C-drive

CFem7

Plot2 explot2Releaseexplot2exe Pltcal8lib (Calcomp library) explot2dsp explot2dsw explot2plg explot2opt

RODReleaserodburn2exe rodburn2for (RODBURN-1 source) Ejpu240 Eju238 ft01d ft02d origend (library)

rodburn2dsp rodburn2dsw rodburn2plg rodburn2opt of Compaq DVF

rbout rodex (ORDBURN result file to be fed to FEMAXI)

outp out (FEMAXI numerical output) plt (plotting data file generated by FEMAXI) ps (postscript file of plotted figures) pdf (plotted figures in pdf file converted from ps file) plot (text file of numerical data of plotted figures) csv (CSV file of plotted numerical data) rdout (numerical output of RODBURN-1)

Wrk rodbat fembat plotbat (batch programs) d05 (FEMAXI input file) rddat (RODBURN input file) explot (plotting control file) mytitltxt (plotting caption file)

JAEA-DataCode 2013-009

- 16 -

FemReleaseFEMexe FEMsln FEMvfproj of Intel compiler formdata (description of output variables) ft89d (library)

Fem srcf INC (source and include files)

312 Directory structure for Intel compiler

An example of directory structure and file configuration is shown for Windows system assuming that the parent directory Fem7 is located on C-drive

CFem7

Plot2 explot2Releaseexplot2exe explot2 Pltcal8lib (Calcomp library)

explot2sln explot2ncb explot2opt explot2vfproj of Intel compiler

RODRelease RODexe rodburn2for (RODBURN-1 sources) Ejpu240 Eju238 ft01d ft02d origend (libraries) RODsln RODvfproj of Intel compiler

rbout rodex

outp out (FEMAXI numerical output file) plt (plotting data file generated by FEMAXI) ps (postscript file of plotted figures) pdf (plotted figures in pdf file converted from ps file) plot (text file of numerical data of plotted figures) csv (CSV file of plotted numerical data) rdout (numerical output of RODBURN-1)

Wrk rodbat fembat plotbat d05 (FEMAXI input file) rddat (RODBURN-1 input file) explot (plotting control file) mytitltxt (plotting caption file)

JAEA-DataCode 2013-009

- 17 -

313 Basic process of executing the program -1- (Windows)

An important process to execute the FEMAXI-7 system is briefly explained below

(1) Activation of command prompt FEMAXI-7 RODBURN and EXPLOT are executed by entering a batch command

following the MS-DOS prompt For this purpose MS-DOS Windows for the FEMAXI

system has to be prepared

A) Look for the MS-DOS prompt icon in the Windows system create a shortcut to the

program to be executed and place it on Desktop

B) Open ldquoPropertiesrdquo of this shortcut press the program tab select eg CFem7Wrk from

the Work Directory

C) Change the icon to enable easy recognition of this shortcut and simultaneously change

the name of the shortcut to ldquoFem7rdquo Hereafter this shortcut is called ldquoFEM7rdquo

(2) Test run of RODBURN-1

A) Input ldquorod ABCrdquo following the prompt (Fem7Wrk) which causes RODBURN to be

executed By entering ldquorod ABCrdquo the system searches for the file ldquoABCrddatrdquo and

reads it If ldquorod ABCrddatrdquo is entered the system searches for ldquoABCrddatrddatrdquo

and ldquoError stoprdquo occurs because such a file does not exist

B) After the completion of execution start Explorer and confirm if the time stamp of the

file ABCrodex in Wrk RBOUT is renewed

(3) Test run of FEMAXI-7

A) Enter ldquofem ABC 1rdquo following the prompt which causes FEMAXI-7 to be executed

By entering ldquofem ABC 1rdquo the system searches for the file ldquoABCd05rdquo reads it and

outputs the files named ABC1out and ABC1plt When ldquofem ABC 2rdquo is entered first

ABC2out and ABC2plt are created

If ldquofem ABCd05rdquo is entered the system searches for the file ldquoABCd05d05rdquo and

ldquoError stoprdquo occurs because such a file does not exist

B) After the completion of execution start Explorer and confirm if files ABC1out and

ABC1plt are created in Wrk Outp

JAEA-DataCode 2013-009

- 18 -

(4) Test run of EXPLOT

A) Enter ldquoplot ABC1 drdquo following the prompt which causes EXPLOT to be executed By

entering ldquoplot ABC1 drdquo the system searches for and reads files ldquoexplotdrdquo and

ldquoABC1pltrdquo By entering ldquoplot ABC1pltrdquo the system searches for a file ldquoABC1pltpltrdquo

and ldquoError stoprdquo occurs because such a file does not exist When ldquoplot ABC2 frdquo is

entered the files ldquoexplotfrdquo and ldquoABC2pltrdquo are read and the files ABC2plot ABC2ps

and ABC2csv are produced

B) After the completion of execution start Explorer and confirm if files ABC1plot

ABC1ps and ABCcsv are created in Wrk OUTP

C) After this confirmation double click ABC1ps which activates Adobe Acrobat Distiller

and the system converts the ps file into a pdf file After conversion has been completed

the file ABC1pdf is created To enable this conversion it is necessary to install either

the complete set of Adobe Acrobat 40 (or a higher version) or ps2pdf ps2pdf can be

used by downloading from internet without charge installing and setting GhostScrpipt

After setting GhostScrpipt move to Fem7WrkOUTP and input the ps2pdf command

ldquops2pdf ABC1ps ABC1pdfrdquo Then ABC1pdf can be generated from ABC1ps

The above-mentioned conversion cannot be carried out using Acrobat Reader which

can be downloaded without charge

D) Double click ABC1pdf and open the file to confirm the creation of output plots

(5) Main analysis -1- (case1 making input file for RODBURN by using FEMAXI)

A) Initially FEMAXI calculation is carried out without RODBURN Namely calculation

is carried out with the name-list parameter IROD=1 or =2 or =3 in input data file (eg

EFGd05) For the value of IROD see the input manual of FEMAXI-7 Then FEMAXI

does not perform normal calculation but generates a file ldquorodinrdquo in Wrk

B) Open the file ldquorodinrdquo and confirm the content Rename ldquorodinrdquo into eg ldquoABCrddatrdquo

and execute RODBURN with this input file ABCrddat

C) Next to perform calculations using the results of RODBURN execute FEMAXI again

by setting the name-list parameters IROD=0 and IFLX= -2 in EFGd05

D) Edit the plot control information file explotd

JAEA-DataCode 2013-009

- 19 -

E) Execute EXPLOT and produce EFGps and EFplot Obtain plotted figures by

converting EFGps into EFGpdf

F) Note Since the output files EFGout EFGplt EFGplot EFGps and EFGpdf are

overwritten each time E) through F) are executed if users wish to retain previous results

they should be assigned a convenient name such as EFG1out

(6) Main analysis -2- (case2 making input file for RODBURN)

A) When the output history in the input data file (eg EFGd05) is time vs linear power

FEMAXI calculation is initially carried out without RODBURN Namely calculation

is carried out with the name-list parameter IFLX=0

B) Open the output file EFGout using an editor read the cumulative burnup and produce

the RODBURN input data file EFGrddat After this follow the identical processes to

those shown in the case1above

(7) Main analysis -3- (case3 using PLUTON) By designating the name-list parameter IFLX=-1 FEMAXI calculation is performed with

the burning analysis result file obtained by PLUTON-PC execution

JAEA-DataCode 2013-009

- 20 -

(8) List of batch files A) Execution of FEMAXI fembat

In a case where different parent directory from FEM7 is used change the 3rd line ldquoset

MYPATH=CFEM7rdquo

rem FEMAXI Execution Started

setlocal

set MYPATH=CFEM7

IF 2 == GOTO NOX1

echo D05 MYPATHWrk1d gt fnamed

echo OUT MYPATHWrkoutp12out gtgt fnamed

GOTO NOX2

NOX1

rem ERROR

rem 2 argments are required

rem ( ex if input file name is arg1rns )

rem ( ranbat arg1 arg2 )

exit

NOX2

del MYPATHWrkoutp12plt

del MYPATHWrkoutp12plt2

echo PLT MYPATHWrkoutp12plt gtgt fnamed

echo FT11 MYPATHWrkoutp12ft11 gtgt fnamed

echo FT18 MYPATHWrkoutp12ft18 gtgt fnamed

echo FT20 MYPATHWrkoutp12max gtgt fnamed

echo PLUTN MYPATHWrkrbout1FMdt gtgt fnamed

echo RODEX MYPATHWrkrbout1rodex gtgt fnamed

echo FORM MYPATHFemformdata gtgt fnamed

echo FT89 MYPATHFemft89d gtgt fnamed

copy MYPATHWrk1d05 1d

copy MYPATHWrkoutp1ft11 ft15d

MYPATHFemReleaseFem

del fnamed

del 1d

del FT90d

del ft10d

del ft16d

del ft17d

endlocal

rem FEMAXI Calc completed

JAEA-DataCode 2013-009

- 21 -

B) Execution of RODBURN rodbat

echo RODBURN Execution Started

setlocal

set MYPATH=CFEM7

echo MYPATHwrk1d gt rfnamed

echo MYPATHwrkoutp1rdout gtgt rfnamed

echo MYPATHwrkrbout1rodex gtgt rfnamed

echo MYPATHRODft01d gtgt rfnamed

echo MYPATHRODft02d gtgt rfnamed

echo MYPATHRODeju238 gtgt rfnamed

echo MYPATHRODejpu240 gtgt rfnamed

echo MYPATHRODorigend gtgt rfnamed

copy MYPATHwrk1rddat 1d

cMYPATHRODReleaserodburnexe

del rfnamed

del 1d

del wk

del rbpldat

endlocal

echo RODBURN Calc completed

JAEA-DataCode 2013-009

- 22 -

C) Execution of EXPLOT plotbat

rem PLOT6 Execution Started

setlocal

set MYPATH=CFEM8

move MYPATHWrkoutp1plt 1plt

move MYPATHWrkoutp1plt2 1plt2

echo 1plt gtgt expd

IF 2 == GOTO NOX

copy MYPATHWrkexplot2 explotd

echo 12ps gt exp2d

NOX

MYPATHexplot2Releaseexplot2exe

copy plotps MYPATHWrkoutp12ps

copy plotout MYPATHWrkoutp12plot

copy plotd MYPATHWrkoutp12csv

copy ft22d MYPATHWrkoutp12last

move 1plt MYPATHWrkoutp1plt

move 1plt2 MYPATHWrkoutp1plt2

del plotps

del plotd

del plotout

del expldat

del expd

del exp2d

del ft05d

del explotd

endlocal

rem PLOT6 Calc completed

JAEA-DataCode 2013-009

- 23 -

32 Execution in Linux

321 Example of Makefile for GNU Fortran 77 (g77) An example of Makefile of Gnu-make is shown which assumes the directory structure

shown in section 321 The makefile having the following contents is put just under the

directory $HOME$FEM7 and by executing ldquomake FEMAXI7rdquo or ldquomake EXPLOTrdquo

compilation can be performed with g77 In the case below compilation is performed with O2

optimization and static

FEMAXI-7 Makefile(GNU-make)

fortran compiler

FC = g77 -static

include directory

INC = INC

INCP = PLOT2inc

LIBP = PLOT2calcompa

fortran compile flag

OFLAG = -o

FFLAGS = -O2 -I$(INC) -w -fno-automatic -finit-local-zero

FFLAGSP = -O2 -I$(INCP) -w -fno-automatic -finit-local-zero

FFLAGL = -w -fno-automatic -finit-local-zero

FEM = FEM

PLOT2 = PLOT2

SRC = srcf

SRCFEM = $(SRC)femaxi7for

SRCPLOT= $(PLOT2)explot2for

CALCOMP= $(PLOT2)calcmpfor

OBJFEM = $(SRC)femaxi7o

OBJPLOT = $(PLOT2)explot2o

OBJCALCOMP = $(PLOT2)calcmpo

$(OBJFEM) $(SRCFEM)

$(FC) $(FFLAGS) $(OFLAG) $ -c $lt

$(OBJPLOT) $(SRCPLOT)

$(FC) $(FFLAGSP) $(OFLAG) $ -c $lt

$(OBJCALCOMP) $(CALCOMP)

$(FC) $(FFLAGL) $(OFLAG) $ -c $lt

$(LIBP) $(OBJCALCOMP)

ar cr $ $lt

FEMAXI7 $(OBJFEM)

$(FC) $(OBJFEM) $(FFLAGS) $(OFLAG) $(FEM)$

EXPLOT $(OBJPLOT) $(LIBP)

$(FC) $(OBJPLOT) $(OFLAG) $(PLOT2)$ $(LIBP)

JAEA-DataCode 2013-009

- 24 -

322 Basic process of execution -2- (Linux)

By executing a script file in a terminal emulator FEMAXI-7 and EXPLOT can be run In

the following explanation executing method is described on the assumption that the related

files FEM7 are present in the directory which is just below the home directory $HOMES$

The directory structure of Linux system for FEMAXI is similar to those of the Windows

system

[Attention] execution is capable of failure except the case where line feed encode is LF

(1) Process of FEMAXI-7 execution A) Activate the terminal emulator and move the current directory into $HOME$FEM7Wrk

by the command ldquocd FEM7Wrkrdquo

B) Activate FEMAXI by the script file femsh Put an input file eg ABCd05 under $HOME$FEM7Wrk and input ldquofemsh ABC 1rdquo in the terminal emulator The shell script is run ABCd05 is read and files ABC1 are output Here it is noted that by entering ldquofemsh ABCf05 1rdquo the system searches for ABCd05d05 and ldquoError stoprdquo occurs because such a file does not exist

C) After the completion of execution confirm if files ABC1out and ABC1plt are created in

$HOME$FEM7Wrkoutp

(2) Process of EXPLOT execution A) Activate the terminal emulator and move the current directory into $HOME$FEM7Wrk

by the command ldquocd FEM7Wrkrdquo

B) Activate EXPLOT by the script file explotsh If plt file of FEMAXI eg ABC1plt exists under the directory $HOME$FEM7Wrkoutp and EXPLOT input file explotd exists under the directory $HOME$FEM7Wrk input ldquoplotsh ABC1 drdquo in the terminal emulator Then shell-script is executed reads ldquoABC1pltrdquo and ldquoexplotdrdquo and creates a file ABC1 under the directory $HOME$FEM7Wrkoutp Here it is noted that by entering ldquoplotsh ABC1pltrdquo the system searches for ABC1pltplt and ldquoError stoprdquo occurs because such a file does not exist

C) After the completion of execution confirm if files ABC1plot ABC1ps and ABC1csv are

created in $HOME$FEM7Wrkoutp If ps2pdf has been installed in the system

ABC1pdf is also created

JAEA-DataCode 2013-009

- 25 -

(3) Contents of shell-script A) Execution of FEMAXI femsh

binsh

echo FEMAXI Execution Started

echo D05 $1d gtgt fnamed

echo OUT outp$1$2out gtgt fnamed

rm outp$1$2plt

rm outp$1$2plt2

echo PLT outp$1$2plt gtgt fnamed

echo FT11 outp$1$2ft11 gtgt fnamed

echo FT18 outp$1$2ft18 gtgt fnamed

echo FT20 outp$1$2max gtgt fnamed

echo PLUTN rbout$1FMdt gtgt fnamed

echo RODEX rbout$1rodex gtgt fnamed

echo FORM FEMformdata gtgt fnamed

echo FT89 FEMft89d gtgt fnamed

cp $1d05 $1d

FEMFEMAXI-7

rm fnamed

rm $1d

rm FT90d

rm ft10d

rm ft16d

rm ft17d

echo FEMAXI Calc completed

JAEA-DataCode 2013-009

- 26 -

B) Execution of EXPLOT plotsh

plotsh

echo PLOT Execution Started

mv outp$1plt $1plt

mv outp$1plt2 $1plt2

echo $1plt gtgt expd

cp explot$2 explotd

echo $1$2ps gt exp2d

PLOT2EXPLOT

cp plotps outp$1$2ps

cp plotout outp$1$2plot

cp plotd outp$1$2csv

cp ft22d outp$1$2last

mv $1plt outp$1plt

mv $1plt2 outp$1plt2

rm plotps

rm plotd

rm plotout

rm expldat

rm expd

rm exp2d

rm ft05d

rm explotd

echo PLOT6 Calc completed

ps2pdf outp$1$2ps outp$1$2pdf

JAEA-DataCode 2013-009

- 27 -

33 Performing Re-start function A new Re-start function has been implemented in FEMAXI-7 This function generates a result file ie Re-start file which stores the EOL conditions of fuel rod after calculation along base-irradiation history and can be read by FEMAXI-7 to perform re-start calculation Hereafter the first calculation to generate the Re-start file is referred to as ldquoBase calculationrdquo and the calculation following the re-start is referred to as ldquoRe-start calculationrdquo 331 Function to bridge full-length rod and short test rod calculations

In the analysis of a full length fuel rod which was base-irradiated in a commercial reactor and refabricated into a short instrumented rod to be test-irradiated in a test reactor a short rod geometry was obliged to be adopted from the beginning of base-irradiation by the analyses of previous versions of FEMAXI up to FEMAXI-6 This analytical restraint has been removed

(1) In base-irradiation calculation is performed with a full length rod geometry including

pellet stack length and plenum length etc(IFEMRD=1 or 0) In this case users have to

set a plural of segments in the axial direction of rod and this axial segmentation should be

conducted so that length and location of a short test rod portion are included in the axial

segments of base-irradiation analysis

(2) In the input file of FEMAXI where a full length rod is divided into 6 segments (more than 2 segments) by designating IREST=4 for example the rod conditions at the end of base-irradiation in all the segments are stored in Re-start file ft11 This file is usually generated in the directory WrkOUTP

332 Re-start calculation from base-irradiation to test-irradiation

(1) Renaming Re-start file Implication of the file name of ft11 is explained below Suppose a file Base1ft11 is generated after Base calculation(BC) This requires the input file name of Restart calculation (RC) to be Base1d05 However it often happens that RC is applied to test irradiation calculation and its input file is named Testd05 or something similar Consequently it is necessary to rename Base1ft11 into Testft11 If this Restart calculation uses a RODBURN result file the result file named baserodex exists in RBOUT Then it is necessary to make a duplicate of baserodex in another directory rename it into Testrodex or something similar and return it back to RBOUT Otherwise Re-start calculation will not run with input file Testd05

JAEA-DataCode 2013-009

- 28 -

It is often possible to use the same rodex file in both base calculation and Re-start calculation RODBURN performs calculation until the burnup which is to some extent higher than the burnup at EOL which is specified by input file On the other hand the additional burnup during the test irradiation (Re-start calculation) is not very large Accordingly in many cases the burnup extension in the Re-start irradiation falls within the range of burnup of rodex file calculated by RODBURN

Even if the burnup of test irradiation exceeds the maximum burnup of rodex the calculation will not be significantly affected for the following reason

If the burnup of FEMAXI calculation exceeds the upper bound recorded in rodex file FEMAXI continues calculation assuming that the power density profile in the radial direction of pellet remains to be the profile at the highest burnup recorded in the rodex file This is a good approximation because in high burn up region the power density profile has only a slight dependence on burnup extension

If the burnup of Re-start calculation exceeds markedly the upper bound recorded in rodex file of Base calculation the following convenient method is recommended In making rodex for Base calculation extend input irradiation history deliberately to attain much higher burnup than the EOL burnup of base irradiation After rodex is made eliminate the extended part of irradiation history of input file to perform Base calculation (2) Initial conditions of Re-start calculation If the segments for short re-fabricated rod are for example the 2nd to 5th segments of the full length rod by specifying ldquoIREST=5rdquo and ldquoTRSGT=2 5rdquo in the input file of test irradiation analysis the end-of-base-irradiation conditions of these segments ie sizes of pellet and cladding burnup profiles FGRs gap conditions etc are read from ft11 to be used as initial conditions of the analysis of fuel rod during test-irradiation Fig31 illustrates the relationship of rod segmentation for ldquoTRSGT=2 5rdquo

In this case plenum volume initial internal gas pressure and gas composition of test rod can be specified as a new set of initial conditions by name-list parameters in Re-start input file

Fig31 Axial segmentation of the full-length rod and re-fabricated short test-rod

Bottom Plenum re-fabricated zone

115mm 115mm 116mm Top segment 1

30mm Seg4 Seg3 Seg2

Full length rod

Short test rod

JAEA-DataCode 2013-009

- 29 -

as per usual Particularly the plenum volume has to be newly specified However values of initial gas pressure and gas composition are taken over from those in

ft11 if they are not newly specified by name-list parameters All the other conditions of fuel rod such as stress-strain of rod fission gas bubbles or accumulated amount of fission gas atoms power density profile in the radial direction of pellet etc are taken over from ft11

It is recommended that the formatted data of fuel rod specification (size shape) initial plenum volume initial internal pressure and gas composition in the input file of Re-start calculation be the same as those in the input file of Base calculation to circumvent misunderstanding As these data are read in Re-start calculation Re-start execution fails if they are not written in the input file However even if they are written they are not used as the initial values in Re-start calculation The initial values of these quantities in Re-start calculation are always fed by ft11 file

Here plenum volume internal gas pressure gas composition coolant conditions (equivalent diameter of flow area cross section area of flow fuel rod pitch) can be specified in input file as a new set of parameters for Re-start calculation (test irradiation) by using name-list parameters In this case the corresponding data stored in ft11 file are not used in calculation and quantities to be specified as initial conditions can be input by using some or all of the name-list parameters ITIME(n) GASPRN(n) GMIXN(n) DEN(n) FAREN(n) PITCHN(n) and PLENM(n) It is noted that when ITIME(n) is specified GASPRN(n) GMIXN(n) and PLENM(n) have to be specified invariably

All the other quantities such as stress-strain state of fuel rod conditions of fission gas bubbles and fission gas accumulation and power density in the radial direction of pellet are fed from ft11 file However either the data of power density profile vs burnup table which is attached at the last part of input file or the rodex file to be read by FEMAXI is always necessary in Re-start calculation

When IFEMRD=0 this Re-start calculation is also possible though the objective segment in which 2-D calculation is performed has to be the same segment that is specified by TRSGT If not error message is issued and calculation will not start

JAEA-DataCode 2013-009

- 30 -

333 Name-list parameters related to Re-start calculation

A group of name-list input parameters which are used in Re-start calculation function is

listed in Table 331

Table 331 Name-list parameters of FEMAXI-7 Restart function Parameter name Contents Default

Value

IREST

In FEMAXI-7 calculation (1) =0 Analysis only by FEMAXI-7

0

In FEMAXI-7 calculation (2) =4 generating Re-start file (ft11) for FEMAXI allowing the

designation of segments for refabricated short rod

In FEMAXI-7 Re-start calculation (3) =5 reading the restart file (ft11) generated by FEMAXI-7 to perform the FEMAXI calculation of test-irradiation for the axial segments designated by TRSGT However the objective segment for 2-D mechanical analysis in the base-irradiation calculation should be the same as the axial segment designated by TRSGT

TRSGT(2)

Input when IREST=5 in FEMAXI-7 Re-start calculation Otherwise error message is shown and calculation will start

Eg the number of segment is 10 in base-irradiation calculation and conditions of segments 4 to 6 are to be taken over TRSGT=46 is set If only 5th segment is the target TRSGT=5 is set

In performing the 2-D analysis designated objective segment No(specified by IFEM) has to be included in TRSGT For example in base-irradiation the objective segment is 5 (IFEM=5) and TRSGT=4 6 IFEM in Restart calculation is ldquoIFEM=2rdquo If this designation is inconsistent error message is shown and calculation will not start

0

IRTIME

When IRTIME=0 in the input file of Re-start calculation time (or burnup) has to be input as a sequential value from the beginning of base-irradiation

However if time is input burnup at EOL of base-irradiation calculation is taken over to be an initial burnup of Re-start calculation

When IRTIME=1 time at the start of Re-start calculation has to

be 0 and with this initial time=0 the Re-start irradiation history has to be given in input file However in Re-start calculation burnup at EOL of base-irradiation calculation is taken over and added to the initial burnup of Re-start input file

1

JAEA-DataCode 2013-009

- 31 -

334 Variables taken over and those not taken over in Re-start calculation

In performing Re-start calculation in FEMAXI-7 the following variables are taken over

from Base calculation to Re-start calculation They are explained in 6 groups classification

(1) Input variables given in fixed formats Variables given in fixed formats in input file of Base calculation are taken over to Re-start

calculation Accordingly fuel rod geometry except the designated axial segments is taken over

The other variables given in fixed formats eg coolant condition in the input file of Restart

calculation are also effective in Restart calculation Variables in fixed formats taken over in

Re-start calculation are listed in Table 332 Here the number of axial segments and IFEM

number for the objective segment are taken over as conditions of Base calculation to Re-start

calculation

Table 332 Variables in fixed formats taken over to Restart calculation

Name Content Name Content NAX Number of axial segments ENR U-235 enrichment (-) IFEM Number of objective segment FDENI Pellet theoretical density ratio (-)

MRASA Cladding material DZ Axial length of segment (cm) CDIN Cladding inner radius (cm) DISH Dish diameter (cm)

CDOUT Cladding outer radius (cm) DEPTH Dish depth (cm) IDISH Pellet dish specification DISHB Dish bottom circle diameter (cm) ICHAM Pellet chamfer specification PLENUM Plenum volume (cm3) PDIN Pellet center hole diameter (cm) GPIN Initial plenum gas pressure (MPa) PDIA Pellet diameter (cm) GMIXO Initial plenum gas composition (-)

PLENG Pellet length (cm) PWEIT Pellet total weight (g) CHAMR Chamfer width (cm) CHAMZ Chamfer depth (cm)

(2) Name-list input variables (parameters) Table 333 lists the name-list variables taken over from Base- to Re-start calculation 【Warning】 It is to be noted that if even one of these name-list variables (parameters) is

written in Re-start input file Re-start calculation never starts This is to circumvent the following situation if the same name-list variables as those used in Base calculation input file are explicitly written in Re-start input file with the different values from those in Base calculation or if some of the name-list variables are not written in Base calculation input file and are accepted as their default values in Base calculation while these name-list are explicitly written in Re-start input file with the different values from those in Base calculation

JAEA-DataCode 2013-009

- 32 -

FEMAXI neglects these values which are explicitly written in Re-start input file and takes over the values stored in Re-start file ft11 Here if users are not aware of this rule of Re-start calculation and have a false sense that Re-start calculation is performed with the parameter values written explicitly in Re-start input file the users will have inevitably a misunderstanding that the calculated results are obtained under the explicitly written values of parameters in Re-start input file This is a problem to be avoided so that the name-list input variables (parameters) listed in Table 333 must not be written in Re-start input file

Table 333 Name-list parameters and variables taken over from Base- to Restart calculation

(12) Name Content

PU PuO2 weight fraction (-) PUFIS Weight ratio of fissile Pu to total Pu(-)

AZ1 Ratio of length of element in the axial direction of half a pellet in the 2-D local mechanical analysis

ZR Zr-liner thickness (cm)

K1 Number of elements in the axial direction of half a pellet in the 2-D local mechanical analysis

ISHAPE Type of finite element used in the 2-D local mechanical analysis GD Gd2O3 concentration (wt fraction) DMAX Maximum fraction of volumetric shrinkage by densification () SBU Burnup of 90 completion of densification (MWdtUO2) TDNSF Pellet sintering temperature (K) GG Grain radius after heat treatment (m) GG0 Grain radius before heat treatment (m) SITIM Heat treatment time (hour) ADST Densification tuning factor A1 A1 in the swelling rate equation when IFSWEL=4 C1 C1 in the swelling rate equation when IFSWEL=4 BU1 BU1 in the swelling rate equation when IFSWEL=4 A2 A2 in the swelling rate equation when IFSWEL=4 SWSLD Factor to multiply the solid swelling rate 025 per 10E20 fissioncm3 RF Grain boundary gas bubble threshold radius (cm) FBCOV Fraction of grain boundary coverage by grain boundary lenticular gas bubbles CATEXF Axial growth factor fz in cladding irradiation growth equation COLDW Cladding cold work CW RX Multiplication factor for cladding irradiation growth rate GR Initial grain diameter of pellet (μm)

DD1 Adjustment factor for DMAX used in the merged model of densification and swelling

ALD Adjustment factor for α used in the merged model of densification and swelling

BU0 Baseline burnup used in the merged model of densification and swelling IFEMRD Option to activate 2-D local mechanical analysis

JAEA-DataCode 2013-009

- 33 -

Table 333 Name-list parameters and variables taken over from Base- to Restart calculation

(22) Name Content

LBU Option to use local burnup in burnup-dependent models MESH Option to select the number of pellet ring elements IDENSF Option to select pellet densification models IFSWEL Option to select pellet swelling models IGASP Option to select fission gas release model ICAGRW Option to select cladding irradiation growth model IRIM Option for additional FGR from high burnup structure DENSWL Option to activate the merged model of densification and swelling HBS Option to select the high burnup structure model RIMSWL Option for swelling model of high burnup structure NODEG Number of elements inside grain in fission gas diffusion model NODEH Number of elements inside grain in He gas diffusion model OXTH(IFEM) Initial oxide thickness of the objective segment (μm)

(3) Variables associated with the last stage of base irradiation (not name-list input parameters)

The variables which have the calculated values at the last stage of Base-irradiation are listed in Table 334

Table 334 Variables associated with the last stage of base irradiation Name Content

TIME Time (hour) PLHR Baseline linear power (Wcm) PCOOL Coolant pressure (Pa) FAI Fast neutron flux (ncm2s) FAIT Fast neutron fluence (ncm2) BUNP(NHIST) Baseline burnup (GJkgU)

(4) Variables taken over in thermal analysis (not name-list input parameters)

The variables which have the calculated values in thermal analysis at the last stage of Base-irradiation are listed in Table 335

Table 335 Variables of thermal analysis taken over to Restart calculation (15) Name Content

OXTHO Thickness of cladding outer oxide layer including plenum part (μm) OXTH2 Thickness of cladding inner oxide layer including plenum part (μm) CONCH Hydrogen concentration in cladding metallic part (ppm)

CONCO Hydrogen concentration at the previous time step in cladding metallic part (ppm)

JAEA-DataCode 2013-009

- 34 -

Table 335 Variables of thermal analysis taken over to Restart calculation (25) Name Content

IS Option to have a lower plenum NAX1 Number of segments in the axial direction of rod including plenum parts NPR Number of pellet ring elements in thermal analysis NRP Number of pellet ring elements in entire rod length mechanical analysis NC1 Number of cladding ring element nodes PIN Initial gas pressure in the plenum (Pa) GASPR Plenum gas pressure (Pa) PCOOLI Coolant initial pressure (Pa)

VTPLEN Value of plenum space volume divided by plenum gas temperature (cm3K)

XMOLO Initial number of moles of gas in plenum (mol) TOTMLO Number of moles of gas in plenum (mol) SUMHRS Number of moles of He (mol) SUMZRS Number of moles of fission gas (mol) FGRX Fission gas release rate () PLENLN Plenum length (cm) BU1 Average burnup over one segment (GJkgU) BR1F Local burnup (GJkgU) COLD Number density of atoms inside grain (at grain node) (atomscm3) BO Number of gas atoms in the grain boundary of one grain (atoms) TTALO Number of gas atoms inside grain (atoms) ABAR Radius of grain boundary gas bubble (cm) BBDEN Area number density of grain boundary gas bubbles (bubblesm2) AOLD Radius of intra-grain gas bubble (cm) ROLD Radius of FEM element node inside grain (cm) RLSD Amount of released fission gas atoms per one grain (atoms) GENED Amount of generated fission gas atoms per one grain (atoms) RFGRO FGR from high burnup structure (-) GRNS Pellet grain diameter (μm) BBLDO Number density of intra-grain gas bubbles (bubblescm3)

AMO Number density of fission gas atoms in intra-grain gas bubbles in pellet (atomscm3)

ABLD Number of grain boundary gas bubbles of one grain (bubblesgrain) TPOR Fission gas atoms density in the rim structure gas pore (atomscm3) RMPOR2 Gas pore swelling in the rim structure (-) TSWL Swelling by intra- and grain boundary gas bubbles (-)

BNMX Threshold number of area density of gas atoms in grain boundary (atomscm2)

BEFFO Effective burnup (GWdt) XV Rim transformation fraction in pellet (-) FPORE Fraction of fission gas atoms moved to rim gas pores (-) OPR Fraction of open porosity (-) RFGB Threshold radius of grain boundary bubble (cm)

P1 Internal pressure of intra-grain gas bubble and external pressure on the intra-grain bubble (dynecm2)

JAEA-DataCode 2013-009

- 35 -

Table 335 Variables of thermal analysis taken over to Restart calculation (35) Name Content

P2 Internal pressure of intra-grain gas bubble and external pressure on the grain boundary bubble (dynecm2)

TMDAT3(47) Volumetric strain induced by intra-grain gas bubbles () TMDAT3(49) Volumetric strain induced by grain boundary gas bubbles ()

TMDAT3(85) Number of generated fission gas atoms per unit volume of fuel (atomscm3)

TMDAT3(87) Number of generated fission gas atoms inside grain per unit volume of fuel grain (atomscm3)

TMDAT3(88) Number of generated fission gas atoms in intra-grain gas bubbles per unit volume of fuel (atomscm3)

TMDAT3(89) Number of intra-grain gas bubbles per unit volume of fuel (bubblescm3) TMDAT3(90) Number of fission gas atoms per unit area of grain boundary(atomscm2)

TMDAT3(91) Saturation (threshold) number of fission gas atoms per unit area of grain boundary (atomscm2)

TMDAT3(92) Number of gas bubbles per unit area of grain boundary (bubblescm2) TMDAT3(93) Covering fraction of grain boundary by grain boundary gas bubbles (-) TMDAT3(94) Saturation (threshold) radius of grain boundary gas bubbles (μm) RCII Initial inner radius of cladding (cm) RPOI Initial outer radius of pellet (cm) RPII Initial inner radius of pellet (cm) RCI Cladding inner radius (cm) RPO Outer radius of pellet (cm) RPI Inner radius of pellet (cm) TPSTG1 Pellet center temperature (K) CF Pellet-clad contact pressure (Pa) GAPI Initial gap width of pellet-clad (cm) GAP Pellet-clad gap width (cm) GAPO Pellet-clad gap width of previous time step (cm) GAPOO Array to store pellet-clad gap size data (cm) GHOT Pellet-clad gap width at hot stand-by (cm) TCSUF Temperature at the outer oxide surface of cladding (K) TPP1 Pellet temperature used in thermal analysis (K) TP1 Pellet temperature used in entire rod length mechanical analysis ((K) TC1 Cladding temperature (K) TCO Pellet center temperature at previous time step (K) TC Pellet center temperature (K) PGAS1 Amount of generated fission gas atoms (molcm) RGAS1 Amount of released fission gas (molcm) SIGM1 Pressure on grain boundary gas bubble (Pa) SIGA1 Pellet average internal stress (Pa) YS1 Pellet yield stress (Pa) GMIX Gap gas composition (-) GMIXO Initial gap gas composition (-) SOSW Solid swelling strain of pellet (-) URSW Gas bubble swelling strain of pellet (-) SUMSWO Radial displacement of pellet induced by swelling (cm)

JAEA-DataCode 2013-009

- 36 -

Table 335 Variables of thermal analysis taken over to Restart calculation (45) Name Content

SUMUSO Gas bubble swelling displacement of pellet at previous time step (cm) SUMUSW Gas bubble swelling displacement of pellet (cm) VGAP Space volume of P-C gap (cm3cm) VHOL Space volume of inner hole of pellet (cm3cm)

VFORM Space volumes associated with pellet shape such as dish chamfer pellet tilting etc (cm3cm)

SUMV Free space volume temperature inside fuel rod (cm3K) VOL Volume of active length part of fuel rod including internal space (m3) TPA Temperature of internal region of fuel rod (K) GMD Gas molar density at each axial segment (molm3) (=1He=2Xe) TMOL1 Molar number of gas at each axial segment (mol) (=1He=2Xe)

DZX Length of axial segment (cm) (including upper and lower plenum region)

POWER Linear heat rate (Wcm) AFIS Fission density (fissionscm3-s) AFAI Fast neutron flux (ncm2-s) AFAIT Fast neutron fluence (ncm2) TEMP Fuel( pellet cladding) temperature (K) PEX Displacement of pellet by thermal expansion (cm) PCR Displacement of pellet by creep (cm) PDN Displacement of pellet by densification (cm) PSW Displacement of pellet by swelling (cm) PRL Displacement of pellet by relocation (cm) PDS Total displacement of pellet (cm) CEX Displacement of cladding by thermal expansion (cm) CEL Elastic displacement of cladding (cm) CCR Creep displacement of cladding (cm) CDS Total displacement of cladding (cm) CFM Pellet-clad contact pressure (Pa) GAPX Pellet-clad gap width (cm)

PAS Displacement of pellet in the axial direction in the entire rod length mechanical analysis (cm)

CAS Displacement of cladding in the axial direction in the entire rod length mechanical analysis (cm)

SHFC Surface heat flux of cladding (Wcm2) SUCRP Creep displacement of pellet (cm) CCRP Creep strain displacement of cladding inner surface (cm) CCRPE Creep strain of cladding inner surface in the hoop direction (-) BD P-C bonding progress (hourMPa) BDO P-C bonding progress at previous time step (hourMPa) FDEN Pellet relative density (-)

ICLS Flag to indicate if the grain boundary bubble has made tunneling or not (=0tunneling =1not tunneling)

IGB Number of repetition of coalescence and closure of grain boundary bubbles when the bubbles make tunneling

RCIC Initial inner radius of cladding (cm)

JAEA-DataCode 2013-009

- 37 -

Table 335 Variables of thermal analysis taken over to Restart calculation (55) Name Content

RPIC Initial inner radius of pellet (cm) RPOC Initial outer radius of pellet (cm)

VCRC Relocation-induced space volume inside pellet at previous time step (cm3cm)

VCRCN Relocation-induced space volume inside pellet at current time step (cm3cm)

NPH Number of outermost element node for He release model FT Effective fluence of fast neutron (nm2) CW Cladding cold work (-) CTEMP Cladding temperature (K) RTEMP Cladding temperature changing rate (Ks) NPH Number of outermost mesh of fuel grain in He gas release model GASHE He gas partial pressure inside fuel rod (Pa) GASHEA He gas equilibrium pressure (Pa) TMLHE1 Molar number of He inside rod at previous time step (mol) TMLHE2 Molar number of He inside rod at current time step (mol) VOLHE Volume of He inside rod (cm3) HEDEN Concentration of He inside rod (atomscm3) RHOLD Nodal point radius inside grain for He diffusion calculation (cm) RHP Nodal coordinate values for He diffusion calculation (cm) HEOLD Number density of He in each nodal point inside grain (atomscm3) THALO Number of He atoms per one grain at previous time step (atoms) VOLM FEM element volume of pellet (cm3) GENEH Number of He atoms generated per one grain (atoms) DH0S Stored region of in-grain He diffusion coefficient (cm2s) DAH0S Stored region of in-grain He effective diffusion coefficient (cm2s) DBH0S Stored region of grain boundary He diffusion coefficient (cm2s) PGRH He generation rate at previous time step (atomscm3-s) PGRH2 He generation rate at current time step (atomscm3-s)

HEATM0 Initial numbers of generated He atoms in each ring element He atoms inside grain and He atoms at grain boundary (atoms)

HEATM Numbers of generated He atoms in each ring element He atoms inside grain and He atoms at grain boundary (atoms)

HEMOL0 Numbers of moles of generated He in each segment inside grain and at grain boundary at the beginning of time step (mol)

HEMOL1 Numbers of moles of generated He in each segment inside grain and at grain boundary at previous time step (mol)

HEGENE He generation density (atomscm3)

HEATMB Number of He atoms in the inside and outside regions of pellet at each segment (atoms)

HEATMB0 Initial number of He atoms in the inside and outside regions of pellet at each segment (atoms)

(5) Variables taken over in entire rod length (1-D) mechanical analysis (not name-list input parameters)

The variables which have the calculated values in the 1-D Entire Rod Length mechanical

JAEA-DataCode 2013-009

- 38 -

analysis at the last stage of Base-irradiation are listed in Table 336 Table 336 Variables taken over in ERL mechanical analysis (12)

Name Contents NR Number of elements in the radial direction of pellet and cladding KUNTS Counts of total time steps TEMPUO Upper plenum gas temperature at previous time step (K) TEMPLO Lower plenum gas temperature at previous time step (K) TBO Initial plenum gas temperature (K) TIMEOS Time at previous time step (hr) DTIMBS Time step increment at previous time step (hr) VS Fuel rod axial elongation (m) TEMPUS Upper plenum gas temperature at current time step (K) DTMPUS Upper plenum gas temperature increment (K) TEMPLS Lower plenum gas temperature at current time step (K) DTMPLS Lower plenum gas temperature increment (K) DTBOUS Difference between upper plenum gas temperature and room temperature (K) DTBOLS Difference between lower plenum gas temperature and room temperature (K) ALTSUS Thermal expansion strain of upper plenum spring (-) ALTCUS Thermal expansion strain of cladding of upper plenum (-) FWGZS Force imposed on the top end plane of upper plenum (N) FLZPS Force on lower plenum spring (N) FLZCS Force on cladding of lower plenum (N) FUZPS Upper plenum spring force (N) FUZCS Force on cladding of upper plenum (N) EPSR Relocation parameter EPSRR Relocation strain in the radial direction EPSRT Relocation strain in the circumferential direction PWEROS Linear heat rate (Wcm) BUS Segment average burnup (GJkgU) FISO Fission density (fisscm3-s) FAIS Fast neutron flux (ncm2-s) FAITS Fast neutron fluence (ncm2) DFAIS Fast neutron flux increment (ncm2-s) DFAITS Fast neutron fluence increment (ncm2) BR1S Local burnup (GJkgU) TEMPS Fuel temperature (K) DTEMPS Fuel temperature increment(K)

ICONTS P-C contact state(=0open gap =1pellet-clad bonded =2pellet-clad sliding =3 open gap but axial elongation is restricted by adjacent segment

FPRS P-C contact pressure (Pa) GAPS P-C gap width (cm) SWELS Swelling strain of pellet (-) EPSHTS Creep hardening strain at which Pughrsquos reversal occurs (-) EPSDNS Densification strain of pellet (-) PMS Direction of creep flow (=10tensile =00compressive)

IREVS In creep calculation of cladding =1 for adoption of Pughrsquos reversal =0 for non-adoption

JAEA-DataCode 2013-009

- 39 -

Table 336 Variables taken over in ERL mechanical analysis (22) Name Contents

SIGES Equivalent stress (Pa) SIGEBS Equivalent stress at previous time step (Pa) SIGYS Yield stress (Pa) EPSPS Equivalent plastic strain (-) EPSHPS Hot-pressing strain (-) EYNGS Youngrsquos modulus (Pa) EYNGBS Youngrsquos modulus at previous time step (Pa) US Node displacement (m) EPSTHS Thermal expansion strain (-) EPSCPS Creep strain at which Pughrsquos tensile reversal occurs (-) EPSCMS Creep strain at which Pughrsquos compressive reversal occurs (-) SIGS Stress (Pa) EPSCS Creep strain (-) EPSCBS Creep strain at previous time step (-) EPSHS Creep hardening strain (-) EPSS Total strain (-) EPSPVS Plastic strain (-) EPSES Elastic strain (-) EPSRLS Relocation strain (-) EPSDSS Densification + swelling strain (-) RS Ring element nodal coordinate value in the radial direction (m) IBD Flag to indicate P-C bonding state

(6) Variables taken over in 2-D local mechanical analysis when IFEMRD=0 (not name-list input parameters)

The variables which have the calculated values in the 2-D local mechanical analysis at the last stage of Base-irradiation are listed in Table 337 Table 337 Variables taken over in 2-D local mechanical analysis (12)

Name Content NOD2 Number of nodes NELM Number of elements NTEP Number of Gaussian points in the radial direction NRX Number of Gaussian points in the radial direction of pellet elements NRX1 NRX+1 ILOW Number of columns of Gaussian points in the radial direction ICOL Number of layers of Gaussian points in the axial direction NM Number of Gaussian points in the radial direction KL Number of Gaussian points in the axial direction I2 Number of pellet materials (UO2 and MOX) IFX Flag to indicate P-C contact state TEMP2 Temperature at Gaussian point in radial elements (K) EPSO2 Initial strain of element in the radial direction at Gaussian point (-) EPSTH Thermal strain in the radial direction at Gaussian point (-)

JAEA-DataCode 2013-009

- 40 -

Table 337 Variables taken over in 2-D local mechanical analysis (22) Name Content

EPSTA Thermal strain in the axial direction at Gaussian point (-) SMAX Swelling strain in the radial direction at Gaussian point (-) SWMAXI Swelling strain in the axial direction at Gaussian point (-) GRA1 Pellet grain size at Gaussian point (μm) CFU Pellet-clad contact pressure (Pa) CFV Pellet-clad frictional force in the axial direction (Pa) DELGP Pellet-clad radial gap size (cm) GAPGPX Distance between the contact pair of pellet and cladding (cm) SGN Direction of sliding VMU Frictional coefficient between pellet and cladding (-) NCNTB Table of variables of contact pairs composing gap element IALB Flag of contact state at pellet boundary NSO Contact state of the contact pair of pellet and cladding SBPON Contact force at the interface of one pellet and another (N) TU Nodal displacement (cm) XY0 Initial coordinates of nodal points (cm) EPSP Plastic strain of Gaussian point in the element (-) EPSE Elastic strain of Gaussian point in the element (-) EPSR Relocation strain of Gaussian point in the element (-) ZLOCA Information table of stressstrain etc at Gaussian points of elements IEP Flag to indicate elastic-plastic state (=0 elastic state =1plastic state) IRV YesNo flag of cladding creep reversal EPSRLI Initial relocation strains in the radial and circumferential directions of pellet (-) EPSRL Relocation strain of pellet at current time step (-) EPSGRS Upper limit of gas bubble swelling strain of pellet (-) ALC Coordinate value at the top of pellet when locking occurs (cm) EPSSWL Swelling strain of pellet (-) EPSSWS Solid swelling strain of pellet (-) EPSSWU Bubble gas swelling strain of pellet (-) EPSDEN Densification strain of pellet (-) EPSDNY Densification strain component of pellet (-) EPSSWY Swelling strain component of pellet (-) IPLIN Table of information to make shape map in 2-D mechanical analysis

IPELM Table of element number and its corresponding nodal number in 2-D mechanical analysis

JAEA-DataCode 2013-009

- 41 -

335 Explanations for sample Re-start calculations and method

(1) Explanation is given on the following Basic input data BBSd05 which is shown in

Table 338 Table 338 Basic input data set

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50 IRIM=1 RFGFAC=10

FRELOC=030 EPSRLZ=5D-3 IFSNT=2 IGRAIN=0 GR=64 GRWF=15

LBU=1 IPRO=0 R1=10 R2=10 ICAGRW=1 IHOT=1 BETAX=0002

ISPH=1 ICFL=1 IROD=0

ITIME(1)=10 GASPRN(1)=0641 PLENM(1)=8 GMIXN(11)=10 0 0 0

IFEMRD=0 IFEMOP=2 IDSELM=1 IDENSF=0 DMAX=520 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 RF=5E-5 IFSWEL=1 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100 CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10

IPTHEX=3 ATHEX=3561D-6 IRM=0 MESH=3 MOXP=0 IPLYG=1 IZYG=1

TCS=127315 IZOX=1 IST=1 ITEND=1 DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

5 3

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 025 1264 1300 005078 0947 415

111 003 0

219 009 10 00 00 00 3677 00

119

00 01 2196E+13 51315 33 1 4

09853 10044 10044 10085 09974 8

24 3000 20E+13

3560 3000 20E+13

35601 220 1210E+13

65600 220 1210E+13

65601 1758 9669E+12

9997 1758 9669E+12

99971 0 6578E+12 51315 33 1 4

10000 0 0 29815 01 1 4

09853 10044 10044 10085 09974

1000120 0 0 29815 01 1 4

09853 10044 10044 10085 09974

1000140 2 15E+13 29815 72 1 4

1039 1026 1017 0986 0932 106

1007595 20 15E+13 56095 72 1 4

1039 1026 1017 0986 0932 3

1007600 0 15E+13 56095 72 1 4

1007610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 42 -

(2) Base-calculation data before Re-start calculation (BBSd05) As shown in Table 339 Base calculation data are composed by the irradiation history

data It is important to designate ldquoIREST=4rdquo This case is run with IFEMRD=0 which

designates the 2-D local PCMI analysis concurrently with the 1-D entire rod length

mechanical analysis When ldquoIFEMRD=0rdquo is taken over to Re-start calculation both 1-D and

2-D mechanical analyses are performed

In this case no designations are given to ITIME(1)=10 GASPRN(1)=0641

PLENM(1)=8 and GMIXN(11)=10 0 0 0 Execution with ldquoTable 339 filerdquo results in a Re-start file BBSd11

Table339 Base calculation input data before Restart calculation

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GR=64 GRWF=15 LBU=1 IPRO=0 R1=10 R2=10 ICAGRW=1

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

IFEMRD=0 IFEMOP=2 IDSELM=1 IDENSF=0 DMAX=520 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 RF=5E-5 IFSWEL=1 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MESH=3 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=4 DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

5 3

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 025 1264 1300 005078 0947 415

111 003 0

219 009 10 00 00 00 3677 00

9

00 01 2196E+13 51315 33 1 4

09853 10044 10044 10085 09974 8

24 3000 20E+13

3560 3000 20E+13

35601 220 1210E+13

65600 220 1210E+13

65601 1758 9669E+12

9997 1758 9669E+12

99971 0 6578E+12 51315 33 1 4

10000 0 0 29815 01 1 4

09853 10044 10044 10085 09974

STOP

JAEA-DataCode 2013-009

- 43 -

(3) Sample test irradiation data in Re-start calculation A) A sample test irradiation data for Re-start calculation is shown in Table 3310 as BBSrd05 This case does not explicitly designates the 2-D mechanical analysis but performes both the 1-D and 2-D analyses It is important to set IRTIME=0 to perform Re-start calculation with continuous time from Base calculation At the beginning stage of Re-start calculation it is important to specify a new set of values of plenum volume gas pressure and gas composition ITIME(1)=1 GASPRN(1)=0641 PLENM(1)=8 and GMIXN(11)=10 0 0 0 Also it is important to set ldquoIREST=5rdquo to perform Re-start calculation In Table 3310 TRSGT=15 is set so that this is a normal Re-start calculation In other words number of axial segments is 5 which is identical to that of the Base calculation and performs calculation for axial segments 1 to 5

Table 3310 Test irradiation data for Restart calculation (BBSrd05)

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GRWF=15 IPRO=0 R1=10 R2=10

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

ITIME(1)=1 GASPRN(1)=0641 PLENM(1)=8 GMIXN(11)=10 0 0 0

IFEMOP=2 IDSELM=1 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=5 TRSGT=15 IWRES=0 IRTIME=0

DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

5 3

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 025 1264 1300 005078 0947 415

111 003 0

219 009 10 00 00 00 3677 00

110

1000120 0 0 29815 01 1 4

09853 10044 10044 10085 09974

1000140 2 15E+13 29815 72 1 4

1039 1026 1017 0986 0932 106

1007595 20 15E+13 56095 72 1 4

1039 1026 1017 0986 0932 3

1007600 0 15E+13 56095 72 1 4

1007610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 44 -

B) Next an example having ldquoIRTIME=1rdquo is shown in Table 3311 as BSqd05 It is

important to set IRTIME=1 to perform Re-start calculation with a new time which starts at the

beginning of Re-start calculation Similarly to Table 3310 at the beginning stage of

Re-start calculation it is important to specify a new set of values of plenum volume gas

pressure and gas composition Also Re-start calculation requires IREST=5 In Table 3311

TRSGT=1 5 is set just like Table 3310 and a normal Re-start calculation is performed for

the segments 1 to 5

Table3311 Test irradiation data for Restart calculation (BSqd05)

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GRWF=15 IPRO=0 R1=10 R2=10

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

ITIME(1)=1

GASPRN(1)=0641 PLENM(1)=8 GMIXN(11)=10 0 0 0

IFEMOP=2 IDSELM=1 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=5 TRSGT=15 IWRES=0 IRTIME=1

DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

5 3

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 025 1264 1300 005078 0947 415

111 003 0

219 009 10 00 00 00 3677 00

110

120 0 0 29815 01 1 4

09853 10044 10044 10085 09974

140 2 15E+13 29815 72 1 4

1039 1026 1017 0986 0932 106

7595 20 15E+13 56095 72 1 4

1039 1026 1017 0986 0932 3

7600 0 15E+13 56095 72 1 4

7610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 45 -

C) Next an example of input data of Re-start calculation for a short segment rod is shown in

Tables 3312 Table 3312 is the case where the third segment is used as a short test rod In

this case ldquoIREST=5rdquo and ldquoTRSGT=3rdquo are specified in the input file of Re-start calculation

Since this specifies one axial segment geometry the input data is required to match the

one-segment geometry In line with this modification of relative distribution of linear power

in the axial direction is required Also change of the objective segment No (IFEM) is

required for the 2-D local mechanical analysis It is important that IFEM (=3) which has been

specified in Base calculation be included in the range of TRSGT Similarly to Table 3310 at

the beginning stage of Re-start calculation it is important to specify a new set of values of

plenum volume gas pressure and gas composition

Table3312 Test irradiation data for Restart calculation (IBBSud05)

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GRWF=15 IPRO=0 R1=10 R2=10

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

ITIME(1)=1 GASPRN(1)=0641 PLENM(1)=2 GMIXN(11)=10 0 0 0

IFEMOP=2 IDSELM=1 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=5 TRSGT=3 IWRES=0 IRTIME=0

DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

1 1

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

111 003 0

219 009 10 00 00 00 00 00

110

1000120 0 0 29815 01 1 4

10044

1000140 2 15E+13 29815 72 1 4

1017 106

1007595 20 15E+13 56095 72 1 4

1017 3

1007600 0 15E+13 56095 72 1 4

1007610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 46 -

D) Next another example is shown in Table 3313 in which the 2nd 3rd and 4th segments are fabricated into a short test rod In this case ldquoIREST=5rdquo and ldquoTRSGT=2 4rdquo are set in the input file Accordingly this case has three axial-segment geometry so that the input data is required to match the three-segment geometry In line with this modification of relative distribution of linear power in the axial direction is required Also change of the objective segment No (IFEM) is required for the 2-D local mechanical analysis Specifically since the Base calculation has ldquoIFEM=3rdquo the Re-start calculation with IFEM=2 should be set because IFEM=3 denotes the second segment in TRSGT range ldquo2 3 4rdquo Similarly to Table 3310 at the beginning stage of Re-start calculation it is important to specify a new set of values of plenum volume gas pressure and gas composition

Table 3313 Test irradiation data for Restart calculation (BBSvd05)

BWR-type Rod BBS Case

ampINPUT IBUNP=1 IDAY=0 IRH=1 TROOM=2951 DTPL=00 ICORRO=3 PX=990

IPUGH=1 IFLX=-2 INPRD=2 RCORRO=4 DE=50

IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=2

IGRAIN=0 GRWF=15 IPRO=0 R1=10 R2=10

IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0

ITIME(1)=1 GASPRN(1)=0641 PLENM(1)=5 GMIXN(11)=10 0 0 0

IFEMOP=2 IDSELM=1 FDENSF=0

IPEXT=14 IDCNST=1 AM1=4 IPTHCN=17 A1=008

IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001

MAT3=2 FACT2=01 01 01 100 01 ICONV2=5 ICPLAS=2

ICHK=100 DDSIGE=100

CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6

IRM=0 MOXP=0 IPLYG=1 IZYG=1 TCS=127315 IZOX=1 IST=1

ITEND=1 IREST=5 TRSGT=24 IWRES=0 IRTIME=0

DDSIGE2=100 DLSIGE2=100 EFCOEF=01

IPRINT=11001 IPLOPT=1 DPBU=100

IWTHE=100190130 31 IWROD(1)=30 80 30 000100

ampEND

3 2

1 1285 1400

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

2 0 00 1264 1300 005078 0947 61625

111 003 0

219 009 10 00 00 00 00 00

110

1000120 0 0 29815 01 1 4

10044 10044 10085

1000140 2 15E+13 29815 72 1 4

1026 1017 0986 106

1007595 20 15E+13 56095 72 1 4

1026 1017 0986 3

1007600 0 15E+13 56095 72 1 4

1007610 0 15E+00 29815 01 1 0

STOP

JAEA-DataCode 2013-009

- 47 -

(4) Method to perform Re-start calculation The ft11 file taken over to Re-start calculation is generated in WrkOUTP as eg

AA1ft11 as a result of Base calculation with input file AAd05

If the input file name of Re-start calculation is BBd05 rename AA1ft11 into BBft11 and type after prompt ldquofem BB 1rdquo Then FEMAXI-7 reads BBft11 and BBd05

performs Re-start calculation and generates the output file BB1out

34 Usage of output of burning analysis code RODBURN-1 In FEMAXI to take into account the changes of some fission product elements and

power density profile of fuel pellet with burnup in the radial direction the burning analysis

code RODBURN-1 can be used as a pre-processing code Calculated results by

RODBURN-1 are compared with those of other burning analysis code in the later sections of

this manual indicating a reasonable predictability

Table 341 shows the output physical quantities and formats of RODBURN-1 which are

read by FEMAXI These data are output for all time steps between historical input points

designated in the input data to RODBURN-1 In FEMAXI linear interpolation is performed

with respect to burnup for these data obtained in each time step and the interpolated values

are used for calculations

Details of items in Table 341 are described below

341 Record No and contents

Record No 1 a heat generation density profile in the radial direction is an output at each

time step at the axial segment having maximum burnup It is assumed that changes in the

heat-generation density profile depend not on the axial position of a segment but only on

burnup Since the information on a segment with maximum burnup is output a table of

burnup vs radial heat-generation-density profile regarding the entire burnup regions

necessary can be produced after completion of the entire time step of RODBURN

Record No 2 number of axial segments is the number of divisions in the axial direction of a

fuel rod in RODBURN

Record No 3 average burnup and the amount of generated He of each axial segment are

output Record Nos 4 and 5 are used to modify history data for input data of

FEMAXI

JAEA-DataCode 2013-009

- 48 -

Record No 4 average burnup average linear heat rate and average fast neutron flux are

output

Record No 5 axial linear heat rate relative to average linear heat rate is output in order to

obtain linear heat rate and fast neutron flux of each axial segment

Record No 6 axial coordinates of each axial segment used in RODBURN

Table 341 Output variables and format of RODBURN-1 Record No

Data No Data Item Unit Format Column Note

1 1 2~11

Maxburnup Radial heat generation density profile

MWdt-U

F102 10F63

1~10 11~70 Refer to 1)

2 1 Number of axial segments I5 1~5

3

1 2~13

Average burnup Molar amount of He gas

MWdt-U Mole

F102 12E124

1~10 11~154

Refer to 1) Number of axial

segments

4

1 2 3

Average burnup Average linear heat rate

Fast neutron flux

MWdt-U Wcm

2ncm timess

F102 E124 E124

1~10 11~22 23~34

Refer to 1)

5 1~12 Axial relative power profile 12F63 1~72 Number of axial

segments

6 1~12 Axial coordinates cm 12E124 1~144 Number of axial

segments Refer to 2)

1) burnup of an axial segment 2) boundary coordinates between n-th and (n+1)th segment

342 Usage of records in FEMAXI To use data obtained from RODBURN-1 in FEMAXI the average linear power of a fuel

rod must be input into FEMAXI When the average linear power-input history is given the

average burnup at each historical point of input is calculated in FEMAXI by accumulating the

average linear power

The heat generation density profile in the radial direction in FEMAXI which is originally

calculated by RODBURN-1 can be obtained by interpolating the data with burnup in the

table of burnup vs heat generation density profile The data are prepared from the

RODBURN data group for the Record No1

JAEA-DataCode 2013-009

- 49 -

(1) Power density profile when MESH=0

In the case where pellet stack is divided into iso-volume ring elements in RODBURN-1

input the calculated results cannot directly correspond to the iso-thickness ring elements of

FEMAXI which has MESH=0 designation In this case the results of RODBURN-1 are used

in FEMAXI by volume interpolation or volume averaging

(2) Power density profile when MESH=1 2 3 or 4 (Recommended)

When MESHge1 the thermal analysis treats pellet stack as an assemblage of N=36 or

more iso-volume ring elements In this case RODBURN-1 sets N=36 or more ring elements

for pellet stack and sets the number of radial division of output file table as N

(3) Burnup profile of pellet in the radial direction

The burnup profile in the radial direction of a pellet stack obtained in RODBURN is not

forwarded to FEMAXI but an identical quantity can be obtained in FEMAXI by

accumulating the heat generation density profile over time The heat generation density is

given by a relative rate ie density ratio when the heat generation density averaged over all

the ring elements is set to 1 Accordingly assuming the density ratio of the i-th ring element in the radial direction to be Ri the burnup increment ∆Bui of this element is given by

∆ ∆Bu R Bui i= for the burnup increment ∆Bu of each time step for each segment The

burnup of each element can be obtained by integration of the burnup increment∆Bui over

time

(4) Molar amount of generated He

The molar amount of He gas is obtained in FEMAXI by interpolating the average burnup

data vs number of He moles generated with average burnup in the table which is produced

for each axial segment from the data group of the Record No 3

(5) Fast neutron flux

Among the historical data given in the input for FEMAXI the average fast neutron flux and

axial relative power ratio are corrected using data from the Record Nos4 and 5 These two

values in the axial direction are obtained by interpolating the following data with average

JAEA-DataCode 2013-009

- 50 -

burnup in FEMAXI (1) table of the average burnup vs average fast neutron flux and (2)

table of the average burnup vs relative power ratio in the axial direction both of which are

produced using data groups of the Record Nos 4 and 5

However sometimes differences happen to exist in the average linear heat rate

corresponding to the same average burnup between RODBURN output and FEMAXI input

data Therefore the difference in the average fast neutron flux is if exists corrected using

FEMFEM ROD

ROD

PP

φ φ= (A12)

and then used in FEMAXI

Here φFEM average fast neutron flux used in FEMAXI

φROD average fast neutron flux output from RODBURN

PFEM average linear heat rate input to FEMAXI

PROD average linear heat rate output from RODBURN

In order to deal with the differences if exist in the axial segment division between

RODBURN and FEMAXI a re-mesh function for the axial direction has been incorporated in

FEMAXI Namely putting a data value of the i-th segment in RODBURN as φi and that of

the (i+1)th segment as φi+1 and putting that of the j-th segment in FEMAXI as φjrsquo the axial

power profile is obtained by

( ) ( )

( )prime =minus prime + prime minus

prime minus primeminus +

minus

φφ φ

ji j i j i i

j j

Z Z Z Z

Z Z1 1

1

(A13)

and the molar amount of generated He gas is obtained by

( )( )

( )( )prime =

minus prime

minus+

prime minus

minusminus

minus ++φ φ φj

i j

i ii

j i

i ii

Z ZZ Z

Z ZZ Z

1

1 11 (A14)

Here Zi and Zj are the axial coordinates obtained from Record No 6 in RODBURN-1

and the axial coordinate in FEMAXI respectively

In RODBURN-1 pellet radius is divided into equal-volume ring elements in many cases

for the analysis of the power profile which is different from the equi-distance division by the

selection of MESH=0 Therefore the calculated values from RODBURN-1 are used by

interpolating with volume or by volume-averaging for the ring elements in FEMAXI

To avoid accumulation of errors due to the extension of burnup and interpolation

between axial coordinates a compensation processing is performed for obtained data

JAEA-DataCode 2013-009

- 51 -

343 Making input file of RODBURN-1 by using FEMAXI

In making an input file for RODBURN-1 prior to FEMAXI calculation an averaged

linear heat rate (LHR) values over representative history points are required However it is

often difficult to obtain directly the averaged LHRs from the data of time-LHR pairs or

burnup-LHR pairs of FEMAXI input file To solve this problem the following function has

been implemented in FEMAXI

First make your input file eg AAd05 of FEMAXI with IROD=1 if your rod is

PWR UO2 type If not IROD=2 3 4 or 5 in accordance with your reactor type and fuel type

Then execute FEMAXI The code will not run normally but automatically give rise to rodin

file in Wrk directory Rename rodin to AArddat and execute RODBURN

The rodin file has all that are needed to perform burning calculation of AA rod with

its history of axial distribution of linear power for every burnup stage When IRODge1 in its

input file FEMAXI calculates the linear heat rate at every axial segment along the irradiation

(burnup) history if the relative power profile data is given in FEMAXI input file for the axial

segments and generates a series of figures of linear heat rate history including the axial power

profile in ldquorodinrdquo file RODBURN utilizes this series of figures and average LHR value is

multiplied by relative axial power figure at each axial segment and burning calculation is

performed

After RODBURN calculation you have AArodex file in RODEX directory Then

modify IROD=1 to IROD=0 and put IFLX= -2 in your input file of FEMAXI Then you

can perform FEMAXI calculation with the RODBURN result

35 Usage of output of burning analysis code PLUTON By assigning name-list parameter IFLX=-1 it is possible to read the PLUTON

result file of burning calculation (refer to section 24) The FEMAXI readable file of

PLUTON can be generated as FMdat by PLUTON To feed this file into FEMAXI the file

is renamed into FMdt and stored in the directory Wrkrbout as described in section

A644 Regarding the details of the PLUTON code see the reference 24

JAEA-DataCode 2013-009

- 52 -

351 Physical quantities of PLUTON output for FEMAXI The following relationship describes the transfer of physical quantities from PLUTON to

FEMAXI

(1) Among the various calculation conditions in FEMAXI the quantities required to be

inputted to PLUTON are given below

Time Linear power distribution

Coolant water temperature Fuel composition

Void fraction of coolant water Diameter and inner diameter of the pellet

Pellet density Plant type

(2) The physical quantities read into FEMAXI among the outputs of PLUTON are given

below

Power distribution in the radial direction of the pellet

Fast-neutron flux

Burnup distribution in the radial direction of the pellet

Generated quantities of fission gas atoms Xe and Kr

352 Structure of inputoutput files of PLUTON (1) In the output files of PLUTON the average burnup average fast-neutron flux and power

density are normalized to a linear power of 100Wcm These files have a simple ASCII

format In the example shown in Table 351 lines are used to separate data In practice data

are separated by blank spaces

(2) The power density and Xe-Kr ratio are tabulated as functions of pellet radius

(3) These tables are output for each step of average burnup and various physical quantities at

the middle burnup at each step are determined by interpolating the values with burnup on the

FEMAXI side In addition in FEMAXI all the physical quantities are used by multiplying

the ratio of linear power for each segment by that for 100Wcm Tables for each burnup step

are continuous from the top to the bottom and two blank rows are used to separate each

burnup step

(4) The burnup range (BOL-EOL) and step burnup (∆B) are assigned at the input of

PLUTON The step width is small initially and becomes large in the high-burnup period

JAEA-DataCode 2013-009

- 53 -

(5) The naming convention used for output files in PLUTON is XXX-FEMdat For example

when the file name of PLUTON is BK365inp the output file name is BK365-FEMdat

Table 351 shows a simplified image of the output file format of PLUTON

- - - - - - - - Continues to the last table - - - - - - - - - - - - - - -

Table 351 Image of table structure of PLUTON

Av Burnup-1 (MWdt) 00 Fast flux-1 1564E13 (ncm2s)

Radii (mm) Power density-1 (Wcm3) XeKr Ratio 00 344E2 6875 0232 348E2 - - -

0328 - -

351E2 - - -

- - -

4639 411E2 - - -

4645 423E2 - - -

Av Burnup-1 (MWdt) 50000 Fast flux-1 1589E13 (ncm2s)

Radii (mm) Power density-1 (Wcm3) XeKr Ratio 00 344E2 6810 0232 350E2 - - -

0328 - - -

352E2 - - -

- - -

4639 428E2 - - - 4645 445E2 - - -

Av Burnup-1 (MWdt) 100000 Fast flux-1 1625E13 (ncm2s)

Radii (mm) Power density-1 (Wcm3) XeKr Ratio 00 344E2 6725 0232 351E2 - - - 0328 - - -

354E2 - - -

- - -

4639 452E2 - - - 4645 523E2 - - -

JAEA-DataCode 2013-009

- 54 -

In addition hereafter the detailed contents and format of the inputoutput files of

PLUTON are shown

【Example of Input file -1-】 Input parameters for the PLUTON code Physical Parameters ______________________________________________________________________________ List of variables Units Values ______________________________________________________________________________ FRDENS fractional fuel density na 0955 Bustep burnup power-step increment GWdt 020 Burnup upper burnup limit GWdt 600 EnriU5 initial enrichment with U-235 fraction 0045 CDiam1 the outer clad diameter cm 1430 CDiam2 the inner clad diameter cm 1267 FDiam1 the outer fuel diameter cm 1237 FDiam2 the inner fuel diameter cm 00 WEPITH 0304 - PWRUO2 0366 - PWRMOX 018 WWERUO2 0307 WFast 2010 - PWRUO2 2390 - PWRMOX 1514 TWater water temperature K 560 DWater water density at lower end plug gcc 0860 Vratio fuel to water ratio by volume NA 0627 VVoids void fraction NA 0350 TFuelC fuel temperature in resonant region C-degree 550 QLLBOL BOL reference LHGR wcm 2500 ______________________________________________________________________________ WtThor thorium content wt fraction fraction 00 ______________________________________________________________________________ ContPu plutonium content wt frac 0000 WtSPOT wt of Pu-spots in matrix wt frac 0000 SpDIAM average size of Pu-rich particles micron 500 SPOTU8 fraction of uranium in Pu-spots fraction 0750 PuFrac239 fraction of Pu-239 in total Pu fraction 0681 PuFrac240 fraction of Pu-240 in total Pu fraction 0218 PuFrac241 fraction of Pu-241 in total Pu fraction 0073 Pufrac242 fraction of Pu-242 in total Pu fraction 0028 ______________________________________________________________________________ ContGd content of Gadolinium Oxide Gd2O3 wt frac 0000 GdX154 fraction of Gd-154 isotope 213 GdX155 fraction of Gd-155 isotope 1461 GdX156 fraction of Gd-156 isotope 2034 GdX157 fraction of Gd-157 isotope 1565 GdX158 fraction of Gd-158 isotope 2500 GdX159 fraction of Gd-159 isotope 0000 GdX160 fraction of Gd-160 isotope 2227 ______________________________________________________________________________ NRADI number of points in radial mesh layout 101 NRADIF number of radial points in output power profile 25 iMeshF index of mesh point layout in output power profile -1 ifFEMF index of FEMAXI-readable output format 1 ifRESI 0 = classical formular gt 0 Egiazarovs formular 1 ifEDGE 0 for volume 1 - for rim region 0 iMeshL -1 iPlant =1 (PWR) =2 (BWR) =3 (HBWR) =4 (Riso DR3) 2 ifPLUT =0 local calculations gt 0 full-scale calculations 0 ifREIR =0 no re-irradiation ifREIR gt 0 if re-irradiation 0 ifDEPL Print out index for Xe amp Kr data 1 ifPOIS Print index for poisoning FP (C=1 W=2 Y=3) 1 inPOIS PuMOX index for poisoning FP (M=1 S=2 A=3) 1 ifCLAD Cladding type 2 iQUICK = 0 for quick succession gt 0 for full succession 0 iTRANS = 0 simple TUR-group gt 0 for full TUR-group 0 inTRUG Print index for TU-Group (M=1 S=2 A=3) 3 ______________________________________________________________________________ FLARCRP BWRRp60dat FLARCPU BWRBu60dat

JAEA-DataCode 2013-009

- 55 -

FLARCBU BWRPu60dat FLPOISS BWRPs60dat FLPOISR BWRPr60dat FEMFORM FEMAXI-readable format BWRFM60dat ______________________________________________________________________________ MODELOP default options ______________________________________________________________________________

【Example output file corresponding to the example input -1-】 --------------------------------------- ------------------------------- ------------------------------- ------ SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 0 1000 2000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 1724E+13 1756E+13 1769E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 6635 6675 6714 3 --------------------------------------- ------------------------------- ------------------------------ ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0880 000 24776 3723 0874 087 24816 3698 0874 175 24858 3671 1 0245 0888 000 24775 3723 0882 088 24814 3698 0882 176 24857 3671 2 0316 0898 000 24773 3724 0893 089 24812 3699 0893 178 24855 3672 3 0374 0907 000 24771 3725 0902 090 24811 3700 0902 180 24853 3672 4 0424 0915 000 24769 3726 0911 091 24809 3700 0910 182 24852 3673 5 0469 0926 000 24767 3726 0922 092 24807 3701 0921 184 24851 3673 6 0510 0935 000 24766 3727 0931 093 24806 3702 0930 186 24849 3673 7 0548 0945 000 24764 3728 0941 094 24804 3702 0940 188 24848 3674 8 0583 0954 000 24762 3728 0951 095 24803 3703 0949 190 24847 3674 9 0616 0964 000 24761 3729 0961 096 24801 3703 0959 192 24845 3675 10 0648 0974 000 24759 3730 0971 097 24800 3704 0969 194 24844 3675 11 0678 0983 000 24757 3730 0981 098 24798 3704 0978 196 24843 3675 12 0707 0993 000 24756 3731 0991 099 24797 3705 0988 198 24842 3676 13 0735 1003 000 24754 3732 1001 100 24796 3705 0998 200 24841 3676 14 0762 1013 000 24753 3732 1012 101 24795 3706 1009 202 24841 3676 15 0787 1023 000 24752 3733 1022 102 24794 3706 1019 204 24840 3676 16 0812 1034 000 24750 3734 1033 103 24793 3706 1030 206 24841 3675 17 0837 1045 000 24749 3734 1045 104 24794 3706 1042 208 24842 3674 18 0860 1056 000 24749 3735 1057 106 24795 3706 1054 211 24845 3673 19 0883 1068 000 24748 3736 1070 107 24797 3705 1068 213 24851 3670 20 0906 1082 000 24748 3737 1085 108 24802 3703 1084 216 24860 3665 21 0927 1097 000 24750 3738 1103 110 24810 3700 1104 220 24877 3658 22 0949 1117 000 24753 3740 1127 112 24825 3694 1132 225 24904 3644 23 0970 1143 000 24759 3742 1161 115 24853 3684 1174 232 24955 3620 24 0990 1189 000 24773 3747 1226 121 24918 3658 1257 245 25066 3565 25 --------------------------------------- ------------------------------- ------------------------------- --------------------------------------- ------------------------------- ------------------------------- ----- SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 3000 4000 5000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 1784E+13 1799E+13 1816E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 6752 6790 6827 3 --------------------------------------- ------------------------------- ------------------------------- ----- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0875 262 24898 3645 0875 349 24937 3619 0876 436 24975 3594 1 0245 0882 264 24897 3645 0883 352 24936 3619 0884 440 24974 3594 2 0316 0893 267 24896 3645 0893 356 24935 3619 0893 445 24973 3594 3 0374 0902 270 24894 3646 0902 360 24934 3620 0902 450 24972 3595 4 0424 0910 273 24893 3646 0910 363 24933 3620 0910 454 24971 3594 5 0469 0920 276 24892 3646 0920 367 24932 3620 0920 459 24970 3594 6 0510 0929 279 24891 3646 0929 371 24931 3620 0928 464 24969 3594 7 0548 0939 281 24890 3647 0938 375 24930 3620 0937 468 24968 3594 8 0583 0948 284 24889 3647 0947 379 24929 3620 0946 473 24968 3594 9 0616 0957 287 24887 3647 0956 383 24928 3620 0955 478 24967 3594 10

JAEA-DataCode 2013-009

- 56 -

0648 0967 290 24886 3647 0965 386 24927 3620 0964 482 24966 3594 11 0678 0976 293 24886 3647 0974 390 24926 3620 0973 487 24966 3594 12 0707 0986 296 24885 3647 0984 394 24926 3620 0982 492 24966 3594 13 0735 0996 299 24884 3647 0993 398 24926 3620 0991 497 24966 3593 14 0762 1006 302 24884 3647 1003 402 24926 3619 1001 502 24967 3592 15 0787 1016 305 24885 3647 1013 406 24927 3618 1011 507 24968 3591 16 0812 1027 309 24886 3646 1024 411 24930 3617 1021 513 24971 3589 17 0837 1039 312 24889 3644 1036 415 24934 3614 1033 518 24976 3586 18 0860 1051 316 24894 3641 1049 420 24940 3611 1046 525 24984 3581 19 0883 1066 320 24902 3637 1063 426 24951 3604 1061 532 24998 3573 20 0906 1083 324 24916 3629 1082 432 24969 3595 1080 540 25019 3561 21 0927 1105 330 24939 3617 1106 440 24998 3579 1106 550 25054 3542 22 0949 1136 338 24978 3597 1140 451 25047 3552 1144 565 25112 3509 23 0970 1185 349 25047 3561 1196 468 25133 3505 1206 588 25211 3453 24 0990 1286 372 25195 3482 1313 502 25309 3406 1338 634 25411 3336 25 --------------------------------------- ------------------------------- ------------------------------- ---- --------------------------------------- ------------------------------- ------------------------------ ------ SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 6000 7000 8000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 1832E+13 1850E+13 1868E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 6863 6899 6935 3 --------------------------------------- ------------------------------- ------------------------------ ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0877 523 25011 3570 0878 611 25046 3547 0880 698 25080 3523 1 0245 0885 528 25010 3570 0886 616 25045 3546 0887 704 25079 3523 2 0316 0894 534 25009 3570 0895 623 25044 3546 0896 712 25078 3523 3 0374 0902 540 25008 3570 0903 629 25044 3546 0903 719 25078 3522 4 0424 0910 544 25008 3570 0910 635 25043 3546 0911 725 25078 3522 5 0469 0919 551 25007 3570 0919 642 25043 3545 0919 733 25077 3522 6 0510 0928 556 25006 3569 0928 648 25042 3545 0927 741 25077 3521 7 0548 0936 562 25006 3569 0936 655 25042 3545 0935 748 25076 3521 8 0583 0945 567 25005 3569 0944 661 25041 3545 0943 755 25076 3520 9 0616 0954 573 25004 3569 0952 667 25041 3544 0951 762 25076 3520 10 0648 0962 578 25004 3569 0961 674 25040 3544 0959 769 25075 3520 11 0678 0971 584 25004 3568 0969 680 25040 3543 0968 777 25075 3519 12 0707 0980 590 25004 3568 0978 687 25040 3543 0976 784 25076 3518 13 0735 0989 596 25004 3567 0987 694 25041 3542 0985 792 25077 3517 14 0762 0998 601 25005 3566 0996 701 25043 3540 0993 800 25079 3515 15 0787 1008 608 25008 3564 1005 708 25045 3538 1003 808 25082 3513 16 0812 1019 614 25011 3562 1016 715 25050 3535 1013 816 25087 3509 17 0837 1030 621 25017 3558 1027 723 25057 3531 1025 825 25095 3504 18 0860 1043 628 25027 3552 1041 732 25068 3524 1038 835 25107 3496 19 0883 1059 637 25042 3543 1057 742 25085 3513 1054 847 25127 3484 20 0906 1079 647 25067 3529 1078 755 25113 3497 1076 862 25157 3466 21 0927 1106 661 25107 3505 1107 771 25158 3470 1107 881 25206 3436 22 0949 1147 679 25173 3468 1151 794 25230 3428 1154 908 25285 3389 23 0970 1215 708 25284 3402 1224 830 25352 3354 1233 952 25416 3308 24 0990 1362 769 25503 3270 1385 906 25586 3209 1407 1045 25661 3151 25 --------------------------------------- ------------------------------- ------------------------------ ------ --------------------------------------- ------------------------------- ------------------------------ ------ SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 9000 10000 20000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 1888E+13 1907E+13 2146E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 6971 7005 7344 3 --------------------------------------- ------------------------------- ------------------------------ ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0881 786 25113 3501 0883 873 25144 3478 0900 1757 25421 3261 1 0245 0888 792 25112 3500 0889 881 25144 3478 0904 1770 25422 3259 2 0316 0896 801 25112 3500 0897 890 25144 3477 0909 1786 25422 3257 3

JAEA-DataCode 2013-009

- 57 -

0374 0904 809 25111 3499 0905 899 25143 3476 0914 1801 25422 3255 4 0424 0911 816 25111 3499 0911 906 25143 3476 0919 1814 25423 3253 5 0469 0920 825 25111 3498 0920 916 25143 3475 0924 1830 25424 3251 6 0510 0927 833 25110 3498 0927 925 25143 3474 0929 1845 25424 3249 7 0548 0935 841 25110 3497 0935 934 25143 3474 0933 1860 25425 3247 8 0583 0943 849 25110 3497 0942 942 25142 3473 0938 1874 25425 3245 9 0616 0950 857 25109 3496 0950 951 25142 3473 0943 1889 25425 3243 10 0648 0958 865 25109 3495 0957 960 25142 3472 0947 1904 25426 3241 11 0678 0966 873 25110 3495 0965 969 25143 3471 0952 1919 25428 3238 12 0707 0974 881 25110 3494 0972 978 25143 3469 0957 1934 25430 3235 13 0735 0983 890 25111 3492 0981 987 25145 3468 0963 1950 25433 3231 14 0762 0991 898 25114 3490 0989 996 25147 3466 0969 1967 25437 3226 15 0787 1000 907 25117 3488 0998 1006 25151 3463 0976 1985 25444 3220 16 0812 1010 917 25122 3484 1008 1017 25157 3458 0985 2004 25454 3212 17 0837 1022 927 25131 3478 1019 1028 25167 3452 0995 2027 25470 3200 18 0860 1035 938 25145 3469 1033 1041 25181 3442 1010 2053 25493 3182 19 0883 1052 952 25166 3456 1050 1056 25204 3428 1030 2087 25528 3157 20 0906 1075 969 25200 3435 1073 1075 25240 3405 1060 2133 25581 3119 21 0927 1107 991 25252 3403 1107 1101 25297 3370 1106 2198 25661 3063 22 0949 1156 1023 25337 3351 1159 1138 25386 3314 1180 2299 25779 2978 23 0970 1241 1075 25475 3263 1249 1199 25531 3220 1310 2470 25957 2848 24 0990 1427 1186 25731 3096 1446 1329 25794 3045 1590 2842 26235 2637 25 --------------------------------------- ------------------------------- ------------------------------ ------ --------------------------------------- ------------------------------- ------------------------------ ------ SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS 30000 40000 50000 3 FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0 2456E+13 2830E+13 3243E+13 3 SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0 7681 8037 8419 3 --------------------------------------- ------------------------------- ------------------------------ ------ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --------------------------------------- ------------------------------- ------------------------------ ------ Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS relat Relative GWdtM Relative GWdtM Relative GWdtM 25 --------------------------------------- ------------------------------- ------------------------------ ------ 0141 0915 2655 25644 3042 0926 3566 25845 2802 0930 4485 26034 2550 1 0245 0918 2671 25645 3039 0927 3583 25846 2797 0929 4502 26036 2545 2 0316 0920 2691 25646 3035 0927 3605 25848 2791 0929 4524 26040 2537 3 0374 0923 2710 25647 3031 0928 3624 25850 2786 0928 4543 26043 2530 4 0424 0925 2726 25649 3027 0929 3642 25852 2781 0928 4561 26045 2524 5 0469 0928 2747 25650 3023 0929 3664 25854 2775 0927 4583 26048 2517 6 0510 0930 2765 25651 3020 0930 3683 25856 2769 0926 4601 26051 2510 7 0548 0933 2782 25652 3016 0930 3702 25858 2764 0925 4620 26054 2503 8 0583 0935 2800 25653 3012 0930 3721 25860 2758 0924 4639 26057 2497 9 0616 0937 2818 25654 3009 0931 3741 25862 2753 0924 4658 26061 2489 10 0648 0939 2837 25656 3004 0931 3760 25865 2747 0924 4678 26065 2482 11 0678 0942 2856 25658 3000 0932 3781 25868 2740 0925 4699 26071 2473 12 0707 0945 2875 25661 2994 0934 3802 25873 2732 0926 4722 26078 2464 13 0735 0949 2895 25665 2988 0936 3825 25879 2724 0929 4748 26087 2454 14 0762 0953 2917 25672 2981 0940 3851 25887 2714 0933 4777 26099 2442 15 0787 0959 2941 25681 2971 0945 3880 25899 2702 0940 4812 26115 2428 16 0812 0966 2968 25694 2959 0953 3915 25915 2687 0951 4856 26136 2410 17 0837 0977 3001 25713 2943 0965 3959 25939 2667 0967 4913 26166 2387 18 0860 0993 3043 25742 2919 0983 4017 25972 2639 0991 4992 26206 2357 19 0883 1016 3099 25784 2887 1010 4098 26020 2602 1028 5105 26260 2319 20 0906 1052 3177 25846 2840 1053 4215 26087 2551 1083 5269 26333 2268 21 0927 1108 3292 25936 2772 1120 4391 26181 2481 1165 5520 26427 2203 22 0949 1199 3475 26064 2676 1227 4673 26309 2387 1286 5916 26548 2119 23 0970 1356 3790 26243 2540 1406 5154 26477 2261 1382 6557 26699 2016 24 0990 1679 4463 26501 2339 1682 6141 26706 2090 1527 7715 26888 1885 25 --------------------------------------- ------------------------------- ------------------------------ ------

JAEA-DataCode 2013-009

- 58 -

--------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 60000 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 3637E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 8822 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0930 5407 26213 2310 1 0245 0929 5423 26217 2303 2 0316 0928 5444 26221 2295 3 0374 0926 5463 26224 2288 4 0424 0925 5479 26227 2282 5 0469 0924 5499 26231 2274 6 0510 0923 5517 26234 2267 7 0548 0922 5535 26239 2260 8 0583 0922 5553 26243 2252 9 0616 0922 5572 26249 2245 10 0648 0923 5593 26256 2236 11 0678 0925 5615 26264 2227 12 0707 0928 5640 26274 2217 13 0735 0934 5669 26287 2206 14 0762 0941 5705 26303 2192 15 0787 0953 5749 26324 2177 16 0812 0970 5806 26352 2158 17 0837 0995 5884 26389 2134 18 0860 1027 5992 26435 2105 19 0883 1056 6145 26495 2069 20 0906 1092 6363 26571 2024 21 0927 1147 6680 26665 1968 22 0949 1226 7155 26775 1902 23 0970 1340 7893 26897 1827 24 0990 1513 9214 27028 1742 25 --------------------------------------- --------

JAEA-DataCode 2013-009

- 59 -

【Example of input file -2-】 Inputs for FK-1 8x8BJ (Step I) Physical Parameters ______________________________________________________________________________ List of variables Units Values ______________________________________________________________________________ FRDENS fractional fuel density na 095 Bustep burnup power-step increment GWdt 020 Burnup burnup limit GWdt 4500 EnriU5 initial enrichment with U-235 fraction 0039 CDiam1 the outer clad diameter cm 1230 CDiam2 the inner clad diameter cm 1068 FDiam1 the outer fuel diameter cm 1044 FDiam2 the inner fuel diameter cm 000 WEPITH 0304 - PWRUO2 0366 - PWRMOX 018 WWERUO2 0307 WFast 2010 - PWRUO2 2390 - PWRMOX 1514 TWater water temperature K 560 DWater water density at lower end plug gcc 0860 Vratio fuel to water ratio by volume NA 0627 VVoids void fraction NA 0500 TFuelC fuel temperature in resonant region C-degree 550 QLLBOL BOL reference LHGR wcm 2300 ______________________________________________________________________________ WtThor thorium content wt fraction fraction 00 ______________________________________________________________________________ ContPu plutonium content wt frac 0000 WtSPOT wt of Pu-spots in matrix wt frac 0000 SpDIAM average size of Pu-rich particles micron 500 SPOTU8 fraction of uranium in Pu-spots fraction 0750 PuFrac239 fraction of Pu-239 in total Pu fraction 0681 PuFrac240 fraction of Pu-240 in total Pu fraction 0218 PuFrac241 fraction of Pu-241 in total Pu fraction 0073 Pufrac242 fraction of Pu-242 in total Pu fraction 0028 ______________________________________________________________________________ ContGd content of Gadolinium Oxide Gd2O3 wt frac 0000 GdX154 fraction of Gd-154 isotope 213 GdX155 fraction of Gd-155 isotope 1461 GdX156 fraction of Gd-156 isotope 2034 GdX157 fraction of Gd-157 isotope 1565 GdX158 fraction of Gd-158 isotope 2500 GdX159 fraction of Gd-159 isotope 0000 GdX160 fraction of Gd-160 isotope 2227 ______________________________________________________________________________ NRADI number of points in radial mesh layout 101 NRADIF number of radial points in output power profile 25 iMeshF index of mesh point layout in output power profile -1 ifFEMF index of FEMAXI-readable output format 1 ifRESI 0 = classical formular gt 0 Egiazarovs formular 1 ifEDGE 0 for volume 1 - for rim region 0 iMeshL -1 iPlant =1 (PWR) =2 (BWR) =3 (HBWR) =4 (Riso DR3) 2 ifPLUT =0 burnup calculations gt 0 TIME-POWER calculations 1 ifREIR =0 no re-irradiation ifREIR gt 0 if re-irradiation 0 ifDEPL Print out index for Xe amp Kr data 0 ifPOIS Print index for poisoning FP (C=1 W=2 Y=3) 0 inPOIS PuMOX index for poisoning FP (M=1 S=2 A=3) 0 ifCLAD Cladding type 2 iQUICK = 0 for quick succession gt 0 for full succession 0 iTRANS = 0 simple TUR-group gt 0 for full TUR-group 0 inTRUG Print index for TU-Group (M=1 S=2 A=3) 3 ______________________________________________________________________________ FLARCRP FK1_rpdat FLARCPU FK1_pudat FLARCBU FK1_budat FLPOISS FK1_Psdat FLPOISR FK1_Prdat FEMFORM FEMAXI-readable format FK1_FMdat ______________________________________________________________________________ MODELOP DEFAULT OPTIONS ______________________________________________________________________________

-Continues to next pagerarr

JAEA-DataCode 2013-009

- 60 -

Table 2 Design parameters FK-1 commercial base-irradiation ============================================================================== PARAMETER UNITS VALUES ______________________________________________________________________________ CLADmm Total Fuel Rod Length mm 39100 FUELmm Active Fuel Stack Length mm 38100 SYSMPa System pressure MPa 730 VELOCI Coolant velocity ms 252 DEPASS Passing diameter cm 1473 ACOREm Active core m 450 ifCLNT Index of Coolant (LW or HW) LW ifCIRC Index of Circulation (FC or NC) FC ------------------------------------------------------------------------------ NNODES Number of axial nodes in fuel rod representation 0 NCROSS Total number of specified cross-sections 0 ============================================================================== OUTPUT OPTIONS iMeshP Mesh poits layout in step-by-step output file -1 NMESHP Number of radial zones in step-by-step output file 25 iPRNTP Print out option for step-by-step output file On ============================================================================== RE-IRRADIATION OFF ============================================================================== Table 3 IRRADIATION HISTORY FK-1 ============================================================================= ns TIME | Linear Heat | Coolant | RES | FAST | REACTOR | Rate | temperature | factor | factor | index |----------------|---------------| | | iREIRR | QL Type | Inlet Delta | | | ----------------|----------------|---------------| | | [1]| EFPDs | Wcm | C - degree | | | ----------------------------------------------------------------------------- (1) (2) (3) (4) (5) (6) (7) (8) (9) ----------------------------------------------------------------------------- 0 0 20357 L 2780 80 0307 1514 0 1 377 20357 - - - - - 0 2 8651 20357 - - - - - 0 3 16926 20357 - - - - - 0 4 25200 20357 - - - - - 0 5 25536 22847 - - - - - 0 6 36457 22847 - - - - - 0 7 47378 22847 - - - - - 0 8 58300 22847 - - - - - 0 9 58656 21573 - - - - - 0 10 70704 21573 - - - - - 0 11 82752 21573 - - - - - 0 12 94800 21573 - - - - - 0 13 95235 17620 - - - - - 0 14 107190 17620 - - - - - 0 15 119145 17620 - - - - - 0 16 131100 17620 - - - - - 0 17 131487 19811 - - - - - 0 18 144191 19811 - - - - - 0 19 156895 19811 - - - - - 0 20 169600 19811 - - - - - 0 ============================================================================= ampstop ampStop ampSTOP

JAEA-DataCode 2013-009

- 61 -

【Output file corresponding to the input file -2-】 --------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 0 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 2865E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 6664 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0940 000 24771 3711 1 0245 0944 000 24771 3711 2 0316 0949 000 24770 3712 3 0374 0953 000 24769 3712 4 0424 0957 000 24768 3712 5 0469 0962 000 24767 3713 6 0510 0966 000 24766 3713 7 0548 0970 000 24765 3713 8 0583 0975 000 24764 3714 9 0616 0979 000 24764 3714 10 0648 0984 000 24763 3714 11 0678 0988 000 24762 3715 12 0707 0993 000 24761 3715 13 0735 0997 000 24761 3716 14 0762 1002 000 24760 3716 15 0787 1007 000 24759 3716 16 0812 1013 000 24759 3717 17 0837 1019 000 24759 3717 18 0860 1025 000 24759 3718 19 0883 1033 000 24760 3719 20 0906 1041 000 24761 3720 21 0927 1053 000 24764 3721 22 0949 1068 000 24768 3723 23 0970 1089 000 24776 3726 24 0990 1129 000 24791 3730 25 --------------------------------------- -------- --------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 2330 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 2947E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 6777 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0933 217 24897 3630 1 0245 0937 218 24897 3631 2 0316 0942 220 24896 3631 3 0374 0946 221 24895 3631 4 0424 0950 221 24895 3631 5 0469 0955 223 24894 3631 6 0510 0959 224 24893 3631 7 0548 0964 225 24893 3632 8 0583 0968 226 24892 3632 9 0616 0973 227 24892 3632 10 0648 0977 228 24892 3632 11 0678 0982 229 24891 3632 12 0707 0987 230 24891 3632 13 0735 0992 231 24892 3631 14 0762 0997 232 24893 3631 15 0787 1002 234 24894 3630 16 0812 1009 235 24897 3629 17 0837 1016 237 24901 3627 18 0860 1024 238 24907 3624 19 0883 1034 240 24916 3620 20 0906 1046 243 24930 3613 21 0927 1063 246 24951 3604 22 0949 1087 251 24983 3588 23 0970 1125 258 25037 3563 24 0990 1199 271 25144 3511 25 --------------------------------------- --------

Skipped to the last part rarr

JAEA-DataCode 2013-009

- 62 -

--------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 42434 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 4852E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 8508 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0924 3902 26082 2521 1 0245 0925 3911 26084 2518 2 0316 0925 3921 26085 2515 3 0374 0925 3930 26085 2512 4 0424 0925 3937 26086 2509 5 0469 0925 3947 26087 2506 6 0510 0925 3956 26088 2503 7 0548 0926 3965 26090 2500 8 0583 0926 3976 26092 2496 9 0616 0927 3986 26094 2492 10 0648 0929 3998 26097 2488 11 0678 0931 4011 26101 2483 12 0707 0934 4026 26106 2477 13 0735 0938 4044 26114 2470 14 0762 0943 4065 26123 2461 15 0787 0951 4093 26136 2450 16 0812 0962 4128 26154 2436 17 0837 0978 4175 26178 2417 18 0860 1000 4240 26210 2393 19 0883 1031 4328 26252 2362 20 0906 1075 4454 26308 2320 21 0927 1139 4638 26382 2267 22 0949 1234 4914 26476 2198 23 0970 1379 5355 26598 2110 24 0990 1569 6183 26763 1991 25 --------------------------------------- -------- --------------------------------------- -------- SECTION-AVERAGE BURNUP MWdtM RECORDS 45764 1 FAST FLUX at LHGR = 100 Wcm ncm^2s 0 5054E+13 1 SECTION AVERAGE Xe-to-Kr RATIO 0 8656 1 --------------------------------------- -------- 1 2 3 4 5 6 --------------------------------------- -------- Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS relat Relative GWdtM 25 --------------------------------------- -------- 0141 0923 4207 26144 2436 1 0245 0924 4215 26145 2433 2 0316 0924 4226 26146 2429 3 0374 0923 4235 26147 2426 4 0424 0923 4242 26148 2424 5 0469 0923 4252 26149 2420 6 0510 0924 4261 26150 2417 7 0548 0924 4271 26152 2414 8 0583 0925 4281 26154 2410 9 0616 0926 4292 26157 2406 10 0648 0927 4304 26160 2401 11 0678 0929 4318 26165 2396 12 0707 0932 4334 26170 2390 13 0735 0937 4353 26178 2383 14 0762 0943 4376 26188 2374 15 0787 0951 4407 26202 2363 16 0812 0963 4446 26220 2348 17 0837 0980 4499 26245 2330 18 0860 1003 4570 26278 2306 19 0883 1036 4670 26321 2275 20 0906 1083 4811 26377 2235 21 0927 1150 5015 26449 2184 22 0949 1248 5323 26541 2119 23 0970 1391 5812 26658 2037 24 0990 1499 6688 26816 1927 25 --------------------------------------- --------

JAEA-DataCode 2013-009

- 63 -

353 Contents read by FEMAXI code

A handling method of physical quantities from PLUTON-PC read by FEMAXI is

explained

(1) Fast-neutron flux Since the value normalized to a linear power of 100Wcm is given as a function of

average burnup for fast neutrons the standard fast neutron flux is calculated using average

burnup and average linear power for each input time step and this result is given as the

fast-neutron flux for each input time step

(2) Radial power density distribution burnup distribution and generation of Xe-Kr These physical quantities represent the distributions in the radial direction of the pellet

the handling method differs depending on the pellet ring element number option (MESH) in

the thermal calculation of FEMAXI

A) When MESH=0

In this case the pellet is divided into 10 equal-volume ring elements Thus on the basis of

the output file table of PLUTON-PC (equal-volume element condition) the power density in

FEMAXI is calculated by multiplying the power density which is assigned to ring elements in

FEMAXI from the PLUTON-PC table by the ring volume of PLUTON-PC and by dividing

the result by the ring volume of FEMAXI See Fig351 and Table 352 When several

rings of PLUTON-PC correspond to the ring of FEMAXI the power density distribution is

calculated by volume-averaging each ring

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16

Radial element of PLUTON

Radial element of FEMAXI (MESH=0)

Fig351 An example of calculating the power density profile for FEMAXI from PLUTON result when MESH=0 If plural ring elements of PLUTON correspond to one single ring element of FEMAXI averaging over the ring elements is performed to obtain the power density of one element in FEMAXI

JAEA-DataCode 2013-009

- 64 -

Table 352 An example of radial profile conversion from PLUTON to FEMAXI in the case of MESH=0 (Note When plural ring elements of PLUTON correspond to a ring of

FEMAXI volume-averaging is performed)

PLUTON FEMAXI 1 rarr 1 1 rarr 2

1 2 rarr 3 2 rarr 4 3 rarr 5

4 5 rarr 6 5 6 rarr 7

7 8 9 rarr 8 9 10 11 12 rarr 9

12 13 14 15 16 rarr 10

B) When MESH=1 In this case the pellet stack of each axial segment is divided into 100 equal-volume ring

elements Therefore it is necessary to set the number of divisions in the radial direction

NRADIF of the PLUTON output file table as 100 In examples 1 and 2 of the input files of

PLUTON NRADIF=25 is adopted to simplify the appearance of the output file

Here the burnup distribution calculated in PLUTON is not used in FEMAXI because the

power density distribution is passed onto FEMAXI However since the local burnup is

calculated from the power history and density distribution in the radial direction in FEMAXI

the burnup distribution in FEMAXI is essentially an identical one to that obtained by

PLUTON

C) When MESH≧1 (Recommended)

When MESHge1 the pellet stack of each segment is divided into N ie 36 or more

equal-volume ring elements Accordingly it is necessary to match the number of radial

division NRADIF of output table of PLUTON-PC to N+1 because PLUTON-PC outputs the

values at the boundary of ring elements To obtain the average value in each ring element

from these N+1 boundary values it is necessary to make an average of the two values at the

boundaries of each element This averaging calculation is done manually In the example

input files ndashEx1- and ndashEx2- for PLUTON-PC NRADIF=25 is set for simplicity of output

file image Here the burnup profile obtained by PLUTON-PC is not used in FEMAXI

because FEMAXI calculates the burnup profile internally by integrating the power density

JAEA-DataCode 2013-009

- 65 -

profile fed from PLUTON-PC or other burning analysis code with time

354 Output file reading function of FEMAXI

It is important in the data reading processing in PLUTON to grasp the record numbers

written horizontally and the radial mesh numbers See Fig352 The horizontal record

number is determined by the value in column [A] The system reads the values encircled by

the mark as irec irec2 and irec3 from the left-hand side of column [A] The following is an

example for the case of three horizontal records

The program reads the section marked [A] into 120 columns and the locations marked by

correspond to columns 47 80 and 113 The value at each location is stored in variables irec

irec2 and irec3 respectively By the combination of these variables the number of records

written horizontally is determined When the combinations of irec irec2 and irec3 in the IF

statement are 1 0 0 0 2 0 and 0 0 3 the program is designed to read the record numbers 1

2 and 3 respectively

Upon the determination of horizontal record numbers the program reads the mesh number

in the radial direction of [B] stores it in variable imax and performs the reading process on

the basis of the number of meshes in the radial direction The data created by the process up to

this point is designated a group of data the process continues until the data is depleted --------------------------------------- ------------------------------- ------------------------------- --------

SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS

0 1000 2000 3

FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0

1724E+13 1756E+13 1769E+13 3

SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0

6635 6675 6714 3

--------------------------------------- ------------------------------- ------------------------------- --------

1 2 3 4 5 6 7 8 9 10 11 12 13 14

--------------------------------------- ------------------------------- ------------------------------- --------

Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS

relat Relative GWdtM Relative GWdtM Relative GWdtM 25

--------------------------------------- ------------------------------- ------------------------------- --------

0141 0880 000 24776 3723 0874 087 24816 3698 0874 175 24858 3671 1

0245 0888 000 24775 3723 0882 088 24814 3698 0882 176 24857 3671 2

0316 0898 000 24773 3724 0893 089 24812 3699 0893 178 24855 3672 3

0970 1143 000 24759 3742 1161 115 24853 3684 1174 232 24955 3620 24

0990 1189 000 24773 3747 1226 121 24918 3658 1257 245 25066 3565 25

--------------------------------------- ------------------------------- ------------------------------- --------

1 2 3

Fig352 Representative output image of PLUTON

larr[A]

larr[B]

JAEA-DataCode 2013-009

- 66 -

Table 353 shows the variable read in the program Figures 353 and 354 show the

correspondence between the locations of variables read and the output of the reading program

Table 353 Variables under which PLUTON data are stored x is total number of data

Variables to be stored During writing 1 bu(100) bu(x) 2 irec irec(x) 3 hgr(100) lhgr(x)larrreal declaration 4 fflux(100) f_flux(x) 5 xekr_r(100) xekr_r(x) 6 imax imax 7 radr(100) rad_r(imax) 8 fdr(100100) fdr(ximax) 9 bur(100100) bur(ximax)

--------------------------------------- --------

SECTION-AVERAGE BURNUP MWdtM RECORDS

0 1

FAST FLUX at LHGR = 100 Wcm ncm^2s 0

2865E+13 1

SECTION AVERAGE Xe-to-Kr RATIO 0

6664 1

--------------------------------------- --------

1 2 3 4 5 6

--------------------------------------- --------

Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS

relat Relative GWdtM 25

--------------------------------------- --------

0141 0940 000 24771 3711 1

0245 0944 000 24771 3711 2

0316 0949 000 24770 3712 3

0970 1089 000 24776 3726 24

0990 1129 000 24791 3730 25

--------------------------------------- --------

Fig353 Output image in the case where number of record in the lateral direction is 1

ibu(x)

irec

f_flux(x)

xekr_r(x)

imax

rad_r(imax) fdr(ximax)

bur(ximax)

lhgr_r(x)

imax lines

x is total number of data

N times repeated as one set of data

JAEA-DataCode 2013-009

- 67 -

--------------------------------------- ------------------------------- ------------------------------- --------

SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM SECTION-AVERAGE BURNUP MWdtM RECORDS

0 1000 2000 3

FAST FLUX at LHGR = 100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s FLUX at QL =100 Wcm ncm^2s 0

1724E+13 1756E+13 1769E+13 3

SECTION AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO SECTION-AVERAGE Xe-to-Kr RATIO 0

6635 6675 6714 3

--------------------------------------- ------------------------------- ------------------------------- --------

1 2 3 4 5 6 7 8 9 10 11 12 13 14

--------------------------------------- ------------------------------- ------------------------------- --------

Radius F-DENSITY BURNUP Xe_All Kr_All F-DENSITY BURNUP Xe-All Kr-All F-DENSITY BURNUP Xe-All Kr-All RECORDS

relat Relative GWdtM Relative GWdtM Relative GWdtM 25

--------------------------------------- ------------------------------- ------------------------------- --------

0141 0880 000 24776 3723 0874 087 24816 3698 0874 175 24858 3671 1

0245 0888 000 24775 3723 0882 088 24814 3698 0882 176 24857 3671 2

0316 0898 000 24773 3724 0893 089 24812 3699 0893 178 24855 3672 3

0970 1143 000 24759 3742 1161 115 24853 3684 1174 232 24955 3620 24

0990 1189 000 24773 3747 1226 121 24918 3658 1257 245 25066 3565 25

--------------------------------------- ------------------------------- ------------------------------- --------

Fig

35

4(1

2)

O

utpu

t im

age

in th

e ca

se w

here

num

ber o

f rec

ord

in th

e la

tera

l dire

ctio

n is

3

ibu(

x)

lhgr

_r(x

)

f_flu

x(x

)

xekr

_r(x

)

fdr(

xim

ax)

bur

(x

imax

) ra

d_r(

imax

)

imax

irec3

imax

pie

ces

x is

tota

l num

ber o

f dat

a

irec2

ire

c

The

first

set

of

dat

a

JAEA-DataCode 2013-009

- 68 -

--------------------------------------- --------

SECTION-AVERAGE BURNUP MWdtM RECORDS

60000 1

FAST FLUX at LHGR = 100 Wcm ncm^2s 0

3637E+13 1

SECTION AVERAGE Xe-to-Kr RATIO 0

8822 1

--------------------------------------- --------

1 2 3 4 5 6

--------------------------------------- --------

Radius F-DENSITY BURNUP Xe_All Kr_All RECORDS

relat Relative GWdtM 25

--------------------------------------- --------

0141 0930 5407 26213 2310 1

0245 0929 5423 26217 2303 2

0316 0928 5444 26221 2295 3

0970 1340 7893 26897 1827 24

0990 1513 9214 27028 1742 25

--------------------------------------- --------

Fig354 (22) Output image in the case where number of record in the lateral direction is 3

355 Unit conversion of burnup The unit of burnup is converted in FEMAXI as follows as required

(1) 1020 fissionscm3

Energy generated per fission 200 MeV 1020 fissionscm3=2x1028 eVcm3

Using 1 cm3=1096f (g) ftheoretical density ratio

1020 fissionscm3=1825x1027f eVg

Using 1 eV=1602x10-19 Joule 1020 fissionscm3=2924x108f Jouleg

Using 1 MWDtUO2=864x104JoulegUO2

1020 fissionscm3=3384x103f MWDtUO2

when f=095 1020 fissionscm3=3562x103 MWDtUO2

Using 1 MWDtUO2=11344 MWDtU

Finally 1020 fissionscm3=4040x103 MWDtU

n-th set of data

JAEA-DataCode 2013-009

- 69 -

(2) Conversion between burnup rate FIMA and burnup

FIMA=(Number of fissionsnumber of atoms of initial heavy elements)

Here the number of atoms of the initial heavy elements denotes the total number of atoms

contained in the fuel such as [fertile isotopes 238U and 240Pu] and [fissile isotopes]

1 1 225 9375 FIMA at burnup MWh kgU MWd teU= minus cong cong

10 100 at burnup GWd tUminus cong

(3) Conversion of BU2 (GJkgU) to BUC (1020fissionscm3) using subroutine FSWELL

From eq (A) above 1020fissionscm3=2924x108f JoulegUO2

1020 fissionscm3=2924f JoulekgUO2

Using 1 JouleKgUO2=11344 JouleKgU

1020fissionscm3=3317f JoulekgUO2

Thus the conversion coefficient is 3317f

36 Calculation examples by RODBURN-1 and PLUTON To evaluate the predictability of the RODBURN-1 code it is necessary to compare the

calculated results with measured data of profiles of burnup or generated elements concentration

in the radial direction However this work has to overcome a tough task to obtain reliable

measured data of irradiated fuel Here allowing the work to be considered in a separate chance

a comparison of calculations between RODBURN-1 and PLUTON codes is carried out as a

simplified assessment Results of the PLUTON code have been relatively well validated with

measured data(3X)

361 PWR fuels (1) Calculation conditions As calculation conditions of UO2 and MOX fuels of PWR fuel specs and irradiation

conditions shown in Tables 361 and 362 are assumed In the calculations of RODBURN-1

and PLUTON size of fuel and major nuclear element composition are the same though the

coolant condition is different due to the code models However the coolant condition has no

significant difference and almost equivalent if it is specified by rod pitch=127mm in

RODBURN-1 or by fuelwater volume ratio=06 in PLUTON

JAEA-DataCode 2013-009

- 70 -

Table 361 Conditions of sample calculation P-1R by RODBURN-1 UO2 MOX (PuO2 66 wt) Pellet diameter 82 mm

density 95 TD

Composition (enrichment)

235U = 4 238U = 96

235U =02 235U=998 239Pu=6534 240Pu=2368 241Pu=657 242Pu=349 236Pu=00 238Pu=091 243Pu=244Pu=245Pu=00

Cladding Outer diameter=97mm Inner diameter=84mm Burnup (GWdt) 0 about 85 GWdt Coolant condition Rod pitch = 127 mm

Table 362 Conditions of sample calculation P-1P by PLUTON UO2 MOX (PuO2 66 wt) Pellet diameter 82 mm

Density 95 TD

Composition (enrichment)

235U = 4 238U = 96

235U =2 235U=98 238Pu=11 239Pu=6534 240Pu=2368 241Pu=657 242Pu=349 236Pu=00 241Am=091 243Am=00

Cladding Outer diameter=97mm Inner diameter=84mm Burnup (GWdt) 0 about 85 GWdt Coolant condition FuelWater volume ratio = 06

(2) Calculated results

A) Results for PWR-UO2 fuel by RODBURN-1 calculation

Figs361 and 362 show respectively the profiles of relative power density and burnup of

UO2 fuel calculated by RODBURN-1 with burnup being a parameter In RODBURN-1

calculation is performed with a pellet which is divided into 36 iso-volume ring elements and

the calculated results corresponding to the half thickness position of each element are output

The symbols in the figure indicate the radial position of half thickness of ring elements In the

outer region of pellet relative power density is elevated with burnup due to Pu generation by

resonance absorption and fission of the generated Pu by thermal neutron Burnup is also

elevated in the outer region as a time-integral of power density

JAEA-DataCode 2013-009

- 71 -

Fig362 Profiles of burnup of PWR-UO2 pellet calculated by RODBURN-1

B) Results for PWR-MOX fuel by RODBURN-1 calculation

Figs363 and 364 show the profiles of relative power density and burnup of MOX fuel

calculated by RODBURN-1 with burnup being a parameter

0 1 2 3 4

10

15

20

25

RODBURN-1 18 GWdt 180 508 856

Rela

tive

heat

genera

tion d

ensi

ty

Radius of UO2 pellet (mm)

0 1 2 3 4

0

50

100

150

200

RODBURN-1 18 GWdt 180 508 856

Radius of UO2 pellet (mm)

Burn

up

(G

Wd

t)

Fig361 Profiles of power density of PWR-UO2 pellet calculated by RODBURN-1

JAEA-DataCode 2013-009

- 72 -

Fig364 Profiles of burnup of PWR-MOX pellet calculated by RODBURN-1

In the case of MOX fuel power density profile in the early stage of irradiation has a

relatively appreciable depression in the central region in comparison with that of UO2 pellet

because resonance reaction by Pu is large in the peripheral region of pellet

0 1 2 3 4

10

15

20

25

Rela

tive

heat

genera

tion d

ensi

ty

Radius of MOX pellet (mm)

RODBURN-1 18 GWdt 178 492 822

0 1 2 3 4

0

50

100

150

Radius of MOX pellet (mm)

RODBURN-1 18 GWdt 178 492 822

Burn

up

(G

Wd

t)

Fig363 Profiles of power density of PWR-MOX pellet calculated by RODBURN-1

JAEA-DataCode 2013-009

- 73 -

C) Results for PWR-UO2 and MOX fuels by PLUTON calculation

Figs365 and 366 show respectively the profiles of relative power density and burnup of

UO2 fuel calculated by PLUTON with burnup being a parameter Figs367 and 368 show

respectively the profiles of relative power density and burnup of MOX fuel calculated by

PLUTON with burnup being a parameter In PLUTON burning calculation is performed with a

pellet which is divided into 36 nodes (boundary) iso-volume ring elements and the calculated

results corresponding to the node position are output The symbols in the figure indicate the

radial position of the node

By comparing the results of two codes for UO2 fuel (Figs361 and 365) it is found that

the peaking of power density profile in the outer region of pellet is larger in PLUTON in low

burnup period than in RODBURN while this relative magnitude is reversed in RODBURN in

high burnup

On the other hand by comparing the results of MOX fuel (Figs363 and 366) it is found

that the depression of power density in the outer region of pellet is particularly larger in

PLUTON in high burnup period than RODBURN

0 1 2 3 4

10

15

20

25

PLUTON 2 GWdt 20 50 85

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of UO2 pellet (mm)Fig365 Profiles of power density of PWR- UO2 pellet calculated by PLUTON

JAEA-DataCode 2013-009

- 74 -

0 1 2 3 40

50

100

150

200 PLUTON

2 GWdt 20 50 85

Burn

up (

GW

dt)

Radius of UO2 pellet (mm)

0 1 2 3 4

10

15

20

PLUTON 2 GWdt 20 50 85

Rela

tive

heat

genera

tion d

ensi

ty

Radius of MOX pellet (mm)

0 1 2 3 40

50

100

150 PLUTON

2 GWdt 20 50 85

Burn

up (

GW

dt)

Radius of MOX pellet (mm)

Fig368 Profiles of burnup of PWR-MOX pellet calculated by PLUTON

Fig366 Profiles of burnup of PWR- UO2 pellet calculated by PLUTON

Fig367 Profiles of power density of PWR-MOX pellet calculated by PLUTON

JAEA-DataCode 2013-009

- 75 -

362 BWR fuels (1) Calculation conditions

As calculation conditions of UO2 and MOX fuels of BWR fuel specs and irradiation

conditions shown in Tables 363 and 364 are assumed Similarly to the calculations of WPR

fuels by RODBURN and PLUTON size of fuel and major nuclear element composition are the

same though the coolant condition is different due to the code models However the coolant

condition has no significant difference and almost equivalent if it is specified by rod

pitch=152mm in RODBURN or by fuelwater volume ratio=0627 in PLUTON

Table 364 Conditions of sample calculation by PLUTON UO2 MOX (PuO2 66 wt) Pellet diameter 948 mm

Density 95 TD

Composition (enrichment)

235U = 4 238U = 96

235U =2 235U=98 238Pu=11 239Pu=6534 240Pu=2368 241Pu=657 242Pu=349 236Pu=00 241Am=091 243Am=00

Cladding Outer diameter=1227mm inner diameter=1055mm Burnup (GWdt) 0 about 85 GWdt Coolant condition FuelWater volume ratio = 0627

Table 363 Conditions of sample calculation by RODBURN-1 UO2 MOX (PuO2 66 wt) Pellet diameter 948 mm

Density 95 TD

Composition (enrichment)

235U = 4 238U = 96

235U =02 235U=998 239Pu=6534 240Pu=2368 241Pu=657 242Pu=349 236Pu=00 238Pu=091 243Pu=244Pu=245Pu=00

Cladding Outer diameter=1227mm inner diameter=1055mm Burnup (GWdt) 0 about 85 GWdt Coolant condition Rod pitch = 152 mm

JAEA-DataCode 2013-009

- 76 -

(2) Calculated results

A) Result of the SWAT code

First a comparison is made between the results of RODBURN-1 and SWAT(31) Fig369

shows this comparison with respect to the relative power density profile at pellet average

burnup of 61 GWdt The results by the two codes have only a slight difference which suggest

that a simplified model of RODBURN-1 can give a satisfactory prediction in comparison with a

dedicated burning analysis code

B) Results for BWR-UO2 fuel by RODBURN-1 calculation

Figs3610 and 3611 show the profiles of relative power density and burnup of UO2 fuel

calculated by RODBURN-1 with burnup being a parameter In the outer region of pellet

relative power density is elevated with burnup due to Pu generation by resonance absorption

and fission of the generated Pu by thermal neutron Burnup is also elevated in the outer region

as a time-integral of power density

0 1 2 3 4 505

10

15

20

25 SWAT RODBURN-1

Rela

tive

Powe

r

Radius (mm)

FK series peaking profile 2004 June 8 (61GWdt)

Fig369 Comparison of power density profiles between the calculations of RODBURN-1 and SWAT

JAEA-DataCode 2013-009

- 77 -

C) Results for BWR-MOX fuel by RODBURN-1 calculation

Figs3612 and 3613 show respectively the profiles of relative power density and burnup

of BWR-MOX fuel calculated by RODBURN-1 with burnup being a parameter In the case of

MOX fuel power density profile in the early stage of irradiation has a relative depression in the

central region because resonance reaction by Pu is large in the peripheral region of pellet

00 01 02 03 04 05

10

15

20

25

RODBURN-1 19 GWdt 183 515 868

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of UO2 pellet (mm)

0 1 2 3 4 5

0

50

100

150

200

RODBURN-1 19 GWdt 183 515 868

Radius of UO2 pellet (mm)

Burn

up

(GW

dt)

Fig3610 Profiles of power density of BWR-UO2 pellet calculated by RODBURN-1

Fig3611 Profiles of burnup of BWR-UO2 pellet calculated by RODBURN-1

JAEA-DataCode 2013-009

- 78 -

Fig3613 Profiles of burnup of BWR-MOX pellet calculated by RODBURN-1

D) Results for BWR-UO2 and MOX fuels by PLUTON calculation

Figs3614 and 3615 show respectively the profiles of relative power density and burnup

of UO2 fuel calculated by PLUTON with burnup being a parameter Figs3616 and 3617

show respectively the profiles of relative power density and burnup of MOX fuel calculated by

Fig3612 Profiles of power density of BWR-MOX pellet calculated by RODBURN-1

0 1 2 3 4 5

10

15

20

25

RODBURN-1 18 GWdt 180 499 831

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of MOX pellet (mm)

0 1 2 3 4 5

0

50

100

150 RODBURN-1

19 GWdt 183 515 868

Burn

up

(GW

dt)

Radius of MOX pellet (mm)

JAEA-DataCode 2013-009

- 79 -

PLUTON with burnup being a parameter In PLUTON burning calculation is performed with a

pellet which is divided into 36 nodes iso-volume ring elements and the calculated results

corresponding to the node position are output The symbols in the figure indicate the radial

position of the node

By comparing the results of UO2 fuel (Fig3610 and 3614) it is found that the peaking

of power density profile in the outer region of pellet is larger in PLUTON in low burnup period

than in RODBURN while this relative magnitude is reversed in RODBURN in high burnup

On the other hand by comparing the results of MOX fuel (Figs3612 and 3616) the

depression in the outer region of pellet is particularly larger in PLUTON in high burnup period

than RODBURN

0 1 2 3 4 5

10

15

20

PLUTON 2 GWdt 20 50 85

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of UO2 pellet (mm)

Fig3614 Profiles of power density of BWR-UO2 pellet calculated by PLUTON

JAEA-DataCode 2013-009

- 80 -

0 1 2 3 4 50

50

100

150 PLUTON 2 GWdt 20 50 85

Radius of UO2 pellet (mm)

Burn

up

(GW

dt)

0 1 2 3 4 5

10

15

20

PLUTON 2 GWdt 20 50 85

Rela

tive

heat

gen

erat

ion

dens

ity

Radius of MOX pellet (mm)

Fig3615 Profiles of burnup of BWR-UO2 pellet calculated by PLUTON

Fig3616 Profiles of power density of BWR-MOX pellet calculated by PLUTON

JAEA-DataCode 2013-009

- 81 -

Fig3617 Profiles of burnup of BWR-MOX pellet calculated by PLUTON

37 Usage of the Halden data-base TFDB

In Halden Project TEST-FUEL-DATA-BANK (TFDB) SYSTEM(32) has been produced

since 1985 and is available for utilizing the experimental data of HBWR Therefore a utility

program TF2FEM which processes TFDB data and generates irradiation history data applicable

to FEMAXI has been developed The major functions of TF2FEM include the following

It supports extraction of several hundred steps of records (history data points) representing

irradiation history from among a few hundred thousand records of TFDB

The extracted history data can be used as input history data for FEMAX

A data file to compare calculation results of FEMAXI with experimental data is also

produced from the TFDB data file

For details refer to TF2FEM Userrsquos Manual included in the code package

References 3 (31) KSuyama TIwasaki and NHirakawa Integrated Burnup Calculation Code System

SWAT JAERI-DataCode 97-047 (1997) [in Japanese] (32) Wiesenack W and Hustadnes V TEST-FUEL-DATA-BANK SYSTEM USER MANUAL

HWR-338 (1993)

0 1 2 3 4 50

50

100

150 PLUTON

2 GWdt 20 50 85

Burn

up

(GW

dt)

Radius of MOX pellet (mm)

JAEA-DataCode 2013-009

- 82 -

4 FEMAXI-7 Input manual

41 Explanation on the relationship of IS and IST

In the heat conduction calculation (thermal analysis) to reduce calculation time

steady-state mode and transient mode are interchanged depending on power conditions This

interchange is controlled by IS and IST which are further explained in sections 42 and 47

In sections 411 and 412 below detailed explanation about this method is given prior to the

entire description of input manual

411 Function of ISTATE value The steady-state mode uses a large time step increment while the transient mode uses a

sub-divided time step This time step size is controlled by an internal variable ISTATE The

ISTATE value is determined by the name-list parameters IS and IST and its function is

summarized in Table 41

Table 41 Function of ISTATE value IS is one of the options of heat conduction calculation and IST an option of internal gas

flow calculation ISTATE Function

0 Adoption of time stepΔt for steady-state mode with null specific heat

1 Adoption of time stepΔt for steady-state mode with null specific heat However Δt is sub-divided into a shorter one by the logics in gas flow calculation than the size of Δt when ISTATE=0

2 Adoption of time stepΔt for transient-state mode with non-zero specific heat Δt is further sub-divided in comparison with those when ISTATE=0 and 1

Here the steady-state mode calculation is to obtain a solution of temperature profile after

infinite length of time of fuel rod in the radial direction at each time step by assuming specific heat = 00 Namely by assuming Cv (volumetric specific heat[Jm3]) = 0 the heat conduction

equation Eq(411)

( ) ( ) ( ) ( ) ( ) [ ] vC T r T r t k T r T r t q r tt

partpart

= nabla sdotnabla + (411)

is transformed into

( ) ( ) ( )[ ] 0k T r T r t q r tnabla sdotnabla + = (412)

Solution of Eq(412) gives the steady-state temperature profile The purpose of this

method is to reduce calculation time by obtaining advantage from the fact that during a period

JAEA-DataCode 2013-009

- 83 -

of slow-changing power the steady-state solution makes a good approximation of the

temperature profile

On the other hand in the transient state calculation this steady-state approximation

cannot hold because rod power is varying with a significant magnitude Therefore Eq(411)

with non-zero specific heat is solved to obtain the temperature profile at each time step

412 Relationship between IS IST and ISTATE

IS and IST are independently determined variables Their values cannot be changed by

other input designations In the case of IS=0 2 3 and 4 the criteria to judge which one of 0

1 2 is set for ISTATE value is as follows

(1) ISTATE=2 is set when power change rate (up or down) exceeds 1Wcms

(2) When power change rate becomes less than 1Wcms and 100s elapses during the

period with ISTATE=2 ISTATE recovers to either ISTATE=0 or =1 in accordance

with the IST value See Table 42

(3) However the transient state addressed in (1) and (2) is induced solely by power

change It does not take into consideration of another type of transient state in which

fuel rod temperature is varied by the change of coolant flow rate

(4) When IS=3 or 4 since the boundary condition of heat conduction equation is the

input-specified temperature of cladding outer surface thermal hydraulic calculation of

coolant is usually not performed (IS3P=0(default) no calculation of thermal

hydraulics of coolant)

Table 42 Set values of ISTATE

IS IST

0 1 2 3 0 1 or 2 0 or 2 0 or 2 0 or 2 2 2 2 2 2

3 4 1 or 2 0 or 2 0 or 2 0 or 2

413 Options specified by IS and IST

IS an option parameter for heat conduction calculation IS = 0 steady-state calculation is performed with 0vC = No sub-division of time step size

is done = 2 transient state calculation is performed with 0vC gt Sub-division of time step size is

JAEA-DataCode 2013-009

- 84 -

automatically done depending on the power change

= 3 condition of fixed temperature at cladding outer surface

= 4 condition of fixed temperature at cladding outer surface

Note (1) IS=3 is the same option as IS=4 In the case in which input cladding temperature is not

varied from the preceding history point of input written in input file IS=4 can be input

to omit the line No13 in input file

(2) When IS is not specified in input file IS=0 is automaticaslly set as default value

(3) When IS is either 3 or 4 procedure for the specific heat and time step size ie setting

of ISTATE value follows Table 42

IST option for internal gas flow default is IST=1 =0 model of gas diffusion in the axial direction is applied

Calculation is performed to have an instantaneous equilibrium of pressure inside rod

within each time step by assuming instantaneous movement of gas the amount of which is

proportional to the fission gas fraction in total gas amount However since the gas

compision varies in every axial segment diffusion calculation among the segments is

concurrently done to attain an uniform composition distribution with time through several

time steps

=1 model of instantaneous pressure equilibrium and complete mixture of gas

Calculation of transferred amount of gas is performed to obtain an instantaneous

complete mixture of composition and pressure equilibrium as well inside fuel rod ie in

every axial segment and plenum

=3 model of gas isolation in each segment

After the instant when either the Pellet-Clad contact pressure exceeds GPCPR (MPa)

or BD which is the bonding progress factor exceeds BDTR (input specified value) in at

least one axial segments gas transfer in the axial direction is not taken into account and

calculation of gas release and pressure is performed independently in each segment In

other words neither pressure equilibrium nor diffusion of gas species are considered

among the axial segments as if each segment were isolated with respect to internal gas

However in the segment which is adjacent to the plenum pressure calculation is

done by taking account of the space volume and gas temperature in the plenum

In the cases other than the above situations the model of instantaneous pressure

JAEA-DataCode 2013-009

- 85 -

equilibrium and complete mixture of gas (IST=1) is applied 42 Fixed format input (1)

Line No SYMBOL (FORMAT)

1 MTITL(I) I=1 20 (20A4) Free title Free title can be input in 2th to 80th columns

2

yenINPUT Calculation conditions are designated by Name-list parameters

(2~80 columns) in between ldquoyenINPUTrdquo and ldquoENDrdquo yenEND

3

NAX IFEM (2I10) Fuel rod specifications NAX = number of axial segments (1leNAXle40) IFEM = the objective segment number (1 le IFEM1 le NAX) I=1bottom of rod I=NAX top

4 MRASA CDIN CDOUT (I10 2F100) Cladding specifications

MRASA = 0 helliphellip RA material = 1 helliphellip SR material CDIN = cladding inner diameter (cm) CDOUT = cladding outer diameter (cm)

5

The number of NAX required (I = 1 NAX) IDISH(I) ICHAM(I) PDIN(I) PDIA(I) PLENG(I) ENR(I) FDENI(I) DZ(I) (2I10 6F100)

Pellet specifications

Number of ring elements of pellet is selected by MESH

IDISH(I) = 0 helliphellip pellet without dish = 1 helliphellip pellet with dish on only one end face = 2 helliphellip pellet with one dish each end face ICHAM(I) = 0 helliphellip pellet without chamfer = 1 helliphellip pellet with chamfer PDIN (I) = pellet center hole diameter (cm) PDIA (I) = pellet diameter (cm) PLENG(I) = length of one pellet (cm) ENR (I) = U-235 enrichment (minus) FDENI(I) = pellet theoretical density ratio (minus)

DZ (I) = axial segment length of pellet stack part (cm)

6

Input only when IDISH = 1 or 2 DISH DEPTH DISHB (3F100) Dish specifications

DISH = dish diameter (cm) DEPTH = dish depth (cm) DISHB = dish bottom diameter (cm)

7 Input only when ICHAM = 1

CHAMR CHAMZ (2F100) Chamfer specifications

CHAMR = chamfer width (cm) CHAMZ = chamfer depth (cm)

8

PLENUM(2) GPIN (GMIXO(I) I=14) PWEIT PLENUM(1) (8F100) Plenum specifications

PLENUM(2) = upper plenum volume (cm3) GPIN= initial gas pressure (MPa) GMIXO(I) = initial gas composition (minus) i = 1hellipHe i = 2hellipN2 i = 3hellipKr i = 4hellipXe PWEIT = pellet total weight (g)

When the input value is 80 - 100TD of that calculated in the code burnup is calculated using the input value If the input value exceeds this range Error Stop occurs When it is blank the value is automatically calculated

PLENUM(1) = lower plenum volume (cm3)

JAEA-DataCode 2013-009

- 86 -

Fixed format input (2)

Line No SYMBOL (FORMAT)

9 NHIST (I10) Number of history

point Input NHIST (1ltNHIST le 1500) NHIST sets consisting of Lines 101112 and 13 are input

10

A1 B1 A2 A5 A3 A4 IT IP IS A6 (6F1003I5F50) History point data

A1 = time (IDAY=0hour =1day)

B1 = burnup (MWdtUO2 (IBUNP=0) MWdtU (IBUNP =1) GJkgU (IBUNP =2) GWd tUO2 (IBUNP=3)

Here either A1 (time) or B1 (burnup) should be designated If both are designated B1 is neglected

A2 = linear heat rate (Wcm)

A5 = fast neutron flux (ncm2-s) If no data or 0 are input the flux follows IFSINP A3 = coolant temperature (K) A4 = coolant pressure (MPa)

IT = 0 time (or burnup) represents the increment from the time step set at

IT=minus100 (when IT= -100 is not set it represents the time (or burnup)

elapsed from the initial time) = -100 time increment from the previous time step (or burnup increment) = 100 cancellation of the IT= -100 setting (time or burnup represents the

time (or burnup) that elapsed from the initial time)

IP = 0 history point without summary output = 1 history point with summary output IS = 0 steady-state calculation

= 2 transient state calculation = 3 condition of fixed temperature at cladding outer surface = 4 the same as IS=3 but input file format can be varied slightly

A6 = coolant velocity (ms) (ICLMAS=0) = coolant mass flow rate (kgcm2s) (ICLMAS=1)

Note If the initial values for A3 A4 and A6 are inputted they need not be inputted thereafter

JAEA-DataCode 2013-009

- 87 -

Fixed format input (3) Line No SYMBOL (FORMAT)

11

(RH(I) I=1 NAX) II ((8F80) 8F80 I6) Relative power profile in the axial direction

RH(I) = relative power of axial segment j (minus) (number of data NAX) II = number of history points at which similar relative power is input When II is designated as 2 or higher Line 11 is omitted for the input of later time step

II-1

When more than 2 values of II are inputted card 11 is omitted for the input of time step

II-1 thereafter In addition when II= 1 the output to II can be omitted

(II can be assigned starting from the right-hand side of each column between the 65th

column to the 70th column of the last card)

12

(RFAI(I) I=1 NAX) II ((8F80) 8F80 I6) Relative fast neutron flux in the axial direction

Input this line only when IRFAI=1 in Name-list Input is designated RFAI(I)=relative fast neutron flux at the axial segment I (-)

(NAX data values) NAX8 cards (rounded up) are required

II = the number of historical points for inputting identical fast- neutron fluxes

Here when more than two values are assigned to II thereafter line 12 is omitted

for the input of time steps of II-1 Furthermore when II=1 the input to II can be

omitted (II is assigned starting from the right-hand side of each column between the

65th column to the 70th column of the last line)

13

(CSTMP(I) I=1 NAX) (8F80) Cladding outer surface temperature

Input only when IS=3 in Line 10 CSTMP(I)=cladding outer surface temperature (K) at the axial segment I

(NAX data values) NAX8 cards (rounded up) are required Refer to ICTP and ICSTMP

14

BU (RRH(I) I=1 NP) ( F100 10F60 (10X 10F60) ) Relative power density profile in the radial direction

Input only when IFLXgt0 BU = burnup (unit is similar to that in Line 10)

BU = burnup (MWdtUO2 (IBUNP=0) MWdtU (IBUNP =1) GJkgU (IBUNP =2) GWd tUO2 (IBUNP=3) ) RRH(I) = power density profile of concentric ring element I

(arbitrary unit normalized by FEMAXI ) or =[power density in element I][pellet average power density] The input line number is designated by IFLX in NAMELIST When IFLXM=0 NP=10 number of iso-thickness ring elements

When IFLXM=1 NP=number of ring elements of pellet stack specified by MESH

15 IEND (A4) Input end line Input ldquoSTOPrdquo

JAEA-DataCode 2013-009

- 88 -

43 Name-list Input (1) Variable name Contents Default

value

Input options IBUNP Designation of unit of burnup (=0MWdtUO2 =1MWdt-U

=2GJkg-U =3GWdtUO2) 0

IDAY Unit of time for input history points (=0hr=1day) 0

ISEC(2 5)

During the period ISEC(1I) - ISEC(2I) time unit is changed to be second ISEC(1I) is the number of history point at which the change starts and ISEC(2I) is the number of history point at which the change ends The maximum number of the periods is five

100

IFLX

Number of power history points to designate the radial power profile If the numerical data are not given IFLX should be one of 0 -1 o -2 which corresponds to the following options = 0 Robertson model -1PLUTON results -2 RODBURN results

ge 1 number of burnup points at which the radial profile data are specified

When IFLX= -1 or -2 corresponding results files should exist in the WrkRBOUT Here when IFLX= -1 (fed from PLUTON file) the output file ldquoft51drdquo of PLUTON should be prepared in advance

0

IFLXM Option to specify the number of ring elements when IFLXgt0 =0 iso-thickness 10 ring elements =1 number of ring elements designated by MESH

1

FACHE When IFLXlt0 amount of He gas given by RODBURN calculation is multiplied by FACHE 10

ICLMAS Coolant unit option =0 flow rate is input in velocity (ms) =1 flow rate is input in mass flow rate (kgcm2s)

0

INPRD

Options for the fetching method of RODBURN results to FEMAXI-7 (Treatment of fast-neutron flux is designated by IFSNT)

INPRD=0 By interpolating the results of RODBURN (the radial and axial

profiles of power fast-neutron flux and He generation) with respect to space and burnup the data are arranged to correspond to the segments in the axial direction of FEMAXI-7

INPRD=1 An identical number of segments in the axial direction is

assumed for FEMAXI-7 and RODBURN The results from RODBURN (the radial and axial profiles of power fast-neutron flux and He generation) are used as data for the corresponding axial segments No spatial interpolation is performed Interpolation of burnup is performed

INPRD=2 The number of segments in the axial direction can be different

for FEMAXI-7 and RODBURN (interpolation processing is performed) With respect to the profiles of power and He generation in the radial direction the result of RODBURN is retrieved For the power profile in the axial direction the input to FEMAXI-7 is used

1

FAIW The fast-neutron flux for a linear power of 1Wcm ((ncm2-sec)(Wcm)) (Fast neutron flux data can be omitted if power history data is input)

5times1011

JAEA-DataCode 2013-009

- 89 -

Name-list Input (2)

Variable name Contents Default value

IPFLX When treating fast-neutron flux as such that is given by input and has a flat profile in the axial direction IPFLX=0 1

IFSNT

Option of fast neutron flux IFSNT=1 FAIW is used the default value of which is 5x1011(ncm2-s) IFSNT=2 Input value is usedWhen the input data is not given LHRtimes

FAIW is adopted IFSNT=3 the value given by RODBURN calculation is used IFSNT=4 a modified value which is given by RODBURN calculation

and is multiplied by FROD is used The default value of FROD is 001

2

FROD When IFSNT=4 fast neutron flux given by RODBURN calculation is multiplied by FROD 001

IRXE When IRXE=1 generated amount of Xe+Kr obtained by RODBURN-1 is used in FEMAXI-7 0

IROD

When IRODgt0 an input file ldquorodinrdquo for RODBURN is generated in the

Wrk directory and FEMAXI-7 calculation is not executed

IROD=1PWR =2BWR =3HaldenBWR =4PWR(MOX)

=5 BWR(MOX)

0

TMCHG Input time for calculation is multiplied by (10+TMCHG) 00 PWCHG Input linear power for calculation is multiplied by (10+TMCHG) 00

SELHST

At line 10 of input list when one of the three quantities A1(time) A2(linear power) and B1(burnup) is to be modified SELHIST is specified SELHIST =0 no modification =1 time is modified

=2linear power is modified =3 burnup is modified

0

STTHST Specifies either the starting time (when SELHIST=1) or burnup (when SELHIST=3) to be modified When SELHIST=2 it is designated either by A1 or B1 in the line No10

00

ENDHST Specifies either the end time (when SELHIST=1) or burnup (when SELHIST=3) to be modified When SELHIST=2 it is designated either by A1 or B1 in the line No10

00

FACHST

Magnification factor for time (when SELHIST=1) linear power (when SELHIST=2) and burnup (when SELHIST=3) In the case that SELHIST=1 and 3 all the input data of times and burnups after ENDHIST are gained by ENDHIST times (FACHST-1)

10

NDIV(1500) Assuming NDIV(I)=N is the input the time-step interval I from historical number I-1 is equally divided by N 15000

ICTP

When CSTMP assigned by line 13 is the cladding surface temperature ICTP=0 is assigned and when CSTEMP is the temperature at the interface of the metallic layer and outer surface oxide film ICTP= 1 is assigned

However even if the oxidation of cladding is not taken into consideration (ICORRO=0) but ICTP=1 a thin oxide film thickness (01microm) is assumed

1

ICSTMP When using degC as the unit for CSTMP which is assigned by the 12-th input line ICSTMP=1 is assigned When the unit is K ICSTMP=0 is assigned 0

JAEA-DataCode 2013-009

- 90 -

Name-list Input (3)

Variable name Contents Default value

IRLHR When IRLHR=0 the axial power profile input in FEMAXI-7 is used When IRLHR=1 the axial power profile obtained by RODBURN is used Effective only when NPRD= either 0 or 1

0

IRFAI

IRFAI is used to assigne the axial segment-wise fast-neutron flux distribution by input

When IRFAI=0 the relative distribution of fast-neutron flux is assumed the same as the relative distribution of linear power

When IRFAI=1 the relative distribution is assigned by the 12-th line of input The relative distribution should be specified by the line 12

When IRFAI= -1 the relative distribution obtained from RODBURN-1 is used

0

ITPLEN When ITPLEN = 1 is assigned the upper- and lower-plenum region temperatures are given by the [ coolant inlet temperature+DTPL] 0

FPLFAC(2) The ratio of fast-neutron fluxes in the upper and lower plenums to those in the adjacent segments of fuel stack (FPLFAC(1) upper-plenum region FPLFAC (2) lower-plenum region)

0505

IFSINP

Interpolation option of fast neutron fluxes at input history points =0 the fast flux at omitted input history points is the same as that at the

previous history point at which flux data is input =1 linear interpolation in terms of burnup is performed for omitted input

points =2 the fast flux dta ashould be input at all the history points They cannot

be omitted

2

ICTINP

Interpolation option of coolant inlet temperature at input history points =0 the temperature at omitted input history points is the same as that at

the previous history point at which temperature data is input =1 linear interpolation in terms of burnup is performed for omitted input

points

1

ICPINP

Interpolation option of coolant pressure at input history points =0 the pressure at omitted input history points is the same as that at the

previous history point at which temperature data is input =1 linear interpolation in terms of burnup is performed for omitted input

points

1

ICVINP

Interpolation option of coolant mass flow rate at input history points =0 the mass flow rate at omitted input history points is the same as that at

the previous history point at which temperature data is input =1 linear interpolation in terms of burnup is performed for omitted input

points

1

IRH

Interpolation option of axial power profile at input history points =0 the profile at omitted input history points is the same as that at the

previous history point at which temperature data is input =1 linear interpolation in terms of burnup is performed for omitted input

points

0

IBUOP

Option of time vsburnup at input history points IBUOP= -1 time is calculated with the input sets of burnup and linear power IBUOP=0 time is calculated with the input sets of burnup and average linear power IBUOP= n time is calculated with the input sets of burnup and linear power at n-th axial segment

-1

JAEA-DataCode 2013-009

- 91 -

Name-list Input (4) Variable name Contents Defauly

value

Calculation options

IFEMOP

= -1 only thermal analysis is executed (non-coupled calculation of thermal analysis and mechanical analysis)

= 0 coupled calculation of thermal analysis and mechanical analysis

IFEMRD designates the option of mechanical analysis

= 2 coupled calculation of thermal analysis and mechanical analysis IFEMRD designates the option of mechanical analysis

2

IFEMRD =0 2-D local mechanical analysis (Mechanical analysis II) =1 Entire rod length (ERL) mechanical analysis (Mechanical analysis I) 1

ZR

Thickness of Zr liner inside the cladding (cm) If cladding has no liner ZR=00 Restart calculation automatically takes over the value specified in

[Base-calculation]

00

IREST

In FEMAXI-7 calculation (1) =0 Analysis only by FEMAXI-7 =1 only 1-D calculation for FURBEL =2 generating Restart file (ft11) fro RANNS In this case the cladding has the same ring elements division as that of

RANNS

0 In FEMAXI-7 calculation (2) =4 generating Restart file (ft11) for FEMAXI and RANNS

allowing the designation of segments for refabricated short rod In FEMAXI-7 Re-start calculation (3) =5 reading the restart file (ft11) of FEMAXI-7 by FEMAXI-7 to

perform the calculation of test-irradiation for the axial segments designated by TRSGT However the objective segment for 2-D mechanical analysis in the base-irradiation calculation should be the same as the axial segment designated by TRSGT

JAEA-DataCode 2013-009

- 92 -

Name-list Input (5)

Variable name Contents Default value

TRSGT(2)

This is designated in the case where IREST=5 in FEMAXI If this condition is not met error message is issued and calculation will not start Ex suppose a rod has 10 axial segments in base-irradiation calculation and re-start calculation is performed for 4- 5- and 6-th segments ldquoTRSGT=4 6rdquo If only 5-th segment is dealt with ldquoTRSGT=5rdquo When IFEMRD=0 the objective segment (IFEM) in the base-irradiation calculation has to be cincluded in the designation by TRSGT For example in the case where IFEM=5 in base-irradiation and TRSGT=46 IFEM in restart calculation has to be IFEM=2 Otherwise error message is issued and no calculation will start

0 0

IRTIME

When IRTIME=0 in the input file of Re-start calculation time (or burnup) has to be input as a sequential value from the beginning of base-irradiation

However if time is input burnup at EOL of base-irradiation calculation is taken over to be an initial burnup of Re-start calculation

When IRTIME=1 time at the start of Restart calculation has to be 0 and

with this initial time=0 the Re-start irradiation history has to be given in input file However in Re-start calculation burnup at EOL of base-irradiation calculation is taken over and added to the initial burnup of Re-start input file

1

NAXSG

Option to select the method of axial force calculation in ERL mechanical analysis

NAXSG=0 in each axial segment axial force is transmitted to its lower adjacent segment Reaction force to the axial force at the segment-segment interface is not taken into consideration

NAXSG=2 each segment displaces independently In each segment axial

force is determined by PCMI within the segment irrespective of the PCMI conditions in the other segments

0

JAEA-DataCode 2013-009

- 93 -

Name-list Input (6)

Variable name Contents Default value

MESH

Number of ring elements of pellet stack 1-D thermal 1-D mechanical 2-Dlocal mechanical

MESH=0 iso-thickness10 iso-thickness 10 iso-thickness 5 MESH=1 iso-volume 36 iso-volume 18 iso-volume 9 MESH=2 iso-volume 72 iso-volume 18 iso-volume 9 MESH=3 iso-volume 36 iso-volume 36 iso-volume 18 MESH=4 iso-volume 72 iso-volume 36 iso-volume 18

However when HBS option (high burnup structure model) is designated MESHgt0 has to be set

When ISHAPE=1 is selected the above number of ring elements is doubled ( In RANNS when IRESTgt0 ldquoMESHrdquo value is automatically taken over from FEMAXI-7 ) Here number of cladding ring elements is irrespective of

ldquoMESHrdquo designation as follows For 1-D thermal and mechanical models 1) Cladding which has no Zr-liner

8 metallic elements + 2 outer oxide layers 2) Cladding with Zr-liner

2 liner elements + 8 metallic elements + 2 outer oxide layers For 2-D local mechanical model 3) Cladding which has no Zr-liner

4 metallic elements + 1 outer oxide layers 4) Cladding with Zr-liner

1 liner elements + 4 metallic elements + 1 outer oxide layers However when ISHAPE=1 the above number of elements is doubled Restart calculation automatically takes over the value specified in [Base-calculation]

3

ARC(4) When IFEMRD=0 ie in 2-D local mechanical analysis the ratio of four element widths in the radial direction can be given by ARC 410

AXBND When IFEMRD=0 ie in 2-D local mechanical analysis AXBEND=1 gives a boundary condition which allows the free displacement of each node in pellet upper end plane in the axial direction

0

INPCK Input data check option (=0 normal calculation =1 input check only) 0

ICHI

Elasticity calculation option when IFEMRD=0 = 0 normal calculation = 1 elasticity calculation only Neither creep nor plasticity is taken into

consideration

0

K1

Number of elements in the axial direction per half a pellet length in the local mechanical analysis (K1 le 5) When ISHAPE=1 this number is doubled ie K1times2 Restart calculation automatically takes over the value specified in [Base-calculation]

3

JAEA-DataCode 2013-009

- 94 -

Name-list Input (7)

Variable name Contents Default value

AZ1(5)

When IFEMRD=0 the ratio of element sizes in the axial direction can be given by AZ1 for the K1 elements per half a pellet length When ISHAPE=1 AZ1 is applied to each 2-element set That is AZ1(I) is applied to (2I-1)th and (2I )th elements Restart calculation automatically takes over the value specified in [Base-calculation]

510

IRM Option for the cladding material (=0 Zircaloy =1 Stainless) 0

ILOCK When IFEMRD=0 axial force treatment option ILOCK=0 locking model =2 no axial force is taken into account 0

IFIX When IFEMRD=0 if contact between pellet and cladding is always assumed as ldquobonding staterdquo designate IFIX=1 0

TLIM Truncation control of CPU time (When the execution time reaches TLIM (s) calculation is terminated by the code itself) 200000

IZERO

Option to calculate and output the quantities such as internal pressure inner space volume cladding size etc at zero-power state in the calculation along the input history data

=0 No calculation at zero-power =1 zero-power calculation is performed with zero-power state temperature

being assumed as TROOM =2 zero-power calculation is performed with zero-power state temperature

being assumed as that at start-up =3 zero-power calculation is performed with zero-power state temperature

being assumed as that of the coolant temperature at that time =4 zero-power calculation is performed with input designated temperature

TZERO

0

TZERO Zero-power state temperature used when IZERO=4 (K) 29115

IELAST

Option of elastic calculation in ERL mechanical analysis =0 regular analysis =1 plasticity and creep of the pellet and cladding are ignored =2 plasticity and creep of the pellet are ignored =3 plasticity and creep of the cladding are ignored

0

IS3P

Option to control the thermal-hydraulics calculation when using the input-specified condition for cladding surface temperature IS3P=0 no thermal-hydraulics calculation is performed

IS3P=1 thermal-hydraulics calculation is performed IS3P=2 when IHF=1 in order that calculation can be continued even if Na-coolant temperature becomes lower than 200oC at a certain history point mode change has to be done into IS=3 or =4 in which cladding surface temperature can be specified by input At the same time thermal calculation of Na-coolant is stopped at this history point

However even when IS3P=0 to perform mechanical calculation of creep down of cladding induced by external coolant pressure the coolant pressure values are maintained at the input values

0

ILNR When IFENRD=0 for stress calculation ILNR=1 Newton-Raphson method is applied ILNR=0 Newton-Raphson method is not applied

0

SIGNR When IFEMRD=0 SIGNR is a permissible error (MPa) for the stress calculated by Newton-Raphson method 01

JAEA-DataCode 2013-009

- 95 -

Name-list Input (8)

Variable name Contents Default value

Options for mechanical properties of cladding oxide and liner and options for hollow pellet

MATXO

=0 mechanical properties of ZrO2 are applied to those of the cladding outer oxide layer

=1 mechanical properties of cladding outer oxide kayer are replaced with those of Zircaloy by designating the values in FACXO

0

FACXO(5)

Option to multiply the mechanical properties values of cladding outer oxide layer by FACXO Effective when MATXO=1 (FACXO(1) Youngrsquos modulus FACXO(2) Poissonrsquos ratio FACXO(3) thermal expansion rate FACXO(4) creep rate FACXO(5) yield stress)

510

MATLNR

(Effective when ZRgt0) Option for mechanical propereties of Zr liner of cladding =0 mechanical properties of pure Zr are applied to the Zr liner =1 mechanical properties of liner are replaced with those of Zircaloy by

designating FACLNR

0

FACLNR(5)

(Effective when ZRgt0 and MATLNR=1) Option to multiply the mechanical properties values of cladding liner by FACLNR (FACLNR(1) Youngrsquos modulus FACLNR(2) Poissonrsquos ratio FACLNR(3) thermal expansion rate FACLNR(4) creep rate FACLNR(5)yield stress)

510

PDPRF

When both solid pellets and hollow pellets exist in one fuel rod power density profile in the radial direction of pellet is adjusted by taking account of the centerhole void

When PDPRF=0 the hollow pellet segment uses the profile in which the center part is eliminated from the solid pellet relative profile (average=10) Numerical output or plotted figure show the LHR which is calculated by this profile so that the LHR value is to a small extent lower due to the null power in the centerhole region

When PDPRF=1 the hollow pellet segment uses the power profile which is obtained by multiplying the profile of ldquoPDPRF=0rdquo with factor f(gt10) to hold the LHR unchanged as if the segment pellet were solid even in the presence of centerhole This factor is constant in the radial direction

0

MXHIST Maximun number of input history points 1500 LD Size of DIMENSION of real number array 4000000

LID Size of DIMENSIONof integer array 500000 【Note 1】The message ldquoDIMENSION AREA OVER FLOW LTSM =xxxxx LD =4000000rdquo is output and the program execution is terminated when LTSMgtLD To avoid this it is necessary to designate LD by name-list input to make LDgtLTSM At the same time ldquo4000000rdquo in the statement ldquoDIMENSION

ID(500000) D(4000000)rdquo in ldquomainforrdquo has to be changed into the value which is specified by LD and compilation of the source program has to be performed again 【Note 2】The message ldquoDIMENSION AREA OVER FLOW LASI=xxxxx LID =500000rdquo is output and the program execution is terminated when LASIgtLID To avoid this it is necessary to designate LID by name-list input to make LIDgtLASI At the same time ldquo5000000rdquo in the statement ldquoDIMENSION

ID(500000) D(4000000)rdquo in ldquomainforrdquo has to be changed into the value which is specified by LID and compilation of the source program has to be performed again

JAEA-DataCode 2013-009

- 96 -

Name-list Input (9) Variable name Contents Default

value

ITBFIX Option to make fuel temperature equal to coolant temperature at 0 power state Effective when ITBFIX=1 1

ISHAPE

Option for type of finite element in 2-D local mechanical analysis ISHAPE=1 Rectangular four-node element with linear shape function ISHAPE=2 Rectangular eight-node element with quadratic shape function Restart calculation automatically takes over the value specified in

[Base-calculation]

2

CHKVAL(10)

Upper limit of checking abnormal values CHKVAL(1) cladding equivalent stress (MPa) CHKVAL(2) pellet center temperature (oC) CHKVAL(3)cladding temperature (oC)

10000 30000 30000

70

ICHK(10) Option to continue calculation even if abnormal value is detected ICHK=0 calculation is continued ICHK ne 0 calculation is stopped

101

ICKOPT

Option to specify the time-step interval using check function argument for checking abnormal values =0 checking calculation only at the input history points

=1 checking calculation at all the time-steps = -n (when n 1 or n 10ne ne ) checking calculation at every n steps = -1 checking calculation at the time-steps exceeding DT_OUT except

the input history points DT_OUT is an option for putput = -10 checking calculation at all the time-steps from PLTIME(1) to

PLTIME(2) However input history points are always included in checking points PLTIME is an option for output

0

DDSIGE Maximum allowable change of equivalent stress in the iteration calculation of ERL (IFEMRD=1) mechanical analysis (MPa) 10

DDSIGE2 Maximum allowable change of equivalent stress in the iteration calculation of 2-D (IFEMRD=0) mechanical analysis (MPa) 100

DLSIGE Allowable error of the maximum change of equivalent stress in the iteration calculation of ERL (IFEMRD=1) mechanical analysis (MPa) 1000

DLSIGE2 Allowable error of the maximum change of equivalent stress in the iteration calculation of 2-D (IFEMRD=0) mechanical analysis (MPa) 2000

ISIGE

Option to continue calculation even if allowable error of the maximum change of equivalent stress is detected in the iteration calculation of ERL (IFEMRD=1) mechanical analysis ISIGE= -1 calculation continues without output of iteration process ISIGE= 0 calculation continues with a simplified output ISIGE= 2 calculation continues with detailed output ISIGE=1 calculation stops with detailed output

1

ISIGE2

Option to continue calculation even if allowable error of the maximum change of equivalent stress is detected in the iteration calculation of 2-D (IFEMRD=0) mechanical analysis ISIGE2= -1 calculation continues without output of iteration process ISIGE2= 0 calculation continues with a simplified output ISIGE2= 2 calculation continues with detailed output ISIGE2=1 calculation stops with detailed output

1

AJUDG1 Temperature error limit in the convergence calculation of temperature dependence of thermal conductivity (oC) 01

ICONVX Maximum number of times of the convergence calculation of temperature dependence of thermal conductivity 20

JAEA-DataCode 2013-009

- 97 -

Name-list Input (10) Variable name Contents Default

value

Calculation conditions

AJUDG2 Temperature error limit in the convergence calculation of gap thermal conductance (oC) 10

ICONV2 Maximum number of times of the convergence calculation of gap thermal conductance 100

AY Tilting of the pellet upper surface in the case of dished pellet AY=0 (cm) Effective only when IFEMRD=0 In a dished pellet AY=00 0002

TROOM Room temperature or fuel rod initial temperature (K) 29115

ITIME(20) An option for changing plenum gas pressure and gas composition A historical point number for changing is inputted to ITIME(I) (up to a

maximum of 20 ) 200

GASPRN(20) The plenum gas pressure (MPa) at a historical point number ITIME(I) is assigned by GASPRN(I) 2000

PLENM(20) The plenum volume (cm3) at a historical point number ITIME(I) is

assigned by PLENM(I) (Note this is not the volume of the fuel free space but the volume at the plenum part)

2000

GMIXN(4 20) Gas composition at history point number ITIME (minus) Molar ratios of gas

compositions at ITIME(I) are specified by GMIXN(1 I) to GMIXN(4 I) where 1 =He 2 = N2 3 =Kr 4 =Xe

8000

DEN(20) Equivalent diameter (cm) of coolant flow area at history point ITIME(I) is designated by DEN(I) At least more than one of DEN FAREAN and PITCHN have to be designated

2000

FAREAN(20) Cross sectional area of coolant channel (cm2) at ITIME(I) is designated by FAREAN(I) At least more than one of DEN FAREAN and PITCHN have to be designated

2000

PITCHN(20) Rod-to-rod pitch (cm) at ITIME(I) is designated by PITCHN(I) At least more than one of DEN FAREAN and PITCHN have to be designated 2000

GAPLK Minimum gap width at which axial force by PCMI is generated (microm) 30 XKSU Upper plenum spring constant (Nm) 15000 ALSU Upper plenum spring thermal expansion coefficient (1K) 15times10-5 XKSL Lower plenum spring constant (Nm) 25000 ALSL Lower plenum spring thermal expansion coefficient (1K) 15times10-5 AMU Friction coefficient between pellet and cladding (IFEMRD=0) 04 AMU2 Friction coefficient between pellet and cladding (IFEMRD=1) 04 DE Equivalent diameter of coolant channel (cm) 00 FAREA Cross sectional area of coolant channel (cm2) 00 PITCH Pitch between fuel rods (cm) (CDOUT cladding outer diameter (cm)) CDOUTtimes13

NRCZR Number of radial elements the metal wall of cladding in the entire rod length mechanical analysis 8

NRCOX Number of radial elements in the outer oxide layer of cladding in the entire rod length mechanical analysis 2

DTPL Temperature difference between gas inside the plenum and surrounding coolant (K) Plenum temperature = Coolant temperature + DTPL (K) 250

LBU

When LBU=1 is set calculation uses the local burnup in the radial direction of pellet and when LBU=1 calculation uses the average burnup

Restart calculation automatically takes over the value specified in [Base-calculation]

1

JAEA-DataCode 2013-009

- 98 -

Name-list Input (11) Variable name Contents Default

value

XLSZU

The axial length of the upper plenum part used in the entire length mechanical analysis (cm) When XLSZU is not assigned (XLSZU=00) it is given by the value obtained by dividing the upper-plenum volume PLENUM (2) which is

assigned by line 8 by 2cirπ ( cir = inner radius of cladding)

00

XLSZL

The axial length of the upper plenum part used in the entire length mechanical analysis (cm) When XLSZL is not assigned (XLSZL=00) it is given by the value obtained by dividing the upper-plenum volume PLENUM(1) which is assigned by line 8 by 2

cirπ ( cir = inner radius of cladding) When PLENUM (1)=00 no lower plenum is assumed to

exist even if XLSZL is designated

00

IRELCV

Option to take into account of the space volume (spaces of crack dish and chamfer) change inside pellet during irradiation IRELCV=0 not taken into account IRELCV=1 taken into account The code calculates the relocation strain relε in the radial circumferential

and axial directions This strain relε changes by the internal compressive stress inside pellet induced by power change

0

IQREAT Option for the reaction heat generated by oxidation of cladding IQREAT=0 not taken into account IQREAT =1taken into account 0

GAMHT When GAMHT=1 γ-heating is added to the thermal calculation of cladding 0

GAMHG γ-heating rate of cladding (Jg) effective when GAMHT=1 10

GAMRC Proportion factor of γ-heating rate of cladding to the metal density and pulse power effective when GAMHT=1 10

IHF When IHF=1 coolant is assumed to be Na 0

NUOP

Option for Nu number to be used in the equation of thermal conductance from claddint to Na coolant

When NUOP=1 80Pr)(Re030036 +=Nu

When NUOP=2 0870 0025PeNu = + Here Pe max(Re Pr 200)=

1

SUBCL When SUBCL=1 if the input-specified inlet coolant temperature exceeds the saturation temperature coolant density at the inlet is made equal to the density of liquid phase coolant at saturation temperature

1

JAEA-DataCode 2013-009

- 99 -

Name-list Input (12) Variable name Contents Default

value

Time step control DPXX Power increment width per unit time step (Wcm) 100 DPBU Burnup increment width per unit time step (MWdtUO2) 1000

IPH IPH=0 when the control of DPXX and DPBU is set to be the objective segment (IFEM) and IPH=1 when it is set to be the peak power segment 1

EFCOEF

Time step width determination factor due to creep

∆tE c

=sdot

sdotσ

εEFCOEF

where σ is equivalent stress E is Youngrsquos modulus and ε c is equivalent creep strain rate

01

MAXTM

Maximun number of time-step controls in one time-step in the ERL mechanical analysis This controls follow P-C contact state changes between contact and non-contact state and changes between plastic and elastic state changes

42

LCMAX Maximum number of judgments of clogged or sliding state of the contact between pellet and cladding when IFEMRD=1 10

LMAX Number of iterations in the Newton-Raphson method for deformation Calculationwhen IFEMRD=1 (LMAX le 100) 20

ITEND

Number of repetitions of Newton-Raohson method in the deformation calculation of 2-D local mechanical analysis ( IFENRD=0) where the first calculation is not included in the repetition so that ldquoITEND=Nrdquo means (N+1) times repetitions

1

ITIMY

Time step control option for elasticityplasticity judgment when IFEMRD=0 and 1

= -1 without time step control = 0 time step control is performed only upon the removal of load = 1 with time step control)

-1

JAEA-DataCode 2013-009

- 100 -

Name-list Input (13) Variable name Contents Default

value Options for pellet thermal conductivity

IPTHCN

Options for fuel pellet thermao conductivity models =1 MATPRO-09 =2 Washington =3 Hirai =4 Halden =5 Modified Hirai =6 Forsberg =7 Kjaer-Pedersen =8 BaronampCouty =9 OhiraampItagaki =10 Lucta MatzkeampHastings =11 Tverberg Amano Wiesenack (Gd-containing fuel) =12 Sontheimer Landskron Billaux (Gd-containing fuel) =13Fukushima (Gd-containing fuel) =14HiraiIshimoto (Gd-containing fuel) =15Daniel Baron (UO2 Gd-containing fuel ) =16 KitajimaampKinoshita =17 Wiesenack(Halden_New) =18 PNNL modified Halden model =90 Ohira amp Itgaki original =91 Ohira amp Itgaki latest model for UO2 and MOX =92 Modified ldquoOhira amp Itagaki modelrdquo in FRAPCON 33 =30Martin(MOX) =31MATPRO-11(MOX) =32Martin+Philipponneau(MOX) =33Duriez et al(MOX) =34Philipponneau(MOX) =35 Halden (new MOX) =36Daniel Baron (MOX Gd-containing fuel) =37 PNNL-modified Halden model in FRAPCON-2-3 =38 PNNL model in FRAPCON-3 based on the Duriez model

17

IZOX Option for thermal conductivity of cladding oxide layer model =1MATPRO-A(Zircaloy) =2MATPRO-11(Zircaloy) =41SUS304

2

ITMC Option for cladding thermal conductivity model =1MATPRO-09 (Zircaloy) =40SUS316 =41SUS304

1

Options for MOX fuel and parameters for pellet thermal conductivity

PU(40)

PuO2 weight fraction at each axial segment (-) It is assumed that segments of PU(I)gt0 have MOX fuel and segments of PU(I)=0 have UO2 fuel

Totally NAX number of PU(I) are designated

( )2

2 2

PuOPu= weight ratioUO +PuO

Restart calculation automatically takes over the value specified in [Base-calculation]

4000

PUFIS(40)

Fissile Pu concentration at each axial segment (-) PUFIS is weight fraction of fissile Pu to total weight of Pu Totally NAX

number of PUFIS(I) are designated Restart calculation automatically takes over the value specified in

[Base-calculation]

4000

JAEA-DataCode 2013-009

- 101 -

Name-list Input (14) Variable name Contents Default

value Y Value of y in MO2-y used when IPTHCN=15 and 36 00 LT Lattice spacing parameter used when IPTHCN=15 and 36 (Aring) 54702

GD Gd2O3 concentration (weight fraction) Restart calculation automatically takes over the value specified in

[Base-calculation] 00

FPTH Magnification factor for pellet thermal conductivity 10

CBU Burnup(MWdkg-UO2)-dependent parameter used when IPTHCN=11

00046 (UO2 fuel) 00056 (Gd-containing fuel)

CGD Gadolinia conc(wt)-dependent parameter used when IPTHCN=11 00066

SLB(6)

SLB(1)=a SLB(2)=b SLB(3)=Dbu SLB(4)=Dgd SLB(5)=Cbu SLB(6)=Cgd

Used when IPTHCN=12 See pellet thermal conductivity model described

in Chapter 4

00235 255times10-4

00949 042

10times10-4

956times10-4

M1

As one of the thermal conductivity models of MOX fuel the model of

IPTHCN=35 multiplies a factor KMOX on the thermal conductivity of UO2

fuel KMOX is assumed by the equation

1 12

(1 ) 1 exp BuM MBu

= minus minus minus +

KMOX and M1 is the value of M1

092

BUMOX KMOX is assumed by the equation

1 12

(1 ) 1 exp BuM MBu

= minus minus minus +

KMOX and BUMOX is the value of Bu2 400

KMOX

When the equation 1 12

(1 ) 1 exp BuM MBu

= minus minus minus +

KMOX is applied to

the other models of UO2 thermal conductivity (IPTHCN=1 -18) ie to use

the UO2 thermal conductivity models which are multiplied by KMOX as

MOX fuel thermal conductivity KMOX=1 is designated

0

JAEA-DataCode 2013-009

- 102 -

Name-list Input (15) Variable name Contents Default

value

IPRO

Option to specify the effect of pellet porosity p=10-D(I)Di (or theoretical density ratio D(I)) on the pellet thermal conductivity where Di is the initial density Refer to Eqs(2327) and (2328) =0 Initial porosity 0p assuming D(I)=Di is used

=1 Porosity defined by 0

0

swgVp p

V∆

= + is used

=2 Porosity defined by 00 0

dens hotV Vp pV V

∆ ∆= + + is used

=3 Porosity defined by 00 0 0

swg dens hotV V Vp pV V V

∆ ∆ ∆= + + + is used

where Di the initial theoretical density ratio 0p initial porosity

0

swgVV

∆ fission gas bubble swelling irrespective of IFSWEL

0

densVV

∆ densification calculated by the model designated by IDENSF

and 0

hotVV

∆ volumetric strain by hot-press

However this porosity calculation is not performed ring element-wise

It is performed at each axial segment and average porosity over one

segment is obtained Plot output is by IDNO=57 and pellet density =1-p

0

MPORO

Option for the effect of porosity on the thermal conductivity of pellet

=0 pellet thermal condcutivity at each axial segment is calculated by using the porosity which is designated by IPRO

=1 pellet thermal condcutivity at each axial segment is calculated by

using the ring-element-wise porosity 00 0

swg densV Vp pV V

∆ ∆= + +

Here definitions of swelling and densification are identical to those by IPRO However ring-element-wise change of porosity obtained by HBS model is independent from MPROR designation The effect of porosity by HBS model at eack ring element can be taken into account in calculation irrespective of MPORO designation

Corresponding plotter output is IDNO=257 total porosity IDNO=260 fission gas bubble porosity

0

JAEA-DataCode 2013-009

- 103 -

Name-list Input (16) Variable name Contents Default

value Options for density

IPDENS

In the mechanical analysis all factors concerning the pellet density ie 1D p= minus and 01Di p= minus are taken into account This option is to select

the factors to be output by plotter The porosity of pellet is obtained by one of the following equations

IPDENS=1 00 0

swg densV Vp pV V

∆ ∆= + +

=2 00 0 0

swg dens hotV V Vp pV V V

∆ ∆ ∆= + + +

=3 00 0 0 0

swg dens hot relV V V Vp pV V V V

∆ ∆ ∆ ∆= + + + +

=4 00 0 0 0 0

swg dens hot rel thV V V V Vp pV V V V V

∆ ∆ ∆ ∆ ∆= + + + + +

where Diinitial theoretical density ratio 0p initial porosity (1- Di)

0

swgVV

∆swelling calculated by the model designated by IFSWEL

0

densVV

∆ densification calculated by the model designated by IDENSF

0

hotVV

∆ hot-pressing

0

relVV

∆relocation-induced change and

0

thVV

∆ volumetric change by thermal expansion

The corresponding plotter outputs are

IDNO=79 segment average porosity designated by IPDENS

IDNO=80 segment average volumetric change designated by IPDENS

IDNO=281 pellet density change (D=1 - p) of each ring element of

segment designated by IPDENS=1

=282 pellet density change (D=1 - p) of each ring element of

segment designated by IPDENS=2

=283 pellet density change of each ring element of segment

designated by IPDENS=3

=284 pellet density change of each ring element of segment

designated by IPDENS=4

1

ICDENS Option for cladding density =1 Zircaloy =41 SUS304 1

JAEA-DataCode 2013-009

- 104 -

Name-list Input (17) Variable name Contents Default

value Options for specific heat

ISPH Option for equation of pellet specific heat =1 MATPRO-11 =30 MATPRO-11 =31 SGTE Database 1

ICSPH Option for equation of cladding specific heat =1 MATPRO-09 (Zircaloy) =41 MATPRO-A (SUS-304) 1

Options for gap thermal conductance

IGAPCN

Option of gap thermal conductance (IGAPCN=5 and 6 are thermally bonding models) =0 Modified Loss amp Stoute =1 MATPRO-09 =2 Loss amp Stoute =3 modified Dean =4 Modified Loss amp Stoute (new) =5 Bonding model 1 (combination of UO2+ZrO2+Open Gapcon) =6 Bonding model 2 (combination of UO2+ZrO2 only even if the gap is

re-opened) =7 gap conductance is fixed at the value specified by GAPCN

0

R1 (Used when IGAPCN = 0 or 2) pellet surface roughness (microm) 10 R2 (Used when IGAPCN = 0 or 2) cladding surface roughness (microm) 10

IAR

Option to change the second element of gas from the standard lsquoN2rsquo When using Ar in place of N2 IAR=rsquoARrsquo When IAR=rsquoARrsquo gas properties

such as GG2 AA2 BB2 and WW2 are automatically set When changing to the gas other than Ar the properties are required to be specified by input

lsquoN2rsquo

GG2 Jump distance between solid and gas (cm) which is used when IAR designates the gas other than N2 Default value is for Ar 50times10-4

AA2 Coefficient a in the equation K=aTb (Wm K) of gas thermal conductivity which is used when IAR designates the gas other than N2 Default value is for Ar

3421 times10-6

AB2 Coefficient b in the equation K=aTb (Wm K) of gas thermal conductivity which is used when IAR designates the gas other than N2 Default value is for Ar

0701

WW2 Molar mass of gas which is used when IAR designates the gas other than N2 Default value is for Ar 39948

OXEMS Oxide emissivity =1Zircaloy =41SUS304 =41SUS316 1

IXEKR XeKr ratio option =0XeKr=8713 =1 XeKr=8614 =2XeKr=16 =3 data from PLUTON is used ( effective only when IFLX= -1)

0

FACPC (Used when IGAPCN = 0 or ge 4) Solid-solid contact term of gap thermal conductance is multiplied by FACPC 10

PC0 (Used when IGAPCN = 4) Reference contact pressure when PCMI occurs 30 X When IGAPCN=4 an exponent for the contact pressure function 30 FACS (IGAPCN = 4) Multiplying factor for solid thermal conductance term 100

TGPG

Option for gap gas temperature TGPG=0 gap gas temperature is set to the average of temperatures at pellet outer surface and cladding inner surface TGPG=N (gt0) gap gas temperature is set to the average of temperatures at the N-th ring element of pellet

0

FGCN Multiplying factor to assume thermally isolated state of P-C gap 10 GAPCN Fixed gap thermal conductance used when IGAPCN=7 (Wcm2K) 05678

JAEA-DataCode 2013-009

- 105 -

Name-list Input (18) Variable name Contents Default

value Options for cladding surface heat transfer model

AKFAC Multiplying factor for the surface heat transfer coefficient of cladding 10

ISCNHAL When ISCNHAL=1 Halden empirical equation is used for the surface heat transfer of cladding Effective when IS=0 1 and 2 0

CSTEM Cladding surface temperature is fixed at the value specified by CSTEM if CSTEM(K) is input Effective when ISCNHAL=0 and IS=0 1 and 2 00

ITSAT

When ITSAT=0 and coolant inlet temperature is higher than [saturation temperature ndash 01] the coolant inlet temperature is set equal to [saturation temperature ndash 01] When ITSAT=1 the inlet temperature is used as is input and inflow of overheated steam is allowed in calculation

0

JL

Option for the surface heat transfer equations in nucleate boiling regime =0 Chenrsquos equation (mailnly for PWR) =1 Jens-Lottes equation (mainly for BWR)

Jens-Lottes equation is applicable to the nucleate boiling region which has a low void ratio (cross section of steamtotal flow cross section) and is used in mailny sub-cooled boiling of water Chenrsquos equation is an evaluation formula which is arranged on the basis of the overheating degree ΔTsat of conduting surface

1

ICFL

When ICFL=1 when the coolant temperature exceeds the cladding temperature in the calculation the cladding temperature is set equal to the coolant temperature and the material properties such as the enthalpy of coolant quality and void fraction are reset using the cladding temperature Option for transient calculation

0

DCNL

Diameter of channel inner tube (cm) When a fuel rod is irradiated inside an inner tube contained in a capsule heat flux loss ocurrs from coolant inside the inner tube to the outer space of the inner tube To approximate this situation the heat flux is calculated by specifying the inner diameter of inner tube coolant temperature at the inlet to the outer space of the inner tube and thermal conductance across the inner tube wall This mode is ON when DCNLgt0

00

TCEXT(20) Coolant inlet temperature (K) at the space outside the inner tube This is different from TCOOL 3000

ICINT(2) In the period between ICINT(1) and ICINT(2) heat outflux through the inner tube channel is taken into account Input the designated history point number to ICINT(1) and ICINT(2)

20

HX(20)

Surface heat conductance (Wcm2K) at the outer surface of the inner tube channel in the period specified by ICINT For example when ICINT(1)=5 and ICINT(2)=10 this period consists of 6 intervals from history point number 6 to 10 However as HX is interpolated with time during the period totally 7 values of HX are specified in HX(1) to HX(7) which is spanned from the beginning of history point 5 to the end of history point 10

2000

FACQJS Fraction of contribution by cladding outer surface heat flux to coolant enthalpy increase 10

JAEA-DataCode 2013-009

- 106 -

Name-list Input (19) Variable name Contents Default

value

Options for FGR model -1-

IGASP

Option for fission gas release model IGASP=0 equilibrium model of grain boundary gas bubbles +intra-grain

bubble model IGASP=2 rate-law model of grain boundary gas bubbles +intra-grain

bubble model Restart calculation automatically takes over the value specified in

[Base-calculation]

0

GBFIS

Option for intra-granular gas bubble model ie model for bubble radius and number density GBFIS=0 White+Tucker model GBFIS=1 Irradiation-induced dissolution model GBFIS=2 Pekka Loumlsoumlnen model

0

APORE (Effective when IGASP=0 or 2 and GBFIS=0) Initial radius of intra-granular gas bubble (nm) 10

KFIS (Effective when IGASP=0 or 2 and GBFIS=0) Exponent used in the equation to determine destruction rate of intra-granular bubbles 20

RFIS (Effective when IGASP=0 or 2 and GBFIS=1) Reference bubble radius (nm) used to determine destruction rate of intra-granular bubbles Initial radius of intra-granular gas bubble (nm)

200

GSV (Effective when IGASP=0 or 2 and GBFIS=1) Tuning factor of surface energy equation of UO2 041

KV (Effective when IGASP=0 2 and GBFIS=1) Tuning factor of vacancy diffusion coefficient 10

RADMG (Effective when GBFIS=2) Upper limit radius of intra-granular gas bubble (nm) 1000

GROU (Effective when GBFIS=2) Initial density of intra-granular gas bubble

0ρ (gcm3) 40

BBC (Effective when GBFIS=2) Parameter to adjust re-dissolution rate (cm3) 3times10-17

RROU (Effective when GBFIS=2) Threshold radius of intragrain bubble Rρ (nm)

under which the initial bubble density 0ρ is kept unchanged 100

NROU

(Effective when GBFIS=2) Value of Nρ in the equation below defining

the bubble density when intra bubble radius exceeds Rρ (RROU)

Namely when R Rρge 0

NiniRR

ρ

ρ ρ

=

10

IRIM

(Effective when IGASP=0 and 2 and only when HBS=0) Model option for (additional) fission gas release from rim region

=0 additional FGR from rim is not taken into account =1 Battelle model =2 Cunningham model

=3 Cunningham model applied to the outermost ring element only =4 Lassmann empirical model

Restart calculation automatically takes over the value specified in [Base-calculation]

1

JAEA-DataCode 2013-009

- 107 -

Name-list Input (20) Variable name Contents Default

value

Options for FGR model -2- BFCT Re-dissolution rate of in-grain bubbles into matrix is multiplied by BFCT 10

FFL Lower boundary value of fission rate F (fissionscm3s) in calculating the re-dissolution rate bprime of fission gas atoms from intra-grain bubbles to solid matrix

1013

IDCNST Option for models of fission gas atom diffusion constant equation =1 Turnbull et al =2 White amp Tucker =3 Kitajima amp Kinoshita =4 Modified Turnbull =5 White =6Kogai

1

IFIS Option for fixing the fission rate which is used in calculating fission gas

atom diffusion coefficient =0 fission rate is not fixed =1 fixed at 1019fissionsm3s

1

FACD Effective diffusion coefficient in grain is multiplied by FACD 10 DIFM Upper limit of fission gas atoms diffusion coefficient(cm2s) 10-8

AM1 When IDCNST=4 an adjusting factor of temperature dependent term of fission gas atoms diffusion coefficient 10

BM1 When IDCNST=4 an adjusting factor of temperature non-dependent term of fission gas atoms diffusion coefficient 10

FGDIFX Option to adjust the temperature dependence of fission gas atoms diffusion coefficient To adjust ie to mulpiply the term FGDIFX=1 is designated If not FGDIFX=0is designated

0

FGDIF0 Factor to multiply the term to adjust the temperature dependence of fission gas atoms diffusion coefficient 100

EFA Parameter a to adjust the temperature dependence of FGDIF0 60

ADDF Re-dissolution rate of gas atoms in grain boundary bubbles into grain matrix is multiplied by ADDF 90

FBSAT Amount of gas saturation at grain boundary is multiplied by FPSAT (Effective when IFSWEL=0 234 and 5) 10

PSAT Limiting pressure acting on grain boundary bubbles (Pa) (Effective when IPEXT=0 12 and 3) 108

RF

Upper limit of inter-grain gas bubble radius At this radius gas is released and bubble will not grow (cm) Restart calculation automatically takes over the value specified in

[Base-calculation]

50times10-5

FBCOV Fraction of coverage of inter-grain gas bubble on grain boundary surface

Restart calculation automatically takes over the value specified in [Base-calculation]

025

ALHOT (Used when IPEXT=1112 and 13) Hot press parameter for the average stress acting on the grain boundary bubbles

10-4

APEXT (Used when IPEXT=14) Pext average stress obtained in the entire rod length mechanical analysis is multiplied by APEXT 10

ISFTN Option for surface energy of pore in UO2 crystal ISFTN=0626 (ergcm2) ISFTN=1Hall and Mortimer model 0

JAEA-DataCode 2013-009

- 108 -

Name-list Input (21) Variable name Contents Default

value

Options for FGR model -3- OPORO Ratio of open bubbles at grain boundary to total open porosity 00 FGG Rate of grain growth sweeping of fission gas atom is multiplied by FGG 10

RFGFAC

Multiplying factor for the FGR from rim structure RFGFACne0 when additional fission gas release from rim region is

assumed RFGFAC=0 when no additional fission gas release is asssumed

10

FRMIN Minimum fission gas release rate () 05 THEATF Interpolation parameter used in in-grain diffusion equation θ 10 FMULT Fitting factor of time step width for fission gas release model 10

NODEG Number of in-grain meshes for fission gas release model (5 or less) Restart calculation automatically takes over the value specified in

[Base-calculation] 3

RREL Dividing ratio of in-grain element to be set for each NODEG-1 in fission gas atoms diffusion calculation (designates NODEG-1 number) 50 10

RB Thickness of grain boundary layer element for re-dissolution of fission gas atoms (cm) 20times10-6

FPMOX

To simulate the FGR of MOX fuel FGR which is calculated by FGR model as usual is multiplied by FPMOX However this only hypothetically increases the amount of released gas and the calculation of fission gas atoms diffusion inside grain is not affected

10

JAEA-DataCode 2013-009

- 109 -

Name-list Input (22) Variable name Contents Default

value

IPEXT

Option for the external pressure Pext acting on grain boundary bubbles

14

IPEXT=0 Pext =0 IPEXT=1 Pext=plenum pressure IPEXT=2 Pext=contact pressure between pellet and cladding IPEXT=3 Pext= max (plenum pressure contact pressure)

IPEXT=13 Pext= thermal stress calculated by the ERL mechanical analysis taking into account the plenum gas pressure and the contact pressure

IPEXT=14 Pext= average stress obtained by stress calculation in the ERL

mechanical analysis + plenum gas pressure

Only when IPEXT=14(default) Pext is set in the following way

Here Sav is the thermal stress which is calculated by the ERL mechanical

analysis as a hydrostatic compressive stress and usually a negative value

and the contact force is automatically included in the calculation of Sav

1) When IGASP=0 Pext=-Sav+plenum gas pressure is set When Sav is

positive ie tensile stress Sav=0 is set

2) When IGASP=2 Pext= -Sav+ plenum gas pressure is set However

when -Savlt0 or when Sav is a positive tensile stress and 2 0extPrγ

+ =

holds Pext is fixed at Pext =208rγ

minus times

ISIGOP ISIGOP=1 is set when evaluating Pext by adding correction on the basis of upper limit of gas bubble strain increment 0

FSIGM Tuning parameter to multiply Pext by FSIGM 10

IFBSAT IFBSAT=1 should be designated when gas saturation concentration at grainboundary is given by a certain fixed value ie FBSATS 0

FBSATS When IFBSAT=1 saturation concentration of gas atoms at grain boundary (atomscm2) 50times1015

JAEA-DataCode 2013-009

- 110 -

Name-list Input (23) Variable name Contents Default

value

Options for rate-law FGR model (IGASP=2) HP (Effective when IGASP=2) Parameter to adjust the increasing rate of radius

of grain boundary gas bubble in its grwoing stage 10

HN (Effective when IGASP=2) Parameter to adjust the decreasing rate of radius of grain boundary gas bubble in its shrinking stage 02

FGCND (Effective when IGASP=2) Parameter to adjust the gas migration conductance from grain boundary gas bubbles 10

NFC (Effective when IGASP=2) NFC (integer) value when assuming the volume of conduit of gas percolation from grain boundary bubbles as

0 ( ) ( )c c c eV V f F g σ= and 0( ) 1 exp[ ( ) ]NFCc c cf F F F= minus minus

10

NSC (Effective when IGASP=2) NSC (integer) value when assuming the volume of conduit of gas percolation from grain boundary bubbles as

0 ( ) ( )c c c eV V f F g σ= and 0 NSC( ) 1 exp[ ( ) ]e e eg σ σ σ= minus minus 10

SIG0 (Effective when IGASP=2) Value of 0

eσ (MPa) when assuming the volume of conduit of gas percolation from grain boundary bubbles as

0 ( ) ( )c c c eV V f F g σ= and 0 NSC( ) 1 exp[ ( ) ]e e eg σ σ σ= minus minus 100

FC1 (Effective when IGASP=2) Coverage ratio 0

cF (-) of grain boundary by grain boundary gas bubbles after one-time coalescence of grain boundary bubbles

085

FC2 (Effective when IGASP=2) Coverage ratio 0

cF (-) of grain boundary by grain boundary gas bubbles after two-times coalescences of grain boundary bubbles

09

FC3 (Effective when IGASP=2) Coverage ratio 0

cF (-) of grain boundary by grain boundary gas bubbles after three-times coalescences of grain boundary bubbles

095

FC4 (Effective when IGASP=2) Coverage ratio 0

cF (-) of grain boundary by grain boundary gas bubbles after four-times coalescences of grain boundary bubbles

099

RINIT (Effective when IGASP=2) Initail radius of grain boundary bubble (microm) 001

NGB (Effective when IGASP=2) Number of bubbles which coalesce into one large bubble when grain boundary bubbles make tunnel and become open to outer space

4

MGB (Effective when IGASP=2) Maximum number of repeated coalescences of grain boundary bubbles when grain boundary bubbles make tunnel and become open to outer space

10

TMG (Effective when IGASP=2) Pellet threshold temperature (K) under which no bubble coalescence ocurrs 12000

DVLTM (Effective when IGASP=2) Lower limit of temperature referred to by the grain bopundary diffusion coefficient of vacancy 10000

LRF (Effective when IGASP=2) LRF=1 is set if the grain boundary gas bubble is assumed to stop growing at the limiting radius RF 0

FCON (Effective when IGASP=2) Threshold coverage of grain boundary bubbles on grain boundary to allow the bubble coalescence to occur 03

JAEA-DataCode 2013-009

- 111 -

Name-list Input (24) Variable name Contents Default

value

Options for pellet swelling

IFSWEL

Option for pellet swelling model =0 Chubb amp Zimmermann+FEMAXI-III =1 solid fission products swelling+ gas bubble swelling =2 MATPRO-09 =3 Kosaka =4 Studsvik =5 Hollowell

Restart calculation automatically takes over the value specified in [Base-calculation]

0

STFCP (Used when either IFSWEL = 0 or IFSWEL=5) Contact pressure above which fission gas bubble swelling does not occur

(Pa) Used in ERL mechanical analysis 30times107

SPCON (Used when either IFSWEL = 0 or IFSWEL=5) Contact pressure above which fission gas bubble swelling does not occur

(Pa) Used in 2-D local mechanical analysis -106

SWSLD

When IFSWEL=0 factor to multiply the solid fission product swelling rate 025 per 1020 fissioncm3

Restart calculation automatically takes over the value specified in [Base-calculation]

10

FDENSF

When either IFSWEL=0 or =1 option for factor fD of density decrease induced by solid fission products swelling

FDENSF=0 01=Df FDENSF=1 0

10 swsD

VfV

∆= minus

0

FACP (When IFSWEL=1) Factor to multiply the contact pressure term of the external pressure on grain boundary gas bubble 10

A1

(Used when IFSWEL = 4) Value of A1 used in the equation ΔVV()=(A1-C1FGR())BU where 0≦BU≦BU1 Restart calculation automatically takes over the value specified in

[Base-calculation]

00965

C1

(Used when IFSWEL = 4) Value of C1 used in the equation ΔVV()=(A1-C1FGR())BU 0≦BU≦BU1 Restart calculation automatically takes over the value specified in

[Base-calculation]

0000459

BU1

(Used when IFSWEL = 4) Value of BU1 (MWdkgU) used in the equation ΔVV()=(A1-C1FGR())BU 0≦BU≦BU1 Restart calculation automatically takes over the value specified in

[Base-calculation]

570

A2

(Used when IFSWEL = 4) Value of A2 used in the equation ΔVV()=(A1-C1FGR())BU1+A2(BU-BU1) BU1ltBU Restart calculation automatically takes over the value specified in [Base-calculation]

0032

JAEA-DataCode 2013-009

- 112 -

Name-list Input (25) Variable name Contents Default

value

Options for densification of pellet

IDENSF

Option for equation of pellet densification =0FEMAXI-III =1Rolstad =2NRC =3Marlowe =4Halden =30 Schlemmer and Ichikawa Restart calculation automatically takes over the value specified in [Base-calculation]

0

DMAX(40)

(Used when IDENSF = 0 2 or 3) Upper limit of pellet volume shrinkage due to densification () at each axial segment Restart calculation automatically takes over the value specified in [Base-calculation]

4010

SBU

(Used when IDENSF = 0) Burnup at which 90 of densification is completed (MWdtUO2) Restart calculation automatically takes over the value specified in

[Base-calculation]

200000

TDNSF (Used when IDENSF = 1 or 3) Sintering temperature (K) Restart calculation automatically takes over the value specified in

[Base-calculation] 20000

GG (Used when IDENSF = 3) Crystal grain diameter after heat treatment (m) Restart calculation automatically takes over the value specified in

[Base-calculation] 10-5

GG0 (Used when IDENSF = 3) Initial crystal grain diameter (m) Restart calculation automatically takes over the value specified in

[Base-calculation] 80times10-6

SITIM (Used when IDENSF = 3) Heat treatment time (hr) Restart calculation automatically takes over the value specified in

[Base-calculation] 240

ADST Densification adjustment factor used when IDENSF=4 Restart calculation automatically takes over the value specified in

[Base-calculation] 06

JAEA-DataCode 2013-009

- 113 -

Name-list Input (26) Variable name Contents Default

value

Options for densification and swelling of pellet

DENSWL

Option for combination model of densification and swelling =0 combination model is not used Densification and swelling are

calculated independently from each other =1 combination model is used Restart calculation automatically takes over the value specified in [Base-calculation]

0

DD1

Assuming that densification is DS(vol) and swelling is SW(vol) the combined volume change VC(vol) is assumed as

1(1 )VC D d DS D SW= minus sdot sdot + sdot where 1( DD1)d = is an adjusting factor for the maximum volumetric shrinkage DMAX

Restart calculation automatically takes over the value specified in [Base-calculation]

13

ALD

ldquoDrdquo in the above equation is given by ( )10tan [ ]

05Bu Bu

π

minus sdot minus= +

ALD is the value of α in this equation Restart calculation automatically takes over the value specified in

[Base-calculation]

04

BU0

ldquoDrdquo in the above equation is given by ( )10tan [ ]

05Bu Bu

π

minus sdot minus= +

BU0 is the value of Bu0 a reference burnup in this equation(GWdt) Restart calculation automatically takes over the value specified in [Base-calculation]

250

Options for fuel grain growth

IGRAIN Option for equation representing UO2 grain growth =0 Itoh =1 Ainscough =2 MacEwan =3 Lyons =4 MATPRO-09 =5 MATPRO-11

0

GR Initial pellet grain size (μm) Restart calculation automatically takes over the value specified in

[Base-calculation] 100

GRWF (Used when IGRAIN = 0) Grain growth rate is multiplied by GRWF 15

AG (Used when IGRAIN = 0) Fitting parameter (grain growth suppression factor) 10

JAEA-DataCode 2013-009

- 114 -

Name-list Input (27) Variable name Contents Default

value

Options for fuel grain growth

IGRAIN Option for equation representing UO2 grain growth =0 Itoh =1 Ainscough =2 MacEwan =3 Lyons =4 MATPRO-09 =5 MATPRO-11

0

GR Initial pellet grain size (μm) Restart calculation automatically takes over the value specified in

[Base-calculation] 100

GRWF (Used when IGRAIN = 0) Grain growth rate is multiplied by GRWF 15

AG (Used when IGRAIN = 0) Fitting parameter (grain growth suppression factor) 10

Options for He release (Refer to [Note] in the next page) NTVHE Number of time points set by TVHE 0

TVHE(41100) TVHE(1 n) number of nth time points (hr) (mole) TVHE(i+1 n) molar amount of He generated in axial segment I at nth

time point 410000

HER

HER=1 He release rate is HERLS times as large as the FGR of Xe+Kr HER=2 option toi assume a fixed release rate ( HEC1 (Default=1000)) to the generated quantity of He irrespective of temperature and burnup HER=3 He absorption and release model

1

HERLS Multiplying factor for the ratio of He release rate to fission gas release rate (Effective when HER=1) 30

HEC1 He gas release rate is assumed as fixed at HEC1() of He generation quantity irrespective of temperature and burnup (Effective when HER=2)

1000

HEGEN (NHIST)

(Effective when HER=3) Option for specifying the time history of He generation quantity HEGEN (N) (N is history point number) is set Eg when

ldquoHEGEN(1)=12E13 HEGEN(4)=234E14rdquo are input at the first history point(initial stage) 12E13 atomscm3 and at the fourth history point 234E14 atomscm3 are designated and between these two points a linear interpolation is made with respect to time

HEGEN(1) is indispensable and initial spacial concentration in solid phase However if IHEGEN=1 is designated unit of HEGEN becomes atomsg-fuel

1500 00

IHEGEN (Effective when HER=3) IHEGEN designates unit of HEGEN IHEGEN=0 atomscm3 IHEGEN=1 atoms g-fuel 0

DHE1

(Effective when HER=3) D1 of the following He diffusion coefficient inside grain (lattice)

11 1 2exp ( ) (f )LAT

QD D f Bu fRT

= minus + +

(m2s) 8times10-7

JAEA-DataCode 2013-009

- 115 -

[Note] Explanation of absorptionrelease model of Helium in UO2 and MOX fuels

The model adopts the He generation quantity calculated by an external burning analysis

code as a function of initial composition of fuel burnup or time When HEAR=1(default=0)

this process is performed in FEMAXI-7 If HEAR=0 the calculation is not performed even if

the He quantity is input

The He generation data is fed to FEMAXI-7 by either designation by name-list parameter

HEGEN(time atomscc) or adding several data lines to the last part of input file and the code

calculates as a function of time the He generation quantity during a certain time-step ie

increment (atomscc-fuel) during the time step in each ring element of pellet

The He diffusion inside pellet is calculated by a concentration-gradient driven diffusion in

the radial direction of pellet assuming that an average concentration of He (atomscc-fuel) in

each ring element has a gradient in the radial direction of pellet Here the boundary

condition at the interface of pellet solid surface and gas phase (assuming that the He spacial

concentration is equal to that of the solid) initial spacial concentrations of He in solid and gas

phase (atomscc-fuel) are specified by input and calculation is performed with respect to

absorptionrelease of He across the pellet-gas phase in each axial segment to derive the He

concentration in gas phase and partial pressure (MPa) in whole rod including plenum space

The diffusion coefficient of He in solid has input options to specify the parameters consisting

of the equation

The solid-gas interface is basically assumed as the surface of outermost ring element of

pellet facing the gap gas (HEBDS=1) or in addition to this inner wall surface of centerhole

of pellet (HEBDS=2) On the other hand the direct absorption and release from the

designated ring elements to gas phase are taken into account That is the He concentration in

gas phase at temperature of each ring element or the He concentration in each ring element is

multiplied by factor HERFAC(I factor) where (I=1helliphellip36 0 le factor le 01 ) to calculate

the direct absorptionrelease at a certain time-step and to be reflected on the average He

concentration of each ring element in the diffusion calculation

JAEA-DataCode 2013-009

- 116 -

Name-list Input (28) Variable name Contents Default

value

QHE1

(Effective when HER=3) Q1 (calmol) of the following He diffusion coefficient inside fuel grain (lattice)

11 1 2exp ( ) (f )LAT

QD D f Bu fRT

= minus + +

460000

DLT (Effective when HER=3) Lower limit value of He diffusion coefficient inside fuel grain (lattice) (m2s)

706times10-17

DHEF1

(Effective when HER=3) 1( )f Bu (m2s) of the following He diffusion coefficient inside fuel grain (lattice)

11 1 2exp ( ) (f )LAT

QD D f Bu fRT

= minus + +

00

DHEF2

(Effective when HER=3) 2(f )f (m2s) of the following He diffusion coefficient inside fuel grain (lattice)

11 1 2exp ( ) (f )LAT

QD D f Bu fRT

= minus + +

00

NODEH

(Effective when HER=3) Number of elements inside grain in He release model (Max 50) Restart calculation automatically takes over the value specified in

[Base-calculation]

5

HESOL He solubility insolid fuel (spacial concentration atomscm3) 1027 High burnup (rim) structure model

HBS

HBS=0 high burnup model is not used HBS=1JAEA rim model with local burnup HBS=2 JAEA rim model with effective burnup

Effective burnup neffB (GWdtM) is defined as

11 0exp ( )n n n

eff eff nB B k T T t Bminus= sdot minus minus sdot ∆ + ∆

where neffB effective burnup at n-th time step (GWdtU)

nT local fuel temperature (K) at n-th time step This is assumed as

0nT T= when 0nT Tle

0T Reference temperature (K)

1k constant

t∆ time step increment (s) nB∆ burnup increment at n-th time step Restart calculation automatically takes over the value specified in [Base-calculation]

0

TSTD (Used when HBS=2) Reference temperature 0T (K) in calculating effective burnup

10000

KON1 (Used when HBS=2) A constant 1k to multiply the temperature dependent term of effective burnup

10-8

JAEA-DataCode 2013-009

- 117 -

Name-list Input (29) Variable name Contents Default

value

FPINF

(Used when HBS=1 or 2) Lassmann empirical model is applied to fission gas transfer from rim structure to pore Ratio FPOR of amount of gas transferred from solid matrix to the free space outside pellet to the total amount of fission gas atoms generated in the rim structure is expressed as a function of burnup Bu ( localBu or effB ) Here FPNF(wt) is used in the function as

( ) ( )( )1 0wt =FPINF+(GEN1times -FPINF)timesexp -GEN2times -Xe Bu Bu Bu

[ ]1FPOR Total Xe generation(Wt)= Xe

[ ]Total generation(wt) 00145 (GWdt)= sdotXe Bu

025

GEN1 (Used when HBS=1 or 2) Value of 1Gen in the above equation (wtGWdt) 00145

GEN2 (Used when HBS=1 or 2) Value of 2Gen in the above equation 01 BURMXE (Used when HBS=1 or 2) Value of Bu0 in the above equation (GWdt) 600

BKONA (Effective when HBS=1) Burnup at which rim structure transformation begins (GWdtU) 650

ARIM

(Effective when HBS=2) Value of α in the following equation assuming that the transformation ratio into rim structure is Xv

( )11tan

Xv effB Buα δ

π

minus minus= +

105

BURIMS (Effective when HBS=2) Value of 1Bu (GWdt) in the equation defining Xv the ratio of transformation into rim structure

600

DRIM (Effective when HBS=2) Value of δ in the equation defining Xv the ratio of transformation into rim structure

052

RMOGR

Option to specify the additional amount of FGR from the gas pores in the rim structure RMOGR=0 no additional FGR from the gas pores

RMOGR=1 additional FGR is evaluated assuming OPR=ATHMR where OPR is the fraction of open pores and 0 OPR ATHMR FPORle = le That is after the rim structure is formed OPR fraction of fission gas atoms generated in the rim structure is released to external space

RMOGR=2 open pore fraction OPR to the rim pore porosity rimp is given

as a function of rimp

003OPR (0 023)023 rim rimp p= sdot le le

( )( ) ( )OPR 003 015 003 100 23 023 024rim rimp p= + minus sdot minus le le

( )( ) ( )OPR 015 045 015 100 24 024 025rim rimp p= + minus sdot minus le le

1

JAEA-DataCode 2013-009

- 118 -

Name-list Input (30) Variable name Contents Default

value

ATHMR (Effective when RMOGR=1) Fraction of athermal release of gas (-) 00

RIMPRO (Used when HBSgt0) Option for pellet rim structure thermal conductivity model =0 Ikatsu model =1 Billaux model

0

BXEQ (Used when HBSgt0) The equivalent burnup Bx to calculate the thermal conductivity of the rim structure region (GWdtU) 400

RIMSWL

(Used when HBSgt0) Option for the swelling of the rim structure region When RIMSWL=1 the volumetric swelling rate of the rim structure region is assumed equal to [porosity + solid swelling] irrespective of the value of IFSWEL Restart calculation automatically takes over the value specified in [Base-calculation]

0

RMPST

Option for calculation of rim structure porosity rimP

RMPST=0 the porosity is not calculated but fixed at 050=rimP RMPST=1 NFD empirical corelation equation is used

Porosity in rim structure RMPOR() is defined as RMPOR = PORMAX (1- PG4)+PORMIN PG4sdot sdot

PORMAX = ( ) 221 2 PGBuBuPG +minussdot

PORMIN = ( ) 223 2 PGBuBuPG +minussdot where rimP =RMPORtimes001 and maximum value of rimP is assumed

as PMX RMPST=2Billaux model is used

tMGWdBPBuAPBPAPprim 1211 ltminussdot=

AP1 AP2 BP1 BP2 GWdtM= sdot minus le lerimp Bu Bu

PMX BP2 GWdtM= gtrimp Bu

Bu local burnup ( localBu or effB ) (GWdtM)

1

PG1 PG1 value ( (GWdtM)2) when RMPST=1 0005 PG2 PG2 value ( (GWdtM)2) when RMPST=1 25 PG3 PG3 value ( (GWdtM)2) when RMPST=1 00013 PG4 PG4 value (-) when RMPST=1 05 BUPOR BU2 value (GWdtM) when RMPST=1 400 AP1 AP1 value (GWdtM)-1 when RMPST=2 00024 AP2 AP2 value (-) when RMPST=2 0106 BP1 BP1 value (-) when RMPST=2 650 BP2 BP2 value (GWdtM ) when RMPST=2 1500 PMX When RMPST=1 or 2 maximum value of rimstructure porosity (-) 0254

JAEA-DataCode 2013-009

- 119 -

Name-list Input (31) Variable name Contents Default

value

Youngrsquos modulus option

IPLYG Option for equation of pellet Youngrsquos modulus

=1 MATPRO-09 =2 MATPRO-11 =30 MATPRO-11 2

FPYG Multiplying factor for pellet Youngrsquos modulus 10

IZYG Option for cladding Youngrsquos modulus =1 Fisher =2 MATPRO-A and -11 =41SUS304

2

FCYG Multiplying factor for cladding Youngrsquos modulus 10

CYNG Cladding Youngrsquos modulus is specified by input CYNG (Pa) If CYNG(gt0) is specified by input the Youngrsquos modulus is fixed at CYNG (Pa) 00

Poissonrsquos ratio option

IPOIS Option for pellet Poissonrsquos ratio =1 MATPRO-09 =30 MATPRO-11 =31 Nutt and Yamada

1

ICPOIS Option for cladding Poissonrsquos ratio =1 Fisher =40SUS316 =41SUS304

1

CPOIS Cladding Poissonrsquos ratio is specified by input CPOIS (-) If CPOIS(gt0) is specified by input the Poissonrsquos ratio is fixed at CPOIS 00

Thermal expansion option

IPTHEX

Option for pellet thermal expansion rate =0 or =1 MATPRO-09 =2 Burdick =3 Halden =4 Conway and Fincel =5 MATPRO-A =6 Martin

=30 MATPRO-11 =31 Martin and Tokar =32 MATPRO-A

0

FPTM Multiplying factor for pellet thermal expansion rate 10

ICATHX Option for cladding thermal expansion rate

=0 MATPRO-09 =1 Scott =2 MATPRO-A =3 MATPRO-11 =40SUS316 =41SUS304

0

ATHEX Thermal expansion coefficient of cladding in the axial direction (oC-1) (Used when ICATHX=0)

4441 times10-6

RTHEX Thermal expansion coefficient of cladding in the radial direction (oC-1) (Used when ICATHX=0)

6721 times10-6

OXTHM Option for thermal expansion rate of cladding oxide layer =1 MATPRO-A (ZrO2) =41SUS-304 =43 SUS316 1

FCTM Multiplying factor for cladding thermal expansion rate 10

JAEA-DataCode 2013-009

- 120 -

Name-list Input (32) Variable name Contents Default

value

Pellet crackrelocation option FRELOC Relocation parameter 05 EPSRLZ Relocation strain in the axial direction 0003

FACR It is assumed that pellet recovers its stiffness if crack space shrinks by FACR times the relocation strain in the radial direction 10

FACZ It is assumed that pellet recovers its stiffness if crack space shrinks by FACZ times the relocation strain in the axial direction 10

IURS When IURS=1 ε R which is assumed as the strain to recover completely the pellet stiffness includes gas bubble swelling and creep strains

0

IYNG Option for pellet crack model (mechanical model)

=0 sstiffness recovery is approximated by a quadratic function =1 by a linear function

1

ECRAC3 Pellet stiffness when pellet is completely cracked (Pa) (mechanical model) 20times109

EFAC Fraction of stiffness recovery of cracked pellet to the pellet Youngrsquos modulus (ERL mechanical analysis) 01

SIGFL Critical stresses PCθσ (MPa) of pellet fracture in the circumferential

direction The same value is applied to those in the radial and axial directions

100

DELTAR (NAX NHIST)

Adjustment quantity (microm) of thermal relocation of pellet of each axial segmentat at arbitrary history points

Assuming that the gap size is GAPi as a result of mechanical analysis at

history point ldquoi-steprdquo the thermal gap size GAP1i is given by

GAP1i=GAPi - Σi(DELTAR)

Here Σi(DELTAR) is the accumulated value of DELTAR until i-step (DefaultDELTAR(IZ IN)=0 (1 le IZ le NAX 1 le IN le NHIST)) However when the gap size comes to GAP1i= GAPi - Σi(DELTAR)=0 GAP1=0 is assumed even if DELTARgt0is designated after the i-step

Also Σi(DELTAR) is reset to null at the moment PCMI ocurrs in the mechanical analysis Σi(DELTAR)=0 is assumed even if DELTARgt0 is specified at the history points after the step at which gap reopens

All 00

Creep option

IPCRP

Option for pellet creep equation =1 MATPRO-09 =2 MATPRO-11 =4SKI model for UO2

=5 Halden UO2 Creep model =11 SKI-based MOX model (fH=1) =12 SKI-based MOX model (fH=2) =13 SKI-based MOX model (fH=3) =15 Halden MOX Creep model =30 MATPRO-11 (MOX)

4

FCRFAC Magnification factor for pellet creep equation in mechanical model 10

TCS Cut-off value of temperature in pellet creep calculation (K) in mechanical model 127315

JAEA-DataCode 2013-009

- 121 -

Name-list Input (33)

Variable name Contents Default value

CRFAC Magnification factor for cladding creep rate (mechanical analysis) 10

TCCS Upper cutoff temperature in cladding creep calculation (K) (mechanical analysis) 107315

FAIMAX Maximum limit value of fast neutron flux used in cladding corrosion calculation (ncm2s) common to thermal and mechanical analyses 1015

SIGMAX Upper cutoff value of equivalent stress (Pa) in cladding creep calculation (mechanical analysis) 4times108

CRPEQ

Option for cladding creep model =0 MATPRO-09 =1 Nen-an-sen =2Franklin

=3 McGrath(Halden) =40SUS316 =41SUS304 =43 SUS316(MRI)

3

HTCRP Option for cladding high temperature creep =1 Rosinger =20 Donaldson(Westinghouse) =21 Donaldson(Wolverine) =22 Donaldson(Sandvik (NRU))

1

HTCREP When high temperature creep model of cladding is used irrespective of temperature condition HTCRP=1 is to be designated 0

ICRP

When ICRP=0 out of the two creep equations ie one designated by CRPEQ and the other designated by HTCRP one equation which gives a faster creep rate than the other is used in calculation When ICRP=1 for the temperature under CRTEMP the equation designated by CRPEQ is used and over CRTEMP the other one designated by HTCRP is used

0

CRTEMP Temperature (oC) at which creep equation of Zircaloy is shifted from the one designated by CRPEQ to high temperature creep equation designated by HTCRP (Effective when ICRP=1)

4500

THETC Implicit solution parameter θ used in creep analysis ( 0 1θle le ) 10

IPUGH =1 Pughrsquos reversal method is adopted in the cladding creep calculation in

2-D local mechanical analysis =0Pughrsquos reversal method is not adopted

1

IPUGH2 =1 Pughrsquos method is adopted in the cladding creep calculation in ERL

mechanical analysis =0Pughrsquos reversal method is not adopted

0

ICC

Option for creep strain increment calculation ICC=0 creep strain increment is calculated by the creep rate with an

updated stress 11

11

+++

++ ∆=∆ ic

nnic

n t θεε ICC=1 creep strain increment is calculated by adding a correcting term

derived from updated stress to the approximated value at i-th step [ ] 1

1

11

1++++

++ +∆=∆ i

nic

nic

nic

n dC σεε θ

0

JAEA-DataCode 2013-009

- 122 -

Name-list Input (34) Variable name Contents Default

value

Plasticity option IFY Pellet plasticity model option =0 Rodford =1 Tachibana 1 FYIEF Option to multiply pellet yield stress by FYIEF 10

ICPLAS

Option for cladding stress-strain relationship =1 FEMAXI-III =2 MATPRO-11 =3 modified MATPRO-11 =4 Ohta model for PWR cladding =5 Ohta model for BWR cladding

=6 FRAPCON34 model =41SUS304

1

CWK (Effective when ICPLAS=2 or 3) Effective cold-work for strength coefficient K

(dimensionless cross section area) 00

CWN (Effective when ICPLAS=2 or 3) Effective cold-work for strain hardening exponent (cross sectional reduction ratio)

00

CW_INIT (Effective when ICPLAS=6) Initial value of effective cold-work (dimensionless cross section area) 05

IPLANT

Option to designate reactor type (Used when ICPLAS=6) =1HBWR(Zry-2) =2BWR(Zry-2) =3PWR(Zry-4) K(Zry) = 10 for Zry-4 K(Zry) =1305 for Zry-2 n(Zry) = 10 for Zry-4 n(Zry) = 16 for Zry-2

2

KF (Effective when ICPLAS= 3) Parameter to adjust the increment of K with burnup 10

ISTR Size K of yield curved surface of Zircaloy is assumed as 23344 (kgmm )YK σ= + when ISTRne0 0

FCYD Multiplying factor for cladding yield stress (except the Zr liner) 10

FCYDZR Multiplying factor for yield stress of cladding Zr liner 10

FCRN Multiplying factor for strain hardening exponent of cladding Zr liner 80

ISTRES

1) When ISTRES=1 (default) as per usual in FEMAXI-7 yielding of cladding and pellet is judged by equivalent stress

2) ISTRES=2 for cladding Eqs(1) and (2) are applied For pellet as per usual model of FEMAXI-7

3) ISTRES=3 for both cladding and pellet Eqs(1) and (2) are applied Eq(1) max STFACS σ= timesY Eq(2) eq maxh h ( )Sσprime = times

where maxS the largest stress of the principal stresses ( hoop stress

for cladding) σ Y yield stress eqσ equivalent stress

hprime yield function in the cases 1) 2) and 3) h yield function in the case 1)

1

STFAC

Relationship between maxS (largest principal stress) andσ Y (yield stress)

(above Eq(1)) where10 STFAC 115( 2 3)le le cong When STFACgt1 STFAC=1 is set and when STFAC ge 115 STFAC=115 is set

10

ISYD Option for strain rate dependence of yield stress

ISYD=1 strain rate dependence is taken into account ISYD=0 strain rate dependence is not taken into account

1

JAEA-DataCode 2013-009

- 123 -

Name-list Input (35) Parameters for Ohta model Parameter name Contents

PL1 Parameters for strength coefficient K

Parameter L1 of strength coefficient K Default value=1745 PL2 L2 Default value=2517 PL3 L3 Default value=526 PL4 L4 Default value=0748 PA1 A 1 Default value=3041233371times104 PA2 A 2 Default value=-8285933869times101 PA3 A 3 Default value=7490958541times10-2 PA4 A 4 Default value=-2242589096times10-5 PB1 B 1 Default value=33282432times102 PB2 B 2 Default value=298027653 PB3 B 3 Default value=-681286681times10-3 PB4 B 4 Default value=351229783times10-6 PH1 H 1 Default value=1times10-6 PH2 H 2 Default value=8775 PH3 H 3 Default value=8663 PH4 H 4 Default value=0341566 BL1 L1 Default value=1201 BL2 L2 Default value=2508 BL3 L3 Default value=1119 BL4 L4 Default value=0627 BA1 A 1 Default value=3656432405times104 BA2 A 2 Default value=-1361626514times102 BA3 A 3 Default value=1695545314times10-1 BA4 A 4 Default value=-7055897451times10-5 BA5 A 5 Default value=-3338799880times104 BA6 A 6 Default value=1330276514times102 BB1 B 1 Default value=-3617377246times104 BB2 B 2 Default value=1361156965times102 BB3 B 3 Default value=-1636731582times10-1 BB4 B 4 Default value=6386789409times10-5 BH1 H 1 Default value=1times10-6 BH2 H 2 Default value=4772 BH3 H 3 Default value=9740 BH4 H 4 Default value=5267783

PNC1 Parameters

for strain hardening exponent n

C 1 Default value=0213 PNC2 C 2 Default value=1808times10-4 PNC3 C 3 Default value=34708518times10-2 PNC4 C 4 Default value=49565251times10-4 PNC5 C 5 Default value=-50245302times10-7 PNC6 C 6 Default value=0027908

PA5 Parameters

for strain rate sensitivity exponent m

A 5 Default value=2063172161times101 PA6 A 6 Default value=-770455times10-2 PA7 A 7 Default value=9504843times10-5 PA8 A 8 Default value =-386096times10-8 PA9 A 9 Default value=-647times10-2

PA10 A 10 Default value0=2203times10-4

JAEA-DataCode 2013-009

- 124 -

Name-list Input (36) Variable name Contents Default

value

Pellet hot-press option BETAX Pellet hot press parameter α (in mechanical analysis) 0002

IHOT

This is effective in the entire-rod-length mechanical analysis model When IHOT=0 the pellet hot-press parameter is the same as the value of

BETAX When IHOT=1 the pellet hot-press parameter is given by

( )( )0

1 (1 )1 (1 )

s

s

D DD D

minus minus minusminus minus minus

BETAX

Here Dpellet theoretical density ratio(-) D0initial value of D Ds FDENH

0

IHPOP

This is effective in the local mechanical analysis model When IHOT=0 the pellet hot-press parameter α is 0 during non-contact

state and during contact state α is set equal to BETAX When IHOT=1 the pellet hot-press parameter is given by

( )( )0

1 (1 )1 (1 )

s

s

D DD D

minus minus minusminus minus minus

BETAX

Here Dpellet theoretical density ratio(-) D0initial value of D Ds FDENH

0

FDENH Ds in the equation above the maximum relative density of pellet attainable by hot-press Effective when IHOT=1 or IHPOP=1 10

Anisotropy parameter option H0(4) Anisotropy factor H0

(H0(1) fuel pellet H0(2)Zry(or SUS) H0(3) pure-Zr H0(4)ZrO2) 410

F0(4) Anisotropy factor F0

(F0(1) fuel pellet F0(2)Zry(or SUS) F0(3)pure-Zr F0(4)ZrO2) 410

G0(4) Anisotropy factor G0

(G0(1) fuel pellet G0(2)Zry(or SUS) G0(3)pure-Zr G0(4)ZrO2) 410

Pellet dishchamfer (buffer element) model option

IDSELM When IDSELM=0 elements for dish (chamfer) space are not used in the

ERLmechanical analysis geometry When IDSELM=1 they are used

0

BUFSP Percentage of the axial length of elements for dish (chamfer) space to the axial length of pellet-pellet gap () 10

Bonding model option

IBOND

Option for P-C bonding model (mechanical model) =0 model of mechanical bonding is not applied

=1 model of mechanical bonding is applied =2 during the mechanical analysis when [gap size]=[cladding inner

diameter]-[pellet outer diameter]gt0 and the gap opens the mechanical bonding model is cancelled and the axial displacement of pellet is allowed to be independent from that of cladding When the gap is closed again ie when the cladding inner diameter becomes equal to pellet outer diameter the model of mechanical bonding is applied again Namely the displacement of pellet outer surface in the axial direction is forced to be shared with that of the cladding inner surface

0

JAEA-DataCode 2013-009

- 125 -

Name-list Input (37) Variable name Contents Default

value

SBONDG A parameterθ for adjusting the gap conductance at bonding (thermal analysis)

001

ALBD An adjustment parameter α used when the gap is open in a segment in which bonding developed (applied to the gap thermal conductance model) 07

FBONDG A parameter F for adjusting gap conductance during bonding (applied to the gap thermal conductance model) 100

BDX A parameter for determining the maximum value of the extent of bonding

advancement (hour-MPa) (common in the gap thermal conductance model and mechanical bonding model)

1000000

BDTR

The value showing the advancement of bonding under the anchored state in the axial direction regardless of the presence or absence of contact due to the advancement of bonding or contacting pressure (common in the gap thermal conductance model and mechanical bonding model)

05

PN Option for PDOWN and PUP Effective when IBOND=1

=0 PDOWN and PUP do not become effective =1 PDOWN and PUP are effective

0

PDOWN

When the power decreases during the bonding state in the segment in which its contact pressure decreases below a certain threshold value the use of bonding is terminated and a regular ldquoanchor-sliderdquo evaluation is used Effective only when PDOWNgt0 (Pa) (in the mechanical analysis model)

00

PUP

When the power increases in the segment subjected to bonding conditions in the segment in which the contact pressure exceeds a certain threshold value the bonding is terminated and a regular ldquoanchor-sliderdquo evaluation is used Effective only when PUPgt0 (Pa) (in the mechanical analysis model)

00

Cladding irradiation growth option

ICAGRW

Cladding irradiation growth equation option = 0 irradiation growth is not applied =1 MATPRO-09 = 2 Manzel = 3 Hannerz = 4 Hesketh =41 SUS304 =43SUS316 Restart calculation automatically takes over the value specified in

[Base-calculation]

1

CATEXF (Used when ICAGRW = 1) Factor in the axial direction f Z Restart calculation automatically takes over the value specified in

[Base-calculation] 005

COLDW (Used when ICAGRW = 1) Cold work CW Restart calculation automatically takes over the value specified in

[Base-calculation] 081

RX Multiplying factor for irradiation growth of cladding oxide layer Restart calculation automatically takes over the value specified in

[Base-calculation] 10

JAEA-DataCode 2013-009

- 126 -

Name-list Input (38)

Variable name Contents Default value

Gas flow model option

IST

Option for internal gas flow See section 413 for detail =0 model of gas diffusion in the axial direction is applied

=1 model of instantaneous pressure equilibrium and complete mixture of gas

=3 model of gas isolation in each segment

1

GPCPR When IST=3 pellet-cladding contact pressure (MPa) at which conditions of no gas flow in the axial direction are set 100

BDTR2 When IST=3 bonding progress (-) at which conditions of no gas flow in the axial direction are set 09

GMIN Minimum value (cm) of gap width for the gap gas flow model 0001

THG1 Interpolation parameter θ1 of temperature and volume etc of gas Used in

the model of fission gas flow in the axial direction 10

THG2 Interpolation parameterθ 2 used in diffusion calculation of model of fission

gas flow in the axial direction 10

Cladding oxidation model option

ICORRO

Cladding outer surface corrosion model option =0 not considered =1 EPRI =2 MATPRO-A(PWR)

=3 MATPRO-A(BWR) =4NUPEC =6 NUREG-CR-7022 (Zircloy-4 in PWR condition) =7 NUREG-CR-7022 (M5 alloy in PWR condition) =8 NUREG-CR-7022 (ZIRLO in PWR condition) =9 NUREG-CR-7022 (Zircaloy-2 in BWR condition)

1

RCORRO Oxide layer growth adjustment factor to multiply the oxide layer growth rate by RCORRO 10

FCORRO Factor to increase the oxide layer growth rate Multiplication =(10+FCORRO) 00

PBR Piling-Bedworth ratio = volume expansion ratio of oxide to metal in Zircaloy Piling-Bedworth Ratio 156

PX Portion of volume expansion ratio X in the radial direction () where X=PBR-10 This volume expansion is due to oxidation 800

OXFAC Multiplying factor for the oxide thermal conductivity 10 OXTHMX Upper limit of oxide layer thickness in calculation (microm) 1000

OXTH(41) Initial oxide thickness of cladding outer surface at each axial segment (microm) Restart calculation automatically takes over the value specified in [Base-calculation]

4101

CNOX CNOX(microm-1) specifies the multiplying factor F for the equation of oxide thermal conductivity F=1-CNOXS where S is oxide thickness (microm) 00

JAEA-DataCode 2013-009

- 127 -

Name-list Input (39) Variable name Contents Default

value Dry-out experiment analysis option

IDRY Option for Dry-out analysis When IDRY=1 dry-out analysis is On 0

DII Inner diameter of inner tube (cm) 18

DIO Outer diameter of inner tube (cm) 20

DOI Inner diameter of outer tube (cm) 21

DOO Outer diameter of outer tube (cm) 23

DSI Inner diameter of capsule outer mantle (cm) 27

DSO Outer diameter of capsule outer mantle (cm) 32

T1IN Inlet temperature of heating steam (oC) 2900

T5IN Inlet temperature of circulating water (oC) 500

TBOUND Coolant water temperature (oC) 400

PRS1 Pressure of heating steam (MPa) 72

PRS3 Pressure of He layer (MPa) 01

PRS5 Pressure of circulating water (MPa) 72

V1 Flow velocity of heating steam (ms) 02

V2 Flow velocity of circulating water (ms) 001

FTH Adjustment factor for the thermal conductivity of He layer (-) 10

RHC Adjustment factor for the thermal conductivity of heating steam layer and for radiative heat transfer coefficient of circulating water (-) 10

DTDRY Maximum time step width in calculating temperatures in dry-out analysis (s) 01

IV1 When IV1=1 mass flow rates (kgs) of heating steam and circulating water are set equal and input of VI is ineffective 0

JAEA-DataCode 2013-009

- 128 -

Name-list Input (40) Variable name Contents Default

value

Numerical output and plotted figure output option

IPHIS

Option for summary output For the history point designated by IP=1 numerical output is given in detail In addition summary output is given for each calculated quantity as a function of time

IPHIS=0 summary output is given only for the history point designated by IP=1 IPHIS=1 summary output is given for all the history points irrespective of IP

0

IPRINT Output option (=0 no output =1 output) (1) Input data list 1 (2) Fuel design data 0 (3) Mesh coordinates data 0 (4) List of parameters 0 (5) History data 1 (6) Results of thermal analysis of each time step 1 (7) Results of mechanical analysis of each time step 1 (8) Summary of thermal analysis results for each segment (thermal analysis) 1 (9) Summary of mechanical analysis results for each segment (thermal analysis) 1 (10) Summary of fission gas release results for each segment (thermal analysis) 1 (11) Summary of fission gas release results for entire fuel rod (thermal analysis) 1

(12) Summary of deformation behavior of pelletcladding of each segment (mechanical model) 1

(13) Summary of pellet stress and strain of each segment (mechanical analysis) 1 (14) Summary of cladding stress-strain of each segment (mechanical analysis) 1 (15) Summary of major results (final information) 1 (16) Output of He generation quantity at each segment 0

(17) Output of relative power density profile in the radial direction of pellet stack at each axialsegment 0

(18) Output of relative power at each axial segment 0 (19) Summary of entire-fuel-rod strain and corrosion of the objective segment 1 (20) Summary of coolant and of cladding oxidation (thermal analysis) 0 (21) INDO table shown after the summary output 0

(22) Table of plotted history points shwon after IDNO table 0

JAEA-DataCode 2013-009

- 129 -

Name-list Input (41) Variable name Contents Default

value

IWNOD

Segment output option (= 0 no output = 1 output) For IPRINT(8) IPRINT(9) IPRINT(10) IPRINT(16) IPRINT(17) output

(including plotter output) is performed for segment I where IWNOD(I) = 1 and output is not performed for segment I where IWNOD(I) = 0 However if all IWNOD is 0 IWNOD(IFEM) = 1 is set only at segment

IFEM

400

IWTHE Thermal analysis output option (= 0 no output = 1 output) (Option when IPRINT(6) = 1)

(1) Fuel temperature 1

(2) Gap gas 0

(3) Grain radius 0

(4) Intra-grain gas bubble radius 0

(5) Intra-grain gas bubble density 0

(6) Intra-grain gas diffusion coefficient 0

(7) Intra-grain gas effective diffusion coefficient 0

(8) Number of gas atoms in grain 0

(9) Number of gas atoms at grain boundary 0

(10) Number of gas atoms released 0

(11) Number of gas atoms in grain and at grain boundary 0

(12) Number of gas atoms released in grain and at grain boundary 0

(13) Number of gas atoms generated 0

(14) Fission gas release rate 1

(15) Gas density at grain boundary 0

(16) Saturated gas density at grain boundary 0

(17) Average stress at grain boundary 0

(18) Burn-up 1

(19) Conditions for thermal calculation 1

(20) Representative output for thermal calculation 1

(21) Number of fission gas atoms solved in solid matrix UO2 0

(22) Number of fission gas atoms in intra-grain bubbles 0

(23) Radius of inter-grain gas bubble 0

(24) Gas-release threshold radius of inter-grain bubble 0

(25) Fraction of coverage on grain boundary by inter-grain bubbles 0

(26) Threshold fraction of coverage on grain boundary by inter-grain bubbles

0

(27) Number density of inter-grain gas bubbles 0 (28) Effective burnup 0 (29) Ratio of rim structure formation ( vX ratio) 0 (30) Porosity in rim structure and total porosity 0

JAEA-DataCode 2013-009

- 130 -

Name-list Input (42) Variable name Contents Default

value

IWFEM Output option for the Local Mechanical Analysis II (effective only when IFEMRD = 0) (= 0 no output = 1 output) (option used when IPRINT(7) = 1)

(1) Stress in the radial direction 0 (2) Stress in the axial direction 1 (3) Stress in the circumferential direction 1 (4) Shear stress 0 (5) Equivalent stress 1 (6) Yield stress 0 (7) Total strain in the radial direction 0 (8) Total strain in the axial direction 0 (9) Total strain in the circumferential direction 0 (10) Total shear strain 0 (11) Equivalent plastic strain 1 (12) Creep strain in the radial direction 0 (13) Creep strain in the axial direction 0 (14) Creep strain in the circumferential direction 1 (15) Shear creep strain 0 (16) Equivalent creep strain 0 (17) Elastic strain in the radial direction 0 (18) Elastic strain in the axial direction 0 (19) Elastic strain in the circumferential direction 0 (20) Shear elastic strain 0 (21) Thermal strain in the radial direction 0 (22) Thermal strain in the axial direction 0 (23) Densification strain 0 (24) Swelling strain 0 (25) Stiffness in the radial direction 0 (26) Stiffness in the axial direction 0 (27) Stiffness in the circumferential direction 0 (28) Creep rate in the radial direction 0 (29) Creep rate in the axial direction 0 (30) Creep rate in the circumferential direction 0 (31) Creep rate in the shear direction 0 (32) Equivalent creep rate 0 (33) Total strain rate in the radial direction 0 (34) Total strain rate in the axial direction 0 (35) Total strain rate in the circumferential direction 0 (36) Total strain rate in the shear direction 0 (37) Equivalent total strain rate 0 (38) Strain energy 0 (39) Temperature distribution in the radial direction 1 (40) Mechanical interaction between pelletcladding 1

JAEA-DataCode 2013-009

- 131 -

Name-list Input (43) Variable name Contents Default

value

IWFEM (continued)

Output option for the Local Mechanical Analysis II (effective only when IFEMRD = 0) (= 0 no output = 1 output) (option used when IPRINT(7) = 1)

(41) Mechanical interaction between pelletpellet 1 (42) Displacement of node 1 (43) Plot of ldquoPellet-Clad Mechanical Interactionrdquo 1 (44) Crack yielding map 1 (45) Mechanical calculation conditions 1

IWROD Output option for the Entire-Rod-Length Mechanical Analysis I (effective only when IFEMRD = 1) (= 0 no output = 1 output)

(This option is used when IPRINT(7) = 1)

(1) Stress in the radial direction 0 (2) Stress in the axial direction 0 (3) Stress in the circumferential direction 0 (4) Equivalent stress 0 (5) Yield stress 0 (6) Creep strain in the radial direction 0 (7) Creep strain in the axial direction 0 (8) Creep strain in the circumferential direction 0 (9) Creep hardening strain 0 (10) Equivalent plastic strain 0 (11) Swelling strain 1 (12) Total strain in the radial direction 0 (13) Total strain in the axial direction 0 (14) Total strain in the circumferential direction 0 (15) Thermal strain 0 (16) Temperature of element 0 (17) Pressure in the radial and axial directions 0 (18) Displacement in the radial and axial directions 1 (19) Elastic strain 0 (20) Relocation strain of pellet 0

JAEA-DataCode 2013-009

- 132 -

Name-list Input (44) Variable name Contents Default

value

MAVE

MAVE=1 average values of stress and strain obtained by ERL mechanical analysis of cladding in the radial direction are output as summary for each time step

MAVE=0 summary of stress and strain at the inner surface of cladding are output as usual

0

IFT90 Option for temperature used in PTEMP and to make a file of gap conductance The file is generated when IFT90=1 (Unit 90) 0

IWRIM Option for output of EXCEL file of rim structure model (Unit 17) IWRIM=0 output is Off IWRIM=1 output is On 0

IOUT18 Option to make Unit 18 (file of contour map of stress-strain ) IOUT18=0 file is not made IOUT18=1 file is made 0

IOUT20 Option to make Unit 20 (summary output file organizing the maximum values of calculated temperature etc ) IOUT20=0 file is not made IOUT20=1 file is made

0

IPLT Generation of FEMAXI-7 plotter data file (Unit 1)

When IPLT=0 no plotter data file is generated 1

IPLTB Format of plotter data file (Unit 1) IPLTB =0 binary format IPLTB =1 text format 0

IPLOPT

Option for the file of plotter output at time-steps =0 Calculated results are output to plotter file only at the designated

historical points of input

=1 gt1 Calculated results are output to plotter file at all the time steps

= -n ( 011 nene nn ) Calculated results are output to plotter file at every n time steps However in addition to this results are output to plotter file also at the designated historical points of input

= -1 calculated results are output at time steps exceeding DT_OUT except

at the input-designated history points = -10 calculated results are output at all the time steps from PLTIME(1) to

PLTIME(2) However results are always output at the designated historical points of input

0

DT_OUT Effective when IPLOPT= -1 Maximum interval time (hour) of plotter output which determines the interval time of plotting at the instants which are not specified by input history points

00

IWRES Option to output the summary of file contents taken over from FEMAXI calculation =0 no output =1 simplified output =2 detailed output 0

ITIM(2)

ITIM(1) is the history point number with which the plotter output file begins to be generated

ITIM(2) is the history point number with which the plotter output file is terminated

1 2000

JAEA-DataCode 2013-009

- 133 -

Name-list Input (45) Variable name Contents Default value

IDNO(800)

Index data of plotter data file When IZERO=0 IDNO(401) - IDNO(500) are set 0

IDNO(1) - IDNO(40) data as a function of time and burnup 61 0 1 30

1 20 21 240

IDNO(41) - IDNO(100) data as a function of time burnup and

axial position

21 20 1 30 21 20

1 0 1 30 1 40 71

30 1 260

IDNO(101) - IDNO(300) data as a function of time burnup and

axial and radial positions (in the entire length mechanical analysis)

51 0 1 380 1 30

1 20 1 60 1 0 1 30 1 20 111

1210

IDNO(301) - IDNO(400) data as a function of time burnup and

axial and radial positions (in the local mechanical analysis)

61 140 71 230 151350

IDNO(401) - IDNO(420) Zero-power data as a function of time and burnup 61140

IDNO(421) - IDNO(450) data as a function of time burnup and radial and axial positions at Zero Power condition 71 230

IDNO(451) - IDNO(500) Zero-power data as a function of time burnup and axial and radial positions 151 350

IDNO(501) - IDNO(800) data ata as a function of time burnup and axial and radial positions 3000

44 Plot data index IDNO IDNO(1) to IDNO(600) are index for the plotter file When IDNO(K)=0 is designated for

the K-th physical quantity shown in ldquoTables (1) - (XX) Physical Quantities of Y axis (1) -

(XX)rdquo which is shown in section A5 the calculated value for the K-th physical quantity is not

stored in the plotter data file when IDNO(K)=1 it is stored and can be output in graphics

45 Calculated physical quantities in ZERO power state In the analysis of fuel behavior sometimes it is required to obtain such data as net FGR

and net permanent deformation of cladding during on-power period while eliminating the

temperature-related factors such as thermal expansion To realize this an optional function

to calculate fuel states under ZERO power state (shut-down state) and output the data is

included This function calculates the change of such quantities under zero-power state as

internal pressure space volume and cladding dimension in a calculation along the power

history by designating the name-list parameter IZERO as 1 2 3 or 4 In addition when

IZERO is designated graphic output for zero-power state can be given

JAEA-DataCode 2013-009

- 134 -

46 Method to input history point data Here the method of production of history data (line numbers 10-11) of the input file is explained

461 Power history data The following items must be inputted as the power history data

A1 = time (hr) B1=burnup A2 = linear heat rate (Wcm) A5 = fast neutron flux (ncm2sdots)

A3 = coolant temperature (K) A4 = coolant pressure (MPa) IT = input generator IP = output

option IS = temperature calculation option A6 = coolant velocity (ms)

However since B1 (burnup) is determined by input of A1 (time) and vice versa either A1

or B1 should be input The unit of B1 is designated by IBUNP when IBUNP = 0 B1 is

MWdt-UO2 when IBUNP = 1 B1 is MWdt-U and when IBUNP = 2 B1 is GJkg-U

Using IT (input generator) input by incremental form is possible IT is selected from

among 0 100 and minus100 when IT = 0 is set A1 (or B1) is recognized as a time increment

from the previous history point (or burnup increment) when IT = 100 A1 (or B1) is

recognized as the time increment from the first history point (or burnup increment) IP is an

output option IP ge 1 designates history points for detailed output and IP = 0 designates

history points for simplified output only IS is a switching flag between steadyunsteady

status in temperature calculation since this switching is automatically performed in the code

input of IP is usually unnecessary -FORMAT (6F 100 2I5)

F100 F100 F100 F100 F100 F100 I5 I5 I5 F50

A1 B2 A2 A5 A3 A4 IT IP IS A6

462 Relative power profile Here the input method for relative power profile is explained RH is the relative

power in the axial direction and designates the power ratio for A2 (linear heat rate which is

given by the history data) at each axial segment Therefore the number of RH data to be

input is NAX (number of axial segments) whose maximum is 40 When an identical

relative power is inputted at history points the input can be omitted using II (history point

option) FORMAT (8F80 I6) 8F 80 I6

(RH(I) I=1 NAX) II

JAEA-DataCode 2013-009

- 135 -

463 Input method of power history For input of power history the power-history-point number pairs of data (combination of

power history data and relative power profile) must be input

Example of input (1)

An example of input for a case with one axial segment where the power is increased

from 0 to 500 Wcm during a period of 10 hr is shown below Here the following values

are used fast neutron flux=25times1013 (ncm2sdots) when 500 Wcm is reached coolant

temperature= 51315 (K) coolant pressure= 34 (MPa) and coolant velocity= 30 (ms)

Example of input (1)

5050505050505050

2

00 51315 34 1 30

10 2

100 5000 25E13 1

5050505050505050

In the first line NHIST = 2 is shown the number of history points is 2

In the second line a hot stand-by state is set in the initial history data Input for the hot

stand-by state is not necessary since the following default values are set time (A1) 10minus5 (hr)

linear heat rate (A2) 10minus3 (Wcm) fast neutron flux (A5) 2times101 (ncm2sdots)

In the third line RH(1) = 10 is set since this case deals with a calculation of 1 axial

segment for the input of relative power profile The history point option is set as II = 2

which means that the same relative power profile is used for the two history points

The fourth line shows input of A1 = 10 (hr) A2 = 500 (Wcm) and A5 = 25times1013

(ncm2sdots) for the history data of the second history point so that the time step is automatically

divided and at each division point values of time-dependent variables are obtained by linear

interpolation Input of coolant temperature and coolant pressure is omitted this means that

the same values as those for the first history point are used that is A3=51314 and A4 = 34

are input For the output option IP = 1 is set in the second and third lines therefore detailed

output is performed both in the hot stand-by state and when 500 Wcm is reached

Example of input (2)

An example with 12 axial segments is shown in which base irradiation is first performed

at 200 Wcm up to 20GWdtUO2 The power is decreased thereafter and then increased to

250 Wcm After conditioning for 72 hr the power is increased to 500 Wcm maintained for

JAEA-DataCode 2013-009

- 136 -

24 hr and finally the power is decreased Here the power increase rate is 200 Wcmsdothr in

every period

The following values are set fast neutron flux=1014 (ncm2sdots) when 500 Wcm is

reached coolant temperature = 51315 (K) coolant pressure = 34 (MPa) and coolant

velocity is constant at 30 (ms) The relative power profile is given for base irradiation and

for ramp irradiation During the base irradiation output of calculation results is performed

at 5GWdt-UO2 10GWdt-UO2 15GWdt-UO2 and at 20GWdt-UO2 and during the ramp

irradiation the output of calculation is also performed at every 50 Wcm power increment

above 250 Wcm When the power is maintained at 500 Wcm the output of calculation is

obtained after 1 3 6 12 and 24 hr

Example of input (2) 5050505050505050 21 00 0001 20E09 51315 34 2 30 077 085 090 092 094 096 098 100 102 105 110 115 7 10 2000 40E13 1 50000 100000 150000 200000 2000 40E13 1 10 0001 20E09 -100 1 10 0001 20E09 -100

093 094 095 096 097 098 099 100 101 102 104 106 14

125 2500 50E13 -100 720 2500 50E13 -100 1 025 -100 05 075 10 125 5000 10E14 1 10 -100 30 60 120 240 5000 10E14 1 25 0001 20E09 -100 1 STOP 5050505050505050

The simplified output is obtained for the 21 history points shown above Among these

history points IP ge 1 is designated only at points where detailed output is required here IP =

2 is inputted and detailed output information is obtained at history points after this designation

The unit of burnup should be MWdt-UO2 therefore IBUNP = 0

The first line shows the number of history points NHIST = 21

The second line shows the history data of the hot stand-by state

JAEA-DataCode 2013-009

- 137 -

Data in the third and fourth lines show that the same relative power profile is used from the

first history point to the 7th history point

The fifth line shows the second history point data of A1 = 1(hr) A2 = 200(Wcm) and A5

= 4times1013 (ncm2sdots) Coolant temperature and pressure are the same as those in the hot

stand-by state

The 6-th to 9-th lines show input to extend burnup up to 20 GWdtUO2 at 200 (Wcm) and

simplified output is obtained at 5 GWdtUO2 and at 15 GWdtUO2 A2 (linear heat rate) and

A5 (fast neutron flux) are obtained by interpolation During this stage A2 = 200 (Wcm)

and A5 = 4times1013 (ncm2sdots) are used

The 10-th line shows setting of IT = minus100 This means that the power was decreased to

0001 (Wcm) within 1 hr from the burnup of 20 GWdtUO2 shown in line 8

The 11-th line shows that the relative power profile was changed after the power leveled

off at 0001 (Wcm) for 1 hr

The 12-th and 13th lines show that the relative power profile given in the 12-13th lines is

applied from the 14-th history point up to the last (26-th) history point Here since a power

of 0 is not allowed a value of around 10minus3 (Wcm) must be set

The 14-th line shows that the power was increased to 250 (Wcm) within 125 hr and the

15-th line shows that the power was maintained at 250 (Wcm) for 72 hr

The 15-th to 20-th lines show that the power was increased by 50 Wcm within 025 hr

(200 Wcmsdothr) after being maintained at 250 (Wcm) for 72 hr Namely elapsed time at the

previous history point where IT = minus100 was designated (shown in the 14-th line) is given by

A1 Since the linear heat rate is given by the linear interpolation setting of A2 = 300 350

400 and 450 in lines 17-20 gives the same results Similarly the fast neutron flux used here

gives the same results by setting A5 = 6times1013 7times1013 8times1013 and 9times1013

The 21-25rd lines show history data which were set to obtain simplified output when the

power is maintained at 500 (Wcm) and at 1 3 6 and 12 hr from the starting time The

detailed output is obtained 24 hr after the starting time

The 26-th line shows that the power was decreased within a 25hr period starting from 24

hr from the starting time Here since the coolant temperature and pressure were set as

constant input for them at the second and later history points was omitted Also since

linear heat rate and fast neutron flux are obtained by linear interpolation input error occurs if

no power is generated at the last history point (Both values should not be zero)

JAEA-DataCode 2013-009

- 138 -

47 Setting of cladding outer surface temperature

In FEMAXI it is possible to simulate transition boiling and investigate changes in the

stress strain deformation oxidation buckling pellet surface temperature and internal

pressure while omitting the calculation of the heat transfer to coolant by designating a history

of the cladding outer surface temperature using input data

The cladding outer surface temperature is designated using IS of the history data IS is

an option to designate conditions of gas flow and heat transfer calculation

IS=0 Stable calculation (fission gas released inside a fuel rod is instantaneously and

completely mixed with gap gas and plenum gas Cladding temperature is calculated

without considering heat capacity of the gas)

IS=1 Gas flow calculation (fission gas flows inside the fuel rod and is distributed and

mixed with gap gas and plenum gas However heat capacity of the gas is not

considered in the calculation of the cladding temperature)

IS=2 Unsteady calculation (fission gas flows inside the fuel rod and distributed and

mixed with gap gas and plenum gas Heat capacity of the gas is considered in the

calculation of the cladding temperature)

In FEMAXI IS=3 is newly included for the heat transfer calculation in which the cladding

outer surface temperature is assigned

IS=3 Heat transfer calculation by designating the cladding outer surface temperature

At the history point where IS=3 is designated axial distribution of the cladding outer

surface temperature is designated by input

For the historical points in which IS=3 is assigned the axial distribution of the cladding

outer surface temperature can be assigned by input

JAEA-DataCode 2013-009

- 139 -

Table 471 shows an example of inputs when the cladding outer surface temperature is

not assigned (ISlt3) and Table 472 shows an example when the cladding outer surface

temperature is assigned (IS=3) Here the data for the cladding outer surface temperature are

described after inputting the power profile in the axial direction

Table 471 Example of inputs without designation of cladding outer surface temperature

TSURUGA 1 NEW TYPE (BWR 8X8)

$INPUT IBUNP=1ICK1=0GR=10IPLT=1BETAX=0002IFEMRD=0

R1=1EPSRLZ=5D-3IPLOPT=-5DMAX=1GRWF=1SBU=1D4FCRFAC=1

IWTHE=181IPTHCN=5BUMIN=50000BUMAX=200000IURS=0

ICORRO=1EFCOEF=1INPCK=0

$END

10 5 2

0 1058 1230

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

3235 03 10 00 00 00

9

0001 53D13 55035 6894 0 1974

10 10 10 10 10 10 10

10 10 10 9

100 2500 53D13 0

02777778 2500 53D13 -100 1

00027778 2500 53D13 -100 1

00005556 2500 53D13 -100 1

00416667 2500 53D13 -100 1

00005556 2500 53D13 -100 1

00027778 2500 53D13 -100 1

02777778 2500 53D13 -100 1

STOP

JAEA-DataCode 2013-009

- 140 -

Table 472 Example of inputs with designation of cladding outer surface temperature

TSURUGA 1 NEW TYPE (BWR 8X8)

$INPUT IBUNP=1ICK1=0GR=10IPLT=1BETAX=0002IFEMRD=0

R1=1EPSRLZ=5D-3IPLOPT=-5DMAX=1GRWF=1SBU=1D4FCRFAC=1

IWTHE=181IPTHCN=5BUMIN=50000BUMAX=200000IURS=0

ICORRO=1EFCOEF=1INPCK=0

$END

10 5 2

0 1058 1230

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

0 0 00 103 104 003 095 366

3235 03 10 00 00 00

9

0001 53D13 55035 6894 0 1974

10 10 10 10 10 10 10 10

10 10 9

100 2500 53D13 0

02777778 2500 53D13 -100 1 3

553 553 553 553 553 553 553 553 553 553

00027778 2500 53D13 -100 1 3

603 603 603 603 603 603 603 603 603 603

00005556 2500 53D13 -100 1 3

923 923 923 923 923 923 923 923 923 923

00416667 2500 53D13 -100 1 3

923 923 923 923 923 923 923 923 923 923

00005556 2500 53D13 -100 1 3

603 603 603 603 603 603 603 603 603 603

00027778 2500 53D13 -100 1 3

553 553 553 553 553 553 553 553 553 553

02777778 2500 53D13 -100 1 3

553 553 553 553 553 553 553 553 553 553

STOP

Cladding surface temperature IS

JAEA-DataCode 2013-009

- 141 -

5 Models and Input manual of RODBURN-1

51 General feature of RODBURN input format

Input method of RODBURN is described below Here the input method will change in accordance with the designation of Card No2 ldquoKREG1rdquo so that the method will be explained in the two cases ie KREG1gt0 and KREG1=0 In the case KREG1gt0 users can make input data and parameters at usersrsquo will while in the other case KREG1=0 users can make a standard default set of input data and parameters in an easy manner The case KREG1gt0 will be explained in the input-data-format (1) and the other case KREG1=0 will be explained in the input-data-format (2)

52 Some comments on the RODBURN code (Sept1998)

The RODBURN code has two types of versions One is based on the ORIGEN (ORIGEN79(51)) the other is based on ORIGEN2(52) The ORIGEN79-basis version has been released to the NEA Data_Bank as RODBURN-1 in which resonance absorption calculation uses the RABBLE code to replace (update) the cross section data of U-238(n γ) and Pu-240(n γ) The cross section library of ORIGEN79 is those for the fuel body region though it cannot deal with the cross section changes induced by self-shielding effect of 238U in every part of fuel region This drawback is supplemented by RABBLE(53) with ENDF-BIV(52) data On the other hand ORIGEN-2 used in RODBURN-2 targets the fuel body region In ORIGEN-2 a library is implemented which can give the cross section changes induced by averaged changes of nuclides during burning ORIGEN2 treats the spectrum by one-group approximation for usersrsquo convenience so that it cannot bring in the resonance calculation results (RABBLE results) Therefore RODBURN-2 is suitable for an overall trend of fuel change during burning but it cannot give the power density profile in the radial direction of fuel pellet This is contradictory with the basic purpose of such fuel performance code as FEMAXI

The bottom line is that RODBURN-1 using ORIGEN79 is appropriate for a fuel performance code If the cross section changes with burning are to be taken into account every one step of burning calculation should call RABBLE to update the cross section values However dependence of the resonance integral on burnup is not so strong Thus RODBURN-1 takes a simplified method which uses RABBLE calculation only once at zero-burnup Fig51 summarizes the structure of calculation flow and relationship among the roles of component codes

JAEA-DataCode 2013-009

- 142 -

Fig51 Calculation flow of RODBURN-1

INPUT (Spatial meshing of rod assignment of elements and materials and power history)

1 Resonance Integral in each mesh Separate resonance Parameters by ENDB-IV (05eV~352keV)

2 RABBLE

Microscopic cross-section

Infinite diluting cross- section by WIMS-D library (352keV~0821MeV)

1E Spectrum

Revision of ORIGEN resonance library of U Pu and their isotopes

Calculates amount of fissile material in the axial segment of rod

Specifies three group spectrum constants (thermal fast resonance) ORIGEN rarr PWR amp BWR

Determines thermal neutron flux profile in the radial direction by the table of representative profiles in PWR and BWR (WIMS-D ) Halden reactor larr Robertsonrsquos formula Fast and resonance flux larr average values

Calculates power per unit flux at all meshes

Calculates flux at all meshes

Burnup calculation by ORIGEN

Axial profile of linear heat rate

Output File

∆t increment

JAEA-DataCode 2013-009

- 143 -

53 Explanations of RODBURN-1 models and methods

RODBURN has several types of default profile of power distribution RODBURN does not perform a so-called neutron transport calculation which is conducted by some other dedicated burning analysis codes such as PLUTON or MICROS The following section is an excerpt translated from the original report of RODBURN written by MrMUchida in Japanese [MUchida and HSaito RODBURN A Code for Calculating Power Distribution in Fuel Rods JAERI-M 93-108 (1993)] - - - - - - - - - - - - - - - - - - - - - - - - Beginning of excerpt - - - - - - - - - - - - - - - - - - - - - - - - - 22 Method of radial power profile in RODBURN (1) In case when neutron flux is given In accordance with the logics of the ORIGEN code neutron flux is based on the thermal neutron flux The fast neutron flux and epithermal flux are calculated in proportion to the thermal flux using spectrum parameters The thermal flux is a function of time and axial and radial locations inside the rod (rz t)t tφ φ= (2) Here input quantity is an averaged neutron flux over radius and its relative profile in the axial direction

2

0

1(z t) (r z t) 2

prat t pr dr rφ φ =

int (3)

where pr is the pellet radius

The three spectrum parameters THERM RES and FAST are used in accordance with ORIGEN

0THERM4

TT

π= (4)

where T is thermal neutron temperature (K) and T0=29316K RES = [resonance neutron flux per unit lethargy][thermal neutron flux] (5) FAST = [Fast neutron flux][thermal neutron flux] (6)

Here upper limit of the thermal neutron region is set 05 eV lower limit of fast region is set 1 MeV These three constants are included in RODBURN for each reactor type They are listed in Table 51 For PWR and BWR the recommended values(55) of ORIGEN are adopted as they are For a heavy water reactor only the value for the Halden reactor is

JAEA-DataCode 2013-009

- 144 -

specified and the three constants are derived from of the spectrum distribution determined in the Halden Project However they would be substantially applicable to other heavy water reactor In the axial direction of rod these three group spectrum distributions are treated in a variable separation from space distribution That is if thermal flux is twice larger at a certain axial elevation than at the other elevation the resonance and fast fluxes are assumed also twice However in the radial direction of rod different procedure is done depending on spectrum Average figures over radius are used for the fast and resonance fluxes as

(rz t) (z t)fast fastφ φ= (rz t) (z t)resonance resonanceφ φ= (7)

Radial distribution of thermal flux can be depressed toward the center region when a fuel pellet has high enrichment Consequently for the radial distribution of thermal flux several pre-calculated relative profiles depending on the reactor type and enrichment level are included in RODBURN and they are used by interpolation with respect to actual enrichment These relative profile figures are listed in Table 52 The profiles in the Halden reactor are listed in Table 53 In the initial stage of irradiation the enrichment is uniform in the radial direction However with burnup distribution of residual U-235 becomes non-uniform Moreover generation of Pu is much more non-uniform However in the code these non-uniformities are neglected and average concentrations of fissile materials at a certain axial elevation are used to interpolate the figures in the Table Here Pu-238 and Pu-241 is assumed as equivalent to U-235 The relative figures of thermal flux in Table 2 have been calculated by the WIMS-D code(54) The figure of a heavy water reactor has been derived on the basis of the following method recommended by the Halden Project

0(r) ( )therm CI rφ κ= (8)

where C is a normalization constant Io is a modified Vessel function r is radius (cm) and κis the reverse of diffusion distance (cm-1) given by

08 082 0190328( ) 054 ( )pdκ ερ ερminus= + (9)

where ε is enrichment () ρ is theoretical density ratio of pellet and pd is pellet

diameter (cm) The resonance absorption by U-238 has a strong self-shielding effect due to its high concentration so that the Pu generation is much deviated to the outer region of pellet

JAEA-DataCode 2013-009

- 145 -

Amount of Pu-240 is not so large even in MOX fuel nevertheless the resonance cross section (resonance reaction rate) is still larger As stated in the former section such distributions as those which are steeply deviated to the surface region cannot be dealt with by ORIGEN Therefore the RODBURN code has implemented the resonance calculation code RABBLE as one of the components and let RABBLE to calculate the resonance integral of the above two elements for each of the radially-divided sections in the first step of the whole burning process calculation In the ORIGEN calculation following this first calculation for the two elements U-238 and Pu-240 only the calculated results by RABBLE are used instead of the ORIGEN library data (2) In case when linear power history is given There are some cases of fuel experiments in which only history of the average power of rod is reported In this case also it is necessary to calculate the power density profile and changes of fissile and fission-product elements composition To cope with such a case in a simplified and convenient manner this ldquolinear power history is givenrdquo option has been implemented In this option contrary to the ordinary calculation steps the code calculates the neutron flux which corresponds to the input average power history However in general a reported power history is often a result of calculating Pu buildup on some appropriate assumption so that it is preferable to execute repeated calculations using the condition of section (1) ie ldquowhen neutron flux is givenrdquo under the assumption of history of an absolute value of neutron flux to confirm the reported average power history 1) Expression of neutron flux profile Since RODBURN does not perform a concurrent process of reactor physics calculation and burning analysis calculation it is necessary to assume the neutron flux profile in a reasonable way The fast and resonance fluxes are similarly to section (1) assumed uniform in the radial direction The thermal flux profile is determined by referring to the Table 52 in accordance with the fissile materials concentrations The axial profile is assumed to have an identical shape similarly to section (1) The simplest shape in the axial direction is a cosine profile This profile is modified in order to express a profile which is different to some extent

cos

( )cos

m

b t

m

b t

z zAL

z tz z

L

πδ δ

φαπ

δ δ

minus + + =

minus + +

(10)

( ) 2m b tz L δ δ= + + (11) where A is a normalizing constant L is an axial length of fuel stack z is a distance from

JAEA-DataCode 2013-009

- 146 -

bottom of pellet stack bδ and tδ are ldquoextrapolating distancerdquo from the top end and bottom end respectively α is a constant to express ldquoa slightly flattened profile in comparison with the cosine profilerdquo and it can be varied within the range of 0 1αle lt When 0α = the denominator of Eq(10) is 10 so that the profile becomes the cosine profile itself With increasing α the profile is flattened The two bδ and tδ ldquoextrapolating distancesrdquo aim to express a special type of irradiation condition in test reactor rather than the ldquoextrapolating distancerdquo usually used in reactor physics In irradiation experiments of fuel it often occurs that a test rod shorter than the height of reactor core is set at the axial elevation deviated from the mid-height position of the reactor core In such a case the neutron flux profile can be expressed by designating the two extrapolating distances independently It is also possible to calculate the profile shape in advance and to input the shape as a series of numerical values In both the cases the relative profile of neutron flux in the axial direction can be changed a few times during the irradiation time 2) Calculation of the absolute neutron flux At the beginning of each time step concentration of every element is given at all the (r z) locations The cross section is fixed Also the neutron relative profile is given Assuming that this relative profile is expressed by a normalizing distribution function F(r z) total heat generation corresponding to the neutron flux averaged over entire fuel rod can be obtained by

0 0 ( )f fQ E F r z dvφ σ= int (12)

where fσ is fission cross section and fE is energy per one fission Assuming that the total

heat generation corresponding to the input average linear heat rate is Q an actual average neutron flux is simply

00

QQ

φ φ=

(13)

Neutron flux at each position is determined by this equation using F(r z) However in fact these calculations are performed by taking into account of every element fast neutron and thermal neutron Now that the local neutron flux is obtained ORIGEN calculates the changes of amount of every element during the time step so that ORIGEN is called again after the calculation of Eq(12) Here it is to be noted that during one time step in the input data a constant heat generation rate is assumed In the ORIGEN calculation amount of elements changes during one time step and in accordance with these changes an accumulated heat generation ie burn-up is calculated Therefore if time step increment is too large some discrepancy is capable of

JAEA-DataCode 2013-009

- 147 -

being generated among the input data burn-up and element concentrations To avoid this RODBURN re-divides the input time step into a number of small periods to prevent a too long time step

Table 51 Three group-constants of spectrum

Reactor type THERM RES FAST

PWR 0701 0304 2010

BWR 0676 0307 1514

HWR 0450 0100 1500

PWR (MOX) 0592 0366 2390

BWR (MOX) 0632 0355 1694

Table 52 Thermal neutron flux profile in the radial direction

In the Halden water reactor

Radius (mm)

Thermal neutron flux profile (Enrichment dependent) 1 3 5 7

201 1000 1000 1000 1000 284 1008 1025 1045 1068 347 1014 1043 1077 1117 401 1020 1060 1109 1165 449 1026 1078 1141 1216 491 1032 1096 1174 1267 531 1038 1114 1207 1319 567 1043 1132 1241 1372 602 1049 1150 1276 1428 634 1055 1168 1310 1483

JAEA-DataCode 2013-009

- 148 -

Tabl

e 5

3 T

herm

al n

eutro

n flu

x pr

ofile

s de

pend

ing

on e

nric

hmen

t R

adiu

s (m

m)

PW

R (U

rani

um)

PW

R (M

OX)

1

3

5

7

0

25

378

7

31

1

083

127

0

985

09

64

09

44

09

23

09

96

09

01

07

98

07

03

183

0

987

0

968

0

950

0

932

0

996

0

911

0

819

0

731

2

25

09

89

09

74

09

59

09

44

09

97

09

26

08

47

07

74

259

0

992

0

981

0

970

0

958

0

998

0

945

0

886

0

826

2

90

09

95

09

89

09

82

09

76

09

98

09

67

09

30

08

90

318

0

999

0

998

0

997

0

996

1

000

0

993

0

982

0

966

3

43

100

4 1

009

1

014

1

019

1

001

1

024

1

045

1

059

3

67

100

9 1

021

1

034

1

046

1

003

1

060

1

120

1

175

3

89

101

6 1

037

1

058

1

079

1

005

1

104

1

216

1

325

4

10

102

5 1

059

1

093

1

127

1

008

1

168

1

355

1

551

Rad

ius

(mm

)

B

WR

(Ura

nium

)

BWR

(MO

X)

1

3

5

7

025

3

78

731

10

83

1

90

09

90

09

77

09

64

09

51

09

93

08

44

06

98

05

70

268

0

992

0

980

0

968

0

957

0

994

0

861

0

728

0

609

3

29

09

93

09

83

09

74

09

64

09

95

08

85

07

71

06

68

379

0

995

0

988

0

980

0

973

0

996

0

914

0

825

0

740

4

24

09

97

09

93

09

88

09

84

09

98

09

49

08

90

08

29

465

0

999

0

998

0

998

0

997

1

000

0

989

0

968

0

937

5

02

10

02

10

05

10

09

10

12

10

02

10

37

10

61

10

72

537

1

006

1

014

1

021

1

029

1

004

1

094

1

178

1

246

5

69

10

10

10

24

10

37

10

51

10

08

11

64

13

28

14

80

600

1

016

1

038

1

060

1

082

1

012

1

265

1

553

1

847

- -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- -

End

of e

xcer

pt

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

- - -

JAEA-DataCode 2013-009

- 149 -

54 Explanation of neutron flux control by ldquoALPH(K) EXTL(K) EXTT(K) K=1 NDISTrdquo Option for IDIST

IDIST allows an option to give the shape of axial profile of thermal neutron It allows to

select the shape of either (deformed) cosine curve or input numerical figure When IDIST=0

input of (ALPH(K) EXTL(K) EXTT(K) K=1 NDIST) is necessary This line is input

NDSIT times (=total number of profile patterns)

ALPH(I) flattening constant of the I-th pattern where 0≦ALPH(I)lt1

EXTL(I) Lower ldquoextrapolating distancerdquo (cm)

EXTT(I) Upper ldquoextrapolating distancerdquo (cm)

These are the constants used in the following equation to modify the cosine profile If

they are all set 0 a simple cosine profile is obtained Fig52 below shows as an example with A=10 L=10 bδ =05 tδ =05 and Zm=10 some profile shape patterns in which α is

parametrically changed When αgt0 a deformed cosine curve is given

Fig52 Example of profile shape with A=10 L=10 bδ =05 tδ =05 Zm=10 and α

which is parametrically changed

0

02

04

06

08

1

12

0 05 1 15 2 25

φ(z)

z

0012502503750506250750875

L (fuel active length)

Z=Zm

( ) cos cosm m

b t b t

z z z zz t AL L

ϕ π απδ δ δ δ

minus minus = + + + +

EXTT (δt)

EXTL (δb)

α

coscos)(

++

minus

++

minus=

tb

m

tb

m

Lzz

LzzAtz

δδαπ

δδπφ

JAEA-DataCode 2013-009

- 150 -

55 Some important input name-list parameters of FEMAXI-7 for usage of RODBURN-1

Name-list

input parameter

Contents Default value

IFLX

Number of power history points to designate the radial power profile If the numerical data are not given IFLX should be one of 0 -1 o -2 which corresponds to the following options

= 0 Robertson model -1PLUTON results -2 RODBURN results When IFLX=-1 or -2 corresponding results files should exist in the WrkRBOUT

0

FACHE When IFLXlt0 amount of He gas given by RODBURN calculation is multiplied by FACHE 10

IRH

Interpolation option of axial power profile = 0 the profile at omitted input points is the same as that in the previous

stage = 1 linear interpolation in terms of burnup is performed for omitted input

points

0

INPRD

Options for the fetching method of RODBURN results to FEMAXI-6 (Treatment of fast-neutron flux is designated by IFSNT)

INPRD=0 By interpolating the results of RODBURN (the radial and axial

profiles of power fast-neutron flux and He generation) with respect to space and burnup the data are arranged to correspond to the segments in the axial direction of FEMAXI

INPRD=1 An identical number of segments in the axial direction is assumed

for FEMAXI and RODBURN The results from RODBURN (the radial and axial profiles of power fast-neutron flux and He generation) are used as data for the corresponding axial segments No spatial interpolation is performed Interpolation of burnup is performed

INPRD=2 The number of segments in the axial direction can be different for

FEMAXI and RODBURN (interpolation processing is performed) With respect to the profiles of power and He generation in the radial direction the result of RODBURN is retrieved For the power profile in the axial direction the input to FEMAXI is used

1

IROD

When IRODgt0 an original input file ldquorodinrdquo for RODBURN is generated in the Wrk directory and FEMAXI calculation is not executed Users can modify the contents of this file and rename it to be used in RODBURN calculation eg ldquorodinrdquo to ldquoABCrddatrdquo

IROD=1PWR =2BWR =3Halden BWR =4PWR(MOX) =5 BWR(MOX)

0

JAEA-DataCode 2013-009

- 151 -

56 RODBURN Input data format (1) (When KREGI gt0 value is given in line No2)

Line No Variables FORMAT Content

1 TITLE 18A4 Title of calculation

2

MODEL

10I6

Reactor type option 1=PWR 2=BWR

3=Halden WR 4=PWR(MOX) 5=BWR(MOX)

MESHZ Number of axial zones ( le 40)

KREG1

Number of radial regions ( le 39 including coolant region

for resonance calculation) In the case of ldquoKREG1=0rdquo

follow the input-data format (2)

MESHR

Number of pellet regions in the radial regions ( le 36)

(Each axial zone can have different materials such as

enriched U natural U etc but each axial zone has to

have the same number of regions)

IOPT

Option to designate the irradiation history

=0 average thermal neutron flux is input

=1 average linear heat rate (Wcm) is input

IDIST

Option to designate axial profile of either thermal

neutron flux or linear heat rate

=0 (deformed ) cosine profile is input

=1 Numerical values are input

(Note even if IOPT=1 IDIST and related array data

should be given by either the line 15 or 16)

MODEL2 [can be omitted if reactor type is not changed]

Option to designate the change of reactor type in the

course of irradiation

Reactor type 1=PWR 2=BWR 3=Halden WR

4=PWR(MOX) 5=BWR(MOX)

Here MODEL2=MODEL is possible

KREG2 [can be omitted if reactor type is not changed]

Number of radial regions ( le 39 including coolant

region for resonance calculation) in MODEL2

However if MODEL2 is not designated or if

resonance calculation is not done in MODEL2 KREG2

is not designated

IFLPW IFLPW=0 axial profile of thermal neutron flux is input

IFLPW=1 axial profile of linear heat rate is input

ISTOP ISTOP=0 Regular calculation

ISTOP=1 Input checking calculation

JAEA-DataCode 2013-009

- 152 -

RODBURN Input data format (1_continued) (When KREGIgt0 value is given in line No2)

Line No Variables FORMAT Content

3 ZMESH(I)

I=1 MESHZ 9F84

Upper end coordinate value of each axial zone of active

length (cm)

4

RMIN

RMAX2(I)

I=1 KREG1

F80 8F80

( 8X 8F80)

RMIN fuel pellet inner radius (cm)

RMAX2(I) outer radius of each region (cm)

(ie center hole is not included in the ldquoregionsrdquo)

5 TEMP(I)

I=1 KREG1

8X 8F80

( 8X 8F80)

Temperature at each region (K)

(Rough values independent of time and axial zone)

6 NMIX I6 Total number of ldquomixturerdquo with different composition

7

(NUCLX(I)

CONCEX(I)

I=17)

7(I3 F73)

This line is repeated NMIX times consecutively

Each line corresponds to one mixture and specifies

maximum 7 nuclides

NUCLX(I) nuclides number below

CONCEX(I) concentration (gcm3)

Nuclides number

1 = 238U 2 = 240Pu 3 = H 4 = D

5 = 16O 6 = He 7 = Zr-2 8 = Zr-4

9 = 235U 10 = 239Pu 11 = 241Pu 12 = 242Pu

8

MIX(IJ)

I=1 KREG1

J=1 MESHZ)

30I2

This line is repeated MESHZ times consecutively

Each line corresponds to each axial zone In each line

specify what ldquomixturerdquo exists in each radial region from

inner region to outer region (The order to specify the

mixture in the line 7 is ldquomixture numberrdquo)

Only if KREG2ne0 designate the lines 9 to 13 Otherwise skip to the line 14

9

RMIN

RMAX3(I)

I=1 KREG2

F80 8F80

( 8X 8F80)

Radius of each region after reactor type change

RMIN pellet inner radius (cm)

RMAX3(I) outer radius of each region (cm)

(Center hole is not included in the ldquoregionsrdquo

Here pellet regions up to MESHR should be given

the same values as RMAX2(I) )

10 TEMP2(I)

I=1 KREG2

8X 8F80

( 8X 8F80)

Temperature at each region after reactor type change(K)

(Rough values independent of time and axial zone)

11 NMIX I6 Total number of ldquomixturerdquo with different composition

after reactor type change

JAEA-DataCode 2013-009

- 153 -

RODBURN Input data format (1_continued) (When KREGIgt0 value is given in line No2)

Line No Variables FORMAT Content

12

(NUCLX(I)

CONCEX(I)

I=1 7)

7(I3 F73)

This line is repeated NMIX times consecutively

Each line corresponds to one mixture and specifies

maximum 7 nuclides after reactor type change

NUCLX(I) nuclides number below

CONCEX(I) concentration (gcm3)

Nuclides number

1 = 238U 2 = 240Pu 3 = H 4 = D

5 = 16O 6 = He 7 = Zr-2 8 = Zr-4

9 = 235U 10 = 239Pu 11 = 241Pu 12 = 242Pu

Here number and concentrations of nuclides in pellet

should be the same as those specified in the line 7

13

(MIX2(I J)

I=1 KREG2

J=1 MESHZ)

30I2

This line is repeated MESHZ times consecutively

Each line corresponds to each axial zone In each line

specify what ldquomixturerdquo exists in each radial region from

inner region to outer region after reactor type change

(The order to specify the mixture in the line 12 is

ldquomixture numberrdquo However regions of pellet should

have the same data as those specified in the line 8)

14 NDIST I6

Number of patterns of axial profile of either neutron

flux (IFLPW=0) or linear heat rate (IFLPW=1) The

patterns can be specified at each time step

15

(ALPH(K)

EXTL(K)

EXTT(K)

K=1 NDIST)

3F84

(Not necessary when IDIST=1)

This line is input NDIST times consecutively

ALPH(I) Constant of averaging of the I-th pattern

where 0 le ALPH(I) lt 1

EXTL(I) Lower region extrapolation distance (cm)

EXTT(I) Upper region extrapolation distance (cm) (Theses constants modify the cosine profile If all the

values are set equal to 0 a normal cosine profile is given as input) See the explanation in section 54

16

(FLUXZ(IK)

I=1 MESHZ

K=1 NDIST)

12F82

(Not necessary when IDIST=0)

This line is input NDIST times consecutively

IFLPW=0 axial profile of thermal neutron flux is input

IFLPW=1 axial profile of linear heat rate is input

JAEA-DataCode 2013-009

- 154 -

RODBURN Input data format (1_continued) (When KREGIgt0 value is given in line No2)

17 ISTP DTIME I6 E125

ISTP Number of time steps ( le 200) DTIME The longest period of time step (day)

The ldquonumber of time stepsrdquo specified here is the times of specifying the approximate pattern of output power history Total period of irradiation can be one single time step The code automatically divides each input step period into the period which is not longer than DTIME

It is better to specify the length of DTIME to be less than the period during which irradiation is less than 1times1020ncm2 within the 200 time steps

18

(TIMX(I)

KDIS(I)

PLHR(I 1)

PLHR(I 2)

ICHG

I=1ISTP)

E125 I6

2E125 I6

(Input ISTP times consecutively) TIMX(I) end of I-th step (day) KDIS(I) Number of the I-th step pattern of either thermal neutron flux profile or linear heat rate profile (variable ldquokrdquo in the lines 15 and 16)

PLHR(I 1) PLHR(I 2) Average powers at the beginning and end of the I-th step respectively

IOPT = 0 average thermal neutron flux (ncm2s) IOPT = 1 average linear heat rate (Wcm) ICHG when MODEL2 gt 0 ICHG=1 should be

designated at the time TIMX(I) when reactor type changes In other cases ICHG is not designated

19 NPRINT I6 Total number of time steps at which the results are

printed out Besides these the final result is printed out additionally

20 TIMPRN(I) I=1 NPRINT

9F82 Tine of print-out of numerical results (day) From the

first step after TIMPRN(I) results are printed out sequentially

21 IDIMPR(I) I=1 NPRINT

9I8

Corresponding to the line 20 specify what type of output is printed out IDIMPR=1 only 1-dimensional data is output (Eg axial zone-wise averaged burnup are printed

out for all the axial zones) =2 1-dimensional data and (r z) distributions of

power generation variables Limited to the axial zones which are specified by the line 22

=3 In addition to the above 2-dimensional nuclides contents are output (Limited to the axial zones which are specified by the line 22)

22 IZD2(I) I=1 12

12I6 The axial zone numbers for the 2-dimensional output are specified sequentially as needed

23 STOP A4 To define the end of the input data ldquoSTOPrdquo should be input from the 1-st column to the 4-th column

JAEA-DataCode 2013-009

- 155 -

57 RODBURN Input data format (2) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

1 TITLE 18A4 Title of calculation

2

MODEL

10I6

Reactor type option 1=PWR 2=BWR

3=Halden WR 4=PWR(MOX) 5=BWR(MOX)

MESHZ Number of axial zones ( le 40)

KREG1 Specify ldquoKREG1=0rdquo This gives KREG1=MESHR+3

MESHR

Number of pellet regions in the radial regions ( le 36)

Each axial zone can have different materials such as

enriched U natural U etc but each axial zone has to

have the same number of regions

IOPT

Option to designate the irradiation history

=0 average thermal neutron flux is input

=1 average linear heat rate (Wcm) is input

IDIST

Option to designate axial neutron flux profile (or

power profile)

=0 (deformed ) cosine profile is input

=1 Numerical values are input

(Note even if IOPT=1 IDIST and related array data

should be given by either the line 10 or 11)

MODEL2 [can be omitted if reactor type is not changed]

Option to designate the change of reactor type in the

course of irradiation

Reactor type 1=PWR 2=BWR 3=Halden WR

4=PWR(MOX) 5=BWR(MOX)

Here MODEL2=MODEL is possible

KREG2 [can be omitted if reactor type is not changed]

Number of radial regions ( le 39 including coolant

region for resonance calculation) in MODEL2

However if MODEL2 is not designated or if

resonance calculation is not done in MODEL2 KREG2

is not designated

IFLPW

IFLPW=0 axial profile of thermal neutron flux is input

(eg Halden Reactor)

IFLPW=1 axial profile of linear heat rate is input

ISTOP ISTOP=0 Regular calculation

ISTOP=1 Input checking calculation

JAEA-DataCode 2013-009

- 156 -

RODBURN Input data format (2-continued) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

3

IAUTO

7I6

IAUTO=0 Input the nuclides number and concentrations

of mixtures in each of the pellet cladding and coolant

regions

IAUTO=1 default values are set (notes 1 2 and 8)

IPTCH1

Option before reactor type change

IPTCH1=0 input the outer diameter of coolant boundary

IPTCH1=1 input fuel rod pitch

IZR1

(note 1)

Cladding material option before reactor type change

(IZR1=2 Zry-2 IZR1=4 Zry-4)

IHD1

(note 2)

Coolant option before reactor type change

(IHD1=0 H2O IHD1=1 D2O)

IPTCH2

(note 6)

Option after reactor type change

IPTCH2=0 input the outer diameter of coolant

boundary

IPTCH2=1 input fuel rod pitch

IZR2 (note 1) Cladding material option after reactor type change

(IZR2=2 Zry-2 IZR2=4 Zry-4)

IHD2 (note 2) Coolant option after reactor type change

(IHD2=0 H2O IHD2=1 D2O)

4

ZLENG

(note 3)

7F80

Active length of fuel rod (cm)

PDIN Pellet inner diameter (cm) PDIA

(note 4) Pellet outer diameter (cm) CDOUT1

(note 5) Cladding outer diameter before reactor type change (cm)

PITCH1 (note 6)

Coolant boundary diameter before reactor type change

(IPTCH1=0) or fuel rod pitch (IPTCH1=1) (cm) CDOUT2

(note 5) Cladding outer diameter after reactor type change (cm)

PITCH2 (note 6)

Coolant boundary diameter after reactor type change

(IPTCH2=0) or fuel rod pitch (IPTCH2=1) (cm)

JAEA-DataCode 2013-009

- 157 -

RODBURN Input data format (2-continued) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

5

(note 7)

TP1

8F80

Pellet center temperature before reactor type change (K)

TS1 Pellet surface temperature before reactor type change(K)

TC1 Cladding temperature before reactor type change (K)

TW1 Coolant temperature before reactor type change (K)

TP2 Pellet center temperature after reactor type change (K)

TS2 Pellet surface temperature after reactor type change (K)

TC2 Cladding temperature after reactor type change (K)

TW2 Coolant temperature after reactor type change (K)

When IAUTO=0 specify the lines 6 and 7 When IAUTO=1 specify the line 8

6

(NUCLX(I)

CONCEX(I)

I=17)

7(I3 F73)

This line is repeated three times consecutively

Each line corresponds to one mixture and specifies

max7 nuclides before reactor type change

NUCLX(I) nuclides number below

CONCEX(I) concentration (gcm3)

Nuclides number

1 = 238U 2 = 240Pu 3 = H 4 = D

5 = 16O 6 = He 7 = Zr-2 8 = Zr-4

9 = 235U 10 = 239Pu 11 = 241Pu 12 = 242Pu

Only when KREG2gt0 specify the line 7

7

(NUCLX(I)

CONCEX(I)

I=1 7)

7(I3 F73)

This line is repeated three times consecutively

Each line corresponds to one mixture and specifies

max7 nuclides after reactor type change

NUCLX(I) nuclides number below

CONCEX(I) concentration (gcm3)

Nuclides number

1 = 238U 2 = 240Pu 3 = H 4 = D

5 = 16O 6 = He 7 = Zr-2 8 = Zr-4

9 = 235U 10 = 239Pu 11 = 241Pu 12 = 242Pu

Here number and concentrations of nuclides in pellet

should be the same as those specified in the line 6

JAEA-DataCode 2013-009

- 158 -

RODBURN Input data format (2-continued) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

When IAUTO=1 specify the line 8

8

(note 8)

FDEN 6F80

Pellet theoretical density ratio (-)

FU235 U-235enrichment (-)

FPUO2

[If fuel contains no Pu this line can be omitted]

PuO2 weight ratio

+ 22

2

PuOUOPuO (-)

FPU240 Pu-240 weight ratio

minus totPuPu240

(-)

FPU241 Pu-241 weight ratio

minus totPuPu241

(-)

FPU242 Pu-242 weight ratio

minus totPuPu242

(-)

9 NDIST I6

Total number of patterns of the axial profiles of either

neutron flux (IFLPW=0) or linear heat rate

(IFLPW=1) This can be specifies at each time step

10

(ALPH(K)

EXTL(K)

EXTT(K)

K=1 NDIST)

3F84

(Not necessary when IDIST=1) This line is input NDIST times consecutively ALPH(I) Constant of averaging of the I-th pattern where 0 le ALPH(I) lt 1 EXTL(I) Lower region extrapolation distance (cm) EXTT(I) Upper region extrapolation distance (cm) (This modifies the cosine profile If all the values are set equal to 0 a normal cosine profile is given as input)

See the explanation in section 54

11 (FLUXZ (I K)

I=1 MESHZ) 12F82

(Not necessary when IDIST=0)

This line is input NDIST times consecutively

IFLPW=0 axial profile of thermal neutron flux is input

IFLPW=1 axial profile of linear heat rate is input

12 ISTP DTIME I6 E125

ISTP Number of time steps ( le 200)

DTIME The longest period of time step (day) The ldquonumber of time stepsrdquo specified here is the times of specifying the approximate pattern of output power history Total period of irradiation can be one single time step The code automatically divides each input step into sub-steps which are not longer than DTIME It is better to specify the length of DTIME to be less than the period during which irradiation is less than 1 times

1020ncm2 within the 200 time steps

JAEA-DataCode 2013-009

- 159 -

RODBURN Input data format (2-continued) (when KREGI=0 in line No2)

Line No Variables FORMAT Content

13

(TIMX(I)

KDIS(I)

PLHR(I 1)

PLHR(I 2)

ICHG

I=1 ISTP)

E125 I6

2E125 I6

This line is input ISTP times consecutively

TIMX(I) end of I-th step (day)

KDIS(I) Number of the I-th step pattern of either

thermal neutron flux profile or linear heat rate profile

(variable ldquoKrdquo in the lines 10 and 11)

PLHR(I 1) PLHR(I 2) Average powers at the

beginning and end of the I-th step respectively

IOPT = 0 average thermal neutron flux (ncm2s)

IOPT = 1 average linear heat rate (Wcm)

ICHG when MODEL2 ne 0 ICHG=1 should be

designated at the time TIMX(I) when reactor type

changes In other cases ICHG is not designated

14 NPRINT I6

Total number of time steps at which the results are

printed out Besides these the final result is printed out

additionally

15 TIMPRN(I)

I=1 NPRINT 9F82

Tine of print-out of numerical results (day)

(From the first step after TIMPRN(I) results are printed

out sequentially)

16 IDIMPR(I)

I=1 NPRINT 9I8

Corresponding to the line 15 specify what type of

output is printed out IDIMPR=1 only 1-dimensional data is output (Eg axial zone-wise averaged burnup are printed

out for all the axial zones) =2 1-dimensional data and (r z) distributions

of power generation variables Limited to the axial zones which are specified by the line 17

=3 In addition to the above 2-dimensional

nuclides contents are output (Limited to the axial

zones which are specified by the line 15)

17 IZD2(I)

I=1 12 12I6

The axial zone numbers for the 2-dimensional output are

specified sequentially as needed

18 STOP A4 To define the end of the input data ldquoSTOPrdquo should be

input from the 1-st column to the 4-th column

JAEA-DataCode 2013-009

- 160 -

(note 1) Densities of Zry-2 and Zry-4 are assumed as 655 (gcm3)

(note 2) In light water (H2O) density of H= 0079(gcm3) density of O=0631(gcm3)

In heavy water (D2O) density of D= 01807(gcm3) density of O=07226(gcm3)

(note 3) Length of each axial zone is given by equally dividing the total active length of rod by

ldquoMESHZrdquo

(note 4) Pellet is divided into equal-volume ring elements The number of the ring elements is

specified by ldquoMESHRrdquo

(note 5) It is assumed that a cladding has one region

(note 6) It is assumed that coolant has two regions When rod-to-rod pitch is specified coolant

outer boundary radius r is given by PITCHrπ

=

(note 7)

Approximating the temperature distribution inside a pellet by a quadrature function gives

the temperature of i-th region from the center as

( )2

12lowast

minuslowastminusminus=

MESHRITTTT sPPi

Where TP pellet center temperature and Ts pellet surface temperature

(note 8)

Calculation method of element compositions (gcc) of fuel pellet are described below

(1) Calculation of theoretical density of MOX fuel Assuming the theoretical density of MOX fuel as ρ weight ratio of UO2 as

2UOF

weight ratio of PuO2 as2PuOF volume ratio of UO2 as

2UOV and volume ratio of PuO2

as 2PuOV the followings hold

1

1

22

22

222

222

=+

=+

sdot=sdot

sdot=sdot

PuOUO

PuOUO

UOUOUO

PuOPuOPuO

FF

VV

FV

FV

ρρ

ρρ

where2UOρ =1096(gcc)

2PuOρ =1146(gcc) Eliminating 2UOV

2PuOV and 2UOF

from the above Eqs and solution with respect to ρ gives

( )2222

22

PuOUOPuOPuO

PuOUO

F ρρρρρ

ρminus+

sdot=

(2) Calculation of each weight ratio

Each weight ratio is defined as follows 2

2 2

2

2 2

2

2

UO

PuO

UOFUO PuO

PuOFUO PuO

=+

=+

235

235 235 238

238

238 235 238

U

U

UFU U

UFU U

=+

=+

JAEA-DataCode 2013-009

- 161 -

(note 8)

PuPuPuPuPuF

PuPuPuPuPuF

PuPuPuPuPuF

PuPuPuPuPuF

Pu

Pu

Pu

Pu

242241240239

242

242

242241240239

241

241

242241240239

240

240

242241240239

239

239

+++=

+++=

+++=

+++=

2

2

PuOPuF

UOUF

Pu

U

=

=

Here values of 2PuOF FU235 FPu240 FPu241 and FPu242 are given by input

As a result FUO2 FU238 and FPu239 are determined by the above equations

Also for FU and FPu th next equations hold

235 238

235 238

239 240 241 242

239 240 241 242

235 238235 238 32

239 240 241 242239 240 241 242 32

U UU

U U

Pu Pu Pu PuPu

Pu Pu Pu Pu

F FFF F

F F F FFF F F F

sdot + sdot=

sdot + sdot +sdot + sdot + sdot + sdot

=sdot + sdot + sdot + sdot +

Therefore each elemental composition (concentration) can be determined by the

following equations

( ) ( )

235 235

238 238

239 239

240 240

241 241

242 242

2

2

2

2

2

2

2 21 1

U U U UO D

U U U UO D

Pu Pu Pu PuO D

Pu Pu Pu PuO D

Pu Pu Pu PuO D

Pu Pu Pu PuO D

o U UO Pu PuO D

F F F F

F F F F

F F F F

F F F F

F F F F

F F F F

F F F F F

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= sdot sdot sdot sdot

= minus + minus sdot sdot

where FD is the pellet theoretical density ratio (-)

References 5 (51) Bell MJ ldquoORIGEN ndash The ORNL Isotope Generation and Depletion Coderdquo

ORNL-4628 (1973) (52) Croff AG ldquoORIGEN2- A Revised and Updated Version of the Oal Ridge Isotope

Generation and Depletion Coderdquo ORNL-5621 (1980)

JAEA-DataCode 2013-009

- 162 -

(53) Kier PH and Robba AA ldquoRABBLE A Program for Computation of Resonance Absorption in Multiregion Reactor Cellsrdquo ANL-7326 (1967)

(54) WIMS-D IAEA Nuclear Data Services httpwww-ndsiaeaorg (55) Croff AG et al ldquoRevised uranium-plutonium cycle PWR and BWR models for the

ORIGEN computer coderdquo ORNLTM-6051 (1978)

(56) ENDF-BIV IAEA Nuclear Data services httpwww-ndsiaeaorg

JAEA-DataCode 2013-009

- 163 -

6 Input Manual of Plotting Control Program EXPLOT

61 Input parameters for EXPLOT Line No SYMBOL (FORMAT) 1 Comments 2 ISET () Total number of figures Input ISET-sets consisting of the following lines IRNUM ITOPT NOLINE () Function setting

3

IRNUM number of lines drawn in one figure (max 5 lines)

ITOPT designation of graph type ITOPT = 0 X axis represents time burnup or linear heat rate ITOPT = 1 X axis represents coordinates in the radial or axial direction (relative value

is allowed) ITOPT = 2 Construct a diagram for comparison of calculated values with measured

values (in this case maximum value of IRNUM becomes 4 since one line is used for the measured values)

ITOPT=3 X axis represents either radius or axial coordinate Designation method of ITIM in line 7 is different from the case of ITOPT=1

NOLINE Grid line (broken line) option = 0 Grid line is not plotted = 1 Grid line is plotted =2 Grid line is plotted When once or more in ISET-sets lines NOLINE=2 is designated the corresponding CSV file is output with sets of the radial and axial coordinates time and physical quantity = -1 When once or more in ISET-sets lines NOLINE= -1 is designated the PS file is not generated = -2 When once or more in ISET-sets lines NOLINE= -1 is designated the PS file is not

generated but CSV file is output with sets of the radial and axial coordinates time and physical quantity

Accordingly when once or more in ISET-sets lines NOLINElt0 is designated the PS file is not generated

JAEA-DataCode 2013-009

- 164 -

IXOPT IXOPT2 IYOPT2 IYNUM (IYOPT(I) I=1 IYNUM) () Axis setting

4

IXOPT setting of the contents of X axis (set when ITOPT = 0 or 2) = 1 time = 2 coordinates in the radial direction (minus) (set when ITOPT = 1) = 3 coordinates in the axial direction (minus) (set when ITOPT = 1) = 4 burnup (at the objective segment set by IXOPT2) = 5 linear heat rate (at the objective segmentWcm) = 6 burnup (average on all axial segments set by IXOPT2) =7 linear heat rate (average on all axial segmentsWcm) =8 elapsed time from the point designated by ITIM(1) in the input line 7 =9 energy density (calg-fuel) IXOPT2 setting of units for time and burnup Setting of units when X axis represents time (IXOPT = 1) (Dummy when IXOPTgt1 ) IXOPT2 = 0 hour IXOPT2 = 1 day IXOPT2 = 2 Min IXOPT2 = 3 sec IXOPT2 = 4 msec Setting of units when X axis represents burnup (IXOPT = 4 or 6) (Dummy when IXOPT is neither 4 nor 6) IXOPT2 =0 MWd tUO2 IXOPT2 =4 MWd tMOX IXOPT2 =2 MWd tU IXOPT2 =5 GWd tMOX IXOPT2 =1 GWd tUO2 IXOPT2 =6 MWd tHM

IXOPT2 =3 GWd tU IXOPT2 =7 GWd tHM IYOPT2 setting of units for time and burnup Setting of units when Y axis represents time (IYOPT(I)=1 or 12) IYOT2 =0 MWd tUO2 IYOPT2 =4 MWd tMOX IYOT2 =2 MWd tU IYOPT2 =5 GWd tMOX

IYOPT2 =1 GWd tUO2 IYOPT2 =6 MWd tHM IYOPT2 =3 GWd tU IYOPT2 =7 GWd tHM

IYNUM number of Y axes When more than 2 physical properties are set for Y axis

(IYNUM ≧2) IYNUM = IRNUM must be set since one graph is drawn for one Y axis (IYOPT(I) I = 1 IYNUM) select contents of Y axis from Tables 1 to 9 and input the

physical quantity number

(IYOPT(I) I=1 IRNUM) Input the IDNO number of physical quantity of Y axis selected from Table (1) to (3)

(Note) 1) Designation of IXOPT=19 has the same effect as that which is given by designation of IXOPT=8 or IXOPT2=4 and the time is in elapsed time (ms) 2) HM is the sum of weight of U and Pu in MOX fuel

5 (IR(I) I = 1 IRNUM) () Radial mesh number (IR(I) I = 1 IRNUM) radial mesh number is set for each figure When setting is not necessary input 1

JAEA-DataCode 2013-009

- 165 -

6

(IZ(I) I = 1 IRNUM) () Axial segment number (IZ(I) I = 1 IRNUM) Set the segment number in the axial direction for each figure Input 1 when setting is not necessary

7

(ITIM(I) I = 0 1) or (ITIM(I) I = 1 RNUM) () Time step number (When ITOPT = 0 input (ITIM(I) I = 12)) ITIM(1) = set a time step number for starting point of the figure ITIM(2) = set a time step number for end point of the figure (When ITOPT = 1 input (ITIM(I) I = 1 RNUM)) Set time step numbers for each figure (When ITOPT=3 input (ITIM(I) I=1 IRNUM)) Set the time of output Unit is specified by

IXOPT2 ITIM is a real number Example when IRNUM=3 IXOPT2=3 (unit is sec) and ldquoITIM(1)=00 ITIM(2)=10 ITIM(3)=20rdquo is input by Line No7 the plot program finds the history points which are given at the closest time to 00s 10sand 20s and outputs figures at these history points

8

X0 XM XNUM IXN IFLAG(6) () Setting of X-axis scale This line is a DUMMY when IXOPT=2 or 3 X0 minimum value of X-axis scale (IFLAGne3) XM maximum value of X-axis scale (IFLAGne3) XNUM increment of X-axis scale (IFLAGne3) IXN number of digits after decimal point on X axis (IFLAGne3) Example IXN = minus1 for 10 IXN = 1 for 100 IXN = 2 for 1000 IFLAG setting of X-axis scale =3 automatic scaling is applied to X axis ne3 X axis is drawn with designated scaling by input

9

IYNUM lines are required (I = 1 IYNUM) Y0(I) YM(I) YNUM(I) IYN(I) IFLAG(I) () Setting of Y-axis scale

Y0(I) minimum value of Y-axis scale YM(I) maximum value of Y-axis scale YNUM(I) increment of Y-axis scale IYN(I) number of digits after decimal point on Y axis (input in the same manner as for IXN) IFLAG(I) option for Y-axis scale = 0 scale is expressed with real numbers (decimal number expression) = 1 scale is expressed with floating format = 2 logarithmic scaling is used for Y axis = 3 automatic scaling is applied to Y axis

When IFLAG(I) = 3 Y0 to IYN are DUMMY since automatic scaling is selected When IFLAG(I)=2 user can designate a semi-logarithmic scaling For example if user

wants to plot with the Y-axis of 107 to 1013 scale range designate ldquoY0(I)=7 YM(I)=13 YNUM(I)=1rdquo where IYN(I) is dummy

Note 1) Data specified by asterisk () are input with free format

JAEA-DataCode 2013-009

- 166 -

62 Tables of IDNOs classified by variables

Table (1) Physical Quantities of Y axis (1) ()designated by IXOPT2

Group No Item Unit Std-Out

A Data regarding time and burnup

1 2 3

Rod average burnup Fission gas release rate Rod internal pressure

() ()

(MPa)

4 Plenum volume (cm3)

5

Pellet elongation (when IFEMRD=1) at the objective segment designated by IFEM)

()

6 7 8

Cladding elongation at plenum top (IFEMRD=1) Maximum change of cladding outer radius Average linear heat rate in the axial direction

() (microm)

(Wcm)

times

9 10

Average iodine concentration Maximum iodine concentration

(gcm2) (gcm2)

times

times

11 12 13

Average change in cladding outer radius Coolant inlet temperature Coolant pressure

(microm) (C)

(MPa)

times

times

14

Coolant velocity or mass flow rate (designated by input parameter)

(ms) or (kgcm2s)

times

15 Average fast neutron flux in the axial direction (1013ncm2s)

16 17 18

Average fast neutron fluence in the axial direction Pellet elongation (IFEMRD=0) Cladding elongation (IFEMRD=0)

(1020ncm2) () ()

19

Cladding max change of outer diameter at zero power state (IFEMRD=0)

(microm) times

20

Cladding average change of outer diameter at zero power state (IFEMRD=0)

(microm) times

21 22

Pellet elongation (IFEMRD=1) Cladding elongation at plenum top (IFEMRD=1)

(mm) (mm)

times

times

23 --- 28 Not used

29 30

Coolant mass flow rate He gas release rate

(kgm2s) ()

times

times

[Note] 1) Std-Out (Standard output states) indicates the default state of output O mark

= output X mark = not output They are standard output from FEMAXI by setting default

states of IDNO in making the plotter data file Regarding IDNO number items marked by times

eg pellet elongation when plotted output of pellet elongation is needed it is necessary to set

IDNO(21)=1 in input file of FEMAXI

2) When calculating a case with long power history in FEMAXI the size of the plot data file

sometimes becomes substantially large To avoid this unnecessary items among items

marked by should be set as IDNO()=0 Whereby the plot file size can be minimized Here

JAEA-DataCode 2013-009

- 167 -

indicates each item number in the figure

3) When IFEMRD=0 items 5 and 6 are elongations at the objective segment

4) IDNO=7 and 11 are the displacement at the outer surface of oxide of cladding When the

displacement at the metal part of cladding ie at the interface of metal-oxide IDNO=174

is used

Here IDNO=19 and 20 are results of 2-D local mechanical analysis In this analysis no

oxide layer is taken into account so that cladding outer radius displacement (metal-oxide

interface) is implicitly assumed to be equal to the displacement at outer oxide surface

When IFEMRD=1 ie entire rod length (ERL) mechanical analysis solely IDNO=17

to 20 which are used in the 2-D local mechanical analysis are given the results of ERL

analysis

JAEA-DataCode 2013-009

- 168 -

Table (2) Physical Quantities of Y axis (2) ()designated by IXOPT2 Group No Item Unit Std-Out

B1 Data regarding time burnup

and axial location

41 Linear heat rate (thermal analysis=TA) (Wcm)

42 Burnup (TA) ()

43 Diameter gap width (mechanical analysis when IFEMRD=0 gap at each axial segment and when IFEMRD=1 gap at each node couple is output sequentially)

(microm) times

44 45

PCMI contact pressure (When IFEMRD=0) Fission gas release rate

(MPa) ()

times

46 Frictional force between pellet and cladding in the axial direction (When IFEMRD=0)

(MPa) times

47 Pellet elongation (When IFEMRD=0) () times

48

Cladding elongation (Items 47 and 48 are output by the mechanical analysis When IFEMRD=0 elongation at each axial segment is obtained when IFEMRD=1 the same values in the axial direction are output)

() times

49 50 51 52 53 54

Gap conductance (TA) Coolant temperature (TA) Cladding inner surface temperature (TA) Cladding outer surface temperature (TA) Pellet center temperature (TA) Pellet outer surface temperature (TA)

(Wcm2C) (C) (C) (degC) (degC) (degC)

times times times

55 56 57 58 59 60

Cladding outer radius change(the same as 43) Composition of Xe + Kr (TA) Pellet density (TA) Cladding metal-oxide interface temperature Cladding outer oxide layer thickness Coolant enthalpy

(microm) ()

(TD) (C)

(microm) (kJkg)

times times times times

61 62 63 64 65

Coolant quality Cladding outer surface heat flux Cladding outer surface heat transfer coefficient Fast neutron flux Fast neutron fluence

(-) (Wcm2)

(Wcm2C) (1013ncm2s) (1020ncm2)

times times times

66 67 68 69

Pellet power density Gap size Pellet densification strain (ΔVV) Rim thickness

(Wcm3) (microm)

(001) (microm)

70 Additional FGR from rim structure ()

Note 1) When the 2-D local mechanical analysis is performed (IFEMRD=0) items 47 and 48 are uniform values in the axial direction and items 43 44 46 55 and 68 are the values which are obtained with respect to half a pellet length of the objective segment The others are obtained with respect to the 1-D entire rod length mechanical analysis (IFEMRD=1) 2) IDNO=55 cladding outer diameter displacement (metal-oxide interface) = displacement at outer oxide surface

JAEA-DataCode 2013-009

- 169 -

Table (3) Physical Quantities of Y axis (3) Group No Item Unit Std-

Out

B2 Data regarding time burnup

and axial location

71 72 73 74 75

Molar quantity of released Xe Molar quantity of released Kr Molar quantity of released He Contact pressure in the radial direction (IFEMRD=1) Frictional force in the axial direction (IFEMRD=1)

(001mol) (001mol) (001mol) (MPa) (MPa)

times times times

times

76 77 78 79 80

Pellet elongation (IFEMRD=1) Cladding elongation (IFEMRD=1) Cladding outer oxide surface diameter change (IFEMRD=1) Pellet porosity deignated by IPDENS Pellet volume change deignated by IPDENS

() ()

(microm) () ()

times

times

times

times

times

81 82 83 84 85

Pellet diameter change (IFEMRD=1) Pellet diameter strain (IFEMRD=1) Pellet-clad bonding progress ( 0 BD 1le le ) Intra-granular gas bubble radius (average) Volumetric strain by intra-granular gas bubbles(average)

(microm) () ( - ) ( o

A ) ()

times

times

times

times

times

86 87 88 89 90

Inter-granular gas bubble radius (average) Volumetric strain by inter-granular gas bubbles(average) Pellet radial displacement (IFEMRD=1) Elastic component of pellet radial displacement Thermal component of pellet radial displacement

(microm) ()

(microm) (microm) (microm)

times

times

times times times

91 92 93 94 95

Relocation component of pellet radial displacement Densification component of pellet radial displacement Swelling component of pellet radial displacement Creep component of pellet radial displacement Pellet axial displacement

(microm) (microm) (microm) (microm) (microm)

times

times times times times

96 97 98 99 100

Cladding inner surface radial displacement Elastic component of cladding radial displacement Thermal component of cladding radial displacement Creep component of cladding radial displacement Cladding axial displacement

(microm) (microm) (microm) (microm) (microm)

times times

times times times

(Note) The items 88 to 100 are obtained with respect to entire rod length (IFEMRD=1)

JAEA-DataCode 2013-009

- 170 -

Table (4) Physical Quantities of Y axis (4) ()designated by IXOPT2 Group NO Item Unit Std-

Out C1 Data regarding time burnup locations in the axial and radial directions

101 102 103 104 105

Pellet local burnup Pellet power density Pellet node temperature Cladding node temperature Pellet element temperature

() (Wcm3)

(C) (C) (C)

106 107 108 109 110

Cladding element average temperature Fission gas release rate Pellet grain diameter Pellet equivalent stress Pellet average stress

(C) ()

(microm) (MPa) (MPa)

times times times times

111 112 113 114 115

Pellet stress in the radial direction Pellet stress in the circumferential direction Pellet stress in the axial direction Pellet strain in the radial direction Pellet strain in the circumferential direction

(MPa) (MPa) (MPa)

() ()

times times times times times

116 117 118 119 120

Pellet strain in the axial direction Pellet elastic strain in the radial direction Pellet elastic strain in the circumferential direction Pellet elastic strain in the axial direction Pellet thermal expansion strain in the radial direction

() () () () ()

times times times times times

121 122 123 124 125

Pellet thermal expansion strain in the axial direction Pellet densification volumetric strain(ΔVV) Pellet swelling strain(ΔLL) Pellet equivalent creep strain Pellet creep strain in the axial direction

() () () () ()

times times times times times

126 127 128 129 130

Pellet creep strain in the axial direction Pellet creep strain in the axial direction Pellet equivalent plastic strain Pellet plastic strain in the radial direction Pellet plastic strain in the circumferential direction

() () () () ()

times times times times times

131 132 133 134 135

Pellet plastic strain in the axial direction Pellet displacement in the radial direction Pellet displacement in the axial direction Pellet radial displacement by elastic strain Pellet axial displacement by elastic strain

() (microm) (microm) (microm) (microm)

times times times times times

136 137 138 139 140

Pellet radial displacement by thermal strain Pellet axial displacement by thermal strain Pellet radial displacement by densification Pellet axial displacement by densification Pellet radial displacement by swelling

(microm) (microm) (microm) (microm) (microm)

times times times times times

(Note) When the local mechanical analysis is performed (IFEMRD=0) values of stress strain and displacement are obtained with respect to half a pellet length of the objective segment When entire rod length mechanical analysis is performed (IFEMRD=1) they are obtained with respect to the entire rod length

JAEA-DataCode 2013-009

- 171 -

Table (5) Physical Quantities of Y axis (5) ()designated by IXOPT2 Group No Item Unit Std-

Out

C2

Data regarding time burnup locations in the axial and radial directions

141 142 143 144 145

Pellet axial displacement by swelling Pellet radial displacement by creep Pellet axial displacement by creep Pellet radial displacement by plastic strain Pellet axial displacement by plastic strain

(microm) (microm) (microm) (microm) (microm)

times times times times times

146 147 148 149 150

Radius of intra-granular gas bubble Volumetric strain by intra-granular gas bubble Radius of inter-granular gas bubble Volumetric strain by inter-granular gas bubble Absolute value of pellet yield stress

( A )

() (microm) ()

(MPa)

times times times times times

151 152 153 154 155

Cladding equivalent stress Cladding average stress Cladding stress in the radial direction Cladding stress in the circumferential direction Cladding stress in the axial direction

(MPa) (MPa) (MPa) (MPa) (MPa)

times times times

156 157 158 159 160

Cladding strain in the radial direction Cladding strain in the circumferential direction Cladding strain in the axial direction Cladding elastic strain in the radial direction Cladding elastic strain in the circumferential direction

() () () () ()

times times times times

161 162 163 164 165

Cladding elastic strain in the axial direction Cladding thermal strain in the radial direction Cladding thermal strain in the axial direction Cladding average axial thermal strain (Note) Cladding axial irradiation growth strain

() () () () ()

times times times times

166 167 168 169 170

Cladding equivalent creep strain Cladding creep strain in the radial direction Cladding creep strain in the circumferential direction Cladding creep strain in the axial direction Cladding equivalent plastic strain

() () () () ()

times times times times

171 172 173 174 175

Cladding plastic strain in the radial direction Cladding plastic strain in the circumferential direction Cladding plastic strain in the axial direction Cladding radial displacement Sum of cladding axial displacements in each segment

() () ()

(microm) (microm)

times times

176 177 178 179 180

Cladding radial displacement by elastic strain Cladding axial displacement by elastic strain Cladding radial displacement by thermal strain Cladding axial displacement by thermal strain Cladding axial displacement by irradiation growth strain

(microm) (microm) (microm) (microm) (microm)

(Note1) Cladding average thermal strain of item 159 is obtained with respect to time burnup and radial location (Note2) The above table represents the data of both the mechanical analysis and thermal analysis for the entire length model The data of the average thermal strain in the axial direction of the cladding 164 represent those with respect to time burnup and the location in the radial direction

JAEA-DataCode 2013-009

- 172 -

Table (6) Physical Quantities of Y axis (6) Group No Item Unit Std-

Out

C2

Data regarding time burnup locations in the axial and radial directions

181 182 183 184

Cladding radial displacement by creep strain Cladding axial displacement by creep strain Cladding radial displacement by plastic strain Cladding axial displacement by plastic strain

(microm) (microm) (microm) (microm)

185 186 187

Number of generated fission gas atoms per unit volume of fuel Number of fission gas atoms per unit volume inside grain Number of fission gas atoms per unit volume of solid matrix

(atomscm3) (atomscm3) (atomscm3)

times times times

188 Number of fission gas atoms in the intra-grain bubbles per unit volume of fuel

(atomscm3) times

189 190

Number of intra-grain bubbles per unit volume Number of fission gas atoms per unit area of grain surface

bubblescm3 (atomscm2)

times times

191

Saturation number of fission gas atoms per unit area of grain surface

(atomscm2) times

192 193 194

Number of gas bubbles per unit area of grain surface Coverage fraction of inter-granular bubbles on grain surface Saturation radius of inter-granular gas bubble

bubblescm2 (-) (microm)

times times times

195 196 197

Nominal diffusion coefficient of fission gas atoms Effective diffusion coefficient of fission gas atoms Pellet theoretical density designated by IPDENS

(cm2s) (cm2s) (TD)

times times times

198 --- 200 Not used

201 Difference between element-average temperature of cladding and cladding outer surface temperature (oC) times

202 --- 222 Not used 223 Pellet yield stress (MPa) times 224 Cladding yield stress (MPa) times

225 --- 227 Not used 228 229 230

Pellet relocation strain in the radial direction Pellet relocation strain in the hoop direction Pellet relocation strain in the axial direction

() () ()

times times times

231 232

Pellet radial displacement induced by relocation Pellet axial displacement induced by relocation

(microm) (microm)

times times

233 Cladding outer surface displacement by waterside oxidation (microm) times 234 Pellet densification strain + swelling strain () 235 Apparent stiffness of pellet in the radial direction (GPa) 236 Apparent stiffness of pellet in the circumferential direction (GPa) 237 Apparent stiffness of pellet in the axial direction (GPa) 238 Youngrsquos modulus of cladding (GPa) 239 Poissonrsquos ratio of cladding (-) 240 Strain-hardening exponent of cladding (-) 241 Youngrsquos modulus of pellet (GPa) 242 Poissonrsquos ratio of pellet (-) 243 Thermal conductivity of cladding (WcmK) 244 Specific heat of pellet (JkgK) 245 Specific heat of cladding (JkgK) 246 Pellet melting point depending on the axial position (ordmC) 247 Gap size depending on the radial and axial positions (microm) 248 Deviation stress of cladding in the radial direction (MPa) 249 Deviation stress of cladding in the circumferential direction (MPa) 250 Deviation stress of cladding in the axial direction (MPa)

JAEA-DataCode 2013-009

- 173 -

Table (7) Physical Quantities of Y axis (7) (Note) Number of radial elements of IDNO=251- 300 depends on the designation of MESH

Group No Item Unit Std-Out

C2

Data regarding time burnup locations in the axial and radial directions

251 252 253 254

Fuel pellet local burnup Fuel pellet effective burnup Pellet ring element average temperature Fuel pellet thermal conductivity

(MWdt) (MWdt)

(oC) (WcmK)

times times times times

255 256

Cladding heat generation density by γ-heating Fraction of rim structure volume ( vX ratio)

(Wcm3) (-)

times times

257 Total porosity of fuel (0

0 0

swg densV Vp pV V

∆ ∆= + + ) () times

258 259 260

Rim structure porosity Open porosity in rim structure Porosity by fission gas bubbles

() () ()

times times times

261 Total volumetric swelling of pellet () times

262 263 264 265

Re-dissolution ratio b of fission gas atoms into solid matrix Re-dissolution ratioαinto solid matrix in rate-law model Fraction of gas atoms trapped by intra-granular gas bubbles g Stiffness fraction of dish element (buffer space)

(1s) (1s) (1s) (-)

times times times times

266 267

Displacement of pellet solid elements in the axial direction Volumetric fraction of dish space element to the initial value

(microm) (-)

times times

268 Not used

269 Ratio of amount of fission gas atoms in intra-grain gas bubbles to the total amount of generated fission gas atoms () times

270 Fission gas atoms in grain boundary gas bubbles in unit volume of pellet (atomscm3) times

271 Grain boundary inventory of fission gas atoms (atoms) times

272 Number density of grain boundary gas bubbles in pellet (bubblescm3) times

273 Ratio of amount of fission gas in grain boundary gas bubbles to the total amount of generated fission gas atoms () times

274 Fission gas atoms density inside the pores in rim structure (atomscm3) times

275 Grain diameter of fuel pellet (microm) times

276 277

Volumetric swelling of gas pores in rim structure --------- Not used -------------

()

times

278 Heat generation density of fuel pellet (Wcm3) times

279 280 281

Nodal temperature of pellet ring element Amount of released gas atoms per unit volume of pellet Pellet theoretical density designated by IPDENS=1

(oC) (atomscm3)

(TD)

times times times

282 283 284

Pellet theoretical density designated by IPDENS=2 Pellet theoretical density designated by IPDENS=3 Pellet theoretical density designated by IPDENS=4

(TD) (TD) (TD)

times times times

285 Ratio of amount of fission gas atoms retained in the solid phase of rim structure (-) times

286

Fraction of transferred amount of gas atoms from solid phase of rim structure to gas pores

(-) (cm2s)

times times

287 288

Nominal diffusion coefficient of He gas atoms (when HER=3) Effective diffusion coefficient of He gas atoms (when HER=3) (cm2s) times

times 289 -------------- Not used -----------------

290 He gas atoms generation rate per unit volume of fuel pellet (atomscm3s) times

JAEA-DataCode 2013-009

- 174 -

Table (8) Physical Quantities of Y axis (8) ()designated by IXOPT2

[Note] Number of radial elements of IDNO=251- 300 depends on the designation of MESH IDNO=301- 324 are of the data of 2-D local mechanical analysis They are output only when IFEMRD=0 Stress strain and displacement correspond to the values in half a pellet length geometry

Group IDNO Item Unit Std-Out

C2

Data regarding time burnup locations in the axial and radial directions

291 Internal pressure of grain boundary gas bubble (MPa) times

292 Overpressure of grain boundary gas bubbles (MPa) times

293 Intra-grain gas bubble pressure (MPa) times 294 Number density of He gas atoms at grain boundary (atomscm3) times

295 -296 - - - - - Not used - - - - -

297 He atoms density inside grain (when HER=3) (atomscm3) times

298 Average density of He atoms inside grain (when HER=3) (atomscm3) times 299 He gas release rate (when HER=3) () times 300 Void fraction of coolant water (-) times 301 Local burnup () 302 Heat generation density of fuel pellet (Wcm3) 303 Nodal temperature of pellet ring element (oC) 304 Nodal temperature of cladding ring element (oC) 305 Pellet element average temperature (oC) 306 Cladding element average temperature (oC) times 307 Fission gas release rate () 308 Pellet grain diameter (microm) times 309 Pellet equivalent stress (MPa) times 310 Pellet average (hydrostatic) stress (MPa) times 311 Pellet stress in the radial direction (MPa) times 312 Pellet stress in the circumferential direction (MPa) times 313 Pellet stress in the axial direction (MPa) times 314 Pellet strain in the radial direction () times 315 Pellet strain in the circumferential direction () times 316 Pellet strain in the axial direction () times 317 Pellet elastic strain in the radial direction () times 318 Pellet elastic strain in the circumferential direction () times 319 Pellet elastic strain in the axial direction () times 320 Pellet thermal strain I the radial direction () times 321 Pellet thermal strain in the axial direction () times 322 Pellet densification volumetric strain (ΔVV) () times 323 Pellet swelling strain (ΔLL) () times 324 Pellet equivalent creep strain () times 325 Pellet creep strain in the radial direction () times 326 Pellet creep strain in the circumferential direction () times 327 Pellet creep strain in the axial direction () times 328 Pellet equivalent plastic strain () times 329 Pellet plastic strain in the radial direction () times 330 Pellet plastic strain in the circumferential direction () times 331 Pellet plastic strain in the axial direction () times 332 Pellet radial displacement (microm) times

JAEA-DataCode 2013-009

- 175 -

Table (9) Physical Quantities of Y axis (9) IDNO=325- 365 are of the data of 2-D local mechanical analysis They are output only when IFEMRD=0 Stress strain and displacement correspond to the values in half a pellet length geometry

Group IDNO Item Unit Std-Out

C3

Data regarding time burnup locations in the axial and radial directions

333 Pellet axial displacement (microm) times 334 Pellet radial displacement by elastic strain (microm) times

335 Pellet axial displacement by elastic strain (microm) times 336 Pellet radial displacement by thermal strain (microm) times 337 Pellet axial displacement by thermal strain (microm) times 338 Pellet radial displacement by densification (microm) times 339 Pellet axial displacement by densification (microm) times 340 Pellet radial displacement by swelling (microm) times 341 Pellet axial displacement by swelling (microm) times 342 Pellet radial displacement by creep (microm) times 343 Pellet axial displacement by creep (microm) times 344 Pellet radial displacement by plastic strain (microm) times 345 Pellet axial displacement by plastic strain (microm) times

346 347348 349 350

Cladding equivalent stress Cladding average stress Cladding stress in the radial direction Cladding stress in the circumferential direction Cladding stress in the axial direction

(MPa) (MPa) (MPa) (MPa) (MPa)

times times times

351 352 353 354 355

Cladding strain in the radial direction Cladding strain in the circumferential direction Cladding strain in the axial direction Cladding elastic strain in the radial direction Cladding elastic strain in the circumferential direction

() () () () ()

times times times times

356 357 358 359 360

Cladding elastic strain in the axial direction Cladding thermal strain in the radial direction Cladding thermal strain in the axial direction Cladding average axial thermal strain (Note) Cladding axial irradiation growth strain

() () () () ()

times times times times

361 362 363 364 365

Cladding equivalent creep strain Cladding creep strain in the radial direction Cladding creep strain in the circumferential direction Cladding creep strain in the axial direction Cladding equivalent plastic strain

() () () () ()

times times times times

JAEA-DataCode 2013-009

- 176 -

Table (10) Physical Quantities of Y axis (10)

[Note] IDNO=366-400 are results in the case of ldquoIFEMRD=0rdquo ie in the 2-D Local

PCMI analysis Stress strain and displacement are values for the half-length pellet geometry

Group IDNO Item Unit Std-Out

C4

Data regarding time burnup locations in the axial and radial directions

366 Cladding plastic strain in the radial direction ()

367 368

Cladding plastic strain in the circumferential direction Cladding plastic strain in the axial direction

() ()

times times

369 370

Cladding radial displacement Cladding axial displacement

(microm) (microm)

371 372 373 374

Cladding radial displacement by elastic strain Cladding axial displacement by elastic strain Cladding radial displacement by thermal strain Cladding axial displacement by thermal strain

(microm) (microm) (microm) (microm)

375 376 377 378 379

Cladding axial displacement by irradiation growth strain Cladding radial displacement by creep strain Cladding axial displacement by creep strain Cladding radial displacement by plastic strain Cladding axial displacement by plastic strain

(microm) (microm) (microm) (microm) (microm)

380 Pellet yield stress (MPa) times

381 Cladding yield stress (MPa) times

382 Pellet relocation strain in the radial direction () times

383 Pellet relocation strain in the hoop direction () times

384 Pellet relocation strain in the axial direction () times

385 Pellet radial displacement induced by relocation (microm) times

386 Pellet axial displacement induced by relocation (microm) times

387 Cladding outer surface displacement caused by waterside oxidation

(microm) times

388 Pellet radial displacement calculated from strain (microm) times

389 Pellet axial displacement calculated from strain (microm) times

390 Cladding radial displacement calculated from strain (microm) times

391 Cladding axial displacement calculated from strain (microm) times

392 Pellet nodal coordinate value in the radial direction (mm) times

393 Pellet nodal coordinate value in the axial direction (mm) times

394 Cladding nodal coordinate value in the radial direction (mm) times

395 Cladding nodal coordinate value in the axial direction (mm) times

396 Densification and swelling strains of pellet () times

397 Shear stress in pellet (MPa) times

398 Shear stress in cladding (MPa) times

399 Shear strain in pellet () times

400 Shear strain in cladding () times

JAEA-DataCode 2013-009

- 177 -

Table (11) Physical Quantities of Y axis (11)

Group IDNO Item Unit Std-Out

A

Data regarding time and burnup

401 Plenum volume at zero power state (cm3) times 402 Pellet elongation at zero power state (IFEMRD=1) () times

403 Cladding max change of outer diameter at zero power state (IFEMRD=1)

(microm)

times

404 Cladding average change of outer diameter at zero power state (IFEMRD=1)

(microm)

times

405 Cladding elongation at zero power state (IFEMRD=1) () times

406 Cladding internal pressure at zero power state (MPa) times

407 Pellet elongation at zero power state (IFEMRD=0) () times

408 Cladding max change of outer diameter at zero power state (IFEMRD=0)

(microm)

times

409

Cladding average change of outer diameter at zero power state (IFEMRD=0)

(microm)

times

410 Cladding elongation at zero power state (IFEMRD=0) () times

411 - 420 - - - - - Not used - - - - - -

Table (12) Physical Quantities of Y axis (12)

Group IDNO Item Unit Std-

Out B Data

regarding time

burnup and axial elevation

421 Diametral gap size at zero power state (IFEMRD=0) (microm) times

422 PCMI pressure at zero power state(IFEMRD=0) (MPa) times

423 Pellet elongation at zero power state(IFEMRD=0) () times

424 Cladding elongation at zero power state(IFEMRD=0) () times

425 Cladding outer diameter change at zero power (IFEMRD=0) (microm) times

426 Pellet density at zero power state (TD) times

427 Diametral gap size by thermal model at zero power state (IFEMRD=1)

(microm) times

428 PCMI pressure at zero power state(IFEMRD=1) (MPa) times

429 Pellet elongation at zero power state(IFEMRD=1) () times

430 Cladding elongation at zero power state(IFEMRD=1) () times

431 Cladding outer diameter change at zero power (IFEMRD=1)

(microm) times

432 - 450 - - - - - Not used - - - - - -

(Note) When IZEROgt0 the Std-Out is O (output) for all the items of 401 to 406 and 421 to 427

JAEA-DataCode 2013-009

- 178 -

Table (13) Physical Quantities of Y axis (13)

(Note) When IZEROgt0 the Std-Out is O (output) for all the items of 451 to 465 The data 451-465 are for the entire rod length mechanical analysis irrespective of IFEMRD

Group IDNO Item Unit Std-

Out C Data

regarding time

burnup axial and radial locations

451 452 453

Pellet radial strain at zero power state Pellet circumferential strain at zero power state Pellet axial strain at zero power state

() () ()

times times times

454 455 456

Pellet swelling strain at zero power state Pellet radial displacement at zero power state Pellet axial displacement at zero power state

() (microm) (microm)

times times times

457 Pellet radial displacement by swelling at zero power state (microm) times

458 459 460 461

Pellet axial displacement by swelling at zero power state Cladding radial strain at zero power state Cladding circumferential strain at zero power state Cladding axial strain at zero power state

(microm) () () ()

times times

times times

462 Cladding axial strain by irradiation growth at zero power state () times

463 464

Cladding radial displacement at zero power state Cladding axial displacement at zero power state

(microm) (microm)

times

times 465

Cladding axial displacement by irradiation growth at zero power state

(microm) times

466 ndash470 - - - - - Not used - - - - - -

471 472 473

Pellet radial strain at zero power state Pellet circumferential strain at zero power state Pellet axial strain at zero power state

() () ()

times times times

474 475 476

Pellet swelling strain at zero power state Pellet radial displacement at zero power state Pellet axial displacement at zero power state

() (microm) (microm)

times times times

477 Pellet radial displacement by swelling at zero power state (microm) times

478 Pellet axial displacement by swelling at zero power state (microm) times 479 480 481

Cladding radial strain at zero power state Cladding circumferential strain at zero power state Cladding axial strain at zero power state

() () ()

times times times

482 Cladding axial strain by irradiation growth at zero power state () times 483 484

Cladding radial displacement at zero power state Cladding axial displacement at zero power state

(microm) (microm)

times

times

485 Cladding axial displacement by irradiation growth at zero power state

(microm) times

486 ndash500 - - - - - Not used - - - - - -

JAEA-DataCode 2013-009

- 179 -

Table (14) Physical Quantities of Y axis (14) [Note] Number of radial elements of IDNO=501 - 600 depends on the designation of MESH

Group DNO Item Unit Std-Out

C Data

regarding time

burnup axial and radial locations

501 Amount of He generation per unit volume of pellet (atomscm3) times 502

-508 - - - - - Not used - - - - - -

509 He partial pressure in plenum as a function of time and burnup (MPa) times

510 He gas density in plenum as a function of time and burnup (atomscm3

) times

511 -512 - - - - - Not used - - - - - -

513 Plenum gas temperature as a function of time and burnup (oC) times

514 -529 - - - - - Not used - - - - - -

530 Internal pressure at each axial segment as a function of time burnup and axial coordinate MPa times

531-533 - - - - - Not used - - - - - -

534 Segment averaged amount of He generation as a function of time burnup and axial coordinate (atomscm3) times

535 Segment averaged release rate of He as a function of time burnup and axial coordinate () times

536 Number of generated He atoms at each axial segment as a function of time burnup and axial coordinate (atoms) times

537-540 - - - - - Not used - - - - - -

541 Pellet shear creep strain (2-D local mechanical model) () times 542 Pellet shear plastic strain (2-D local mechanical model) () times 543 Pellet shear elastic strain (2-D local mechanical model) () times 544 Pellet shear relocation strain (2-D local mechanical model) () times 545 Cladding shear creep strain (2-D local mechanical model) () times 546 Cladding shear plastic strain (2-D local mechanical model) () times 547 Cladding shear elastic strain (2-D local mechanical model) () times 548 Heating steam layer temperature (Dry-out model) (oC) times

549 Flow inner tube temperature (Dry-out model) (oC) times

550 He gas layer temperature (Dry-out model) (oC) times

551 Flow outer tube temperature (Dry-out model) (oC) times

552 Circulating water temperature (Dry-out model) (oC) times

553 Capsule outer mantle pipe temperature (Dry-out model) (oC) times

554-555 - - - - - Not used - - - - - -

JAEA-DataCode 2013-009

- 180 -

Table (15) Physical Quantities of Y axis (15) [Note] Number of radial elements of IDNO=501 - 600 depends on the designation of MESH

Group IDNO Item Unit Std-Out

C Data

regarding time

burnup axial and

radial ocations

556 Axial coordinate of top height of buffer element of each axial segment (mm) times

557 Axial coordinate of top height of pellet stack of each axial segment (mm) times

558 - - - - - -Not used - - - - - - - -

559 Pellet stack total (elastic+plastic) elongation excluding thermal expansion component () times

560 Cladding total (elastic+plastic) elongation excluding thermal expansion component () times

561 Volume of released fission gas at 1 atm 0 oC (mm3) times 562 Volume of released He gas at 1atm 0oC (mm3) times

563 Pellet peak temperature highest temperature of pellet stack ring element at a certain axial segment (oC) times

564 Location of peak temperature the radial coordinate value of mid-thickness of pellet stack ring element having the highest temperature IDNO=563 in a certain axial segment

(mm) times

565 Average hydrogen concentration H in cladding (wtppm) times

566 Pre-crack depth a1 (derived from the least square approximation curve of data of high burnup PWR fuels subjected to the NSRR experiments)

(microm) times

567 Pre-crack depth a2 (derived from an upper envelope curve of data of high burnup PWR fuels subjected to the NSRR experiments )

(microm) times

568 Effective fast neutron fluence (ncm2) times 569 Coefficient of cladding cold-work (-) times 570 Cladding temperature used to evaluate IDNO=568 and 569 (oC) times

571 Cladding temperature change rate used to evaluate IDNO=568 and 569 (oCs) times

572 Gas phase volume of plenum (cm3) times

573 Ratio of amount of fission gas atoms retained inside grains to the total generation of fission gas atoms () times

574 Ratio of amount of fission gas atoms retained at grain boundary to the total generation of fission gas atoms () times

575 -582 - - - - - Not used - - - - - -

583 Temperature at the most-heated segment of cladding () times

584 -592 - - - - - Not used - - - - - -

593 Additional FGR from rim structure (depending on the radial element and axial segment) () times

594 Ratio of amount of fission gas atoms generated in rim structure to the total amount of generated fission gas atoms in pellet (depending on the radial element and axial segment)

() times

595 - 598 - - - - - Not used - - - - - -

599 Critical heat flux (Wcm2) times 600 - - - - - Not used - - - - - -

JAEA-DataCode 2013-009

- 181 -

Table (16) Physical Quantities of Y axis (16) [Note] Number of radial elements of IDNO=701 - 708 depends on the designation of MESH

Group IDNO Item Unit Std-Out

C

Data regarding time burnup axial and radial locations

701 Ratio of amount of fission gas atoms retained in solid phase to the total amount of generated fission gas atoms for each axial segment

() times

702 Ratio of amount of fission gas atoms in rim pores to the total amount of generated fission gas atoms for each axial segment () times

703 Ratio of amount of fission gas atoms in grain boundary bubbles to the total amount of generated fission gas atoms for each axial segment

() times

704 Ratio of amount of fission gas atoms in grain boundary bubbles to the total amount of generated fission gas atoms in a rod () times

705 Ratio of amount of fission gas atoms in rim pores to the total amount of generated fission gas atoms in a rod () times

706 Ratio of amount of fission gas atoms retained in solid phase to the total amount of generated fission gas atoms in a rod () times

707 Ratio of amount of fission gas atoms in intra-grain gas bubbles to the total amount of generated fission gas atoms in a rod () times

708 Ratio of amount of fission gas atoms retained inside pellets to the total amount of generated fission gas atoms in a rod () times

JAEA-DataCode 2013-009

- 182 -

63 Plotting the quantities with common Y-axis To plot the following data in a single picture IYNUM=1 is to be designated so that Y-

axis is drawn by a common scale

Physical quantity of Y-axis IDNO Burnup 1 42 101

Fission gas release rate 2 45 70 107 255 573 574 Rod internal pressure 3 406 Rod internal free volume 4 401 572 Elongations of pellet and cladding 5 6 17 18 47 48 402 405 423 424 Cladding outer diameter change 7 11 19 20 55 78 403 404 425 431 Pellet stack displacement in the axial direction 133 266

Linear heat rate 8 41 Iodine concentration 9 10 Temperature 12 50 51 52 53 54 58 Gap size 43 67 421 427 PCMI pressure 44 46 422 428 Molar amount of released fission gas 71 72 73 Stress 109-113 309-313 Strain 114-131 156-173 451-454 459-462 Displacement 132-145 174-184 455-458 463-465 Radius of inter-granular gas bubble 148194 Number density of gas atoms in grain 185-188 264 - 266 270 274 Surface number density of gas atoms in grain boundary 190 191 Diffusion constant of fission gas atoms 195196 Pellet temperature 53 54 103 105 253 279 303 305 Cladding temperature 51 52 58 104 106 304 306 Cladding deviation stress 248 - 250 Fast neutron fluence 16 65 568

Example Specifying the IRNUM=number of plotted figures and IYNUM=1

401 the first ldquo4rdquo is IRNUM the number of figures 133151525354 fuel temperature the fourth ldquo1rdquo is IYNUM the number of Y-axis 1111 Specifying the radial ring number 1111 Specifying the axial segment number 11000 00 30 05 13 2780 28801003 ldquoIYNUM=1rdquo allows only one line for Y-axis scale

JAEA-DataCode 2013-009

- 183 -

64 Explanation on the physical quantities of Y-axis (3) (4) C Group

In the following explanation thermal analysis is identical irrespective of IFEMRD value

designated by input Also fission gas release rate (Item No107) is an exception of the explanation because it is always output at each axial segment

641 Physical quantities of pellet (1) In thermal analysis and ERL mechanical analysis

Displacement stress strain etc are evaluated at points indicated bytimesmarks which are the Gaussrsquos integral (Gaussian) points Here temperature is either the value at node or element average value When assigning the plotting positions IR and IZ assign the location of point in the radial and axial directions respectively Physical quantities evaluated at nodal points should be specified by IRrsquo=IR+1

When MESH=3 IR=1 to 36 and IZ= designated axial segments in both thermal analysis

and ERL mechanical analysis An example of ring element division of pellet stack is shown

in Fig61

[In case of 36 radial divisions] IR= 1 2 3 4 5 hellip 33 34 35 36

times times times times times times times times times times 8 (No of Axial

times times times times times times times times times times 7 segments

times times times times times times times times times times 6 ≦40)

times times times times times times times times times times 5

times times times times times times times times times times 4

times times times times times times times times times times 3

times times times times times times times times times times 2

times times times times times times times times times times IZ=1 Center line of Pellet Fig61 Numbering of elements and location of Gaussian points in the case where

pellet stack is divided into 36 ring elements in the radial direction and 8 segments in the axial direction

JAEA-DataCode 2013-009

- 184 -

(2) 2-D local mechanical analysis

Displacement stress strain etc are evaluated at points indicated bytimesmarks which are the Gaussrsquos integral (Gaussian) points Here temperature is either the value at node or element average value When assigning the plotting positions IR and IZ assign the location of point in the radial and axial directions respectively Physical quantities evaluated at nodal points should be specified by IRrsquo=IR+1

When MESH=3 and outputting the physical quantities of each element IR=1 to 36 (18 ring elements) and IZ=1 to 6 (three elements)

When MESH=3 and outputting the physical quantities at nodal points of each element IR=1 to 37 and IZ=1 to 7

An example of ring element division of half a pellet length is shown in Fig62

[In case of 18 radial elements] IR= 1 2 3 4 5 33 34 35 36

times times times times times times times times times times 6

times times times times times times times times times times 5

times times times times times times times times times times 4 Half a pellet length

times times times times times times times times times times 3

times times times times times times times times times times 2

times times times times times times times times times times 1=IZ

Center line of Pellet

Fig62 Numbering of elements and location of Gaussian points in the case where half a pellet geometry is divided into 18 ring elements in the radial direction and 5 elements in the axial direction

JAEA-DataCode 2013-009

- 185 -

642 Physical quantities of cladding

(1) Model 1 ERL mechanical analysis (IFEMRD=1) Displacement stress strain etc are evaluated at points indicated bytimesmarks which are

the Gaussrsquos integral (Gaussian) points Here temperature is either the value at node or element average value When assigning the plotting positions IR and IZ assign the location of point in the radial and axial directions respectively

A cladding with no Zr-liner has 10 ring elements consisting of 8 elements for metallic

part and 2 elements for outer surface oxide Accordingly with respect to Gaussian points and

temperatures IR=1 to 8 are for the metallic elements and IR=9 and 10 are for the outer oxide

However a cladding with Zr-liner has 12 ring elements consisting of 2 elements for Zr-

liner 8 elements for metallic part and 2 elements for outer surface oxide Accordingly with

respect to Gaussian points and temperatures IR=1 to 2 are for the Zr-liner elements IR=3 to

10 are for the metallic elements and IR=11 and 12 are for the outer oxide Physical quantities evaluated at nodal points should be specified by IRrsquo=IR+1

The standard setting of ring element division of cladding in the 1-D ERL and thermal

analyses is shown in Fig63

Standard setting (No of Axial segments≦40) IR= 1 2 3 4 5 6 7 8 9 10

times times times times times times times times times times IZ= 8

times times times times times times times times times times 7

times times times times times times times times times times 6

times times times times times times times times times times 5

times times times times times times times times times times 4

times times times times times times times times times times 3

times times times times times times times times times times 2

Inner surface times times times times times times times times times times 1

of cladding Metal Oxide Fig63 Numbering of elements and location of Gaussian points in the cladding segment

which has 8 ring elements of metal part and two outer oxide elements

JAEA-DataCode 2013-009

- 186 -

(2) Mode 2 3 2-D local mechanical analysis (IFEMRD=0) Stress strain etc evaluated at points indicated bytimesmarks which are the Gaussrsquos integral

points Here temperature is either the value at node or element average value Displacement is evaluated at nodal points and output

Fig64 shows an example which has 5 ring elements ie 4 metallic elements and one outer oxide element The inner element is ignored in the 2-D mechanical analysis

Here if cladding has Zr-liner the inner elements 1 and 2 is assigned to Zr-liner so that IR=1 and 2 are the Zr-liner elements IR=3 to 10 are metallic elements and IR=11 and 12 are outer oxide elements

Physical quantities evaluated at nodal points should be specified by both IRrsquo=IR+1 and IZrsquo=IZ+1

The standard setting of ring element division of cladding in the 2-D local mechanical

analysis is shown in Fig63

[In case of 5 radial elements] IR= 1 2 3 4 5 6 7 8 9 10

times times times times times times times times times times 6

times times times times times times times times times times 5

times times times times times times times times times times 4 Half a pellet length

times times times times times times times times times times 3

times times times times times times times times times times 2

times times times times times times times times times times 1=IZ

Metal Oxide Inner surface of cladding

Fig64 Numbering of elements and location of Gaussian points in the cladding segment

which corresponds to half a pellet length and has 4 ring elements of metal part one outer oxide ring element and 6 axial elements

JAEA-DataCode 2013-009

- 187 -

7 Sample InputOutput (numerical and plotted outputs)

71 FEMAXI-7 numerical output image of ldquoABC1outrdquo

FUEL ELEMENT MODELING BY AXI SYMMETRIC FINITE ELEMENT METHOD - - - --- - - - VERSION 11 MECHANICAL ANALISYS MODE WHOLE ROD (IFEMRD = 1) RUN DATE 13MAR04 START TIME 194833 ( INPUT FILE NAME = ft05d ) 1 I N P U T D A T A L I S T ------------------------------- 1 2 3 4 5 6 7 8 CARD NO 5050505050505050 1 PWR-type Rod Sample Case (January 2012) 2 ampINPUT IBUNP=1IDAY=1IRH=1 TROOM=2951 DTPL=200 ICORRO=2 PX=990 3 PITCH=16 IPUGH=1 TLIM=1000 IFLX=-2 INPRD=2 RCORRO=04 4 IRIM=1 RFGFAC=10 FRELOC=030 EPSRLZ=5D-3 IFSNT=1FAIW=5E11 5 IGRAIN=0 GR=100 GRWF=15 LBU=1 IPRO=0 R1=10 R2=10 ICAGRW=1 6 IHOT=1 BETAX=0002 ISPH=1 ICFL=1 IROD=0 7 8 IFEMRD=1 IFEMOP=2 IDSELM=1 IDENSF=0 DMAX=1020 FDENSF=0 9 IPEXT=14 IDCNST=1 IPTHCN=17 IFSWEL=4 A1=006 ICPLAS=3 10 IBOND=0 IGAPCN=5 BDX=100000 ALBD=07 FBONDG=10 SBONDG=001 11 MATXO=2 FACXO=01 01 01 100 01 12 CRPEQ=0 CRFAC=10 IPCRP=2 FCRFAC=10 IPTHEX=3 ATHEX=3561D-6 13 IRM=0 MESH=3 MOXP=0 IPLYG=1 IZYG=1 TCS=177315 IZOX=1 IST=1 14 15 IPRINT=11001 IPLOPT=5 DPBU=100 16 IWTHE=100190130 31 17 IWROD(1)=31 80 31 000100 18 IDNO(1)=81 60 51 200 19 IDNO(41)=101 01111 301 401101150130101 20 IDNO(81)=1 190 21 IDNO(101)=10 3101 30101101 601 801100 1130 22 IDNO(151)=20 61 30110101 3010011 401 210 23 ampEND 24 10 6 25 1 083 097 26 2 0 00 082 10 004 095 10 27 2 0 00 082 10 004 095 10 28 2 0 00 082 10 004 095 10 29 2 0 00 082 10 004 095 10 30 2 0 00 082 10 004 095 10 31 2 0 00 082 10 004 095 10 32 2 0 00 082 10 004 095 10 33 2 0 00 082 10 004 095 10 34 2 0 00 082 10 004 095 10 35 2 0 00 082 10 004 095 10 36 06218 0021 00 37 80 10 10 00 00 00 5500 00 38 23 39 00 01 55815 154 1 304 40 620 865 1000 1149 1190 1163 1005 0931 41 786 541 8 42 100 1145 43 150000 2500

JAEA-DataCode 2013-009

- 188 -

44 200000 2700 45 250000 2900 1 46 280000 2700 47 300000 2600 48 305000 1000 49 305010 10 1 50 656 903 1098 1167 1201 1174 1073 0959 51 817 581 8 52 305100 1000 53 350000 2000 1 54 400000 2200 55 420000 2100 56 460000 2050 57 490000 1900 58 500000 1800 59 500100 60 1 60 798 1002 1104 1128 1122 1104 1086 1032 61 912 708 7 62 501100 1700 1 63 520000 1600 64 550000 1500 65 570000 1400 66 598999 1100 55815 154 1 304 67 599000 1100 55815 154 1 304 68 STOP 5050505050505050 1 0---------------------------------------------------------------------------------- PWR-type Rod Sample Case (January 2012) ---------------------------------------------------------------------------------- INPUT DATA 0(1) PELLET SPECIFICATIONS ---- 0 NODE DIAMETER (CM) SHAPE U-235 FRACTIONAL ONE PELLET NODE INSIDE OUTSIDE CHAMF DISH ENRICH DENSITY LENGTH (CM) LENGTH (CM) 1 0000 0820 0040 0950 1000 10000 2 0000 0820 0040 0950 1000 10000 3 0000 0820 0040 0950 1000 10000 4 0000 0820 0040 0950 1000 10000 5 0000 0820 0040 0950 1000 10000 6 0000 0820 0040 0950 1000 10000 7 0000 0820 0040 0950 1000 10000 8 0000 0820 0040 0950 1000 10000 9 0000 0820 0040 0950 1000 10000 10 0000 0820 0040 0950 1000 10000 DISH DIAMETER (CM) = 0622 DISH DEPTH (CM) = 0021 DISH BOTTOM (CM) = 0000 PELLET TOTAL WEIGHT (GRAM) = 550000 GRAIN SIZE (MICRON) = 10000 MAXIMUM FRACTIONAL DENSITY = 0970 SATURATE BURNUP (MWDTUO2) = 20000000 (2) OTHERS CLAD MATERIAL IS STRESS RELIEVED ZIRCALOY CLAD INSIDE DIAMETER (CM) = 0830 CLAD OUTSIDE DIAMETER (CM) = 0970 THERMAL RELOCATION (-) = 0300 UPPER PLENUM VOLUME (CM3) = 8000 LOWER PLENUM VOLUME (CM3) = 0000 INITIAL GAS PRESSURE (MPA) = 1000 INITIAL GAS COMPOSITION (PERCENT) HELIUM = 1000 N2 = 00 KRYPTON = 00 XENON = 00 PELLET SURFACE ROUGHNESS (CM) = 00001 CLADDING SURFACE ROUGHNESS (CM) = 00001 ROOM TEMPERATURE (DEGK) = 29510 1 HISTORY DATA (1) STAGE TIME BURNUP LHR COOLANT COOLANT COOLANT FAST NEUTRON HISTRY PRINT SSUS NO TEMP PRESS VELOCITY FLUX OPTION OPTION OPTION (NHIST) (H M S MS) (MWDTUO2) (MWDTU) (GJKGU) (WCM) (DEGK) (MPA) (MS) (NCM2S) (0=OFF) (1=ON) (1=0N) ------- -------------- ---------------------------- ------- -------- ------- ---------- ------------ ------ ------ ------ 1 0 0 0 0 00 00 000 00 55815 1540 30400 5000D+09 0 1 0 2 201920424 88 100 086 1145 55815 1540 30400 5725D+13 0 0 0 3 95903137860 132222 150000 129600 2500 55815 1540 30400 1250D+14 0 0 0 4 11828 8 2729 176296 200000 172800 2700 55815 1540 30400 1350D+14 0 0 0 5 139055442965 220370 250000 216000 2900 55815 1540 30400 1450D+14 0 1 0 6 151523443106 246815 280000 241920 2700 55815 1540 30400 1350D+14 0 0 0 7 1603044 1696 264444 300000 259200 2600 55815 1540 30400 1300D+14 0 0 0 8 163535637288 268852 305000 263520 1000 55815 1540 30400 5000D+13 0 0 0 9 163561451942 268861 305010 263529 10 55815 1540 30400 5000D+11 0 1 0 10 1637659 3825 268940 305100 263606 1000 55815 1540 30400 5000D+13 0 0 0 11 198595338887 308519 350000 302400 2000 55815 1540 30400 1000D+14 0 1 0 12 226301552534 352593 400000 345600 2200 55815 1540 30400 1100D+14 0 0 0 13 237123830796 370222 420000 362880 2100 55815 1540 30400 1050D+14 0 0 0 14 259553826231 405481 460000 397440 2050 55815 1540 30400 1025D+14 0 0 0 15 27723 4 0609 431926 490000 423360 1900 55815 1540 30400 9500D+13 0 0 0

JAEA-DataCode 2013-009

- 189 -

16 28352 056896 440741 500000 432000 1800 55815 1540 30400 9000D+13 0 0 0 17 283643137758 440829 500100 432086 60 55815 1540 30400 3000D+12 0 1 0 18 284964457773 441710 501100 432950 1700 55815 1540 30400 8500D+13 0 1 0 19 298293257924 458370 520000 449280 1600 55815 1540 30400 8000D+13 0 0 0 20 320813533 18 484815 550000 475200 1500 55815 1540 30400 7500D+13 0 0 0 21 336862948372 502444 570000 492480 1400 55815 1540 30400 7000D+13 0 0 0 22 3638551 9574 528007 598999 517535 1100 55815 1540 30400 5500D+13 0 1 0 23 363855730374 528007 599000 517536 1100 55815 1540 30400 5500D+13 0 1 0 LAST STAGE NUMBER = 23 ---------------------------- HISTORY DATA LIST (MODIFIED BY RODBURN OUTPUT RESULT) 1 HISTORY DATA (1) STAGE TIME BURNUP LHR COOLANT COOLANT COOLANT FAST NEUTRON HISTRY PRINT SSUS NO TEMP PRESS VELOCITY FLUX OPTION OPTION OPTION (NHIST) (H M S MS) (MWDTUO2) (MWDTU) (GJKGU) (WCM) (DEGK) (MPA) (MS) (NCM2S) (0=OFF) (1=ON) (1=0N) ------- -------------- ---------------------------- ------- -------- ------- ---------- ------------ ------ ------ ------ 1 0 0 0 0 00 00 000 00 55815 1540 30400 4625D+09 0 1 0 2 201920424 82 93 080 1059 55815 1540 30400 5296D+13 0 0 0 3 95903137860 123995 140667 121536 2359 55815 1540 30400 1180D+14 0 0 0 4 11828 8 2729 165727 188010 162441 2565 55815 1540 30400 1282D+14 0 0 0 5 139055442965 207733 235664 203613 2773 55815 1540 30400 1386D+14 0 1 0 6 151523443106 233063 264399 228441 2591 55815 1540 30400 1296D+14 0 0 0 7 1603044 1696 250005 283620 245047 2502 55815 1540 30400 1251D+14 0 0 0 8 163535637288 254247 288432 249205 963 55815 1540 30400 4814D+13 0 0 0 9 163561451942 254256 288442 249213 10 55815 1540 30400 4815D+11 0 1 0 10 1637659 3825 254332 288528 249288 963 55815 1540 30400 4815D+13 0 0 0 11 198595338887 292666 332016 286862 1943 55815 1540 30400 9714D+13 0 1 0 12 226301552534 335695 380831 329038 2158 55815 1540 30400 1079D+14 0 0 0 13 237123830796 353018 400483 346017 2068 55815 1540 30400 1034D+14 0 0 0 14 259553826231 387863 440013 380171 2034 55815 1540 30400 1017D+14 0 0 0 15 27723 4 0609 414169 469856 405955 1896 55815 1540 30400 9478D+13 0 0 0 16 28352 056896 422972 479842 414583 1799 55815 1540 30400 8996D+13 0 0 0 17 283643137758 423060 479942 414670 60 55815 1540 30400 2999D+12 0 1 0 18 284964457773 423941 480941 415533 1699 55815 1540 30400 8497D+13 0 1 0 19 298293257924 440594 499834 431856 1599 55815 1540 30400 7997D+13 0 0 0 20 320813533 18 467028 529822 457766 1499 55815 1540 30400 7497D+13 0 0 0 21 336862948372 484651 549814 475039 1399 55815 1540 30400 6997D+13 0 0 0 22 3638551 9574 510203 578801 500084 1100 55815 1540 30400 5498D+13 0 1 0 23 363855730374 510203 578802 500085 1100 55815 1540 30400 5498D+13 0 1 0 LAST STAGE NUMBER = 23 ---------------------------- 1 OUTPUT ---STAGE--- 1 IFEM = 6 ---------------------------------------------------------------------------------------------------- |THERMAL ANALYSIS INFORMATION | | STAGE NO 1 | | TIME (HMSMS) 0 0 0 0 | | COOLANT TEMPERATURE 28500 DEGC | | COOLANT PRESSURE 154D+01 MPA | ---------------------------------------------------------------------------------------------------- LHR BURN UP GAP CONDUCTANCE (WCM2-K) TEMPERATURE (C) CLEARANCE CONTACT NODE (WCM) (MWDTU) TOTAL GAS SOLID RAD PC PS CI CO (MICRONS) FORCE(MPA) NODE 10 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 10 9 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 9 8 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 8 7 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 7 6 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 6 5 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 5 4 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 4 3 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 3 2 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 2 1 00 00 0602 0600 0000 00028 2850 2850 2850 2850 32314 0000 1 BURN UP PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) (FISSCC THERMAL DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE CSFR PFAC 1020) EXPANS CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 9 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 8 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 7 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 6 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 5 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 4 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 3 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 2 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 1 00000 00000 000 729 000 000 000 1345 2074 734 -407 000 306 CLAD SURFACE COOLANT COOLANT COOLANT CLAD SURFACE CLAD SURFACE HEAT TRANS CLAD OUTER CORROSION NODE TEMP(C) TEMP(C) ENTHALPY(JKG) QUALTY(-) HF(WCM2) COEF(WCM2K) MODE (MICROND) THICKNESS(MIC)

JAEA-DataCode 2013-009

- 190 -

10 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 9 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 8 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 7 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 6 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 5 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 4 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 3 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 2 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 1 2850 2850 125865D+06 -0377(MSUBCOOL) 000000D+00 000000D+00 1 330488D-03 010000 MODE1 SINGLE PHASE FORCED CONVECTION (DITTUS-BOELTER) MODE2 NUCLEATE BOILING (JENS-LOTTES) MODE3 HIGH-FLOW TRANSITION BOILING(MODIFIED CONDIE BENGSTON) MODE4 HIGH-FLOW FILM BOILING(CONDIE BENGSTON) MODE5 LOW-FLOW POST-CHF TRANSITION AND FILM BOILING MODE6 CONDENSATION 0 INITIAL GAS (MOL) = 414D-03 0 FISSION GAS RESULT 0 LOCAL FISSION GAS RELEASE FRACTION (AXIAL NODE) 1 000500 2 000500 3 000500 4 000500 5 000500 6 000500 7 000500 8 000500 9 000500 10 000500 0 ROD AVERAGE FISSION GAS = 000500 FRACTIONS OF GAS MIXTURE (PERCENT) AXIAL NODE RELEASE FRACTION 1 2 3 4 5 6 7 8 9 10 ROD GAS PRESSURE ( MPA ) = 1938 HE 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 ROD GAS VOLUME ( CM3 ) = 9908 N2 00 00 00 00 00 00 00 00 00 00 (GAPPLENUM)= 2159 7749 KR 00 00 00 00 00 00 00 00 00 00 TOTAL GAS ( MOL ) = 414D-03 XE 00 00 00 00 00 00 00 00 00 00 ROD PRS(MPA) 1938 1938 1938 1938 1938 1938 1938 1938 1938 1938 0 RELEASED IODINE ( GRAMCM2 ) = 274D-24 (AVERAGE) 345D-24 (PEAK) 0 (MOL) HE N2 KR XE TOTAL PRODUCED GAS 130D-24 000D+00 130D-17 870D-17 100E-16 RELEASED GAS 195D-26 000D+00 168D-23 113D-22 130E-22 ROD GAS 414D-03 000D+00 168D-23 113D-22 414E-03 0 RADIAL TEMPERATURE DISTRIBUTION AT AXIAL NODE OF 6 PELLET GAP CLAD 1234567891011 123 285 285 285 285 285 285 285 285 285 285 285 285 285 285 === OPTIONAL OUTPUT (IN ELEMENT AVERAGE) === ---------------------------------------------------------------------------------------------------- | TEMPERATURE DISTRIBUTION IN THE FUEL (DEGC) IWTHE= 1 | ---------------------------------------------------------------------------------------------------- SEG 10 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 9 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 8 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 7 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 6 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 5 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 4 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 3 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 2 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 1 28500 28500 28500 28500 28500 28500 28500 28500 28500 28500 ---------------------------------------------------------------------------------------------------- | RADIUS OF INTRAGRANULAR GAS BUBBLE (ANGSTROM) IWTHE= 4 | ---------------------------------------------------------------------------------------------------- SEG 10 000 000 000 000 000 000 000 000 000 000 9 000 000 000 000 000 000 000 000 000 000 8 000 000 000 000 000 000 000 000 000 000 7 000 000 000 000 000 000 000 000 000 000 6 000 000 000 000 000 000 000 000 000 000 5 000 000 000 000 000 000 000 000 000 000 4 000 000 000 000 000 000 000 000 000 000 3 000 000 000 000 000 000 000 000 000 000 2 000 000 000 000 000 000 000 000 000 000 1 000 000 000 000 000 000 000 000 000 000 ---------------------------------------------------------------------------------------------------- | FISSION GAS RELEASE RATE IN A RING () IWTHE= 14 | ---------------------------------------------------------------------------------------------------- SEG 10 050 050 050 050 050 050 050 050 050 050 9 050 050 050 050 050 050 050 050 050 050 8 050 050 050 050 050 050 050 050 050 050 7 050 050 050 050 050 050 050 050 050 050 6 050 050 050 050 050 050 050 050 050 050 5 050 050 050 050 050 050 050 050 050 050 4 050 050 050 050 050 050 050 050 050 050 3 050 050 050 050 050 050 050 050 050 050 2 050 050 050 050 050 050 050 050 050 050 1 050 050 050 050 050 050 050 050 050 050 ---------------------------------------------------------------------------------------------------- BURNUP DISTRIBUTION IN THE FUEL (MWDT) IWTHE= 18 ---------------------------------------------------------------------------------------------------- SEG 10 00 00 00 00 00 00 00 00 00 00 9 00 00 00 00 00 00 00 00 00 00 8 00 00 00 00 00 00 00 00 00 00 7 00 00 00 00 00 00 00 00 00 00 6 00 00 00 00 00 00 00 00 00 00 5 00 00 00 00 00 00 00 00 00 00 4 00 00 00 00 00 00 00 00 00 00 3 00 00 00 00 00 00 00 00 00 00 2 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00

JAEA-DataCode 2013-009

- 191 -

================================================================================================================================== MECHANICAL ANALYSIS INFORMATION OUTPUT STAGE NUMBER = 1 TIME = 0 H 0 M 0 S 00 MS ROD GAS PRESS(MPA) = 1938 COOLANT PRESS(MPA) = 15400 AXIAL FORCE(N) = -6479344 ================================================================================================================================== ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ SEG LHR B U R N U P FAST NEUTRON FLUX FAST NEUTRON FLUENCE FISSION RATE (WCM) (GJKGU) (MWDTU) (MWDTUO2) (FISSCC) (NCM2SEC) (NCM2) (FISSCCSEC) ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ 10 00 200860D-15 232477D-14 204924D-14 579572D+02 270500D+09 973800D+03 319723D+08 9 00 291823D-15 337758D-14 297727D-14 842040D+02 393000D+09 141480D+04 464514D+08 8 00 345658D-15 400067D-14 352651D-14 997378D+02 465500D+09 167580D+04 550207D+08 7 00 373132D-15 431866D-14 380682D-14 107665D+03 502500D+09 180900D+04 593940D+08 6 00 431794D-15 499761D-14 440530D-14 124592D+03 581500D+09 209340D+04 687315D+08 5 00 441818D-15 511364D-14 450758D-14 127484D+03 595000D+09 214200D+04 703272D+08 4 00 426596D-15 493745D-14 435227D-14 123092D+03 574500D+09 206820D+04 679041D+08 3 00 371276D-15 429717D-14 378788D-14 107130D+03 500000D+09 180000D+04 590985D+08 2 00 321154D-15 371705D-14 327651D-14 926673D+02 432500D+09 155700D+04 511202D+08 1 00 230191D-15 266425D-14 234848D-14 664205D+02 310000D+09 111600D+04 366410D+08 ---------------------------------------------------------------------------------------------------- STRESS(RADIAL) (MPA) IWROD= 1 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 SEGMENT NUM 10 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 9 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 8 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 7 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 6 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 5 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 4 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 3 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 2 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 1 -29 -49 -68 -86 -103 -118 -133 -147 -154 -154 ---------------------------------------------------------------------------------------------------- STRESS(HOOP) (MPA) IWROD= 2 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 7 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00

JAEA-DataCode 2013-009

- 192 -

1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 SEGMENT NUM 10 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 9 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 8 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 7 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 6 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 5 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 4 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 3 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 2 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 1 -1017 -997 -979 -961 -944 -928 -914 -899 60 60 ---------------------------------------------------------------------------------------------------- STRESS(AXIAL) (MPA) IWROD= 3 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 9 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 8 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 7 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 6 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 5 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 4 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 3 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 2 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 1 -00 -00 -00 -00 -00 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02 SEGMENT NUM 10 -519 -519 -519 -519 -519 -519 -519 -519 50 50 9 -519 -519 -519 -519 -519 -519 -519 -519 50 50 8 -519 -519 -519 -519 -519 -519 -519 -519 50 50 7 -519 -519 -519 -519 -519 -519 -519 -519 50 50 6 -519 -519 -519 -519 -519 -519 -519 -519 50 50 5 -519 -519 -519 -519 -519 -519 -519 -519 50 50 4 -519 -519 -519 -519 -519 -519 -519 -519 50 50 3 -519 -519 -519 -519 -519 -519 -519 -519 50 50 2 -519 -519 -519 -519 -519 -519 -519 -519 50 50 1 -519 -519 -519 -519 -519 -519 -519 -519 50 50 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(RADIAL) (001) IWROD= 12 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 9 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 8 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 7 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 6 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 5 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 4 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 3 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 2 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 1 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 SEGMENT NUM 10 240 237 234 231 228 225 223 221 -177 -177 9 240 237 234 231 228 225 223 221 -177 -177

JAEA-DataCode 2013-009

- 193 -

8 240 237 234 231 228 225 223 221 -177 -177 7 240 237 234 231 228 225 223 221 -177 -177 6 240 237 234 231 228 225 223 221 -177 -177 5 240 237 234 231 228 225 223 221 -177 -177 4 240 237 234 231 228 225 223 221 -177 -177 3 240 237 234 231 228 225 223 221 -177 -177 2 240 237 234 231 228 225 223 221 -177 -177 1 240 237 234 231 228 225 223 221 -177 -177 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(HOOP) (001) IWROD= 13 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 9 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 8 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 7 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 6 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 5 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 4 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 3 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 2 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 1 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 506 SEGMENT NUM 10 75 79 82 85 88 90 93 95 96 96 9 75 79 82 85 88 90 93 95 96 96 8 75 79 82 85 88 90 93 95 96 96 7 75 79 82 85 88 90 93 95 96 96 6 75 79 82 85 88 90 93 95 96 96 5 75 79 82 85 88 90 93 95 96 96 4 75 79 82 85 88 90 93 95 96 96 3 75 79 82 85 88 90 93 95 96 96 2 75 79 82 85 88 90 93 95 96 96 1 75 79 82 85 88 90 93 95 96 96 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(AXIAL) (001) IWROD= 14 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 9 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 8 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 7 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 6 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 5 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 4 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 3 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 2 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 1 676 676 676 676 676 675 675 675 675 675 675 674 674 674 673 673 672 672 671 670 669 668 668 668 668 668 668 668 668 668 668 668 668 668 668 668 SEGMENT NUM 10 75 75 75 75 75 75 75 75 75 75 9 75 75 75 75 75 75 75 75 75 75 8 75 75 75 75 75 75 75 75 75 75 7 75 75 75 75 75 75 75 75 75 75 6 75 75 75 75 75 75 75 75 75 75 5 75 75 75 75 75 75 75 75 75 75 4 75 75 75 75 75 75 75 75 75 75 3 75 75 75 75 75 75 75 75 75 75

JAEA-DataCode 2013-009

- 194 -

2 75 75 75 75 75 75 75 75 75 75 1 75 75 75 75 75 75 75 75 75 75 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 9 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 8 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 7 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 6 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 5 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 4 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 3 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 2 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 1 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 (R-DIRECTION OF Cladding) 10 31 33 35 37 39 41 43 45 47 47 47 9 31 33 35 37 39 41 43 45 47 47 47 8 31 33 35 37 39 41 43 45 47 47 47 7 31 33 35 37 39 41 43 45 47 47 47 6 31 33 35 37 39 41 43 45 47 47 47 5 31 33 35 37 39 41 43 45 47 47 47 4 31 33 35 37 39 41 43 45 47 47 47 3 31 33 35 37 39 41 43 45 47 47 47 2 31 33 35 37 39 41 43 45 47 47 47 1 31 33 35 37 39 41 43 45 47 47 47 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 772674 (Plenum) 10 5414193 753509 9 4872774 678158 8 4331355 602807 7 3789935 527456 6 3248516 452105 5 2707097 376754 4 2165677 301403 3 1624258 226053 2 1082839 150702 1 541419 75351 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT INCREMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 9 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 8 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 7 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 6 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314

JAEA-DataCode 2013-009

- 195 -

5 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 4 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 3 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 2 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 1 00 35 49 60 69 77 85 91 98 104 109 115 120 125 129 134 138 143 147 151 155 158 162 166 169 173 176 180 183 186 189 192 196 199 202 205 207 32314 (R-DIRECTION OF Cladding) 10 31 33 35 37 39 41 43 45 47 47 47 9 31 33 35 37 39 41 43 45 47 47 47 8 31 33 35 37 39 41 43 45 47 47 47 7 31 33 35 37 39 41 43 45 47 47 47 6 31 33 35 37 39 41 43 45 47 47 47 5 31 33 35 37 39 41 43 45 47 47 47 4 31 33 35 37 39 41 43 45 47 47 47 3 31 33 35 37 39 41 43 45 47 47 47 2 31 33 35 37 39 41 43 45 47 47 47 1 31 33 35 37 39 41 43 45 47 47 47 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 772674 (Plenum) 10 5414193 753509 9 4872774 678158 8 4331355 602807 7 3789935 527456 6 3248516 452105 5 2707097 376754 4 2165677 301403 3 1624258 226053 2 1082839 150702 1 541419 75351 STAGE NO 1 PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) CLEARANCE CONTACT THERMAL ELASTIC DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE (MICRONS) FORCE(MPA) EXPANS DEFORM CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 9 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 8 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 7 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 6 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 5 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 4 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 3 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 2 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 1 32314 0000 729 000 000 000 000 1345 2074 734 -407 -000 306 OUTPUT ---STAGE--- 245 IFEM = 6 ---------------------------------------------------------------------------------------------------- |THERMAL ANALYSIS INFORMATION | | STAGE NO 245 | | TIME (HMSMS) 139055442965 | | COOLANT TEMPERATURE 28500 DEGC | | COOLANT PRESSURE 154D+01 MPA | ---------------------------------------------------------------------------------------------------- LHR BURN UP GAP CONDUCTANCE (WCM2-K) TEMPERATURE (C) CLEARANCE CONTACT NODE (WCM) (MWDTU) TOTAL GAS SOLID RAD PC PS CI CO (MICRONS) FORCE(MPA) NODE 10 1664 139916 2202 2198 0000 00043 7375 3823 3532 3253 2311 0000 10 9 2353 200109 4987 3357 0061 00047 9618 3956 3774 3385 0000 8141 9 8 2766 236006 6250 3446 0067 00050 11233 4093 3923 3470 0000 9306 8 7 3076 259181 6921 3494 0068 00053 12522 4205 4033 3534 0000 9540 7 6 3399 292014 7687 3535 0065 00056 14005 4335 4164 3618 0000 9354 6 5 3477 298764 7775 3545 0065 00056 14343 4351 4178 3620 0000 9477 5 4 3375 289333 7481 3503 0062 00054 13823 4281 4107 3562 0000 8991 4 3 3133 261438 6714 3467 0065 00052 12651 4158 3978 3467 0000 9267 3 2 2599 220676 5349 3367 0062 00047 10420 3945 3758 3327 0000 8608 2 1 1884 159197 3062 3050 0004 00042 7860 3727 3490 3172 0000 0576 1 BURN UP PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) (FISSCC THERMAL DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE CSFR PFAC 1020) EXPANS CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 00000 00000 346 1956 -142 -2035 1123 1244 2128 908 -368 -2965 -2641 9 00000 00000 495 2684 -1053 -2338 1606 1126 1827 970 -113 -3777 -3173 8 00000 00000 584 3300 -1916 -2451 1894 1131 1748 1008 -085 -3905 -3252 7 00000 00000 641 3849 -2657 -2505 2080 1139 1713 1036 -084 -3960 -3287 6 00000 00000 723 4556 -3814 -2564 2344 1140 1471 1070 -093 -4200 -3529 5 00000 00000 739 4726 -4054 -2574 2398 1139 1431 1073 -090 -4243 -3569

JAEA-DataCode 2013-009

- 196 -

4 00000 00000 716 4458 -3697 -2560 2322 1144 1493 1054 -101 -4158 -3507 3 00000 00000 647 3896 -2702 -2510 2098 1142 1740 1020 -090 -3915 -3260 2 00000 00000 546 2967 -1397 -2407 1771 1129 1861 963 -100 -3749 -3139 1 00000 00000 394 2083 -195 -2152 1278 1205 2182 894 -344 -3143 -2818 CLAD SURFACE COOLANT COOLANT COOLANT CLAD SURFACE CLAD SURFACE HEAT TRANS CLAD OUTER CORROSION NODE TEMP(C) TEMP(C) ENTHALPY(JKG) QUALTY(-) HF(WCM2) COEF(WCM2K) MODE (MICROND) THICKNESS(MIC) 10 3215 2968 132152D+06 -0313(MSUBCOOL) 534824D+01 215763D+00 1 180640D-02 658399 9 3310 2959 131682D+06 -0317(MSUBCOOL) 756199D+01 215472D+00 1 300755D-02 941862 8 3361 2948 131084D+06 -0324(MSUBCOOL) 888938D+01 215103D+00 1 412772D-02 1163614 7 3395 2935 130401D+06 -0331(MSUBCOOL) 988361D+01 214685D+00 1 520368D-02 1328893 6 3430 2921 129644D+06 -0338(MSUBCOOL) 109188D+02 214225D+00 1 700957D-02 1626736 5 3428 2906 128841D+06 -0347(MSUBCOOL) 111703D+02 213740D+00 1 705977D-02 1625651 4 3399 2891 128040D+06 -0355(MSUBCOOL) 108430D+02 213260D+00 1 575005D-02 1422411 3 3349 2876 127279D+06 -0363(MSUBCOOL) 100673D+02 212808D+00 1 407496D-02 1104054 2 3257 2863 126609D+06 -0369(MSUBCOOL) 835237D+01 212412D+00 1 240772D-02 791306 1 3139 2853 126085D+06 -0375(MSUBCOOL) 605449D+01 212104D+00 1 130984D-02 517308 0 INITIAL GAS (MOL) = 414D-03 0 FISSION GAS RESULT 0 LOCAL FISSION GAS RELEASE FRACTION (AXIAL NODE) 1 000500 2 000500 3 001515 4 005243 5 007439 6 005951 7 001292 8 000500 9 000500 10 000500 0 ROD AVERAGE FISSION GAS = 002837 FRACTIONS OF GAS MIXTURE (PERCENT) AXIAL NODE RELEASE FRACTION 1 2 3 4 5 6 7 8 9 10 ROD GAS PRESSURE ( MPA ) = 2493 HE 900 900 900 900 900 900 900 900 900 900 ROD GAS VOLUME ( CM3 ) = 9031 N2 00 00 00 00 00 00 00 00 00 00 (GAPPLENUM)= 1326 7705 KR 13 13 13 13 13 13 13 13 13 13 TOTAL GAS ( MOL ) = 432D-03 XE 87 87 87 87 87 87 87 87 87 87 ROD PRS(MPA) 2493 2493 2493 2493 2493 2493 2493 2493 2493 2493 0 RELEASED IODINE ( GRAMCM2 ) = 922D-06 (AVERAGE) 240D-05 (PEAK) 0 (MOL) HE N2 KR XE TOTAL PRODUCED GAS 753D-05 000D+00 200D-03 134D-02 154E-02 RELEASED GAS 187D-06 000D+00 566D-05 379D-04 437E-04 ROD GAS 414D-03 000D+00 566D-05 379D-04 432E-03 0 RADIAL TEMPERATURE DISTRIBUTION AT AXIAL NODE OF 6 PELLET GAP CLAD 1234567891011 123 1401 1389 1357 1302 1227 1133 1022 895 755 605 433 416 388 362 === OPTIONAL OUTPUT (IN ELEMENT AVERAGE) === ---------------------------------------------------------------------------------------------------- | TEMPERATURE DISTRIBUTION IN THE FUEL (DEGC) IWTHE= 1 | ---------------------------------------------------------------------------------------------------- SEG 10 73551 72777 71242 68962 65967 62292 57977 53065 47590 41474 9 95854 94584 92066 88339 83465 77521 70599 62799 54202 44636 8 111919 110298 107088 102339 96136 88588 79831 70009 59245 47287 7 124739 122842 119084 113521 106255 97420 87188 75745 63255 49407 6 139497 137303 132947 126487 118032 107739 95815 82499 68002 51914 5 142861 140598 136102 129431 120693 110052 97723 83958 68981 52362 4 137688 135519 131216 124836 116488 106330 94567 81432 67131 51262 3 126020 124080 120235 114544 107112 98079 87623 75938 63198 49083 2 103833 102368 99465 95171 89561 82732 74800 65889 56103 45226 1 78367 77457 75652 72976 69465 65168 60137 54429 48092 41021 ---------------------------------------------------------------------------------------------------- | RADIUS OF INTRAGRANULAR GAS BUBBLE (ANGSTROM) IWTHE= 4 | ---------------------------------------------------------------------------------------------------- SEG 10 236 236 236 236 237 238 239 241 245 260 9 250 249 245 241 240 241 242 244 248 267 8 429 410 352 292 256 243 242 244 248 269 7 797 762 646 487 341 261 243 243 247 269 6 1141 1136 1073 885 621 371 260 246 249 273 5 1137 1141 1129 978 704 416 269 246 249 273 4 1136 1119 1028 831 575 348 256 245 249 272 3 837 801 680 512 354 263 242 242 246 268 2 297 290 269 251 243 241 242 244 248 268 1 238 238 238 239 239 240 241 243 247 264 ---------------------------------------------------------------------------------------------------- | FISSION GAS RELEASE RATE IN A RING () IWTHE= 14 | ---------------------------------------------------------------------------------------------------- SEG 10 050 050 050 050 050 050 050 050 050 050 9 050 050 050 050 050 050 050 050 050 050 8 050 050 050 050 050 050 050 050 050 050 7 1586 1363 663 090 050 050 050 050 050 050 6 5579 5124 3776 2259 715 050 050 050 050 050 5 6538 6169 4727 2842 1114 061 050 050 050 050 4 4973 4571 3384 2006 502 050 050 050 050 050 3 1866 1630 876 139 050 050 050 050 050 050 2 050 050 050 050 050 050 050 050 050 050 1 050 050 050 050 050 050 050 050 050 050 ---------------------------------------------------------------------------------------------------- BURNUP DISTRIBUTION IN THE FUEL (MWDT) IWTHE= 18 ---------------------------------------------------------------------------------------------------- SEG 10 128403 128525 128726 128963 129226 129511 129822 130159 130515 130887 9 181416 181652 181976 182343 182745 183175 183640 184142 184669 185216 8 212546 212866 213272 213724 214214 214735 215298 215901 216533 217188 7 232465 232844 233307 233817 234366 234948 235574 236245 236946 237672 6 260453 260926 261474 262069 262705 263375 264094 264862 265664 266493 5 266174 266667 267234 267846 268501 269189 269927 270716 271539 272390 4 258177 258642 259183 259771 260400 261062 261773 262534 263327 264148

JAEA-DataCode 2013-009

- 197 -

3 234397 234783 235252 235767 236322 236910 237542 238220 238928 239661 2 199294 199576 199947 200362 200814 201295 201816 202376 202962 203571 1 145500 145656 145894 146171 146477 146807 147167 147556 147966 148393 ================================================================================================================================== MECHANICAL ANALYSIS INFORMATION OUTPUT STAGE NUMBER = 245 TIME = 13905 H 54 M 42 S9651 MS ROD GAS PRESS(MPA) = 2493 COOLANT PRESS(MPA) = 15400 AXIAL FORCE(N) = -6458962 ================================================================================================================================== ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ SEG LHR B U R N U P FAST NEUTRON FLUX FAST NEUTRON FLUENCE FISSION RATE (WCM) (GJKGU) (MWDTU) (MWDTUO2) (FISSCC) (NCM2SEC) (NCM2) (FISSCCSEC) ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ 10 1664 120888D+03 139916D+04 123334D+04 348815D+20 831989D+13 293344D+21 983386D+12 9 2353 172895D+03 200109D+04 176393D+04 498879D+20 117654D+14 420078D+21 139064D+13 8 2766 203909D+03 236006D+04 208035D+04 588370D+20 138323D+14 495608D+21 163493D+13 7 3076 223932D+03 259181D+04 228463D+04 646146D+20 153807D+14 543515D+21 181795D+13 6 3399 252300D+03 292014D+04 257405D+04 728000D+20 169942D+14 613706D+21 200867D+13 5 3477 258132D+03 298764D+04 263355D+04 744827D+20 173857D+14 627896D+21 205494D+13 4 3375 249984D+03 289333D+04 255042D+04 721315D+20 168744D+14 607926D+21 199451D+13 3 3133 225883D+03 261438D+04 230453D+04 651773D+20 156647D+14 547649D+21 185152D+13 2 2599 190664D+03 220676D+04 194522D+04 550153D+20 129941D+14 463175D+21 153587D+13 1 1884 137546D+03 159197D+04 140329D+04 396883D+20 941785D+13 333962D+21 111316D+13 ---------------------------------------------------------------------------------------------------- STRESS(RADIAL) (MPA) IWROD= 1 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -11 -11 -10 -10 -10 -10 -09 -09 -09 -08 -08 -08 -07 -07 -07 -06 -06 -06 -05 -05 -05 -05 -04 -04 -04 -03 -03 -03 -03 -02 -02 -02 -01 -01 -01 -00 9 -84 -84 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -84 -84 -85 -85 -85 -85 -85 -85 -85 -85 -85 -84 -84 -83 -83 8 -83 -84 -84 -84 -84 -84 -84 -85 -85 -85 -85 -85 -85 -85 -85 -85 -85 -85 -86 -86 -87 -88 -89 -90 -90 -91 -92 -92 -92 -93 -93 -93 -94 -94 -94 -94 7 -57 -59 -62 -65 -68 -70 -72 -74 -75 -76 -77 -77 -78 -79 -79 -80 -81 -82 -83 -84 -86 -87 -88 -89 -90 -91 -92 -92 -93 -94 -94 -95 -95 -95 -96 -96 6 -67 -67 -67 -67 -67 -66 -65 -65 -65 -66 -67 -69 -70 -72 -74 -75 -77 -78 -79 -81 -82 -83 -84 -85 -86 -87 -88 -88 -89 -90 -91 -91 -92 -93 -93 -94 5 -71 -71 -71 -71 -72 -72 -72 -71 -71 -72 -73 -74 -75 -77 -78 -80 -81 -82 -83 -84 -85 -86 -87 -88 -88 -89 -90 -90 -91 -92 -92 -93 -93 -94 -95 -95 4 -58 -58 -58 -58 -56 -55 -55 -56 -58 -59 -61 -62 -64 -65 -67 -69 -71 -72 -74 -75 -76 -78 -79 -80 -81 -82 -83 -84 -85 -86 -87 -87 -88 -89 -90 -90 3 -50 -52 -56 -59 -63 -65 -68 -69 -71 -72 -73 -74 -75 -76 -76 -77 -78 -79 -80 -81 -83 -84 -85 -86 -87 -88 -89 -89 -90 -91 -91 -92 -92 -93 -93 -93 2 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -84 -85 -86 -86 -87 -87 -87 -88 -88 -88 -88 -88 -88 -88 -88 -87 1 -20 -20 -19 -19 -19 -18 -18 -18 -17 -17 -17 -16 -16 -15 -15 -14 -14 -13 -13 -12 -12 -12 -11 -11 -11 -10 -10 -09 -09 -09 -08 -08 -07 -07 -06 -06 SEGMENT NUM 10 -34 -49 -64 -78 -93 -107 -120 -141 -154 -154 9 -108 -114 -119 -125 -130 -135 -141 -149 -154 -154 8 -119 -123 -127 -132 -136 -140 -144 -150 -154 -154 7 -121 -125 -129 -133 -137 -141 -144 -150 -154 -154 6 -120 -124 -127 -131 -135 -139 -144 -150 -154 -154 5 -121 -125 -128 -132 -136 -140 -144 -150 -154 -154 4 -116 -121 -125 -129 -133 -138 -143 -149 -154 -154 3 -119 -123 -127 -131 -135 -139 -144 -150 -154 -154 2 -113 -118 -122 -127 -132 -137 -142 -149 -154 -154 1 -39 -53 -67 -81 -94 -108 -121 -141 -154 -154 ---------------------------------------------------------------------------------------------------- STRESS(HOOP) (MPA) IWROD= 2 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -11 -10 -09 -08 -08 -07 -06 -05 -04 -03 -02 -01 00 01 02 03 04 05 06 07 06 06 08 09 11 12 13 15 16 17 18 20 21 22 23 25 9 -84 -84 -84 -84 -84 -84 -84 -85 -85 -85 -86 -86 -86 -87 -87 -88 -88 -89 -89 -100 -108 -107 -104 -101 -98 -94 -91 -87 -83 -78 -72 -64 -56 -47 -37 -27 8 -83 -85 -86 -87 -87 -87 -88 -88 -88 -88 -89 -89 -90 -90 -91 -92 -93 -102 -117 -124 -127 -128 -126 -125 -123 -121 -119 -117 -114 -111 -109 -108 -107 -105 -102 -97 7 -57 -69 -80 -87 -91 -94 -95 -96 -96 -96 -96 -97 -97 -97 -98 -109 -124 -132 -136 -137 -138 -138 -137 -136 -135 -134 -133 -131 -129 -127 -125 -122 -121 -122 -122 -122 6 -67 -67 -68 -69 -62 -50 -61 -73 -83 -89 -94 -105 -116 -123 -127 -128 -129 -130 -130 -130 -131 -131 -131 -131 -131 -131 -132 -132 -133 -133 -134 -135 -135 -138 -142 -148 5 -71 -72 -72 -74 -75 -77 -68 -66 -77 -88 -100 -111 -118 -122 -124 -125 -125 -125 -125 -126 -126 -126 -126 -125 -125 -126 -126 -126 -127 -128 -129 -130 -132 -135 -139 -145 4 -58 -59 -59 -51 -42 -53 -66 -78 -86 -91 -94 -96 -105 -117 -124 -128 -129 -130 -131 -132 -132 -133 -133 -133 -133 -133 -133 -134 -134 -135 -135 -135 -136 -139 -144 -150 3 -50 -63 -75 -85 -91 -94 -96 -96 -97 -97 -97 -97 -97 -97 -98 -103 -119 -129 -133 -135 -136 -136 -135 -134

JAEA-DataCode 2013-009

- 198 -

-133 -131 -130 -128 -126 -124 -121 -120 -120 -121 -121 -121 2 -83 -84 -84 -84 -84 -84 -85 -85 -85 -86 -86 -86 -87 -87 -88 -89 -89 -90 -96 -112 -118 -118 -116 -113 -111 -108 -104 -101 -98 -95 -91 -86 -80 -72 -62 -50 1 -20 -19 -18 -17 -16 -15 -14 -13 -11 -10 -08 -06 -04 -03 -01 -00 01 02 03 04 02 03 04 06 08 09 11 12 14 16 17 19 20 22 23 25 SEGMENT NUM 10 -854 -872 -891 -910 -929 -947 -966 -978 -164 -165 9 -399 -410 -422 -434 -446 -460 -473 -484 -157 -157 8 -341 -349 -358 -368 -378 -388 -399 -407 -157 -157 7 -328 -337 -346 -355 -364 -374 -384 -392 -157 -157 6 -328 -339 -351 -363 -376 -389 -403 -415 -157 -157 5 -321 -331 -343 -355 -368 -382 -396 -408 -157 -157 4 -345 -357 -370 -383 -397 -412 -427 -440 -157 -158 3 -339 -349 -359 -369 -380 -391 -403 -412 -157 -157 2 -370 -381 -393 -405 -418 -432 -446 -458 -157 -157 1 -796 -820 -845 -870 -895 -919 -944 -963 -163 -163 ---------------------------------------------------------------------------------------------------- STRESS(AXIAL) (MPA) IWROD= 3 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 00 00 00 00 00 00 00 00 -10 -11 -10 -09 -08 -06 -05 -04 -03 -02 -00 00 01 02 03 04 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -29 -44 -43 -37 -30 -23 -17 -10 -04 00 03 06 09 12 15 18 21 8 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -27 -56 -67 -71 -71 -67 -63 -58 -52 -45 -37 -28 -18 -08 -00 04 09 14 19 7 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -31 -60 -73 -78 -81 -82 -81 -78 -74 -70 -65 -60 -53 -46 -37 -27 -15 -03 03 10 16 6 -64 -64 -64 -62 -48 -00 -00 -00 -00 -00 -07 -30 -49 -60 -66 -69 -70 -70 -70 -70 -69 -68 -65 -62 -58 -54 -50 -45 -40 -34 -27 -18 -08 01 09 17 5 -69 -69 -69 -69 -68 -64 -43 -12 -08 -18 -33 -46 -56 -61 -64 -65 -65 -64 -64 -62 -61 -59 -56 -52 -49 -45 -40 -35 -30 -24 -18 -10 -02 05 13 21 4 -56 -55 -54 -38 -00 -00 -00 -00 -00 -00 -00 -03 -27 -48 -60 -65 -68 -69 -70 -70 -69 -68 -65 -62 -59 -55 -50 -45 -40 -33 -25 -15 -04 04 11 19 3 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -17 -50 -66 -73 -76 -77 -76 -72 -68 -64 -58 -52 -45 -37 -27 -15 -04 03 09 16 22 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -20 -51 -61 -61 -56 -50 -43 -35 -27 -19 -10 -03 02 05 09 13 17 20 1 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -08 -28 -32 -31 -29 -28 -26 -24 -23 -21 -19 -17 -15 -12 -10 -08 -06 SEGMENT NUM 10 -442 -458 -475 -491 -507 -522 -538 -553 -159 -159 9 -428 -445 -462 -480 -498 -517 -537 -556 -159 -159 8 -394 -410 -427 -445 -463 -482 -503 -523 -158 -159 7 -367 -383 -399 -417 -436 -455 -475 -496 -158 -158 6 -333 -348 -365 -383 -401 -421 -443 -465 -158 -158 5 -327 -343 -359 -377 -396 -416 -437 -459 -158 -158 4 -342 -359 -377 -396 -416 -437 -460 -484 -158 -158 3 -372 -389 -407 -427 -447 -468 -490 -513 -158 -158 2 -406 -424 -442 -461 -481 -502 -523 -545 -158 -159 1 -411 -430 -448 -467 -485 -503 -521 -539 -159 -159 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(RADIAL) (001) IWROD= 12 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 631 617 605 593 582 571 560 549 539 529 520 511 502 493 484 476 467 459 451 443 453 447 436 425 415 405 396 387 379 370 363 355 348 341 334 328 9 586 569 554 539 525 511 498 485 472 460 448 436 424 413 402 391 381 370 360 368 410 395 367 343 320 300 282 266 252 240 228 218 208 200 192 185 8 526 515 503 491 478 465 452 440 429 418 408 398 389 380 371 363 355 359 408 492 556 531 482 437 395 356 321 290 262 239 220 205 192 179 168 157 7 327 449 490 500 494 482 467 451 436 422 409 397 386 376 367 374 416 484 569 662 722 685 618 555 497 443 393 347 306 269 238 213 195 180 167 154 6 -235 -39 97 183 288 499 605 628 616 591 564 554 566 593 633 687 748 815 889 970 1010 950 858 772 691 616 546 481 420 365 316 274 240 217 200 183 5 -346 -85 97 232 325 403 490 583 614 612 607 613 629 657 697 747 804 866 937 1013 1050 986 889 798 713 635 562 493 431 373 322 279 244 222 203 187 4 -192 -24 73 188 475 624 663 654 627 596 566 538 527 544 579 628 689 758 832 915 960 902 813 729 651 578 511 449 392 340 295 257 229 210 194 178 3 309 471 526 539 534 520 502 484 466 450 435 421 408 397 386 382 412 471 552 643 700 662 595 532 474 420 371 326 286 252 225 205 189 175 162 150 2 595 576 560 545 530 515 501 487 474 462 449 438 426 415 404 394 383 373 370 416 470 450 412 378 346 318 293 271 253 237 223 210 199 189 180 172 1 667 650 635 621 607 594 580 567 555 543 531 520 510 499 489 479 469 460 450 442 457 450 436 423

JAEA-DataCode 2013-009

- 199 -

410 398 387 376 365 355 345 336 327 318 310 301 SEGMENT NUM 10 1033 993 958 924 892 862 833 796 -187 -187 9 1293 1245 1201 1160 1121 1083 1047 1002 -19 -19 8 1404 1352 1305 1261 1218 1178 1139 1090 50 51 7 1475 1421 1372 1325 1280 1238 1197 1146 92 93 6 1612 1553 1500 1449 1400 1354 1310 1254 183 184 5 1633 1573 1519 1467 1418 1371 1327 1270 198 199 4 1586 1528 1475 1424 1376 1330 1287 1232 171 172 3 1453 1398 1349 1303 1259 1216 1176 1125 84 84 2 1299 1250 1206 1163 1123 1085 1048 1002 -09 -09 1 1071 1029 992 956 921 889 858 819 -150 -151 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(HOOP) (001) IWROD= 13 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 631 628 625 621 617 613 609 605 602 598 594 591 587 584 581 577 574 571 568 565 562 559 556 554 551 548 545 543 540 537 534 531 529 526 523 520 9 586 583 578 573 569 564 559 554 550 545 541 536 532 528 523 519 515 511 507 503 501 498 496 493 489 486 482 478 474 470 467 463 459 455 451 447 8 526 524 521 517 513 509 505 501 497 493 489 485 482 478 474 471 467 464 462 462 463 465 466 466 465 463 461 458 455 451 447 444 440 436 432 428 7 327 348 375 394 406 414 419 422 423 423 423 422 421 419 418 416 416 417 420 425 431 438 442 446 447 448 447 446 444 441 438 434 431 427 423 420 6 -235 -201 -150 -105 -65 -21 24 65 99 127 149 167 183 198 213 227 242 258 274 291 308 324 337 348 356 361 366 368 370 370 370 369 367 365 362 360 5 -346 -301 -233 -171 -118 -72 -30 09 45 75 101 124 144 163 181 199 217 235 253 272 290 308 322 333 342 348 353 356 358 359 359 358 356 354 352 350 4 -192 -163 -121 -82 -34 22 72 112 144 170 190 206 219 231 243 255 267 280 294 309 325 339 351 360 367 372 375 377 378 377 376 375 373 370 368 365 3 309 336 373 398 415 425 432 436 439 440 440 440 439 437 436 434 433 433 435 439 445 451 455 457 458 458 456 455 452 449 445 442 438 434 430 426 2 595 592 586 581 576 571 566 561 556 551 547 542 538 533 529 525 520 516 512 509 508 506 505 502 499 496 493 489 485 481 476 472 468 464 460 456 1 667 664 659 654 650 645 640 636 631 627 622 618 614 610 606 602 598 594 590 586 583 580 577 574 570 567 564 561 557 554 550 547 544 540 537 534 SEGMENT NUM 10 -619 -588 -560 -533 -509 -485 -463 -433 -415 -414 9 -743 -704 -670 -638 -607 -579 -551 -514 -491 -491 8 -761 -719 -683 -649 -617 -586 -557 -518 -493 -493 7 -768 -726 -688 -653 -619 -588 -558 -517 -492 -491 6 -825 -778 -738 -699 -663 -629 -596 -552 -524 -524 5 -834 -787 -746 -707 -670 -635 -603 -558 -530 -529 4 -820 -774 -734 -696 -660 -626 -594 -551 -523 -523 3 -762 -720 -683 -648 -615 -584 -554 -514 -489 -489 2 -735 -696 -662 -630 -599 -571 -544 -507 -484 -484 1 -661 -628 -599 -571 -545 -521 -498 -466 -447 -447 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(AXIAL) (001) IWROD= 14 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 947 928 909 890 872 855 838 821 805 790 775 761 747 734 721 708 696 684 672 660 590 572 569 566 564 561 558 556 554 551 549 547 545 543 541 538 9 1884 1830 1778 1726 1676 1627 1579 1532 1486 1441 1398 1355 1313 1273 1233 1194 1156 1119 1083 960 845 817 811 806 800 795 790 786 782 777 773 769 765 760 756 751 8 2858 2759 2667 2580 2495 2414 2335 2259 2184 2111 2040 1971 1904 1838 1774 1712 1651 1517 1360 1191 1049 1009 1002 995 988 980 972 964 955 947 940 933 926 920 912 904 7 4034 3742 3528 3360 3219 3094 2979 2872 2769 2671 2575 2483 2393 2306 2220 2051 1881 1708 1527 1339 1184 1139 1133 1126 1119 1111 1103 1094 1084 1074 1063 1053 1044 1035 1026 1015 6 5631 5384 5130 4891 4634 4328 4015 3791 3615 3465 3303 3113 2926 2742 2556 2365 2172 1977 1778 1575 1412 1363 1358 1352 1345 1338 1330 1322 1312 1302 1290 1277 1263 1251 1239 1225 5 5743 5499 5255 5006 4762 4512 4264 4024 3804 3599 3402 3209 3020 2832 2640 2446 2250 2052 1851 1647 1483 1434 1428 1422 1416 1409 1401 1392 1383 1372 1359 1346 1332 1320 1307 1291 4 5598 5340 5098 4838 4437 4071 3820 3632 3475 3337 3209 3077 2892 2709 2527 2343 2153 1960 1764 1563 1401 1354 1348 1341 1335 1327 1319 1310 1300 1288 1276 1263 1250 1239 1226 1210 3 4159 3816 3573 3389 3238 3107 2988 2878 2773 2673 2576 2482 2390 2301 2215 2079 1907 1736 1557 1371 1217 1173 1166 1159 1152 1143 1134 1125 1114 1103 1093 1084 1075 1065 1055 1042 2 2286 2215 2146 2079 2014 1951 1889 1829 1770 1713 1657 1602 1549 1497 1447 1397 1349 1303 1200 1050 920 886 880 873 866 860 853 846 841 835 830 825 820 814 808 802 1 1044 1019 995 972 949 927 906 885 864 845 826 808 791 774 758 742 727 712 697 654 558 537 534 531 528 526 523 520 517 514 511 508 506 503 500 497 SEGMENT NUM 10 352 352 352 352 352 352 352 352 352 352 9 317 317 317 317 317 317 317 317 317 317 8 276 276 276 276 276 276 276 276 276 276 7 247 247 247 247 247 247 247 247 247 247

JAEA-DataCode 2013-009

- 200 -

6 210 210 210 210 210 210 210 210 210 210 5 205 205 205 205 205 205 205 205 205 205 4 219 219 219 219 219 219 219 219 219 219 3 255 255 255 255 255 255 255 255 255 255 2 317 317 317 317 317 317 317 317 317 317 1 368 368 368 368 368 368 368 368 368 368 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 -00 43 61 74 85 94 102 110 117 123 129 134 139 144 149 153 157 161 165 169 172 175 179 182 185 188 191 193 196 198 200 203 205 207 209 211 213 2311 9 -00 40 56 68 78 87 94 101 107 112 117 122 126 131 134 138 141 145 148 150 153 156 159 162 164 167 169 171 172 174 175 177 178 179 181 182 183 -0000 8 -00 36 50 61 70 78 85 91 96 101 106 110 114 118 122 125 128 131 134 137 141 145 149 153 156 159 161 163 165 167 168 170 171 172 173 174 175 0000 7 00 22 35 46 55 63 70 76 82 87 91 96 100 104 107 110 114 117 121 126 131 136 141 146 150 153 156 159 161 163 164 166 167 168 169 170 171 0000 6 00 -16 -17 -15 -12 -07 00 08 16 23 30 36 41 47 52 58 64 70 77 84 92 99 106 112 118 123 127 130 134 136 139 140 142 144 145 146 147 0000 5 00 -24 -26 -24 -20 -14 -09 -02 05 12 19 26 32 38 44 50 57 64 71 78 86 94 101 107 113 118 122 126 129 132 134 136 138 140 141 142 143 -0000 4 -00 -13 -14 -12 -09 -01 08 17 25 32 39 45 50 56 61 66 71 77 83 90 97 104 111 117 122 126 130 134 136 139 141 143 145 146 147 148 149 -0000 3 00 21 34 46 56 64 72 79 85 90 95 100 104 108 112 115 118 122 126 130 135 140 145 149 153 156 159 162 164 166 167 169 170 171 172 173 174 0000 2 -00 41 57 69 79 88 95 102 108 114 119 123 128 132 136 139 143 146 149 152 155 159 162 165 168 170 172 174 176 178 179 180 182 183 184 185 186 -0000 1 -00 46 64 78 89 99 108 115 122 129 135 141 146 151 155 160 164 168 172 175 179 182 185 189 192 194 197 200 202 204 207 209 211 213 215 216 218 0000 (R-DIRECTION OF Cladding) 10 -264 -255 -362 -469 -576 -684 -791 -899 -243 -211 -178 9 -317 -306 -413 -521 -628 -736 -845 -953 -298 -252 -205 8 -325 -313 -421 -529 -638 -747 -857 -967 -314 -256 -198 7 -329 -316 -425 -534 -644 -754 -864 -975 -324 -258 -192 6 -353 -339 -449 -560 -671 -782 -894 -1007 -359 -278 -197 5 -357 -343 -453 -563 -674 -786 -897 -1009 -361 -281 -200 4 -351 -337 -446 -555 -665 -775 -885 -996 -345 -274 -204 3 -326 -313 -421 -528 -636 -745 -853 -962 -308 -253 -199 2 -314 -303 -408 -515 -621 -728 -835 -943 -285 -246 -207 1 -282 -272 -378 -483 -589 -695 -802 -909 -249 -224 -199 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 2904804 (Plenum) 10 8359666 2766703 9 7936580 2414740 8 7279799 2097697 7 6464730 1821543 6 5538076 1574351 5 4402830 1364513 4 3197476 1159485 3 2066647 940601 2 1099513 685300 1 386120 368351 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT INCREMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 2311 9 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 8 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 7 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000

JAEA-DataCode 2013-009

- 201 -

6 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 5 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 4 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 3 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 2 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 1 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 (R-DIRECTION OF Cladding) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 8 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 7 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 6 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 5 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 4 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 3 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 1 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- -0433 (Plenum) 10 -0495 -0495 9 -0503 -0503 8 -0496 -0496 7 -0468 -0468 6 -0421 -0421 5 -0302 -0302 4 -0161 -0161 3 -0059 -0059 2 -0018 -0018 1 -0003 -0003 STAGE NO 245 PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) CLEARANCE CONTACT THERMAL ELASTIC DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE (MICRONS) FORCE(MPA) EXPANS DEFORM CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 2311 0000 1956 -017 -143 -2035 1123 1244 2128 908 -368 -2978 -2641 9 -0000 8141 2684 -185 -1065 -2338 1606 1126 1827 970 -113 -3780 -3173 8 -0000 9306 3300 -191 -1934 -2451 1894 1131 1748 1008 -085 -3908 -3252 7 0000 9540 3849 -165 -2685 -2505 2080 1139 1713 1036 -084 -3963 -3287 6 0000 9354 4556 -163 -3842 -2564 2344 1140 1471 1070 -093 -4207 -3529 5 -0000 9477 4726 -173 -4085 -2574 2398 1139 1431 1073 -090 -4250 -3569 4 -0000 8991 4458 -147 -3724 -2560 2322 1144 1493 1054 -101 -4165 -3507 3 0000 9267 3896 -155 -2732 -2510 2098 1142 1740 1020 -090 -3919 -3260 2 -0000 8608 2967 -186 -1413 -2407 1771 1129 1861 963 -100 -3752 -3139 1 -0000 0576 2083 -034 -197 -2152 1278 1205 2182 894 -344 -3156 -2818

OUTPUT ---STAGE--- 314 to 530 are skipped OUTPUT ---STAGE--- 618 IFEM = 6 ---------------------------------------------------------------------------------------------------- |THERMAL ANALYSIS INFORMATION | | STAGE NO 618 | | TIME (HMSMS) 3638551 9574 | | COOLANT TEMPERATURE 28500 DEGC | | COOLANT PRESSURE 154D+01 MPA | ---------------------------------------------------------------------------------------------------- LHR BURN UP GAP CONDUCTANCE (WCM2-K) TEMPERATURE (C) CLEARANCE CONTACT NODE (WCM) (MWDTU) TOTAL GAS SOLID RAD PC PS CI CO (MICRONS) FORCE(MPA) NODE 10 779 367727 9573 1237 0033 00034 5022 3225 3194 3062 0000 5971 10 9 1003 503959 9542 1242 0022 00036 5969 3344 3304 3136 0000 4827 9 8 1135 585050 9534 1246 0017 00038 6610 3429 3383 3196 0000 4043 8 7 1195 635879 9531 1250 0014 00039 6963 3480 3432 3237 0000 3668 7 6 1214 687736 9529 1252 0012 00040 7203 3530 3480 3285 0000 3223 6 5 1234 702118 9528 1255 0012 00040 7311 3537 3487 3288 0000 3360 5 4 1241 688741 9524 1254 0014 00039 7257 3499 3449 3247 0000 3799 4 3 1214 645320 9521 1249 0016 00038 6996 3436 3387 3186 0000 4222 3 2 1102 555299 9526 1245 0022 00036 6345 3338 3293 3108 0000 5156 2 1 878 416184 9550 1240 0033 00034 5329 3212 3177 3028 0000 6422 1 BURN UP PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS)

JAEA-DataCode 2013-009

- 202 -

(FISSCC THERMAL DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE CSFR PFAC 1020) EXPANS CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 00000 00000 910 1265 -869 -2648 2827 1164 1650 822 -138 -3787 -3350 9 00000 00000 1247 1528 -2705 -2707 3813 1186 1051 851 -177 -4320 -3949 8 00000 00000 1448 1719 -3904 -2720 4356 1204 609 872 -204 -4716 -4391 7 00000 00000 1573 1830 -4700 -2725 4659 1217 246 885 -220 -5048 -4754 6 00000 00000 1702 1911 -5595 -2728 4910 1234 -292 899 -240 -5541 -5292 5 00000 00000 1737 1945 -5704 -2728 4973 1230 -311 900 -239 -5562 -5311 4 00000 00000 1704 1923 -5328 -2728 4914 1216 -036 889 -224 -5312 -5036 3 00000 00000 1597 1835 -4579 -2725 4710 1211 413 872 -206 -4898 -4587 2 00000 00000 1374 1632 -3115 -2717 4163 1187 1091 847 -171 -4285 -3909 1 00000 00000 1030 1342 -1189 -2678 3185 1164 1733 817 -122 -3719 -3267 CLAD SURFACE COOLANT COOLANT COOLANT CLAD SURFACE CLAD SURFACE HEAT TRANS CLAD OUTER CORROSION NODE TEMP(C) TEMP(C) ENTHALPY(JKG) QUALTY(-) HF(WCM2) COEF(WCM2K) MODE (MICROND) THICKNESS(MIC) 10 3014 2897 128360D+06 -0351(MSUBCOOL) 250161D+01 213451D+00 1 832580D-03 1816573 9 3044 2893 128150D+06 -0354(MSUBCOOL) 322089D+01 213326D+00 1 113146D-02 2701414 8 3059 2888 127899D+06 -0356(MSUBCOOL) 364308D+01 213176D+00 1 144000D-02 3534076 7 3063 2883 127625D+06 -0359(MSUBCOOL) 383222D+01 213013D+00 1 169268D-02 4261788 6 3060 2877 127342D+06 -0362(MSUBCOOL) 389336D+01 212845D+00 1 204166D-02 5404631 5 3058 2872 127054D+06 -0365(MSUBCOOL) 395675D+01 212674D+00 1 206684D-02 5447848 4 3054 2866 126763D+06 -0368(MSUBCOOL) 397981D+01 212502D+00 1 176148D-02 4552731 3 3044 2861 126474D+06 -0371(MSUBCOOL) 389750D+01 212332D+00 1 138437D-02 3411536 2 3023 2856 126202D+06 -0374(MSUBCOOL) 353955D+01 212172D+00 1 100819D-02 2274658 1 2984 2851 125969D+06 -0376(MSUBCOOL) 282018D+01 212036D+00 1 719173D-03 1438407 0 INITIAL GAS (MOL) = 414D-03 0 FISSION GAS RESULT 0 LOCAL FISSION GAS RELEASE FRACTION (AXIAL NODE) 1 001306 2 004371 3 009150 4 012529 5 014209 6 012980 7 008746 8 004846 9 002029 10 000517 0 ROD AVERAGE FISSION GAS = 007950 FRACTIONS OF GAS MIXTURE (PERCENT) AXIAL NODE RELEASE FRACTION 1 2 3 4 5 6 7 8 9 10 ROD GAS PRESSURE ( MPA ) = 3869 HE 555 555 555 555 555 555 555 555 555 555 ROD GAS VOLUME ( CM3 ) = 8502 N2 00 00 00 00 00 00 00 00 00 00 (GAPPLENUM)= 1295 7207 KR 58 58 58 58 58 58 58 58 58 58 TOTAL GAS ( MOL ) = 655D-03 XE 387 387 387 387 387 387 387 387 387 387 ROD PRS(MPA) 3869 3869 3869 3869 3869 3869 3869 3869 3869 3869 0 RELEASED IODINE ( GRAMCM2 ) = 635D-05 (AVERAGE) 123D-04 (PEAK) 0 (MOL) HE N2 KR XE TOTAL PRODUCED GAS 374D-04 000D+00 490D-03 328D-02 381E-02 RELEASED GAS 462D-05 000D+00 390D-04 261D-03 304E-03 ROD GAS 418D-03 000D+00 390D-04 261D-03 655E-03 0 RADIAL TEMPERATURE DISTRIBUTION AT AXIAL NODE OF 6 PELLET GAP CLAD 1234567891011 123 720 717 707 690 666 635 598 553 501 440 353 348 338 328 === OPTIONAL OUTPUT (IN ELEMENT AVERAGE) === ---------------------------------------------------------------------------------------------------- | TEMPERATURE DISTRIBUTION IN THE FUEL (DEGC) IWTHE= 1 | ---------------------------------------------------------------------------------------------------- SEG 10 50137 49790 49097 48058 46674 44945 42870 40441 37627 34186 9 59563 59065 58068 56574 54584 52096 49108 45604 41527 36389 8 65952 65354 64158 62365 59974 56985 53392 49173 44250 37944 7 69470 68820 67520 65570 62969 59716 55803 51201 45821 38860 6 71864 71185 69827 67788 65067 61660 57557 52723 47055 39644 5 72934 72237 70844 68753 65962 62467 58257 53296 47476 39848 4 72394 71698 70308 68220 65434 61948 57749 52805 47010 39435 3 69794 69130 67803 65812 63156 59835 55838 51139 45643 38518 2 63308 62740 61605 59902 57634 54798 51392 47394 42735 36803 1 53189 52782 51969 50751 49129 47102 44670 41821 38518 34434 ---------------------------------------------------------------------------------------------------- | RADIUS OF INTRAGRANULAR GAS BUBBLE (ANGSTROM) IWTHE= 4 | ---------------------------------------------------------------------------------------------------- SEG 10 345 345 345 346 347 349 351 355 362 399 9 389 389 389 390 391 393 396 400 409 457 8 411 411 412 413 414 416 419 424 434 488 7 402 404 414 423 427 429 432 437 448 506 6 367 371 386 407 429 442 445 451 462 523 5 362 365 378 401 427 444 449 454 466 528 4 374 378 392 412 432 442 445 451 462 523 3 400 403 413 424 429 432 435 440 451 509 2 403 403 404 405 406 408 411 415 425 477 1 361 362 362 363 364 366 368 372 380 421 ---------------------------------------------------------------------------------------------------- | FISSION GAS RELEASE RATE IN A RING () IWTHE= 14 | ---------------------------------------------------------------------------------------------------- SEG 10 050 050 050 050 050 050 050 050 050 055 9 050 050 050 050 050 050 050 050 050 483 8 050 050 050 050 050 050 050 050 050 1382 7 1312 1165 685 165 050 050 050 050 050 2533 6 3549 3378 2746 1748 643 053 050 050 050 2856 5 3896 3771 3233 2209 953 092 050 050 050 2949 4 3282 3099 2459 1509 493 050 050 050 050 2863 3 1513 1360 856 247 050 050 050 050 050 2591 2 050 050 050 050 050 050 050 050 050 1261 1 050 050 050 050 050 050 050 050 050 301 ---------------------------------------------------------------------------------------------------- BURNUP DISTRIBUTION IN THE FUEL (MWDT) IWTHE= 18 ----------------------------------------------------------------------------------------------------

JAEA-DataCode 2013-009

- 203 -

SEG 10 324005 324729 325496 326304 327154 328039 328982 329986 331030 332107 9 434959 436249 437487 438743 440035 441356 442749 444225 445754 447329 8 499245 500925 502484 504043 505632 507245 508938 510728 512579 514487 7 538963 540903 542676 544438 546226 548035 549928 551928 553995 556126 6 579130 581344 583344 585321 587320 589338 591444 593669 595967 598336 5 590217 592509 594573 596611 598670 600747 602914 605203 607566 610003 4 579907 582127 584131 586112 588116 590137 592248 594477 596779 599153 3 546300 548289 550103 551904 553729 555576 557507 559547 561656 563829 2 475797 477330 478768 480212 481690 483193 484772 486445 488174 489956 1 363908 364819 365744 366702 367702 368735 369831 370996 372205 373452 ================================================================================================================================== MECHANICAL ANALYSIS INFORMATION OUTPUT STAGE NUMBER = 618 TIME = 36385 H 51 M 9 S5743 MS ROD GAS PRESS(MPA) = 3869 COOLANT PRESS(MPA) = 15400 AXIAL FORCE(N) = -8371215 ================================================================================================================================== ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ SEG LHR B U R N U P FAST NEUTRON FLUX FAST NEUTRON FLUENCE FISSION RATE (WCM) (GJKGU) (MWDTU) (MWDTUO2) (FISSCC) (NCM2SEC) (NCM2) (FISSCCSEC) ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ 10 779 317716D+03 367727D+04 324145D+04 916754D+20 389400D+13 770095D+21 460259D+12 9 1003 435421D+03 503959D+04 444231D+04 125639D+21 501600D+13 105619D+22 592876D+12 8 1135 505483D+03 585050D+04 515711D+04 145855D+21 567600D+13 122644D+22 670886D+12 7 1195 549399D+03 635879D+04 560516D+04 158526D+21 597300D+13 133246D+22 705990D+12 6 1214 594204D+03 687736D+04 606226D+04 171454D+21 607200D+13 144275D+22 717692D+12 5 1234 606630D+03 702118D+04 618904D+04 175040D+21 617100D+13 147295D+22 729393D+12 4 1241 595072D+03 688741D+04 607113D+04 171705D+21 620400D+13 144460D+22 733294D+12 3 1214 557557D+03 645320D+04 568838D+04 160880D+21 607200D+13 135167D+22 717692D+12 2 1102 479778D+03 555299D+04 489486D+04 138438D+21 551100D+13 116373D+22 651383D+12 1 878 359583D+03 416184D+04 366858D+04 103756D+21 438900D+13 871773D+21 518766D+12 ---------------------------------------------------------------------------------------------------- STRESS(RADIAL) (MPA) IWROD= 1 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -36 -36 -37 -37 -38 -38 -39 -39 -40 -40 -41 -42 -42 -43 -43 -44 -45 -45 -46 -46 -47 -48 -49 -49 -50 -51 -52 -52 -53 -54 -55 -56 -57 -58 -59 -60 9 -23 -24 -24 -25 -25 -26 -26 -27 -27 -28 -28 -29 -29 -30 -31 -31 -32 -32 -33 -34 -34 -35 -35 -36 -37 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -48 8 -15 -15 -16 -16 -17 -17 -17 -18 -19 -19 -20 -20 -21 -21 -22 -22 -23 -23 -24 -24 -25 -26 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -39 -40 7 -11 -11 -11 -12 -12 -13 -13 -13 -14 -14 -15 -15 -16 -16 -17 -17 -18 -18 -19 -20 -21 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -35 -36 6 -05 -05 -06 -06 -07 -07 -08 -08 -09 -09 -10 -10 -11 -11 -12 -13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -20 -21 -22 -23 -24 -25 -27 -28 -29 -30 -32 5 -06 -06 -06 -07 -07 -08 -08 -09 -09 -10 -10 -11 -11 -12 -13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -20 -21 -22 -23 -24 -25 -26 -28 -29 -30 -32 -33 4 -09 -09 -09 -10 -10 -11 -11 -12 -12 -13 -14 -14 -15 -15 -16 -17 -17 -18 -19 -20 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -31 -32 -33 -35 -36 -38 3 -11 -12 -12 -13 -13 -14 -14 -15 -15 -16 -16 -17 -18 -18 -19 -20 -21 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -35 -36 -37 -39 -40 -42 2 -21 -21 -22 -22 -23 -23 -24 -24 -25 -25 -26 -26 -27 -28 -28 -29 -30 -31 -31 -32 -33 -34 -35 -36 -37 -38 -39 -41 -42 -43 -44 -45 -47 -48 -50 -51 1 -36 -37 -37 -37 -38 -39 -39 -40 -40 -41 -41 -42 -43 -43 -44 -44 -45 -46 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -62 -63 -64 SEGMENT NUM 10 -101 -108 -114 -120 -127 -133 -139 -148 -154 -154 9 -91 -99 -107 -114 -122 -129 -136 -147 -154 -154 8 -84 -93 -101 -110 -118 -126 -134 -146 -154 -154 7 -80 -90 -99 -108 -116 -125 -133 -146 -154 -154 6 -76 -87 -96 -105 -114 -123 -132 -145 -154 -154 5 -78 -88 -97 -106 -115 -124 -133 -146 -154 -154 4 -82 -91 -100 -108 -117 -125 -134 -146 -154 -154 3 -85 -94 -102 -111 -119 -127 -135 -146 -154 -154 2 -94 -102 -109 -116 -123 -130 -137 -147 -154 -154 1 -105 -112 -117 -123 -129 -134 -140 -148 -154 -154 ---------------------------------------------------------------------------------------------------- STRESS(HOOP) (MPA) IWROD= 2 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -36 -38 -40 -41 -43 -45 -47 -48 -50 -52 -54 -56 -59 -61 -63 -66 -68 -71 -73 -76 -76 -79 -82 -85 -88 -91 -94 -98 -102 -105 -109 -114 -118 -123 -128 -134 9 -23 -25 -27 -28 -30 -32 -33 -35 -37 -39 -41 -43 -46 -48 -50 -53 -55 -58 -59 -53 -56 -60 -63 -67 -71 -75 -80 -84 -89 -95 -101 -111 -126 -136 -146 -158 8 -15 -17 -18 -19 -21 -23 -24 -26 -28 -30 -32 -34 -36 -38 -37 -38 -40 -44 -47 -50 -54 -57 -61 -65 -69 -73 -78 -83 -88 -94 -100 -107 -114 -123 -133 -147 7 -11 -12 -13 -15 -16 -18 -19 -21 -23 -22 -24 -26 -29 -31 -34 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -76 -81 -87 -92 -99 -105 -113 -122 -132 -146 6 -05 -07 -08 -09 -11 -12 -14 -16 -18 -20 -22 -24 -26 -28 -31 -33 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -77 -82 -88 -94 -100 -108 -116 -126 -139

JAEA-DataCode 2013-009

- 204 -

5 -06 -07 -09 -10 -12 -13 -15 -17 -19 -20 -22 -25 -27 -29 -32 -34 -37 -40 -43 -46 -50 -53 -57 -61 -65 -70 -75 -80 -85 -91 -97 -104 -112 -121 -132 -145 4 -09 -10 -12 -13 -15 -17 -18 -20 -22 -24 -27 -29 -31 -34 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -76 -81 -87 -92 -98 -105 -112 -120 -129 -139 -153 3 -11 -14 -15 -17 -18 -20 -21 -22 -25 -28 -30 -33 -35 -38 -41 -44 -47 -50 -54 -57 -61 -65 -69 -74 -78 -83 -88 -94 -100 -106 -113 -120 -128 -137 -148 -161 2 -21 -23 -24 -26 -28 -29 -31 -33 -35 -37 -39 -41 -44 -46 -48 -53 -57 -61 -65 -69 -73 -77 -81 -85 -90 -94 -100 -105 -110 -116 -122 -129 -136 -144 -154 -166 1 -36 -38 -40 -42 -43 -45 -47 -49 -51 -53 -55 -58 -60 -62 -65 -68 -70 -73 -75 -80 -85 -89 -93 -96 -100 -104 -109 -113 -117 -122 -127 -133 -139 -145 -152 -160 SEGMENT NUM 10 -450 -461 -473 -485 -496 -508 -519 -527 -162 -162 9 -524 -535 -546 -557 -568 -579 -589 -596 -163 -164 8 -569 -581 -593 -606 -618 -631 -644 -652 -163 -164 7 -593 -605 -618 -631 -644 -657 -671 -680 -164 -165 6 -627 -639 -651 -664 -677 -690 -703 -712 -164 -166 5 -619 -631 -643 -656 -668 -681 -694 -703 -164 -166 4 -589 -600 -612 -625 -637 -650 -663 -672 -164 -165 3 -554 -567 -580 -593 -607 -621 -634 -645 -163 -164 2 -498 -510 -522 -534 -546 -559 -571 -580 -163 -163 1 -420 -431 -444 -456 -468 -480 -493 -502 -162 -162 ---------------------------------------------------------------------------------------------------- STRESS(AXIAL) (MPA) IWROD= 3 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08 08 09 09 09 10 10 11 11 12 12 12 13 13 13 10 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 32 34 34 34 34 35 35 35 35 36 36 35 -00 -00 -00 -00 -00 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21 21 20 20 19 19 18 18 17 17 16 16 16 16 16 16 16 16 17 18 16 7 00 00 00 00 00 00 00 00 00 14 15 15 15 14 13 12 11 11 10 09 08 07 07 06 05 05 04 04 03 03 02 02 02 02 02 03 6 18 17 16 15 14 13 12 11 10 09 08 07 07 06 05 04 03 02 01 00 -01 -02 -03 -04 -05 -06 -08 -09 -10 -11 -12 -13 -14 -15 -15 -13 5 15 14 13 12 11 10 09 09 08 07 06 05 04 03 02 01 00 -01 -02 -03 -05 -06 -08 -09 -11 -12 -14 -16 -18 -20 -22 -24 -26 -28 -29 -29 4 12 11 10 09 08 07 06 05 04 03 02 02 01 -00 -01 -02 -03 -05 -06 -08 -10 -12 -14 -16 -18 -20 -22 -24 -27 -29 -31 -34 -36 -38 -40 -40 3 12 00 00 00 00 00 00 07 06 05 03 02 01 00 -01 -02 -03 -04 -06 -08 -09 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -34 -35 -34 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 03 01 00 -01 -02 -03 -05 -06 -07 -08 -09 -10 -11 -12 -12 -13 -13 -14 -13 -12 -10 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 15 14 12 11 11 10 10 10 10 10 10 10 10 10 11 11 11 12 SEGMENT NUM 10 -428 -443 -458 -474 -489 -504 -519 -533 -160 -160 9 -439 -457 -474 -492 -509 -527 -545 -562 -160 -161 8 -436 -453 -471 -489 -507 -526 -545 -564 -161 -161 7 -427 -444 -461 -479 -497 -515 -533 -552 -161 -162 6 -420 -436 -453 -469 -486 -504 -521 -539 -161 -162 5 -408 -424 -439 -456 -472 -488 -505 -523 -161 -162 4 -390 -406 -422 -437 -454 -470 -487 -504 -161 -162 3 -383 -399 -416 -433 -451 -469 -487 -505 -161 -161 2 -396 -413 -430 -447 -465 -483 -501 -519 -160 -161 1 -427 -443 -458 -474 -490 -505 -521 -537 -161 -161 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(RADIAL) (001) IWROD= 12 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 383 387 390 393 396 399 402 404 407 409 411 413 415 417 419 420 422 423 425 425 441 444 437 430 423 417 411 406 401 397 393 389 386 382 379 376 9 01 31 58 83 108 133 157 181 205 228 250 272 294 315 336 357 376 395 417 505 595 602 584 568 553 542 532 525 520 518 517 521 533 545 560 574 8 -392 -323 -269 -221 -175 -132 -90 -48 -07 33 73 112 150 188 243 340 455 590 722 855 955 954 915 878 844 812 784 757 733 711 693 680 671 668 670 676 7 -1088 -728 -535 -411 -327 -264 -211 -163 -117 -47 60 164 275 393 521 656 784 911 1041 1174 1268 1257 1203 1152 1104 1062 1019 978 939 903 869 839 813 793 779 771 6 -1717 -1315 -1008 -778 -590 -425 -281 -144 -16 107 230 354 477 594 711 832 955 1081 1209 1341 1432 1421 1360 1300 1241 1184 1131 1079 1031 986 943 905 871 842 822 814 5 -1948 -1463 -1087 -767 -526 -340 -186 -48 78 200 321 441 556 670 787 908 1031 1155 1284 1416 1507 1493 1432 1368 1306 1246 1189 1135 1083 1036 992 951 913 880 853 835 4 -1554 -1197 -947 -745 -571 -411 -253 -115 09 126 246 371 500 626 747 870 995 1123 1253 1386 1480 1465 1405 1347 1289 1232 1177 1126 1078 1033 991 951 915 882 856 838

JAEA-DataCode 2013-009

- 205 -

3 -1131 -819 -572 -422 -325 -255 -200 -137 -42 69 174 284 397 516 639 773 902 1029 1160 1291 1385 1374 1316 1262 1212 1165 1118 1074 1032 992 955 921 891 864 841 821 2 -169 -125 -88 -52 -17 17 51 84 117 149 181 212 242 272 306 396 502 621 756 890 989 992 954 919 886 855 826 800 775 751 730 712 694 679 666 658 1 334 343 351 359 367 374 381 388 395 401 408 414 419 425 430 435 440 445 461 539 623 632 614 597 582 567 553 539 527 515 505 494 485 476 467 459 SEGMENT NUM 10 1226 1184 1146 1111 1077 1045 1015 974 16 15 9 1539 1488 1443 1400 1359 1320 1282 1233 261 261 8 1759 1701 1649 1600 1554 1510 1469 1413 431 430 7 1907 1845 1789 1736 1686 1639 1594 1534 546 544 6 2097 2028 1968 1910 1856 1804 1754 1688 693 691 5 2091 2023 1962 1904 1850 1798 1748 1682 686 684 4 1986 1920 1862 1807 1755 1706 1659 1596 603 602 3 1814 1754 1700 1649 1602 1556 1513 1455 471 471 2 1516 1466 1420 1378 1337 1298 1261 1212 242 241 1 1210 1168 1131 1096 1063 1031 1001 961 05 05 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(HOOP) (001) IWROD= 13 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 383 384 385 386 387 388 389 390 391 392 393 394 395 395 396 397 398 398 399 400 401 402 402 403 404 404 404 404 404 404 404 404 403 403 403 403 9 01 06 15 23 32 40 49 57 65 73 81 89 97 105 113 121 128 136 143 151 161 171 181 189 197 204 210 216 222 227 231 236 241 245 250 254 8 -392 -380 -361 -343 -326 -310 -294 -278 -263 -248 -234 -219 -205 -191 -176 -161 -144 -125 -103 -80 -56 -32 -10 09 27 43 57 70 82 93 103 112 121 129 137 145 7 -1088 -1026 -937 -865 -806 -757 -716 -679 -647 -616 -586 -555 -523 -491 -457 -423 -388 -352 -316 -279 -242 -206 -174 -145 -119 -95 -73 -54 -36 -19 -04 09 22 34 45 55 6 -1717 -1648 -1540 -1440 -1350 -1270 -1196 -1129 -1065 -1005 -948 -892 -839 -787 -737 -687 -639 -591 -543 -496 -449 -405 -365 -328 -295 -265 -238 -214 -191 -171 -152 -135 -119 -104 -90 -78 5 -1948 -1865 -1733 -1609 -1495 -1394 -1303 -1221 -1146 -1077 -1011 -949 -890 -834 -779 -725 -673 -622 -572 -522 -473 -426 -384 -345 -311 -279 -251 -225 -201 -180 -160 -142 -125 -110 -96 -82 4 -1554 -1493 -1399 -1313 -1236 -1165 -1098 -1035 -976 -919 -865 -813 -762 -712 -663 -615 -567 -520 -473 -427 -381 -337 -297 -261 -229 -199 -172 -148 -126 -106 -87 -70 -55 -40 -27 -15 3 -1131 -1078 -993 -916 -852 -798 -752 -712 -674 -637 -600 -563 -526 -489 -452 -414 -375 -336 -297 -258 -218 -181 -146 -115 -88 -62 -39 -19 00 18 34 48 61 74 85 96 2 -169 -161 -149 -137 -125 -113 -101 -90 -78 -67 -55 -44 -33 -22 -11 01 14 30 48 68 90 111 130 148 163 177 190 201 212 221 230 238 245 252 258 263 1 334 336 338 341 344 346 349 351 353 356 358 361 363 365 367 369 372 374 376 379 384 390 395 399 403 407 410 412 414 416 418 419 420 421 422 422 SEGMENT NUM 10 -786 -748 -714 -682 -651 -623 -595 -558 -534 -534 9 -926 -879 -837 -798 -761 -726 -692 -647 -617 -616 8 -1029 -976 -929 -885 -843 -803 -765 -714 -680 -679 7 -1114 -1056 -1006 -958 -913 -870 -829 -773 -736 -734 6 -1240 -1177 -1121 -1069 -1019 -971 -926 -864 -824 -820 5 -1245 -1181 -1126 -1073 -1023 -976 -931 -869 -828 -825 4 -1180 -1120 -1067 -1017 -969 -924 -882 -823 -785 -782 3 -1075 -1020 -972 -926 -882 -841 -802 -748 -714 -712 2 -916 -870 -829 -790 -754 -719 -686 -641 -612 -611 1 -766 -729 -695 -664 -634 -606 -579 -542 -519 -519 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(AXIAL) (001) IWROD= 14 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 1451 1432 1413 1394 1376 1358 1340 1322 1305 1288 1270 1253 1236 1220 1203 1187 1171 1155 1139 1123 1129 1115 1110 1104 1098 1092 1085 1078 1071 1064 1055 1047 1037 1025 1011 983 9 3146 3089 3033 2977 2922 2868 2815 2762 2709 2657 2606 2556 2506 2457 2408 2361 2313 2267 2212 2252 2130 2094 2086 2078 2068 2057 2045 2031 2014 1994 1968 1763 1719 1677 1630 1581 8 4500 4392 4294 4202 4113 4027 3943 3861 3779 3699 3619 3541 3463 3387 3289 3245 3081 2893 2710 2519 2359 2309 2304 2298 2291 2284 2276 2267 2257 2245 2231 2214 2194 2171 2140 2082 7 6183 5744 5439 5218 5048 4909 4786 4674 4567 4506 4338 4168 3988 3802 3603 3398 3201 3004 2804 2599 2429 2374 2371 2367 2363 2358 2353 2346 2339 2331 2321 2309 2294 2276 2252 2220 6 6939 6708 6477 6250 6022 5793 5564 5337 5116 4900 4685 4470 4257 4052 3849 3644 3437 3229 3018 2803 2627 2571 2569 2567 2564 2561 2557 2553 2548 2542 2535 2526 2514 2497 2474 2441 5 6958 6726 6495 6264 6035 5808 5582 5356 5133 4912 4693 4476 4265 4059 3851 3642 3432 3221 3007 2790 2612 2553 2553 2551 2549 2547 2545 2542 2538 2534 2529 2522 2512 2497 2475 2444 4 6826 6594 6364 6134 5903 5667 5425 5195 4979 4769 4558 4344 4128 3915 3708 3502 3294 3085 2874 2658 2481 2422 2421 2420 2417 2414 2411 2408 2404 2399 2394 2386 2376 2362 2341 2313 3 6349 5923 5569 5318 5129 4978 4849 4750 4575 4385 4203 4018 3829 3636 3438 3229 3026 2825 2622 2415 2242 2186 2184 2181 2178 2175 2171 2166 2161 2155 2147 2138 2126 2111 2091 2065 2 3834 3759 3685 3612 3541 3470 3401 3332 3264 3197 3130 3065 3000 2936 2894 2744 2584 2413 2226 2039 1879 1828 1824 1820 1815 1810 1805 1798 1790 1780 1770 1757 1742 1725 1706 1681

JAEA-DataCode 2013-009

- 206 -

1 1865 1837 1809 1782 1755 1728 1702 1676 1650 1625 1600 1575 1550 1526 1502 1478 1455 1431 1469 1355 1234 1196 1192 1188 1183 1179 1174 1168 1162 1156 1150 1142 1135 1127 1118 1108 SEGMENT NUM 10 439 439 439 439 439 439 439 439 439 439 9 347 347 347 347 347 347 347 347 347 347 8 278 278 278 278 278 278 278 278 278 278 7 243 243 243 243 243 243 243 243 243 243 6 208 208 208 208 208 208 208 208 208 208 5 226 226 226 226 226 226 226 226 226 226 4 257 257 257 257 257 257 257 257 257 257 3 297 297 297 297 297 297 297 297 297 297 2 385 385 385 385 385 385 385 385 385 385 1 461 461 461 461 461 461 461 461 461 461 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 26 37 46 53 59 65 70 75 80 85 89 93 97 101 105 109 112 116 119 122 126 129 132 135 138 141 144 146 149 151 154 156 158 161 163 165 0000 9 00 00 01 02 04 05 07 10 12 14 17 19 22 25 28 31 34 37 40 44 48 52 57 61 65 69 72 76 79 82 86 89 92 95 99 102 105 -0000 8 00 -27 -36 -42 -46 -49 -51 -52 -52 -52 -52 -51 -50 -49 -47 -45 -42 -38 -33 -27 -21 -14 -07 -00 06 12 17 23 28 32 37 41 45 49 53 57 61 0000 7 00 -74 -95 -107 -114 -119 -123 -126 -128 -129 -130 -129 -128 -125 -121 -117 -111 -104 -97 -89 -80 -70 -61 -52 -44 -36 -29 -22 -16 -10 -04 01 06 11 16 20 25 -0000 6 -00 -117 -155 -176 -191 -200 -206 -210 -212 -212 -211 -209 -205 -200 -195 -188 -181 -173 -164 -155 -144 -134 -123 -113 -104 -96 -88 -80 -73 -66 -60 -54 -49 -44 -39 -34 -29 0000 5 00 -133 -175 -198 -212 -221 -226 -228 -229 -228 -226 -222 -218 -212 -206 -199 -191 -183 -173 -163 -152 -141 -130 -119 -110 -101 -92 -84 -77 -70 -63 -57 -51 -46 -41 -36 -31 0000 4 -00 -106 -140 -161 -174 -183 -189 -193 -194 -194 -193 -190 -186 -182 -176 -169 -162 -153 -144 -134 -123 -112 -101 -91 -82 -73 -65 -57 -49 -42 -36 -30 -24 -19 -13 -08 -04 0000 3 00 -77 -100 -113 -121 -126 -130 -132 -134 -134 -134 -132 -129 -125 -120 -115 -108 -100 -92 -83 -73 -62 -52 -43 -34 -25 -18 -10 -03 03 10 16 21 27 32 37 41 0000 2 -00 -12 -15 -17 -18 -18 -18 -17 -16 -15 -13 -11 -09 -07 -04 -02 02 06 11 17 24 32 39 46 52 58 64 70 75 80 84 89 93 97 101 105 109 0000 1 -00 23 33 40 47 53 58 63 68 73 77 81 86 90 94 97 101 105 109 112 116 121 126 130 134 138 142 146 149 153 156 159 162 165 168 171 173 0000 (R-DIRECTION OF Cladding) 10 -335 -324 -439 -554 -669 -784 -900 -1016 -376 -285 -195 9 -395 -381 -501 -621 -741 -861 -982 -1103 -473 -338 -204 8 -439 -424 -548 -673 -798 -924 -1050 -1176 -557 -381 -204 7 -475 -459 -588 -718 -848 -978 -1109 -1241 -631 -418 -206 6 -529 -511 -648 -786 -924 -1062 -1201 -1340 -747 -477 -207 5 -531 -513 -650 -788 -927 -1066 -1205 -1344 -752 -480 -208 4 -504 -486 -617 -749 -881 -1013 -1146 -1279 -673 -446 -219 3 -459 -443 -566 -690 -813 -938 -1062 -1187 -565 -395 -225 2 -391 -378 -494 -610 -727 -844 -962 -1079 -443 -329 -216 1 -327 -316 -428 -540 -652 -765 -877 -990 -344 -272 -201 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 3320349 (Plenum) 10 17978018 3139625 9 17011895 2700241 8 15111354 2353547 7 13062890 2075605 6 10982299 1832555 5 8725090 1624646 4 6498207 1399120 3 4400904 1142594 2 2524119 845249 1 972466 460642 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT INCREMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000

JAEA-DataCode 2013-009

- 207 -

8 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 7 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 6 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 5 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 4 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 3 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 1 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 (R-DIRECTION OF Cladding) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 8 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 7 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 6 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 5 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 4 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 3 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 1 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 1253 (Plenum) 10 1222 1222 9 1090 1090 8 0947 0947 7 0808 0808 6 0680 0680 5 0592 0592 4 0511 0511 3 0425 0425 2 0307 0307 1 0154 0154 STAGE NO 618 PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) CLEARANCE CONTACT THERMAL ELASTIC DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE (MICRONS) FORCE(MPA) EXPANS DEFORM CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 0000 5971 1265 -090 -869 -2648 2827 1164 1650 822 -138 -3787 -3350 9 -0000 4827 1528 -063 -2705 -2707 3813 1186 1051 851 -177 -4321 -3949 8 -0000 4043 1719 -045 -3905 -2720 4356 1204 609 872 -204 -4717 -4391 7 -0000 3668 1830 -035 -4700 -2725 4659 1217 246 885 -220 -5049 -4754 6 -0000 3223 1911 -024 -5595 -2728 4910 1234 -292 899 -240 -5542 -5292 5 0000 3360 1945 -026 -5704 -2728 4973 1230 -311 900 -239 -5564 -5311 4 -0000 3799 1923 -032 -5328 -2728 4914 1216 -036 889 -224 -5313 -5036 3 -0000 4222 1835 -039 -4579 -2725 4710 1211 413 872 -206 -4899 -4587 2 -0000 5156 1632 -059 -3115 -2717 4163 1187 1091 847 -171 -4286 -3909 1 -0000 6422 1342 -091 -1190 -2678 3185 1164 1733 817 -122 -3719 -3267 OUTPUT ---STAGE--- 619 IFEM = 6 ---------------------------------------------------------------------------------------------------- |THERMAL ANALYSIS INFORMATION | | STAGE NO 619 | | TIME (HMSMS) 363855730374 | | COOLANT TEMPERATURE 28500 DEGC | | COOLANT PRESSURE 154D+01 MPA | ---------------------------------------------------------------------------------------------------- LHR BURN UP GAP CONDUCTANCE (WCM2-K) TEMPERATURE (C) CLEARANCE CONTACT NODE (WCM) (MWDTU) TOTAL GAS SOLID RAD PC PS CI CO (MICRONS) FORCE(MPA) NODE 10 779 367728 9573 1237 0033 00034 5022 3225 3194 3062 0000 5970 10 9 1003 503960 9542 1242 0022 00036 5968 3344 3304 3136 0000 4827 9 8 1135 585051 9534 1246 0017 00038 6610 3429 3383 3196 0000 4043 8 7 1195 635880 9531 1250 0014 00039 6963 3480 3432 3237 0000 3668 7 6 1214 687737 9529 1252 0012 00040 7203 3529 3480 3285 0000 3224 6 5 1234 702119 9528 1255 0012 00040 7311 3537 3487 3288 0000 3360 5 4 1241 688742 9524 1254 0014 00039 7257 3499 3449 3247 0000 3800 4 3 1214 645321 9521 1249 0016 00038 6996 3436 3387 3186 0000 4222 3

JAEA-DataCode 2013-009

- 208 -

2 1102 555300 9526 1245 0022 00036 6345 3338 3293 3108 0000 5156 2 1 878 416184 9550 1240 0033 00034 5329 3212 3177 3028 0000 6422 1 BURN UP PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) (FISSCC THERMAL DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE CSFR PFAC 1020) EXPANS CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 00000 00000 910 1265 -869 -2648 2827 1164 1649 822 -138 -3787 -3351 9 00000 00000 1247 1528 -2705 -2707 3813 1186 1051 851 -177 -4321 -3949 8 00000 00000 1448 1719 -3905 -2720 4356 1204 609 872 -204 -4717 -4391 7 00000 00000 1574 1830 -4700 -2725 4659 1217 246 885 -220 -5049 -4754 6 00000 00000 1702 1911 -5595 -2728 4910 1234 -292 899 -240 -5542 -5292 5 00000 00000 1737 1945 -5704 -2728 4973 1230 -311 900 -239 -5564 -5311 4 00000 00000 1704 1923 -5328 -2728 4914 1216 -036 889 -224 -5313 -5036 3 00000 00000 1597 1835 -4579 -2725 4710 1211 413 872 -206 -4899 -4587 2 00000 00000 1374 1632 -3115 -2717 4163 1187 1091 847 -171 -4286 -3909 1 00000 00000 1030 1342 -1190 -2678 3185 1164 1733 817 -122 -3719 -3267 CLAD SURFACE COOLANT COOLANT COOLANT CLAD SURFACE CLAD SURFACE HEAT TRANS CLAD OUTER CORROSION NODE TEMP(C) TEMP(C) ENTHALPY(JKG) QUALTY(-) HF(WCM2) COEF(WCM2K) MODE (MICROND) THICKNESS(MIC) 10 3014 2896 128346D+06 -0352(MSUBCOOL) 250161D+01 213443D+00 1 831541D-03 1816577 9 3043 2892 128137D+06 -0354(MSUBCOOL) 322089D+01 213318D+00 1 113010D-02 2701419 8 3059 2888 127887D+06 -0356(MSUBCOOL) 364307D+01 213169D+00 1 143834D-02 3534082 7 3062 2882 127615D+06 -0359(MSUBCOOL) 383220D+01 213007D+00 1 169085D-02 4261795 6 3060 2877 127333D+06 -0362(MSUBCOOL) 389335D+01 212839D+00 1 203958D-02 5404640 5 3058 2872 127047D+06 -0365(MSUBCOOL) 395673D+01 212670D+00 1 206495D-02 5447857 4 3054 2866 126758D+06 -0368(MSUBCOOL) 397979D+01 212499D+00 1 176017D-02 4552738 3 3044 2861 126471D+06 -0371(MSUBCOOL) 389749D+01 212330D+00 1 138362D-02 3411542 2 3022 2856 126200D+06 -0374(MSUBCOOL) 353954D+01 212171D+00 1 100823D-02 2274663 1 2984 2851 125968D+06 -0376(MSUBCOOL) 282018D+01 212035D+00 1 719058D-03 1438410 0 INITIAL GAS (MOL) = 414D-03 0 FISSION GAS RESULT 0 LOCAL FISSION GAS RELEASE FRACTION (AXIAL NODE) 1 001306 2 004371 3 009150 4 012529 5 014209 6 012980 7 008746 8 004846 9 002029 10 000517 0 ROD AVERAGE FISSION GAS = 007950 FRACTIONS OF GAS MIXTURE (PERCENT) AXIAL NODE RELEASE FRACTION 1 2 3 4 5 6 7 8 9 10 ROD GAS PRESSURE ( MPA ) = 3869 HE 555 555 555 555 555 555 555 555 555 555 ROD GAS VOLUME ( CM3 ) = 8502 N2 00 00 00 00 00 00 00 00 00 00 (GAPPLENUM)= 1295 7207 KR 58 58 58 58 58 58 58 58 58 58 TOTAL GAS ( MOL ) = 655D-03 XE 387 387 387 387 387 387 387 387 387 387 ROD PRS(MPA) 3869 3869 3869 3869 3869 3869 3869 3869 3869 3869 0 RELEASED IODINE ( GRAMCM2 ) = 635D-05 (AVERAGE) 123D-04 (PEAK) 0 (MOL) HE N2 KR XE TOTAL PRODUCED GAS 374D-04 000D+00 490D-03 328D-02 381E-02 RELEASED GAS 462D-05 000D+00 390D-04 261D-03 304E-03 ROD GAS 418D-03 000D+00 390D-04 261D-03 655E-03 0 RADIAL TEMPERATURE DISTRIBUTION AT AXIAL NODE OF 6 PELLET GAP CLAD 1234567891011 123 720 717 707 690 666 635 598 553 501 440 353 348 338 328 === OPTIONAL OUTPUT (IN ELEMENT AVERAGE) === ---------------------------------------------------------------------------------------------------- | TEMPERATURE DISTRIBUTION IN THE FUEL (DEGC) IWTHE= 1 | ---------------------------------------------------------------------------------------------------- SEG 10 50133 49786 49093 48054 46670 44942 42867 40437 37624 34184 9 59559 59061 58065 56571 54581 52093 49105 45601 41524 36386 8 65949 65351 64155 62361 59971 56982 53389 49170 44248 37942 7 69467 68817 67517 65567 62966 59713 55800 51199 45819 38858 6 71861 71183 69824 67786 65065 61658 57555 52722 47053 39643 5 72931 72235 70842 68751 65960 62466 58255 53295 47475 39847 4 72392 71697 70306 68218 65433 61946 57748 52804 47009 39434 3 69792 69129 67802 65810 63155 59833 55837 51138 45642 38517 2 63307 62739 61604 59901 57632 54797 51391 47393 42735 36803 1 53187 52781 51968 50750 49128 47102 44669 41821 38518 34434 ---------------------------------------------------------------------------------------------------- | RADIUS OF INTRAGRANULAR GAS BUBBLE (ANGSTROM) IWTHE= 4 | ---------------------------------------------------------------------------------------------------- SEG 10 345 345 345 346 347 349 351 355 362 399 9 389 389 389 390 391 393 396 400 409 457 8 411 411 412 413 414 416 419 424 434 488 7 402 404 414 423 427 429 432 437 448 506 6 367 371 386 407 429 442 445 451 462 523 5 362 365 378 401 427 444 449 454 466 528 4 374 378 392 412 432 442 445 451 462 523 3 400 403 413 424 429 432 435 440 451 509 2 403 403 404 405 406 408 411 415 425 477 1 361 362 362 363 364 366 368 372 380 421 ---------------------------------------------------------------------------------------------------- | FISSION GAS RELEASE RATE IN A RING () IWTHE= 14 | ---------------------------------------------------------------------------------------------------- SEG 10 050 050 050 050 050 050 050 050 050 055 9 050 050 050 050 050 050 050 050 050 483 8 050 050 050 050 050 050 050 050 050 1382 7 1312 1165 685 165 050 050 050 050 050 2533 6 3549 3378 2746 1748 643 053 050 050 050 2856 5 3896 3771 3233 2209 953 092 050 050 050 2949 4 3282 3099 2459 1509 493 050 050 050 050 2863 3 1513 1360 856 247 050 050 050 050 050 2591 2 050 050 050 050 050 050 050 050 050 1261 1 050 050 050 050 050 050 050 050 050 301

JAEA-DataCode 2013-009

- 209 -

---------------------------------------------------------------------------------------------------- BURNUP DISTRIBUTION IN THE FUEL (MWDT) IWTHE= 18 ---------------------------------------------------------------------------------------------------- SEG 10 324006 324729 325496 326304 327155 328040 328983 329987 331030 332108 9 434960 436250 437488 438744 440036 441357 442750 444226 445754 447330 8 499246 500926 502485 504044 505633 507246 508938 510729 512580 514488 7 538964 540904 542677 544439 546227 548036 549928 551929 553996 556127 6 579130 581345 583345 585322 587321 589339 591445 593670 595968 598337 5 590218 592510 594574 596612 598671 600748 602915 605204 607567 610004 4 579907 582128 584132 586113 588117 590138 592249 594478 596780 599154 3 546300 548290 550104 551904 553730 555577 557507 559548 561656 563830 2 475797 477330 478768 480213 481690 483194 484773 486445 488175 489957 1 363909 364820 365744 366703 367703 368736 369832 370997 372205 373452 ================================================================================================================================== MECHANICAL ANALYSIS INFORMATION OUTPUT STAGE NUMBER = 619 TIME = 36385 H 57 M 30 S3744 MS ROD GAS PRESS(MPA) = 3869 COOLANT PRESS(MPA) = 15400 AXIAL FORCE(N) = -8369844 ================================================================================================================================== ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ SEG LHR B U R N U P FAST NEUTRON FLUX FAST NEUTRON FLUENCE FISSION RATE (WCM) (GJKGU) (MWDTU) (MWDTUO2) (FISSCC) (NCM2SEC) (NCM2) (FISSCCSEC) ---- ------ -------------------------------------------------- ----------------- -------------------- ------------ 10 779 317717D+03 367728D+04 324145D+04 916756D+20 389400D+13 770096D+21 460259D+12 9 1003 435422D+03 503960D+04 444232D+04 125639D+21 501600D+13 105619D+22 592876D+12 8 1135 505484D+03 585051D+04 515712D+04 145855D+21 567600D+13 122645D+22 670886D+12 7 1195 549400D+03 635880D+04 560517D+04 158527D+21 597300D+13 133247D+22 705990D+12 6 1214 594204D+03 687737D+04 606227D+04 171455D+21 607200D+13 144275D+22 717692D+12 5 1234 606631D+03 702119D+04 618905D+04 175040D+21 617100D+13 147296D+22 729393D+12 4 1241 595073D+03 688742D+04 607114D+04 171705D+21 620400D+13 144460D+22 733294D+12 3 1214 557558D+03 645321D+04 568839D+04 160881D+21 607200D+13 135167D+22 717692D+12 2 1102 479779D+03 555300D+04 489486D+04 138438D+21 551100D+13 116373D+22 651383D+12 1 878 359583D+03 416184D+04 366859D+04 103756D+21 438900D+13 871774D+21 518766D+12 ---------------------------------------------------------------------------------------------------- STRESS(RADIAL) (MPA) IWROD= 1 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -36 -36 -37 -37 -38 -38 -39 -39 -40 -40 -41 -42 -42 -43 -43 -44 -45 -45 -46 -46 -47 -48 -48 -49 -50 -51 -52 -52 -53 -54 -55 -56 -57 -58 -59 -60 9 -23 -24 -24 -25 -25 -26 -26 -27 -27 -28 -28 -29 -29 -30 -31 -31 -32 -32 -33 -34 -34 -35 -35 -36 -37 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -48 8 -15 -15 -16 -16 -17 -17 -17 -18 -18 -19 -20 -20 -21 -21 -22 -22 -23 -23 -24 -24 -25 -26 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -39 -40 7 -11 -11 -11 -12 -12 -13 -13 -13 -14 -14 -15 -15 -16 -16 -17 -17 -18 -18 -19 -20 -21 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -35 -36 6 -05 -05 -06 -06 -07 -07 -08 -08 -09 -09 -10 -10 -11 -11 -12 -13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -20 -21 -22 -23 -24 -25 -27 -28 -29 -30 -32 5 -06 -06 -06 -07 -07 -08 -08 -09 -09 -10 -10 -11 -11 -12 -13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -20 -21 -22 -23 -24 -25 -26 -28 -29 -30 -32 -33 4 -09 -09 -09 -10 -10 -11 -11 -12 -12 -13 -14 -14 -15 -15 -16 -17 -17 -18 -19 -20 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -31 -32 -33 -35 -36 -38 3 -11 -12 -12 -13 -13 -14 -14 -15 -15 -16 -16 -17 -18 -18 -19 -20 -21 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -35 -36 -37 -39 -40 -42 2 -21 -21 -22 -22 -23 -23 -24 -24 -25 -25 -26 -26 -27 -28 -28 -29 -30 -31 -31 -32 -33 -34 -35 -36 -37 -38 -39 -41 -42 -43 -44 -45 -47 -48 -50 -51 1 -36 -37 -37 -37 -38 -39 -39 -40 -40 -41 -41 -42 -43 -43 -44 -44 -45 -46 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -62 -63 -64 SEGMENT NUM 10 -101 -108 -114 -120 -127 -133 -139 -148 -154 -154 9 -91 -99 -107 -114 -122 -129 -136 -147 -154 -154 8 -84 -93 -101 -110 -118 -126 -134 -146 -154 -154 7 -80 -90 -99 -108 -116 -125 -133 -146 -154 -154 6 -76 -87 -96 -105 -114 -123 -132 -145 -154 -154 5 -78 -88 -97 -106 -115 -124 -133 -146 -154 -154 4 -82 -91 -100 -108 -117 -125 -134 -146 -154 -154 3 -85 -94 -102 -111 -119 -127 -135 -146 -154 -154 2 -94 -102 -109 -116 -123 -130 -137 -147 -154 -154 1 -105 -112 -117 -123 -129 -134 -140 -148 -154 -154 ---------------------------------------------------------------------------------------------------- STRESS(HOOP) (MPA) IWROD= 2 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 -36 -38 -40 -41 -43 -45 -47 -48 -50 -52 -54 -56 -59 -61 -63 -66 -68 -71 -73 -76 -76 -79 -82 -85 -88 -91 -94 -98 -102 -105 -109 -114 -118 -123 -128 -134 9 -23 -25 -27 -28 -30 -32 -33 -35 -37 -39 -41 -43 -46 -48 -50 -53 -55 -58 -59 -53 -56 -60 -63 -67 -71 -75 -80 -84 -89 -95 -101 -111 -126 -136 -146 -158 8 -15 -17 -18 -19 -21 -23 -24 -26 -28 -30 -32 -34 -36 -38 -37 -38 -40 -44 -47 -50 -54 -57 -61 -65 -69 -73 -78 -83 -88 -94 -100 -107 -114 -123 -133 -147 7 -11 -12 -13 -15 -16 -18 -19 -21 -23 -22 -24 -26 -29 -31 -34 -36 -39 -42 -45 -48 -52 -55 -59 -63

JAEA-DataCode 2013-009

- 210 -

-67 -72 -76 -81 -87 -92 -99 -105 -113 -122 -132 -146 6 -05 -07 -08 -09 -11 -12 -14 -16 -18 -20 -22 -24 -26 -28 -31 -33 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -77 -82 -88 -94 -100 -108 -116 -126 -139 5 -06 -07 -09 -10 -12 -13 -15 -17 -19 -20 -22 -25 -27 -29 -32 -34 -37 -40 -43 -46 -50 -53 -57 -61 -65 -70 -75 -80 -85 -91 -97 -104 -112 -121 -132 -145 4 -09 -10 -12 -13 -15 -17 -18 -20 -22 -24 -27 -29 -31 -34 -36 -39 -42 -45 -48 -52 -55 -59 -63 -67 -72 -76 -81 -87 -92 -98 -105 -112 -120 -129 -139 -153 3 -11 -14 -15 -17 -18 -20 -21 -22 -25 -28 -30 -33 -35 -38 -41 -44 -47 -50 -54 -57 -61 -65 -69 -74 -78 -83 -88 -94 -100 -106 -113 -120 -128 -137 -148 -161 2 -21 -23 -24 -26 -28 -29 -31 -33 -35 -37 -39 -41 -44 -46 -48 -53 -57 -61 -65 -69 -73 -77 -81 -85 -90 -94 -100 -105 -110 -116 -122 -129 -136 -144 -154 -166 1 -36 -38 -40 -42 -43 -45 -47 -49 -51 -53 -55 -58 -60 -62 -65 -68 -70 -73 -75 -80 -85 -89 -93 -96 -100 -104 -109 -113 -117 -122 -127 -133 -139 -145 -152 -160 SEGMENT NUM 10 -450 -462 -473 -485 -496 -508 -519 -527 -162 -162 9 -524 -535 -546 -557 -568 -579 -590 -596 -163 -164 8 -569 -581 -593 -606 -618 -631 -644 -652 -163 -164 7 -593 -605 -618 -631 -644 -657 -671 -680 -164 -165 6 -627 -639 -651 -664 -677 -690 -703 -712 -164 -166 5 -619 -631 -643 -656 -668 -681 -694 -703 -164 -166 4 -589 -600 -612 -625 -637 -650 -663 -672 -164 -165 3 -554 -567 -580 -593 -607 -621 -634 -645 -163 -164 2 -498 -510 -522 -534 -546 -559 -571 -580 -163 -163 1 -420 -431 -444 -456 -468 -480 -493 -502 -162 -162 ---------------------------------------------------------------------------------------------------- STRESS(AXIAL) (MPA) IWROD= 3 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08 08 09 09 09 10 10 11 11 12 12 12 13 13 13 10 9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 32 34 34 34 34 34 35 35 35 35 36 35 00 00 00 00 -00 8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21 21 20 20 19 19 18 18 17 17 16 16 16 16 16 16 16 16 17 18 16 7 00 00 00 00 00 00 00 00 00 14 15 15 15 14 13 12 11 11 10 09 08 07 07 06 05 05 04 04 03 03 02 02 02 02 02 03 6 18 17 16 15 14 13 12 11 10 09 08 07 07 06 05 04 03 02 01 00 -01 -02 -03 -04 -05 -06 -08 -09 -10 -11 -12 -13 -14 -15 -15 -13 5 15 14 13 12 11 10 09 09 08 07 06 05 04 03 02 01 00 -01 -02 -03 -05 -06 -08 -09 -11 -12 -14 -16 -18 -20 -22 -24 -26 -28 -29 -29 4 12 11 10 09 08 07 06 05 04 03 02 02 01 -00 -01 -02 -03 -05 -06 -08 -10 -12 -14 -16 -18 -20 -22 -24 -27 -29 -31 -34 -36 -38 -40 -40 3 11 00 00 00 00 00 00 07 06 05 03 02 01 00 -01 -02 -03 -04 -06 -08 -09 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -34 -35 -34 2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 03 01 00 -01 -02 -03 -05 -06 -07 -08 -09 -10 -11 -12 -12 -13 -13 -13 -13 -12 -10 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 15 14 12 11 11 10 10 10 10 10 10 10 10 10 11 11 11 12 SEGMENT NUM 10 -428 -443 -458 -474 -489 -504 -519 -533 -160 -160 9 -439 -457 -474 -492 -509 -527 -545 -562 -160 -161 8 -436 -453 -471 -489 -507 -526 -545 -564 -161 -161 7 -427 -444 -461 -479 -497 -515 -533 -552 -161 -162 6 -420 -436 -453 -469 -486 -504 -521 -539 -161 -162 5 -408 -424 -439 -456 -472 -488 -505 -523 -161 -162 4 -390 -406 -422 -437 -454 -470 -487 -504 -161 -162 3 -383 -400 -416 -433 -451 -469 -487 -505 -161 -161 2 -396 -413 -430 -447 -465 -483 -501 -519 -160 -161 1 -427 -443 -458 -474 -490 -505 -521 -537 -161 -161 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(RADIAL) (001) IWROD= 12 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 383 387 390 393 396 399 402 404 407 409 411 413 415 417 419 420 422 423 425 425 441 444 437 430 423 417 411 406 401 397 393 389 386 382 379 376 9 01 31 58 83 108 133 157 181 205 228 250 272 294 315 336 357 376 395 417 505 595 602 584 568 553 542 532 525 520 518 517 521 533 545 560 574 8 -392 -323 -269 -221 -176 -132 -90 -48 -07 33 73 112 150 188 243 340 455 590 722 855 955 954 915 878 844 812 784 757 733 711 693 680 671 668 670 676 7 -1088 -728 -535 -411 -327 -264 -211 -163 -117 -47 60 164 275 393 521 656 784 911 1041 1174 1268 1257 1203 1152 1104 1062 1019 978 939 903 869 839 813 793 779 771 6 -1717 -1315 -1008 -778 -590 -425 -281 -144 -16 107 230 354 477 594 711 832 955 1081 1209 1341 1432 1421 1360 1300 1241 1184 1131 1079 1031 986 943 905 871 842 822 814 5 -1948 -1463 -1087 -767 -526 -340 -186 -48 78 200 321 441 556 670 787 908 1031 1155 1284 1416 1507 1493 1432 1368

JAEA-DataCode 2013-009

- 211 -

1306 1246 1189 1135 1083 1036 992 951 913 880 853 835 4 -1554 -1197 -947 -745 -571 -411 -253 -115 09 126 246 371 500 626 747 870 995 1123 1253 1386 1480 1465 1405 1347 1289 1232 1177 1126 1078 1033 991 951 915 882 856 838 3 -1131 -819 -572 -422 -325 -255 -200 -137 -42 69 174 284 397 516 639 773 902 1029 1160 1291 1385 1374 1316 1262 1212 1165 1118 1074 1032 992 955 921 891 864 841 821 2 -169 -125 -88 -52 -17 17 51 84 117 149 181 212 242 272 306 396 502 621 756 890 989 992 954 919 886 855 826 800 775 751 730 712 694 679 666 658 1 334 343 351 359 367 374 381 388 395 401 408 414 419 425 430 435 440 445 461 539 623 632 614 598 582 567 553 539 527 515 505 494 485 476 467 459 SEGMENT NUM 10 1226 1184 1146 1111 1077 1045 1015 974 16 15 9 1539 1488 1443 1400 1359 1320 1282 1233 261 261 8 1759 1701 1649 1600 1554 1510 1469 1413 431 430 7 1907 1845 1789 1736 1686 1639 1594 1534 546 544 6 2097 2028 1968 1910 1856 1804 1754 1688 693 691 5 2091 2023 1962 1904 1850 1798 1748 1682 686 684 4 1986 1920 1862 1807 1755 1706 1659 1596 603 602 3 1814 1754 1700 1650 1602 1556 1513 1455 471 471 2 1516 1466 1420 1378 1337 1298 1261 1212 242 241 1 1210 1168 1131 1096 1063 1031 1001 961 05 05 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(HOOP) (001) IWROD= 13 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 383 384 385 386 387 388 389 390 391 392 393 394 395 395 396 397 398 398 399 400 401 402 402 403 404 404 404 404 404 404 404 404 403 403 403 403 9 01 06 15 23 32 40 49 57 65 73 81 89 97 105 113 121 128 136 143 151 161 171 181 189 197 204 210 216 222 227 231 236 241 245 250 254 8 -392 -380 -361 -343 -326 -310 -294 -278 -263 -248 -234 -219 -205 -191 -176 -161 -144 -125 -103 -80 -56 -32 -10 09 27 43 57 70 82 93 103 112 121 129 137 145 7 -1088 -1026 -937 -865 -806 -758 -716 -679 -647 -616 -586 -555 -523 -491 -458 -423 -388 -352 -316 -279 -242 -206 -174 -145 -119 -95 -73 -54 -36 -19 -04 09 22 34 45 55 6 -1717 -1648 -1540 -1440 -1350 -1270 -1196 -1129 -1065 -1005 -948 -892 -839 -787 -737 -687 -639 -591 -543 -496 -449 -405 -365 -328 -295 -265 -238 -214 -191 -171 -152 -135 -119 -104 -90 -78 5 -1948 -1865 -1733 -1609 -1495 -1394 -1303 -1221 -1146 -1077 -1011 -949 -890 -834 -779 -725 -673 -622 -572 -522 -473 -426 -384 -345 -311 -279 -251 -225 -201 -180 -160 -142 -125 -110 -96 -82 4 -1554 -1493 -1399 -1313 -1236 -1165 -1098 -1035 -975 -919 -865 -813 -762 -712 -663 -615 -567 -520 -473 -427 -381 -337 -297 -261 -229 -199 -172 -148 -126 -106 -87 -70 -55 -40 -27 -15 3 -1131 -1078 -993 -916 -852 -798 -752 -712 -674 -637 -600 -563 -526 -489 -452 -414 -375 -336 -297 -258 -218 -181 -146 -115 -88 -62 -39 -19 00 18 34 48 61 74 85 96 2 -169 -161 -149 -137 -125 -113 -101 -90 -78 -67 -55 -44 -33 -22 -11 01 14 30 48 68 90 111 130 148 163 177 190 201 212 221 230 238 245 252 258 263 1 334 336 338 341 344 346 349 351 353 356 358 361 363 365 367 369 372 374 376 379 384 390 395 399 403 407 410 412 414 416 418 419 420 421 422 422 SEGMENT NUM 10 -786 -748 -714 -682 -651 -623 -595 -558 -535 -534 9 -926 -879 -837 -798 -761 -726 -692 -647 -617 -616 8 -1029 -976 -929 -885 -843 -803 -766 -714 -680 -679 7 -1114 -1056 -1006 -958 -913 -870 -829 -773 -736 -734 6 -1240 -1177 -1121 -1069 -1019 -971 -926 -864 -824 -820 5 -1245 -1181 -1126 -1073 -1023 -976 -931 -869 -828 -825 4 -1180 -1120 -1067 -1017 -969 -924 -882 -823 -785 -782 3 -1075 -1020 -972 -926 -882 -841 -802 -748 -714 -712 2 -916 -870 -829 -790 -754 -719 -686 -641 -612 -611 1 -766 -729 -695 -664 -634 -606 -579 -542 -519 -519 ---------------------------------------------------------------------------------------------------- TOTAL STRAIN(AXIAL) (001) IWROD= 14 ---------------------------------------------------------------------------------------------------- SEGMENT NUM 10 1451 1432 1413 1394 1376 1358 1340 1322 1305 1288 1270 1253 1236 1220 1203 1187 1171 1155 1139 1123 1129 1115 1110 1104 1098 1092 1085 1078 1071 1063 1055 1047 1037 1025 1010 982 9 3145 3089 3033 2977 2922 2868 2815 2762 2709 2657 2606 2556 2506 2457 2408 2361 2313 2267 2212 2251 2130 2094 2086 2077 2068 2057 2045 2031 2014 1994 1968 1763 1719 1677 1630 1581 8 4500 4392 4294 4202 4113 4027 3943 3861 3779 3699 3619 3541 3463 3387 3289 3245 3081 2893 2709 2519 2359 2309 2304 2298 2291 2284 2276 2267 2257 2245 2231 2214 2194 2171 2140 2081 7 6183 5744 5439 5218 5048 4909 4786 4674 4567 4505 4337 4167 3988 3802 3603 3398 3201 3004 2803 2599 2429 2374 2371 2367 2363 2358 2353 2346 2339 2331 2321 2309 2294 2276 2252 2220 6 6938 6708 6477 6250 6022 5792 5564 5337 5116 4900 4685 4470 4257 4052 3849 3644 3437 3229 3018 2803 2627 2571 2569 2567 2564 2561 2557 2553 2548 2542 2535 2526 2514 2497 2474 2441 5 6958 6726 6495 6264 6035 5808 5582 5356 5133 4912 4693 4476 4265 4059 3851 3642 3432 3221 3007 2790 2612 2554 2553 2551 2549 2547 2545 2542 2538 2535 2529 2522 2512 2497 2475 2444 4 6826 6593 6364 6134 5903 5667 5425 5195 4979 4769 4558 4344 4128 3915 3708 3502 3294 3085 2874 2658 2481 2422 2421 2420 2417 2414 2411 2408 2404 2400 2394 2387 2376 2362 2342 2314 3 6348 5923 5569 5318 5129 4978 4849 4750 4575 4385 4203 4018 3829 3636 3438 3229 3026 2825 2622 2415 2242 2186 2184 2181

JAEA-DataCode 2013-009

- 212 -

2178 2175 2171 2166 2161 2155 2147 2138 2126 2111 2091 2065 2 3834 3759 3685 3612 3541 3470 3401 3332 3264 3197 3130 3065 3000 2936 2893 2744 2584 2413 2226 2039 1879 1828 1824 1820 1815 1810 1805 1798 1790 1780 1770 1757 1743 1726 1706 1681 1 1865 1837 1809 1782 1755 1728 1702 1676 1650 1625 1600 1575 1550 1526 1502 1478 1455 1431 1468 1355 1234 1196 1192 1188 1183 1179 1174 1168 1162 1156 1150 1142 1135 1127 1118 1108 SEGMENT NUM 10 439 439 439 439 439 439 439 439 439 439 9 347 347 347 347 347 347 347 347 347 347 8 278 278 278 278 278 278 278 278 278 278 7 243 243 243 243 243 243 243 243 243 243 6 208 208 208 208 208 208 208 208 208 208 5 226 226 226 226 226 226 226 226 226 226 4 257 257 257 257 257 257 257 257 257 257 3 297 297 297 297 297 297 297 297 297 297 2 385 385 385 385 385 385 385 385 385 385 1 461 461 461 461 461 461 461 461 461 461 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 00 26 37 46 53 59 65 70 75 80 85 89 93 97 101 105 109 112 116 119 122 126 129 132 135 138 141 144 146 149 151 154 156 158 161 163 165 0000 9 00 00 01 02 04 05 07 10 12 14 17 19 22 25 28 31 34 37 40 44 48 52 57 61 65 69 72 76 79 82 86 89 92 95 99 102 105 -0000 8 00 -27 -36 -42 -46 -49 -51 -52 -52 -52 -52 -51 -50 -49 -47 -45 -42 -38 -33 -27 -21 -14 -07 -00 06 12 17 23 28 32 37 41 45 49 53 57 61 -0000 7 00 -74 -95 -107 -114 -119 -123 -126 -128 -129 -130 -129 -128 -125 -121 -117 -111 -104 -97 -89 -80 -70 -61 -52 -44 -36 -29 -22 -16 -10 -04 01 06 11 16 20 25 0000 6 -00 -117 -155 -176 -191 -200 -206 -210 -212 -212 -211 -209 -205 -200 -195 -188 -181 -173 -164 -155 -144 -134 -123 -113 -104 -96 -88 -80 -73 -66 -60 -54 -49 -44 -39 -34 -29 0000 5 00 -133 -175 -198 -212 -221 -226 -228 -229 -228 -226 -222 -218 -212 -206 -199 -191 -183 -173 -163 -152 -141 -130 -119 -110 -101 -92 -84 -77 -70 -63 -57 -51 -46 -41 -36 -31 0000 4 -00 -106 -140 -161 -174 -183 -189 -193 -194 -194 -193 -190 -186 -182 -176 -169 -162 -153 -144 -134 -123 -112 -101 -91 -82 -73 -65 -57 -49 -42 -36 -30 -24 -19 -13 -08 -04 0000 3 00 -77 -100 -113 -121 -126 -130 -132 -134 -134 -134 -132 -129 -125 -120 -115 -108 -100 -92 -83 -73 -62 -52 -43 -34 -25 -18 -10 -03 03 10 16 21 27 32 37 41 0000 2 -00 -12 -15 -17 -18 -18 -18 -17 -16 -15 -13 -11 -09 -07 -04 -02 02 06 11 17 24 32 39 46 52 58 64 70 75 80 84 89 93 97 101 105 109 0000 1 -00 23 33 40 47 53 58 63 68 73 77 81 86 90 94 97 101 105 109 112 116 121 126 130 134 138 142 146 149 153 156 159 162 165 168 171 173 -0000 (R-DIRECTION OF Cladding) 10 -335 -324 -439 -554 -669 -784 -900 -1016 -375 -285 -195 9 -395 -381 -501 -621 -741 -861 -982 -1103 -473 -338 -203 8 -439 -424 -548 -673 -798 -924 -1050 -1176 -557 -381 -204 7 -475 -459 -588 -718 -848 -978 -1109 -1240 -631 -418 -206 6 -529 -511 -648 -786 -924 -1062 -1201 -1340 -747 -477 -207 5 -531 -513 -650 -788 -927 -1065 -1205 -1344 -752 -480 -208 4 -504 -486 -617 -749 -881 -1013 -1146 -1279 -673 -446 -219 3 -459 -443 -566 -690 -813 -938 -1062 -1187 -565 -395 -225 2 -391 -378 -494 -610 -727 -844 -962 -1079 -443 -329 -216 1 -327 -316 -428 -540 -652 -764 -877 -990 -344 -272 -201 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 3320391 (Plenum) 10 17978029 3139636 9 17011908 2700254 8 15111368 2353561 7 13062903 2075618 6 10982308 1832563 5 8725095 1624651 4 6498211 1399123 3 4400908 1142598 2 2524124 845254 1 972470 460646 --------------------------------------------------------------------------------------------------------------------- DISPLACEMENT INCREMENT OF NODES (MICRON) GAP IWROD=18 --------------------------------------------------------------------------------------------------------------------- (R-DIRECTION OF Pellet) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000

JAEA-DataCode 2013-009

- 213 -

9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 8 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -0000 7 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 6 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 0000 5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 3 00 -00 -00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 2 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 1 00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 00 00 00 00 00 00 -0000 (R-DIRECTION OF Cladding) 10 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 9 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 8 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 7 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 -00 6 -00 00 00 00 00 00 00 00 00 00 00 5 00 00 00 00 00 00 00 00 00 00 00 4 00 00 00 00 00 00 00 00 00 00 00 3 00 00 00 00 00 00 00 00 00 00 00 2 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 (Z-DIRECTION) --------- ----------------- ----------------- SEG NUM PELLET CLADDING --------- ----------------- ----------------- 0042 (Plenum) 10 0011 0011 9 0014 0014 8 0014 0014 7 0012 0012 6 0008 0008 5 0005 0005 4 0003 0003 3 0005 0005 2 0005 0005 1 0004 0004 STAGE NO 619 PELLET DISPLACEMENT (MICRONS) CLADDING DISPLACEMENT (MICRONS) CLEARANCE CONTACT THERMAL ELASTIC DENSIFI IRRAD RELOC DISPLA THERMAL ELASTIC DISPLA NODE (MICRONS) FORCE(MPA) EXPANS DEFORM CREEP CATION SWELL ATION CEMENT EXPANS DEFORM CREEP CEMENT 10 0000 5970 1265 -090 -869 -2648 2827 1164 1649 822 -138 -3787 -3351 9 -0000 4827 1528 -063 -2705 -2707 3813 1186 1051 851 -177 -4321 -3949 8 -0000 4043 1719 -045 -3905 -2720 4356 1204 609 872 -204 -4717 -4391 7 -0000 3668 1830 -035 -4700 -2725 4659 1217 246 885 -220 -5049 -4754 6 -0000 3224 1911 -024 -5595 -2728 4910 1234 -292 899 -240 -5542 -5292 5 0000 3360 1945 -026 -5704 -2728 4973 1230 -311 900 -239 -5564 -5311 4 0000 3800 1923 -032 -5328 -2728 4914 1216 -036 889 -224 -5313 -5036 3 -0000 4222 1835 -039 -4579 -2725 4710 1211 413 872 -206 -4899 -4587 2 0000 5156 1632 -059 -3115 -2717 4163 1187 1091 847 -171 -4286 -3909 1 -0000 6422 1342 -091 -1190 -2678 3185 1164 1733 817 -122 -3719 -3267 ------------------------------------------------------------------------------------------------------------------- | RESULTS OF THERMAL ANALYSIS THERMAL INFORMATION ( SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | T H E R M A L I N F O R M A T I O N ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | TEMPERATURE GAP CONDUCTANCE RADIAL CONTACT PROD FISS IODN CPU NO HEAT | FUEL FUEL CLAD CLAD TOTAL GAS SOLID BONDING GAP PRESS GAS GAS REL TIME RATE (MWD | CENTER SURFACE INNER OUTER (WCM2 (WCM2 (WCM2 RATIO SIZE (XE+KR) REL (10-5 (HRMSMS) (WCM) TU) | (DEGC)(DEGC)(DEGC)(DEGC) C) C) C) (-) (MIC) (MPA)(10-3MOL)() GCM2)(SEC) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 2850 2850 2850 2850 0602 060 000 0000 0 323 00 000 050 0000 0 245 139055442965 3399 292014| 14005 4335 4164 3618 7687 354 006 0667 1 00 94 190 595 2397 12 314 163561451942 12 356537| 2881 2856 2856 2854 6119 123 000 0842 0 55 00 232 775 3809 15 363 198595338887 2316 408858| 10360 3925 3828 3452 9134 282 005 0925 1 00 82 266 755 4256 18 513 283643137758 66 578551| 3054 2887 2883 2872 6939 108 000 1000 0 29 00 377 920 7345 25 |

JAEA-DataCode 2013-009

- 214 -

530 284964457773 1877 579655| 9437 3830 3754 3454 9600 191 002 1000 1 00 53 378 921 7367 26 618 3638551 9574 1214 687736| 7203 3530 3480 3285 9529 125 001 1000 1 00 32 448 1298 12313 30 619 363855730374 1214 687737| 7203 3529 3480 3285 9529 125 001 1000 1 00 32 448 1298 12313 30 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF THERMAL ANALYSIS MECHANICAL INFORMATION ( SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | F U E L O U T E R S U R F A C E | RADIAL GAP | CLAD INNER SURFACE ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | THERMAL CREEP DENSIFI SWELL RELOCA RADIAL | RAD CONTACT|THERMAL ELASTIC CREEP RADIAL NO HEAT | EXPAN -CATION -ING -TION DISPLA | GAP PRESS | EXPAN DEFORM DISPLA RATE (MWD | -SION -CEMENT | | -SION -ATION -CEMENT (HRMSMS) (WCM) TU) | (MIC) (MIC) (MIC) (MIC) (MIC) (MIC) | (MIC) (MPA)| (MIC) (MIC) (MIC) (MIC) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 729 000 000 000 1345 2074 | 323 00 | 734 -407 000 306 245 139055442965 3399 292014| 4556 -3814 -2564 2344 1140 1471 | 00 94 | 1070 -093 -4200 -3529 314 163561451942 12 356537| 737 -4304 -2639 2835 2962 -222 | 55 00 | 735 -332 -4725 -4671 363 198595338887 2316 408858| 2983 -4067 -2674 3241 1143 467 | 00 82 | 985 -107 -5049 -4533 513 283643137758 66 578551| 777 -5410 -2720 4406 2290 -546 | 29 00 | 742 -342 -5260 -5252 | | | 530 284964457773 1877 579655| 2665 -5407 -2720 4413 1199 105 | 00 53 | 969 -213 -5264 -4895 618 3638551 9574 1214 687736| 1911 -5595 -2728 4910 1234 -292 | 00 32 | 899 -240 -5541 -5292 619 363855730374 1214 687737| 1911 -5595 -2728 4910 1234 -292 | 00 32 | 899 -240 -5542 -5292 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF THERMAL ANALYSIS FISSION GAS INFORMATION ( SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | F U E L C E N T E R | | F U E L - C L A D ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | FUEL GRAIN BUBBLE BUBBLE DIFFUS DIFFUS GAS SATURA | LOCAL |FISSON AMOUNT XE+KR NO HEAT | CENTER RADIUS RADIUS DENSITY COEFF COEFF DENSAT -TION | FGR AT| GAS OF GAS IN GAP RATE (MWD | TEMP (10D14 EFFECT BOUND DENS | CENTER| REL IN GAP (HRMSMS) (WCM) TU) | (DEGC) (MIC) (ANGST) BCM3) (10D-16 CM2S) (10D13 ATCM2) | () | () (10-3MOL) () ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 2850 50 00 193532 02 02 00 2610 | 050 | 050 009 000 245 139055442965 3399 292014| 14005 53 114 42205 454 298 2317 2317 | 5579 | 595 003 999 314 163561451942 12 356537| 2881 54 22 130136 02 02 438 2811 | 6489 | 775 008 1504 363 198595338887 2316 408858| 10360 54 28 119001 03 03 563 2368 | 5712 | 755 004 1611 513 283643137758 66 578551| 3054 54 33 109726 02 02 1074 3047 | 4151 | 920 008 2948 | | | 530 284964457773 1877 579655| 9437 54 33 109523 02 02 978 1806 | 4144 | 921 005 2956 618 3638551 9574 1214 687736| 7203 54 37 103495 02 02 1080 2151 | 3549 | 1298 007 4451 619 363855730374 1214 687737| 7203 54 37 103495 02 02 1080 2151 | 3549 | 1298 007 4451 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF THERMAL ANALYSIS FISSION GAS INFORMATION ( WHOLE FUEL ROD ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | F U E L R O D ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | AMOUNT OF GAS FRACTION OF GAS MIXTURE FISSION INNER NO HEAT | PRODUCE RELEASE PLENUM GAP TOTAL IN GAS GAS RATE (MWD (10D20 | (XE+KR) (XE+KR) FUEL ROD HE N2 KR XE RELEASE PRESS (HRMSMS) (WCM) TU) FISSCC)| (10D-3 MOLE) () () () () () (MPA) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00 000 | 000 000 324 090 414 10000 000 000 000 050 194 245 139055442965 3399 235664 582 | 1535 044 391 040 432 9587 000 131 878 284 249 314 163561451942 12 288442 713 | 1879 069 379 077 457 9070 000 197 1315 368 228 363 198595338887 2316 332016 821 | 2163 075 401 048 449 9232 000 217 1449 346 258 513 283643137758 66 479942 1186 | 3127 158 440 089 530 7853 000 389 2602 507 286 | 530 284964457773 1877 480941 1189 | 3133 159 465 055 520 8002 000 398 2661 507 308 618 3638551 9574 1214 578801 1431 | 3771 300 575 080 655 6390 000 595 3983 795 387 619 363855730374 1214 578802 1431 | 3771 300 575 080 655 6390 000 595 3983 795 387 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF FEM MECHANICAL ANALYSIS FUEL AND CLAD DEFORMATIONS ( ANALYZED SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | DIAMETRAL FUEL TOP | DIAMETRAL GAP | DIAMETRAL CLADDING | DIA RIDGE ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | AXIAL AXIAL RADIAL RADIAL| RADIAL CONTACT CONTACT| AXIAL RADIAL RADIAL | RIDGE RIDGE NO HEAT | DIPS DIPS DIPS DIPS | GAP AT PRESS PRESS | DISP DISP DISP |HEIGHT HEIGHT RATE (MWD | CENTER SURF INNER OUTER | TOP AXIAL RADIAL | AT TOP OUTTOP OUTMID| MAX TOP-MID (HRMSMS) (WCM) TU) | (MM) (MM) (MIC) (MIC) | (MIC) (MPA) (MPA) | (MM) (MIC) (MIC) | (MIC) (MIC) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 5414 5414 00 415 | 646 00 00 | 0773 93 93 | 00 00 245 139055442965 3399 292014| 8360 8360 00 294 | 00 13 94 | 2905 -394 -394 | 00 00 314 163561451942 12 356537| 7785 7785 00 -44 | 110 00 00 | 2647 -556 -556 | 00 00 363 198595338887 2316 408858| 10858 10858 00 93 | -00 07 82 | 2880 -490 -490 | 00 00 513 283643137758 66 578551| 14128 14128 00 -109 | 59 00 00 | 2986 -494 -494 | 00 00 | | | | 530 284964457773 1877 579655| 15224 15224 -00 21 | 00 08 53 | 3149 -418 -418 | 00 00 618 3638551 9574 1214 687736| 17978 17978 -00 -58 | -00 05 32 | 3320 -415 -415 | 00 00

JAEA-DataCode 2013-009

- 215 -

619 363855730374 1214 687737| 17978 17978 -00 -58 | -00 05 32 | 3320 -414 -414 | 00 00 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF FEM MECHANICAL ANALYSIS STRESSES AND STRAINS IN FUEL ( ANALYZED SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | T O P A N D I N N E R O F F U E L ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | CIRCUM AXIAL RADIAL CIRCUM AXIAL RADIAL EQUIV EQUIV CIRCUM AXIAL RADIAL EQUIV NO HEAT | TOTAL TOTAL TOTAL CREEP CREEP CREEP CREEP PLAST STRESS STRESS STRESS STRESS RATE (MWD | STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN (HRMSMS) (WCM) TU) |(001) (001) (001) (001)(001)(001)(001)(001) (MPA) (MPA) (MPA) (MPA) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 51 68 51 0 -0 0 0 0 00 -00 00 00 245 139055442965 3399 292014| -24 563 -24 -208 364 -208 381 0 -67 -64 -67 14 314 163561451942 12 356537| -135 556 -135 -249 407 -249 437 0 118 154 118 36 363 198595338887 2316 408858| -106 561 -106 -244 398 -244 428 0 -65 -00 -65 65 513 283643137758 66 578551| -173 656 -173 -300 499 -300 533 0 68 96 68 28 | 530 284964457773 1877 579655| -143 671 -143 -300 499 -300 533 0 -12 -14 -12 04 618 3638551 9574 1214 687736| -172 694 -172 -314 526 -314 560 0 -05 18 -05 23 619 363855730374 1214 687737| -172 694 -172 -314 526 -314 560 0 -05 18 -05 23 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF FEM MECHANICAL ANALYSIS STRESSES AND STRAINS IN CLAD ( ANALYZED SEGMENT NUMBER 6 ) | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | T O P A N D I N N E R O F C L A D D I N G ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP | CIRCUM AXIAL RADIAL CIRCUM AXIAL RADIAL EQUIV EQUIV CIRCUM AXIAL RADIAL EQUIV NO HEAT | TOTAL TOTAL TOTAL CREEP CREEP CREEP CREEP PLAST STRESS STRESS STRESS STRESS RATE (MWD | STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN STRAIN (HRMSMS) (WCM) TU) |(001) (001) (001) (001)(001)(001)(001)(001) (MPA) (MPA) (MPA) (MPA) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00| 8 8 24 -0 0 0 0 0 -997 -519 -49 821 245 139055442965 3399 292014| -78 21 155 -101 -26 128 135 0 -339 -348 -124 220 314 163561451942 12 356537| -104 16 169 -114 -33 147 154 0 -792 -360 -44 650 363 198595338887 2316 408858| -101 18 182 -122 -34 156 164 0 -386 -411 -115 284 513 283643137758 66 578551| -117 17 191 -127 -42 169 176 0 -836 -428 -51 680 | 530 284964457773 1877 579655| -109 20 195 -127 -42 169 176 0 -560 -368 -97 403 618 3638551 9574 1214 687736| -118 21 203 -134 -44 177 185 0 -639 -436 -87 484 619 363855730374 1214 687737| -118 21 203 -134 -44 177 185 0 -639 -436 -87 484 ----------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------- | RESULTS OF FEM MECHANICAL ANALYSIS FUEL AND CLAD DEFORMATIONS ( WHOLE FUEL ROD ) | | AND THERMAL ANALYSIS FUEL FREE VOLUME AND CLADDING OXIDATION INFORMATION | ------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------- P O W E R H I S T O R Y | F U E L R O D | OXIDE THICKNESS ----------------------------------------------------------------------------------------------------------------------------------- STEP TIME LINEAR BURNUP FLUEN | CLAD FUEL CLAD INNER FUEL PLENUM | OXIDE OXIDE NO HEAT CE(10 | DIA AXIAL AXIAL GAS FREE VOLUME | THICK THICK RATE (MWD (MWDT) E19N | DISP DISP DISP PRESSURE VOLUME | AVE MAX (HRMSMS) (WCM) TUO2) CM2) | (MIC) (001) (001) (MPA) (CM3) (CM3) | (MIC) (MIC) ----------------------------------------------------------------------------------------------------------------------------------- 1 0 0 0 0 00 00 00 00 | 933 5414 673 1938 9908 7749 | 0100 0100 245 139055442965 2773 207733 235664 6137 | -3957 8360 2531 2493 9031 7705 | 11180 16267 314 163561451942 10 254256 288442 7483 | -5276 7785 2306 2280 9303 7722 | 14973 22739 363 198595338887 1943 292666 332016 8592 | -4666 10858 2509 2584 8906 7568 | 17212 26062 513 283643137758 60 423060 479942 12145 | -4913 14128 2601 2863 8871 7397 | 28099 44001 | | 530 284964457773 1699 423941 480941 12169 | -4196 15224 2743 3082 8601 7347 | 28163 44092 618 3638551 9574 1100 510203 578801 14427 | -4169 17978 2893 3869 8502 7207 | 34844 54478 619 363855730374 1100 510203 578802 14428 | -4167 17978 2893 3869 8502 7207 | 34844 54479 ----------------------------------------------------------------------------------------------------------------------------------- INS1M= 0 INS2M= 0 INS3M= 0 ----------------------------- --- Calculation completed --- -----------------------------

72 Plotting control data file image of ldquoexplotABCrdquo

Sample Case Plotting Control

16

101

63018 Average LHR

JAEA-DataCode 2013-009

- 216 -

1

1

12000

5155620513

00600513

301

6301646464 Fast Flux

111

357

12000

5155620513

00600513

301

6301535353 Pellet center temperature

111

357

12000

5155620513

00600513

301

6301545454 Pellet surface temperature

101010

357

12000

5155620513

00600513

101

63012 Fission Gas Relase Rate

1

2

12000

5155620513

00600513

101

63013 Rod Internal Pressure

1

1

12000

5155620513

351050513

301

6301676767 Gap width

111

357

JAEA-DataCode 2013-009

- 217 -

12000

5155620513

00600513

301

6301494949 Gap Conductance

111

357

12000

5155620513

00600513

301

6301787878 Cladding Outer surface Diameter change

111

357

12000

5155620513

00600513

301

6301154154154 Cladding Hoop Stress

555

357

12000

7180724010-13

00600513

301

6301818181 Pellet Diameter change

111

357

12000

5155620513

00600513

311

2331101101101 Pellet local burnup

111

555

10 15200

5155620513

00600513

101

63016 Cladding Average elongation

1

1

12000

5155620513

JAEA-DataCode 2013-009

- 218 -

020800523

301

6301525252 Clad outer temperature

111

357

12000

5155620513

00600513

301

6301505050 Coolant temperature

111

1510

12000

5155620513

00600513

301

6301595959 Oxide thickness

111

357

1 1000

5155620513

00600513

73 Images of plotted output ldquoABC1ABCpdfrdquo

JAEA-DataCode 2013-009

- 219 -

JAEA-DataCode 2013-009

- 220 -

JAEA-DataCode 2013-009

- 221 -

JAEA-DataCode 2013-009

- 222 -

JAEA-DataCode 2013-009

- 223 -

JAEA-DataCode 2013-009

- 224 -

74 Example of numerical output of HBS model The result file which is generated by the High burnup structure formation model has a format of the ASCII table so as to be read by EXCEL or other gpaphical plotting softwares A sample of this file is presented in Figs 741 (12) and (22) Time Step No 431 time(hr)= 4807920 Segment No 1 2 3 4 5 6 7 8 9 10 11 12 Burnup(MWdt) 66214 247436 345140 407444 451814 472564 479751 481165 444920 399073 311228 114811 Power(Wcm) 47 47 47 47 47 47 47 47 47 47 47 47 Pellet Radius(cm) Local Burnup (MWdtU) 02600 59535 223747 312851 369954 410759 429871 436494 437799 404413 362269 281870 103406 06277 59535 223747 312851 369954 410759 429871 436494 437799 404413 362269 281870 103406 08180 59535 223747 312851 369954 410759 429871 436494 437799 404414 362269 281870 103406

51346 89214 369653 529193 630008 699531 731078 741868 743986 688916 616560 473792 161066 51608 90464 379943 546566 651956 724293 756951 768099 770286 713281 637905 488643 164049 51870 91755 390889 565226 675618 751010 784867 796398 798661 739569 660907 504550 167162 Pellet Radius(cm) Effective Burnup (GWdtU) 02600 5953 22374 16846 11614 4517 4131 4261 4698 5208 10668 21238 10340 06277 5953 22374 16901 12376 4782 4145 4279 4782 5305 12739 21263 10340 08180 5953 22374 16962 13210 5135 4161 4298 4865 5422 15584 21292 10340

51346 8921 36964 52917 62998 69950 73105 74184 74395 68889 61653 47377 16106 51608 9046 37993 54654 65193 72426 75692 76806 77025 71325 63788 48862 16404 51870 9175 39087 56520 67559 75098 78483 79636 79863 73954 66088 50453 16715

Pellet Radius(cm) Pellet Temperature (C) 00000 2970 2933 2924 2945 2984 3040 3100 3155 3183 3193 3201 3254 05200 2970 2932 2924 2944 2983 3039 3099 3154 3182 3192 3200 3253 07354 2969 2932 2923 2943 2982 3038 3098 3153 3181 3192 3200 3253

51477 2925 2870 2853 2867 2902 2956 3015 3070 3101 3116 3132 3204 51739 2925 2870 2852 2866 2901 2954 3014 3069 3100 3115 3131 3203 52000 2924 2869 2851 2865 2899 2953 3013 3067 3099 3114 3130 3203 Pellet Radius(cm) Pellet Thermal Conductivity (WcmK) 02600 07561 05572 04876 04514 04286 04185 04150 04142 04312 04549 05082 06871 06277 07561 05572 04876 04514 04286 04185 04150 04142 04312 04549 05082 06871 08180 07561 05572 04876 04514 04286 04185 04150 04142 04312 04549 05083 06871

50550 07158 04685 03935 03574 03359 03268 03237 03231 03386 03612 04156 06263 51608 07089 04459 03676 03308 03127 03102 03104 03104 03142 03347 03906 06139 51870 07070 04398 03605 03237 03104 03119 03134 03137 03107 03275 03838 06106

Fig741 (12) Example of HBS model output (ft17d)

JAEA-DataCode 2013-009

- 225 -

Pellet Radius(cm) Pellet Porosity () 02600 300 300 300 300 300 300 300 300 300 300 300 300 06277 300 300 300 300 300 300 300 300 300 300 300 300 08180 300 300 300 300 300 300 300 300 300 300 300 300

51346 300 300 300 300 302 313 321 323 301 300 300 300 51608 300 300 300 300 309 338 356 360 305 300 300 300 51870 300 300 300 300 331 391 423 430 319 300 300 300 Pellet Radius(cm) Pellet xv ratio () 02600 00 00 00 00 00 00 00 00 00 00 00 00 06277 00 00 00 00 00 00 00 00 00 00 00 00 08180 00 00 00 00 00 00 00 00 00 00 00 00

50281 00 00 00 00 00 00 00 00 00 00 00 00 50550 00 00 00 00 00 03 13 17 00 00 00 00 50816 00 00 00 00 00 39 84 96 00 00 00 00 51082 00 00 00 00 17 171 281 307 04 00 00 00 51346 00 00 00 00 112 481 692 739 54 00 00 00 51608 00 00 00 00 372 1070 1413 1487 232 00 00 00 51870 00 00 00 16 909 2031 2520 2621 643 01 00 00 Pellet Radius(cm) Fission Gas Release ratio () 02600 50 50 50 50 50 165 215 221 50 50 50 50 06277 50 50 50 50 50 149 193 200 50 50 50 50 08180 50 50 50 50 50 146 190 197 50 50 50 50

50281 50 50 50 50 50 50 50 50 50 50 50 50 50550 50 50 50 50 50 50 50 50 50 50 50 50 50816 50 50 50 50 50 907 906 911 50 50 50 50 51082 50 50 50 50 752 1018 1090 1104 50 50 50 50 51346 50 50 50 50 806 1018 1090 1104 646 50 50 50 51608 50 50 50 50 806 1018 1090 1104 735 50 50 50 51870 50 50 50 50 806 1018 1090 1104 735 50 50 50

Fig741 (22) Example of HBS model output (ft17d)

JAEA-DataCode 2013-009

- 226 -

75 Sample inputoutput of RODBURN-1

(1) input data file ABCrddat PWR-type Rod Sample Case (May 2011) 1 10 -2 36 1 1 0 0 1 0 1 1 4 0 100000 0000 0820 0970 1600 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 127315 77315 61315 59315 09500 00000 09600 00400 22 0670 0935 1081 1242 1286 1257 1086 1006 0850 0585 0676 0936 1111 1227 1267 1238 1100 1001 0849 0594 0678 0937 1120 1222 1260 1232 1105 0999 0849 0597 0679 0937 1130 1217 1254 1226 1109 0998 0849 0600 0680 0938 1136 1214 1250 1222 1112 0997 0849 0602 0681 0938 1139 1212 1248 1220 1114 0996 0848 0603 0681 0938 1140 1212 1247 1219 1114 0996 0848 0603 0681 0938 1140 1212 1247 1219 1114 0996 0848 0603 0681 0938 1140 1212 1247 1219 1114 0996 0849 0603 0709 0953 1132 1192 1218 1192 1108 1005 0864 0628 0739 0970 1123 1171 1185 1162 1100 1014 0880 0655 0751 0976 1119 1162 1173 1151 1098 1018 0887 0666 0775 0990 1112 1145 1147 1127 1092 1025 0900 0687 0792 0999 1106 1133 1129 1110 1088 1031 0909 0703 0798 1002 1104 1128 1123 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 0798 1002 1104 1128 1122 1104 1086 1032 0912 0708 22 2000 010

JAEA-DataCode 2013-009

- 227 -

0846831 1 001 10591 399605366 2 10805 23591 492838987 3 23746 25646 579413064 4 25814 27726 631357510 5 27834 25914 667947308 6 25981 25019 681414387 7 25035 9629 681510390 8 9629 096 682374416 9 096 9629 827495656 10 9714 19427 942927758 11 19615 21577 988026812 12 21660 20675 1081485092 13 20833 20337 1155127851 14 20453 18956 1181334058 15 18992 17992 1181855365 16 17993 600 1187364624 17 600 16993 1242897959 18 16993 15994 1336733088 19 15994 14994 1403604099 20 14994 13994 1516077261 21 13994 10996 1516081668 22 10996 10996 1 758041 3 1 2 3 4 5 6 7 8 9 10 STOP

(2) Output file ABCrdout ==================================================================================================================================

==

==================================================================================================================================

==================================================================================================================================

RRRRRRRR BBBBBBBB 111

RR RR BB BB 1111

RR RR BB BB 11

RR RR BB BB 11

RRRRRRRR BBBBBBBB 11

RRRR BB BB 11

RR RR BB BB 11

RR RR BB BB 11

RR RR BBBBBBBB 111111

==================================================================================================================================

==================================================================================================================================

RODBURN PWR-type Rod Sample Case (May 2011) VERSION 12 (Septembar 2005)

INPUT FILECFEM_ranwrkABCd RUN DATE11MAY12 START TIME144735

IPRIN(1)= 6

I N P U T D A T A L I S T

-------------------------------

1 2 3 4 5 6 7 8

CARD NO 5050505050505050

1 PWR-type Rod Sample Case (May 2011)

2 1 10 -2 36 1 1 0 0 1 0

3 1 1 4 0

4 100000 0000 0820 0970 1600

5 10000 10000 10000 10000 10000 10000 10000 10000 10000

6 10000

7 127315 77315 61315 59315

8 09500 00000

9 09600 00400

10 22

JAEA-DataCode 2013-009

- 228 -

11 0670 0935 1081 1242 1286 1257 1086 1006 0850

12 0585

13 0676 0936 1111 1227 1267 1238 1100 1001 0849

14 0594

15 0678 0937 1120 1222 1260 1232 1105 0999 0849

16 0597

17 0679 0937 1130 1217 1254 1226 1109 0998 0849

18 0600

19 0680 0938 1136 1214 1250 1222 1112 0997 0849

20 0602

21 0681 0938 1139 1212 1248 1220 1114 0996 0848

22 0603

23 0681 0938 1140 1212 1247 1219 1114 0996 0848

24 0603

25 0681 0938 1140 1212 1247 1219 1114 0996 0848

26 0603

27 0681 0938 1140 1212 1247 1219 1114 0996 0849

28 0603

29 0709 0953 1132 1192 1218 1192 1108 1005 0864

30 0628

31 0739 0970 1123 1171 1185 1162 1100 1014 0880

32 0655

33 0751 0976 1119 1162 1173 1151 1098 1018 0887

34 0666

35 0775 0990 1112 1145 1147 1127 1092 1025 0900

36 0687

37 0792 0999 1106 1133 1129 1110 1088 1031 0909

38 0703

39 0798 1002 1104 1128 1123 1104 1086 1032 0912

40 0708

41 0798 1002 1104 1128 1122 1104 1086 1032 0912

42 0708

43 0798 1002 1104 1128 1122 1104 1086 1032 0912

44 0708

45 0798 1002 1104 1128 1122 1104 1086 1032 0912

46 0708

47 0798 1002 1104 1128 1122 1104 1086 1032 0912

48 0708

49 0798 1002 1104 1128 1122 1104 1086 1032 0912

50 0708

5050505050505050

RODBURN PWR-type Rod Sample Case (May 2011) VERSION 12

I N P U T D A T A L I S T

-------------------------------

1 2 3 4 5 6 7 8

CARD NO 5050505050505050

51 0798 1002 1104 1128 1122 1104 1086 1032 0912

52 0708

53 0798 1002 1104 1128 1122 1104 1086 1032 0912

54 0708

55 22 2000 010

56 0846831 1 001 10591

57 399605366 2 10805 23591

58 492838987 3 23746 25646

59 579413064 4 25814 27726

60 631357510 5 27834 25914

61 667947308 6 25981 25019

62 681414387 7 25035 9629

63 681510390 8 9629 096

64 682374416 9 096 9629

65 827495656 10 9714 19427

66 942927758 11 19615 21577

67 988026812 12 21660 20675

68 1081485092 13 20833 20337

69 1155127851 14 20453 18956

70 1181334058 15 18992 17992

71 1181855365 16 17993 600

72 1187364624 17 600 16993

73 1242897959 18 16993 15994

74 1336733088 19 15994 14994

75 1403604099 20 14994 13994

76 1516077261 21 13994 10996

JAEA-DataCode 2013-009

- 229 -

77 1516081668 22 10996 10996

78 1

79 758041

80 3

81 1 2 3 4 5 6 7 8 9 10

82 STOP

5050505050505050

RODBURN PWR-type Rod Sample Case (May 2011) VERSION 12

PWR-type Rod Sample Case (May 2011)

CONTROL DATA

1 MODEL =1PWR =2BWR =3HWR =4PWR(MOX) =5BWR(MOX)

10 MESHZ NUMBER OF AXIAL MESHES(=lt 40)

-2 KREG1 NUMBER OF RADIAL MESHES(=lt 39)

36 MESHR NUMBER OF PELLET RADIAL MESHES(=lt 36)

1 IOPT POWER HISTORY DATA OPTION (0INPUT AVERAGE THERMAL FLUX)

(1INPUT AVERAGE POWER DENSITY (WCM))

1 IDIST AXIAL DISTRIBUTION INPUT OPTION(0COSINE1INPUT)

0 MODEL2 =1PWR =2BWR =3HWR =4PWR(MOX) =5BWR(MOX)

0 KREG2 NUMBER OF RADIAL MESHES FOR MODEL2(=lt 39)

(0DOES NOT CALCULATE BY RABBLE)

1 IFLPW =0AXIAL FLUX DISTRIBUTION =1AXIAL POWER DISTRIBUTION

0 ISTOP =0NOMAL CALCULATION =1INPUT DATA CHECK

SPECTRAL INDICES

THERM = 07010 RES = 03040 FAST = 20100

CONTROL DATA 2

1 IAUTO =0NUCLIDE NUM amp CONC INPUT =1AUTO GENERATE

1 IPTCH1 =0BOUNDARY DIAMETER INPUT =1FUEL ROD PITCH INPUT

4 IZR1 =2ZIRCALOY-2 =4ZIRCALOY-4

0 IHD1 =0H2O(COOLANT) =1D2O(COOLANT)

0 IPTCH2 =0BOUNDARY DIAMETER INPUT =1FUEL ROD PITCH INPUT

0 IZR2 =2ZIRCALOY-2 =4ZIRCALOY-4

0 IHD2 =0H2O(COOLANT) =1D2O(COOLANT)

FUEL PIN SIZE

1000000 ZLENG FUEL ACTIVE LENGTH (CM)

00000 PDIN PELLET INNER DIAMETER (CM)

08200 PDIA PELLET OUTER DIAMETER (CM)

09700 CDOUT1 CLADDING OUTER DIAMETER (CM)

16000 PITCH1 FUEL ROD PITCH (CM)

00000 CDOUT2 CLADDING OUTER DIAMETER (CM)

00000 PITCH2 FUEL ROD PITCH (CM)

AXIAL DISTANCE FOR EACH MESH(CM)

1000E+01 2000E+01 3000E+01 4000E+01 5000E+01 6000E+01 7000E+01 8000E+01 9000E+01 1000E+02

RADIAL DISTANCE FOR EACH MESH(CM)

0000E+00 6833E-02 9664E-02 1184E-01 1367E-01 1528E-01 1674E-01 1808E-01 1933E-01 2050E-01 2161E-01 2266E-01

2367E-01 2464E-01 2557E-01 2647E-01 2733E-01 2817E-01 2899E-01 2979E-01 3056E-01 3131E-01 3205E-01 3277E-01

3348E-01 3417E-01 3484E-01 3551E-01 3616E-01 3680E-01 3743E-01 3805E-01 3866E-01 3925E-01 3984E-01 4043E-01

4100E-01

FUEL MATRIALS(1)

09500 FDEN FUEL FRACTIONAL DENSITY (-)

00000 FPUO2 PUO2 WEIGHT FRACTION (WT FRAC)

FUEL MATRIALS(2)

09600 FU238 U238U-TOTAL (WT FRAC)

00400 FU235 U235U-TOTAL (WT FRAC)

00000 FU232 U232U-TOTAL (WT FRAC)

JAEA-DataCode 2013-009

- 230 -

00000 FU233 U233U-TOTAL (WT FRAC)

00000 FU234 U234U-TOTAL (WT FRAC)

00000 FU236 U236U-TOTAL (WT FRAC)

00000 FU237 U237U-TOTAL (WT FRAC)

00000 FU239 U239U-TOTAL (WT FRAC)

00000 FU240 U240U-TOTAL (WT FRAC)

NUCLIDE NUMBER AND CONCENTRATION(GCC)

MIXTURE NO NUCLIDE CONCENTRATION

1 U238 8810E+00

1 U235 3671E-01

1 O 1235E+00

2 ZR-4 6550E+00

3 H 7900E-02

3 O 6310E-01

ARRAY DESCRIPTION OF MIXTURE

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3

VOLUME(CM3) OF FUEL SEGMENT

RADIAL

AXIAL 1 2 3 4 5 6 7 8 9 10

1 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

2 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

3 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

4 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

5 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

6 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

7 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

8 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

9 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

10 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

RADIAL

AXIAL 11 12 13 14 15 16 17 18 19 20

1 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

2 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

3 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

4 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

5 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

6 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

7 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

8 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

9 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

10 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

RADIAL

AXIAL 21 22 23 24 25 26 27 28 29 30

1 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

2 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

3 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

4 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

5 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

6 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

7 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

8 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

9 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

10 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01 1467E-01

FUEL PELLET TOTAL WEIGHT (GRAM) = 549859

JAEA-DataCode 2013-009

- 231 -

NUMBER OF PATTERNS FOR AXIAL FLUX DISTRIBUTION NDIST = 22

INPUT AXIAL POWER DISTRIBUTION

1 6700E-01 9350E-01 1081E+00 1242E+00 1286E+00 1257E+00 1086E+00 1006E+00 8500E-01 5850E-01

2 6760E-01 9360E-01 1111E+00 1227E+00 1267E+00 1238E+00 1100E+00 1001E+00 8490E-01 5940E-01

3 6780E-01 9370E-01 1120E+00 1222E+00 1260E+00 1232E+00 1105E+00 9990E-01 8490E-01 5970E-01

4 6790E-01 9370E-01 1130E+00 1217E+00 1254E+00 1226E+00 1109E+00 9980E-01 8490E-01 6000E-01

5 6800E-01 9380E-01 1136E+00 1214E+00 1250E+00 1222E+00 1112E+00 9970E-01 8490E-01 6020E-01

6 6810E-01 9380E-01 1139E+00 1212E+00 1248E+00 1220E+00 1114E+00 9960E-01 8480E-01 6030E-01

7 6810E-01 9380E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9960E-01 8480E-01 6030E-01

8 6810E-01 9380E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9960E-01 8480E-01 6030E-01

9 6810E-01 9380E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9960E-01 8490E-01 6030E-01

10 7090E-01 9530E-01 1132E+00 1192E+00 1218E+00 1192E+00 1108E+00 1005E+00 8640E-01 6280E-01

11 7390E-01 9700E-01 1123E+00 1171E+00 1185E+00 1162E+00 1100E+00 1014E+00 8800E-01 6550E-01

12 7510E-01 9760E-01 1119E+00 1162E+00 1173E+00 1151E+00 1098E+00 1018E+00 8870E-01 6660E-01

13 7750E-01 9900E-01 1112E+00 1145E+00 1147E+00 1127E+00 1092E+00 1025E+00 9000E-01 6870E-01

14 7920E-01 9990E-01 1106E+00 1133E+00 1129E+00 1110E+00 1088E+00 1031E+00 9090E-01 7030E-01

15 7980E-01 1002E+00 1104E+00 1128E+00 1123E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

16 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

17 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

18 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

19 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

20 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

21 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

22 7980E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9120E-01 7080E-01

NORMALIZED POWER DISTRIBUTION

1 6701E-01 9352E-01 1081E+00 1242E+00 1286E+00 1257E+00 1086E+00 1006E+00 8502E-01 5851E-01

2 6761E-01 9361E-01 1111E+00 1227E+00 1267E+00 1238E+00 1100E+00 1001E+00 8491E-01 5941E-01

3 6781E-01 9371E-01 1120E+00 1222E+00 1260E+00 1232E+00 1105E+00 9991E-01 8491E-01 5971E-01

4 6791E-01 9371E-01 1130E+00 1217E+00 1254E+00 1226E+00 1109E+00 9981E-01 8491E-01 6001E-01

5 6800E-01 9380E-01 1136E+00 1214E+00 1250E+00 1222E+00 1112E+00 9970E-01 8490E-01 6020E-01

6 6811E-01 9381E-01 1139E+00 1212E+00 1248E+00 1220E+00 1114E+00 9961E-01 8481E-01 6031E-01

7 6811E-01 9382E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9962E-01 8482E-01 6031E-01

8 6811E-01 9382E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9962E-01 8482E-01 6031E-01

9 6811E-01 9381E-01 1140E+00 1212E+00 1247E+00 1219E+00 1114E+00 9961E-01 8491E-01 6031E-01

10 7089E-01 9529E-01 1132E+00 1192E+00 1218E+00 1192E+00 1108E+00 1005E+00 8639E-01 6279E-01

11 7391E-01 9701E-01 1123E+00 1171E+00 1185E+00 1162E+00 1100E+00 1014E+00 8801E-01 6551E-01

12 7509E-01 9759E-01 1119E+00 1162E+00 1173E+00 1151E+00 1098E+00 1018E+00 8869E-01 6659E-01

13 7750E-01 9900E-01 1112E+00 1145E+00 1147E+00 1127E+00 1092E+00 1025E+00 9000E-01 6870E-01

14 7920E-01 9990E-01 1106E+00 1133E+00 1129E+00 1110E+00 1088E+00 1031E+00 9090E-01 7030E-01

15 7982E-01 1002E+00 1104E+00 1128E+00 1123E+00 1104E+00 1086E+00 1032E+00 9123E-01 7082E-01

16 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

JAEA-DataCode 2013-009

- 232 -

17 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

18 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

19 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

20 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

21 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

22 7983E-01 1002E+00 1104E+00 1128E+00 1122E+00 1104E+00 1086E+00 1032E+00 9124E-01 7083E-01

DTIME(DAY) = 2000 ZMAX(CM) = 10000 ISTP = 22 DINCR= 010

ISTP KDIS TIMX(DAY) PLHR(WCM)

1 1 085 001 10591

2 2 39961 10805 23591

3 3 49284 23746 25646

4 4 57941 25814 27726

5 5 63136 27834 25914

6 6 66795 25981 25019

7 7 68141 25035 9629

8 8 68151 9629 096

9 9 68237 096 9629

10 10 82750 9714 19427

11 11 94293 19615 21577

12 12 98803 21660 20675

13 13 108149 20833 20337

14 14 115513 20453 18956

15 15 118133 18992 17992

16 16 118186 17993 600

17 17 118736 600 16993

18 18 124290 16993 15994

19 19 133673 15994 14994

20 20 140360 14994 13994

21 21 151608 13994 10996

22 22 151608 10996 10996

ISTEP KDIS TIMX(DAY) PLHR(WCM) POWER(MW)

1 1 085 5295 000529

2 2 2078 11124 001112

3 2 4072 11763 001176

4 2 6066 12402 001240

5 2 8060 13041 001304

6 2 10054 13680 001368

7 2 12047 14320 001432

8 2 14041 14959 001496

9 2 16035 15598 001560

10 2 18029 16237 001624

11 2 20023 16877 001688

12 2 22016 17516 001752

13 2 24010 18155 001816

14 2 26004 18794 001879

15 2 27998 19434 001943

16 2 29992 20073 002007

17 2 31985 20712 002071

18 2 33979 21351 002135

19 2 35973 21991 002199

20 2 37967 22630 002263

21 2 39961 23269 002327

22 3 41825 23934 002393

23 3 43690 24314 002431

24 3 45555 24694 002469

25 3 47419 25073 002507

26 3 49284 25453 002545

27 4 51015 26003 002600

28 4 52747 26385 002638

JAEA-DataCode 2013-009

- 233 -

29 4 54478 26767 002677

30 4 56210 27150 002715

31 4 57941 27532 002753

32 5 59673 27514 002751

33 5 61404 26874 002687

34 5 63136 26234 002623

35 6 64965 25738 002574

36 6 66795 25257 002526

37 7 68141 17329 001733

38 8 68151 4862 000486

39 9 68237 4862 000486

40 10 70051 10322 001032

41 10 71865 11536 001154

42 10 73679 12751 001275

43 10 75494 13965 001396

44 10 77308 15179 001518

45 10 79122 16393 001639

46 10 80936 17608 001761

47 10 82750 18822 001882

48 11 84673 19777 001978

49 11 86597 20103 002010

50 11 88521 20430 002043

51 11 90445 20757 002076

52 11 92369 21084 002108

53 11 94293 21411 002141

54 12 95796 21498 002150

55 12 97299 21170 002117

56 12 98803 20841 002084

57 13 100672 20783 002078

58 13 102541 20684 002068

59 13 104410 20585 002059

60 13 106279 20486 002049

61 13 108149 20387 002039

62 14 109990 20266 002027

63 14 111831 19892 001989

64 14 113672 19517 001952

65 14 115513 19143 001914

66 15 116823 18736 001874

67 15 118133 18237 001824

68 16 118186 9293 000929

69 17 118736 8793 000879

70 18 120588 16820 001682

71 18 122439 16487 001649

72 18 124290 16154 001615

73 19 126166 15888 001589

74 19 128043 15688 001569

75 19 129920 15488 001549

76 19 131797 15288 001529

77 19 133673 15088 001509

78 20 135345 14863 001486

79 20 137017 14613 001461

80 20 138689 14363 001436

81 20 140360 14113 001411

82 21 142235 13739 001374

83 21 144110 13239 001324

84 21 145984 12740 001274

85 21 147859 12240 001224

86 21 149733 11741 001174

87 21 151608 11241 001124

88 22 151608 10992 001099

89 22 153503 18560 001856

90 22 155398 18560 001856

91 22 157293 18560 001856

92 22 159189 18560 001856

93 22 161084 18560 001856

94 22 162979 18560 001856

95 22 164874 18560 001856

96 22 166769 18560 001856

RODBURN SUB CODE RABBLE INPUT CONDITION amp CALCULATION RESULT

NO CELL REGIONS = 39 NO MATERIALS = 12

NO COMPOSITIONS = 39 NO RESONANT MATERIALS = 2

JAEA-DataCode 2013-009

- 234 -

NO BROAD GROUPS = 12 LETHARGY WIDTH INTER GROUP =0100000E-01

NO INTERMEDIATE GROUPS = 885 RESONANCETEST = 0500E-02 (BARNS)

CIRCULARIZED CELL WITH COSINE INTERFACE CURRENTS

REGION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

COMPOSITION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

OUTER DIMENSION 0068 0097 0118 0137 0153 0167 0181 0193 0205 0216 0227 0237 0246 0256 0265 0273 0282 0290

TEMPERATURE 1266 1252 1238 1225 1211 1197 1183 1169 1155 1141 1127 1113 1100 1086 1072 1058 1044 1030

REGION 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

REGION 37 38 39

COMPOSITION 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

COMPOSITION 37 38 39

OUTER DIMENSION 0298 0306 0313 0320 0328 0335 0342 0348 0355 0362 0368 0374 0380 0387 0393 0398 0404 0410

OUTER DIMENSION 0485 0694 0903

TEMPERATURE 1016 1002 988 975 961 947 933 919 905 891 877 863 850 836 822 808 794 780

TEMPERATURE 613 593 593

MATERIAL RES MASS SIG POT SIG A 1V SIG F 1V COMPOSITIONDENSITY

(AMU) (BARNS) (BARNS) (BARNS) 1 2 3 4 5

U238 190 238051E+02 118230E+01 000000E+00 000000E+00 222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 222878E-02 222878E-02 222878E-02 222878E-02

222878E-02 000000E+00 000000E+00 000000E+00

P240 200 240054E+02 109860E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

H 0 100783E+00 204280E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 472045E-02 472045E-02

D 0 201431E+00 559400E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

O 0 159949E+01 290700E+00 000000E+00 000000E+00 464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 464810E-02 464810E-02 464810E-02 464810E-02

464810E-02 000000E+00 237570E-02 237570E-02

HE 0 400259E+00 136800E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

ZR-2 0 913870E+01 647900E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

JAEA-DataCode 2013-009

- 235 -

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

ZR-4 0 913950E+01 647900E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 431582E-02 000000E+00 000000E+00

U235 0 235044E+02 115000E+01 000000E+00 000000E+00 940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 940538E-04 940538E-04 940538E-04 940538E-04

940538E-04 000000E+00 000000E+00 000000E+00

P239 0 239053E+02 112930E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

P241 0 241057E+02 125660E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

P242 0 242059E+02 123160E+01 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00 000000E+00

000000E+00 000000E+00 000000E+00 000000E+00

BROAD GROUP NO INTER GROUPS NO FINE GPINTER GP MAXIMUN ENERGY (EV) MINIMUM ENERGY (EV)

1 45 20 03519E+04 02244E+04

2 45 20 02244E+04 01431E+04

3 45 20 01431E+04 09123E+03

4 91 20 09123E+03 03672E+03

5 90 20 03672E+03 01493E+03

6 68 20 01493E+03 07564E+02

7 45 20 07564E+02 04823E+02

8 55 20 04823E+02 02783E+02

9 55 20 02783E+02 01605E+02

10 48 20 01605E+02 09934E+01

11 90 20 09934E+01 04039E+01

12 208 20 04039E+01 05046E+00

ABSORPTION 1 GROUPS

U238 11032E+00 11164E+00 11273E+00 11378E+00 11482E+00 11585E+00 11692E+00 11803E+00 11916E+00 12031E+00

12152E+00 12279E+00 12414E+00 12563E+00 12720E+00 12888E+00 13066E+00 13259E+00 13469E+00 13700E+00

13951E+00 14229E+00 14544E+00 14901E+00 15314E+00 15785E+00 16351E+00 17048E+00 17931E+00 19097E+00

20711E+00 23069E+00 26701E+00 32670E+00 43343E+00 63435E+00 00000E+00 00000E+00 00000E+00

P240 54437E+02 54422E+02 54412E+02 54398E+02 54386E+02 54375E+02 54364E+02 54354E+02 54344E+02 54333E+02

54323E+02 54312E+02 54301E+02 54292E+02 54282E+02 54273E+02 54263E+02 54252E+02 54241E+02 54230E+02

54219E+02 54207E+02 54194E+02 54181E+02 54168E+02 54152E+02 54136E+02 54118E+02 54098E+02 54077E+02

54054E+02 54027E+02 53994E+02 53955E+02 53902E+02 53823E+02 00000E+00 00000E+00 00000E+00

FISSION 1 GROUPS

U238 89217E-05 89168E-05 89130E-05 89097E-05 89066E-05 89037E-05 89009E-05 88980E-05 88953E-05 88927E-05

JAEA-DataCode 2013-009

- 236 -

88900E-05 88874E-05 88846E-05 88816E-05 88787E-05 88757E-05 88728E-05 88699E-05 88669E-05 88639E-05

88608E-05 88577E-05 88546E-05 88513E-05 88480E-05 88447E-05 88411E-05 88373E-05 88333E-05 88289E-05

88241E-05 88186E-05 88122E-05 88045E-05 87943E-05 87797E-05 00000E+00 00000E+00 00000E+00

P240 23082E-01 23089E-01 23094E-01 23098E-01 23103E-01 23107E-01 23112E-01 23116E-01 23121E-01 23125E-01

23129E-01 23134E-01 23139E-01 23144E-01 23149E-01 23155E-01 23161E-01 23166E-01 23172E-01 23179E-01

23185E-01 23192E-01 23200E-01 23207E-01 23216E-01 23224E-01 23233E-01 23243E-01 23254E-01 23266E-01

23279E-01 23295E-01 23312E-01 23331E-01 23353E-01 23376E-01 00000E+00 00000E+00 00000E+00

ABSORPTION RESONANCE INTEGRAL

U238 14935E+01 15122E+01 15276E+01 15424E+01 15570E+01 15715E+01 15865E+01 16021E+01 16180E+01 16340E+01

16509E+01 16687E+01 16877E+01 17084E+01 17304E+01 17538E+01 17786E+01 18054E+01 18347E+01 18667E+01

19016E+01 19402E+01 19839E+01 20333E+01 20905E+01 21555E+01 22338E+01 23300E+01 24517E+01 26125E+01

28349E+01 31596E+01 36597E+01 44817E+01 59527E+01 87265E+01 00000E+00 00000E+00 00000E+00

P240 72101E+03 72125E+03 72145E+03 72155E+03 72166E+03 72176E+03 72187E+03 72199E+03 72209E+03 72217E+03

72226E+03 72235E+03 72245E+03 72259E+03 72272E+03 72286E+03 72298E+03 72310E+03 72321E+03 72333E+03

72344E+03 72355E+03 72366E+03 72377E+03 72388E+03 72395E+03 72404E+03 72412E+03 72420E+03 72429E+03

72439E+03 72449E+03 72460E+03 72473E+03 72489E+03 72506E+03 00000E+00 00000E+00 00000E+00

FISSION RESONANCE INTEGRAL

U238 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03

12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03

12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03

12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 12078E-03 00000E+00 00000E+00 00000E+00

P240 30572E+00 30600E+00 30620E+00 30639E+00 30656E+00 30672E+00 30689E+00 30705E+00 30721E+00 30737E+00

30752E+00 30768E+00 30785E+00 30803E+00 30821E+00 30840E+00 30858E+00 30877E+00 30896E+00 30916E+00

30936E+00 30957E+00 30979E+00 31001E+00 31025E+00 31048E+00 31073E+00 31100E+00 31129E+00 31161E+00

31197E+00 31238E+00 31284E+00 31339E+00 31406E+00 31490E+00 00000E+00 00000E+00 00000E+00

TIME STEP NO 44 TIME = 77308 DAYS FLUX = 29345E+13 NCM2SEC

RADAIL DISTRIBUTION AXIAL SEGMENT NO 1 AXIAL COODINATE(CM) = 500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 0048 26083E-05 17781E+02 26057E-02 19355E+04 17060E+04 17231E+13 23886E+13 17778E+21

2 0084 26154E-05 17829E+02 26095E-02 19383E+04 17084E+04 17230E+13 23884E+13 17777E+21

3 0108 26223E-05 17876E+02 26143E-02 19419E+04 17116E+04 17241E+13 23899E+13 17791E+21

4 0128 26294E-05 17924E+02 26198E-02 19460E+04 17152E+04 17256E+13 23920E+13 17810E+21

5 0145 26368E-05 17975E+02 26257E-02 19504E+04 17191E+04 17274E+13 23945E+13 17833E+21

6 0160 26445E-05 18027E+02 26321E-02 19551E+04 17232E+04 17295E+13 23975E+13 17859E+21

7 0174 26526E-05 18082E+02 26389E-02 19601E+04 17277E+04 17319E+13 24007E+13 17888E+21

8 0187 26612E-05 18141E+02 26462E-02 19656E+04 17325E+04 17344E+13 24043E+13 17921E+21

9 0199 26700E-05 18201E+02 26539E-02 19713E+04 17376E+04 17372E+13 24081E+13 17955E+21

10 0211 26791E-05 18263E+02 26619E-02 19772E+04 17428E+04 17400E+13 24120E+13 17991E+21

11 0221 26885E-05 18327E+02 26702E-02 19834E+04 17482E+04 17430E+13 24161E+13 18028E+21

12 0232 26985E-05 18395E+02 26789E-02 19898E+04 17539E+04 17460E+13 24203E+13 18067E+21

13 0242 27090E-05 18467E+02 26880E-02 19966E+04 17599E+04 17491E+13 24246E+13 18106E+21

14 0251 27205E-05 18545E+02 26977E-02 20038E+04 17662E+04 17524E+13 24292E+13 18148E+21

15 0260 27326E-05 18628E+02 27079E-02 20114E+04 17729E+04 17558E+13 24340E+13 18191E+21

16 0269 27455E-05 18716E+02 27187E-02 20194E+04 17800E+04 17594E+13 24388E+13 18235E+21

17 0278 27589E-05 18807E+02 27299E-02 20277E+04 17873E+04 17629E+13 24437E+13 18280E+21

18 0286 27733E-05 18905E+02 27418E-02 20366E+04 17951E+04 17665E+13 24488E+13 18328E+21

19 0294 27889E-05 19011E+02 27547E-02 20461E+04 18035E+04 17704E+13 24541E+13 18377E+21

20 0302 28059E-05 19127E+02 27685E-02 20564E+04 18126E+04 17745E+13 24598E+13 18430E+21

21 0309 28246E-05 19255E+02 27834E-02 20675E+04 18224E+04 17789E+13 24659E+13 18486E+21

22 0317 28452E-05 19396E+02 27998E-02 20796E+04 18331E+04 17836E+13 24725E+13 18545E+21

23 0324 28682E-05 19552E+02 28176E-02 20929E+04 18447E+04 17886E+13 24793E+13 18607E+21

24 0331 28936E-05 19725E+02 28368E-02 21071E+04 18573E+04 17934E+13 24861E+13 18669E+21

25 0338 29223E-05 19921E+02 28581E-02 21230E+04 18712E+04 17984E+13 24929E+13 18733E+21

26 0345 29545E-05 20141E+02 28817E-02 21405E+04 18867E+04 18035E+13 25000E+13 18799E+21

27 0352 29926E-05 20400E+02 29086E-02 21605E+04 19043E+04 18087E+13 25073E+13 18868E+21

28 0358 30386E-05 20714E+02 29402E-02 21839E+04 19250E+04 18142E+13 25149E+13 18938E+21

29 0365 30968E-05 21110E+02 29793E-02 22130E+04 19506E+04 18207E+13 25239E+13 19020E+21

30 0371 31728E-05 21628E+02 30290E-02 22499E+04 19831E+04 18280E+13 25339E+13 19110E+21

31 0377 32759E-05 22331E+02 30944E-02 22985E+04 20259E+04 18357E+13 25447E+13 19206E+21

32 0384 34240E-05 23341E+02 31858E-02 23664E+04 20858E+04 18441E+13 25564E+13 19312E+21

33 0390 36491E-05 24875E+02 33218E-02 24674E+04 21748E+04 18534E+13 25692E+13 19430E+21

34 0396 40146E-05 27367E+02 35378E-02 26278E+04 23162E+04 18633E+13 25830E+13 19558E+21

35 0401 46609E-05 31773E+02 39137E-02 29070E+04 25623E+04 18739E+13 25975E+13 19693E+21

36 0407 58652E-05 39982E+02 46091E-02 34236E+04 30176E+04 18849E+13 26129E+13 19836E+21

RADAIL DISTRIBUTION AXIAL SEGMENT NO 2 AXIAL COODINATE(CM) = 1500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

JAEA-DataCode 2013-009

- 237 -

1 0048 34307E-05 23387E+02 35511E-02 26377E+04 23249E+04 25874E+13 35866E+13 25823E+21

2 0084 34432E-05 23472E+02 35578E-02 26427E+04 23294E+04 25874E+13 35867E+13 25822E+21

3 0108 34543E-05 23548E+02 35655E-02 26484E+04 23344E+04 25889E+13 35887E+13 25840E+21

4 0128 34653E-05 23622E+02 35738E-02 26546E+04 23398E+04 25908E+13 35914E+13 25866E+21

5 0145 34764E-05 23698E+02 35826E-02 26611E+04 23456E+04 25932E+13 35947E+13 25897E+21

6 0160 34876E-05 23774E+02 35919E-02 26680E+04 23516E+04 25958E+13 35983E+13 25932E+21

7 0174 34993E-05 23854E+02 36018E-02 26753E+04 23581E+04 25987E+13 36023E+13 25972E+21

8 0187 35116E-05 23938E+02 36124E-02 26832E+04 23651E+04 26019E+13 36068E+13 26015E+21

9 0199 35243E-05 24025E+02 36234E-02 26914E+04 23723E+04 26053E+13 36115E+13 26061E+21

10 0211 35373E-05 24113E+02 36348E-02 26999E+04 23798E+04 26090E+13 36165E+13 26109E+21

11 0221 35509E-05 24206E+02 36467E-02 27087E+04 23875E+04 26127E+13 36217E+13 26159E+21

12 0232 35653E-05 24304E+02 36591E-02 27180E+04 23957E+04 26165E+13 36271E+13 26210E+21

13 0242 35806E-05 24408E+02 36723E-02 27277E+04 24043E+04 26205E+13 36326E+13 26264E+21

14 0251 35972E-05 24522E+02 36864E-02 27382E+04 24135E+04 26247E+13 36384E+13 26319E+21

15 0260 36148E-05 24642E+02 37012E-02 27492E+04 24232E+04 26290E+13 36444E+13 26377E+21

16 0269 36335E-05 24769E+02 37169E-02 27609E+04 24335E+04 26334E+13 36505E+13 26436E+21

17 0278 36532E-05 24904E+02 37332E-02 27730E+04 24442E+04 26379E+13 36567E+13 26497E+21

18 0286 36744E-05 25048E+02 37507E-02 27860E+04 24556E+04 26425E+13 36630E+13 26559E+21

19 0294 36976E-05 25206E+02 37695E-02 28000E+04 24680E+04 26473E+13 36697E+13 26626E+21

20 0302 37230E-05 25379E+02 37900E-02 28151E+04 24813E+04 26526E+13 36770E+13 26696E+21

21 0309 37509E-05 25569E+02 38121E-02 28316E+04 24959E+04 26583E+13 36849E+13 26771E+21

22 0317 37817E-05 25780E+02 38365E-02 28497E+04 25118E+04 26644E+13 36934E+13 26851E+21

23 0324 38163E-05 26015E+02 38632E-02 28696E+04 25293E+04 26707E+13 37022E+13 26934E+21

24 0331 38549E-05 26279E+02 38924E-02 28912E+04 25484E+04 26769E+13 37108E+13 27017E+21

25 0338 38990E-05 26579E+02 39250E-02 29154E+04 25697E+04 26832E+13 37195E+13 27102E+21

26 0345 39488E-05 26919E+02 39613E-02 29424E+04 25935E+04 26896E+13 37284E+13 27191E+21

27 0352 40082E-05 27323E+02 40033E-02 29736E+04 26210E+04 26962E+13 37375E+13 27281E+21

28 0358 40806E-05 27817E+02 40532E-02 30107E+04 26537E+04 27032E+13 37471E+13 27376E+21

29 0365 41726E-05 28444E+02 41156E-02 30570E+04 26945E+04 27114E+13 37586E+13 27485E+21

30 0371 42936E-05 29269E+02 41958E-02 31166E+04 27470E+04 27208E+13 37716E+13 27606E+21

31 0377 44593E-05 30399E+02 43028E-02 31961E+04 28171E+04 27308E+13 37854E+13 27737E+21

32 0384 46989E-05 32032E+02 44543E-02 33086E+04 29163E+04 27415E+13 38003E+13 27878E+21

33 0390 50648E-05 34526E+02 46818E-02 34776E+04 30652E+04 27532E+13 38165E+13 28036E+21

34 0396 56612E-05 38592E+02 50468E-02 37487E+04 33042E+04 27657E+13 38339E+13 28207E+21

35 0401 67168E-05 45787E+02 56863E-02 42237E+04 37229E+04 27790E+13 38522E+13 28387E+21

36 0407 86747E-05 59134E+02 68719E-02 51044E+04 44991E+04 27928E+13 38715E+13 28577E+21

=================== Skipped =====================

RADAIL DISTRIBUTION AXIAL SEGMENT NO 9 AXIAL COODINATE(CM) = 8500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 0048 31326E-05 21354E+02 32309E-02 23999E+04 21153E+04 22565E+13 31280E+13 22976E+21

2 0084 31429E-05 21425E+02 32366E-02 24041E+04 21190E+04 22565E+13 31280E+13 22975E+21

3 0108 31524E-05 21490E+02 32433E-02 24090E+04 21234E+04 22578E+13 31298E+13 22992E+21

4 0128 31619E-05 21555E+02 32505E-02 24144E+04 21282E+04 22596E+13 31323E+13 23015E+21

5 0145 31716E-05 21621E+02 32583E-02 24202E+04 21333E+04 22618E+13 31353E+13 23044E+21

6 0160 31815E-05 21688E+02 32666E-02 24263E+04 21387E+04 22642E+13 31387E+13 23076E+21

7 0174 31919E-05 21759E+02 32754E-02 24329E+04 21444E+04 22669E+13 31425E+13 23112E+21

8 0187 32028E-05 21833E+02 32848E-02 24399E+04 21506E+04 22699E+13 31466E+13 23151E+21

9 0199 32140E-05 21910E+02 32947E-02 24473E+04 21571E+04 22731E+13 31510E+13 23193E+21

10 0211 32255E-05 21988E+02 33049E-02 24549E+04 21638E+04 22765E+13 31557E+13 23238E+21

11 0221 32376E-05 22070E+02 33156E-02 24628E+04 21708E+04 22799E+13 31604E+13 23283E+21

12 0232 32503E-05 22157E+02 33267E-02 24710E+04 21780E+04 22835E+13 31653E+13 23330E+21

13 0242 32638E-05 22249E+02 33384E-02 24797E+04 21857E+04 22871E+13 31704E+13 23379E+21

14 0251 32785E-05 22349E+02 33510E-02 24891E+04 21939E+04 22910E+13 31758E+13 23430E+21

15 0260 32940E-05 22455E+02 33642E-02 24989E+04 22026E+04 22950E+13 31814E+13 23483E+21

16 0269 33106E-05 22568E+02 33782E-02 25093E+04 22117E+04 22991E+13 31870E+13 23537E+21

17 0278 33279E-05 22686E+02 33927E-02 25200E+04 22212E+04 23032E+13 31928E+13 23592E+21

18 0286 33465E-05 22813E+02 34082E-02 25316E+04 22314E+04 23075E+13 31986E+13 23650E+21

19 0294 33668E-05 22951E+02 34250E-02 25440E+04 22424E+04 23120E+13 32049E+13 23711E+21

20 0302 33890E-05 23102E+02 34431E-02 25575E+04 22542E+04 23168E+13 32115E+13 23775E+21

21 0309 34134E-05 23269E+02 34627E-02 25720E+04 22671E+04 23220E+13 32188E+13 23843E+21

22 0317 34404E-05 23453E+02 34842E-02 25880E+04 22812E+04 23277E+13 32266E+13 23917E+21

23 0324 34706E-05 23659E+02 35078E-02 26055E+04 22966E+04 23335E+13 32347E+13 23993E+21

24 0331 35043E-05 23888E+02 35334E-02 26246E+04 23134E+04 23392E+13 32426E+13 24068E+21

25 0338 35426E-05 24149E+02 35620E-02 26458E+04 23321E+04 23450E+13 32506E+13 24146E+21

26 0345 35857E-05 24443E+02 35937E-02 26694E+04 23529E+04 23510E+13 32589E+13 24227E+21

27 0352 36370E-05 24793E+02 36304E-02 26966E+04 23769E+04 23571E+13 32674E+13 24311E+21

28 0358 36995E-05 25219E+02 36737E-02 27288E+04 24052E+04 23635E+13 32763E+13 24397E+21

29 0365 37788E-05 25760E+02 37277E-02 27689E+04 24406E+04 23711E+13 32868E+13 24497E+21

30 0371 38829E-05 26469E+02 37970E-02 28203E+04 24859E+04 23797E+13 32987E+13 24608E+21

31 0377 40251E-05 27439E+02 38890E-02 28887E+04 25462E+04 23889E+13 33115E+13 24727E+21

32 0384 42303E-05 28838E+02 40188E-02 29851E+04 26311E+04 23988E+13 33252E+13 24856E+21

33 0390 45434E-05 30972E+02 42130E-02 31294E+04 27583E+04 24096E+13 33402E+13 25001E+21

JAEA-DataCode 2013-009

- 238 -

34 0396 50533E-05 34448E+02 45241E-02 33604E+04 29620E+04 24212E+13 33563E+13 25157E+21

35 0401 59560E-05 40601E+02 50680E-02 37644E+04 33181E+04 24335E+13 33733E+13 25323E+21

36 0407 76333E-05 52035E+02 60761E-02 45133E+04 39781E+04 24463E+13 33911E+13 25497E+21

RADAIL DISTRIBUTION AXIAL SEGMENT NO10 AXIAL COODINATE(CM) = 9500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 0048 23272E-05 15864E+02 23063E-02 17131E+04 15100E+04 14776E+13 20483E+13 15444E+21

2 0084 23328E-05 15902E+02 23093E-02 17153E+04 15119E+04 14776E+13 20482E+13 15443E+21

3 0108 23386E-05 15942E+02 23134E-02 17184E+04 15146E+04 14785E+13 20495E+13 15455E+21

4 0128 23446E-05 15983E+02 23181E-02 17218E+04 15177E+04 14799E+13 20514E+13 15472E+21

5 0145 23509E-05 16026E+02 23232E-02 17256E+04 15210E+04 14815E+13 20537E+13 15493E+21

6 0160 23575E-05 16071E+02 23286E-02 17297E+04 15246E+04 14834E+13 20563E+13 15516E+21

7 0174 23645E-05 16119E+02 23345E-02 17341E+04 15285E+04 14856E+13 20593E+13 15542E+21

8 0187 23720E-05 16169E+02 23409E-02 17388E+04 15326E+04 14879E+13 20625E+13 15570E+21

9 0199 23797E-05 16222E+02 23476E-02 17438E+04 15370E+04 14903E+13 20659E+13 15601E+21

10 0211 23876E-05 16276E+02 23546E-02 17489E+04 15416E+04 14929E+13 20695E+13 15633E+21

11 0221 23958E-05 16332E+02 23618E-02 17543E+04 15463E+04 14956E+13 20732E+13 15666E+21

12 0232 24044E-05 16391E+02 23693E-02 17599E+04 15512E+04 14983E+13 20769E+13 15701E+21

13 0242 24136E-05 16453E+02 23772E-02 17658E+04 15564E+04 15011E+13 20809E+13 15736E+21

14 0251 24235E-05 16521E+02 23857E-02 17720E+04 15619E+04 15041E+13 20850E+13 15773E+21

15 0260 24340E-05 16592E+02 23945E-02 17786E+04 15677E+04 15072E+13 20893E+13 15811E+21

16 0269 24451E-05 16668E+02 24038E-02 17855E+04 15738E+04 15104E+13 20937E+13 15850E+21

17 0278 24567E-05 16747E+02 24135E-02 17927E+04 15801E+04 15136E+13 20981E+13 15891E+21

18 0286 24690E-05 16831E+02 24238E-02 18004E+04 15869E+04 15169E+13 21027E+13 15933E+21

19 0294 24824E-05 16922E+02 24349E-02 18086E+04 15942E+04 15203E+13 21075E+13 15977E+21

20 0302 24970E-05 17022E+02 24468E-02 18175E+04 16020E+04 15240E+13 21126E+13 16024E+21

21 0309 25130E-05 17131E+02 24597E-02 18270E+04 16104E+04 15280E+13 21181E+13 16074E+21

22 0317 25306E-05 17251E+02 24737E-02 18374E+04 16196E+04 15323E+13 21241E+13 16127E+21

23 0324 25502E-05 17384E+02 24889E-02 18487E+04 16295E+04 15367E+13 21302E+13 16182E+21

24 0331 25717E-05 17531E+02 25053E-02 18609E+04 16402E+04 15411E+13 21363E+13 16237E+21

25 0338 25959E-05 17696E+02 25234E-02 18743E+04 16521E+04 15456E+13 21425E+13 16294E+21

26 0345 26231E-05 17881E+02 25434E-02 18892E+04 16652E+04 15502E+13 21489E+13 16353E+21

27 0352 26550E-05 18099E+02 25661E-02 19060E+04 16800E+04 15550E+13 21555E+13 16414E+21

28 0358 26935E-05 18361E+02 25925E-02 19257E+04 16973E+04 15599E+13 21624E+13 16477E+21

29 0365 27420E-05 18692E+02 26251E-02 19499E+04 17187E+04 15658E+13 21705E+13 16549E+21

30 0371 28050E-05 19121E+02 26664E-02 19805E+04 17457E+04 15723E+13 21795E+13 16629E+21

31 0377 28903E-05 19703E+02 27203E-02 20206E+04 17810E+04 15793E+13 21892E+13 16715E+21

32 0384 30123E-05 20534E+02 27954E-02 20764E+04 18302E+04 15868E+13 21997E+13 16809E+21

33 0390 31972E-05 21795E+02 29065E-02 21589E+04 19029E+04 15952E+13 22113E+13 16914E+21

34 0396 34968E-05 23837E+02 30822E-02 22894E+04 20179E+04 16042E+13 22238E+13 17028E+21

35 0401 40259E-05 27444E+02 33868E-02 25156E+04 22174E+04 16137E+13 22370E+13 17149E+21

36 0407 50121E-05 34167E+02 39493E-02 29335E+04 25857E+04 16237E+13 22508E+13 17276E+21

AMOUNT(G-ATOMCC) ON AXIAL MESH= 1 500 CM TIME STEP= 44 77308 DAYS

NUCLIDE RADIAL 1 RADIAL 2 RADIAL 3 RADIAL 4 RADIAL 5 RADIAL 6 RADIAL 7 RADIAL 8 RADIAL 9 RADIAL 10

0048 0084 0108 0128 0145 0160 0174 0187 0199 0211

1 H2 12004E-07 12032E-07 12065E-07 12100E-07 12137E-07 12176E-07 12219E-07 12264E-07 12311E-07 12360E-07

2 He 12192E-06 12195E-06 12207E-06 12223E-06 12243E-06 12264E-06 12288E-06 12314E-06 12342E-06 12378E-06

6 C 11812E-06 11812E-06 11821E-06 11834E-06 11849E-06 11866E-06 11886E-06 11907E-06 11930E-06 11954E-06

8 O 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02

33 As 17694E-10 17750E-10 17803E-10 17859E-10 17916E-10 17975E-10 18037E-10 18102E-10 18170E-10 18240E-10

34 Se 37094E-06 37132E-06 37188E-06 37251E-06 37321E-06 37397E-06 37478E-06 37566E-06 37659E-06 37755E-06

35 Br 10683E-06 10696E-06 10714E-06 10734E-06 10756E-06 10779E-06 10804E-06 10831E-06 10860E-06 10890E-06

36 Kr 27288E-05 27307E-05 27339E-05 27377E-05 27420E-05 27466E-05 27517E-05 27572E-05 27629E-05 27689E-05

37 Rb 24114E-05 24128E-05 24155E-05 24187E-05 24223E-05 24262E-05 24305E-05 24352E-05 24401E-05 24452E-05

38 Sr 66199E-05 66242E-05 66316E-05 66405E-05 66505E-05 66612E-05 66730E-05 66858E-05 66993E-05 67133E-05

39 Y 74449E-06 74514E-06 74604E-06 74701E-06 74820E-06 74947E-06 75078E-06 75215E-06 75362E-06 75514E-06

40 Zr 22930E-04 22952E-04 22985E-04 23024E-04 23066E-04 23111E-04 23160E-04 23214E-04 23270E-04 23328E-04

41 Nb 29834E-06 29890E-06 29951E-06 30016E-06 30085E-06 30157E-06 30234E-06 30314E-06 30400E-06 30487E-06

42 Mo 18218E-04 18243E-04 18277E-04 18314E-04 18355E-04 18399E-04 18445E-04 18495E-04 18549E-04 18604E-04

43 Tc 47116E-05 47185E-05 47272E-05 47370E-05 47476E-05 47589E-05 47711E-05 47841E-05 47978E-05 48120E-05

44 Ru 10367E-04 10391E-04 10419E-04 10450E-04 10482E-04 10516E-04 10552E-04 10591E-04 10632E-04 10674E-04

45 Rh 20747E-05 20795E-05 20849E-05 20906E-05 20965E-05 21028E-05 21094E-05 21165E-05 21239E-05 21314E-05

46 Pd 33496E-05 33658E-05 33828E-05 34010E-05 34200E-05 34398E-05 34609E-05 34834E-05 35071E-05 35313E-05

47 Ag 17637E-06 17772E-06 17903E-06 18041E-06 18179E-06 18321E-06 18481E-06 18645E-06 18808E-06 18978E-06

48 Cd 14558E-06 14647E-06 14741E-06 14841E-06 14938E-06 15051E-06 15170E-06 15289E-06 15419E-06 15543E-06

49 In 54463E-08 54686E-08 54896E-08 55108E-08 55327E-08 55551E-08 56030E-08 56280E-08 56538E-08 56803E-08

50 Sn 15913E-06 15976E-06 16037E-06 16101E-06 16176E-06 16247E-06 16327E-06 16408E-06 16492E-06 16586E-06

51 Sb 52543E-07 52755E-07 53019E-07 53238E-07 53468E-07 53709E-07 53965E-07 54239E-07 54492E-07 54843E-07

52 Te 21026E-05 21070E-05 21122E-05 21179E-05 21240E-05 21304E-05 21372E-05 21445E-05 21522E-05 21601E-05

53 I 10117E-05 10142E-05 10171E-05 10201E-05 10230E-05 10263E-05 10298E-05 10335E-05 10374E-05 10416E-05

54 Xe 20909E-04 20941E-04 20982E-04 21029E-04 21080E-04 21134E-04 21193E-04 21256E-04 21322E-04 21390E-04

55 Cs 11370E-04 11387E-04 11408E-04 11431E-04 11456E-04 11482E-04 11511E-04 11541E-04 11573E-04 11606E-04

JAEA-DataCode 2013-009

- 239 -

56 Ba 49350E-05 49427E-05 49526E-05 49636E-05 49755E-05 49880E-05 50018E-05 50167E-05 50321E-05 50481E-05

57 La 50292E-05 50357E-05 50445E-05 50544E-05 50652E-05 50769E-05 50894E-05 51027E-05 51170E-05 51316E-05

58 Ce 11810E-04 11825E-04 11845E-04 11868E-04 11893E-04 11919E-04 11948E-04 11979E-04 12011E-04 12044E-04

59 Pr 46537E-05 46591E-05 46667E-05 46753E-05 46847E-05 46946E-05 47055E-05 47173E-05 47297E-05 47425E-05

60 Nd 13871E-04 13887E-04 13910E-04 13936E-04 13965E-04 13996E-04 14029E-04 14065E-04 14103E-04 14142E-04

61 Pm 80504E-06 80628E-06 80756E-06 80887E-06 81022E-06 81156E-06 81303E-06 81458E-06 81618E-06 81787E-06

62 Sm 25161E-05 25204E-05 25257E-05 25310E-05 25386E-05 25455E-05 25528E-05 25599E-05 25683E-05 25769E-05

63 Eu 38719E-06 38811E-06 38928E-06 39060E-06 39185E-06 39344E-06 39517E-06 39697E-06 39891E-06 40091E-06

64 Gd 12073E-06 12124E-06 12199E-06 12270E-06 12333E-06 12413E-06 12498E-06 12591E-06 12681E-06 12782E-06

65 Tb 27282E-08 27469E-08 27655E-08 27845E-08 28037E-08 28241E-08 28456E-08 28695E-08 28932E-08 29730E-08

92 U 37615E-02 37613E-02 37610E-02 37607E-02 37604E-02 37601E-02 37597E-02 37594E-02 37590E-02 37586E-02

93 Np 84230E-06 84328E-06 84502E-06 84709E-06 84942E-06 85196E-06 85473E-06 85774E-06 86090E-06 86419E-06

94 Pu 16893E-04 17039E-04 17167E-04 17293E-04 17420E-04 17547E-04 17680E-04 17820E-04 17962E-04 18108E-04

95 Am 74370E-07 75029E-07 75721E-07 76533E-07 77361E-07 78233E-07 79101E-07 80027E-07 81057E-07 82055E-07

96 Cm 91222E-08 92027E-08 92957E-08 94095E-08 95326E-08 97248E-08 98495E-08 99839E-08 10129E-07 10276E-07

NUCLIDE RADIAL 11 RADIAL 12 RADIAL 13 RADIAL 14 RADIAL 15 RADIAL 16 RADIAL 17 RADIAL 18 RADIAL 19 RADIAL 20

0221 0232 0242 0251 0260 0269 0278 0286 0294 0302

1 H2 12411E-07 12464E-07 12521E-07 12581E-07 12645E-07 12712E-07 12782E-07 12857E-07 12938E-07 13026E-07

2 He 12412E-06 12443E-06 12476E-06 12510E-06 12546E-06 12583E-06 12629E-06 12671E-06 12713E-06 12759E-06

6 C 11979E-06 12004E-06 12031E-06 12058E-06 12087E-06 12116E-06 12146E-06 12178E-06 12211E-06 12246E-06

8 O 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02

33 As 18312E-10 18389E-10 18470E-10 18558E-10 18651E-10 18750E-10 18854E-10 18964E-10 19085E-10 19216E-10

34 Se 37856E-06 37960E-06 38069E-06 38185E-06 38307E-06 38435E-06 38567E-06 38708E-06 38859E-06 39022E-06

35 Br 10921E-06 10953E-06 10986E-06 11022E-06 11060E-06 11100E-06 11141E-06 11185E-06 11232E-06 11283E-06

36 Kr 27751E-05 27816E-05 27884E-05 27954E-05 28030E-05 28108E-05 28189E-05 28274E-05 28365E-05 28464E-05

37 Rb 24506E-05 24561E-05 24618E-05 24679E-05 24743E-05 24809E-05 24878E-05 24950E-05 25028E-05 25111E-05

38 Sr 67278E-05 67429E-05 67588E-05 67755E-05 67930E-05 68113E-05 68301E-05 68500E-05 68713E-05 68942E-05

39 Y 75671E-06 75836E-06 76008E-06 76199E-06 76393E-06 76595E-06 76804E-06 77020E-06 77258E-06 77514E-06

40 Zr 23388E-04 23451E-04 23517E-04 23586E-04 23660E-04 23737E-04 23817E-04 23901E-04 23993E-04 24090E-04

41 Nb 30578E-06 30673E-06 30774E-06 30881E-06 30994E-06 31114E-06 31240E-06 31376E-06 31521E-06 31679E-06

42 Mo 18662E-04 18721E-04 18784E-04 18851E-04 18921E-04 18995E-04 19072E-04 19154E-04 19242E-04 19338E-04

43 Tc 48268E-05 48422E-05 48584E-05 48758E-05 48940E-05 49132E-05 49331E-05 49544E-05 49773E-05 50020E-05

44 Ru 10717E-04 10763E-04 10812E-04 10864E-04 10918E-04 10976E-04 11036E-04 11100E-04 11170E-04 11245E-04

45 Rh 21395E-05 21478E-05 21566E-05 21660E-05 21761E-05 21867E-05 21976E-05 22095E-05 22224E-05 22363E-05

46 Pd 35567E-05 35833E-05 36115E-05 36418E-05 36739E-05 37079E-05 37437E-05 37821E-05 38236E-05 38690E-05

47 Ag 19156E-06 19349E-06 19551E-06 19767E-06 19995E-06 20242E-06 20501E-06 20777E-06 21084E-06 21411E-06

48 Cd 15694E-06 15841E-06 15997E-06 16161E-06 16314E-06 16488E-06 16683E-06 16907E-06 17117E-06 17353E-06

49 In 57082E-08 57373E-08 57682E-08 58018E-08 58372E-08 58978E-08 59375E-08 59803E-08 60268E-08 60556E-08

50 Sn 16677E-06 16772E-06 16873E-06 16981E-06 17103E-06 17229E-06 17348E-06 17477E-06 17625E-06 17780E-06

51 Sb 55276E-07 55652E-07 55928E-07 56251E-07 56694E-07 57438E-07 57809E-07 58244E-07 58786E-07 59382E-07

52 Te 21685E-05 21772E-05 21863E-05 21961E-05 22064E-05 22174E-05 22288E-05 22409E-05 22542E-05 22685E-05

53 I 10460E-05 10504E-05 10549E-05 10598E-05 10650E-05 10705E-05 10764E-05 10830E-05 10899E-05 10974E-05

54 Xe 21462E-04 21536E-04 21614E-04 21698E-04 21786E-04 21878E-04 21974E-04 22076E-04 22187E-04 22306E-04

55 Cs 11641E-04 11677E-04 11714E-04 11754E-04 11797E-04 11842E-04 11889E-04 11939E-04 11992E-04 12050E-04

56 Ba 50647E-05 50824E-05 51008E-05 51201E-05 51407E-05 51624E-05 51847E-05 52086E-05 52346E-05 52625E-05

57 La 51469E-05 51627E-05 51792E-05 51972E-05 52160E-05 52356E-05 52562E-05 52781E-05 53013E-05 53267E-05

58 Ce 12079E-04 12115E-04 12154E-04 12194E-04 12237E-04 12282E-04 12329E-04 12378E-04 12432E-04 12489E-04

59 Pr 47559E-05 47698E-05 47844E-05 47998E-05 48162E-05 48335E-05 48512E-05 48702E-05 48907E-05 49125E-05

60 Nd 14183E-04 14226E-04 14270E-04 14318E-04 14368E-04 14420E-04 14474E-04 14532E-04 14594E-04 14661E-04

61 Pm 81959E-06 82139E-06 82326E-06 82532E-06 82757E-06 82988E-06 83228E-06 83494E-06 83778E-06 84085E-06

62 Sm 25863E-05 25958E-05 26056E-05 26164E-05 26276E-05 26394E-05 26517E-05 26646E-05 26785E-05 26936E-05

63 Eu 40312E-06 40538E-06 40762E-06 40999E-06 41259E-06 41518E-06 41793E-06 42088E-06 42407E-06 42767E-06

64 Gd 12893E-06 13013E-06 13118E-06 13229E-06 13344E-06 13468E-06 13597E-06 13750E-06 13902E-06 14072E-06

65 Tb 29993E-08 30269E-08 30554E-08 30868E-08 31864E-08 32218E-08 32592E-08 33008E-08 33997E-08 34476E-08

92 U 37582E-02 37578E-02 37573E-02 37568E-02 37563E-02 37558E-02 37552E-02 37546E-02 37539E-02 37532E-02

93 Np 86767E-06 87121E-06 87491E-06 87884E-06 88296E-06 88719E-06 89165E-06 89619E-06 90127E-06 90662E-06

94 Pu 18261E-04 18422E-04 18593E-04 18780E-04 18977E-04 19187E-04 19408E-04 19648E-04 19909E-04 20193E-04

95 Am 83127E-07 84245E-07 85462E-07 86731E-07 88263E-07 89699E-07 91210E-07 92897E-07 94675E-07 96705E-07

96 Cm 10452E-07 10619E-07 10793E-07 10979E-07 11201E-07 11471E-07 11734E-07 11990E-07 12254E-07 12562E-07

NUCLIDE RADIAL 21 RADIAL 22 RADIAL 23 RADIAL 24 RADIAL 25 RADIAL 26 RADIAL 27 RADIAL 28 RADIAL 29 RADIAL 30

0309 0317 0324 0331 0338 0345 0352 0358 0365 0371

1 H2 13121E-07 13226E-07 13341E-07 13466E-07 13606E-07 13762E-07 13943E-07 14157E-07 14424E-07 14767E-07

2 He 12811E-06 12864E-06 12921E-06 12988E-06 13048E-06 13121E-06 13195E-06 13274E-06 13368E-06 13487E-06

6 C 12283E-06 12322E-06 12363E-06 12404E-06 12447E-06 12491E-06 12536E-06 12584E-06 12637E-06 12697E-06

8 O 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02

33 As 19360E-10 19520E-10 19697E-10 19894E-10 20117E-10 20368E-10 20664E-10 21022E-10 21475E-10 22068E-10

34 Se 39197E-06 39388E-06 39594E-06 39814E-06 40057E-06 40323E-06 40625E-06 40974E-06 41404E-06 41944E-06

35 Br 11338E-06 11397E-06 11462E-06 11532E-06 11609E-06 11694E-06 11790E-06 11903E-06 12041E-06 12217E-06

36 Kr 28569E-05 28683E-05 28805E-05 28934E-05 29076E-05 29230E-05 29401E-05 29596E-05 29834E-05 30132E-05

37 Rb 25200E-05 25297E-05 25400E-05 25509E-05 25628E-05 25756E-05 25899E-05 26061E-05 26258E-05 26503E-05

38 Sr 69186E-05 69454E-05 69739E-05 70041E-05 70369E-05 70727E-05 71126E-05 71582E-05 72136E-05 72823E-05

39 Y 77791E-06 78090E-06 78425E-06 78777E-06 79172E-06 79598E-06 80078E-06 80648E-06 81343E-06 82239E-06

40 Zr 24196E-04 24311E-04 24434E-04 24567E-04 24712E-04 24871E-04 25052E-04 25261E-04 25517E-04 25839E-04

JAEA-DataCode 2013-009

- 240 -

41 Nb 31853E-06 32043E-06 32254E-06 32483E-06 32733E-06 33023E-06 33358E-06 33765E-06 34266E-06 34916E-06

42 Mo 19440E-04 19552E-04 19674E-04 19806E-04 19951E-04 20112E-04 20296E-04 20510E-04 20775E-04 21112E-04

43 Tc 50286E-05 50578E-05 50896E-05 51239E-05 51621E-05 52043E-05 52527E-05 53094E-05 53796E-05 54690E-05

44 Ru 11327E-04 11417E-04 11516E-04 11623E-04 11743E-04 11877E-04 12031E-04 12214E-04 12444E-04 12740E-04

45 Rh 22514E-05 22680E-05 22862E-05 23062E-05 23288E-05 23538E-05 23831E-05 24183E-05 24624E-05 25196E-05

46 Pd 39181E-05 39724E-05 40321E-05 40981E-05 41728E-05 42566E-05 43541E-05 44709E-05 46176E-05 48079E-05

47 Ag 21770E-06 22164E-06 22596E-06 23093E-06 23648E-06 24281E-06 25039E-06 25946E-06 27073E-06 28551E-06

48 Cd 17624E-06 17906E-06 18221E-06 18585E-06 18977E-06 19426E-06 19931E-06 20562E-06 21366E-06 22327E-06

49 In 61107E-08 61716E-08 62614E-08 63373E-08 63643E-08 64400E-08 65543E-08 67132E-08 68880E-08 71162E-08

50 Sn 17954E-06 18146E-06 18363E-06 18596E-06 18858E-06 19154E-06 19488E-06 19910E-06 20416E-06 21079E-06

51 Sb 60039E-07 60752E-07 61545E-07 62364E-07 63318E-07 64213E-07 65521E-07 67071E-07 69170E-07 71942E-07

52 Te 22839E-05 23008E-05 23194E-05 23396E-05 23622E-05 23877E-05 24173E-05 24520E-05 24955E-05 25509E-05

53 I 11052E-05 11140E-05 11235E-05 11339E-05 11458E-05 11593E-05 11745E-05 11926E-05 12156E-05 12446E-05

54 Xe 22434E-04 22575E-04 22727E-04 22893E-04 23075E-04 23278E-04 23509E-04 23781E-04 24117E-04 24544E-04

55 Cs 12113E-04 12181E-04 12256E-04 12337E-04 12427E-04 12527E-04 12643E-04 12778E-04 12947E-04 13162E-04

56 Ba 52927E-05 53254E-05 53613E-05 54000E-05 54429E-05 54904E-05 55448E-05 56085E-05 56877E-05 57888E-05

57 La 53539E-05 53835E-05 54158E-05 54508E-05 54891E-05 55316E-05 55802E-05 56364E-05 57065E-05 57955E-05

58 Ce 12552E-04 12620E-04 12694E-04 12773E-04 12861E-04 12959E-04 13070E-04 13199E-04 13360E-04 13563E-04

59 Pr 49361E-05 49620E-05 49899E-05 50199E-05 50529E-05 50893E-05 51307E-05 51785E-05 52373E-05 53121E-05

60 Nd 14734E-04 14812E-04 14897E-04 14989E-04 15090E-04 15201E-04 15328E-04 15475E-04 15656E-04 15885E-04

61 Pm 84416E-06 84786E-06 85191E-06 85646E-06 86159E-06 86743E-06 87432E-06 88269E-06 89328E-06 90688E-06

62 Sm 27097E-05 27274E-05 27468E-05 27676E-05 27906E-05 28161E-05 28451E-05 28788E-05 29217E-05 29749E-05

63 Eu 43147E-06 43562E-06 44001E-06 44478E-06 45021E-06 45617E-06 46281E-06 47071E-06 48052E-06 49274E-06

64 Gd 14261E-06 14483E-06 14700E-06 14952E-06 15234E-06 15551E-06 15902E-06 16326E-06 16835E-06 17529E-06

65 Tb 35009E-08 35601E-08 36254E-08 36988E-08 38359E-08 39302E-08 40407E-08 41746E-08 43961E-08 46193E-08

92 U 37525E-02 37516E-02 37507E-02 37497E-02 37485E-02 37472E-02 37457E-02 37439E-02 37417E-02 37388E-02

93 Np 91231E-06 91848E-06 92520E-06 93217E-06 93982E-06 94808E-06 95724E-06 96764E-06 98026E-06 99581E-06

94 Pu 20503E-04 20846E-04 21232E-04 21664E-04 22162E-04 22725E-04 23398E-04 24219E-04 25255E-04 26617E-04

95 Am 98928E-07 10134E-06 10407E-06 10727E-06 11072E-06 11443E-06 11894E-06 12420E-06 13094E-06 13964E-06

96 Cm 12982E-07 13363E-07 13788E-07 14333E-07 14891E-07 15456E-07 16231E-07 17055E-07 18099E-07 19512E-07

NUCLIDE RADIAL 31 RADIAL 32 RADIAL 33 RADIAL 34 RADIAL 35 RADIAL 36

0377 0384 0390 0396 0401 0407

1 H2 15225E-07 15872E-07 16846E-07 18408E-07 21150E-07 26185E-07

2 He 13618E-06 13783E-06 14016E-06 14343E-06 14898E-06 15890E-06

6 C 12761E-06 12831E-06 12910E-06 12995E-06 13085E-06 13180E-06

8 O 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02 77159E-02

33 As 22873E-10 24030E-10 25791E-10 28653E-10 33718E-10 43157E-10

34 Se 42654E-06 43631E-06 45059E-06 47302E-06 51170E-06 58285E-06

35 Br 12446E-06 12766E-06 13238E-06 13984E-06 15277E-06 17657E-06

36 Kr 30512E-05 31024E-05 31765E-05 32914E-05 34859E-05 38381E-05

37 Rb 26814E-05 27231E-05 27834E-05 28758E-05 30324E-05 33168E-05

38 Sr 73699E-05 74888E-05 76601E-05 79250E-05 83748E-05 91917E-05

39 Y 83396E-06 84998E-06 87366E-06 91123E-06 97581E-06 10951E-05

40 Zr 26258E-04 26834E-04 27680E-04 29011E-04 31305E-04 35515E-04

41 Nb 35786E-06 37040E-06 38927E-06 41966E-06 47321E-06 57277E-06

42 Mo 21555E-04 22174E-04 23094E-04 24554E-04 27087E-04 31766E-04

43 Tc 55869E-05 57520E-05 59977E-05 63887E-05 70700E-05 83312E-05

44 Ru 13134E-04 13693E-04 14536E-04 15891E-04 18262E-04 22669E-04

45 Rh 25963E-05 27057E-05 28711E-05 31387E-05 36095E-05 44877E-05

46 Pd 50649E-05 54304E-05 59856E-05 68822E-05 84696E-05 11437E-04

47 Ag 30560E-06 33472E-06 37890E-06 45077E-06 57838E-06 81745E-06

48 Cd 23756E-06 25756E-06 28793E-06 33712E-06 42363E-06 58460E-06

49 In 73864E-08 78318E-08 83957E-08 91017E-08 11156E-07 14745E-07

50 Sn 21976E-06 23285E-06 25194E-06 28311E-06 33813E-06 44240E-06

51 Sb 75335E-07 80235E-07 87284E-07 99065E-07 11941E-06 15762E-06

52 Te 26246E-05 27296E-05 28858E-05 31365E-05 35755E-05 43926E-05

53 I 12836E-05 13386E-05 14216E-05 15553E-05 17905E-05 22290E-05

54 Xe 25106E-04 25891E-04 27060E-04 28918E-04 32152E-04 38134E-04

55 Cs 13447E-04 13847E-04 14446E-04 15400E-04 17066E-04 20155E-04

56 Ba 59228E-05 61104E-05 63892E-05 68328E-05 76031E-05 90287E-05

57 La 59126E-05 60756E-05 63185E-05 67036E-05 73705E-05 86016E-05

58 Ce 13830E-04 14203E-04 14755E-04 15632E-04 17155E-04 19965E-04

59 Pr 54100E-05 55459E-05 57467E-05 60642E-05 66132E-05 76245E-05

60 Nd 16184E-04 16600E-04 17213E-04 18185E-04 19864E-04 22964E-04

61 Pm 92553E-06 95251E-06 99389E-06 10611E-05 11796E-05 14032E-05

62 Sm 30461E-05 31442E-05 32917E-05 35245E-05 39303E-05 46812E-05

63 Eu 50901E-06 53188E-06 56590E-06 61965E-06 71247E-06 88410E-06

64 Gd 18432E-06 19744E-06 21693E-06 24850E-06 30265E-06 40406E-06

65 Tb 49204E-08 54122E-08 61346E-08 72825E-08 93608E-08 13364E-07

92 U 37349E-02 37294E-02 37211E-02 37077E-02 36841E-02 36403E-02

93 Np 10154E-05 10416E-05 10791E-05 11360E-05 12309E-05 13999E-05

94 Pu 28487E-04 31202E-04 35360E-04 42152E-04 54210E-04 76692E-04

95 Am 15139E-06 16802E-06 19337E-06 23436E-06 30703E-06 44362E-06

96 Cm 21399E-07 23980E-07 28039E-07 34667E-07 46580E-07 69077E-07

JAEA-DataCode 2013-009

- 241 -

=================== Skipped =========================

TIME STEP NO 96 TIME = 166769 DAYS FLUX = 51255E+13 NCM2SEC

RADAIL DISTRIBUTION AXIAL SEGMENT NO 1 AXIAL COODINATE(CM) = 500

RADIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM3) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 0048 33671E-05 22953E+02 54785E-02 40694E+04 35869E+04 33859E+13 46935E+13 46119E+21

2 0084 33855E-05 23078E+02 54941E-02 40810E+04 35971E+04 33868E+13 46948E+13 46122E+21

3 0108 34006E-05 23181E+02 55093E-02 40922E+04 36070E+04 33886E+13 46972E+13 46151E+21

4 0128 34149E-05 23279E+02 55247E-02 41037E+04 36171E+04 33905E+13 46999E+13 46190E+21

5 0145 34290E-05 23375E+02 55406E-02 41155E+04 36275E+04 33926E+13 47028E+13 46235E+21

6 0160 34428E-05 23469E+02 55570E-02 41276E+04 36382E+04 33947E+13 47057E+13 46287E+21

7 0174 34571E-05 23566E+02 55742E-02 41404E+04 36495E+04 33970E+13 47090E+13 46344E+21

8 0187 34720E-05 23668E+02 55925E-02 41540E+04 36615E+04 33996E+13 47126E+13 46406E+21

9 0199 34874E-05 23773E+02 56114E-02 41681E+04 36739E+04 34026E+13 47167E+13 46474E+21

10 0211 35031E-05 23881E+02 56309E-02 41826E+04 36866E+04 34059E+13 47212E+13 46546E+21

11 0221 35198E-05 23994E+02 56513E-02 41977E+04 37000E+04 34094E+13 47261E+13 46620E+21

12 0232 35374E-05 24114E+02 56728E-02 42137E+04 37141E+04 34130E+13 47311E+13 46697E+21

13 0242 35562E-05 24242E+02 56955E-02 42305E+04 37289E+04 34166E+13 47362E+13 46776E+21

14 0251 35766E-05 24381E+02 57200E-02 42488E+04 37450E+04 34203E+13 47413E+13 46858E+21

15 0260 35981E-05 24528E+02 57459E-02 42680E+04 37619E+04 34241E+13 47466E+13 46943E+21

16 0269 36210E-05 24684E+02 57734E-02 42884E+04 37799E+04 34280E+13 47519E+13 47030E+21

17 0278 36454E-05 24850E+02 58021E-02 43097E+04 37987E+04 34320E+13 47574E+13 47119E+21

18 0286 36719E-05 25031E+02 58330E-02 43327E+04 38190E+04 34362E+13 47632E+13 47211E+21

19 0294 37009E-05 25229E+02 58666E-02 43577E+04 38410E+04 34408E+13 47696E+13 47310E+21

20 0302 37330E-05 25447E+02 59033E-02 43849E+04 38650E+04 34459E+13 47767E+13 47415E+21

21 0309 37680E-05 25686E+02 59433E-02 44146E+04 38912E+04 34515E+13 47844E+13 47528E+21

22 0317 38067E-05 25950E+02 59874E-02 44473E+04 39200E+04 34573E+13 47926E+13 47648E+21

23 0324 38503E-05 26247E+02 60362E-02 44836E+04 39520E+04 34633E+13 48008E+13 47773E+21

24 0331 38995E-05 26582E+02 60903E-02 45238E+04 39874E+04 34691E+13 48089E+13 47896E+21

25 0338 39561E-05 26968E+02 61515E-02 45692E+04 40275E+04 34750E+13 48170E+13 48022E+21

26 0345 40203E-05 27406E+02 62201E-02 46202E+04 40724E+04 34809E+13 48252E+13 48152E+21

27 0352 40973E-05 27931E+02 63010E-02 46803E+04 41253E+04 34869E+13 48336E+13 48285E+21

28 0358 41919E-05 28576E+02 63984E-02 47527E+04 41891E+04 34933E+13 48424E+13 48425E+21

29 0365 43120E-05 29394E+02 65212E-02 48439E+04 42695E+04 35010E+13 48531E+13 48588E+21

30 0371 44703E-05 30474E+02 66811E-02 49626E+04 43742E+04 35098E+13 48653E+13 48770E+21

31 0377 46883E-05 31960E+02 68976E-02 51234E+04 45160E+04 35192E+13 48783E+13 48966E+21

32 0384 50046E-05 34116E+02 72079E-02 53539E+04 47191E+04 35291E+13 48921E+13 49177E+21

33 0390 54880E-05 37411E+02 76782E-02 57033E+04 50270E+04 35398E+13 49069E+13 49411E+21

34 0396 62740E-05 42769E+02 84388E-02 62682E+04 55250E+04 35512E+13 49226E+13 49662E+21

35 0401 76543E-05 52178E+02 97761E-02 72615E+04 64005E+04 35631E+13 49392E+13 49927E+21

36 0407 10168E-04 69315E+02 12244E-01 90950E+04 80166E+04 35757E+13 49566E+13 50206E+21

=================== Skipped =========================

AMOUNT(G-ATOMCC) ON AXIAL MESH= 10 9500 CM TIME STEP= 96 166769 DAYS

NUCLIDE RADIAL 1 RADIAL 2 RADIAL 3 RADIAL 4 RADIAL 5 RADIAL 6 RADIAL 7 RADIAL 8 RADIAL 9 RADIAL 10

0048 0084 0108 0128 0145 0160 0174 0187 0199 0211

1 H2 24619E-07 24713E-07 24803E-07 24895E-07 24990E-07 25089E-07 25192E-07 25302E-07 25416E-07 25533E-07

2 He 36404E-06 36490E-06 36593E-06 36704E-06 36823E-06 36948E-06 37089E-06 37235E-06 37386E-06 37542E-06

6 C 26040E-06 26040E-06 26057E-06 26080E-06 26108E-06 26138E-06 26173E-06 26211E-06 26251E-06 26294E-06

8 O 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02

33 As 21222E-10 21337E-10 21435E-10 21527E-10 21619E-10 21710E-10 21804E-10 21903E-10 22005E-10 22109E-10

34 Se 66222E-06 66351E-06 66484E-06 66623E-06 66769E-06 66920E-06 67081E-06 67252E-06 67430E-06 67614E-06

35 Br 19229E-06 19271E-06 19315E-06 19360E-06 19406E-06 19455E-06 19506E-06 19561E-06 19617E-06 19676E-06

36 Kr 46606E-05 46668E-05 46736E-05 46809E-05 46887E-05 46968E-05 47053E-05 47145E-05 47241E-05 47340E-05

37 Rb 41448E-05 41498E-05 41555E-05 41616E-05 41680E-05 41747E-05 41820E-05 41897E-05 41977E-05 42060E-05

38 Sr 10835E-04 10849E-04 10864E-04 10880E-04 10897E-04 10915E-04 10934E-04 10954E-04 10975E-04 10997E-04

39 Y 93636E-06 93796E-06 93947E-06 94099E-06 94253E-06 94412E-06 94585E-06 94763E-06 94947E-06 95136E-06

40 Zr 40853E-04 40927E-04 41005E-04 41087E-04 41173E-04 41262E-04 41357E-04 41457E-04 41562E-04 41671E-04

41 Nb 22604E-06 22697E-06 22773E-06 22846E-06 22919E-06 22990E-06 23064E-06 23142E-06 23222E-06 23303E-06

42 Mo 34694E-04 34780E-04 34867E-04 34957E-04 35052E-04 35149E-04 35252E-04 35361E-04 35475E-04 35592E-04

43 Tc 85310E-05 85531E-05 85750E-05 85974E-05 86207E-05 86447E-05 86700E-05 86969E-05 87247E-05 87534E-05

44 Ru 20364E-04 20438E-04 20511E-04 20585E-04 20661E-04 20739E-04 20822E-04 20909E-04 20999E-04 21092E-04

45 Rh 32023E-05 32153E-05 32269E-05 32383E-05 32498E-05 32613E-05 32734E-05 32862E-05 32992E-05 33125E-05

46 Pd 10367E-04 10428E-04 10486E-04 10546E-04 10609E-04 10672E-04 10739E-04 10810E-04 10884E-04 10960E-04

47 Ag 44148E-06 44511E-06 44838E-06 45162E-06 45493E-06 45830E-06 46182E-06 46551E-06 46928E-06 47320E-06

48 Cd 53894E-06 54323E-06 54733E-06 55143E-06 55541E-06 55964E-06 56414E-06 56897E-06 57388E-06 57914E-06

49 In 65149E-08 64972E-08 65294E-08 65611E-08 65919E-08 66227E-08 66545E-08 66878E-08 66767E-08 67109E-08

50 Sn 36650E-06 36814E-06 36999E-06 37183E-06 37370E-06 37561E-06 37762E-06 37967E-06 38185E-06 38396E-06

JAEA-DataCode 2013-009

- 242 -

51 Sb 11171E-06 11235E-06 11291E-06 11360E-06 11428E-06 11506E-06 11586E-06 11672E-06 11748E-06 11820E-06

52 Te 41795E-05 41943E-05 42086E-05 42232E-05 42382E-05 42537E-05 42701E-05 42875E-05 43053E-05 43237E-05

53 I 19898E-05 19979E-05 20051E-05 20127E-05 20206E-05 20284E-05 20369E-05 20457E-05 20549E-05 20642E-05

54 Xe 39501E-04 39608E-04 39715E-04 39827E-04 39944E-04 40064E-04 40191E-04 40327E-04 40468E-04 40613E-04

55 Cs 20564E-04 20619E-04 20673E-04 20727E-04 20783E-04 20840E-04 20900E-04 20964E-04 21030E-04 21098E-04

56 Ba 10162E-04 10189E-04 10216E-04 10245E-04 10275E-04 10306E-04 10338E-04 10374E-04 10410E-04 10447E-04

57 La 92023E-05 92244E-05 92466E-05 92695E-05 92934E-05 93180E-05 93443E-05 93721E-05 94009E-05 94305E-05

58 Ce 19786E-04 19833E-04 19880E-04 19928E-04 19979E-04 20031E-04 20086E-04 20144E-04 20205E-04 20267E-04

59 Pr 84807E-05 84989E-05 85177E-05 85369E-05 85574E-05 85785E-05 86008E-05 86245E-05 86492E-05 86746E-05

60 Nd 27202E-04 27260E-04 27321E-04 27385E-04 27451E-04 27520E-04 27593E-04 27671E-04 27752E-04 27836E-04

61 Pm 69667E-06 69905E-06 70096E-06 70272E-06 70445E-06 70613E-06 70787E-06 70965E-06 71147E-06 71330E-06

62 Sm 52034E-05 52173E-05 52312E-05 52449E-05 52598E-05 52752E-05 52917E-05 53087E-05 53267E-05 53449E-05

63 Eu 11064E-05 11103E-05 11142E-05 11183E-05 11226E-05 11272E-05 11320E-05 11370E-05 11423E-05 11478E-05

64 Gd 55703E-06 55932E-06 56235E-06 56517E-06 56855E-06 57196E-06 57538E-06 57910E-06 58337E-06 58753E-06

65 Tb 79826E-08 80406E-08 80990E-08 81519E-08 83162E-08 83769E-08 84376E-08 85005E-08 86130E-08 86837E-08

92 U 36846E-02 36840E-02 36834E-02 36829E-02 36823E-02 36817E-02 36811E-02 36804E-02 36797E-02 36790E-02

93 Np 22631E-05 22649E-05 22678E-05 22713E-05 22751E-05 22792E-05 22838E-05 22888E-05 22939E-05 22994E-05

94 Pu 23060E-04 23253E-04 23417E-04 23576E-04 23735E-04 23893E-04 24057E-04 24229E-04 24404E-04 24582E-04

95 Am 60636E-06 61173E-06 61700E-06 62234E-06 62789E-06 63360E-06 63967E-06 64614E-06 65283E-06 65972E-06

96 Cm 20581E-06 20768E-06 20973E-06 21177E-06 21399E-06 21642E-06 21893E-06 22165E-06 22443E-06 22719E-06

NUCLIDE RADIAL 11 RADIAL 12 RADIAL 13 RADIAL 14 RADIAL 15 RADIAL 16 RADIAL 17 RADIAL 18 RADIAL 19 RADIAL 20

0221 0232 0242 0251 0260 0269 0278 0286 0294 0302

1 H2 25655E-07 25784E-07 25921E-07 26068E-07 26225E-07 26390E-07 26562E-07 26748E-07 26952E-07 27173E-07

2 He 37706E-06 37884E-06 38072E-06 38266E-06 38470E-06 38690E-06 38914E-06 39154E-06 39421E-06 39702E-06

6 C 26339E-06 26384E-06 26432E-06 26481E-06 26532E-06 26585E-06 26638E-06 26693E-06 26752E-06 26814E-06

8 O 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02 77158E-02

33 As 22219E-10 22335E-10 22458E-10 22592E-10 22734E-10 22885E-10 23045E-10 23219E-10 23409E-10 23619E-10

34 Se 67806E-06 68007E-06 68226E-06 68455E-06 68696E-06 68950E-06 69216E-06 69500E-06 69823E-06 70159E-06

35 Br 19737E-06 19801E-06 19868E-06 19941E-06 20018E-06 20099E-06 20184E-06 20276E-06 20375E-06 20482E-06

36 Kr 47444E-05 47552E-05 47666E-05 47788E-05 47918E-05 48053E-05 48194E-05 48345E-05 48508E-05 48686E-05

37 Rb 42147E-05 42238E-05 42333E-05 42435E-05 42543E-05 42655E-05 42772E-05 42897E-05 43033E-05 43180E-05

38 Sr 11020E-04 11044E-04 11069E-04 11096E-04 11125E-04 11155E-04 11186E-04 11219E-04 11255E-04 11295E-04

39 Y 95335E-06 95543E-06 95764E-06 96003E-06 96253E-06 96519E-06 96804E-06 97104E-06 97430E-06 97787E-06

40 Zr 41784E-04 41902E-04 42028E-04 42162E-04 42304E-04 42454E-04 42610E-04 42777E-04 42959E-04 43156E-04

41 Nb 23390E-06 23480E-06 23578E-06 23684E-06 23797E-06 23915E-06 24043E-06 24181E-06 24332E-06 24499E-06

42 Mo 35715E-04 35843E-04 35979E-04 36125E-04 36280E-04 36443E-04 36614E-04 36798E-04 36997E-04 37214E-04

43 Tc 87834E-05 88149E-05 88483E-05 88843E-05 89223E-05 89625E-05 90048E-05 90500E-05 90991E-05 91527E-05

44 Ru 21190E-04 21292E-04 21400E-04 21518E-04 21642E-04 21773E-04 21911E-04 22059E-04 22220E-04 22396E-04

45 Rh 33265E-05 33412E-05 33568E-05 33739E-05 33919E-05 34111E-05 34314E-05 34534E-05 34773E-05 35032E-05

46 Pd 11040E-04 11123E-04 11212E-04 11308E-04 11410E-04 11517E-04 11630E-04 11752E-04 11884E-04 12028E-04

47 Ag 47728E-06 48157E-06 48618E-06 49111E-06 49632E-06 50190E-06 50773E-06 51407E-06 52095E-06 52845E-06

48 Cd 58467E-06 59033E-06 59654E-06 60264E-06 60935E-06 61619E-06 62421E-06 63249E-06 64163E-06 65148E-06

49 In 67510E-08 67889E-08 68293E-08 68734E-08 69200E-08 69663E-08 70190E-08 70802E-08 71424E-08 72107E-08

50 Sn 38632E-06 38873E-06 39144E-06 39430E-06 39732E-06 40047E-06 40397E-06 40774E-06 41175E-06 41613E-06

51 Sb 11906E-06 12018E-06 12106E-06 12191E-06 12294E-06 12396E-06 12490E-06 12604E-06 12728E-06 12867E-06

52 Te 43431E-05 43633E-05 43850E-05 44083E-05 44328E-05 44587E-05 44859E-05 45152E-05 45469E-05 45818E-05

53 I 20741E-05 20844E-05 20953E-05 21071E-05 21195E-05 21328E-05 21467E-05 21617E-05 21786E-05 21968E-05

54 Xe 40765E-04 40924E-04 41093E-04 41275E-04 41467E-04 41671E-04 41883E-04 42111E-04 42359E-04 42629E-04

55 Cs 21170E-04 21245E-04 21324E-04 21410E-04 21501E-04 21597E-04 21698E-04 21806E-04 21923E-04 22051E-04

56 Ba 10487E-04 10528E-04 10571E-04 10618E-04 10668E-04 10720E-04 10775E-04 10834E-04 10897E-04 10966E-04

57 La 94613E-05 94941E-05 95283E-05 95654E-05 96046E-05 96461E-05 96893E-05 97358E-05 97862E-05 98413E-05

58 Ce 20333E-04 20401E-04 20474E-04 20553E-04 20636E-04 20723E-04 20815E-04 20913E-04 21020E-04 21136E-04

59 Pr 87012E-05 87290E-05 87584E-05 87902E-05 88236E-05 88590E-05 88961E-05 89357E-05 89787E-05 90257E-05

60 Nd 27924E-04 28015E-04 28112E-04 28216E-04 28326E-04 28441E-04 28563E-04 28693E-04 28834E-04 28988E-04

61 Pm 71522E-06 71726E-06 71944E-06 72183E-06 72439E-06 72708E-06 73001E-06 73319E-06 73668E-06 74050E-06

62 Sm 53638E-05 53840E-05 54066E-05 54293E-05 54535E-05 54795E-05 55064E-05 55353E-05 55668E-05 56015E-05

63 Eu 11535E-05 11595E-05 11660E-05 11729E-05 11801E-05 11878E-05 11957E-05 12045E-05 12139E-05 12240E-05

64 Gd 59188E-06 59626E-06 60139E-06 60634E-06 61186E-06 61782E-06 62414E-06 63083E-06 63786E-06 64549E-06

65 Tb 87552E-08 88272E-08 89091E-08 90333E-08 91292E-08 92250E-08 93328E-08 94422E-08 96788E-08 98576E-08

92 U 36783E-02 36775E-02 36767E-02 36758E-02 36749E-02 36739E-02 36729E-02 36718E-02 36706E-02 36692E-02

93 Np 23051E-05 23109E-05 23169E-05 23233E-05 23300E-05 23370E-05 23442E-05 23518E-05 23598E-05 23684E-05

94 Pu 24769E-04 24966E-04 25175E-04 25404E-04 25645E-04 25902E-04 26174E-04 26468E-04 26788E-04 27138E-04

95 Am 66698E-06 67457E-06 68266E-06 69138E-06 70066E-06 71046E-06 72077E-06 73191E-06 74404E-06 75725E-06

96 Cm 23021E-06 23332E-06 23679E-06 24035E-06 24423E-06 24823E-06 25243E-06 25712E-06 26239E-06 26787E-06

NUCLIDE RADIAL 21 RADIAL 22 RADIAL 23 RADIAL 24 RADIAL 25 RADIAL 26 RADIAL 27 RADIAL 28 RADIAL 29 RADIAL 30

0309 0317 0324 0331 0338 0345 0352 0358 0365 0371

1 H2 27414E-07 27680E-07 27906E-07 28232E-07 28603E-07 29017E-07 29506E-07 30096E-07 30844E-07 31815E-07

2 He 40016E-06 40358E-06 40738E-06 41136E-06 41579E-06 42072E-06 42644E-06 43351E-06 44216E-06 45326E-06

6 C 26882E-06 26953E-06 27027E-06 27101E-06 27176E-06 27254E-06 27334E-06 27418E-06 27515E-06 27624E-06

8 O 77158E-02 77158E-02 77158E-02 77157E-02 77158E-02 77157E-02 77157E-02 77157E-02 77157E-02 77157E-02

33 As 23848E-10 24101E-10 24387E-10 24708E-10 25077E-10 25495E-10 25996E-10 26610E-10 27391E-10 28420E-10

34 Se 70524E-06 70926E-06 71363E-06 71856E-06 72396E-06 73006E-06 73719E-06 74580E-06 75651E-06 77059E-06

35 Br 20600E-06 20729E-06 20872E-06 21029E-06 21206E-06 21404E-06 21636E-06 21915E-06 22265E-06 22720E-06

JAEA-DataCode 2013-009

- 243 -

36 Kr 48880E-05 49093E-05 49326E-05 49578E-05 49861E-05 50175E-05 50540E-05 50971E-05 51510E-05 52207E-05

37 Rb 43340E-05 43515E-05 43707E-05 43916E-05 44149E-05 44407E-05 44705E-05 45060E-05 45504E-05 46073E-05

38 Sr 11337E-04 11384E-04 11435E-04 11491E-04 11553E-04 11622E-04 11703E-04 11799E-04 11919E-04 12073E-04

39 Y 98176E-06 98605E-06 99081E-06 99613E-06 10022E-05 10089E-05 10168E-05 10263E-05 10383E-05 10540E-05

40 Zr 43370E-04 43606E-04 43866E-04 44151E-04 44471E-04 44828E-04 45244E-04 45743E-04 46369E-04 47176E-04

41 Nb 24681E-06 24883E-06 25110E-06 25366E-06 25660E-06 25993E-06 26393E-06 26884E-06 27510E-06 28350E-06

42 Mo 37450E-04 37710E-04 37997E-04 38314E-04 38672E-04 39072E-04 39541E-04 40103E-04 40809E-04 41725E-04

43 Tc 92110E-05 92753E-05 93467E-05 94254E-05 95145E-05 96144E-05 97318E-05 98733E-05 10051E-04 10283E-04

44 Ru 22588E-04 22800E-04 23034E-04 23294E-04 23590E-04 23921E-04 24311E-04 24781E-04 25375E-04 26149E-04

45 Rh 35317E-05 35633E-05 35986E-05 36380E-05 36835E-05 37349E-05 37962E-05 38711E-05 39657E-05 40900E-05

46 Pd 12186E-04 12360E-04 12553E-04 12768E-04 13011E-04 13284E-04 13606E-04 13996E-04 14487E-04 15127E-04

47 Ag 53664E-06 54571E-06 55586E-06 56712E-06 58008E-06 59473E-06 61213E-06 63333E-06 66017E-06 69522E-06

48 Cd 66217E-06 67412E-06 68747E-06 70184E-06 71814E-06 73678E-06 75865E-06 78488E-06 81804E-06 86181E-06

49 In 72929E-08 73527E-08 74134E-08 75339E-08 77230E-08 81064E-08 84522E-08 86790E-08 89630E-08 93242E-08

50 Sn 42090E-06 42589E-06 43163E-06 43817E-06 44553E-06 45384E-06 46370E-06 47548E-06 49026E-06 50971E-06

51 Sb 13021E-06 13201E-06 13408E-06 13632E-06 13885E-06 14189E-06 14509E-06 14896E-06 15363E-06 16036E-06

52 Te 46197E-05 46615E-05 47078E-05 47590E-05 48171E-05 48825E-05 49595E-05 50522E-05 51696E-05 53230E-05

53 I 22163E-05 22377E-05 22615E-05 22874E-05 23173E-05 23504E-05 23905E-05 24382E-05 24998E-05 25793E-05

54 Xe 42922E-04 43246E-04 43605E-04 43998E-04 44443E-04 44941E-04 45523E-04 46223E-04 47104E-04 48248E-04

55 Cs 22192E-04 22345E-04 22517E-04 22706E-04 22921E-04 23162E-04 23446E-04 23790E-04 24223E-04 24787E-04

56 Ba 11042E-04 11125E-04 11217E-04 11317E-04 11430E-04 11557E-04 11705E-04 11883E-04 12107E-04 12397E-04

57 La 99012E-05 99672E-05 10040E-04 10120E-04 10211E-04 10313E-04 10431E-04 10574E-04 10753E-04 10987E-04

58 Ce 21263E-04 21402E-04 21556E-04 21726E-04 21918E-04 22132E-04 22385E-04 22689E-04 23070E-04 23565E-04

59 Pr 90766E-05 91325E-05 91944E-05 92628E-05 93394E-05 94253E-05 95256E-05 96458E-05 97967E-05 99924E-05

60 Nd 29155E-04 29339E-04 29541E-04 29764E-04 30014E-04 30294E-04 30621E-04 31012E-04 31503E-04 32140E-04

61 Pm 74472E-06 74940E-06 75468E-06 76066E-06 76779E-06 77587E-06 78574E-06 79797E-06 81360E-06 83429E-06

62 Sm 56386E-05 56795E-05 57249E-05 57750E-05 58315E-05 58945E-05 59691E-05 60577E-05 61711E-05 63164E-05

63 Eu 12352E-05 12476E-05 12612E-05 12759E-05 12927E-05 13112E-05 13329E-05 13590E-05 13920E-05 14343E-05

64 Gd 65415E-06 66309E-06 67348E-06 68431E-06 69670E-06 71035E-06 72594E-06 74495E-06 76839E-06 79904E-06

65 Tb 10045E-07 10205E-07 10387E-07 10587E-07 10822E-07 11121E-07 11549E-07 11929E-07 12446E-07 13119E-07

92 U 36678E-02 36662E-02 36645E-02 36625E-02 36603E-02 36578E-02 36549E-02 36513E-02 36469E-02 36411E-02

93 Np 23778E-05 23881E-05 23988E-05 24100E-05 24222E-05 24352E-05 24496E-05 24658E-05 24857E-05 25100E-05

94 Pu 27518E-04 27939E-04 28413E-04 28947E-04 29563E-04 30260E-04 31096E-04 32119E-04 33411E-04 35111E-04

95 Am 77168E-06 78764E-06 80544E-06 82515E-06 84752E-06 87268E-06 90240E-06 93833E-06 98366E-06 10429E-05

96 Cm 27381E-06 28045E-06 28778E-06 29577E-06 30488E-06 31515E-06 32717E-06 34163E-06 35986E-06 38377E-06

NUCLIDE RADIAL 31 RADIAL 32 RADIAL 33 RADIAL 34 RADIAL 35 RADIAL 36

0377 0384 0390 0396 0401 0407

1 H2 33059E-07 34949E-07 37815E-07 43025E-07 51286E-07 67947E-07

2 He 46840E-06 48922E-06 52040E-06 57045E-06 65726E-06 81926E-06

6 C 27741E-06 27867E-06 28006E-06 28157E-06 28316E-06 28483E-06

8 O 77157E-02 77157E-02 77157E-02 77157E-02 77157E-02 77157E-02

33 As 29835E-10 31891E-10 35031E-10 40142E-10 49144E-10 65641E-10

34 Se 78925E-06 81595E-06 85611E-06 92063E-06 10340E-05 12431E-05

35 Br 23333E-06 24208E-06 25531E-06 27659E-06 31423E-06 38353E-06

36 Kr 53136E-05 54447E-05 56422E-05 59575E-05 65068E-05 75183E-05

37 Rb 46832E-05 47901E-05 49499E-05 52056E-05 56517E-05 64717E-05

38 Sr 12279E-04 12571E-04 13008E-04 13709E-04 14935E-04 17189E-04

39 Y 10753E-05 11057E-05 11521E-05 12267E-05 13579E-05 15998E-05

40 Zr 48262E-04 49805E-04 52129E-04 55872E-04 62433E-04 74548E-04

41 Nb 29491E-06 31147E-06 33687E-06 37830E-06 45140E-06 58593E-06

42 Mo 42963E-04 44732E-04 47408E-04 51731E-04 59328E-04 73381E-04

43 Tc 10596E-04 11045E-04 11726E-04 12826E-04 14763E-04 18349E-04

44 Ru 27200E-04 28704E-04 30994E-04 34699E-04 41226E-04 53308E-04

45 Rh 42608E-05 45080E-05 48870E-05 55047E-05 65983E-05 86259E-05

46 Pd 15996E-04 17243E-04 19139E-04 22212E-04 27637E-04 37707E-04

47 Ag 74327E-06 81267E-06 91846E-06 10902E-05 13940E-05 19570E-05

48 Cd 91996E-06 10044E-05 11318E-05 13394E-05 17057E-05 23848E-05

49 In 99755E-08 10704E-07 11841E-07 13990E-07 17625E-07 23512E-07

50 Sn 53610E-06 57394E-06 63189E-06 72577E-06 89027E-06 11955E-05

51 Sb 16999E-06 18381E-06 20376E-06 23477E-06 29069E-06 39156E-06

52 Te 55304E-05 58291E-05 62819E-05 70150E-05 83022E-05 10686E-04

53 I 26858E-05 28402E-05 30748E-05 34541E-05 41267E-05 53734E-05

54 Xe 49791E-04 51996E-04 55330E-04 60710E-04 70167E-04 87665E-04

55 Cs 25553E-04 26651E-04 28319E-04 31021E-04 35787E-04 44606E-04

56 Ba 12788E-04 13346E-04 14189E-04 15548E-04 17936E-04 22349E-04

57 La 11302E-04 11751E-04 12431E-04 13530E-04 15460E-04 19029E-04

58 Ce 24234E-04 25189E-04 26634E-04 28971E-04 33078E-04 40666E-04

59 Pr 10257E-04 10633E-04 11202E-04 12120E-04 13732E-04 16714E-04

60 Nd 32996E-04 34216E-04 36057E-04 39025E-04 44233E-04 53860E-04

61 Pm 86310E-06 90531E-06 97051E-06 10777E-05 12675E-05 16194E-05

62 Sm 65124E-05 67948E-05 72215E-05 79118E-05 91246E-05 11373E-04

63 Eu 14915E-05 15733E-05 16966E-05 18955E-05 22444E-05 28919E-05

64 Gd 83941E-06 89647E-06 98209E-06 11209E-05 13634E-05 18068E-05

65 Tb 14019E-07 15373E-07 17361E-07 20634E-07 26525E-07 37184E-07

JAEA-DataCode 2013-009

- 244 -

92 U 36332E-02 36219E-02 36047E-02 35769E-02 35281E-02 34380E-02

93 Np 25406E-05 25809E-05 26378E-05 27232E-05 28634E-05 31068E-05

94 Pu 37448E-04 40839E-04 46023E-04 54456E-04 69298E-04 96489E-04

95 Am 11232E-05 12387E-05 14146E-05 17005E-05 22058E-05 31488E-05

96 Cm 41593E-06 46204E-06 53163E-06 64430E-06 84319E-06 12168E-05

AXIAL DISTRIBUTION

AXIAL COODI POWER POWER BURNUP BURNUP BURNUP THERM FLUX FAST FLUX FAST FLUEN

NO (CM) (MW) (WCM) (MWD) (MWDT-U) (MWDTUO2) (NCM2S) (NCM2S) (NCM2)

1 500 15017E-03 15017E+02 22775E+00 46992E+04 41420E+04 34521E+13 49566E+13 50206E+21

2 1500 18971E-03 18971E+02 30218E+00 62348E+04 54955E+04 50697E+13 72281E+13 73190E+21

3 2500 20979E-03 20979E+02 35032E+00 72282E+04 63711E+04 59420E+13 84717E+13 89546E+21

4 3500 21457E-03 21457E+02 37105E+00 76559E+04 67482E+04 61827E+13 88150E+13 96838E+21

5 4500 21344E-03 21344E+02 37715E+00 77816E+04 68590E+04 61768E+13 88065E+13 99002E+21

6 5500 20991E-03 20991E+02 36944E+00 76227E+04 67189E+04 60412E+13 86131E+13 96267E+21

7 6500 20627E-03 20627E+02 34456E+00 71093E+04 62663E+04 58100E+13 82835E+13 87543E+21

8 7500 19563E-03 19563E+02 31750E+00 65509E+04 57742E+04 53420E+13 76163E+13 78292E+21

9 8500 17223E-03 17223E+02 27397E+00 56528E+04 49825E+04 43853E+13 62656E+13 64099E+21

10 9500 13296E-03 13296E+02 20122E+00 41517E+04 36594E+04 28535E+13 41122E+13 42862E+21

SUM AVE SUM AVE AVE AVE AVE AVE

189468E-02 189468E+02 313514E+01 646871E+04 570171E+04 512553E+13 553675E+13 777844E+21

CPU TIME = 416 (sec)

JAEA-DataCode 2013-009

- 245 -

8 Manual for modification of materials properties models

This modification manual for material properties is intended to be a guide for users to enable the addition of new material values to FEMAXI-7

81 Materials properties subroutines

Table 811 shows a list of subroutines (functions) which define the material properties used in FEMAXI-7 When users wish to add a new material property the relevant subroutines are modified The table below shows the modification method

Table 811 List of subroutines for materials properties in FEMAXI-7

Materials Properties Pellet Gap Cladding

Thermal conductivity PTHCON - CTHCON Specific heat PHCAP - CHCAP

Thermal expansion PTHEX - CTHEX Youngrsquos modulus FELMOD - CELMOD

Poissonrsquos ratio FPOIR - CPOIR

Creep

FCREEP CREEP1 CREEP2 XCREP1 XCREP2

New subroutine (FCPEQ_)

CCREEP CREEP1 CREEP2 XCREP1 XCREP2

New subroutine (CCPEQ_)

Swelling FSWELL - - Densification PDENS - -

Plasticity FYIE

FHSOFT FTSOFT

- CYLD

Grain growth GRAIN - - Melting point TMELT - -

Fission gas release FISGAS - - Corrosion rate - - CORRO

Irradiation growth - - CAGROW Gap thermal conductance - GAPCON -

Fission gas diffusion coefficient DIFC - -

He-Xe mutual diffusion coefficient - DIFCON -

JAEA-DataCode 2013-009

- 246 -

82 Method of addition and modification of models

821 Density (1) Pellet density

Addition of a new model of pellet theoretical density ratio uses FUNCTION PDEN

Table 821 shows the arguments of FUNCTION PDEN By using the arguments pellet

theoretical density ratio is defined as PDEN Here the theoretical density ratio is given by

pellet theoretical densitytimes pellet relative density (FDEN) FUNCTION PDEN assumes

the theoretical density ratio of UO2 as 1096 gcm3 that of PuO2 as 1146 gcm3 and that of

Gd2O3 as 820 gcm3 No modification options using materials properties number are

introduced Table 821 Arguments of FUNCTION PDEN

Argument s Content Unit PDEN Theoretical density of pellet gcm3 GD weight fraction of Gd2O3 wt frac

PU weight fraction of PuO2 wt frac

(2) Cladding density Addition of cladding density model uses FUNCTION CDENS Table 822 lists the arguments of FUNCTION CDENS Assignment starting at ICDENS=4 allows a definition of new model

Table 822 Arguments of FUNCTION CDENS (ICDENS is transferred as one of the COMMON variables)

Argument s Content Unit CDENS Cladding density gcm3

ICDENS Option for cladding density ICDENS=1 Zircaloy ICDENS=2 SUS-304 ICDENS=3 SUS-316

TK Temperature K

822 Thermal conductivity

(1) Thermal conductivity of fuel FUNCTION PTHCON is used for the addition of fuel thermal conductivity Table 823

shows the contents of common variables (or arguments or independent variables) of

JAEA-DataCode 2013-009

- 247 -

FUNCTION PTHCON The thermal conductivity is defined as PTHCON using the common variables shown in Table 823 [Note] Since the thermal conductivity must be a continuous function the function value should not jump at the boundary of temperature regions To ensure the continuity of the functions arrangements such as selecting the larger of two functions must be made in function-overlapping regions Furthermore when variables other than common variables are required it is recommended to assign the variable using COMMON variables

Here when defining the material properties of UO2 pellets the assignment should start at IPTHCN=16 and when defining those of MOX pellets the assignment should start at IPTHCN=34

Table 823 Arguments of FUNCTION PTHCON

Argument s Content Unit PTHCON Thermal conductivity of fuel pellet Wcm-K

IPTHCN

Options for the fuel thermal conductivity Since IPTHCN=1-18 30-38 and 90-92 are already used use the number which is different from these IPTHCN numbers when adding new models IPTHCN=1-29 are assigned to UO2 pellets At present IPTHCN=1-15 are used start from IPTHCN=16 when adding new models

IPTHCN=30- are intended for MOX pellets At present IPTHCN=30-33 are used start at IPTHCN=34 when adding new models

IGD

Options for the thermal conductivity of fuel containing Gd At present IGD=1-2 is used the assignment should start at IGD=3 Here IGD and IPTHCN are independent the thermal conductivity of pellets containing Gd can be defined using IPTHCN without any problems

TEMP Temperature K FDEN Pellet relative density -

BURNUP Burnup MWdt

GD Weight fraction of Gd2O3 - Y Y in MO(2-Y) eg Y=0001 when UO2001 -

PU Weight fraction of PuO2 -

PUM Molar fraction of PuO2 -

JAEA-DataCode 2013-009

- 248 -

(2) Cladding thermal conductivity

FUNCTION CTHCON is used for the addition of the cladding thermal conductivity The common variables of FUNCTION CTHCON are shown in Table 824 The thermal conductivity is defined as CTHCON using the common variables shown in the table [Note] Similar caution to PTHCON applies also to CTHCON ITMC designates materials option and IZOX designates options for oxide layer

Table 824 Arguments of FUNCTION CTHCON (containing COMMON variables)

Arguments Content Unit CTHCON Cladding thermal conductivity Wcm-K

IZYM

Cladding material option automatically set by the code IZYM=1 Zircaloy IZYM=2 Pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

ITMC

Options for the cladding thermal conductivity ITMC=0 - 19 are assigned to Zircaloy At present ITMC=1 and 2 are used Start from ITMC=3 when adding new models ITMC=20 - 29 are assigned to pure Zirconium (currently there is only one option thus no selection flag is available) ITMC=40 - 49 are assigned to stainless steel At present ITMC=40 - 43 are used Start from ITMC=44 when adding new models

IZOX

Options for cladding oxide IZOX=0 - 29 are assigned to Zircaloy At present IZOX=1 and 2 are used Start from IZOX=3 when adding new models IZOX=40 - 49 are assigned to stainless steel

CT Temperature K

OXTH Oxide layer thickness mm

BU Burnup GJkgU

FAIT Fast neutron fluence ncm2

JAEA-DataCode 2013-009

- 249 -

823 Specific heat (1) Specific heat of fuel pellet

FUNCTION PHCAP is used for the addition of specific heat Table 825 presents the common variables for FUNCTION PHCAP The specific heat of fuel is defined in the name of PHCAP using the common variables in the table [Note] Users should make the specific heat equation as continuous a function as possible Furthermore if new variables are required in addition to arguments the addition should be carried out using COMMON variables Here when defining the material property of UO2 pellets the assignment should start at ISPH=2 and when defining those of MOX pellets the assignment should start at ISPH=33 Table 825 Arguments in FUNCTION PHCAP

Arguments Content Unit PHCAP Fuel pellet specific heat JKg-K

ISPH

Options for the fuel specific heat ISPH=1-29 are allocated to UO2 At present ISPH=1 is used When adding new models start at ISPH=2 ISPH=30- are assigned to MOX pellets At present ISPH=30-32 are used When adding new models start at ISPH=33

TK Temperature K PU Weight fraction of PuO2 - PUM Molar fraction of PuO2 -

(2) Cladding specific heat

FUNCTION CHCAP is used for the addition of specific heat Table 826 presents the common variables for FUNCTION CHCAP Currently no options for the cladding specific heat are used

Table 826 Arguments in FUNCTION CHCAP

Arguments Content Unit CHCAP Cladding specific heat JKg-K

IZYM Cladding materials option IZYM=1 Zircaloy IZYM=2 Pure zirconium IZYM=3 ZrO2 IZYM=4 Stainless steel

T Temperature K

JAEA-DataCode 2013-009

- 250 -

824 Thermal expansion (1) Thermal expansion of fuel pellet

FUNCTION PTHEX is used for the addition of the fuel thermal expansion Table 827 shows common variables for FUNCTION PTHEX Using the common variables shown in Table 827 the fuel expansion is defined using PTHEX [Note] Users should make the function as continuous as possible The thermal expansion is defined in terms of a sentential function and is determined in terms of the thermal expansion increments which are obtained by taking the difference between the expansions before and after a time step When there are variables in addition to arguments it is convenient to add them using the common variables When defining the material properties of UO2 pellets the assignment should start at IPTHEX=6 and when defining those of MOX pellets the assignment should start at IPTHEX=33 Table 827 Arguments in FUNCTION PTHEX

Arguments Content Unit PTHEX Pellet thermal expansion -

IPTHEX

Options for pellet thermal expansion IPTHEX=1 - 29 are assigned to UO2 pellet At present IPTHEX=1 - 5 are used When adding new models start at IPTHEX=6 IPTHEX=30- are assigned to MOX pellet At present IPTHEX=30 - 32 are used When adding new models start at IPTHEX=33

TEMPR Temperature at present time step K TEMPO Temperature at previous time step K PU Weight fraction of PuO2 - PUM Molar fraction of PuO2 - Y Y in MO(2-Y) eg Y=0001 in UO2001 -

(2) Thermal expansion of cladding

SUBROUTINE CTHEX is used for the addition of cladding thermal expansion Table 828 presents the arguments in SUBROUTINE CTHEX The cladding thermal expansion is defined using the arguments as CDTHEX in the radial direction and as CATHEX in the axial direction The model calculates the thermal expansion increment by obtaining the difference of thermal expansion values between the present and previous time steps [Note] Users should make the equation as continuous a function as possible Furthermore if new variables are required in addition to arguments the addition should be carried out using COMMON variables

JAEA-DataCode 2013-009

- 251 -

Table 828 Arguments and Common Variables of SUBROUTINE CTHEX Arguments Content Unit CDTHEX Cladding thermal expansion in the radial direction - CATHEX Cladding thermal expansion in the axial direction - IZYM Cladding material option

IZYM=1Zircaloy IZYM=2pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

ICATHX Cladding thermal expansion material option ICATHX=0 - 19 for Zircaloy At present CATHX=1-3 are used When adding new models start at ICATHX=4 ICATHX=20 - 29 for pure zirconium ICATHX=30 - 39 for ZrO2 ICATHX=40 - 49 for stainless steel

TEMP2 Temperature at the present time step K TEMP1 Temperature at the previous time step K

825 Youngrsquos modulus (1) Youngrsquos modulus of fuel pellet

FUNCTION FELMOD is used for the addition of pellet Youngrsquos modulus Table 829 presents the arguments in the FUNCTION The pellet Youngrsquos modulus is defined as FELMOD

[Note] Users should make the equation as continuous a function as possible Furthermore if new variables are required in addition to arguments the addition should be carried out using COMMON variables When defining the material properties of UO2 pellets the assignment should start at IPLYG=3 and when defining those of MOX pellets the assignment should start at IPLYG=31 Table 829 Arguments in FUNCTION FELMOD

Arguments Content Unit FELMOD Youngrsquos modulus Nm2

IPLYG Options for pellet Youngrsquos modulus IPLYG=1 - 29 are assigned to UO2 pellet

At present IPLYG=1 - 2 are used When adding new models start at IPLYG=3 IPLYG=30- are assigned to MOX pellet

At present IPLYG=30 are used When adding new models start at IPLYG=31

FTEMP Temperature K FRADEN Pellet relative density (Theoretical density ratio) - PU PuO2 weight fraction -

JAEA-DataCode 2013-009

- 252 -

(2) Youngrsquos modulus of cladding

FUNCTION CELMOD is used for the addition of cladding Youngrsquos modulus Table 8210 presents the arguments in the FUNCTION The cladding Youngrsquos modulus is defined as CELMOD

[Note] Users should make the Youngrsquos modulus equation as continuous a function as

possible Furthermore if new variables are required in addition to arguments it is preferable to transfer them as COMMON variables Table 8210 Arguments in FUNCTION CELMOD

Arguments Content Unit CELMOD Cladding Youngrsquos modulus Nm2

IZYM

Cladding material option automatically set by the code IZYM=1Zircaloy IZYM=2pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

IZYG

Cladding Youngrsquos modulus option IZYG=0 - 19 for Zircaloy At present IZYG=1 and 2are used Start at IZYG=3 when adding new models IZYG=20 - 29 for pure zirconium IZYG=30 - 39 for ZrO2 IZYG=40 - 49 for stainless steel At present IZYG=40-43 are used Start at IZYG=44 when adding new models

CTEMP Temperature K FAIT Fast neutron fluence ncm2

826 Poissonrsquos ratio (1) Poissonrsquos ratio of fuel pellet

FUNCTION FPOIR is used for the addition of pellet Poissonrsquos ratio Table 8211 presents the arguments in the FUNCTION The pellet Poissonrsquos ratio is defined as FPOIR

[Note] If new variables are required in addition to arguments the addition should be carried out using COMMON variables When defining the material properties of UO2 pellets the assignment should start at IPOIS=2 and when defining those of MOX pellets the assignment should start at IPOIS=32

JAEA-DataCode 2013-009

- 253 -

Table 8211 Arguments in FUNCTION FPOIR

Arguments Content Unit FPOIR Poissonrsquos ratio of pellet -

IPOIS

Options for pellet Poissonrsquos ratio IPOIS=1 - 29 are assigned to UO2 pellet

At present IPOIS=1 is used When new models are added the assignment should start at IPOIS=2 IPLYG=30- are assigned to MOX pellet At present IPOIS=30 - 31 are used When new models are added the assignment should start at IPOIS=32

FTEMP Temperature K FDEN Pellet theoretical density ratio -

F (U(1-f) Pu(f))O2 molar fraction -

(2) Poissonrsquos ratio of cladding

FUNCTION CPOIR is used for the addition of cladding Poissonrsquos ratio Table 8212 presents the arguments in the FUNCTION The cladding Poissonrsquos ratio is defined as CPOIR

[Note] If new variables are required in addition to arguments the addition should be

carried out using COMMON variables

Table 8212 Arguments in FUNCTION CPOIR Arguments Content Unit CELMOD Cladding Poissonrsquos ratio - IZYM Cladding material option

IZYM=1Zircaloy IZYM=2pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

ICPOIS Cladding Poissonrsquos ratio option ICPOIS=0 - 19 for Zircaloy ICPOIS 20 - 29 for pure zirconium ICPOIS =30 - 39 for ZrO2 ICPOIS =40 - 49 for stainless steel At present ICPOIS=40 -43 are used Start at ICPOIS=44 when adding new models

CTEMP Temperature K

JAEA-DataCode 2013-009

- 254 -

827 Creep

(1) Creep in fuel pellets For the addition of a pellet creep equation a subroutine FCPEQyen is produced

Currently FCPEQ1-FCPEQ3 have been used thus the subroutine should start at FCPEQ4 To prepare FCPEQ4 existing FCPEQ1 and FCPEQ2 are reused in the case of UO2 fuel

and FCPEQ3 can be reused in the case of MOX fuel In FCPEQ4 among the subroutine variables FFUNG FS FH GFUNC GS and GH

must be redefined The contents of these variables are shown in Table 8213 Of these variables it is common to neglect strain hardening In such cases users can assign 0 to GFUNC GS and GH Accordingly values should be assigned to FFUNG FS and FH only

1) Since FFUNC is the effective creep strain rate in which time t is eliminated from the original creep rate equation (1hr) the creep rate equation is defined using FFUNC 2) Since FS is a differential term corresponding to the effective stress of effective creep strain rate it is defined by differentiating FFUNC by effective stress SIGE Here the unit used for SIGE is Pa When other units are used in the defining equation it is important to convert the unit 3) FH is a differential term for the equation representing creep hardening strain in general FH=0 The correction method in the case when creep hardening strain is taken into consideration is described in the cladding creep item

The correction of five subroutines is required to call FCPEQ4 after the preparation of subroutine FCPEQ4 These are the subroutines for the simplified thermal analysis FCREEP subroutines for mechanical analysis of the entire fuel rod XCREP1 and XCREP2 and subroutines for the local mechanical analysis CREEP1 and CREEP2

Method for correcting subroutine FCREEP

In the case of UO2 fuel add the following at the location required ELSEIF(IPCRPEQ3) THEN CALL FCPEQ4

1 (FFUNCF1 F2 F3 GFUNCGS GH EPSH DEPSHTEMP FIS

2 FDI GR SIGE FCRFACTHETC DTIME TCS NST 3 )

In the case of MOX fuel add the following at the location required ELSEIF(IPCRPEQ30) THEN CALL FCPEQ4

1 (FFUNCF1 F2 F3 GFUNCGS GH EPSH DEPSHTEMP FIS

2 FDI GR PU SIGE FCRFACTHETC DTIME TCSNST3 )

JAEA-DataCode 2013-009

- 255 -

In subroutine XCREEP1 the same correction for FCREEP should apply however the last common variable is set to 1 instead of 3 The method for correcting subroutine XCREP2 is the same as that used for XCREP1 and there are two items to be corrected The common variables of FCPEQ4 in the first correction are 2 and the last common variable of FCPEQ4 in the second correction is 3

The method for correcting subroutine CREEP1 is the same as that applied to XCREP1 Similar to XCREP1 the last common variable of FCPEQ4 is 1

The method for correcting subroutine CREEP2 is the same as that applied to XCREP2 and the number of corrections is 1 In this case the last common variable of FCPEQ4 is 2

When defining the material values of UO2 pellets start at IPCRP=3 and for MOX pellets start at IPCRP=31 Table 8213 Arguments in SUBROUTINE FCPEQ_ (12)

Arguments Content Unit FFUNC Pellet creep strain rate 1hr

F1 Constituent parameter F1 of creep-induced stress-strain matrix [ ]cC -

F2 Constituent parameter F2 of creep-induced stress-strain matrix [ ]cC -

F3 Adjustment factor parameter F3 for strain-hardening in creep strain

GFUNC Creep strain-hardening rate 1hr

GS Differential term by stress in creep strain-hardening rate 1(hrPa)

GH Differential term by strain-hardening in creep strain-hardening rate 1hr

EPSH Creep hardening strain at the start of time step -

DEPSH Increment of creep hardening strain (The initial Gaussian value is 0 )

TEMP Temperature K FIS Fission rate Fissionscm3-s FDI Initial theoretical density ratio of pellet - GR Grain diameter in pellet μm

SIGE Equivalent stress Pa FCRFAC Adjustment factor for creep strain rate - THETC Implicit solution parameter ( )10 leleθ - DTIME Time increment hr

JAEA-DataCode 2013-009

- 256 -

Table 8213 Arguments in SUBROUTINE FCPEQ_ (22)

Arguments Content Unit TCS Cut-off temperature level K NST Historical point number - IFLG Calculation option to select calculating items - PU Weight fraction of PuO2 - FS Differential term by stress in creep strain rate 1(hrPa) FH Differential term by hardening strain in creep strain rate 1hr

(2) Cladding creep For the addition of the creep equation of cladding subroutine CCPEQ is prepared

Currently CCPEQ1-CCPEQ8 are in use the new subroutine should be prepared starting at CCPEQ9

When preparing CCPEQ9 the existing CCPEQ1 and CCPEQ2 are reused for Zircaloy during normal operation periods the existing CCPEQ3 can be reused for ZrO2 the existing CCPEQ4 and CCPEQ5 can be reused for high-temperature Zircaloy and CCPEQ6 and CCPEQ7 can be reused for stainless steel

In CCPEQ9 among subroutine variables FFUNC FS FH GFUNC GS and GH must be redefined The contents of these variables are shown in Table 8214

1) FFUNC is the effective creep strain rate (1hr) in which t is eliminated from the original equation The creep rate equation is defined using FFUNC

2) Since FS is the differential term corresponding to the effective stress in the effective creep strain rate equation it is defined by differentiating FFUNC by effective stress (SIGE) However since the unit used for SIGE is Pa it is important to convert the unit when other units are used in the defining equation

3) H is the differential term corresponding to the creep strain hardening equation it is obtained by preparing the differential term for the strain hardening

4) Regarding GFUNG GS and GH depending on the creep equation there are three cases the method of addition is the same manner as in FFUNG FS and FH the addition is carried out by removing the thermal creep portion and the addition is carried out without considering strain hardening GFUNC is defined in accordance with the above description GS is given by the equation which is obtained by differentiating GFUNC with respect to effective strain GH is given by the equation which is obtained by differentiating GFUNC with respect to creep hardening

JAEA-DataCode 2013-009

- 257 -

The analytical derivation of these equations is shown below using an example of the Franklin model (CRPEQ=2)

1 expm p ncreep c

QmA tT

e e φ σminus = = sdot sdot sdot sdot minus

exp

m c

p nt

QAT

e

φ σ=

sdot sdot sdot minus

11

expm

p nmcQt AT

e φ σminus

= sdot sdot sdot minus

FFUNC

111

111

exp

exp

mp nmc c

nmp mmc

Qm AT

Qm AT

e e φ σ

e φ σ

minus

minus

= sdot sdot sdot minus

= sdot sdot minus

FS

11 11 exp

nmpc mmc

Qn AT

e e φ σσ

minusminus part = sdot sdot minus sdot part

FH

11

11

( 1) exp

( 1) exp

mp nc mc

c

nmp mmc

Qm AT

Qm AT

e e φ σe

e φ σ

minus

minus

part = minus sdot sdot sdot sdot minus part

= minus sdot sdot sdot minus sdot

As described after preparation of CCPEQ9 corrections of five subroutines are required to call FCPEQ4 These are subroutines for the simplified thermal analysis CCREEP subroutines for the entire length mechanical analysis XCREP1 and XCREP2 and subroutines for the local mechanical analysis CREEP1 and CREEP2 The correction method is the same as that used for fuel creep thus the explanation is omitted

The flag for the selection of a creep equation for Zircaloy during a normal operation period is CRPEQ (integer variable) currently CRPEQ=1 is used the new addition should start at CRPEQ=2 In the case of ZrO2 there is no flag Therefore for example assuming that the selection flag in the existing equation is CRPEQ=30 the flag for the selection of a new creep equation should start from CRPEQ=31

JAEA-DataCode 2013-009

- 258 -

The flag for the selection of a creep equation for Zircaloy at high temperature is given by the HTCRP (integer) variable since at present HTCRP=1 20 21 and 22 are used the assignment of the creep equation selection flag should start with HTCRP=3

The flag for the selection of a creep equation for stainless steel is given by CRPEQ (integer variable) since at present CRPEQ=40 is used CRPEQ=42 should be used for the assignment of the creep equation selection flag

Table 8214 Arguments in SUBROUTINE CCPEQ_ Arguments Content Unit FFUNC Cladding creep strain rate 1hr

F1 Constituent parameter F1 in creep stress-strain matrix of [ ]cC -

F2 Constituent parameter F2 in creep stress-strain matrix of [ ]cC -

F3 Adjusting parameter F3 by strain-hardening due to creep strain - GFUNC Cladding creep strain hardening rate 1hr

GS Stress-differential term of cladding creep strain hardening rate 1(hrPa)

GH Strain-hardening-differential term of cladding creep strain hardening rate 1hr

EPSH Creep hardening strain at the start of time step -

DEPSH Increment of creep hardening strain (The initial Gaussian value is 0 ) -

TEMP Temperature K

FAI Fast neutron flux ncm2-s

SIGE Equivalent stress Pa

CRFAC Adjusting parameter for cladding creep strain rate -

THETC Implicit solution parameter ( )10 leleθ -

DTIME Time increment hour

NST Number of historical input point -

IFLG Calculation option to select calculating items -

FS Stress-differential term of cladding creep strain rate 1(hrPa)

FH Differential term by hardening strain in creep strain rate 1hr

828 Fuel pellet swelling For the addition of a pellet swelling equation SUBROUTINE FSWELL is used

Table 8215 shows the arguments for subroutine FSWELL The swelling strain of pellets is defined using the arguments listed in Table 8215 as SSW and USW

SSW represents solid swelling strain and USW represents gas bubble swelling strain When there is no difference between the equations representing the solid strain and bubble

JAEA-DataCode 2013-009

- 259 -

strain SSW is defined but USW is set to 0 The total swelling strain is given by SSW+USW Also when solid swelling strain and bubble swelling strain are each defined as the total swelling the solid swelling strain is given as SSW and [bubble swelling ndash solid swelling strain] is given as USW However when USWlt0 USW=0

Since the strain is a linear strain when the strain is defined by the volumetric strain the obtained values should be reduced to 13 and the resulting values should be assigned to SSW and USW

[Note] The users should make the swelling equation as continuous a function as possible Also a string dependency of the bubble swelling equation on temperature occasionally causes a problem in the numerical convergence of the gap conductance calculation Measures to avoid the very strong dependence of the swelling equation on temperature should be taken When variables other than common variables are required it is recommended that they are referred to via COMMON variables The addition of a model can start at IFSWEL=5

Table 8215 Arguments in SUBROUTINE FSWELL Arguments Content Unit SSW Pellet solid swelling strain - USW Pellet gas bubble swelling strain -

IFSWEL

Options for pellet swelling model IFSWEL=0 - 29 are assigned to UO2 pellet At present IFSWEL=1- 4 is used When adding new models start at IFSWEL=5 IFSWEL=30- are assigned to MOX pellet

Currently there is no distinction between UO2 model and MOX model for swelling For MOX also IFSWEL=0 - 4 are used When adding new models for MOX start at IFSWEL=30

BU2 Burnup GJKg-U DBU Burnup increment GJKg-U TEMP Temperature K FDEN Pellet theoretical density ratio -

FDENI Initial theoretical density ratio of pellet -

GR Grain diameter of fuel mm

PO Plenum gas pressure Pa SWO Pellet swelling strain at the previous time step -

I Mesh number in the radial direction -

NODE Axial segment number - IFLG Calculation option in the case of IFSWEL=1 -

JAEA-DataCode 2013-009

- 260 -

829 Densification

FUNCTION DENSF is used for the addition of pellet densification model Table 8216 presents the arguments in the FUNCTION The pellet densification strain is defined as DENSF Since the strain is a linear strain when strain is defined as a volumetric strain the one-third of the volumetric strain is given to DENSF [Note] The users should make the swelling equation as continuous a function as possible If new variables are required in addition to arguments the addition should be carried out using COMMON variables When defining the material properties of UO2 pellets the assignment should start at IDENSF=5 and when defining those of MOX pellets the assignment should start at IDENSF=31 Table 8216 Arguments in FUNCTION DENSF

Arguments Content Unit DENSF Pellet densification strain - IDENSF Options for pellet densification model

IDENSF=0 - 29 are assigned to UO2 pellet At present IDENSF=1 - 4 are used When adding new models start at IDENSF=5 IDENSF=30- are assigned to MOX pellet Currently there is no distinction between UO2 model and MOX model for swelling For MOX also IDENSF=1-4 are used When adding new models for MOX start at IDENSF=31

BU Burnup MWdt SITIM Sintering time hr DMAX Maximum volumetric strain by densification -

TDNSF Sintering temperature K

GG Pellet grain diameter m GG0 Initial grain diameter m FDEN Pellet theoretical density ratio

8210 Plasticity (1) Plasticity of fuel

FUNCTION FYIE SUBROUTINE FTSOFT and SUBROUTINE FHSOFT should be corrected when adding the plastic equation of the pellet FUNCTION FYIE provides the yield stress (Pa) to the FYIE SUBROUTINE FTSOFT provides the differential term of

JAEA-DataCode 2013-009

- 261 -

the temperature of the yield stress of the pellet (PaK) to H2 SUBROUTINE FHSOFT provides the differential term due to the plastic strain of the yield stress of the pellet to H1

Tables 8217 to 8219 show arguments for FUNCTION FYIE SUBROUTINE FTSOFT and SUBROUTINE FHSOFT When defining material property equations the definition should start with IFY=2 At present there is no distinction between UO2 and MOX fuels [Note] The yield stress must be represented by a continuous function

Table 8217 Arguments in FUNCTION FYIE

Arguments Content Unit FYIE Pellet yield stress Pa

IFY Pellet plasticity model option IFY=0 - 29 are assigned to UO2 pellets Currently IFY=1 is used when adding a new subroutine start at IFY=2 IFY=30 is assigned to MOX pellets Currently there is no setting for MOX If a new addition is required it should start at IFY=30

TEMP Temperature K EPSP Pellet equivalent plastic strain -

FYIEF Option to magnify the pellet yield stress by FYIEF times -

Table 8218 Arguments in SUBROUTINE FTSOFT Arguments Content Unit H2 Temperature-differential term of pellet yield stress PaK

IFY Pellet plasticity model option IFY=0 - 29 are assigned to UO2 pellets Currently IFY=1 is used when adding a new subroutine the assignment should start at IFY=2 IFY=30- is assigned to MOX pellets Currently there is no setting for MOX If a new addition is required it should start at IFY=30

TEM3 Temperature K EPSP3 Pellet equivalent plastic strain -

JAEA-DataCode 2013-009

- 262 -

Table 8219 Arguments in SUBROUTINE FHSOFT Arguments Content Unit H2 Equivalent plastic strain-differential term of pellet yield stress Pa

IFY Pellet plasticity model option IFY=0 - 29 are assigned to UO2 pellets Currently IFY=1 is used when adding a new subroutine the assignment should start at IFY=2 IFY=30- is assigned to MOX pellets Currently there is no setting for MOX If a new addition is required it should start at IFY=30

TEM3 Temperature K

(2) Cladding plasticity

FUNCTION CYID should be corrected when adding the plastic equation of cladding As the FUNCTION CYID has five ldquoENTRY POINTrdquo each ENTRY POINT should be given a necessary materials property model The five ldquoENTRY POINTrdquo are

CYIE (02 Yield stress) CRN(Strain-hardening exponent) CDKDT(Temperature-differential term of cladding 02 strength) CDNDT(Temperature-differential term of cladding strain-hardening exponent) CDEDT(Temperature-differential term of cladding Youngrsquos modulus)

Arguments of each ldquoENTRY POINTrdquo is presented in Tables 8220 - 8224 【Note】02 strength and strain-hardening exponent should be a continuous function

Table 8220 Arguments in FUNCTION CYIE Arguments Content Unit CYIE Cladding 02 strength Pa

IZYM Cladding material option IZYM=1Zircaloy IZYM=2pure zirconium IZYM=3ZrO2 IZYM=4Stainless steel

ICPLAS Cladding Plasticity option ICPOIS=0 - 19 for Zircaloy ICPOIS 20 - 29 for pure zirconium ICPOIS =30 - 39 for ZrO2 ICPOIS =40 - 49 for stainless steel

TEMP Temperature K FAIT Fast neutron fluence ncm2 FAI Fast neutron flux ncm2-s EPSDOT Strain rate 1hr MRASA Material flag of Zircaloy cladding

(=0Re-crystallized =1Stress-relieved) -

JAEA-DataCode 2013-009

- 263 -

Table 8221 Arguments in FUNCTION CRN Arguments Content Unit CRN Cladding strain-hardening exponent -

IZYM See Table 8220 -

ICPLAS See Table 8220 -

TEMP Temperature K FAIT Fast neutron fluence ncm2

Table 8222 Arguments in FUNCTION CDKDT

Arguments Content Unit CDKDT Temperature-differential term of cladding 02

strength PaK

IZYM See Table 8220 -

ICPLAS See Table 8220 -

TEMP Temperature K FAIT Fast neutron fluence ncm2

Table 8223 Arguments in FUNCTION CDNDT

Arguments Content Unit CDNDT Temperature-differential term of cladding

strain-hardening exponent 1K

IZYM See Table 8220 -

ICPLAS See Table 8220 -

TEMP Temperature K FAIT Fast neutron fluence ncm2

Table 8224 Arguments in FUNCTION CDEDT

Arguments Content Unit

CDEDT Temperature-differential term of cladding Youngrsquos modulus

PaK

IZYM See Table 8220 -

ICPLAS See Table 8220 - TEMP Temperature K FAIT Fast neutron fluence ncm2

JAEA-DataCode 2013-009

- 264 -

8211 Grain growth FUNCTION GRAIN is used for the addition of pellet grain growth model Table 8225

presents the arguments in the FUNCTION The pellet grain growth is defined as GRAIN [Note] In many cases the grain growth function is defined by the n-th power of time In

such cases first the time elapsed is calculated by the difference between the initial grain size and the current grain size assuming that the temperature at the current step is continuous Then time increments of grain size are integrated for all steps during the time elapsed and the grain size at the end of the current step is obtained At present there is no distinction between the growth rates of UO2 and MOX fuels When variables need to be added to common variables it is recommended that the users add them using COMMON variables The addition of a model can be started at IGRAIN=6

Table 8225 Arguments in FUNCTION GRAIN

Arguments Content Unit GRAIN Grain diameter of fuel pellet cm IGRAIN Grain growth model option

IGRAIN=0 - 29 are assigned to UO2 pellets Currently IGRAIN=0 - 5 are used when adding a new subroutine the assignment should start at IGRAIN=6 IGRAIN=30- is assigned to MOX pellets Currently there is no distinction between UO2 and MOX If a new addition is required it should start at IGRAIN=30 for MOX

GRNO Grain diameter at the start of time step cm TEMP Temperature K BURN Burnup MWdt GR0 Initial grain diameter cm DTIME Time step width sec

BO Fission gas atom density at grain boundary atomscm2

SAT Saturation value of fission gas atom at grain boundary atomscm2

8212 Melting point Since the equation of the fuel melting point has currently no options it is necessary to

set a new selection flag and add a new model The fuel melting point model is defined by FUNCTION TMELT Table 8226 shows the arguments for FUNCTION TMELT

JAEA-DataCode 2013-009

- 265 -

Table 8226 Arguments in FUNCTION TMELT Arguments Content Unit TMELT Melting point of fuel pellet K F Molar fraction of PuO2 - BU Burnup MWdt

8213 Fission gas release rate and diffusion coefficient Since a mechanistic model has been adopted for the fission gas release it is not easy to

add another type of model FUNCTION DIFC is used for the addition of the equation for the intra-granular diffusion coefficient of fission gas atoms Table 8227 shows the arguments used in FUNCTION DIFC The diffusion coefficient of fission gas DIFC is defined using the arguments in Table 8227

The model option is IDCNST At present since model equations up to IDCNST=1-3 have been used a new model can be introduced starting at IDCNST=4 Here when a new variable is required for a new model it is recommended that the users define the new variable using the COMMON variables

Table 8227 Arguments in FUNCTION DIFC

Arguments Content Unit DIFC Diffusion coefficient of fission gas atom cm2s IDCNST Option for equation of diffusion coefficient of fission gas atom -

TEMP Temperature K

8214 Cladding waterside corrosion SUBROUTINE CORRO is used for the addition of cladding waterside corrosion rate

equation Table 8228 presents the arguments in the SUBROUTINE The corrosion rate is defined as CORRD Table 8228 Arguments in SUBROUTINE CORRO ( including COMMON)(12)

Arguments Content Unit CORRD Cladding waterside corrosion rate daym m

IZYM Cladding material option IZYM=3 Zircaloy IZYM=4 stainless steel

ICORRO Corrosion model option ICORRO=0-39 is assigned to Zircaloy ICORRO=40- is assigned to stainless steel

JAEA-DataCode 2013-009

- 266 -

Table 8228 Arguments in SUBROUTINE CORRO ( including COMMON) (22)

Arguments Content Unit TEMP0 Cladding surface temperature K

OXTH Oxide layer thickness mm

QF Surface heat flux Wcm2

FAIX Fast neutron flux ncm2-s

DTD Time increment day

FCORRO Adjusting factor for cladding corrosion rate -

DTIME Time increment Hr

8215 Cladding irradiation growth FUNCTION CAGROW is used for the addition of the cladding irradiation growth model Table 8229 shows the arguments used in FUNCTION CAGROW The strain increment of the cladding irradiation growth is defined by CAGROW using the arguments listed in Table 8229 Since CAGROW is given as a function of the irradiation it is defined by the difference between the irradiation growth strain up to the previous time step and the current strain Option for irradiation growth of cladding is designated by ICAGRW At present ICAGRW=0 - 4 are used a new model should start at ICAGRW=5 Table 8229 Arguments in FUNCTION CAGROW

Arguments Content Unit CAGROW Cladding irradiation growth increment -

ICAGRW Option for irradiation growth model -

FAIT Fast neutron fluence at current time step ncm2 DFAIT Fast neutron fluence increment ncm2

8216 Gap thermal conductance

SUBROUTINE GAPCON is used for the addition of the cladding gap thermal conductance model Table 8230 shows the arguments used in GAPCON The gap thermal conductance GCOND(GCONS GCONG GCONR) is defined by GAPCON using the arguments listed in Table 8230

The model option is IGAPCN At present since model equations up to IGAPCN=1-6 have been used a new model can be introduced starting at IGAPCN=7 Here when a new variable is required for a new model it is recommended that the users define a new variable using the COMMON variables

JAEA-DataCode 2013-009

- 267 -

Table 8230 Arguments in SUBROUTINE GAPCON

Arguments Content Unit PST Pellet surface temperature K CST Cladding surface temperature K GAPE Pellet-cladding gap width cm FDEN Burnup GJKg-U R01 Pellet surface roughness cm R02 Cladding surface roughness cm PCON Contact pressure Pa

GASPR Plenum pressure Pa

GMIX(4) Molar ratio of rare gases (=1He =2N2 =3Kr =4Xe)

LL Count number of iteration calculation -

MRASA Cladding material (=0Re-crystallized =1Stress-relieved)

GCOND Gap thermal conductance (output) Wcm2-K

GCONS Gap conductance by contact (output) Wcm2-K GCONG Gap conductance by gas conduction (output) Wcm2-K GCONR Gap conductance by radiation heat transfer (output) Wcm2-K FAI Fast neutron flux ncm2-s FAIT Fast neutron fluence ncm2 BURN Burnup GJKg-U PDIA Pellet diameter cm ENR Pellet enrichment - NODE Axial segment number - IGAPCN Option for gap conductance model -

8217 He-Xe gas inter-diffusion coefficient

FUNCTION DIFCON is used t for the addition of the inter-diffusion constant of He-Xe Table 8231 shows the arguments used in FUNCTION DIFCON The constant is defined by the arguments listed in Table 8231

Since the model option is not used currently it is necessary to introduce a new option parameter of model Here when a new variable is required for a new model it is recommended that the users define a new variable using the COMMON variables

JAEA-DataCode 2013-009

- 268 -

Table 8231 Arguments in FUNCTION DIFCON Arguments Content Unit DIFCON Inter-diffusion constant of Xe-Kr cm2s AN Molecular density molem3 TK Temperature K

83 Method of incorporating a new surface heat transfer

model

In order to incorporate a new cladding surface heat transfer model into FEMAXI-6 it

is necessary to alter four subroutines and add one new subroutine

The common method of adding a new name-list parameter input variable is shown below

(1) Add a COMMON variable (include statement) to ldquoBLOCK DATA

(2) Add a COMMON variable (include statement) to ldquoMAINrdquo

(3) Add a COMMON statement (include statement) to the subroutine using the

variable

(1) Addition of COMMON variables

A new file (eg IHCOEF) in the folder INC is added IHCOEF file

(2) Modification of ldquoBLOCK DATArdquo A new COMMON variable ldquoIHNEWrdquo is added to BLOCK DATArdquo Default value of

ldquoIHNEWrdquo is 0

BLOCK DATA include lsquoIHCOEFrsquo DATA IHNEW 0

IHCOEF IHNEW Surface heat transfer model option COMMONIHCOEF IHNEW

JAEA-DataCode 2013-009

- 269 -

(3) Modification of ldquoMAINrdquo

Add a new COMMON variable ldquoIHNEWrdquo In addition add a name-list parameter If ldquoIHNEW=1rdquo is assigned in the input file the code uses a new model

PROGRAM MAIN

C1220new include lsquoIHCOEFrsquo C1220new C NAMELISTINPUT C1220new IHNEW C1220new C

(4) Modification of subroutine ldquoCONTROLrdquo

1) Add a new COMMON variable ldquoIHNEWrdquo (include statement)

2) If IHNEW is not 0 ICSTge 4 holds The numbers from ICST=0 to ICST=3 have

already been used For example for the selected input values of IHNEWgt0 if a line

of statement ldquoICST=IHNEW+3rdquo is added the new model can be used by specifying the

value of ldquoIHNEWrdquo to 1 2 or 3

SUBROUTINE CONTROL

C1220new

include lsquoIHCOEFrsquo

ICST = 0

IF(CSTEMNE00) ICST = 3

IF(ISCNHALEQ1) ICST = 2

IF(ISTATEGE3) THEN

JAEA-DataCode 2013-009

- 270 -

ICST = 1

END IF

C1220new

IF(IHNEWNE0) ICST = IHNEW + 3

C1220new

IF(ISTNE0 AND ISTATEEQ0) ISTATE = 1

C

(5) Modification of ldquoUSTEMPrdquo

Prepare a new subroutine ldquoTSUR3rdquo and call this subroutine when ICST=4 between

ldquoC1220newArdquo and ldquoC1220newBrdquo as specified in the list below The required

arguments should be written

TCOL (NODE)= coolant temperature (K) at axial node number ldquoNODErdquo HCOEF (NODE)= cladding surface heat transfer coefficient (Wcm2-K) at axial node number ldquoNODErdquo rarrThis is used to output the results

SHF = heat flux (Wcm2) PCOOL = coolant pressure (Pa) TSUR = cladding surface temperature (K) and PSTG=Local linear heat rate (Wcm) at axial node number

ldquoNODErdquo

In subroutine ldquoTSUR3rdquo HCOEF and TSUR are calculated

SUBROUTINE USTEMP

C

IF(SHFLT00) SHF=00

IF(ICFLNE0 AND TSURLTTB(NODE)) TSUR = TB(NODE)

GO TO 334

C

322 CONTINUE

When ICST=1(ISTATE=3condition of fixed temperature at

cladding outer surface) substitute the cladding outer surface

temperature into TCOL

IF(ICSTEQ1) THEN

JAEA-DataCode 2013-009

- 271 -

ICTP=0(If CSTMP is the cladding surface temperature)

IF(ICTPEQ0 OR ICORROEQ0) THEN

TSUR = CSTMP(NODE)

TB(NODE)=TSUR

ELSE

ICTP=1(If CSTMP is temperature at metal-oxide interface)

TSUR = CSTMP(NODE)-PSTG(2PITHCON(NE))

1

DLOG(RTP(NODTNODE)RTP(NENODE))

TB(NODE)=TSUR

ENDIF

When ICST=2 (ISCNHAL=1the Halden equation is used)

substitute the cladding surface temperature into TCOL

ELSEIF(ICSTEQ2) THEN

CALL TSUR2(PSTGTCOL(NODE)TSUR)

TB(NODE)=TSUR

When ICST=3(input by CSTEM) substitute the cladding surface

temperature into TCOL

ELSEIF(ICSTEQ3) THEN

TSUR = CSTEM

TB(NODE)=TSUR

C1220newA

ELSEIF(ICSTEQ4) THEN

CALL

TSUR3(PSTGTCOL(NODE)HCOEF(NODE)SHFPCOOLTSURICST)

C1220newB

ELSE

WRITE(66150) ICSTIS3PNODETSURTB(NODE)

6150 FORMAT( ICST OPTION ERROR ---gt PROGRAM ATOP IN USTEMP

1 ICSTIS3PNODETSURTB=3I52F102)

STOP

ENDIF

JAEA-DataCode 2013-009

- 272 -

(6) Making ldquoTSUR3rdquo

A new heat transfer coefficient is prepared by this new subroutine For example in the Jens-Lottes equation ldquoFLMrdquo is the thermal conductivity (Wcm2-K) This equation requires that the cladding surface temperature be determined Thus it must be set as ldquoTSURH=TC+SHFFLMrdquo Furthermore the unit of ldquoHCOEFrdquo is converted to (Wm2-K) to conform to the output requirement

C1220new

SUBROUTINE TSUR3(PSTGTCHCOEFSHFPCOOLTSURHICST)

IMPLICIT DOUBLE PRECISION (A-HO-Z)

C----------------------------------------------------------

C THIS SUBROUTINE CALCURATES CLAD SURFACE TEMPERATURE BASED

C ON NEW MODEL (USING JENS-LOTTES EQUATION OR OTHER NEW

C EQUATION)

C

C ltlt INPUT gtgt

C PSTG LOCAL LINEAR HEAT RATE (WCM)

C TC COOLANT TEMPERATURE FROM SUFCN(INPUT)[K]

C SHF SURFACE HEAT FLUX (WCM2)

C PCOOL COOLANT PRESSURE (Pa)

C

C ltlt OUTPUT gtgt

C TSURH CLAD SURFACE TEMPERATURE (K)

C HCOEF HEAT TRANSFER COEFFICIENT (WM2-K)

C

C-----------------------------------------------------------

C

IF(ICSTEQ4) THEN

FLM = 01263D0DEXP( PCOOL6201D6 )SHF075D0

ELSEIF (ICSTEQ5) THEN

C ----[EQUATION FOR HANARO CONDITION]----

ENDIF

TSURH = TC + SHFFLM

HCOEF = FLM10D4

C

RETURN

END

JAEA-DataCode 2013-009

- 273 -

Appendix

A1 Title list for plotted figures

A2 Relationship between IDNO and array variables

A3 Subroutine list A4 Subroutine tree

JAEA-DataCode 2013-009

- 274 -

A1 Title list for plotted figures

TableA11 (16) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

1 AVERAGE BURNUP (MWDTM) 51 CLAD INNER TEMPERATURE (C)

2 AVERAGE FISSION GAS RELEASE () 52 CLAD SURFACE TEMPERATURE (C)

3 PLENUM PRESSURE (MPA) 53 PELLET CENTER TEMPERATURE (C)

4 ROD FREE VOLUME (CC) 54 PELLET SURFACE TEMPERATURE (C)

5 PELLET ELONGATION () 55 CLAD OUTER DIAMETER CHANGE (MIC)

6 CLAD ELONGATION () 56 XE+KR ()

7 CLAD MAXIMUM DIAMETER CHANGE (MIC) 57 FUEL FRACTIONAL DENSITY (TD)

8 AVERAGE LINEAR HEAT RATE (WCM) 58 ZRYZRY-OXIDE BOUNDARY TEMPERATURE (C)

9 AVERAGE RELEASED IODINE (GCM2) 59 ZRY OUTER OXIDE THICKNESS (MIC)

10 PEAK RELEASED IODINE (GCM2) 60 COOLANT ENTHALPY (KJKG)

11 CLAD AVERAGE DIAMETER CHANGE (MIC) 61 COOLANT QUALTY (-)

12 COOLANT INLET TEMPERATURE (C) 62 CLAD SURFACE HEAT FLUX (WCM2)

13 COOLANT PRESSURE (MPA) 63 CLAD FILM CONDUCTANCE (WCM2-C)

14 COOLANT VELOCITY (MS) 64 FAST NEUTRON FLUX (NCM2-S)

15 FAST NEUTRON FLUX (NCM2-S) 65 FAST NEUTRON FLUENCE (NCM2)

16 AVERAGE FLUENCE (NCM2) 66 PELLET AVERAGE POWER DENSITY (WCM3)

17 FUEL ELONGATION () 67 MECHANICAL DIAMETER GAP (MIC)

18 CLAD ELONGATION () 68 PELLET DENSIFICATION dVV ()

19 CLAD MAXIMUM DIAMETER CHANGE (MIC) 69 RIM LAYER THICKNESS (MIC)

20 CLAD AVERAGE DIAMETER CHANGE (MIC) 70 ADDITIONAL FGR FROM RIM ()

21 PELLET ELONGATION (MM) 71 RELEASED XE GAS (MOL)

22 CLAD ELONGATION (MM) 72 RELEASED KR GAS (MOL)

23 ENERGY DEPOSITION (JG-FUEL) 73 RELEASED HE GAS (MOL)

24 CLAD AXIAL LOAD (N) 74 THERMAL PCMI PRESSURE (MPA)

25 CLAD RADIAL STRAIN ENERGY (J) 75 PELLET-CLAD FRICTIONAL PRESSURE (MPA)

26 CLAD CIRCUM STRAIN ENERGY (J) 76 PELLET ELONGATION ()

27 CLAD AXIAL STRAIN ENERGY (J) 77 CLADDING AXIAL ELONGATION ()

28 CLAD EQUIVALENT STRAIN ENERGY (J) 78 CLAD OUTER DIAMETER CHANGE (MIC)

29 COOLANT MASS FLOW RATE (KGM2S) 79 PELLET POROSITY ()

30 AVERAGE HE GAS RELEASE () 80 PELLET VOLUME CHANGE ()

31 ZRY INNER OXIDE THICKNESS (MIC) 81 PELLET OUTER DIAMETER CHANGE (MIC)

32 ZRY INNER ALPHA LAYER (MIC) 82 PELLET OUTER STRAIN ()

33 ZRY OUTER ALPHA LAYER (MIC) 83 BONDING RATIO (-)

34 ENERGY DEPOSITION (JG-FUEL) 84 INTRAGRANULAR BUBBLE RADIUS (ANGSTROM)

35 ZRY BETA LAYER THICKNESS (MIC) 85 INTRAGRANULAR BUBBLE dVV ()

36 ZRY BETA LAYER UNDER OXB (MIC) 86 INTERGRANULAR BUBBLE RADIUS (MIC)

37 CLAD RADIAL STRAIN ENERGY (J) 87 INTERGRANULAR BUBBLE dVV ()

38 CLAD CIRCUM STRAIN ENERGY (J) 88 PELLET OUTER RADIAL DISP (MIC)

39 CLAD AXIAL STRAIN ENERGY (J) 89 PELLET ELASTIC RADIAL DISP (MIC)

40 CLAD EQUIVALENT STRAIN ENERGY (J) 90 PELLET THERMAL RADIAL DISP (MIC)

41 LINEAR HEAT RATE (WCM) 91 PELLET RELOCATION RADIAL DISP (MIC)

42 BURNUP (MWDTU) 92 PELLET DENSIFICATION RADIAL DISP (MIC)

43 DIAMETER GAP WIDTH (MIC) 93 PELLET SWELLING RADIAL DISP (MIC)

44 LOCAL FEM PCMI PRESSURE (MPA) 94 PELLET CREEP RADIAL DISP (MIC)

45 FISSION GAS RELEASE () 95 PELLET AXIAL DISPLACEMENT (MIC)

46 FUEL-CLAD FRICTIONAL PRESSURE (MPA) 96 CLAD INNER RADIAL DISP (MIC)

47 PELLET ELONGATION () 97 CLAD ELASTIC RADIAL DISP (MIC)

48 CLADDING AXIAL ELONGATION () 98 CLAD THERMAL RADIAL DISP (MIC)

49 GAP CONDUCTANCE (WCM2-C) 99 CLAD CREEP RADIAL DISP (MIC)

50 COOLANT TEMPERATURE (C) 100 CLAD AXIAL DISPLACEMENT (MIC)

JAEA-DataCode 2013-009

- 275 -

TableA11 (26) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

101 BURNUP (MWDTM) 151 CLAD EQUIVALENT STRESS (MPA)

102 PELLET AVERAGE POWER DENSITY (WCM3) 152 CLAD AVERAGE STRESS (MPA)

103 PELLET NODAL TEMPERATURE (C) 153 CLAD RADIAL STRESS (MPA)

104 CLAD NODAL TEMPERATURE (C) 154 CLAD CIRCUM STRESS (MPA)

105 PELLET ELEMENT TEMPERATURE (C) 155 CLAD AXIAL STRESS (MPA)

106 CLAD ELEMENT TEMPERATURE (C) 156 CLAD RADIAL STRAIN ()

107 FISSION GAS RELEASE () 157 CLAD CIRCUM STRAIN ()

108 PELLET GRAIN DIAMETER (MIC) 158 CLAD AXIAL STRAIN ()

109 PELLET EQUIVALENT STRESS (MPA) 159 CLAD RADIAL ELASTIC STRAIN ()

110 PELLET AVERAGE STRESS (MPA) 160 CLAD CIRCUM ELASTIC STRAIN ()

111 PELLET RADIAL STRESS (MPA) 161 CLAD AXIAL ELASTIC STRAIN ()

112 PELLET CIRCUM STRESS (MPA) 162 CLAD RADIAL THERMAL STRAIN ()

113 PELLET AXIAL STRESS (MPA) 163 CLAD AXIAL THERMAL STRAIN ()

114 PELLET RADIAL STRAIN () 164 CLAD AVERAGE AXIAL THERMAL STRAIN ()

115 PELLET CIRCUM STRAIN () 165 CLAD AXIAL IRRADIATION GROWTH STRAIN()

116 PELLET AXIAL STRAIN () 166 CLAD EQUIVALENT CREEP STRAIN ()

117 PELLET RADIAL ELASTIC STRAIN () 167 CLAD RADIAL CREEP STRAIN ()

118 PELLET CIRCUM ELASTIC STRAIN () 168 CLAD CIRCUM CREEP STRAIN ()

119 PELLET AXIAL ELASTIC STRAIN () 169 CLAD AXIAL CREEP STRAIN ()

120 PELLET RADIAL THERMAL STRAIN () 170 CLAD EQUIVALENT PLASTIC STRAIN ()

121 PELLET AXIAL THERMAL STRAIN () 171 CLAD RADIAL PLASTIC STRAIN ()

122 PELLET DENSIFICATION dVV() 172 CLAD CIRCUM PLASTIC STRAIN ()

123 PELLET SWELLING STRAIN () 173 CLAD AXIAL PLASTIC STRAIN ()

124 PELLET EQUIVALENT CREEP STRAIN () 174 CLAD RADIAL DISPLACEMENT (MIC)

125 PELLET RADIAL CREEP STRAIN () 175 CLAD AXIAL DISPLACEMENT (MIC)

126 PELLET CIRCUM CREEP STRAIN () 176 CLAD RADIAL ELASTIC DISP (MIC)

127 PELLET AXIAL CREEP STRAIN () 177 CLAD AXIAL ELASTIC DISP (MIC)

128 PELLET EQUIVALENT PLASTIC STRAIN () 178 CLAD RADIAL THERMAL DISP (MIC)

129 PELLET RADIAL PLASTIC STRAIN () 179 CLAD AXIAL THERMAL DISP (MIC)

130 PELLET CIRCUM PLASTIC STRAIN () 180 CLAD AXIIRRADIATION GROWTH DISP (MIC)

131 PELLET AXIAL PLASTIC STRAIN () 181 CLAD RADIAL CREEP DISP (MIC)

132 PELLET RADIAL DISPLACEMENT (MIC) 182 CLAD AXIAL CREEP DISP (MIC)

133 PELLET AXIAL DISPLACEMENT (MIC) 183 CLAD RADIAL PLASTIC DISP (MIC)

134 PELLET RADIAL ELASTIC DISP (MIC) 184 CLAD AXIAL PLASTIC DISP (MIC)

135 PELLET AXIAL ELASTIC DISP (MIC) 185 PRODUCED FISSION GAS DENSITY (ATOMSCM3)

136 PELLET RADIAL THERMAL DISP (MIC) 186 FISSION GAS DENSITY IN GRAIN (ATOMSCM3)

137 PELLET AXIAL THERMAL DISP (MIC) 187 FISSION GAS IN SOLID MATRIX (ATOMSCM3)

138 PELLET RADIAL DENSIFICATION DISP (MIC) 188 FISSION GAS IN INTRA BUBBLE (ATOMSCM3)

139 PELLET AXIAL DENSIFICATION DISP (MIC) 189 INTRA FG BUBBLE DENSITY (BUBBLESCM3)

140 PELLET RADIAL SWELLING DISP (MIC) 190 FISSION GAS DENSITY IN BOUND (ATOMSCM2)

141 PELLET AXIAL SWELLING DISP (MIC) 191 SATURATED FG DENSITY IN BOUND(ATOMSCM2)

142 PELLET RADIAL CREEP DISP (MIC) 192 INTER FG BUBBLE DENSITY (BUBBLESCM2)

143 PELLET AXIAL CREEP DISP (MIC) 193 COVERING RATIO OVER BOUND (-)

144 PELLET RADIAL PLASTIC DISP (MIC) 194 LIMIT OF INTER BUBBLE RADIUS (MIC)

145 PELLET AXIAL PLASTIC DISP (MIC) 195 DIFFUSION COEFFICIENT (CM2S)

146 INTRAGRANULAR BUBBLE RADIUS (ANGSTROM) 196 EFFECTIVE DIFFUSION COEFFICIENT (CM2S)

147 INTRAGRANULAR BUBBLE dVV () 197 FUEL FRACTIONAL DENSITY (TD)

148 INTERGRANULAR BUBBLE RADIUS (MIC) 198 OXIDE CONCENTRATION (MGCM3)

149 INTERGRANULAR BUBBLE dVV () 199 OXIDE CONCENTRATION (MGCM3)

150 PELLET YIELD STRESS (ORIGINAL) (MPA) 200 OXIDE CONCENTRATION (MGCM3)

JAEA-DataCode 2013-009

- 276 -

TableA11 (36) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

201 CLAD TEMP - CLAD SURFACE TEMP (C) 251 LOCAL BURNUP (MWDT)

202 RADIAL STRAIN ENERGY DENSITY (KJM3) 252 LOCAL EFFECTIVE BURNUP (MWDTM)

203 CIRCUM STRAIN ENERGY DENSITY (KJM3) 253 PELLET ELEMENT TEMPERATURE (C)

204 AXIAL STRAIN ENERGY DENSITY (KJM3) 254 PELLET THERMAL CONDUCTIVITY (WCM-K)

205 EQIVALENT STRAIN ENERGY DENSITY (KJM3) 255 CLAD POWER DENSITY FOR GAMMA HEAT(WCM3)

206 CLAD RADIAL STRAIN ENERGY (J) 256 PELLET XV RATIO (-)

207 CLAD CIRCUM STRAIN ENERGY (J) 257 PELLET TOTAL POROSITY ()

208 CLAD AXIAL STRAIN ENERGY (J) 258 PELLET RIM LAYER POROSITY ()

209 CLAD EQUIVALENT STRAIN ENERGY (J) 259 PELLET RIM OPEN POROSITY ()

210 FAILURE CRITERIA CSED (KJM3) 260 PELLET GAS BUBBLE POROSITY ()

211 PELLET RADIAL STRAIN RATE (1S) 261 PELLET TOTAL SWELLING ()

212 PELLET CIRCUM STRAIN RATE (1S) 262 RATE OF RE-DISSOLUTION OF GAS b(1S)

213 PELLET AXIAL STRAIN RATE (1S) 263 RATE OF RE-DISSOLUTION OF GAS alpha(1S)

214 PELLET EQUIVALENT STRAIN RATE (1S) 264 RATE OF TRAPPING GAS INTRA BUBBLES (1S)

215 CLAD RADIAL STRAIN RATE (1S) 265 BUFFER ELEMENT STIFFNESS FRACTION (-)

216 CLAD CIRCUM STRAIN RATE (1S) 266 PELLET ELEMENT AXIAL DISPLACEMENT (MIC)

217 CLAD AXIAL STRAIN RATE (1S) 267 BUFFER ELEMENT VOLUME FRACTION (-)

218 CLAD EQUIVALENT STRAIN RATE (1S) 268 ------NON USE---------------------------

219 CLAD RADIAL CREEP RATE (1S) 269 FISSION GAS IN INTRA BUBBLE RATIO ()

220 CLAD CIRCUM CREEP RATE (1S) 270 FISSION GAS IN INTER BUBBLE (ATOMSCM3)

221 CLAD AXIAL CREEP RATE (1S) 271 FISSION GAS IN INTER BUBBLE (ATOMS)

222 CLAD EQUIVALENT CREEP RATE (1S) 272 INTER FG BUBBLE DENSITY (BUBBLESCM3)

223 PELLET YIELD STRESS (MPA) 273 FISSION GAS IN INTER BUBBLE RATIO ()

224 CLAD YIELD STRESS (MPA) 274 FISSION GAS IN RIM PORE (ATOMSCM3)

225 PELELT ENTHALPY (JG-FUEL) 275 PELLET GRAIN DIAMETER (MIC)

226 CLAD ENTHALPY (JG-FUEL) 276 RIM PORE BUBBLE SWELLING dVV ()

227 FUEL(PELLET+CLAD) ENTHALPY (JG-FUEL) 277 THERMAL+BUBBLE SWELLING STRAIN ()

228 PELLET RADIAL RELOCATION STRAIN () 278 PELLET POWER DENSITY (WCM3)

229 PELLET CIRCUM RELOCATION STRAIN () 279 PELLET NODAL TEMPERATURE (C)

230 PELLET AXIAL RELOCATION STRAIN () 280 RELEASED FISSION GAS DENSITY (ATOMSCM3)

231 PELLET RADIAL RELOCATION DISP (MIC) 281 FUEL DENSITY (TD) (IPDENS=1)

232 PELLET AXIAL RELOCATION DISP (MIC) 282 FUEL DENSITY (TD) (IPDENS=2)

233 CLAD RADIAL CORROSION DISP (MIC) 283 FUEL DENSITY (TD) (IPDENS=3)

234 DENSIFICATION+SWELLING STRAIN () 284 FUEL DENSITY (TD) (IPDENS=4)

235 PELLET RADIAL ELAST MODULUS (GPA) 285 SATURATED MATRIX FP GAS FRACTION (-)

236 PELLET CIRCUM ELAST MODULUS (GPA) 286 RIM GAS PORE TRANSPORT FRACTION (-)

237 PELLET AXIAL ELAST MODULUS (GPA) 287 HE DIFFUSION COEF (CM2S)

238 CLAD ELASTIC MODULUS (GPA) 288 HE EFFECTIVE DIFFUSION COEF (CM2S)

239 CLAD POISSONS RATIO (-) 289 HE GRAIN BOUNDARY DIFFUSION COEF(CM2S)

240 CLAD HARDENING EXPONENT N (-) 290 HE GENERATE RATE (ATOMSCM3-S)

241 PELLET ELASTIC MODULUS (GPA) 291 INTER-GRAIN BUBBLE PRESSURE (MPA)

242 PELLET POISSONS RATIO (-) 292 INTER-GRAIN BUBBLE OVER-PRESSURE (MPA)

243 CLAD THERMAL CONDUCTIVITY (WCM-K) 293 INTEA-GRAIN BUBBLE PRESSURE (MPA)

244 PELLET SPECIFIC HEAT CAPACITY (JKG-K) 294 HE DENSITY IN BOUNDARY (ATMSCM3)

245 CLAD SPECIFIC HEAT CAPACITY (JKG-K) 295 BOUNDARY ELEMENT TEMPERATURE (C)

246 PELLET MELTING TEMPERATURE (C) 296 BOUNDARY ELEMENT VOLUME (CM3)

247 DIAMETER GAP WIDTH (MIC) 297 HE DENSITY IN GRAIN (ATOMSCM3)

248 CLAD RADIAL DEVIATION STRESS (MPA) 298 HE AVERAGE DENSITY IN GRAIN (ATOMSCM3)

249 CLAD CIRCUM DEVIATION STRESS (MPA) 299 HE GAS RELEASE ()

250 CLAD AXIAL DEVIATION STRESS (MPA) 300 COOLANT VOID FRACTION (-)

JAEA-DataCode 2013-009

- 277 -

TableA11 (46) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

301 BURNUP (MWDTU) 351 CLAD RADIAL STRAIN ()

302 PELLET AVERAGE POWER DENSITY (WCM3) 352 CLAD CIRCUM STRAIN ()

303 PELLET NODAL TEMPERATURE (C) 353 CLAD AXIAL STRAIN ()

304 CLAD NODAL TEMPERATURE (C) 354 CLAD RADIAL ELASTIC STRAIN ()

305 PELLET ELEMENT TEMPERATURE (C) 355 CLAD CIRCUM ELASTIC STRAIN ()

306 CLAD ELEMENT TEMPERATURE (C) 356 CLAD AXIAL ELASTIC STRAIN ()

307 FISSION GAS RELEASE () 357 CLAD RADIAL THERMAL STRAIN ()

308 PELLET GRAIN DIAMETER (MIC) 358 CLAD AXIAL THERMAL STRAIN ()

309 PELLET EQUIVALENT STRESS (MPA) 359 CLAD AVERAGE AXIAL THERMAL STRAIN ()

310 PELLET AVERAGE STRESS (MPA) 360 CLAD AXIAL IRRADIATION GROWTH STRAIN()

311 PELLET RADIAL STRESS (MPA) 361 CLAD EQUIVALENT CREEP STRAIN ()

312 PELLET CIRCUM STRESS (MPA) 362 CLAD RADIAL CREEP STRAIN ()

313 PELLET AXIAL STRESS (MPA) 363 CLAD CIRCUM CREEP STRAIN ()

314 PELLET RADIAL STRAIN () 364 CLAD AXIAL CREEP STRAIN ()

315 PELLET CIRCUM STRAIN () 365 CLAD EQUIVALENT PLASTIC STRAIN ()

316 PELLET AXIAL STRAIN () 366 CLAD RADIAL PLASTIC STRAIN ()

317 PELLET RADIAL ELASTIC STRAIN () 367 CLAD CIRCUM PLASTIC STRAIN ()

318 PELLET CIRCUM ELASTIC STRAIN () 368 CLAD AXIAL PLASTIC STRAIN ()

319 PELLET AXIAL ELASTIC STRAIN () 369 CLAD RADIAL DISPLACEMENT (MIC)

320 PELLET RADIAL THERMAL STRAIN () 370 CLAD AXIAL DISPLACEMENT (MIC)

321 PELLET AXIAL THERMAL STRAIN () 371 CLAD RADIAL ELASTIC DISP (MIC)

322 PELLET DENSIFICATION dVV () 372 CLAD AXIAL ELASTIC DISP (MIC)

323 PELLET SWELLING STRAIN () 373 CLAD RADIAL THERMAL DISP (MIC)

324 PELLET EQUIVALENT CREEP STRAIN () 374 CLAD AXIAL THERMAL DISP (MIC)

325 PELLET RADIAL CREEP STRAIN () 375 CLAD AXIAL IRRADIATION GROWTH DISP(MIC)

326 PELLET CIRCUM CREEP STRAIN () 376 CLAD RADIAL CREEP DISP (MIC)

327 PELLET AXIAL CREEP STRAIN () 377 CLAD AXIAL CREEP DISP (MIC)

328 PELLET EQUIVALENT PLASTIC STRAIN () 378 CLAD RADIAL PLASTIC DISP (MIC)

329 PELLET RADIAL PLASTIC STRAIN () 379 CLAD AXIAL PLASTIC DISP (MIC)

330 PELLET CIR PLASTIC STRAIN () 380 PELLET YIELD STRESS (MPA)

331 PELLET AXIAL PLASTIC STRAIN () 381 CLAD YIELD STRESS (MPA)

332 PELLET RADIAL DISPLACEMENT (MIC) 382 PELLET RADIAL RELOCATION STRAIN ()

333 PELLET AXIAL DISPLACEMENT (MIC) 383 PELLET CIRCUM RELOCATION STRAIN ()

334 PELLET RADIAL ELASTIC DISP (MIC) 384 PELLET AXIAL RELOCATION STRAIN ()

335 PELLET AXIAL ELASTIC DISP (MIC) 385 PELLET RADIAL RELOCATION DISP (MIC)

336 PELLET RADIAL THERMAL DISP (MIC) 386 PELLET AXIAL RELOCATION DISP (MIC)

337 PELLET AXIAL THERMAL DISP (MIC) 387 CLAD RADIAL CORROSION DISP (MIC)

338 PELLET RADIAL DENSIFICATION DISP (MIC) 388 PELLET RADIAL DISPLACEMENT (MIC)

339 PELLET AXIAL DENSIFICATION DISP (MIC) 389 PELLET AXIAL DISPLACEMENT (MIC)

340 PELLET RADIAL SWELLING DISP (MIC) 390 CLAD RADIAL DISPLACEMENT (MIC)

341 PELLET AXIAL SWELLING DISP (MIC) 391 CLAD AXIAL DISPLACEMENT (MIC)

342 PELLET RADIAL CREEP DISP (MIC) 392 PELLET RADIAL COORDINATE (MM)

343 PELLET AXIAL CREEP DISP (MIC) 393 PELLET AXIAL COORDINATE (MM)

344 PELLET RADIAL PLASTIC DISP (MIC) 394 CLAD RADIAL COORDINATE (MM)

345 PELLET AXIAL PLASTIC DISP (MIC) 395 CLAD AXIAL COORDINATE (MM)

346 CLAD EQUIVALENT STRESS (MPA) 396 DENSIFICATION+SWELLING STRAIN ()

347 CLAD AVERAGE STRESS (MPA) 397 PELLET SHEAR STRESS (MPA)

348 CLAD RADIAL STRESS (MPA) 398 CLAD SHEAR STRESS (MPA)

349 CLAD CIRCUM STRESS (MPA) 399 PELLET SHEAR STRAIN ()

350 CLAD AXIAL STRESS (MPA) 400 CLAD SHEAR STRAIN ()

JAEA-DataCode 2013-009

- 278 -

TableA11 (56) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

401 ROD FREE VOLUME (0 POWER) (CC) 451 PELLET RADIAL STRAIN (0 POWER) ()

402 FUEL ELONGATION (0 POWER) () 452 PELLET CIRCUM STRAIN (0 POWER) ()

403 CLAD MAX DIAMETER CHANGE(0 POWER) (MIC) 453 PELLET AXIAL STRAIN (0 POWER) ()

404 CLAD AVE DIAMETER CHANGE(0 POWER) (MIC) 454 PELLET SWELL STRAIN (0 POWER) ()

405 CLAD ELONGATION (0 POWER) () 455 PELLET RADIAL DISP (0 POWER) (MIC)

406 PLENUM PRESSURE (0 POWER) (MPA) 456 PELLET AXIAL DISP (0 POWER) (MIC)

407 FUEL ELONGATION (0 POWER) () 457 PELLET RADIAL SWELL DISP(0 POWER) (MIC)

408 CLAD MAX DIAMETER CHANGE(0 POWER) (MIC) 458 PELLET AXIAL SWELL DISP (0 POWER) (MIC)

409 CLAD AVE DIAMETER CHANGE(0 POWER) (MIC) 459 CLAD RADIAL STRAIN (0 POWER) ()

410 CLAD ELONGATION (0 POWER) () 460 CLAD CIRCUM STRAIN (0 POWER) ()

411 ------NON USE--------------------------- 461 CLAD AXIAL STRAIN (0 POWER) ()

412 ------NON USE--------------------------- 462 CLAD AXIAL GROWTH STRAIN (0 POWER) ()

413 ------NON USE--------------------------- 463 CLAD RADIAL DISP (0 POWER) (MIC)

414 ------NON USE--------------------------- 464 CLAD AXIAL DISP (0 POWER) (MIC)

415 ------NON USE--------------------------- 465 CLAD AXIAL GROWTH DISP (0 POWER) (MIC)

416 ------NON USE--------------------------- 466 ------NON USE---------------------------

417 ------NON USE--------------------------- 467 ------NON USE---------------------------

418 ------NON USE--------------------------- 468 ------NON USE---------------------------

419 ------NON USE--------------------------- 469 ------NON USE---------------------------

420 ------NON USE--------------------------- 470 ------NON USE---------------------------

421 DIAMETER GAP WIDTH (0 POWER) (MIC) 471 PELLET RADIAL STRAIN (0 POWER) ()

422 PCMI PRESSURE (0 POWER) (MPA) 472 PELLET CIRCUM STRAIN (0 POWER) ()

423 PELLET ELONGATION (0 POWER) () 473 PELLET AXIAL STRAIN (0 POWER) ()

424 CLAD ELONGATION (0 POWER) () 474 PELLET SWELL STRAIN (0 POWER) ()

425 CLAD OUT DIAMETER CHANGE (0 POWER) (MIC) 475 PELLET RADIAL DISP (0 POWER) (MIC)

426 FUEL FRACTINAL DENSITY (0 POWER) (TD) 476 PELLET AXIAL DISP (0 POWER) (MIC)

427 DIAMETER GAP WIDTH (0 POWER) (MIC) 477 PELLET RADIAL SWELL DISP (0 POWER) (MIC)

428 PCMI PRESSURE (0 POWER) (MPA) 478 PELLET AXIAL SWELL DISP (0 POWER) (MIC)

429 PELLET ELONGATION (0 POWER) () 479 CLAD RADIAL STRAIN (0 POWER) ()

430 CLAD ELONGATION (0 POWER) () 480 CLAD CIRCUM STRAIN (0 POWER) ()

431 CLAD OUT DIAMETER CHANGE(0 POWER) (MIC) 481 CLAD AXIAL STRAIN (0 POWER) ()

432 ------NON USE--------------------------- 482 CLAD AXIAL GROWTH STRAIN (0 POWER) ()

433 ------NON USE--------------------------- 483 CLAD RADIAL DISP (0 POWER) (MIC)

434 ------NON USE--------------------------- 484 CLAD AXIAL DISP (0 POWER) (MIC)

435 ------NON USE--------------------------- 485 CLAD AXIAL GROWTH DISP (0 POWER) (MIC)

436 ------NON USE--------------------------- 486 ------NON USE---------------------------

437 ------NON USE--------------------------- 487 ------NON USE---------------------------

438 ------NON USE--------------------------- 488 ------NON USE---------------------------

439 ------NON USE--------------------------- 489 ------NON USE---------------------------

440 ------NON USE--------------------------- 490 ------NON USE---------------------------

441 ------NON USE--------------------------- 491 CLAD TEMPERATURE (C)

442 ------NON USE--------------------------- 492 CLAD CIRCUM STRESS (MPA)

443 ------NON USE--------------------------- 493 CLAD Lr of FAC (-)

444 ------NON USE--------------------------- 494 CLAD Kr of FAC (-)

445 ------NON USE--------------------------- 495 CLAD Lr of A(Lr_Kr) (-)

446 ------NON USE--------------------------- 496 CLAD Kr of A(Lr_Kr) (-)

447 ------NON USE--------------------------- 497 CLAD KI of FAC (MPam12)

448 ------NON USE--------------------------- 498 ------NON USE---------------------------

449 ------NON USE--------------------------- 499 ------NON USE---------------------------

450 ------NON USE--------------------------- 500 ------NON USE---------------------------

JAEA-DataCode 2013-009

- 279 -

TableA11 (66) Title list for Y-axis of plotted figures

IDNO Y-axis title IDNO Y-axis title

501 PRODUCED HE DENSITY (ATOMSCM3) 551 OUTER TUBE TEMPERATURE (C)

502 PRODUCED HE(Cm-242) (ATOMSCM3) 552 LOOP WATER TEMPERATURE (C)

503 PRODUCED HE(Cm-244) (ATOMSCM3) 553 CAPSULE CYLINDER TEMPERATURE (C)

504 PRODUCED HE(O-16) (ATOMSCM3) 554 ENERGY DEPOSITION (JG-FUEL)

505 PRODUCED HE(T-fiss) (ATOMSCM3) 555 FLOW OUT ENTHALPY (JG-FUEL)

506 PRODUCED HE(ALHPA) (ATOMSCM3) 556 AXIAL UPPER END COORDINATE (MM)

507 Cm-242 DENSITY (ATOMSCM3) 557 AXIAL PELLET ELEM UPPER END COORDI(MM)

508 Cm-244 DENSITY (ATOMSCM3) 558 GRAIN SEPARATION RADIAL COORDINATE (MM)

509 PLENUM HE GAS PRESSURE (MPA) 559 PELLET ELONGATION (ELASTIC+PLASTIC) ()

510 PLENUM HE DENSITY (ATOMSCM3) 560 CLAD ELONGATION (ELASTIC+PLASTIC) ()

511 GAS BUBBLE INNER FORCE (DYNE) 561 RELEASED FP GAS VOLUME (NTP) (MM3)

512 GRAIN COMBINE RESISTANCE (DYNE) 562 RELEASED HE GAS VOLUME (NTP) (MM3)

513 PLENUM TEMPERATURE (C) 563 PELLET MAXIMUM TEMPERATURE (C)

514 PRODUCED HE(Pu-238) (ATOMSCM3) 564 PELLET MAXIMUM TEMPERATURE POSITION

(MM)

515 Pu-238 DENSITY (ATOMSCM3) 565 CLAD AVERAGE HYDROGEN DENSITY (WTPPM)

516 HE GENERATE RATE(Cm-242) (ATOMSCM3-S) 566 PROSPECTIVE CLAD CRACK LENGTH A1 (MIC)

517 HE GENERATE RATE(Cm-244) (ATOMSCM3-S) 567 PROSPECTIVE CLAD CRACK LENGTH A2 (MIC)

518 HE GENERATE RATE(Pu-238) (ATOMSCM3-S) 568 EFFECTIVE FAST FLUENCE (NCM2)

519 HE GENERATE RATE(O-16) (ATOMSCM3-S) 569 EFFECTIVE COLD WORK (-)

520 HE GENERATE RATE(T-fiss) (ATOMSCM3-S) 570 CLADDING TEMPERATURE (C)

521 Am-241 DENSITY (ATOMSCM3) 571 AVERAGE RATE OF CHANGE OF CLAD

TEMP(CS)

522 Am-243 DENSITY (ATOMSCM3) 572 PLENUM VOLUME (CC)

523 Np-237 DENSITY (ATOMSCM3) 573 AVERAGE FISSION GAS RATIO IN GRAIN ()

524 Pu-239 DENSITY (ATOMSCM3) 574 AVERAGE FISSION GAS RATIO IN BOUNDARY()

525 Pu-240 DENSITY (ATOMSCM3) 575 J-INTEGRAL (kNm)

526 Pu-241 DENSITY (ATOMSCM3) 576 SCALE OF NOTCH LENGTH TO RING THICK (-)

527 Pu-242 DENSITY (ATOMSCM3) 577 INTERNAL RADIUS (MM)

528 NEUTRON FLUX (NCM2-S) 578 RING THICKNESS (MM)

529 NEUTRON FLUENCE (NCM2) 579 TEMPERATURE AT THE TIP OF CRACK (C)

530 INNER GAS PRESSURE (MPA) 580 INTERNAL STRAIN ()

531 PELLET SWELLING STRAIN(CLUSTER BUILD)() 581 ------NON USE---------------------------

532 HE SOLUBILITY (ATOMSCM3) 582 ------NON USE---------------------------

533 DEPOSITED HE UNDER SUPER-SAT(ATOMSCM3) 583 ------NON USE---------------------------

534 SEG AV PRODUCED HE DENSITY (ATOMSCM3) 584 ------NON USE---------------------------

535 SEGMENT AVERAGE HE GAS RELEASE () 585 ------NON USE---------------------------

536 PRODUCED HE (ATOMS) 586 ------NON USE---------------------------

537 RELEASED HE (ATOMS) 587 ------NON USE---------------------------

538 RELEASED HE FROM INNER BOUNDARY (ATOMS) 588 ------NON USE---------------------------

539 RELEASED HE FROM OUTER BOUNDARY (ATOMS) 589 ------NON USE---------------------------

540 HE GENERATE RATE(ALHPA) (ATOMSCM3-S) 590 ------NON USE---------------------------

541 PELLET SHEAR CREEP STRAIN () 591 ------NON USE---------------------------

542 PELLET SHEAR PLASTIC STRAIN () 592 ------NON USE---------------------------

543 PELLET SHEAR ELASTIC STRAIN () 593 ------NON USE---------------------------

544 PELLET SHEAR RELOCATION STRAIN () 594 ------NON USE---------------------------

545 CLAD SHEAR CREEP STRAIN () 595 ------NON USE---------------------------

546 CLAD SHEAR PLASTIC STRAIN () 596 ------NON USE---------------------------

547 CLAD SHEAR ELASTIC STRAIN () 597 ------NON USE---------------------------

548 HEATING STEAM LAYER TEMPERATURE (C) 598 CLAD SURFACE VAPOR FILM HEAT

FLUX(WCM2)

549 INNER TUBE TEMPERATURE (C) 599 CRITICAL HEAT FLUX (WCM2)

550 HELIUM GAS LAYER TEMPERATURE (C) 600 FILM THICKNESS (MIC)

JAEA-DataCode 2013-009

- 280 -

Table A12 Title list for X-axis of plotted figures

NO X-axis title

1 TIME (HOUR)

2 RADIAL COORDINATE (MM)

3 AXIAL COORDINATE (MM)

4 BURNUP (MWDTUO2)

5 LINEAR HEAT RATE (WCM)

6 AVERAGE BURNUP (MWDTUO2)

7 AVERAGE LINEAR HEAT RATE (WCM)

8 TIME (SEC)

9 ENERGY DEPOSITION (JG-FUEL)

10 ENERGY DEPOSITION (JG-FUEL)

11 TIME (DAY)

12 TIME (MIN)

13 BURNUP (GWDTUO2)

14 BURNUP (MWDTU)

15 BURNUP (GWDTU)

16 AVERAGE BURNUP (GWDTUO2)

17 AVERAGE BURNUP (MWDTU)

18 AVERAGE BURNUP (GWDTU)

19 TIME (MS)

20 RADIAL COORDINATE (MM)

21 RADIAL COORDINATE (CM)

22 R-COORDINATE IN A GRAIN (MIC)

23 BURNUP (MWDTMOX)

24 AVERAGE BURNUP (MWDTMOX)

25 BURNUP (GWDTMOX)

26 BURNUP (MWDTM)

27 BURNUP (GWDTM)

28 AVERAGE BURNUP (GWDTMOX)

29 AVERAGE BURNUP (MWDTHM)

30 AVERAGE BURNUP (GWDTHM)

JAEA-DataCode 2013-009

- 281 -

Table A13 Title list for Y-axis of plotted figures (Group output)

NO MYTITL1

1 BURNUP (MWDTUO2)

2 BURNUP (GWDTUO2)

3 BURNUP (MWDTU)

4 BURNUP (GWDTU)

5 FISSON GAS RELEASE ()

6 PLENUM PRESSURE (MPA)

7 PLENUM VOLUME (CC)

8 ELONGATION ()

9 CLAD OUTER DIA CHANGE (MIC)

10 LINEAR HEAT RATE (WCM)

11 RELEASED IODINE (GCM2)

12 TEMPERATURE (C)

13 DIAMETER GAP (MIC)

14 PCMI PRESSURE (MPA)

15 RELEASED FP GAS (001MOL)

16 STRESS (MPA)

17 PELLET STRESS (MPA)

18 CLAD STRESS (MPA)

19 STRAIN ()

20 PELLET STRAIN ()

21 CLAD STRAIN ()

22 DISPLACEMENT (MIC)

23 RADIAL DISPLACEMENT (MIC)

24 AXIAL DISPLACEMENT (MIC)

25 COOLANT MASS FLUX (KGCM2-S)

26 INTERGRANULAR BUBBLE RADIUS (MIC)

27 FG DENSITY IN GRAIN (ATOMSCM3)

28 FG DENSITY IN BOUND (ATOMSCM2)

29 DIFFUSION COEFFICIENT (CM2S)

30 ENTHALPY (JG-FUEL)

31 PELLET TEMPERATURE (C)

32 CLADDING TEMPERATURE (C)

33 PRODUCED HE DENSITY (ATOMSCM3)

34 CLAD DEVIATION STRESS (MPA)

35 GRSEP MDL DEFINED FORCE (DYNE)

36 HE GENERATE RATE (ATOMSCM3-S)

37 MINOR ACTINIDE DENSITY (ATOMSCM3)

38 PRODUCED OR RELEASED HE (ATOMS)

39 PELLET AXIAL DISPLACEMENT (MIC)

40 PELLET AXIAL COORDINATE (MM)

41 BURNUP (MWDTMOX)

42 BURNUP (GWDTMOX)

43 BURNUP (MWDTHM)

44 BURNUP (GWDTHM)

45 INCIPIENT CRACK LENGTH (MIC)

46 FAST NEUTRON FLUENCE (NEUTRONCM2)

47 ------NON USE---------------------------

48 ------NON USE---------------------------

49 ------NON USE---------------------------

50 ------NON USE---------------------------

JAEA-DataCode 2013-009

- 282 -

A2 Relationship between IDNO and array variables

Table A21 Relationship of IDNO for FEMAXI-7 (and RANNS) IDNO Array variable name COMMON name 1- 30 TMDAT1 (40) OUTPL

31 - 40 TMDAT11 (10NNZ1) OUTPL2 41 - 100 TMDAT2 (60NNZ1) OUTPL

101 - 250 TMDAT3 (150NPC1) - 251 - 300 TMDAT9 (50NPB1) - 301 - 400 TMDAT7 (100NM211) - 401 - 420 TMDAT4 (20) OUTPL 421 - 450 TMDAT5 (30NNZ1) OUTPL 451 - 470 TMDAT6 (50NPC1) - 471 - 490 TMDAT8 (50NM211) - 491 - 500 TMDAT12 (10NNZ) OUTPL2 501 - 600 TMDAT13 (100NRBNNZ) OUTPL2

NNZ=42 NNZ1=43 NPC=NPR1(73) NPB=NPR2(74) NM21=NN2+1(73) Here NNZ= 42 ie number of segments in the axial direction (up to 40) + upper and lower plenums NPR1 number of ring elements of pellet stack in thermal model and entire rod length mechanical model number of ring elements (up to 72) +1 NN As the number of ring elements in the radial direction of pellet in local mechanical analysis model is 36 and the number of Gaussian points in each element is 2 NN2 is the total number of Gaussian points in the ring elements of pellet and NN2+1 is the total number of nodes in the ring elements in the local mechanical analysis model

Table A22 Relationship of IDNO for EXPLOT IDNO Array variable name

1 ndash 30 TDATA1 (30) 31 - 40 TDATA8 (10NNZ1)

41 - 100 TDATA2 (60NNZ1) 101 - 250 TDATA3 (15073NNZ)

(198 ndash 200) TDATA9 (8013NNZ1) 251 - 300 TDAT10 (5074NNZ)

251 ndash 300 (IDR=14) TDAT12 (10172NNZ) 301 - 400 TDATA7 (10073NNZ) 401 - 420 TDATA4 (20) 421 - 450 TDATA5 (30NNZ1) 451 - 490 TDATA6 (4073NNZ) 491 - 500 TDAT11 (10NNZ1) 501 - 600 TDAT13 (10074NNZ)

NNZ=42 NNZ1=43

JAEA-DataCode 2013-009

- 283 -

A3 Subroutine list

Table A3 lists the FEMAXI-7 subroutines which are classified in terms of their analytical functions The abbreviations in the table are as follows

P Program controlling routines plotter routines and other auxiliary function

subroutines which are not included in the description of analytical models T Subroutines used in the thermal analysis models M1 Subroutines used in the entire rod length mechanical analysis model M2 Subroutines used in the 2-D local mechanical analysis model

Table A3 Subroutine and functions of FEMAXI-7

Name Function P T M1 M2 AAZERO Zero setting of common areas ABNDTA Routine to check if abnormal value is obtained or not ADBU Calc of burnup increment from time history increment ADRESP Calc of address in the matrix in contact state ADRESS Calc of address in matrix ADTM Calc of time history increment from burnup increment

AMDIF Calc of number density of fission gas atoms in intra-grain bubbles (rate-law model)

ANDIF Calc of number density of intra-grain gas bubbles (rate-law model) BBL Calc of intra-grain bubble radius BBL2 Auxiliary routine for calc of intra-grain bubble radius BBR Calc of intra-grain bubble radius (rate-law model)

BBR2 Auxiliary routine for calc of intra-grain bubble radius (rate-law model)

BDMAT Formation of [B]T[D] matrix BFMAX Calc of saturated number density of gas atoms at grain boundary BLOCKDATA Block data list BLR2 Calc of internal gas pressure of lenticular (grain boundary) bubbles BMAT Formation of [B] matrix

BOUNDF Calc of nodal force on the upper surface of pellet in the axial direction

BUFSTF Setting the spring constants of dish element (FEMAXI) and buffer element (RANNS)

BURNUP Calc of burnup CAGROW Calc of cladding irradiation growth in the axial direction calequilibrbl Calc of bubble radius in equilibrium state CANDM Calc of fission gas release model

CANDMH Calc of He diffusion inside grain with boundary condition of He concentration at grain boundary

CANDMT Calc of fission gas release model (rate-law model) CANEAL Calc of effective fast neutron fluence and cold work

JAEA-DataCode 2013-009

- 284 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

CCPEQ1 Cladding creep model CCPEQ2 Cladding creep model CCPEQ3 Cladding creep model CCPEQ4 Cladding creep model CCPEQ5 Cladding creep model CCPEQ6 Cladding creep model CANEAL Calc of effective fast neutron fluence and cold work CCPEQ1 Cladding creep model CCPEQ2 Cladding creep model CCPEQ3 Cladding creep model CCPEQ4 Cladding creep model CCPEQ5 Cladding creep model CCPEQ6 Cladding creep model CCPEQ7 Cladding creep model CCPEQ8 Cladding creep model CCPEQ9 Cladding creep model CCPEQ10 Cladding creep model (dummy) CCREEP Calc of cladding creep strain CDEDT Calc of temperature-differential term of cladding Youngrsquos moduli CDENS Cladding density

CDNDT Calc of temperature differential term of strain-hardening of cladding

CELMOD Cladding Youngrsquos modulus

CFRFZ Calc of forces at inner surface of cladding in the radial and axial directions

CDNDT Calc of temperature-differential term of cladding strain-hardening exponent n

CHCAP Calc of cladding volumetric specific heat CHKDTA Routine to check if abnormal value is obtained or not

CHKNAME Check routine for name-list variables at the beginning of Re-start calculation

CHSOFT Calc of stress-differential term of cladding yield function CLBDF Calc of contact force on the upper surface of pellet

CLDKDT Temperature-differential term of 02 ultimate strength of cladding

CLEAR Zero setting of real number areas CLEARB Zero setting of region of COMMONOTHER CLEARG Zero setting of region of COMMONGAUSS CLOXD Routine of cladding oxidation

CMAT Calc of effective Youngrsquos moduli of pellet and cladding and Poissonrsquos ratio

CMAT1 Formation of pellet [C] matrix CMAT2 Formation of cladding [C] matrix

JAEA-DataCode 2013-009

- 285 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

CMHARD Calc of cladding Mayer hardness CNSTR Setting of displacement increment COLECT Calc of total stiffness matrix and loading vector

COMV2 Convergence routine for coupled calc of thermal and mechanical analyses

CONST1 Composition of the total matrix CONSTF Routine of controlling the composition of total matrix CONSTR Setting of the composition of total matrix and boundary conditions CONTROL Control of entire program

COORDI Setting of shape coordinates for FEM in the local mechanical analysis by quadratic elements

COORDI1 Setting of shape coordinates for FEM in the local mechanical analysis by linear elements

CORRO Calc of cladding outer surface oxidation rate CPOIR Calc of Poissonrsquos ratio of cladding CPUGH Control routine of Pughrsquos reversal method CRACK Setting of pellet crack status CREEP1 Formation of [Cc] matrix and creep strain vector cε∆ CREEP2 Formation of creep strain increment cε∆ of cladding CRN Cladding hardening exponent CTHCON Calc of cladding thermal conductivity CTHEX Cladding thermal expansion CTSOFT Calc of temperature differential term in cladding yield function CUBIC1 Calc of bubble radius as the largest real root of cubic equation CUBIC2 Calc of bubble radius as the largest real root of cubic equation CYIE Calc of Zircaloy yield stress (02 proof stress) CYIEZ Zr liner yield stress (02 proof stress) CYIE2 Calc of Zircaloy yield stress (size of yield surface at ε p ) DATE2 Date of calculation DEFBET Setting the pellet hot-press parameter DELTAN FEM mesh element data in the local mechanical analysis by

quadratic elements

DELTAN1 FEM mesh element data in the local mechanical analysis by linear elements

DENSF Pellet densification model DEVSIG Deviation stress DFCLAD Formation of loading vector of cladding DFCLAD2 Formation of loading vectors in cladding DFPLT Formation of loading vector of pellet DFX Determines the size of cladding yield surface DIFC Diffusion coefficient of FISSION atom in pellet grains DIFCON Xe-He mutual diffusion coefficient

JAEA-DataCode 2013-009

- 286 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

DIFH Diffusion coefficient of He inside grain DIFV Diffusion coefficient of vacancy DLAX Solving the asymmetrical matrix DOT Routine for Pughrsquos reversal method in cladding creep DPMAT Formation of [DP] matrix DPST Calc of ∆ε p

DRYUPD Updating the temperature distribution of cladding temperature control geometry

ELMLP1 Control of formation of element stiffness matrix and loading vector ELMLP2 Control of calculation of stress-strain of elements EPTODP Calc of displacement from the strain at power (hot) state EQIEPS Calc of equivalent strain EQISIG Calc of equivalent stress EQSCAL Convergence calculation of size of yield surface at ε p ERF The Error function ERFUNC The Error function ESMAT Formation of element stiffness matrix EXTSTR Calc of thermal stress on the intra-granular gas bubbles FCP Calc of coolant specific heat FCPEQ1 Pellet creep model FCPEQ2 Pellet creep model FCPEQ3 Pellet creep model FCPEQ4 Pellet creep model FCPEQ5 Pellet creep model FCPEQ11 Pellet creep model FCPEQ15 Pellet creep model FCREEP Calc of pellet creep strain (MATPRO-09) FDIST Calc of flux depression in pellet in the radial direction FDISTF Calc of flux depression in pellet in the radial direction FELMOD Calc of pellet Youngrsquos modulus FEMAXI Main routine of local mechanical analysis FEMISS Calc of pellet emissivity

FEMRDS Updating and outputting the Entire rod length mechanical analysis and making Re-start file to be taken over to RANNS

FEMROD Main routine of entire length mechanical analysis FGPRO Calc of fission gas generation FGPROR Calc of the yield of Xe and Kr FGRELN Calc of fission gas release rate at each element of pellet FHSOFT Calc of stress-differential term of pellet yield functionσ y FIRSTSTEP Setting of initial conditions of transient FGR model FISRAT Calc of fission density

JAEA-DataCode 2013-009

- 287 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

FLMCON Calc of cladding surface heat transfer coefficient by Jens-Lottes equation

FLOAD Calc of element loading vector FLXDEP Calc of flux depression in pellet in the radial direction FORCE Calc of total external force vector FPOIR Poissonrsquos ratio of pellet FPRES1 Calc of effective width of surface node in linear element FPRES2 Calc of effective width of surface nodes FSWELL Pellet swelling model FTSOFT Calc of temperature-differential term of pellet yield function σY FX Routine to determine the size of cladding yield surface FYIE Pellet yield stress (02 proof stress) GAPCON Calc of gap conductance GAPCON _NSR77 Calc of gap thermal conductance by Ross and Stoute model

GAPELN Contact judgment of pelletclad and pelletpellet GAPMOD Convergence calculation of gap conductance GASFLW Model of gas flow and diffusion in P-C gap space

GAULP1 Formation of stiffness matrix and loading vectors at gauss point in element

GAULP2 Calc of stress-strain at gauss point in element

GBCLS Calc of re-closure of grain boundary gas bubbles in rate-law model

GBCONB Calc of radius of bubble resulted from bubble coalescence GPSSET Setting of boundary conditions GRAIN Calc of pellet grain growth GTHCON Thermal conductivity of gases GTHCON _NSR77 Thermal conductivity of gases

GVISCO Viscosity coefficient of gases HBSPRT Generation of output file of HBS model HEADER Title of the local mechanical analysis HELRLS Routine of calc of He gas release HEPRO Properties of He gas (thermal conductivity specific heat density) HEUPD Time-step wise updating of the variables related to He model HFACT Determining the width of element for dish space HMOD4 Equation of transient boiling+ film boiling (RELAP-5)

HOKAN Interpolation between the 100 equal-volume ring elements and 10 equal-thickness ring elements in a pellet

HOKAN1 Interpolation routine used in reading PLUTON results

HOKAN2 Interpolation routine for power density profile in the radial direction of pellet

HOKAN5 Interpolation between iso-volumetric ring element geometry and iso-thickness ring element geometry of pellet stack

JAEA-DataCode 2013-009

- 288 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

HOKANB Calc of fraction of rim structure formation HOTVOL Auxiliary routine to calculate plenum volume

HTRMOD Calc of cladding surface heat transfer coefficient depending on the coolant condition

ICLEAR Zero setting of integer areas INIDRY Setting of initial values of variables of dry-out model

INIFEM Setting of initial values of variables of entire rod length mechanical model

INIGAS Calc of plenum gas pressure and volume in hot stand-by condition INIMAT Calc of [C] matrix INIRDT Setting of initial values of variables of thermal analysis INISET Setting of initial values of variables in coordinates INISTR Calc of initial strain INPGER Generator of historical input data INPHIS Input routine of power history INPHS Input history routine for auxiliary use in INPHIS INPIMG Print-out of input data image INPPLU Input routine for the PLUTON code INPR Radial meshing in the local mechanical analysis INPROD Input routine for output file of the RODBURN code INPUT1 Input routine for thermal analysis INTG Calc of the coefficient matrices [A] and [E] for fission gas release INTGH Calc of the coefficient matrix [H] for fission gas release INTGX Volumetric integral of residual fission gas in pellet grains INTPLT Routine of quadratic interpolation

INTRA3 Calc of fission gas atoms diffusion inside grain for intra-grain gas bubble growth model

INV3 Inverse matrix of 3times3 symmetrical matrix INVERS Inverse matrix of 4times4 symmetrical matrix JACK1 Jacobian of linear elements JACK2 Jacobian of quadratic elements

JUDGE Obtaining control factor for the minimum time-step used in the changes of contact-to-non-contact and elastic-to-plastic states

JUDGFS Routine to judge the bonding-or-sliding state for each contact pair in every axial segment

KOGAI_PARAM Setting the parameters of Kogai FGR model KOGAI_RBDOT Calc of bubble radius growth of Kogai FGR model KOGAIMODEL Main routine of Kogai FGR model

LASSEM Option for additional FGR from rim structure Lassmann empirical model

LINSET Setting of node array variables at outer surface in the 2-D local mechanical model for quadratic elements

LINSET1 Setting of node array variables at outer surface in the local mechanical model for linear elements

JAEA-DataCode 2013-009

- 289 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

LOCALI Storage and extract of information at gauss point MAIN Main routine MAKEH Calc of heat transfer coefficient h MATDAT Setting of materials properties for heat conduction calc MATDEF Determination of materials properties option MDEPS0 Calc of initial strain in rod entire length analysis

MDEPSP Calc of initial strain of plenum part in entire rod length mechanical analysis

MDSIG Calc of stress in the rod entire length analysis MESHP Element digitization of pellet into 100 equal-volume rings MODIFY Setting of contact boundary conditions in local mechanical analysis MODSET Calc of total matrix area in local mechanical analysis MOVE Storage of total matrix (entire length analysis) NCOUPL Initial setting of contact pair in local mechanical analysis NR Obtaining the solution of fifth-degree equation by Newton method

NVACAN Determining the intra-grain gas bubble number density in the gas bubble growth model

OpenInputFiles Routine for setting open statements OPTSO2 Solution of asymmetrical matrix OPTSOL Solution of symmetrical matrix OUTELM Output of stress and strain at Gaussrsquos point in element OUTELM1 Output of stress and strain at Gaussrsquos point in linear element

OUTEM Auxiliary routine for the output of stress and strain at Gaussrsquos point in element

OUTEM1 Auxiliary routine for the output of stress and strain at Gaussrsquos point in linear elements

OUTEM2 Auxiliary routine for the output of stress and strain at Gaussrsquos point in element

OUTEM3 Auxiliary routine for the output of stress and strain at Gaussrsquos point in linear elements

OUTND Auxiliary routine for output of nodal displacement OUTND1 Auxiliary routine for output of nodal displacement OUTND3 Auxiliary routine for the output of nodal displacement in linear

elements

OUTND4 Auxiliary routine for the output of nodal displacement in linear elements

OUTNOD Output of nodal displacement OUTNOD1 Output for nodal displacement in linear elements OUTP Output of time-dependent variables in the entire length analysis

OUTP1 Output of time-dependent variables in the local mechanical analysis

OUTP2 Summary output of deformation information which is given by the entire length mechanical analysis to the thermal analysis model

JAEA-DataCode 2013-009

- 290 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

OUTPT0 Final summary output 0 OUTPT1 Final summary output 1 OUTPT2 Final summary output 2 OUTPT3 Final summary output 3 P1 Shape function of linear element P2 Shape function of quadratic element PDATA1 Output of stress and strain at Gaussrsquos point in element PDATA1A Routine to store data for plotting output in linear elements PDATA2 Output of stress and strain at Gaussrsquos point in element PDATA2A Routine to store data for plotting output in linear elements PDATA3 Output of stress and strain at Gaussrsquos point in element PDATA3A Routine to store data for plotting output in linear elements PDEN Pellet theoretical density PDENS Densification strain of pellet PEXT14 Calc of external pressure imposed on grain boundary gas bubbles

when IPEXT=14

PFRFZ Calc of pellet axial force PHCAP Specific volumetric heat of pellet PHIST Time step control PJUMP Initial relocation PLFZ Calc of axial force in entire rod length mechanical analysis PLOTLN Mapping of gap contact state PLOTLN1 Mapping of gap contact state in linear elements PLOUT PLUTON output file PLUTN2 Routine for reading the PLUTON result output file POLATE Interpolating routine used in calc of viscosity coefficient of gas POROST Calc of total porosity in pellet stack elements POWDIS Calc of power distribution PREEPS Setting of boundary condition for calc of initial strain increment

PREPCM Setting the values of coordinate displacement function volume etc at current time step

PRERDT Setting the initial state of updated time-step PRHIS2 Output routine for power history PRINT0 Output of input data of thermal calculation PRINT1 Output of time-dependent variables in thermal analysis PRINT2 Output of time-dependent variables in gap gas state PRINT3 Output of time-dependent temperature distribution PRINT5 Detailed output of time-dependent variables in thermal analysis PRIOPT Output of all the optional parameters PROBD1 Setting of pellet axial force condition PROBDF Judgment of pelletpellet contact state PROBTY Judgment of yieldunloading state

JAEA-DataCode 2013-009

- 291 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

PROFIL Address calculation by profile method PSTPCM Control of the output routine of entire length mechanical analysis PSWELL Pellet swelling strain PTHCON UO2 pellet thermal conductivity PTHEX Pellet thermal expansion PUGH Calc of cladding creep by Pughrsquos reversal method

PX1 partpartξN of linear element in FEM

PX2 partpartξN of the quadric finite element in FEM

PY1 partpartηN of linear element in FEM

PY2 partpartηN of the quadric finite element

RDGAS1 Setting of time step width for gas transfer calculation in the axial direction

RDGAS2 Diffusion and flow transfer of gas in the axial direction RDTEMP Control of entire thermal analysis RDTUPD Routine for updating variables related to thermal analysis

READFM Reading routine from Re-start file in entire rod length mechanical analysis

READFM2 Reading routine from Re-start file in local mechanical analysis READRD Reading routine from Re-start file in thermal analysis REDIS Calc of re-dissolution rate of fission gas atoms to solid phase REDSTR Re-distribution of fission gas density after grain growth of pellet REDTIT Reading of the title sentence

REMESH Re-sizing of the cladding elements by the progress of the waterside corrosion

REMSH2 Re-sizing of the cladding elements by the progress of the waterside corrosion (for ten ring elements)

REPLG Updating of the stress and strain at Gauss points REPLN Updating of the force and displacement at nodal points RIMFGR Calc of additional FGR from rim layer RIMPOR Calc of gas pores in rim structure RMESH Calc of radial coordinate by re-sizing of cladding elements

RMESHB Setting the initial coordinate values of the radial ring element of cladding

RMESHC Calc of the radial coordinate values of cladding in ERL mechanical model

RMESHP Calc of the radial coordinate values of pellet in ERL mechanical model

RODXE Calc of yield of Xe+Kr generation from RODBURN result file

RWPCM Storing and resetting of initial values in the entire length mechanical analysis

SATP Determination of saturation temperature enthalpy and specific volume of saturated water and steam by given pressure

JAEA-DataCode 2013-009

- 292 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

SATT Determination of pressure enthalpy and specific volume of saturated water and steam by given temperature

SAVFM1 Setting of the output variables in local mechanical analysis

SAVFM2 Setting of the plotting output variables in local mechanical analysis

SAVFM3 Setting of the plotting output variables in local mechanical analysis by linear elements

SAVPM1 Setting of the output variables in entire length mechanical analysis

SAVPM2 Setting of the plotting output variables in entire length mechanical analysis

SAVRD1 Setting of the output variables in thermal analysis SAVRD2 Setting of the plotting output variables in thermal analysis SBES0 0-th Bessel function SBES1 Primary Bessel function SCNHAL Calc of cladding surface temperature and heat transfer coefficient SCRITH Calc of coolant critical heat flux SDENS Calc of Na (sodium) density SECOND2 Counting the calculation time (sec) SETR Re-division of FEM elements in grain after grain growth in pellet

SETR0 Setting of initial values of variables in coordinate inside grain of pellet

SETRH0 Setting of initial values of variables in coordinate inside grain of pellet for He diffusion calc

SHAPE1 Linear shape function SHAPE2 Quadratic shape function SHCAP Specific heat of Na SNDPLT Making of the output file for plotting SOLFEM Solution routine of stiffness matrix SOLVE Solver for fission gas atoms diffusion calculation of 3 elements SOLVE2 Solver for fission gas release calculation

SOLVF1 Solution of bonded state of pellet-cladding gap by setting boundary conditions

SOLVF2 Setting of sliding state between pellet and cladding SOLVF3 Setting of bonded state between pellet and cladding

SPROP Calculation of coolant specific heat thermal conductivity and viscosity coefficient

SSMAT Formation of total matrix for each segment STABL Calc of coolant temperature enthalpy specific volume and quality STBLDT Routine to read steam table STBLED Routine to output steam table STBLER Routine to output the error message of steam table STBLNC Setting of steam table caption

JAEA-DataCode 2013-009

- 293 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

STBLPR Determination of index of pressure table in steam table STBLTM Determination of index of temperature table in steam table

STEAM Calc of temperatures enthalpies specific heats and specific volumes of saturated water and steam

STEAMZ Calc of coolant enthalpy and specific volume from temperature and pressure

STHCON Thermal conductivity of Na

STMSI Conversion of quantities calculated by STEAM into SI unit expression

STMZSI Conversion of quantities calculated by STEAMZ into SI unit expression

STRESS Stress strain calculation

STVSH Calc of Na enthalpy from Na temperature or calc of Na temperature from Na enthalpy

SUFCN0 Calc of coolant enthalpy at each axial node

SUFCNA Calc of enthalpy of Na coolant at each axial coordinate

SUFCND Determination of cladding outer surface temperature in dry-out experiment condition

SUFCNH Calc of surface heat transfer coefficient by judging coolant state

SUFCNH2 Determination of cladding outer surface heat transfer coefficient to Na coolant by judging the Na condition

SUFCNS Calc of coolant enthalpy at each axial node at initial state

SUSPRO Materials properties of SUS316 thermal conductivity specific heat and density

TEMP1D One dimensional heat conduction calculation

TEMPIP Setting temperature burnup and pellet density for the calc of local mechanical analysis

TERP04 Routine for linear interpolation of area variables THGAP Calc of gap width at zero-power state THGAP1 Routine to transfer the results of entire length mechanical analysis to

thermal analysis

THGAP2 Setting of the results of entire length mechanical analysis THGAPN Deformation calculation in thermal analysis TIMEB Time step control by pelletpellet contact in the axial direction TIMEG Time step control by pelletclad contact in the radial direction TIMER Main routine for time step control TIMEY Time step control by plasticityunloading TMELT Calc of pellet melting point TMSTP Determination of time step in entire length analysis

TSUR2 Halden empirical equation to determine cladding surface temperature

uffelen _dGasNR Fission gas release rate by Van Uffelen model

JAEA-DataCode 2013-009

- 294 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

UPDPCM Updating of values of entire length mechanical analysis with updating of time step

USMESH Meshing for heat conduction calculation USTEMP Main routine for heat conduction calculation

USTEMP2 Calc of temperature distribution of temperature controlling system of cladding

VLUME0 Calc of plenum volume at zero-power state VLUME2 Calc of plenum space volume in entire length mechanical analysis VLUMES Calc of plenum volume VOID Calc of coolant quality and void fraction

WATER Properties of water and steam thermal conductance thermal conductivity constant pressure specific heat density

WATER0 Properties of water and steam constant pressure specific heat and density

WRITFM Setting routine for initial conditions of the FURBEL code

WRITFM2 Writing output routine for Re-start calc of FEMAXI-7 in 2-D local mechanical analysis

WRITRD Writing output routine for Re-start calc of FEMAXI-7 in thermal analysis

WTMAT Calc of coolant thermal conductivity Prandtle number and viscosity coefficient

WTMAT2 Calc of coolant surface tension WTMAT3 Calc of coolant thermal expansion

WTSAT Calc of coolant saturation temperature specific volume enthalpy and density

WTTMP Calc of temperature-specific volume of water and steam XBDMAT [B]T[D] matrix XBMAT [B] matrix XCHSFT Calculation of stress differential term of cladding yield function

XCREP1 Making the [CC] matrix of cladding creep and Δεc vector XCPEP2 Creep strain rate of claddingε c (MATPRO-09)

XCPEQ2 Calc of )( fc =ε and partpartσ

partpartε

f fc

in cladding creep

XDPMAT [DP] matrix XDPST Calc of equivalent plastic strain increment XDVSIG Deviation stress XELML1 Formation of element matrix and loading vector XELML2 Calc of stress and strain in element XELMP1 Calc of the element matrix and load vector in plenum region XELMP2 Calc of the stress and strain of elements in plenum region XEQEPS Equivalent strain XEQSIG Equivalent stress XESMAT Element stiffness matrix

JAEA-DataCode 2013-009

- 295 -

Table A3 (continued) Subroutine and functions of FEMAXI-7 Name Function P T M1 M2

XFLOAD Element loading vector XIODD Calc of Iodine concentration XPJUMP Initial relocation XPRBTY Judgment of plasticityunloading XPSWEL Pellet swelling strain XPUGH Pughrsquos reversal method for cladding creep

XPURSW Routine controlling the strain change in the time-step of pellet gas bubble swelling calc

ZOEMIS Emissivity of Zirconium oxide layer

JAEA-DataCode 2013-009

- 296 -

A4 Subroutine tree Subroutine tree is described below to show the FEMAXI-7 structure clearly MAIN------SECOND2 |---OPENINPUTFILES |---HEADER----TIME | |--DATE2----DATE_AND_TIME |---INPIMG |---AAZERO----CLEARG | |--CLEARB | |--ICLEAR |---CHKNAME |---INPUT1----PDEN | |--PRINT0 | |--INIDRY----WATER0(4) |---CONTROL---INPGER----HFACT | |--INPR | |--LINSET | |--PLOTLN | |--LINSET1 | |--PLOTLN1 | |--COORDI | |--COORDI1 | |--OUTNOD----OUTND | | |--OUTND3 | |--OUTNOD1---OUTND1 | | |--OUTND4 | |--DELTAN | |--DELTAN1 | |--NCOUPL | |--GPSSET | |--MODSET | |--FPRES2 | |--FPRES1 | |--PRIOPT | |--INPHIS----INPHS | | |--ADBU | | |--ADTM | | |--CDENS-----CDNDT | | |--PRHIS2 | |--INPPLU----PLUTN2----PLOUT | | |--HOKAN1 | | |--HOKAN2 | |--INPROD----ADBU | |--PRHIS2 | |--HOKAN | |--RODXE-----FGPROR |--INISET |--PHIST-----FISRAT | |--ADTM |--RDTEMP(1) |--READFM2 |--FEMAXI(3) |--SAVFM1----OUTPT0----OUTNOD----OUTND | | |--OUTND3

JAEA-DataCode 2013-009

- 297 -

| |--OUTNOD1---OUTND1 | | |--OUTND4 | |--OUTELM----OUTEM | | |--OUTEM2 | |--OUTELM1---OUTEM1 | |--OUTEM3 |--SECOND2 |--SAVFM2----PDATA1 | |--PDATA2 | |--PDATA3 | |--EPTODP | |--PTHEX | |--CTHEX | |--CELMOD |--SAVFM3----PDATA1A | |--PDATA2A | |--PDATA3A | |--EPTODP | |--PTHEX | |--CTHEX | |--CELMOD |--SNDPLT |--ABNDTA----CHKDTA |--WRITFM2 |--OUTPT1----GRAIN |--OUTPT2 |--OUTPT3 (1) RDTEMP----GRAIN |--INIRDT----READRD | |--SETR0 | |--PJUMP-----CELMOD | | |--CPOIR | | |--CTHEX | | |--PTHEX | |--INIGAS | |--FISRAT | |--SETRH0 | |--SUFCNS----WTSAT-----STMSI(5) | |--STMZSI(6) |--HOKAN |--RDGAS1----DIFCON |--PRERDT----STMZSI(6) | |--SDENS | |--SUFCN0----WTSAT-----STMSI(5) | | |--VOID------WTTMP-----STMZSI(6) | | |--STEAMZ(6) | |--STVSH | |--SUFCNA----STVSH | | |--SDENS | |--FISRAT | |--BURNUP | |--FLXDEP----FDISTF----SBES0 | | |--FDIST-----SBES0 | | | |--SBES1 | | |--HOKAN5

JAEA-DataCode 2013-009

- 298 -

| |--FGPRO | |--HOKAN | |--CANEAL | |--TEMP1D----USTEMP----USMESH | |--DRYUPD | |--TSUR2 | |--MATDAT----TMELT | | |--PTHCON | | |--PHCAP | | |--CTHCON | | |--CHCAP | | |--CDENS-----CDNDT | | |--HOKANB | | |--GAPCON----CELMOD | | |--CRN | | |--CYIE | | |--PTHCON | | |--CTHCON | | |--GTHCON | | |--GAPCON_NSR77----GTHCON | | |--GVISCO | | |--FEMISS | | |--ZOEMIS | |----FLMCON | |----POWDIS | |----SUFCNH----SCRITH----WTMAT2 | | |--HTRMOD----WTMAT | | |--WTMAT2 | | |--TERP04 | | |--STMSI | | |--HMOD4 | | |--WTMAT3 | |----SUFCNH2---STHCON | | |--SDENS | | |--SHCAP | |----SUFCND----USTEMP2---MAKEH | |--WATER0(4) | |--DLAX |----THGAPN----PDENS | |--DENSF | |--PTHEX | |--FSWELL | |--CELMOD | |--CPOIR | |--CTHEX | |--FELMOD | |--CRN | |--CYIE | |--CCREEP----CCPEQ1 | | |--CCPEQ2 | | |--CCPEQ8 | | |--CCPEQ9 | | |--CCPEQ4 | | |--CCPEQ5 | | |--CCPEQ7 | | |--CCPEQ3

JAEA-DataCode 2013-009

- 299 -

| |--FCREEP----FCPEQ1 | |--FCPEQ2 | |--FCPEQ4 | |--FCPEQ5 | |--FCPEQ11 | |--FCPEQ15 | |--FCPEQ3 |----THGAP1----PTHEX | |--FSWELL |----SECOND2 |----GAPMOD |----PEXT14 |----FGRELN----MESHP | |--RIMFGR | |--LASSEM | |--FCREEP----FCPEQ1 | | |--FCPEQ2 | | |--FCPEQ4 | | |--FCPEQ5 | | |--FCPEQ11 | | |--FCPEQ15 | | |--FCPEQ3 | |--CANDMT----REDIS | |--DIFC | |--GBCLS | |--BFMAX | |--GRAIN | |--SETR | |--REDSTR | |--INTGH | |--INTGX | |--INTRA3----REDIS | | |--SOLVE | | |--SOLVE2 | | |--INTGX | | |--INTRAB----BBL------BBL2 | | |--ANDIF | | |--NVACAN---NR | | |--AMDIF----REDIS | |--ERFUNC | |--BLR2 | |--FIRSTSTEP----KOGAI_PARAM | | |--CALEQUILIBRBL---CUBIC2 | |--KOGAIMODEL---KOGAI_PARAM | | |--CALEQUILIBRBL---CUBIC2 | | |--UFFELEN_DGASNR | |--GBCONB |----POROST----PDENS | |--DENSF |----HELRLS----CANDMH----SETR | |--INTG | |--INTGH | |--DIFH | |--SOLVE2 | |--INTGX |----VLUMES----HOTVOL----PTHEX | |--CAGROW

JAEA-DataCode 2013-009

- 300 -

|----VLUME2----CAGROW |----RDGAS2----GASFLW----DIFCON |----CLOXD-----CORRO-----CTHCON |----CONV2 |----FEMROD(2) |----THGAP2----PTHEX |----RDTUPD----HEUPD | |--DRYUPD | |--XIODD |----TEMPIP----REMESH2 | |--INTPLT |----SAVRD1----HOKAN |----PRINT1----PRINT2 | |--PRINT3 | |--PRINT5----GRAIN | |--HOKAN |----SAVRD2----HOKAN | |--THGAP-----PTHEX | | |--CELMOD | | |--CPOIR | | |--CTHEX | | |--FELMOD | |--VLUME0----PTHEX |----HBSPRT |----WRITRD |----FEMRDS----FISRAT |--FEMROD(2) |--THGAP2----PTHEX (2) FEMROD------INIFEM----READFM | |--RWPCM | |--RMESH-----RMESHP | |--RMESHC | |--RMESHB----RMESHP | |--RMESHC |----RWPCM |----TMSTP |----PREPCM----XBMAT |----MDEPSP----CTHEX | |--CAGROW |----PREEPS |----MDEPS0----PDENS | |--DENSF | |--XPSWEL----XPURSW | |--XPJUMP----CELMOD | | |--CPOIR | | |--CTHEX | | |--PTHEX | |--PTHEX | |--CTHEX | |--CAGROW |----MATDEF----DEFBET |----XELMP1----XEQSIG | |--CMAT2-----CELMOD | | |--CPOIR | |--XCREP1(7)

JAEA-DataCode 2013-009

- 301 -

| |--INV3 | |--XBDMAT | |--XESMAT |----XELML1----XEQSIG | |--CMAT1-----FELMOD | | |--FPOIR | |--XCREP1(7) | |--CMAT2-----CELMOD | | |--CPOIR | |--INV3 | |--XDPMAT----XEQSIG | | |--FHSOFT | | |--FTSOFT | | |--CHSOFT----CELMOD | | | |--CYIE | | | |--CRN | | |--EQSCAL----FX | | |--DFX | | |--CTSOFT----CELMOD | | | |--CYIE | | | |--CRN | | | |--CLDKDT | | | |--CDNDT | | | |--CDEDT | | |--EQSCAL----FX | | |--DFX | | |--XDVSIG | |--BUFSTF | |--XBDMAT | |--XESMAT | |--XFLOAD |----SSMAT |----DFPLT |----DFCLAD |----DFCLAD2 |----CONSTF----ADRESS | |--CONSTR | |--SOLVF1----OPTSOL | |--SOLVF2----OPTSO2 | |--SOLVF3----OPTSOL | |--ADRESP | |--CONST1 |----SOLFEM----OPTSOL | |--OPTSO2 | |--CNSTR |----XELMP2----MDSIG | |--XEQSIG | |--XCREP2(8) |----XELML2----MDSIG | |--XDPST-----XEQSIG | | |--XDVSIG | | |--FHSOFT | | |--FTSOFT | | |--CHSOFT----CELMOD | | | |--CYIE | | | |--CRN | | |--EQSCAL----FX

JAEA-DataCode 2013-009

- 302 -

| | |--DFX | | |--CTSOFT----CELMOD | | |--CYIE | | |--CRN | | |--CLDKDT | | |--CDNDT | | |--CDEDT | | |--EQSCAL----FX | | |--DFX | |--XEQSIG | |--XPRBTY----FYIE | | |--CYIE2-----CELMOD | | |--CYIE | | |--CRN | | |--EQSCAL----FX | | |--DFX | |--XCREP2(8) |----JUDGFS----PFRFZ |----JUDGE |----SECOND2 |----UPDPCM |----REMESH |----OUTP2 |----PSTPCM----CFRFZ | |--PLFZ | |--OUTP1-----OUTP | |--SAVPM1 | |--OUTP2 | |--SAVPM2----EPTODP | |--PTHEX | |--CTHEX | |--CELMOD |----WRITFM (3) FEMAXI------INISTR----PDENS | |--DENSF | |--PSWELL | |--PTHEX | |--PJUMP-----CELMOD | | |--CPOIR | | |--CTHEX | | |--PTHEX | |--CTHEX | |--CAGROW | |--CELMOD |----GPSSET |----PROFIL |----FORCE |----ELMLP1----LOCALI----CLEARG | |--SHAPE1----JACK1-----PX1 | | | |--PY1 | | |--P1 | | |--PX1 | | |--PY1 | |--SHAPE2----JACK2-----PX2 | | | |--PY2

JAEA-DataCode 2013-009

- 303 -

| | |--P2 | | |--PX2 | | |--PY2 | |--GAULP1----CLEARB | | |--BMAT | | |--INIMAT----CMAT------FELMOD | | | |--FPOIR | | | |--CELMOD | | | |--CPOIR | | |--CREEP1----EQISIG | | | |--DEVSIG | | | |--FCPEQ1 | | | |--FCPEQ2 | | | |--FCPEQ4 | | | |--FCPEQ5 | | | |--FCPEQ11 | | | |--FCPEQ15 | | | |--FCPEQ3 | | | |--CCPEQ1 | | | |--CCPEQ2 | | | |--CCPEQ8 | | | |--CCPEQ9 | | | |--CCPEQ4 | | | |--CCPEQ5 | | | |--CCPEQ7 | | | |--CCPEQ3 | | |--INVERS | | |--DPMAT-----EQISIG | | | |--FHSOFT | | | |--FTSOFT | | | |--CHSOFT----CELMOD | | | | |--CYIE | | | | |--CRN | | | | |--EQSCAL----FX | | | | |--DFX | | | |--CTSOFT----CELMOD | | | | |--CYIE | | | | |--CRN | | | | |--CLDKDT | | | | |--CDNDT | | | | |--CDEDT | | | | |--EQSCAL----FX | | | | |--DFX | | | |--DEVSIG | | |--BDMAT | | |--ESMAT | | |--FLOAD | |--COLECT |----MODIFY |----GAPELN----OPTSO2 |----ELMLP2----LOCALI----CLEARG | |--GAULP2----CLEARB | | |--BMAT | | |--STRESS | | |--EQISIG | | |--DPST------DEVSIG | | | |--FHSOFT

JAEA-DataCode 2013-009

- 304 -

| | | |--FTSOFT | | | |--CHSOFT----CELMOD | | | | |--CYIE | | | | |--CRN | | | | |--EQSCAL----FX | | | | |--DFX | | | |--CTSOFT----CELMOD | | | |--CYIE | | | |--CRN | | | |--CLDKDT | | | |--CDNDT | | | |--CDEDT | | | |--EQSCAL----FX | | | |--DFX | | |--CREEP2----EQISIG | | | |--DEVSIG | | | |--FCPEQ1 | | | |--FCPEQ2 | | | |--FCPEQ4 | | | |--FCPEQ5 | | | |--FCPEQ11 | | | |--FCPEQ15 | | | |--FCPEQ3 | | | |--CCPEQ1 | | | |--CCPEQ2 | | | |--CCPEQ8 | | | |--CCPEQ9 | | | |--CCPEQ4 | | | |--CCPEQ5 | | | |--CCPEQ7 | | | |--CCPEQ3 | | |--CRACK | | |--PROBTY----FYIE | | | |--CYIE2-----CELMOD | | | |--CYIE | | | |--CRN | | | |--EQSCAL----FX | | | |--DFX | | |--FYIE | | |--CYIE2-----CELMOD | | | |--CYIE | | | |--CRN | | | |--EQSCAL----FX | | | |--DFX | | |--BOUNDF | |--CLBDF |----PROBDF |----PROBD1 |----TIMER-----TIMEG | |--TIMEB | |--TIMEY |----EQISIG |----SECOND2 |----REPLN |----REPLG-----LOCALI----CLEARG | |--CRACK | |--EQISIG

JAEA-DataCode 2013-009

- 305 -

|----CPUGH-----LOCALI----CLEARG |--PUGH------EQIEPS |--DOT (4) WATER0------WTSAT----STMSI(5) |--WTMAT |--FCP-------STBLPR----STBLDT | | |--STBLER | |--STBLTM----STBLER |--STMZSI(6) (5) STMSI-------STEAM----SATT------STBLDT | |--STBLER |--FCP-------STBLPR----STBLDT | | |--STBLER | |--STBLTM----STBLER |--SATP------STBLTS----STBLDT | |--STBLER |--WTMAT (6) STMZSI----STEAMZ-----SATP------STBLTS----STBLDT | |--STBLER |--STMPT------STBLER |--STBLTS----STBLDT | |--STBLER |--STBLTM----STBLER (7) XCREP1------XEQSIG |----XDVSIG |----FCPEQ1 |----FCPEQ2 |----FCPEQ4 |----FCPEQ5 |----FCPEQ11 |----FCPEQ15 |----FCPEQ3 |----CCPEQ1 |----CCPEQ2 |----CCPEQ8 |----CCPEQ9 |----CCPEQ4 |----CCPEQ5 |----CCPEQ7 |----CCPEQ3 (8) XCREP2------XEQSIG |----XDVSIG |----FCPEQ1 |----FCPEQ2 |----FCPEQ4 |----FCPEQ5 |----FCPEQ11

JAEA-DataCode 2013-009

- 306 -

|----FCPEQ15 |----FCPEQ3 |----CCPEQ1 |----CCPEQ2 |----CCPEQ8 |----CCPEQ9 |----CCPEQ4 |----CCPEQ5 |----CCPEQ7 |----CCPEQ3

国際単位系(SI)

乗数  接頭語 記号 乗数  接頭語 記号

1024 ヨ タ Y 10-1 デ シ d1021 ゼ タ Z 10-2 セ ン チ c1018 エ ク サ E 10-3 ミ リ m1015 ペ タ P 10-6 マイクロ micro1012 テ ラ T 10-9 ナ ノ n109 ギ ガ G 10-12 ピ コ p106 メ ガ M 10-15 フェムト f103 キ ロ k 10-18 ア ト a102 ヘ ク ト h 10-21 ゼ プ ト z101 デ カ da 10-24 ヨ ク ト y

表5SI 接頭語

名称 記号 SI 単位による値

分 min 1 min=60s時 h 1h =60 min=3600 s日 d 1 d=24 h=86 400 s度 deg 1deg=(π180) rad分 rsquo 1rsquo=(160)deg=(π10800) rad秒 rdquo 1rdquo=(160)rsquo=(π648000) rad

ヘクタール ha 1ha=1hm2=104m2

リットル Ll 1L=11=1dm3=103cm3=10-3m3

トン t 1t=103 kg

表6SIに属さないがSIと併用される単位

名称 記号 SI 単位で表される数値

電 子 ボ ル ト eV 1eV=1602 176 53(14)times10-19Jダ ル ト ン Da 1Da=1660 538 86(28)times10-27kg統一原子質量単位 u 1u=1 Da天 文 単 位 ua 1ua=1495 978 706 91(6)times1011m

表7SIに属さないがSIと併用される単位でSI単位で表される数値が実験的に得られるもの

名称 記号 SI 単位で表される数値

キ ュ リ ー Ci 1 Ci=37times1010Bqレ ン ト ゲ ン R 1 R = 258times10-4Ckgラ ド rad 1 rad=1cGy=10-2Gyレ ム rem 1 rem=1 cSv=10-2Svガ ン マ γ 1γ=1 nT=10-9Tフ ェ ル ミ 1フェルミ=1 fm=10-15mメートル系カラット 1メートル系カラット = 200 mg = 2times10-4kgト ル Torr 1 Torr = (101 325760) Pa標 準 大 気 圧 atm 1 atm = 101 325 Pa

1cal=41858J(「15」カロリー)41868J(「IT」カロリー)4184J(「熱化学」カロリー)

ミ ク ロ ン micro 1 micro =1microm=10-6m

表10SIに属さないその他の単位の例

カ ロ リ ー cal

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できるしかし接頭語を付した単位はもはや コヒーレントではない(b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で量についての情報をつたえるために使われる

 実際には使用する時には記号rad及びsrが用いられるが習慣として組立単位としての記号である数字の1は明 示されない(c)測光学ではステラジアンという名称と記号srを単位の表し方の中にそのまま維持している

(d)ヘルツは周期現象についてのみベクレルは放射性核種の統計的過程についてのみ使用される

(e)セルシウス度はケルビンの特別な名称でセルシウス温度を表すために使用されるセルシウス度とケルビンの

  単位の大きさは同一であるしたがって温度差や温度間隔を表す数値はどちらの単位で表しても同じである

(f)放射性核種の放射能(activity referred to a radionuclide)はしばしば誤った用語でrdquoradioactivityrdquoと記される

(g)単位シーベルト(PV200270205)についてはCIPM勧告2(CI-2002)を参照

(a)量濃度(amount concentration)は臨床化学の分野では物質濃度

  (substance concentration)ともよばれる(b)これらは無次元量あるいは次元1をもつ量であるがそのこと   を表す単位記号である数字の1は通常は表記しない

名称 記号SI 基本単位による

表し方

秒ルカスパ度粘 Pa s m-1 kg s-1

力 の モ ー メ ン ト ニュートンメートル N m m2 kg s-2

表 面 張 力 ニュートン毎メートル Nm kg s-2

角 速 度 ラジアン毎秒 rads m m-1 s-1=s-1

角 加 速 度 ラジアン毎秒毎秒 rads2 m m-1 s-2=s-2

熱 流 密 度 放 射 照 度 ワット毎平方メートル Wm2 kg s-3

熱 容 量 エ ン ト ロ ピ ー ジュール毎ケルビン JK m2 kg s-2 K-1

比熱容量比エントロピー ジュール毎キログラム毎ケルビン J(kg K) m2 s-2 K-1

比 エ ネ ル ギ ー ジュール毎キログラム Jkg m2 s-2

熱 伝 導 率 ワット毎メートル毎ケルビン W(m K) m kg s-3 K-1

体 積 エ ネ ル ギ ー ジュール毎立方メートル Jm3 m-1 kg s-2

電 界 の 強 さ ボルト毎メートル Vm m kg s-3 A-1

電 荷 密 度 クーロン毎立方メートル Cm3 m-3 sA表 面 電 荷 クーロン毎平方メートル Cm2 m-2 sA電 束 密 度 電 気 変 位 クーロン毎平方メートル Cm2 m-2 sA誘 電 率 ファラド毎メートル Fm m-3 kg-1 s4 A2

透 磁 率 ヘンリー毎メートル Hm m kg s-2 A-2

モ ル エ ネ ル ギ ー ジュール毎モル Jmol m2 kg s-2 mol-1

モルエントロピー モル熱容量ジュール毎モル毎ケルビン J(mol K) m2 kg s-2 K-1 mol-1

照射線量(X線及びγ線) クーロン毎キログラム Ckg kg-1 sA吸 収 線 量 率 グレイ毎秒 Gys m2 s-3

放 射 強 度 ワット毎ステラジアン Wsr m4 m-2 kg s-3=m2 kg s-3

放 射 輝 度 ワット毎平方メートル毎ステラジアン W(m2 sr) m2 m-2 kg s-3=kg s-3

酵 素 活 性 濃 度 カタール毎立方メートル katm3 m-3 s-1 mol

表4単位の中に固有の名称と記号を含むSI組立単位の例

組立量SI 組立単位

名称 記号

面 積 平方メートル m2

体 積 立法メートル m3

速 さ 速 度 メートル毎秒 ms加 速 度 メートル毎秒毎秒 ms2

波 数 毎メートル m-1

密 度 質 量 密 度 キログラム毎立方メートル kgm3

面 積 密 度 キログラム毎平方メートル kgm2

比 体 積 立方メートル毎キログラム m3kg電 流 密 度 アンペア毎平方メートル Am2

磁 界 の 強 さ アンペア毎メートル Am量 濃 度 (a) 濃 度 モル毎立方メートル molm3

質 量 濃 度 キログラム毎立法メートル kgm3

輝 度 カンデラ毎平方メートル cdm2

屈 折 率 (b) (数字の) 1 1比 透 磁 率 (b) (数字の) 1 1

組立量SI 基本単位

表2基本単位を用いて表されるSI組立単位の例

名称 記号他のSI単位による

表し方SI基本単位による

表し方平 面 角 ラジアン(b) rad 1(b) mm立 体 角 ステラジアン(b) sr(c) 1(b) m2m2

周 波 数 ヘルツ(d) Hz s-1

ントーュニ力 N m kg s-2

圧 力 応 力 パスカル Pa Nm2 m-1 kg s-2

エ ネ ル ギ ー 仕 事 熱 量 ジュール J N m m2 kg s-2

仕 事 率 工 率 放 射 束 ワット W Js m2 kg s-3

電 荷 電 気 量 クーロン A sC電 位 差 ( 電 圧 ) 起 電 力 ボルト V WA m2 kg s-3 A-1

静 電 容 量 ファラド F CV m-2 kg-1 s4 A2

電 気 抵 抗 オーム Ω VA m2 kg s-3 A-2

コ ン ダ ク タ ン ス ジーメンス S AV m-2 kg-1 s3 A2

バーエウ束磁 Wb Vs m2 kg s-2 A-1

磁 束 密 度 テスラ T Wbm2 kg s-2 A-1

イ ン ダ ク タ ン ス ヘンリー H WbA m2 kg s-2 A-2

セ ル シ ウ ス 温 度 セルシウス度(e) Kンメール束光 lm cd sr(c) cd

スクル度照 lx lmm2 m-2 cd放射性核種の放射能( f ) ベクレル(d) Bq s-1

吸収線量 比エネルギー分与カーマ

グレイ Gy Jkg m2 s-2

線量当量 周辺線量当量 方向

性線量当量 個人線量当量シーベルト(g) Sv Jkg m2 s-2

酸 素 活 性 カタール kat s-1 mol

表3固有の名称と記号で表されるSI組立単位SI 組立単位

組立量

名称 記号 SI 単位で表される数値

バ ー ル bar 1bar=01MPa=100kPa=105Pa水銀柱ミリメートル mmHg 1mmHg=133322Paオングストローム Å 1Å=01nm=100pm=10-10m海 里 M 1M=1852mバ ー ン b 1b=100fm2=(10-12cm)2=10-28m2

ノ ッ ト kn 1kn=(18523600)msネ ー パ Npベ ル B

デ ジ ベ ル dB

表8SIに属さないがSIと併用されるその他の単位

SI単位との数値的な関係は    対数量の定義に依存

名称 記号

長 さ メ ー ト ル m質 量 キログラム kg時 間 秒 s電 流 ア ン ペ ア A熱力学温度 ケ ル ビ ン K物 質 量 モ ル mol光 度 カ ン デ ラ cd

基本量SI 基本単位

表1SI 基本単位

名称 記号 SI 単位で表される数値

エ ル グ erg 1 erg=10-7 Jダ イ ン dyn 1 dyn=10-5Nポ ア ズ P 1 P=1 dyn s cm-2=01Pa sス ト ー ク ス St 1 St =1cm2 s-1=10-4m2 s-1

ス チ ル ブ sb 1 sb =1cd cm-2=104cd m-2

フ ォ ト ph 1 ph=1cd sr cm-2 104lxガ ル Gal 1 Gal =1cm s-2=10-2ms-2

マ ク ス ウ ェ ル Mx 1 Mx = 1G cm2=10-8Wbガ ウ ス G 1 G =1Mx cm-2 =10-4Tエルステッド( c ) Oe 1 Oe  (1034π)A m-1

表9固有の名称をもつCGS組立単位

(c)3元系のCGS単位系とSIでは直接比較できないため等号「   」

   は対応関係を示すものである

(第8版2006年改訂)

この印刷物は再生紙を使用しています

  • Man-0_Title_Contents
  • Man-1_2_3_File System
    • CFem7
    • CFem7
      • Man-4_FEMAXI_Inp Manual
        • Fixed format input (2)
        • Fixed format input (3)
        • 43 Name-list Input (1)
        • Name-list Input (2)
        • Name-list Input (3)
        • 【Note 1】The message ldquoDIMENSION AREA OVER FLOW LTSM =xxxxx LD =4000000rdquo is output and the program execution is terminated when LTSMgtLD To avoid this it is necessary to designate LD by name-list input to make LDgtLTSM At the same time ldquo4000000rdquo i
        • 【Note 2】The message ldquoDIMENSION AREA OVER FLOW LASI=xxxxx LID =500000rdquo is output and the program execution is terminated when LASIgtLID To avoid this it is necessary to designate LID by name-list input to make LIDgtLASI At the same time ldquo5000000rdquo
        • Name-list Input (9)
        • Name-list Input (11)
        • Name-list Input (12)
        • Name-list Input (13)
        • Name-list Input (14)
        • Name-list Input (15)
        • Name-list Input (16)
        • Name-list Input  (17)
        • Name-list Input (18)
        • Name-list Input (19)
        • Name-list Input (21)
        • Name-list Input (22)
        • Name-list Input (23)
        • Name-list Input (24)
        • Name-list Input (25)
        • Name-list Input (26)
        • Name-list Input (27)
        • [Note] Explanation of absorptionrelease model of Helium in UO2
        • and MOX fuels
        • Name-list Input (28)
        • Name-list Input (29)
        • Name-list Input (30)
        • Name-list Input (31)
        • Name-list Input (32)
        • Name-list Input (33)
        • Name-list Input (34)
        • Name-list Input (35) Parameters for Ohta model
        • Name-list Input (36)
        • Name-list Input (37)
        • Name-list Input (38)
        • Name-list Input (40)
        • Name-list Input (41)
        • Name-list Input (42)
        • Name-list Input (43)
        • Name-list Input (44)
        • Name-list Input (45)
          • 45 Calculated physical quantities in ZERO power state
            • -FORMAT (6F 100 2I5)
            • Example of input (1)
            • 2
            • Example of input (2)
            • 21
            • 10
            • 30
            • STOP
              • 47 Setting of cladding outer surface temperature
                  • Man-5_RB_Input Manual
                    • 1 Resonance Integral in each mesh
                    • 2 RABBLE
                    • ORIGEN rarr PWR amp BWR
                      • Man-6_Plot_manual
                        • C2
                        • C2
                        • C2
                        • C2
                        • C3
                        • C4
                          • Man-7_Sample_IO
                          • Man-8_Matpro_modify
                          • App1_2_Title_IDNO
                          • App3_Sub_List
                            • A3  Subroutine list
                              • App4_Sub_Tree
                                • MAIN------SECOND2
                                • |---OPENINPUTFILES
                                • |---HEADER----TIME
                                • | |--DATE2----DATE_AND_TIME
                                • |---INPIMG
                                • |---AAZERO----CLEARG
                                • | |--CLEARB
                                • | |--ICLEAR
                                • |---CHKNAME
                                • |---INPUT1----PDEN
                                • | |--PRINT0
                                • | |--INIDRY----WATER0(4)
                                • |---CONTROL---INPGER----HFACT
                                • | |--INPR
                                • | |--LINSET
                                • | |--PLOTLN
                                • | |--LINSET1
                                • | |--PLOTLN1
                                • | |--COORDI
                                • | |--COORDI1
                                • | |--OUTNOD----OUTND
                                • | | |--OUTND3
                                • | |--OUTNOD1---OUTND1
                                • | | |--OUTND4
                                • | |--DELTAN
                                • | |--DELTAN1
                                • | |--NCOUPL
                                • | |--GPSSET
                                • | |--MODSET
                                • | |--FPRES2
                                • | |--FPRES1
                                • | |--PRIOPT
                                • | |--INPHIS----INPHS
                                • | | |--ADBU
                                • | | |--ADTM
                                • | | |--CDENS-----CDNDT
                                • | | |--PRHIS2
                                • | |--INPPLU----PLUTN2----PLOUT
                                • | | |--HOKAN1
                                • | | |--HOKAN2
                                • | |--INPROD----ADBU
                                • | |--PRHIS2
                                • | |--HOKAN
                                • | |--RODXE-----FGPROR
                                • |--INISET
                                • |--PHIST-----FISRAT
                                • | |--ADTM
                                • |--RDTEMP(1)
                                • |--READFM2
                                • |--FEMAXI(3)
                                • |--SAVFM1----OUTPT0----OUTNOD----OUTND
                                • | | |--OUTND3
                                • | |--OUTNOD1---OUTND1
                                • | | |--OUTND4
                                • | |--OUTELM----OUTEM
                                • | | |--OUTEM2
                                • | |--OUTELM1---OUTEM1
                                • | |--OUTEM3
                                • |--SECOND2
                                • |--SAVFM2----PDATA1
                                • | |--PDATA2
                                • | |--PDATA3
                                • | |--EPTODP
                                • | |--PTHEX
                                • | |--CTHEX
                                • | |--CELMOD
                                • |--SAVFM3----PDATA1A
                                • | |--PDATA2A
                                • | |--PDATA3A
                                • | |--EPTODP
                                • | |--PTHEX
                                • | |--CTHEX
                                • | |--CELMOD
                                • |--SNDPLT
                                • |--ABNDTA----CHKDTA
                                • |--WRITFM2
                                • |--OUTPT1----GRAIN
                                • |--OUTPT2
                                • |--OUTPT3
                                • (1) RDTEMP----GRAIN
                                • |--INIRDT----READRD
                                • | |--SETR0
                                • | |--PJUMP-----CELMOD
                                • | | |--CPOIR
                                • | | |--CTHEX
                                • | | |--PTHEX
                                • | |--INIGAS
                                • | |--FISRAT
                                • | |--SETRH0
                                • | |--SUFCNS----WTSAT-----STMSI(5)
                                • | |--STMZSI(6)
                                • |--HOKAN
                                • |--RDGAS1----DIFCON
                                • |--PRERDT----STMZSI(6)
                                • |     |--SDENS
                                • | |--SUFCN0----WTSAT-----STMSI(5)
                                • | | |--VOID------WTTMP-----STMZSI(6)
                                • | | |--STEAMZ(6)
                                • | |--STVSH
                                • | |--SUFCNA----STVSH
                                • | | |--SDENS
                                • | |--FISRAT
                                • | |--BURNUP
                                • | |--FLXDEP----FDISTF----SBES0
                                • | | |--FDIST-----SBES0
                                • | | | |--SBES1
                                • | | |--HOKAN5
                                • | |--FGPRO
                                • | |--HOKAN
                                • | |--CANEAL
                                • |
                                • |--TEMP1D----USTEMP----USMESH
                                • | |--DRYUPD
                                • | |--TSUR2
                                • | |--MATDAT----TMELT
                                • | | |--PTHCON
                                • | | |--PHCAP
                                • | | |--CTHCON
                                • | | |--CHCAP
                                • | | |--CDENS-----CDNDT
                                • | | |--HOKANB
                                • | | |--GAPCON----CELMOD
                                • | | |--CRN
                                • | | |--CYIE
                                • | | |--PTHCON
                                • | | |--CTHCON
                                • | | |--GTHCON
                                • | | |--GAPCON_NSR77----GTHCON
                                • | | |--GVISCO
                                • | | |--FEMISS
                                • | | |--ZOEMIS
                                • | |----FLMCON
                                • | |----POWDIS
                                • | |----SUFCNH----SCRITH----WTMAT2
                                • | | |--HTRMOD----WTMAT
                                • | | |--WTMAT2
                                • | | |--TERP04
                                • | | |--STMSI
                                • | | |--HMOD4
                                • | | |--WTMAT3
                                • | |----SUFCNH2---STHCON
                                • | | |--SDENS
                                • | | |--SHCAP
                                • | |----SUFCND----USTEMP2---MAKEH
                                • | |--WATER0(4)
                                • | |--DLAX
                                • |----THGAPN----PDENS
                                • | |--DENSF
                                • | |--PTHEX
                                • | |--FSWELL
                                • | |--CELMOD
                                • | |--CPOIR
                                • | |--CTHEX
                                • | |--FELMOD
                                • | |--CRN
                                • | |--CYIE
                                • | |--CCREEP----CCPEQ1
                                • | | |--CCPEQ2
                                • | | |--CCPEQ8
                                • | | |--CCPEQ9
                                • | | |--CCPEQ4
                                • | | |--CCPEQ5
                                • | | |--CCPEQ7
                                • | | |--CCPEQ3
                                • | |--FCREEP----FCPEQ1
                                • | |--FCPEQ2
                                • | |--FCPEQ4
                                • | |--FCPEQ5
                                • | |--FCPEQ11
                                • | |--FCPEQ15
                                • | |--FCPEQ3
                                • |----THGAP1----PTHEX
                                • | |--FSWELL
                                • |----SECOND2
                                • |----GAPMOD
                                • |----PEXT14
                                • |----FGRELN----MESHP
                                • | |--RIMFGR
                                • | |--LASSEM
                                • | |--FCREEP----FCPEQ1
                                • | | |--FCPEQ2
                                • | | |--FCPEQ4
                                • | | |--FCPEQ5
                                • | | |--FCPEQ11
                                • | | |--FCPEQ15
                                • | | |--FCPEQ3
                                • | |--CANDMT----REDIS
                                • | |--DIFC
                                • | |--GBCLS
                                • | |--BFMAX
                                • | |--GRAIN
                                • | |--SETR
                                • | |--REDSTR
                                • | |--INTGH
                                • | |--INTGX
                                • | |--INTRA3----REDIS
                                • | | |--SOLVE
                                • | | |--SOLVE2
                                • | | |--INTGX
                                • | | |--INTRAB----BBL------BBL2
                                • | | |--ANDIF
                                • | | |--NVACAN---NR
                                • | | |--AMDIF----REDIS
                                • | |--ERFUNC
                                • | |--BLR2
                                • | |--FIRSTSTEP----KOGAI_PARAM
                                • | | |--CALEQUILIBRBL---CUBIC2
                                • | |--KOGAIMODEL---KOGAI_PARAM
                                • | | |--CALEQUILIBRBL---CUBIC2
                                • | | |--UFFELEN_DGASNR
                                • | |--GBCONB
                                • |----POROST----PDENS
                                • | |--DENSF
                                • |----HELRLS----CANDMH----SETR
                                • | |--INTG
                                • | |--INTGH
                                • | |--DIFH
                                • | |--SOLVE2
                                • | |--INTGX
                                • |----VLUMES----HOTVOL----PTHEX
                                • | |--CAGROW
                                • |----VLUME2----CAGROW
                                • |----RDGAS2----GASFLW----DIFCON
                                • |----CLOXD-----CORRO-----CTHCON
                                • |----CONV2
                                • |----FEMROD(2)
                                • |----THGAP2----PTHEX
                                • |----RDTUPD----HEUPD
                                • | |--DRYUPD
                                • | |--XIODD
                                • |----TEMPIP----REMESH2
                                • | |--INTPLT
                                • |----SAVRD1----HOKAN
                                • |----PRINT1----PRINT2
                                • | |--PRINT3
                                • | |--PRINT5----GRAIN
                                • | |--HOKAN
                                • |----SAVRD2----HOKAN
                                • | |--THGAP-----PTHEX
                                • | | |--CELMOD
                                • | | |--CPOIR
                                • | | |--CTHEX
                                • | | |--FELMOD
                                • | |--VLUME0----PTHEX
                                • |----HBSPRT
                                • |----WRITRD
                                • |----FEMRDS----FISRAT
                                • |--FEMROD(2)
                                • |--THGAP2----PTHEX
                                • (2) FEMROD------INIFEM----READFM
                                • | |--RWPCM
                                • | |--RMESH-----RMESHP
                                • | |--RMESHC
                                • | |--RMESHB----RMESHP
                                • | |--RMESHC
                                • |----RWPCM
                                • |----TMSTP
                                • |----PREPCM----XBMAT
                                • |----MDEPSP----CTHEX
                                • | |--CAGROW
                                • |----PREEPS
                                • |----MDEPS0----PDENS
                                • | |--DENSF
                                • | |--XPSWEL----XPURSW
                                • | |--XPJUMP----CELMOD
                                • | | |--CPOIR
                                • | | |--CTHEX
                                • | | |--PTHEX
                                • | |--PTHEX
                                • | |--CTHEX
                                • | |--CAGROW
                                • |----MATDEF----DEFBET
                                • |----XELMP1----XEQSIG
                                • | |--CMAT2-----CELMOD
                                • | | |--CPOIR
                                • | |--XCREP1(7)
                                • | |--INV3
                                • | |--XBDMAT
                                • | |--XESMAT
                                • |----XELML1----XEQSIG
                                • | |--CMAT1-----FELMOD
                                • | | |--FPOIR
                                • | |--XCREP1(7)
                                • | |--CMAT2-----CELMOD
                                • | | |--CPOIR
                                • | |--INV3
                                • | |--XDPMAT----XEQSIG
                                • | | |--FHSOFT
                                • | | |--FTSOFT
                                • | | |--CHSOFT----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | | |--CTSOFT----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | | |--CLDKDT
                                • | | | |--CDNDT
                                • | | | |--CDEDT
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | | |--XDVSIG
                                • | |--BUFSTF
                                • | |--XBDMAT
                                • | |--XESMAT
                                • | |--XFLOAD
                                • |----SSMAT
                                • |----DFPLT
                                • |----DFCLAD
                                • |----DFCLAD2
                                • |----CONSTF----ADRESS
                                • | |--CONSTR
                                • | |--SOLVF1----OPTSOL
                                • | |--SOLVF2----OPTSO2
                                • | |--SOLVF3----OPTSOL
                                • | |--ADRESP
                                • | |--CONST1
                                • |----SOLFEM----OPTSOL
                                • | |--OPTSO2
                                • | |--CNSTR
                                • |----XELMP2----MDSIG
                                • | |--XEQSIG
                                • | |--XCREP2(8)
                                • |----XELML2----MDSIG
                                • | |--XDPST-----XEQSIG
                                • | | |--XDVSIG
                                • | | |--FHSOFT
                                • | | |--FTSOFT
                                • | | |--CHSOFT----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | | |--CTSOFT----CELMOD
                                • | | |--CYIE
                                • | | |--CRN
                                • | | |--CLDKDT
                                • | | |--CDNDT
                                • | | |--CDEDT
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | |--XEQSIG
                                • | |--XPRBTY----FYIE
                                • | | |--CYIE2-----CELMOD
                                • | | |--CYIE
                                • | | |--CRN
                                • | | |--EQSCAL----FX
                                • | | |--DFX
                                • | |--XCREP2(8)
                                • |----JUDGFS----PFRFZ
                                • |----JUDGE
                                • |----SECOND2
                                • |----UPDPCM
                                • |----REMESH
                                • |----OUTP2
                                • |----PSTPCM----CFRFZ
                                • | |--PLFZ
                                • | |--OUTP1-----OUTP
                                • | |--SAVPM1
                                • | |--OUTP2
                                • | |--SAVPM2----EPTODP
                                • | |--PTHEX
                                • | |--CTHEX
                                • | |--CELMOD
                                • |----WRITFM
                                • (3) FEMAXI------INISTR----PDENS
                                • | |--DENSF
                                • | |--PSWELL
                                • | |--PTHEX
                                • | |--PJUMP-----CELMOD
                                • | | |--CPOIR
                                • | | |--CTHEX
                                • | | |--PTHEX
                                • | |--CTHEX
                                • | |--CAGROW
                                • | |--CELMOD
                                • |----GPSSET
                                • |----PROFIL
                                • |----FORCE
                                • |----ELMLP1----LOCALI----CLEARG
                                • | |--SHAPE1----JACK1-----PX1
                                • | | | |--PY1
                                • | | |--P1
                                • | | |--PX1
                                • | | |--PY1
                                • | |--SHAPE2----JACK2-----PX2
                                • | | | |--PY2
                                • | | |--P2
                                • | | |--PX2
                                • | | |--PY2
                                • | |--GAULP1----CLEARB
                                • | | |--BMAT
                                • | | |--INIMAT----CMAT------FELMOD
                                • | | | |--FPOIR
                                • | | | |--CELMOD
                                • | | | |--CPOIR
                                • | | |--CREEP1----EQISIG
                                • | | | |--DEVSIG
                                • | | | |--FCPEQ1
                                • | | | |--FCPEQ2
                                • | | | |--FCPEQ4
                                • | | | |--FCPEQ5
                                • | | | |--FCPEQ11
                                • | | | |--FCPEQ15
                                • | | | |--FCPEQ3
                                • | | | |--CCPEQ1
                                • | | | |--CCPEQ2
                                • | | | |--CCPEQ8
                                • | | | |--CCPEQ9
                                • | | | |--CCPEQ4
                                • | | | |--CCPEQ5
                                • | | | |--CCPEQ7
                                • | | | |--CCPEQ3
                                • | | |--INVERS
                                • | | |--DPMAT-----EQISIG
                                • | | | |--FHSOFT
                                • | | | |--FTSOFT
                                • | | | |--CHSOFT----CELMOD
                                • | | | | |--CYIE
                                • | | | | |--CRN
                                • | | | | |--EQSCAL----FX
                                • | | | | |--DFX
                                • | | | |--CTSOFT----CELMOD
                                • | | | | |--CYIE
                                • | | | | |--CRN
                                • | | | | |--CLDKDT
                                • | | | | |--CDNDT
                                • | | | | |--CDEDT
                                • | | | | |--EQSCAL----FX
                                • | | | | |--DFX
                                • | | | |--DEVSIG
                                • | | |--BDMAT
                                • | | |--ESMAT
                                • | | |--FLOAD
                                • | |--COLECT
                                • |----MODIFY
                                • |----GAPELN----OPTSO2
                                • |----ELMLP2----LOCALI----CLEARG
                                • | |--GAULP2----CLEARB
                                • | | |--BMAT
                                • | | |--STRESS
                                • | | |--EQISIG
                                • | | |--DPST------DEVSIG
                                • | | | |--FHSOFT
                                • | | | |--FTSOFT
                                • | | | |--CHSOFT----CELMOD
                                • | | | | |--CYIE
                                • | | | | |--CRN
                                • | | | | |--EQSCAL----FX
                                • | | | | |--DFX
                                • | | | |--CTSOFT----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | | |--CLDKDT
                                • | | | |--CDNDT
                                • | | | |--CDEDT
                                • | | | |--EQSCAL----FX
                                • | | | |--DFX
                                • | | |--CREEP2----EQISIG
                                • | | | |--DEVSIG
                                • | | | |--FCPEQ1
                                • | | | |--FCPEQ2
                                • | | | |--FCPEQ4
                                • | | | |--FCPEQ5
                                • | | | |--FCPEQ11
                                • | | | |--FCPEQ15
                                • | | | |--FCPEQ3
                                • | | | |--CCPEQ1
                                • | | | |--CCPEQ2
                                • | | | |--CCPEQ8
                                • | | | |--CCPEQ9
                                • | | | |--CCPEQ4
                                • | | | |--CCPEQ5
                                • | | | |--CCPEQ7
                                • | | | |--CCPEQ3
                                • | | |--CRACK
                                • | | |--PROBTY----FYIE
                                • | | | |--CYIE2-----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | | |--EQSCAL----FX
                                • | | | |--DFX
                                • | | |--FYIE
                                • | | |--CYIE2-----CELMOD
                                • | | | |--CYIE
                                • | | | |--CRN
                                • | | | |--EQSCAL----FX
                                • | | | |--DFX
                                • | | |--BOUNDF
                                • | |--CLBDF
                                • |----PROBDF
                                • |----PROBD1
                                • |----TIMER-----TIMEG
                                • | |--TIMEB
                                • | |--TIMEY
                                • |----EQISIG
                                • |----SECOND2
                                • |----REPLN
                                • |----REPLG-----LOCALI----CLEARG
                                • | |--CRACK
                                • | |--EQISIG
                                • |----CPUGH-----LOCALI----CLEARG
                                • |--PUGH------EQIEPS
                                • |--DOT
                                • (4) WATER0------WTSAT----STMSI(5)
                                • |--WTMAT
                                • |--FCP-------STBLPR----STBLDT
                                • | | |--STBLER
                                • | |--STBLTM----STBLER
                                • |--STMZSI(6)
                                • (5) STMSI-------STEAM----SATT------STBLDT
                                • | |--STBLER
                                • |--FCP-------STBLPR----STBLDT
                                • | | |--STBLER
                                • | |--STBLTM----STBLER
                                • |--SATP------STBLTS----STBLDT
                                • | |--STBLER
                                • |--WTMAT
                                • (6) STMZSI----STEAMZ-----SATP------STBLTS----STBLDT
                                • | |--STBLER
                                • |--STMPT------STBLER
                                • |--STBLTS----STBLDT
                                • | |--STBLER
                                • |--STBLTM----STBLER
                                • (7) XCREP1------XEQSIG
                                • |----XDVSIG
                                • |----FCPEQ1
                                • |----FCPEQ2
                                • |----FCPEQ4
                                • |----FCPEQ5
                                • |----FCPEQ11
                                • |----FCPEQ15
                                • |----FCPEQ3
                                • |----CCPEQ1
                                • |----CCPEQ2
                                • |----CCPEQ8
                                • |----CCPEQ9
                                • |----CCPEQ4
                                • |----CCPEQ5
                                • |----CCPEQ7
                                • |----CCPEQ3
                                • (8) XCREP2------XEQSIG
                                • |----XDVSIG
                                • |----FCPEQ1
                                • |----FCPEQ2
                                • |----FCPEQ4
                                • |----FCPEQ5
                                • |----FCPEQ11
                                • |----FCPEQ15
                                • |----FCPEQ3
                                • |----CCPEQ1
                                • |----CCPEQ2
                                • |----CCPEQ8
                                • |----CCPEQ9
                                • |----CCPEQ4
                                • |----CCPEQ5
                                • |----CCPEQ7
                                • |----CCPEQ3
Page 4: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 5: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 6: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 7: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 8: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 9: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 10: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 11: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 12: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 13: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 14: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 15: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 16: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 17: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 18: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 19: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 20: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 21: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 22: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 23: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 24: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 25: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 26: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 27: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 28: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 29: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 30: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 31: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 32: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 33: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 34: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 35: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 36: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 37: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 38: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 39: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 40: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 41: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 42: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 43: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 44: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 45: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 46: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 47: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 48: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 49: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 50: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 51: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 52: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 53: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 54: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 55: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 56: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 57: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 58: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 59: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 60: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 61: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 62: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 63: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 64: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 65: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 66: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 67: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 68: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 69: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 70: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 71: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 72: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 73: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 74: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 75: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 76: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 77: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 78: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 79: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 80: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 81: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 82: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 83: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 84: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 85: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 86: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 87: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 88: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 89: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 90: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 91: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 92: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 93: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 94: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 95: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 96: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 97: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 98: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 99: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 100: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 101: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 102: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 103: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 104: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 105: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 106: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 107: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 108: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 109: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 110: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 111: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 112: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 113: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 114: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 115: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 116: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 117: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 118: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 119: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 120: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 121: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 122: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 123: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 124: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 125: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 126: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 127: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 128: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 129: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 130: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 131: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 132: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 133: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 134: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 135: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 136: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 137: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 138: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 139: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 140: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 141: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 142: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 143: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 144: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 145: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 146: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 147: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 148: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 149: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 150: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 151: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 152: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 153: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 154: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 155: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 156: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 157: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 158: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 159: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 160: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 161: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 162: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 163: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 164: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 165: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 166: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 167: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 168: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 169: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 170: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 171: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 172: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 173: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 174: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 175: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 176: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 177: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 178: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 179: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 180: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 181: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 182: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 183: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 184: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 185: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 186: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 187: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 188: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 189: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 190: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 191: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 192: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 193: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 194: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 195: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 196: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 197: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 198: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 199: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 200: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 201: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 202: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 203: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 204: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 205: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 206: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 207: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 208: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 209: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 210: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 211: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 212: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 213: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 214: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 215: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 216: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 217: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 218: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 219: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 220: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 221: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 222: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 223: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 224: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 225: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 226: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 227: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 228: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 229: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 230: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 231: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 232: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 233: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 234: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 235: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 236: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 237: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 238: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 239: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 240: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 241: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 242: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 243: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 244: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 245: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 246: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 247: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 248: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 249: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 250: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 251: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 252: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 253: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 254: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 255: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 256: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 257: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 258: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 259: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 260: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 261: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 262: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 263: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 264: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 265: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 266: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 267: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 268: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 269: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 270: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 271: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 272: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 273: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 274: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 275: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 276: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 277: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 278: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 279: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 280: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 281: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 282: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 283: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 284: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 285: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 286: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 287: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 288: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 289: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 290: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 291: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 292: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 293: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 294: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 295: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 296: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 297: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 298: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 299: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 300: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 301: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 302: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 303: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 304: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 305: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 306: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 307: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 308: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 309: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 310: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 311: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 312: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 313: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 314: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 315: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 316: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 317: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 318: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 319: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes
Page 320: Input/Output Manual of Light Water Reactor Fuel Analysis Code FEMAXI-7 and Its Related Codes