instrumentation and applications, light scattering, classical

112
berry 1 June 2014 In: Encylcopedia of Analytical Chemistry: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL: SIZE AND SIZE DISTRIBUTION CHARACTERIZATION G. C. Berry Department of Chemistry Carnegie Mellon University Pittsburgh, PA, USA ABSTRACT The use of classical, or time-averaged, light scattering methods to characterize the size and size distribution of macromolecules in dilute solutions or particles in dilute dispersions is discussed. The necessary scattering relations are presented systematically, starting with three cases at infinite dilution: the scattering extrapolated to zero angle, the scattering at small angle, and the scattering for arbitrary angle, including the inversion of the scattering data to estimate the size distribution. The relations needed to effect an extrapolation to infinite dilution from data on dilute solutions are also discussed. These sections are followed by remarks on light scattering methods, and concluding sections giving examples for several applications. The Rayleigh-Gans-Debye approximation is usually appropriate in the scattering from dilute polymer solutions, and is also adequate for the scattering from dilute dispersions of small particles. It is assumed when appropriate, but more complete theories are introduced where necessary, as in the use of the Mie-Lorentz theory for large spherical particles. Methods to suppress multiple scattering and non ergodic scattering behavior are discussed.

Upload: others

Post on 11-Sep-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

!berry 1 June 2014

In: Encylcopedia of Analytical Chemistry: Instrumentation and Applications, !!!!

LIGHT SCATTERING, CLASSICAL: SIZE AND SIZE DISTRIBUTION CHARACTERIZATION

!!!!!!!

G. C. Berry Department of Chemistry

Carnegie Mellon University Pittsburgh, PA, USA

!!!!

ABSTRACT !

!!The use of classical, or time-averaged, light scattering methods to characterize the

size and size distribution of macromolecules in dilute solutions or particles in dilute

dispersions is discussed. The necessary scattering relations are presented

systematically, starting with three cases at infinite dilution: the scattering

extrapolated to zero angle, the scattering at small angle, and the scattering for

arbitrary angle, including the inversion of the scattering data to estimate the size

distribution. The relations needed to effect an extrapolation to infinite dilution from

data on dilute solutions are also discussed. These sections are followed by remarks

on light scattering methods, and concluding sections giving examples

for several applications. The Rayleigh-Gans-Debye approximation is usually

appropriate in the scattering from dilute polymer solutions, and is also adequate for the

scattering from dilute dispersions of small particles. It is assumed when appropriate, but

more complete theories are introduced where necessary, as in the use of the Mie-Lorentz

theory for large spherical particles. Methods to suppress multiple scattering and non

ergodic scattering behavior are discussed.

Page 2: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

!berry 1 June 2014

!

TABLE OF CONTENTS !!!

1. INTRODUCTION 1 !

2. SCATTERING RELATIONS 1 2.1 General Remarks 1 2.2 Scattering at zero angle and infinite dilution 6

2.2.1 Isotropic solute in the RGD regime 6 2.2.2 Isotropic solute beyond the RGD regime 7 2.2.3 Anisotropic solute 9

2.3 Scattering at small angle and infinite dilution 10 2.3.1 Isotropic solute in the RGD regime 10 2.3.2 Isotropic solute beyond the RGD regime 12 2.3.3 Anisotropic solute 13

2.4 Scattering at arbitrary angle and infinite dilution 14 2.4.1 Isotropic solute in the RGD regime 14 2.4.2 Isotropic solute beyond the RGD regime 18 2.4.3 Anisotropic solute 20

2.5 The size distribution from scattering data at infinite dilution 21 2.6 Extrapolation to infinite dilution 24

!3. EXPERIMENTAL METHODS 27

3.1 Instrumentation 27 3.2 Methods 28

!4. EXAMPLES 31

4.1 Static scattering and size separation chromatography 31 4.2 Light scattering from vesicles and stratified spheres 33 4.3 Scattering from very large particles 35 4.4 Intermolecular association 38 4.5 Scattering with charged species 41 4.6 Scattering from optically anisotropic solute 43 4.7 Scattering from gels and dispersed particles 45 4.8 The intramolecular structure factor for wormlike chains 63

!5. FREQUENTLY USED NOTATION 66 !

6. REFERENCES 68 !

TABLES (3) !

FIGURE CAPTIONS FIGURES (22)

Page 3: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

1. INTRODUCTION

������&ODVVLFDO��RU�WLPH�DYHUDJHG��OLJKW�VFDWWHULQJ�PHWKRGV�DUH�ZHOO�VXLWHG�WR�FKDUDFWHUL]H�FHUWDLQ�SURSHUWLHV

RI�PDFURPROHFXOHV�LQ�GLOXWH�VROXWLRQV�RU�SDUWLFOHV�LQ�GLOXWH�GLVSHUVLRQV���7KLV�WHFKQLTXH�JRHV�XQGHU�D

YDULHW\�RI�QDPHV��LQFOXGLQJ�VWDWLF��HODVWLF��LQWHJUDWHG�DQG�DEVROXWH�VFDWWHULQJ���,QIRUPDWLRQ�RQ�WKH�VL]H�DQG

VL]H�GLVWULEXWLRQ�PD\�EH�REWDLQHG��DQG�LQ�VRPH�FDVHV��LW�PD\�EH�SRVVLEOH�WR�HOXFLGDWH�WKH�VKDSH�RI�WKH

PDFURPROHFXOH�RU�SDUWLFOH���7KH�WKHRU\�DQG�SUDFWLFH�RI�VXFK�PHDVXUHPHQWV�LV�ZHOO�UHSUHVHQWHG�LQ�UHYLHZV

DQG�PRQRJUDSKV��������SURYLGLQJ�WKH�EDVLV�IRU�WKH�IROORZLQJ��,Q�DGGLWLRQ�WR�WKHVH��YHU\�XVHIXO

FRPSLODWLRQV�RI�RULJLQDO�SDSHUV�DUH�DYDLODEOH�RQ�WKH�VFDWWHULQJ�IURP�PDFURPROHFXOHV�����DQG�SDUWLFOHV�����

,Q�WKH�IROORZLQJ��WKH�VFDWWHULQJ�UHODWLRQV�DUH�SUHVHQWHG�V\VWHPDWLFDOO\��VWDUWLQJ�ZLWK�WKUHH�FDVHV�DW�LQILQLWH

GLOXWLRQ��WKH�VFDWWHULQJ�H[WUDSRODWHG�WR�]HUR�DQJOH��WKH�VFDWWHULQJ�DW�VPDOO�DQJOH��DQG�WKH�VFDWWHULQJ�IRU

DUELWUDU\�DQJOH���7KH�UHODWLRQV�QHHGHG�WR�HIIHFW�DQ�H[WUDSRODWLRQ�WR�LQILQLWH�GLOXWLRQ�IURP�GDWD�RQ�GLOXWH

VROXWLRQV�DUH�WKHQ�GLVFXVVHG���7KHVH�VHFWLRQV�DUH�IROORZHG�E\�UHPDUNV�RQ�OLJKW�VFDWWHULQJ�PHWKRGV��DQG

FRQFOXGLQJ�VHFWLRQV�JLYLQJ�H[DPSOHV�IRU�VHYHUDO�DSSOLFDWLRQV���$V�GLVFXVVHG�EHORZ��WKH�5D\OHLJK�*DQV�

'HE\H��5*'��DSSUR[LPDWLRQ�LV�XVXDOO\�DSSURSULDWH�LQ�WKH�VFDWWHULQJ�IURP�GLOXWH�SRO\PHU�VROXWLRQV��DQG�LV

DOVR�DGHTXDWH�IRU�WKH�VFDWWHULQJ�IURP�GLOXWH�GLVSHUVLRQV�RI�VPDOO�SDUWLFOHV���,W�ZLOO�EH�DVVXPHG�IRU�PXFK�RI

WKH�IROORZLQJ��EXW�PRUH�FRPSOHWH�WKHRULHV�ZLOO�EH�LQWURGXFHG�ZKHUH�QHFHVVDU\��DV�LQ�WKH�XVH�RI�WKH�0LH�

/RUHQW]�WKHRU\�IRU�ODUJH�VSKHULFDO�SDUWLFOHV�

2. SCATTERING RELATIONS

2.1 General Remarks������&ODVVLFDO��RU�VWDWLF��OLJKW�VFDWWHULQJ�UHIHUV�WR�DQ�H[SHULPHQW�LQ�ZKLFK�DQ�LQWHQVLW\�,�ϑ��LV�GHWHUPLQHG�DW

D�VFDWWHULQJ�DQJOH�ϑ�E\�DYHUDJLQJ�WKH�IOXFWXDWLQJ�LQWHQVLW\�RI�WKH�OLJKW�VFDWWHUHG�IURP�D�PDWHULDO�RYHU�D

WLPH�ORQJ�FRPSDUHG�ZLWK�WKH�WLPH�VFDOH�RI�WKH�IOXFWXDWLRQV���7KH�WHPSRUDO�FKDUDFWHU�RI�WKH�IOXFWXDWLRQV�LV

VWXGLHG�LQ�G\QDPLF�OLJKW�VFDWWHULQJ��������D��������������D�VXEMHFW�RXWVLGH�WKH�SXUYLHZ�KHUH���)RU�GLOXWH

VROXWLRQV�RI�PDFURPROHFXOHV��RU�GLVSHUVLRQV�RI�SDUWLFOHV��WKH�DYHUDJHG�LQWHQVLW\�FDUULHV�LQIRUPDWLRQ�RQ�WKHLQWUDPROHFXODU�SURSHUWLHV�RI�WKH�PROHFXODU�ZHLJKW�0��PHDQ�VTXDUH�UDGLXV�RI�J\UDWLRQ�5�

*��DQG�PHDQ�

VTXDUH�PROHFXODU�RSWLFDO�DQLVRWURS\���DV�ZHOO�DV�WKH�LQWHUPROHFXODU�SURSHUW\�RI�WKH�VHFRQG�YLULDO

FRHIILFLHQW�$���DQG�SRVVLEO\�KLJKHU�RUGHU�YLULDO�FRHIILFLHQWV�DQG�LQWHUPROHFXODU�LQWHUIHUHQFH�SKHQRPHQD�

)XUWKHUPRUH��IRU�SRO\GLVSHUVH�V\VWHPV��WKH�GDWD�PD\�DOVR�SHUPLW�DVVHVVPHQW�RI�DQ\�VWUXFWXUDO�GLVWULEXWLRQ

�H�J���WKH�PROHFXODU�ZHLJKW��VL]H��RU�SRVVLEO\�VKDSH��RI�D�GLVVROYHG�PROHFXOH�RU�GLVSHUVHG�SDUWLFOH���7KH

Page 4: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

UHDGHU�VKRXOG�EH�IRUHZDUQHG�WKDW�RZLQJ�WR�LWV�KLVWRU\�DQG�YDULHW\�RI�DSSOLFDWLRQV��WKH�QRPHQFODWXUH�LQ

OLJKW�VFDWWHULQJ�YDULHV�DPRQJ�DXWKRUV��H�J���VHH�UHIHUHQFH���D����,Q�WKH�LQWHUHVWV�RI�FRQVLVWHQF\��WKH

QRPHQFODWXUH�XVHG�KHUHLQ�ZLOO�IROORZ�WKDW�XVHG�SUHYLRXVO\�E\�WKH�DXWKRU����������������DQG�ZKHUH

DSSURSULDWH��WKHVH�VRXUFHV�ZLOO�EH�FLWHG�IRU�IXUWKHU�GHWDLO��LQ�DGGLWLRQ�WR��RU�LQ�OLHX�RI�FLWDWLRQV�WR�WKH

RULJLQDO�OLWHUDWXUH�UHIHUHQFHG�WKHUHLQ�

������,Q�JHQHUDO��LW�LV�QRW�QHFHVVDU\�WR�GLVWLQJXLVK�EHWZHHQ�VROXWLRQV�RI�PDFURPROHFXOHV�RU�GLVSHUVLRQV�RI

SDUWLFOHV�LQ�GLVFXVVLQJ�WKH�IXQGDPHQWDO�UHODWLRQV�IRU�VFDWWHULQJ��DQG�WKH�IROORZLQJ�DSSOLHV�WR�HLWKHU�FDVH�

)RU�FRQYHQLHQFH��ERWK�PDFURPROHFXOHV�DQG�SDUWLFOHV�ZLOO�EH�UHIHUUHG�WR�DV�WKH��VROXWH����,Q�PRVW

H[SHULPHQWDO�DUUDQJHPHQWV�RI�LQWHUHVW�KHUH��WKH�VFDWWHUHG�LQWHQVLW\�LQ�WKH�VFDWWHULQJ�SODQH��WKH�SODQHFRQWDLQLQJ�WKH�LQFLGHQW�DQG�VFDWWHUHG�EHDPV��LV�GHWHUPLQHG�DV�D�IXQFWLRQ�RI�ϑ,�RU�PRGXOXV�T� ��π�λ�VLQ�ϑ����RI�WKH�VFDWWHULQJ�YHFWRU��ZLWK�λ = λο�QPHGLXP��ZKHUH�QPHGLXP�LV�WKH�UHIUDFWLYH�LQGH[�RI�WKH

VROXWLRQ�DQG�λο�WKH�ZDYH�OHQJWK�RI�WKH�LQFLGHQW�OLJKW�in vacuuo,�DQG�ϑ�LV�WKH�DQJOH�EHWZHHQ�WKH�LQFLGHQW

DQG�VFDWWHUHG�EHDPV���2IWHQ��WKH�HOHFWULF�YHFWRU�RI�WKH�LQFLGHQW�OLJKW�LV�SODQH�SRODUL]HG�SHUSHQGLFXODU�WR

WKH�VFDWWHULQJ�SODQH��DQG�WKDW�DUUDQJHPHQW�ZLOO�EH�SUHVXPHG�LQ�WKH�IROORZLQJ��XQOHVV�RWKHUZLVH�VSHFLILHG�

7KH�VFDWWHUHG�OLJKW�LQWHQVLW\�LV�PRQLWRUHG�WKURXJK�D�SKRWRPXOWLSOLHU�RU�RWKHU�SKRWRQ±VHQVLWLYH�GHYLFH�HLWKHU�DV�DQ�DQDORJ�VLJQDO�RU�D�GLJLWDO�SKRWRQ�FRXQW�UDWH���,Q�HLWKHU�FDVH��DQ�LQVWUXPHQW�UHVSRQVH�*�ϑ��DW

DQJOH�ϑ�LV�GHWHUPLQHG��ZLWK�*�ϑ��SURSRUWLRQDO�WR�WKH�WLPH�DYHUDJHG�LQWHQVLW\�,�ϑ��RI�WKH�VFDWWHUHG�OLJKW��

7KH�ODWWHU�LV�XVHG�WR�FRPSXWH�WKH�5D\OHLJK�UDWLR�R�ϑ���JLYHQ�E\�U�,�ϑ��9,,1&��ZLWK�U�WKH�GLVWDQFH�EHWZHHQWKH�VFDWWHULQJ�FHQWHUV�DQG�WKH�GHWHFWRU��9�WKH�VFDWWHULQJ�YROXPH��DQG�,,1&�WKH�LQWHQVLW\�RI�WKH�LQFLGHQW�OLJKW�R�ϑ��LV�RIWHQ�FDOOHG�WKH�GLIIHUHQWLDO�VFDWWHULQJ�FURVV�VHFWLRQ�LQ�WKH�SK\VLFV�OLWHUDWXUH����D���7KH�UDWLRR�ϑ��*�ϑ��PD\�EH�GHWHUPLQHG�E\�DQ�DSSURSULDWH�H[SHULPHQW�IRU�D�JLYHQ�DUUDQJHPHQW������D�����������7KHIROORZLQJ�VHFWLRQ�ZLOO�GLVFXVV�WKH�LQIRUPDWLRQ�WKDW�PD\�EH�REWDLQHG�WR�FKDUDFWHUL]H�WKH�VROXWH�LQ�DVROXWLRQ��RU�GLVSHUVLRQ��E\�DQDO\VLV�RI�R�ϑ��XQGHU�YDULRXV�FRQGLWLRQV�������7KH�H[FHVV�5D\OHLJK�UDWLR�IRU�WKH�VROXWLRQ�ZLWK�FRQFHQWUDWLRQ�F�RI�VROXWH��OHVV�WKDW�GXH�WR�WKH�VROYHQW�LV�XVXDOO\�WKH�SURSHUW\�RI�LQWHUHVW���7KLV�LV�QRUPDOO\�FDOFXODWHG�DV�R[V�ϑ�F�� �R62/1�ϑ�F��±�R62/9(17�ϑ���EXW

DOWHUQDWLYH�HVWLPDWHV�RI�R[V�ϑ�F��PD\�EH�UHTXLUHG�IRU�YHU\�ORZ�PROHFXODU�ZHLJKW�VROXWH�������7KH

VXEVFULSWV�µ[V¶��HWF���ZLOO�EH�VXSSUHVVHG�WKURXJKRXW��DQG�R�ϑ�F��ZLOO�LPSO\�WKH�H[FHVV�TXDQWLW\���+HUH��F�LVWKH�ZHLJKW�RI�WKH�VROXWH�SHU�XQLW�YROXPH�RI�WKH�VROXWLRQ���$OWHUQDWLYHO\��WKH�QXPEHU�RI�PROHFXOHV�ν�SHUXQLW�YROXPH�RI�WKH�VROXWLRQ�LV�VRPHWLPHV�XVHG��HVSHFLDOO\�LQ�WKHRUHWLFDO�ZRUN��ν� �F1$�0Q��ZLWK�0Q�WKH

QXPEHU�DYHUDJH�PROHFXODU�ZHLJKW�GHWHUPLQHG��IRU�H[DPSOH��IURP�FROOLJDWLYH�SURSHUWLHV����D���,W�PD\�EH

QRWHG�WKDW�WKH�VFDWWHUHG�LQWHQVLW\�LQ�GLVFXVVLRQV�RI�WKH�VFDWWHULQJ�IURP�SDUWLFOHV�LV�VRPHWLPHV�H[SUHVVHG�LQLQWHQVLW\�XQLWV�SHU�SDUWLFOH�YROXPH��ZLWK�DQ�LPSOLHG�IDFWRU�ν�RPLWWHG��H�J���WKHVH�XQLWV�DUH�XVHG�LQ�WZR�ZHOO

Page 5: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

NQRZQ�PRQRJUDSKV�IRFXVVHG�RQ�WKH�VFDWWHULQJ�IURP�SDUWLFOHV���������

������7KH�QRWDWLRQ�R6L�ϑ�F��ZLOO�EH�XVHG�LQ�WKH�IROORZLQJ�WR�GHVLJQDWH�WKH�SRODUL]DWLRQ�VWDWHV�RI�WKH�VFDWWHUHG

DQG�LQFLGHQW�OLJKW�UD\V��ZKHUH�VXEVFULSWV�6�DQG�L�ZLOO�GHVLJQDWH�WKH�SRODUL]DWLRQ�RI�WKH�HOHFWULF�YHFWRUV�RI

WKH�VFDWWHUHG�DQG�LQFLGHQW�OLJKW��UHVSHFWLYHO\��UHODWLYH�WR�WKH�VFDWWHULQJ�SODQH���7KXV��IRU�YHUWLFDOO\

SRODUL]HG�LQFLGHQW�OLJKW��DQG�KRUL]RQWDOO\�RU�YHUWLFDOO\�SRODUL]HG�VFDWWHUHG�OLJKW��UHVSHFWLYHO\��WKH�REVHUYHG

VFDWWHULQJ�PD\�EH�H[SUHVVHG�DV��������

R+Y�ϑ�F� RDQLVR�ϑ�F� ���

R9Y�ϑ�F� RLVR�ϑ�F�����������RDQLVR�ϑ�F������RFURVV�ϑ�F� ���

ZKHUH�R9Y�ϑ�F�� �RLVR�ϑ�F��IRU�DQ�RSWLFDOO\�LVRWURSLF�VFDWWHUHU��DQG�RFURVV�ϑ�F��LV�D�FURVV�WHUP�WKDW

YDQLVKHV�IRU�DQ�RSWLFDOO\�LVRWURSLF�VROXWH�RU�IRU�ϑ� �����7KH�IXQFWLRQV�RLVR�ϑ�F��DQG�RDQLVR�ϑ�F��DUH

GLVFXVVHG�LQ�WKH�IROORZLQJ�VHFWLRQV���7KH�5D\OHLJK�UDWLR�R+K�ϑ�F��LV�GLVFXVVHG�EHORZ��EXW�LQ�WKH�5*'

UHJLPH��R+K�ϑ�F�� �R9Y�ϑ�F�FRV��ϑ����,Q�PXFK�RI�WKH�ROGHU�ZRUN��ZULWWHQ�SULRU�WR�WKH�DGYHQW�RI�ODVHUV�DV�D

FRPPRQO\�XVHG�VRXUFH�RI�WKH�LQFLGHQW�OLJKW��DQ�XQSRODUL]HG��RU�QDWXUDO��LQFLGHQW�EHDP�LV�DVVXPHG��H�J��

FRPSULVLQJ�HTXDO�FRPSRQHQWV�RI�SODQH�SRODUL]HG�OLJKW�ZLWK�HOHFWULF�YHFWRUV�LQ�WKH�YHUWLFDO�DQG�KRUL]RQWDO

GLUHFWLRQV���&RQVHTXHQWO\��WKH�5D\OHLJK�UDWLR�IRU�OLJKW�ZLWK�HOHFWULF�YHFWRU�LQ�WKH�YHUWLFDO�GLUHFWLRQ�PLJKWEH�GHQRWHG�R9X�ϑ�F��LQ�VXFK�D�FDVH��ZLWK�R9X�ϑ�F�� �R9Y�ϑ�F����IRU�DQ�LVRWURSLF�VROXWH��ZLWK�R9K�ϑ�F��

R+Y�ϑ�F�� ����LI�WKH�WRWDO�LQWHQVLW\�RI�WKH�LQFLGHQW�EHDP�LV�XVHG�LQ�WKH�FDOFXODWLRQ�RI�HDFK�

������,Q�PRVW�RI�WKH�GLVFXVVLRQ�WKH�5D\OHLJK�*DQV�'HE\H��5*'��DSSUR[LPDWLRQ�ZLOO�EH�DVVXPHG��EXW�WKLV

FRQVWUDLQW�ZLOO�EH�UHOD[HG�ZKHUH�QHFHVVDU\��H�J���LQ�WKH�XVH�RI�WKH�FRPSOHWH�0LH�/RUHQW]�VFDWWHULQJ�WKHRU\

IRU�ODUJH�VSKHUHV����E����E����D���,Q�WKH�5*'�DSSUR[LPDWLRQ��WKH�VFDWWHUHU�LV�WUHDWHG�DV�DQ�DVVHPEO\�RI

VFDWWHULQJ�HOHPHQWV�ZKLFK�VFDWWHU�UDGLDWLRQ�LQGHSHQGHQWO\�RI�DOO�RWKHU�HOHPHQWV���7KH�HOHPHQWV�DUH�WDNHQ

WR�UHSUHVHQW�WKH�VPDOOHVW�XQLW�WKDW�ERWK�JLYHV�D�XQLTXH�UHIUDFWLYH�LQGH[�WHQVRU��DQG�IRU�ZKLFK�LQWHUIHUHQFH

HIIHFWV�DUH�QHJOLJLEOH�IRU�UD\V�VFDWWHUHG�IURP�D�VLQJOH�HOHPHQW��H�J���WKH�HOHPHQWV�DUH�LQGHSHQGHQW

5D\OHLJK�VFDWWHUHUV����F������������E����E���$Q�LPSRUWDQW�SURSHUW\�LQ�WKH�5*'�DSSUR[LPDWLRQ�XVHG�LQ�PXFK

RI�WKH�IROORZLQJ�LV�WKDW�WKH�RSWLFDO�FRQWUDVW�IDFWRU�FDQ�XVXDOO\�EH�FRQVLGHUHG�WR�EH�LQGHSHQGHQW�RI�WKH�VL]H

RU�VKDSH�RI�WKH�VFDWWHUHU��EXW�GHSHQGV�RQO\�RQ�LWV�FRPSRVLWLRQ�UHODWLYH�WR�WKDW�RI�WKH�PHGLXP���7KLV�DOORZV

D�IDFWRUL]DWLRQ�DVVXPHG�LQ�PXFK�RI�WKH�IROORZLQJ�IRU�ZKLFK�WKH�5*'�DSSUR[LPDWLRQ�LV�XWLOL]HG��EXW�ZKLFK

PXVW�EH�DEDQGRQHG�LI�WKDW�DSSUR[LPDWLRQ�FDQQRW�EH�XVHG���8VH�RI�WKH�5*'�DSSUR[LPDWLRQ�JUHDWO\

IDFLOLWDWHV�WKH�GLVFXVVLRQ�RI�WKH�HIIHFWV�RI�KHWHURJHQHLW\�RI�WKH�VFDWWHUHUV��SHUPLWWLQJ�DQDO\WLFDO

Page 6: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

UHSUHVHQWDWLRQV�RI�FHUWDLQ�DYHUDJHV�IRU�SURSHUWLHV�GHWHUPLQHG�E\�DQDO\VLV�RI�RVv�ϑ�F��F�DQG�RHv�ϑ�F��F��DV

GLVFXVVHG�LQ�WKH�IROORZLQJ���7KH�5*'�DSSUR[LPDWLRQ�IDLOV�DV�WKH�SKDVH�VKLIW�RI�WKH�OLJKW�ZLWKLQ�DQ

LQGLYLGXDO�VFDWWHUHU�GRPDLQ�EHFRPHV�WRR�ODUJH��VHH�EHORZ�������,Q�PRVW�FDVHV��WKH�GLVFXVVLRQ�ZLOO�EH�FRXFKHG�LQ�WHUPV�RI�WKH�ZHLJKW�IUDFWLRQ�Zµ� �Fµ�F�RI�VFDWWHULQJ

FRPSRQHQWV�GLVWLQJXLVKHG�E\�VRPH�FKDUDFWHULVWLF��H�J����PROHFXODU�ZHLJKW��VKDSH��RSWLFDO�FRQWUDVW�UHODWLYHWR�WKH�VXSSRUWLQJ�PHGLXP��HWF���ZLWK�RYHUDOO�FRQFHQWUDWLRQ�F� �ΣFµ���$V�GLVFXVVHG�EHORZ��>RVv�ϑ�F��0F@µUHGXFHV�WR�D�FRQVWDQW�XQGHU�FHUWDLQ�FRQGLWLRQV��EXW�LQ�JHQHUDO��WKLV�UDWLR�GHSHQGV�RQ�0��F�DQG�ϑ��UHIOHFWLQJ

LQWHUIHUHQFH�HIIHFWV�IURP�WKH�VFDWWHUHG�UD\V�IURP�GLIIHUHQW�VFDWWHUHUV��DV�ZHOO�DV�WKH�SDUWLFXODUFKDUDFWHULVWLFV�RI�WKH�LQGLYLGXDO�VFDWWHUHU����2I�FRXUVH��VLPLODU�H[SUHVVLRQV�PD\�EH�ZULWWHQ�IRU�RHv�ϑ�F��

������,W�LV�FRQYHQLHQW�WR�H[SUHVV�RLVR�ϑ�F��LQ�WKH�IRUP�������

RLVR�ϑ�F� .ψ�VROXWH0/66LVR�ϑ�F�F ���

6LVR�ϑ�F� 3LVR�ϑ�F��)LVR�ϑ�F� ���

ZKHUH�0/6�LV�WKH�OLJKW�VFDWWHULQJ�DYHUDJHG�PROHFXODU�ZHLJKW��6LVR�ϑ�F��LV�WKH�VWUXFWXUH�IDFWRU��VHH�IXUWKHU

EHORZ���3LVR�ϑ�F��DQG�)LVR�ϑ�F��DUH�LQWUDPROHFXODU�DQG�LQWHUPROHFXODU�VWUXFWXUH�IDFWRUV��UHVSHFWLYHO\��ZLWK

3LVR����F�� �)LVR������ ����.� ��π�Q�PHGLXP�1$λ

�R��DQG�ψVROXWH��D�FRQWUDVW�IDFWRU��LW�VKRXOG�EH�QRWHG�WKDW�VRPH

DXWKRUV�XVH�D�QRWDWLRQ�LQ�ZKLFK�)LVR�ϑ�F��ZRXOG�EH�GHQRWHG�6LVR�ϑ�F��������)RU�PDQ\�FDVHV�GLVFXVVHG

EHORZ��ψVROXWH�LV�HTXDO�WR�WKH�UHIUDFWLYH�LQGH[�LQFUHPHQW��∂Q�∂F�Π DW�RVPRWLF�HTXLOLEULXP�RI�VROYHQW

FRPSRQHQWV���������������)RU�D�VROXWH�LQ�D�VLQJOH�FRPSRQHQW�VROYHQW���∂Q�∂F�Π�≈�QPHGLXP�x��±����ρVROXWH��ZLWK

ρVROXWH�WKH�GHQVLW\�RI�WKH�VROXWH��DQG�x� �QVROXWH�QPHGLXP��ZKHUH�QVROXWH�DQG�QPHGLXP�DUH�WKH�UHIUDFWLYH�LQGLFHV�RI

WKH�VROXWH�DQG�PHGLXP��UHVSHFWLYHO\�������7KLV�IRUP�LV�DOVR�XVHG�IRU�D�VXVSHQVLRQ�RI�SDUWLFOHV�LQ�D�JDV�RU

YDFXXP�IRU�VPDOO�x��±����D�UHYLVHG�H[SUHVVLRQ�IRU�ODUJH�x���±���LV�GLVFXVVHG�EHORZ����E����E����D���+HUH��DQG

LQ�WKH�IROORZLQJ��WKH�VXEVFULSW�/6�GHVLJQDWHV�WKH�DYHUDJH�REWDLQHG�LQ�OLJKW�VFDWWHULQJ�IRU�VROXWH

SRO\GLVSHUVH�LQ�LWV�SURSHUWLHV���7KH�QDWXUH�RI�WKDW�DYHUDJH�IRU�SDUWLFXODU�W\SHV�RI�KHWHURJHQHLW\�LV

GHOLQHDWHG�LQ�WKH�IROORZLQJ�VHFWLRQV�������,Q�JHQHUDO��IRU�D�QRQDEVRUELQJ�LVRWURSLF�VROXWLRQ��H[SDQVLRQ�RI�3LVR�ϑ�F��DW�LQILQLWH�GLOXWLRQ�JLYHV����

������F����F����D�

3LVR�ϑ����� �������5�

*�/6T��������« ���

Page 7: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

ZKHUH��5�*�/6�LV�WKH�OLJKW�VFDWWHULQJ�DYHUDJH�PHDQ�VTXDUH�UDGLXV�RI�J\UDWLRQ�RI�WKH�VFDWWHUHUV�DQG�WKH

QRWDWLRQ�3LVR�ϑ����GHQRWHV�WKH�IXQFWLRQ�DW�LQILQLWH�GLOXWLRQ���,Q�PRVW�FDVHV��IRU�RSWLFDOO\�LVRWURSLF�VFDWWHUV�

LW�LV�XVHIXO�WR�H[SUHVV�)LVR�ϑ�F��LQ�WKH�IRUP����������D�����

)LVR�ϑ�F��� ������FΓLVR�F�3LVR�ϑ�F�+LVR�ϑ�F� ���

VLQFH�LQ�PDQ\�FDVHV��+LVR�ϑ�F���≈������:LWK�WKLV�UHSUHVHQWDWLRQ�

.F0�RLVR�ϑ�F� 6LVR�ϑ�F����� ��3LVR�ϑ�F�

�������FΓLVR�F�+LVR�ϑ�F� ���

ZKHUH�.� �.ψ�VROXWH�

������$V�HODERUDWHG�EHORZ��LQ�PRVW�FDVHV��D�YLULDO�H[SDQVLRQ�RI�ΓLVR�F��VXIILFHV�IRU�WKH�VFDWWHULQJ�IURP�GLOXWHVROXWLRQV��L�H���VROXWLRQV�ZLWK�F1$�5

�*�

� �/6�0/6����������������D�����

ΓLVR�F� ��$��/60/6�������$��/60/6F�����« ���

ZLWK��$��/6�WKH�OLJKW�VFDWWHULQJ�DYHUDJHG�VHFRQG�YLULDO�FRHIILFLHQW��HWF���7KH�YLULDO�H[SDQVLRQ�PD\�IDLO�IRU

FKDUJHG�VFDWWHUHUV�LQ�D�VROYHQW�ZLWK�YHU\�ORZ�LRQLF�VWUHQJWK��VR�WKDW�HOHFWURVWDWLF�LQWHUDFWLRQV�DUH�QRWVKLHOGHG��VHH�([DPSOHV�������������������DQG�RWKHU�IRUPV�IRU�ΓLVR�F��PD\�EH�UHTXLUHG�IRU�PRGHUDWHO\

FRQFHQWUDWHG��RU�VHPLGLOXWH��VROXWLRQV�������������7KH�JHQHUDO�LQWHUSUHWDWLRQ�RI�WKH�IXQFWLRQV�3LVR�ϑ�F��+LVR�ϑ�F��DQG�WKH�SDUDPHWHUV�0/6���$��/6��DQG��5

�*�/6�PD\�EH�FRPSOH[�IRU�VFDWWHUHUV�WKDW�DUH�RSWLFDOO\

DQLVRWURSLF�RU�H[KLELW�LQWUDPROHFXODU�DQG�RU�LQWHUPROHFXODU�KHWHURJHQHLW\�����������7KHVH�FDVHV�ZLOO�EH�WKH

VXEMHFW�RI�PXFK�RI�WKH�IROORZLQJ�GLVFXVVLRQ���,W�VKRXOG�EH�QRWHG�WKDW�WKHVH�UHODWLRQV��DQG�WKRVH�WR�IROORZ�

DSSO\�WR�HLWKHU�SRO\PHULF�RU�FROORLGDO�VROXWH��DQG�WKDW�VLPLODU�UHODWLRQV�DOVR�REWDLQ�IRU�WKH�VFDWWHULQJ�RI�[�

UD\V�DQG�QHXWURQV��ZLWK�UHYLVLRQ�RI�WKH�GHILQLWLRQ�IRU�.�����������ZLWK�WKH�SULQFLSDO�H[SHULPHQWDO�GLIIHUHQFH

EHLQJ�WKH�UDQJH�RI�ZDYHOHQJWK�QRUPDOO\�HQFRPSDVVHG�������6LPLODUO\��5DQLVR�ϑ�F��PD\�EH�H[SUHVVHG�DV�������

5DQLVR�ϑ�F� �����.γ�VROXWH(δ/δο�/60/66DQLVR�ϑ,F�F ���

ZKHUH�(δ/δο�/6�LV�WKH�OLJKW�VFDWWHULQJ�DYHUDJHG�PHDQ�VTXDUH�PROHFXODU�RSWLFDO�DQLVRWURS\�IRUP�IDFWRU�

6DQLVR�ϑ�F��LV�D�VWUXFWXUH�IDFWRU��DQG�γVROXWH�LV�DQ�DQLVRWURSLF�FRQWUDVW�IDFWRU��FRQYHQLHQWO\�H[SUHVVHG�DV

Page 8: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

ψVROXWHδο�LI�ψVROXWH�≠����ZLWK�δο�WKH�RSWLFDO�DQLVRWURS\�RI�D�VFDWWHULQJ�HOHPHQW��VHH�WKH�([DPSOHV�EHORZ�����

$V�DERYH��WKH�IDFWRU�.γ�VROXWH�PXVW�EH�PRGLILHG�LI�WKH�5*'�DSSUR[LPDWLRQ�LV�QRW�YDOLG���$�VLPLODU�VHW�RI

H[SUHVVLRQV�WR�WKRVH�IRU�6LVR�ϑ�F��PD\�EH�ZULWWHQ�IRU�6DQLVR�ϑ�F���ZLWK�3DQLVR�ϑ�F��UHSODFHG�E\�3DQLVR�ϑ�F��

HWF���,Q�PRVW�FDVHV�RI�LQWHUHVW�KHUH��ΓDQLVR�F��LV�FRQVLGHUDEO\�VPDOOHU�WKDQ�ΓLVR�F���+DQLVR�ϑ�F���≈�����DQG

3DQLVR�ϑ�F��≠�3LVR�ϑ�F���H[FHSW�IRU�ϑ� ��������VHH�EHORZ�

2.2 Scattering at zero angle and infinite dilution2.2.1 Isotropic solute in the RGD regime.��,Q�WKLV�OLPLW��DWWHQWLRQ�LV�IRFXVVHG�RQ�>R9Y���F��F@

R��RU

>R+Y���F��F@R�EHORZ���ZLWK�WKH�LPSOLFLW�DVVXPSWLRQ�WKDW�WKH�H[WUDSRODWLRQV�WR�]HUR�DQJOH�DQG�LQILQLWH

GLOXWLRQ�FDQ�EH�DFFRPSOLVKHG��WKHVH�H[WUDSRODWLRQV�DUH�GLVFXVVHG�LQ�VHFWLRQ�������7KH�VXSHUVFULSW��R�

LQGLFDWHV�WKH�H[WUDSRODWLRQ�WR�LQILQLWH�GLOXWLRQ�WKURXJKRXW��DQG�XQOHVV�VWDWHG�RWKHUZLVH��LW�LV�DVVXPHG�WKDWψVROXWH� ≠����DV�ZRXOG�XVXDOO\�EH�WKH�FDVH�LQ�DSSOLFDWLRQV�RI�LQWHUHVW�LQ�OLJKW�VFDWWHULQJ���,Q�WKLV�UHJLPH�

6LVR�ϑ�F�� �6DQLVR�ϑ�F�� ����VLPSOLI\LQJ�WKH�DQDO\VLV���)RU�H[DPSOH��>R9Y���F��.ψ�VROXWHF@

R�LV�HTXDO�WR�WKH

SDUDPHWHU�0/6��ZKLFK�DV�VHHQ�EHORZ��PD\�EH��HTXDO�WR�WKH�ZHLJKW�DYHUDJH�PROHFXODU�ZHLJKW�0Z�XQGHU

FHUWDLQ�FRQGLWLRQV��EXW�ZLOO�RIWHQ�EH�D�PRUH�FRPSOH[�IXQFWLRQ�RI�WKH�SURSHUWLHV�RI�WKH�VFDWWHUHUV�

%HJLQQLQJ�ZLWKLQ�WKH�5*'�DSSUR[LPDWLRQ��IRU�DQ�RSWLFDOO\�LVRWURSLF�VROXWH�FRPSULVLQJ�D�QXPEHU�RI

FRPSRQHQWV��SRVVLEO\�GLIIHULQJ�LQ�FKHPLFDO�FRPSRVLWLRQ��������

0/6 >R9Y���F��.ψ�VROXWHF@

R ���D�

0/6 Σµ�Zµ0µ

���ΣLψLPL�

�µ�ψ

�VROXWH ���E�

ZLWK�ψL�DQG�PL�WKH�UHIUDFWLYH�LQGH[�LQFUHPHQW�DQG�WKH�PRODU�PDVV�RI�HOHPHQW�L��UHVSHFWLYHO\��DQG�Zµ�WKHZHLJKW�IUDFWLRQ�RI�FRPSRQHQWV�ZLWK�PROHFXODU�ZHLJKW�0µ� ��ΣPL�µ�DQG�LGHQWLFDO�YDOXHV�RI��ΣψLPL�µ�

ZLWK�ψVROXWH� ��ΣZµψµ���+HUH��WKH�VXPV�RYHU�L�H[WHQG�RYHU�DOO�RI�WKH�VFDWWHULQJ�HOHPHQWV�LQ�PROHFXOH

�SDUWLFOH��µ�

������,I�HDFK�FRPSRQHQW�LV�FRPSRVLWLRQDOO\�KRPRJHQHRXV��L�H���KDV�RQO\�RQH�W\SH�RI�VFDWWHULQJ�HOHPHQW�WKHQ��ΣψLPL�µ� �ψµ0µ��DQG

0/6 ΣµZµ0µψ

�µ�ψ

�VROXWH ����

Page 9: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

,Q�WKH�VLPSOHVW�FDVH��IRU�DQ�RSWLFDOO\�LVRWURSLF��FRPSRVLWLRQDOO\�KRPRJHQHRXV�VROXWH��ψµ� �ψVROXWH��DQG

WKLV�UHGXFHV�WR�WKH�ZHOO�NQRZQ�UHODWLRQ������������

0/6 0Z�� ��ΣµZµ0µ ����

ZKHUH�Zµ LV�WKH�ZHLJKW�IUDFWLRQ�RI�FRPSRQHQW�µ�ZLWK�PROHFXODU�ZHLJKW�0µ���7KLV�VLPSOH�UHODWLRQ�DSSOLHV

WR�VROXWLRQV�RU�GLVSHUVLRQV�LQ�D�PL[HG�VROYHQW��SURYLGHG�WKDW��∂Q�∂F�Π�LV�XVHG��DV�VWLSXODWHG�DERYH���,I�WKH

UHIUDFWLYH�LQGH[��∂Q�∂F�Z�GHWHUPLQHG�DW�FRQVWDQW�FRPSRVLWLRQ�RI�WKH�PL[HG�VROYHQW�LV�XVHG�LQVWHDG��WKHQ�

WR�D�JRRG�DSSUR[LPDWLRQ������������

0/6 >�∂Q�∂F�Π��∂Q�∂F�Z@��0Z� ����

ZKHUH��∂Q�∂F�Π� ��∂Q�∂F�Z�IRU�D�VLQJOH�FRPSRQHQW�VROYHQW���7KH�UDWLR��∂Q�∂F�Π��∂Q�∂F�Z�PD\�EH

LQWHUSUHWHG�LQ�WHUPV�RI�SUHIHUHQWLDO�VROYDWLRQ�RI�WKH�VROXWH�E\�D�FRPSRQHQW�RI�WKH�VROYHQW�������������

'HYLDWLRQV�RI��∂Q�∂F�Π��∂Q�∂F�Z�IURP�XQLW\�DUH�XVXDOO\�PRVW�SURQRXQFHG�ZKHQ�WKH�SUHIHUHQWLDOO\

VROYDWLQJ�FRPSRQHQW�LV�SUHVHQW�DW�ORZ�FRQFHQWUDWLRQ�LQ�WKH�PL[HG�VROYHQW�

������7KH�PRUH�FRPSOH[�UHODWLRQ�JLYHQ�DERYH�PXVW�EH�XVHG�LI�WKH�VROXWH�LV�RSWLFDOO\�KHWHURJHQHRXV��DV�ZLWK

D�FRSRO\PHU�RU�SDUWLFOHV�ZLWK�D�VSDWLDOO\�YDU\LQJ�UHIUDFWLYH�LQGH[���)RU�WKH�VSHFLDO�FDVH�ZLWK�RQO\�WZRW\SHV�RI�HOHPHQWV��FKDUDFWHUL]HG�E\�UHIUDFWLYH�LQGH[�LQFUHPHQWV�ψ$�DQG�ψ%��ZLWK�ψVROXWH� �Z$ψ$��

���±�Z$�ψ%�≠���������������

0/6 0Z������<�ΣZµ0µ∆Zµ�����<��ΣZµ0µ�∆Zµ�

� ����

ZKHUH�∆Zµ� ��Z$�µ��±��Z$� �Z%�±��Z%�µ�DQG�<� ��ψ$�±�ψ%�� ψVROXWH���7KXV��0/6�LV�H[SHFWHG�WR�EH�SDUDEROLF

LQ�<��ZLWK�0/6� �0Z�IRU�<� �����6LQFH�∆Zµ� ���IRU�HLWKHU�D�VWULFWO\�DOWHUQDWLQJ�FRSRO\PHU��RU�D�FRSRO\PHU

ZLWK�UDQGRP�SODFHPHQWV�RI�WKH�PRQRPHUV��0/6� �0Z�IRU�WKHVH�LPSRUWDQW�FDVHV���6LPLODUO\��0/6� �0Z�IRU

D�FROOHFWLRQ�RI�SDUWLFOHV�ZLWK�WZR�NLQGV�RI�VFDWWHULQJ�HOHPHQWV��SURYLGHG�WKDW�WKH�FRPSRVLWLRQ�RI�HDFK

SDUWLFOH�LV�LGHQWLFDO�ZLWK�WKH�DYHUDJH�FRPSRVLWLRQ�

2.2.2 Isotropic solute beyond the RGD regime���,W�VKRXOG�EH�UHFRJQL]HG�DW�WKH�RXWVHW�WKDW�WKH�5*'DSSUR[LPDWLRQ�ZLOO�DOPRVW�DOZD\V�EH�DGHTXDWH�IRU��QRQDEVRUELQJ��WKUHDGOLNH�PDFURPROHFXOHV��H�J��

IOH[LEOH�RU�VHPLIOH[LEOH�FRLOV��URGOLNH�RU�KHOLFDO�FKDLQV��HWF����7KLV�LV�WKH�FDVH�QRW�RQO\�DW�]HUR�DQJOH�DQG

LQILQLWH�GLOXWLRQ��EXW�DOVR�IRU�DOO�DQJOHV��DQG�GLOXWH�VROXWLRQV��RZLQJ�WR�WKH�VSDUVH�GHQVLW\�RI�WKH

Page 10: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

PDFURPROHFXOH�LQ�WKH�LQWUDPROHFXODU��GRPDLQ����7KXV��WKH�5*'�DSSUR[LPDWLRQ�PD\�EH�DSSOLHG��HYHQ�IRU

D�ODUJH�PDFURPROHFXOH��ZLWK�DQ�DSSUHFLDEO\�GLIIHUHQW�UHIUDFWLYH�LQGH[�WKDQ�WKDW�RI�WKH�VROYHQW���7KH�IDLOXUH

RI�WKH�5*'�DSSUR[LPDWLRQ�DULVHV�IRU�ODUJH�SDUWLFOHV��XQGHU�FHUWDLQ�FRQGLWLRQV�HODERUDWHG�LQ�WKH�IROORZLQJ�,I�WKH�5*'�DSSUR[LPDWLRQ�FDQQRW�EH�XVHG��WKH�>R9Y���F��.ψ

�VROXWH@

Rµ�PD\�VWLOO�EH�FRPSXWHG�XVLQJ�DQ

DSSURSULDWH�PRGHO��EXW�VLQFH�WKH�VFDWWHULQJ�PD\�QR�ORQJHU�EH�WDNHQ�DV�D�VXP�RYHU�LQGHSHQGHQW�5D\OHLJKVFDWWHULQJ�HOHPHQWV���ΣψLPL�µ�IRU�WKH�µ�WK�VFDWWHUHU�PXVW�EH�UHSODFHG�E\�D�PRUH�FRPSOH[�IXQFWLRQ���)RU

WKH�GLVFXVVLRQ�RI�0/6��WKLV�FDQ�EH�GRQH�IRU�FRPSRVLWLRQDOO\�KRPRJHQHRXV�VFDWWHUHUV�E\�LQFOXGLQJ�D�IDFWRUK�xµ��LQ�ψµ�IRU�WKH�µ±WK�VFDWWHULQJ�FRPSRQHQW��DQG�PXOWLSOLFDWLRQ�RI�WKH�PRGLILHG�ψµ�E\�D�IXQFWLRQ

P�xµ�λ�0µ����7KXV��HYHQ�IRU�FKHPLFDOO\�KRPRJHQHRXV�VFDWWHUHUV�GLIIHULQJ�RQO\�LQ�VL]H��WKH�FRQWUDVW�IDFWRU

PD\�GHSHQG�VLJQLILFDQWO\�RQ�λ��x��0µ��DQG�WKH�VKDSH�RI�WKH�VFDWWHUHU���:LWK�WKLV�PRGLILFDWLRQ��0/6�

>P�x�λ�0�@�0�IRU�D�PRQRGLVSHUVH�VROXWH��ZLWK�0/6�FDOFXODWHG�XVLQJ�ψµ�LQFOXGLQJ�WKH�IDFWRU�K�xµ�����)RU

H[DPSOH��ZLWK�WKH�0LH�WKHRU\�IRU�D�KRPRJHQHRXV�VSKHUH�K�x��LV�JLYHQ�E\�KVSK�x�� ���x��������x����������E�

��E����G��DQG�P�x�λ�0��PD\�EH�H[SUHVVHG�DV�PVSK�x�α���DQG�FDOFXODWHG�DV�D�IXQFWLRQ�RI�x�DQG�α� ��π5�λ�

PVSK�x�α��UHGXFHV�WR�XQLW\�DV�WKH�PDJQLWXGH�RI�WKH�PD[LPXP�SKDVH�VKLIW��α_x�±��_�LQ�WKH�SDUWLFOH�EHFRPHV

VPDOO����G����G����H���([DPSOHV�RI��0/6�0� �>PVSK�x�α�@��IRU�PRQRGLVSHUVH�VSKHUHV�JLYHQ�LQ�)LJXUH���RYHU

D�UDQJH�RI�x�DQG�α�UHYHDO�WKH�FRPSOH[�FKDUDFWHU�RI�WKLV�IXQFWLRQ��ZLWK�WKH�SRVVLELOLW\�WKDW�0/6�0�PD\�EH

HLWKHU�ODUJHU�RU�VPDOOHU�WKDQ�XQLW\���,Q�WKH�XVH�RI�WKLV�ILJXUH��FRQVLVWHQF\�LV�UHTXLUHG�EHWZHHQ�0�REWDLQHGIURP�WKH�GHWHUPLQHG�0/6�DQG�WKH�UDWLR�0/6�0�DQG�5� ���0��πρΝΑ�

����XVHG�WR�VHOHFW�α��ZKHUH�ρ�LV�WKH

GHQVLW\�RI�WKH�SDUWLFOH���'HYLDWLRQ�RI�0/6�0�IURP�XQLW\�LV�LPSRUWDQW��IRU�H[DPSOH��LQ�WKH�DQDO\VLV�RI�WKH

HOXHQW�IURP�FKURPDWRJUDSKLF�FROXPQV�E\�ORZ�DQJOH�OLJKW�VFDWWHULQJ�IRU�ODUJH�SDUWLFOHV��VHH�WKH�([DPSOHV

EHORZ��������,W�PD\�EH�QRWHG�WKDW�WKH�5D\OHLJK�UDWLR�LV�RIWHQ�QRW�PHQWLRQHG�H[SOLFLWO\�LQ�GLVFXVVLRQV�LQYROYLQJ�WKH

0LH�WKHRU\��EXW�UDWKHU��WKH�WKHRU\�LV�GHYHORSHG�LQ�WHUPV�RI�VFDWWHULQJ�DPSOLWXGH�IXQFWLRQV�6L�ϑ���ZKLFK�DUH

WKH�FRPSRQHQWV�RI�WKH�VFDWWHULQJ�WHQVRU�IRU�WKH�VFDWWHULQJ�IURP�DQ�LQGLYLGXDO�VFDWWHUHU����H����I����I��6L�ϑ��LV

QRW�WR�EH�FRQIXVHG�ZLWK�WKH�VWUXFWXUH�IDFWRU�6�ϑ�F��GHILQHG�DERYH���5HGXFHG�LQWHQVLW\�IXQFWLRQV�DUH

FRPSXWHG�IURP�WKH�6L�ϑ���H�J���IRU�QRQDEVRUELQJ��RSWLFDOO\�LVRWURSLF�VFDWWHUHUV��L9Y�ϑ�� �_6��ϑ�_��DQG�L+K�ϑ�

�_6��ϑ�_���ZLWK�>RVv�ϑ�F��ν@

R� �1$L9Y�ϑ��N���HWF���ZKHUH�N� ��π�λ���)RU�H[DPSOH��L9Y�ϑ�� �L9Y���39Y�ϑ����

ZLWK�L9Y���� �α�^��x�±���KVSK�x���`

�>PVSK�x�α�@��IRU�VSKHULFDO�SDUWLFOHV�LQ�WKH�QRPHQFODWXUH�XVHG�KHUH�

ZKLFK�UHGXFHV�WR�WKH�H[SHFWHG�UHVXOW�>RVv�ϑ�F��F@R� �.ψ�

VROXWH0/6�IRU�WKLV�FDVH��LQFOXGLQJ�WKH�IDFWRU�KVSK�x�

LQ�ψVROXWH��

�����)RU�LVRWURSLF�VSKHUHV��IXQFWLRQV�LQ�WKH�0LH�WKHRU\�PD\�EH�H[SDQGHG�IRU�xα ≤���WR�JLYH�D�UHVXOW���J��WKDW

PD\�EH�FDVW�LQ�WKH�IRUP

Page 11: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

PVSK�x�α� ����MVSK�x�α�_x�±��_���« ���D�

MVSK�x� �x������x������x��������>���x��������x������@ ���E�

IRU�QRQDEVRUELQJ�PRQRGLVSHUVH�VSKHUHV��ZKHUH�MVSK�x��DSSURDFKHV�������DV�x�WHQGV�WR�XQLW\���$V�PD\�EH

VHHQ�LQ�)LJXUH����WKLV�H[SUHVVLRQ�SURYLGHV�D�XVHIXO�ILW�WR�PVSK�x�α��IRU�VPDOO�α�_x�±��_��EXW�LV�JHQHUDOO\

OLPLWHG�WR�α�_x�±��_�������DQG�α������,Q�SULQFLSOH��LQ�WKLV�UDQJH��WKH�GHYLDWLRQ�IURP�WKH�5*'�DSSUR[LPDWLRQ

FRXOG�EH�WDNHQ�LQWR�DFFRXQW�XVLQJ�WKH�DERYH�LQ�H[SUHVVLRQV�IRU�0/6�GLVFXVVHG�EHORZ�IRU�WKH�VFDWWHULQJ

IURP�VSKHUHV�KHWHURJHQHRXV�LQ�0�������)RU�QRQDEVRUELQJ�VSKHUHV�ZLWK�α�!!����L9Y���� �N

�>RVv���F��ν@R�1$�LV�FORVHO\�DSSUR[LPDWHG�E\

^�α����4VFD�x�α�`�����G������ZKHUH�4VFD�x�α��LV�WKH�H[WLQFWLRQ�HIILFLHQF\�IRU�VFDWWHULQJ�IRU�VSKHUHV�DW

LQILQLWH�GLOXWLRQ��L�H���H[S�±τνE��LV�WKH�IUDFWLRQ�RI�WKH�LQFLGHQW�OLJKW�WUDQVPLWWHG�WKURXJK�D�VDPSOH�ZLWK

WXUELGLW\�τ� �4VFD�x�α�π5���WKLFNQHVV�E�DQG�FRQFHQWUDWLRQ�ν���1XPHULFDO�FDOFXODWLRQV�VKRZ�WKDW�WKH

DSSUR[LPDWLRQ�LV�TXLWH�UHDVRQDEOH�IRU�x�!�����DQG�α > 4��ZLWK�WKH�PLQLPXP�YDOXH�RI�α�IRU�ZKLFK�WKH

DSSUR[LPDWLRQ�LV�XVHIXO�GHFUHDVLQJ�ZLWK�LQFUHDVLQJ�x���7KH�DEXQGDQW�OLWHUDWXUH�RQ�WKH�H[WLQFWLRQHIILFLHQF\�SURYLGHV�D�PHDQV�WR�FRPSXWH�PVSK�x��LQ�WKLV�UDQJH�DQG�KDV�LWVHOI�EHHQ�GLVFXVVHG�DV�D�PHDQV

WR�FKDUDFWHUL]H�VL]H�KHWHURJHQHLW\�DPRQJ�VSKHULFDO�VROXWHV����H��������)RU�H[DPSOH��4VFD�x��

�������α�_x�±��_��IRU�5D\OHLJK�VFDWWHULQJ��LQFUHDVLQJ�WR�4VFD�x�α�� ����LQ�WKH�)UDXQKRIHU�VFDWWHULQJ�UHJLPH

�α�!!��DQG�x�!������GLVFXVVHG�PRUH�H[WHQVLYHO\�LQ�WKH�IROORZLQJ����K� �

������)RU�D�SRO\GLVSHUVH�QRQDEVRUELQJ�VROXWH��ZLWK�DOO�FRPSRQHQWV�KDYLQJ�LGHQWLFDO�x�

0/6 ΣµZµ0µ>P�x�λ�0µ�@

� ����

6LPLODU�H[SUHVVLRQV�FRXOG�EH�REWDLQHG�IRU�SDUWLFOHV�RI�RWKHU�VKDSH�IRU�ZKLFK�WKH�5*'�DSSUR[LPDWLRQFDQQRW�EH�XVHG���)RU�D�VSKHULFDO�VROXWH��XVH�RI�P�x�λ�0µ�� �PVSK�x�αµ��JLYHV�0/6�≥�0Z��EXW�0/6�FDQQRW

JHQHUDOO\�EH�UHGXFHG�WR�DQ�H[SUHVVLRQ�LQYROYLQJ�VWDQGDUG�DYHUDJH�PROHFXODU�ZHLJKWV���,Q�WKH�OLPLWHG�UDQJHZLWK�x�����GLVFXVVHG�DERYH��WKH�DSSUR[LPDWH�H[SUHVVLRQ�IRU�PVSK�x��PD\�EH�DSSOLHG��ZLWK�WKH�UHVXOW

�IRU�SDUWLFOHV�RI�KRPRJHQHRXV�UHIUDFWLYH�LQGH[�

0/6 ≈ 0Z��������π5�λ0�����M�x�_x��±���_0 ���

����� ����

Page 12: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

ZKHUH�0 ���������≈�0

���] 0Z�LV�GHILQHG�LQ�7DEOH����IRU�ε� ��������,Q�SULQFLSOH��WKH�GHSHQGHQFH�RQ�λ�HPERGLHG�LQ

WKH�SDUDPHWHUV αµ�SURYLGHV�D�PHDQV�WR�LQWHUSUHW�0/6��RU�HTXLYDOHQWO\��4VFD��LQ�WHUPV�RI�Zµ�IURP�WKH

YDULDWLRQ�RI�0/6�ZLWK�λ�XVLQJ�WKH�0LH�WKHRU\�WR�FRPSXWH�PVSK�x�α���DIWHU�DFFRXQWLQJ�IRU�DQ\�GLVSHUVLRQ�LQ

WKH�UHIUDFWLYH�LQGLFHV�RI�VROXWH�RU�VROYHQW���6XFK�D�SURFHGXUH�KDV�EHHQ�WKH�EDVLV�RI�VRPH�PHWKRGV

SURSRVHG�LQ�WKH�OLWHUDWXUH�WR�FKDUDFWHUL]H�WKH�VL]H�RI�VSKHUHV�E\�WUDQVPLVVLRQ�PHDVXUHPHQWV����I����J�����

EXW�WKHVH�KDYH�EHHQ�ODUJHO\�VXSHUVHGHG�E\�PHWKRGV�GLVFXVVHG�LQ�WKH�IROORZLQJ�LQYROYLQJ�PHDVXUHPHQWV

RYHU�D�UDQJH�RI�VFDWWHULQJ�DQJOH�

2.2.3 Anisotropic solute. )RU�D�VROXWH�ZLWK�DQLVRWURSLF�VFDWWHULQJ�HOHPHQWV��LQ�WKH�5*'�UHJLPH>R+Y���F��.ψ

�VROXWHF@

R�JLYHV�WKH�OLJKW�VFDWWHULQJ�DYHUDJHG�PHDQ�VTXDUH�PROHFXODU�DQLVRWURS\�δ�/6��ZLWK

ψVROXWH�≠����������������

>R+Y���F��.ψ�VROXWHF@

R �����0/6δ�/6 ����

)RU�VROXWH�ZLWK�LGHQWLFDO��EXW�RSWLFDOO\�DQLVRWURSLF�VFDWWHULQJ�HOHPHQWV��0/6� �0Z��DQG

δ�/6 Σ

µZµ0µδ

�µ�0Z ����

6LQFH�δ�/6�DULVHV�IURP�RULHQWDWLRQDO�FRUUHODWLRQV�DPRQJ�WKH�VFDWWHULQJ�HOHPHQWV��LW�FDQQRW�EH�LQWHUSUHWHG�LQ

WKH�DEVHQFH�RI�D�VWUXFWXUDO�PRGHO�IRU�WKH�VFDWWHUHU���$Q�H[DPSOH�LV�LQFOXGHG�EHORZ���7KH�H[SUHVVLRQ�IRU>R9Y���F��.ψ

�VROXWHF@

R�IRU�WKLV�FDVH�EHFRPHV����

>R9Y���F��.ψ�VROXWHF@

R 0/6^�������δ�/6��` ����

2.3 Scattering at small angle and infinite dilution2.3.1 Isotropic solute in the RGD regime. 7KH�DPELJXRXV�WHUP��VPDOO�DQJOH��LQGLFDWHV�WKDW�ϑ�LV�VPDOOHQRXJK�WKDW�WKH�SDUDPHWHU��5�

*�/6�GHILQHG�E\�WKH�HTXLYDOHQW�H[SUHVVLRQV

�5�*�/6�� ^>F�R9Y���F�@

R`±�∂>F�R9Y�ϑ�F�@R�∂T��� ��∂OQ�>R9Y�ϑ�F��F�@

R�∂T� ����

PD\�EH�GHWHUPLQHG�LQ�WKH�OLPLW�DV�ϑ�JRHV�WR�]HUR��ZKHUH�WKH�VXSHUVFULSW��R��LQGLFDWHV�WKDW�WKH�GDWD�DUH

H[WUDSRODWHG�WR�LQILQLWH�GLOXWLRQ���7KXV��IRU�RSWLFDOO\�LVRWURSLF�VFDWWHULQJ�HOHPHQWV��WKH�H[SDQVLRQ�JLYHDERYH�IRU�3LVR�ϑ���

���PD\�EH�DSSOLHG��VR�WKDW�DW�LQILQLWH�GLOXWLRQ��DYHUDJHG�RYHU�DOO�RULHQWDWLRQV�RI�WKH

Page 13: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

VFDWWHUHUV���LQ�WKH�5*'�DSSUR[LPDWLRQ�����������

�5�*�/6 Σ

µ�Zµ0µ

���ΣΣLMψLPLψMPM⟨U

�LM⟩�µ��0/6ψVROXWH

� ����

ZKHUH�⟨ULM�⟩�LV�WKH�PHDQ�VTXDUH�VHSDUDWLRQ�RI�VFDWWHULQJ�HOHPHQWV�L�DQG�M��DQG�ψVROXWH�≠�����,Q�WKLV�H[SUHVVLRQ�

Zµ�LV�WKH�ZHLJKW�IUDFWLRQ�RI�D�FRPSRQHQW�ZLWK�PROHFXODU�ZHLJKW�0µ�DQG�FRPPRQ��ΣΣψLPLψMPM⟨U�LM⟩�µ��DV

VFDWWHUHUV�ZLWK�D�JLYHQ�PROHFXODU�ZHLJKW�PD\�GLIIHU�LQ�FRPSRVLWLRQ�DQG�RU�VKDSH�

������)RU�D�VROXWH�FRPSULVLQJ�RSWLFDOO\�LGHQWLFDO�VFDWWHULQJ�HOHPHQWV�LQ�DOO�FRPSRQHQWV��LQ�WKH�5*'

DSSUR[LPDWLRQ��

�5�*�/6 Σ

µ�Zµ0µ�ΣΣLM ⟨U

�LM⟩�µ��0Z�� ��Σµ �Zµ0µ�5�

*�µ�0Z ����

ZKHUH�DJDLQ��WKH�HQVHPEOH�PD\�LQFOXGH�FKDLQV�ZLWK�LGHQWLFDO�0µ�EXW�GLIIHUHQW��5�*�µ��DV�IRU�D�FROOHFWLRQ�RI

EUDQFKHG�DQG�OLQHDU�FKDLQV��DOO�ZLWK�WKH�VDPH�PROHFXODU�ZHLJKW���7KH�VLPLODULW\�RI�WKLV�ZLWK�WKHH[SUHVVLRQ�IRU�WKH�]�DYHUDJH�PROHFXODU�ZHLJKW��REWDLQHG�E\�UHSODFLQJ��5�

*�µ�E\�0µ��RIWHQ�PRWLYDWHV�WKH

QRWDWLRQ��5�*�]�IRU��5

�*�/6��RU�Φ]�IRU�DQ\�SURSHUW\�Φ VLPLODUO\�DYHUDJHG���EXW�WKDW�QRWDWLRQ�PD\�EH

PLVOHDGLQJ�LI��5�*�µ�LV�QRW�SURSRUWLRQDO�WR�0µ��DQG�LV�QRW�HPSOR\HG�KHUH���7KH�SDUDPHWHU�5

�*�PD\�EH

UHODWHG�WR�WKH�FKDUDFWHULVWLFV�RI�WKH�VFDWWHUHU�LQ�WKLV�5*'�UHJLPH��VXFK�DV�WKH�FRQWRXU�OHQJWK�/�DQG

SHUVLVWHQFH�OHQJWK�k�RI�SRO\PHU�FKDLQV��WKH�UDGLXV�5�RI�VSKHUHV��HWF���VHH�7DEOH����RU�LQ�VRPH�FDVHV�

H[SUHVVHG�DV�D�SRZHU�RI�WKH�PROHFXODU�ZHLJKW�RI�WKH�VFDWWHUHU���7KXV��IRU�D�VROXWH�ZLWK�WKH�VSHFLDO�SURSHUW\WKDW��5�

*�µ� �U0εµ�ZLWK�U�D�FRQVWDQW��WKH�VXPPDWLRQ�JLYHV�������

�5�*�/6 U�0�ε+1�

ε+1�0Z ���D�

0�α�

�Σ

µZµ0µ

α ��α� ���E�

ZKHUH�H[SUHVVLRQV�IRU�0��DUH�JLYHQ�LQ�UHIHUHQFH����IRU�D�QXPEHU�RI�FRPPRQO\�XVHG�PROHFXODU�ZHLJKW

GLVWULEXWLRQV��H�J���DOWKRXJK�0�−1�� �0Q��0���� �0Z��0���� ��0Z0]������HWF���VXFK�VLPSOH�H[SUHVVLRQV�DUH

QRW�SRVVLEOH�LI�α�LV�QRW�DQ�LQWHJHU����([SUHVVLRQV�IRU��5�*�/6�DUH�JLYHQ�LQ�7DEOH���IRU�D�IHZ�FDVHV�RI�LQWHUHVW�

9DOXHV�RI�WKH�OLJKW�VFDWWHULQJ�DYHUDJHG�K\GURG\QDPLF�UDGLXV��5+�/6�GHWHUPLQHG�E\�G\QDPLF�OLJKWVFDWWHULQJ�DUH�LQFOXGHG�LQ�7DEOH���IRU�FRPSDULVRQ���)RU�H[DPSOH��IRU�D�UDQGRP�IOLJKW�FKDLQ��ε� �����5�

*�/6

Page 14: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

�U0]��ZLWK�U� �k/��0��DQG�IRU�D�URG��ε� �����5�*�/6� �U0]0]����ZLWK�U� ��/�0�������ZKHUH�0]�DQG

0]���DUH�WKH�]��DQG�]���DYHUDJH�PROHFXODU�ZHLJKWV���,W�PD\�EH�QRWHG�WKDW�LQ�JHQHUDO��WKH�DYHUDJHV�LQ�5�

*�/6�DQG��5+�/6�GLIIHU�

������)RU�DQ�RSWLFDOO\�LVRWURSLF�VROXWH�GLVFXVVHG�DERYH�FRPSULVLQJ�WZR�GLIIHUHQW�W\SHV�RI�VFDWWHULQJHOHPHQWV��ZLWK�ψVROXWH�≠����DQG�LQ�WKH�5*'�DSSUR[LPDWLRQ��������������

�5�*�/6 [�5�

*�$���������±��[��5�*�%�����[����±��[�∆

�$% ����

IRU�D�VDPSOH�PRQRGLVSHUVH�LQ�PROHFXODU�ZHLJKW��ZLWK�[� �Z$ψ$�ψVROXWH���5�*�$�DQG��5

�*�%�WKH�PHDQ�VTXDUH

UDGLL�RI�J\UDWLRQ�RI�WKH�SRUWLRQV�RI�WKH�VROXWH�PROHFXOHV��SDUWLFOHV��FRPSULVLQJ�RQO\�W\SH�$�DQG�W\SH�%VFDWWHULQJ�HOHPHQWV��UHVSHFWLYHO\��DQG�∆�

$%�WKH�PHDQ�VTXDUH�VHSDUDWLRQ�RI�WKH�FHQWHU�RI�PDVV�IRU�WKHVHSRUWLRQV���7KH�SRVVLEOH�GHSHQGHQFH�RI�WKH�SDUDPHWHUV��5�

*�$���5�*�%�DQG�∆

�$%�RQ�VROYHQW�LV�QHJOHFWHG�KHUHLQ�

WKLV�ZRXOG�EH�H[SHFWHG�WR�EH�OHVV�RI�DQ�LVVXH�ZLWK�SDUWLFOHV�WKDQ�ZLWK�SRO\PHU�FKDLQV���([SUHVVLRQV�DUHDYDLODEOH�IRU�∆�

$%�IRU�FHUWDLQ�JUDIW�FRSRO\PHUV��DQG�IRU�D�VROXWH�SRO\GLVSHUVH�LQ�PROHFXODU�ZHLJKW�������,QVRPH�FDVHV�∆�

$%�LV�]HUR��VLPSOLI\LQJ�WKH�H[SUHVVLRQ�IRU��5�*�/6��L�H���DOWHUQDWLQJ�FRSRO\PHUV�RU�FRSRO\PHUV

ZLWK�D�UDQGRP�SODFHPHQW�RI�PRQRPHUV��RU�VSKHUHV�ZLWK�D�XQLIRUP�FRDWLQJ��RU�VKHOO����)RU�EORFNFRSRO\PHUV�FRPSULVLQJ�Q�EORFNV�HDFK�RI�$�DQG�%�FKDLQV��H�J���Q� ���IRU�DQ�$%�GLEORFN�FRSRO\PHU���∆�

$%� �^�5�

*�$����5�*�%`�Q��VKRZLQJ�WKDW�∆

�$%�GHFUHDVHV�ZLWK�LQFUHDVLQJ�Q��DV�H[SHFWHG�VLQFH��5

�*�/6� ��5

�*�$�

�5�*�%�IRU�DQ�DOWHUQDWLQJ�FRSRO\PHU�������,QVSHFWLRQ�RI�WKHVH�H[SUHVVLRQV�VKRZV�WKDW��5

�*�/6�PD\�EHDU�OLWWOH

UHVHPEODQFH�WR�WKH�JHRPHWULF�PHDQ�VTXDUH�UDGLXV�RI�J\UDWLRQ��5�*�JHR�RI�WKH�FKDLQ��H�J����5

�*�/6�PD\�EH

QHJDWLYH��ZKHUHDV��5�*�JHR�!�����)RU�H[DPSOH��RQH�FRXOG�FRQVWUXFW�D�GLEORFN�SRO\PHU�RU�D�FRDWHG�VSKHUH�IRU

ZKLFK�5�*�/6�LV�]HUR��RU�HYHQ�QHJDWLYH��WKRXJK��5

�*�JHR�PXVW�EH�SRVLWLYH��VHH�([DPSOHV�EHORZ�

2.3.2 Isotropic solute beyond the RGD regime. 7KH�SUHFHGLQJ�H[SUHVVLRQV�PXVW�EH�PRGLILHG�LI�WKH5*'�DSSUR[LPDWLRQ�IDLOV��DV�WKH�EDVLF�DVVXPSWLRQ�LQ�WKH�5*'�PRGHO�WKDW�WKH�VFDWWHULQJ�IURP�WKH

HOHPHQWV�PD\�EH�DGGHG�LQGHSHQGHQWO\�IRU�D�SDUWLFOH��LV�QR�ORQJHU�YDOLG��WKH�UHDGHU�LV�UHPLQGHG�WKDW�DV

GLVFXVVHG�DERYH��WKH�5*'�DSSUR[LPDWLRQ�LV�DOPRVW�DOZD\V�DGHTXDWH�IRU��QRQDEVRUELQJ��WKUHDG�OLNH

PDFURPROHFXOHV����)RU�D�FRPSRVLWLRQDOO\�KRPRJHQHRXV�VFDWWHUHU��DOO�SDUWLFOHV�ZLWK�WKH�VDPH�x��

�5�*�/6 Σ

µZµ0µ\�x�λ�0µ�>P�x�λ�0µ�@��5�

*��5*'�

µ �ΣµZµ0µ>P�x�λ�0µ�@� ����

ZKHUH��5�*�

�5*'�

µ �LV�WKH�YDOXH�LQ�WKH�5*'�UHJLPH��P�x�λ�0µ��LV�GHILQHG�DERYH��DQG�\�x�λ�0µ��WHQGV�WR

Page 15: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

XQLW\�DV�α|x�±��_�WHQGV�WR�]HUR�������:LWK�WKH�0LH�WKHRU\�IRU�D�FRPSRVLWLRQDOO\�KRPRJHQHRXV�VSKHUH��IRU�ZKLFK��5�

*��5*'�

� ��5����

\�x�λ�0��PD\�EH�H[SUHVVHG�DV�\VSK�x�α���DQG�FDOFXODWHG�DV�D�IXQFWLRQ�RI�x�DQG�α� ��π5�λ����G����G����H�

&RQVHTXHQWO\��IRU�PRQRGLVSHUVH�VSKHUHV

�5�*�/6 �����\VSK�x�α�5

� ����

([DPSOHV�RI��5�*�/6�^�5

���`� �\VSK�x��DUH�VKRZQ�LQ�)LJXUH���RYHU�D�UDQJH�RI�x�DQG��VKRZLQJ�WKH

FRPSOH[�FKDUDFWHU�RI�WKLV�IXQFWLRQ���([SDQVLRQ�RI�\VSK�x�α��IRU�xα ≤���JLYHV�D�UHVXOW���J��WKDW�PD\�EH�FDVW

LQ�WKH�IRUP��\VSK�x�α��≈�SVSK�x�� ��x�������x�������>���x������@��ZKHUH�SVSK�x��DSSURDFKHV�XQLW\�DV�x�WHQGV

WR�XQLW\��VR�WKDW��5�*�/6� ��5

����DV�x�WHQGV�WR�XQLW\�DQG�x������DV�H[SHFWHG�LQ�WKH�5*'�UHJLPH���,W�PD\

EH�QRWHG�WKDW�HYHQ�LI�α�������VR�WKDW�PVSK�x�α��≈���DQG�\VSK�x�α��≈�SVSK�x����5�*�/6�WHQGV�WR�x

�5�����IRU�x

!!����EXW�xα ≤������7KH�GHSHQGHQFH�RQ�x�IRU�VPDOO�α�LV�PRVW�FOHDUO\�VHHQ�LQ�)LJXUH��D��WKH�ILW�RI�WKLVDSSUR[LPDWH�UHODWLRQ�LV�JRRG�IRU�α�������6LQFH��5�

*�/6� ��5�����LQGHSHQGHQW�RI�x��LQ�WKH�)UDXQKRIHU

VFDWWHULQJ�UHJLPH��α�!!��DQG�x�!!����GLVFXVVHG�LQ�WKH�QH[W�VHFWLRQ����J����������\VSK�x�α��WHQGV�WR�����LQ

WKDW�OLPLW��WKH�YDOXHV�RI�α�XVHG�LQ�)LJXUH���DUH�WRR�VPDOO�WR�H[KLELW�VXFK�EHKDYLRU���6LPLODU�H[SUHVVLRQV

FRXOG�EH�GHYHORSHG�IRU�RWKHU�SDUWLFOHV�WR�ZKLFK�WKH�0LH�WKHRU\�KDV�EHHQ�DSSOLHG��H�J���VWUDWLILHG�VSKHUHV

DQG�UHODWHG�VWUXFWXUHV�PHQWLRQHG�LQ�WKH�SUHFHGLQJ����J���������

������$V�PD\�EH�VHHQ�LQ�)LJXUH����WKH�WUDQVLWLRQ�IURP�WKH�EHKDYLRU�IRU�x�≈���DQG�xα�����WR�WKDW�IRU�α�!!���IRU�DQ\�x��LV�FRPSOH[��SURKLELWLQJ�DQ�DQDO\WLF�UHSUHVHQWDWLRQ�RI��5�

*�/6�IRU�D�VDPSOH�RI�XQNQRZQ�VL]H

GLVWULEXWLRQ���7KXV��DOWKRXJK

�5�*�/6 �����Σ

µZµ0µ\VSK�x�αµ�>PVSK�x�αµ�@

�5�µ�ΣµZµ0µ>PVSK�x�αµ�@

� ����

IRU�D�FROOHFWLRQ�RI�VSKHUHV�RI�GLIIHUHQW�VL]H��EXW�LGHQWLFDO�x��WKLV�FDQQRW�JHQHUDOO\�EH�UHGXFHG�WR�DQH[SUHVVLRQ�LQYROYLQJ�VWDQGDUG�DYHUDJH�PROHFXODU�ZHLJKWV���,Q�SULQFLSOH��SUHVXPLQJ�WKDW�ERWK��5�

*�/6�DQG

0/6�FDQ�EH�GHWHUPLQHG��ZKLFK�PD\�EH�GLIILFXOW�IRU�ODUJH�SDUWLFOHV���RQH�FRXOG�FRPSDUH�WKHVH�ZLWK�YDOXHVRI��5�

*�/6�DQG�0/6�FDOFXODWHG�ZLWK�DQ�DVVXPHG�WZR�SDUDPHWHU�GLVWULEXWLRQ�IXQFWLRQ�RI�0�DV�D�PHDQV�WR

FKDUDFWHUL]H�WKH�VL]H�GLVWULEXWLRQ��H�J���IRU�VSKHUHV��XVLQJ�WKH�0LH�WKHRU\�WR�FRPSXWH�\�x�λ�0µ��

\VSK�x�αµ��DQG�P�x�λ�0µ�� �PVSK�x�αµ����,Q�HVVHQFH��D�VLPLODU�VWUDWHJ\�LV�DGRSWHG�E\�PHWKRGV�WKDW�DWWHPSW

WR�ILW�WKH�VFDWWHULQJ��GHWHUPLQHG�DW�WZR�VPDOO�VFDWWHULQJ�DQJOHV����H�������,Q�DGGLWLRQ��LQ�SULQFLSOH��WKHGHSHQGHQFH�RQ�λ�HPERGLHG�LQ�WKH�SDUDPHWHUV αµ�SURYLGHV�D�PHDQV�WR�LQWHUSUHW��5

�*�/6�LQ�WHUPV�RI�Zµ�IURP

Page 16: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

WKH�YDULDWLRQ�RI��5�*�/6�ZLWK�λ�XVLQJ�WKH�0LH�WKHRU\�WR�FRPSXWH�\VSK�x�αµ��DQG�PVSK�x�αµ���DIWHU

DFFRXQWLQJ�IRU�DQ\�GLVSHUVLRQ�LQ�WKH�UHIUDFWLYH�LQGLFHV�RI�VROXWH�RU�VROYHQW�2.3.3 Anisotropic solute. $Q�HVWLPDWH�IRU��5�

*�/6�PD\�EH�REWDLQHG�IURP�WKH�GHSHQGHQFH�RI�HLWKHU

>.F�R9Y�ϑ�F�@R�RU�>.F�R+Y�ϑ�F�@

R�IRU�WKH�VFDWWHULQJ�IURP�DQLVRWURSLF�VROXWHV�LQ�WKH�5*'�UHJLPH���7KXV�

IRU�D�VROXWH�ZLWK�LGHQWLFDO�VFDWWHULQJ�HOHPHQWV��H[SUHVVLRQV�IRU�VHPLIOH[LEOH�FKDLQV�JLYH����������������

39Y�ϑ����� ������>-9Y�δ�5

�*@/6T

��������« ����

3+Y�ϑ����� �������>-+Y�δ�5

�*@/6T

��������« ����

([SUHVVLRQV�IRU�>-9Y�δ�5�*@/6�DQG�>-+Y�δ�5

�*@/6�DUH�DYDLODEOH�IRU�VHPLIOH[LEOH�FKDLQV�������,Q�SUDFWLFH��WKH

H[SUHVVLRQ�IRU�URGOLNH�FKDLQV��L�H���k�/�!����PD\�EH�XVHG�DV�D�ILUVW�DSSUR[LPDWLRQ�IRU�DQ\�k�/��VLQFH>-9Y�δ�5

�*@/6��≈���5

�*�/6�DQG�>-+Y�δ�5

�*@/6�+ ��δ

�5�*�/6��≈����DV�k�/�EHFRPHV�VPDOO�DQG�δ�WHQGV�WR�]HUR�IRU

IOH[LEOH�FKDLQV������VHH�WKH�VHFWLRQ�RQ�([DPSOHV�

2.4 Scattering at arbitrary angle and infinite dilution2.4.1 Isotropic solute in the RGD regime. 7KH�DQJXODU�GHSHQGHQFH�RI�WKH�VFDWWHULQJ�RYHU�D�ZLGHDQJXODU�UDQJH�SURYLGHV�DGGLWLRQDO�LQIRUPDWLRQ�RQ�VROXWH�VWUXFWXUH�DQG�GLVSHUVLW\��DW�OHDVW�LQ�SULQFLSOH���,Q

SUDFWLFH��WKH�HIIHFWV�RI�WKHVH�WZR�DWWULEXWHV�PD\�IUXVWUDWH�DQDO\VLV��H�J���HYHQ�LQ�WKH�SUHFHGLQJ�FDVH�IRUVPDOO�VFDWWHULQJ�DQJOH��WKH�GHSHQGHQFH�RI��5�

*�/6�RQ�DYHUDJH�PROHFXODU�ZHLJKWV�GHSHQGV�RQ�WKH�VROXWH

VWUXFWXUH��VHH�7DEOH�����)RU�DQ�RSWLFDOO\�LVRWURSLF�VROXWH��DYHUDJHG�RYHU�DOO�RULHQWDWLRQV��LQ�WKH�5*'

DSSUR[LPDWLRQ������������

39Y�ϑ��� >R9Y�ϑ�F��.F@R�0/6ψ

�VROXWH ���D�

39Y�ϑ��� Σµ�Zµ0µ

��

ΣΣ

LMψLPLψMPM⟨ ⟩VLQ�T_ULM_��T_ULM_

µ�0/6ψVROXWH

� ���E�

ZKHUH�HDFK�VXP�UXQV�RYHU�WKH�0�P�VFDWWHULQJ�HOHPHQWV�RQ�D�FRPSRQHQW��DQG�WKH�VHFRQG�IRUP�LV�ZULWWHQ�LQWKH�5*'�DSSUR[LPDWLRQ���([SDQVLRQ�RI�WKH�IDFWRU�LQ�⟨«⟩�EUDFNHWV�\LHOGV�WKH�UHODWLRQ�LQ�WHUPV�RI��5�

*�/6JLYHQ�DERYH���)RU�RSWLFDOO\�LGHQWLFDO�VFDWWHULQJ�HOHPHQWV�ZLWK�PRODU�PDVV�P�

Page 17: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

39Y�ϑ��� Σµ�Zµ0µ>39Y�ϑ���@µ�0Z ���D�

>39Y�ϑ���@µ �P�0��µ

ΣΣ

LM ⟨ ⟩VLQ�T_ULM_��T_ULM_µ

���E�

ZKHUH�DV�DERYH��WKH�HQVHPEOH�PD\�LQFOXGH�FKDLQV�ZLWK�LGHQWLFDO�0µ�EXW�GLIIHUHQW�>39Y�ϑ���@µ��ZLWK�Zµ

WKH�ZHLJKW�IUDFWLRQ�RI�HDFK�GLVWLQFW�FRPSRQHQW�������([SUHVVLRQV�IRU�39Y�ϑ����IRU�D�QXPEHU�RI�ZLGHO\�XVHG�PRGHOV�LQ�WKH�5*'�DSSUR[LPDWLRQ�DUH�JLYHQ�LQ7DEOH����DQG�D�VHOHFWLRQ�DUH�LOOXVWUDWHG�LQ�)LJXUH�����7KH�H[SRQHQWLDO�IRUP�39Y�ϑ���� �H[S�±5

�*T

�����LV

LQFOXGHG�IRU�FRPSDULVRQ��DV�WKLV�UHODWLRQ�LV�VRPHWLPHV�XVHG�DV�D�FRQYHQLHQW�DSSUR[LPDWLRQ��LQVSHFWLRQVKRZV�WKDW�LW�LV�QRW�XVXDOO\�D�JRRG�DSSUR[LPDWLRQ�XQOHVV�5�

*T��LV�VPDOO��SURYLGLQJ�WKH�EHVW�ILW�IRU�VSKHUHV

DPRQJ�WKH�H[DPSOHV�LQ�)LJXUH�����*LYHQ�WKH�DYDLODELOLW\�RI�FRPSXWDWLRQDO�HTXLSPHQW��LW�LV�XVXDOO\�QRWQHFHVVDU\�WR�UHVRUW�WR�WDEXODWHG�QXPHULFDO�YDOXHV�RI�39Y�ϑ����IRU�VFDWWHUHUV�LQ�WKH�5*'

DSSUR[LPDWLRQ²DQ�H[WHQVLYH�FRPSLODWLRQ�RI�IRUPXODH�IRU�39Y�ϑ����IRU�D�YDULHW\�RI�PDFURPROHFXODU�DQG

SDUWLFOH�VKDSHV�WR�VXSSOHPHQW�WKH�HQWULHV�LQ�7DEOH���PD\�EH�IRXQG�LQ�UHIHUHQFH����K���,Q�PRVW�FDVHV�39Y�ϑ����PD\�EH�H[SUHVVHG�LQ�WHUPV�RI�T�LQ�WKH�5*'�DSSUR[LPDWLRQ��EXW�ZLWK�VRPH�VWUXFWXUHV��39Y�ϑ���

GHSHQGV�H[SOLFLWO\�RQ�ϑ��DV�ZHOO�DV�RQ�T��H�J���IRU�D�URGOLNH�FKDLQ��VHH�7DEOH����

������,Q�VRPH�PRGHOV��WKH�VXPPDWLRQV�LQ�39Y�ϑ����PD\�EH�FRPSOHWHG�LQ�WHUPV�RI�VWDQGDUG�PROHFXODUZHLJKW�DYHUDJHV��0Q��HWF���ZLWKRXW�VSHFLILFDWLRQ�RI�D�SDUWLFXODU�H[SUHVVLRQ�IRU�WKH�GLVWULEXWLRQ�Zµ���)RU

H[DPSOH��IRU�UDQGRP�IOLJKW�OLQHDU�FKDLQV��H�J���DW�WKH�)ORU\�WKHWD�WHPSHUDWXUH���XVLQJ�39Y�ϑ����LQ�7DEOH

���������

39Y�ϑ��� >�0Q�0ZX�Q@�^XQ��±��������Σµ �Zµ�0Q�0µ�H[S�±XQ0µ�0Q�` ����

ZKHUH�XQ� ��5�*�0�0QT

���ZLWK�5�*�0�D�FRQVWDQW�IRU�WKLV�PRGHO���)XUWKHU�DQDO\VLV�UHTXLUHV�DQ�H[SUHVVLRQ

IRU�Zµ��DQG�WKLV�ZRXOG�EH�WKH�QRUPDO�VLWXDWLRQ�ZLWK�PRVW�IRUPV�IRU�39Y�ϑ�������)RU�H[DPSOH��LQ�WKLV�FDVH�

XVLQJ�WKH�6FKXO]�=LPP��WZR�SDUDPHWHU�H[SRQHQWLDO��GLVWULEXWLRQ�IXQFWLRQ�������������WKH�UHPDLQLQJ�VXP�LVHTXDO�WR������XQ�K�

±K��ZKHUH�K��� ��0Z�0Q���±������)RU�D�PRVW�SUREDEOH�GLVWULEXWLRQ�RI�PROHFXODU�ZHLJKW��K

�����WKLV�UHGXFHV�WKH�H[SUHVVLRQ�WR�D�VLPSOH�IRUP�OLQHDU�LQ�T�������������

39Y�ϑ����� �������5�

*�/6T��� ����

Page 18: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

H[DFWO\��ZLWK��5�*�/6�+ �0]�IRU�WKLV�PRGHO�IRU�D�OLQHDU�SRO\PHU�����������7KH�VDPH�UHVXOW�REWDLQV�IRU�D

UDQGRPO\�EUDQFKHG�IOH[LEOH�FKDLQ�SRO\PHU�������$Q�H[SUHVVLRQ�IRU�39Y�ϑ����IRU�URGOLNH�FKDLQV�ZLWK�WKH

VDPH�GLVWULEXWLRQ�RI�PROHFXODU�ZHLJKW�LV�DYDLODEOH�LQ�WKH�IRUP�RI�D�VHULHV�WR�EH�VXPPHG�RYHU�K�±��WHUPV�������([DPSOHV�RI�39Y�ϑ���

���FRPSXWHG�IRU�WKH�UDQGRP�IOLJKW�OLQHDU�FKDLQ�DQG�WKH�VSKHUH�PRGHOV

XVLQJ�WKH�6FKXO]�=LPP�GLVWULEXWLRQ�IXQFWLRQ�DUH�VKRZQ�LQ�)LJXUH���������7KH�H[SUHVVLRQ�IRU�39Y�ϑ����JLYHQ�LQ�7DEOH���IRU�OLQHDU�IOH[LEOH�FRLO�FKDLQV�DVVXPHV�UDQGRP�IOLJKW

FKDLQ�VWDWLVWLFV��DQG�WKHUHIRUH�LV�QRW�VWULFWO\�DSSOLFDEOH�WR�SRO\PHU�FKDLQV�LQ�VR�FDOOHG��JRRG�VROYHQWV��L�H���VROYHQWV�IRU�ZKLFK�$��!!�����IRU�ZKLFK�H[FOXGHG�YROXPH�HIIHFWV�LQWURGXFH�D�QRQOLQHDU�GHSHQGHQFHRI�_ULM_�RQ�WKH�VHSDUDWLRQ�RI�VFDWWHULQJ�HOHPHQWV�L�DQG�M��UHVXOWLQJ�LQ�D�GHSHQGHQFH�RI�5

�*�/�RQ�/����E�������,Q

SUDFWLFH��WKH�H[SUHVVLRQ�JLYHQ�LQ�7DEOH���PD\�XVXDOO\�EH�XVHG�LQ�JRRG�VROYHQWV�IRU�WKH�UDQJH�RI��5�*�/6T

RI�XVXDO�LQWHUHVW��SURYLGHG�WKDW�WKH�REVHUYHG��5�*�/6�LV�XVHG��DV�RSSRVHG�WR�WKH�YDOXH�RI��5

�*�/6� �k0]��

REWDLQLQJ�XQGHU�)ORU\�WKHWD�FRQGLWLRQV��$�� ����FDOOHG�IRU�E\�WKH�PRGHO���7UHDWPHQWV�DWWHPSWLQJ�WRLQFOXGH�H[FOXGHG�YROXPH�HIIHFWV�E\�FDOFXODWLRQ�RI��39Y�ϑ����XVLQJ�D�PRGHO�IRU�ZKLFK�_ULM_� �_L�±�M_

�����ZLWK

��≤�β�≤����KDYH�EHHQ�GHYHORSHG�DV�DQ�DOWHUQDWLYH�����������6LPLODUO\��DOWKRXJK�>39Y�ϑ���@%5�KDV�EHHQ

FRPSXWHG�IRU�D�YDULHW\�RI�EUDQFK�FKDLQ�FRQILJXUDWLRQV��������������WKH�H[SUHVVLRQ�>39Y�ϑ���@/,1�IRU�OLQHDUIOH[LEOH�FKDLQV�SURYLGHV�D�ILUVW�DSSUR[LPDWLRQ�WR�>39Y�ϑ���@%5��SURYLGHG��5

�*�%5�REVHUYHG�IRU�WKH�EUDQFKHG

FKDLQ�LV�XVHG�LQ�SODFH�RI��5�*�/,1�DSSHDULQJ�LQ�>39Y�ϑ���@/,1���([DPSOHV�RI�WKLV�DUH�VKRZQ�LQ�)LJXUH���IRU�D

UDQJH�RI�FRPE�VKDSHG�EUDQFKHG�FKDLQV�ZLWK�GLIIHUHQW�IUDFWLRQV�ϕ�RI�PRQRPHUV�LQ�WKH�EDFNERQH�DQG

GLIIHUHQW�QXPEHUV�RI�EUDQFKHV�I�SHU�PROHFXOH��H�J���ϕ�LV�]HUR�DQG�XQLW\�IRU�OLQHDU�DQG�VWDU�VKDSHG

VWUXFWXUHV��UHVSHFWLYHO\������VXEVWDQWLDO�GHYLDWLRQV�DUH�QRWHG�EHWZHHQ�WKH�DSSUR[LPDWLRQ�DQG�WKH�H[SHFWHGEHKDYLRU�IRU��5�

*�%5T��!�����,W�PD\�EH�QRWHG�WKDW�WKH�UDWLR�J� ��5�

*�%5��5�*�/,1�RI�WKH�5

�*�IRU�EUDQFKHG�DQG

OLQHDU�FKDLQV�RI�WKH�VDPH�0�LV�IUHTXHQWO\�XVHG�LQ�GLVFXVVLRQV�RI�EUDQFKHG�FKDLQV��EXW�WKDW�LV�D�VXIILFLHQW

GHVFULSWRU�RQO\�IRU�VHOI�VLPLODU�VWUXFWXUHV��VXFK�DV�VWDU�VKDSHG�EUDQFKHG�FKDLQV���)RU�H[DPSOH��FRPE�VKDSHG�EUDQFKHG�FKDLQV�ZLWK�GLIIHUHQW�ϕ�DQG�I�PD\�KDYH�WKH�VDPH�J��DV�H[HPSOLILHG�E\�WKH�UHODWLRQ

J ≈ ϕ��������±�ϕ������I�±����I� ����

ZKLFK�SURYLGHV�D�XVHIXO�DSSUR[LPDWLRQ�IRU�WKLV�PRGHO�������$�VLPLODU�IRUP�DSSOLHV�ZLWK�UDQGRPO\EUDQFKHG�SRO\PHUV������ZLWK�JZ�≈�ϕZ��ZKHUH�ϕZ

�LV�0Z�IRU�WKH�ORQJHVW�OLQHDU�FKDLQ�LQ�WKH�EUDQFKHG

VWUXFWXUH�GLYLGHG�E\�WKH�WRWDO�PROHFXODU�ZHLJKW��DQG�JZ� ��ΣJµZµ0µ��0Z���6HH�IXUWKHU�GLVFXVVLRQ�LQ�WKH

([DPSOHV�������,Q�WKH�OLPLW�RI�YHU\�ODUJH��5�

*�/6T���IRU�WKUHDG�OLNH�FKDLQV�LQ�WKH�5*'�DSSUR[LPDWLRQ������������

Page 19: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

OLP�5�

*�/6T�!!��>39Y�ϑ���@

��µ ≈ �Vµ��UµT

��1/ε�����Lµ�����2�T

��� ����

IRU�D�VROXWH�ZLWK��5�*�µ� �U0ε

µ���H�J���VHH�7DEOH�����ZKHUH�Lµ�DQG�Vµ�GHSHQG�RQ�WKH�VROXWH�VWUXFWXUH���7KXV�

IRU�D�URGOLNH�VROXWH��ε� ���DQG�U� ��/�0�������ZLWK�/�WKH�FKDLQ�FRQWRXU�OHQJWK��������������

OLP�5�

*�/6T�!!��>39Y�ϑ���@

��µ ≈ ��/µ�π�T��������π

�������« ���D�

OLP�5�

*�/6T�!!��39Y�ϑ���

�� ≈ �/�π0�0ZT�����« ���E�

VKRZLQJ�WKDW�GDWD�RQ�R9Y�ϑ����LQ�WKLV�OLPLW�ZLOO�SURYLGH�WKH�OHQJWK�SHU�XQLW�PDVV��EXW�QRW�WKH�PROHFXODU

ZHLJKW��WKLV�VLWXDWLRQ�PD\�EH�UHDOL]HG�ZLWK�FHUWDLQ�ODUJH�URGOLNH�VWUXFWXUHV�������)RU�D�OLQHDU�RU�EUDQFKHGIOH[LEOH�FKDLQ�SRO\PHUV��ε� ���DQG�U� �Jk/��0��ZLWK�J�WKH�UDWLR�RI�5�

*�IRU�EUDQFKHG�DQG�OLQHDU�FKDLQV�ZLWK

WKH�VDPH�0��������������

OLP�5�

*�/6T�!!��39Y�ϑ���

�� ≈ U0Q�T���������0Z�0Q�&�����«

���D�

≈ �0Q�0]��5�*�/6T

���������0Z�0Q�&�����«�

���E�

ZKHUH�&�LV�����IRU�OLQHDU�FKDLQV��DQG�GHSHQGHQW�RQ�FKDLQ�VWUXFWXUH�IRU�EUDQFKHG�FKDLQV���&RQVHTXHQWO\��LQSULQFLSOH��LQYHVWLJDWLRQ�RI�WKH�OLPLWLQJ�EHKDYLRU�DW�ODUJH�DQG�VPDOO�T�FDQ�SURYLGH�YDOXHV�IRU�0Q��0Z�DQG

0]�IRU�OLQHDU�IOH[LEOH�FKDLQ�SRO\PHUV��RU�IRU�EUDQFKHG�IOH[LEOH�FKDLQV�IRU�ZKLFK�&�LV�NQRZQ����,Q�SUDFWLFH�

WKH�OLPLWLQJ�EHKDYLRU�DW�ODUJH�T�LV�VHOGRP�REVHUYHG�LQ�OLJKW�VFDWWHULQJ�H[SHULPHQWV�ZLWK�IOH[LEOH�FKDLQ

PDFURPROHFXOHV��EXW�LW�LV�SRVVLEOH�WR�REVHUYH�VXFK�EHKDYLRU�ZLWK�ORZ�DQJOH�[�UD\�RU�QHXWURQ�VFDWWHULQJ�²

LW�PD\��KRZHYHU��EH�GLIILFXOW�WR�REVHUYH�WKH�OLPLWLQJ�EHKDYLRU�IRU�ODUJH�DQG�VPDOO�T�LQ�WKH�VDPH

H[SHULPHQWDO�DUUDQJHPHQW���0RUHRYHU��VKRUW�VFDOH�FKDLQ�IHDWXUHV�QRW�LQFOXGHG�LQ�WKH�PRGHOV�XVHG�WRFRPSXWH�39Y�ϑ����ZLOO�LQWURGXFH�EHKDYLRU�QRW�LQFOXGHG�LQ�WKHVH�DV\PSWRWLF�H[SUHVVLRQV�IRU�ODUJH��5

�*�/6T

��

$�UHODWHG�EHKDYLRU�REWDLQV�ZLWK�VSKHUHV��LQ�ZKLFK�WKH�YDOXH�RI�39Y�ϑ����IRU�VXFFHVVLYH�PD[LPD�DW�ODUJH

T5�GHFD\�DV��T5����LQ�WKH�VR�FDOOHG�3RURG�UHJLPH����L����E���������

������)RU�D�VROXWH�PRQRGLVSHUVH�LQ�PROHFXODU�ZHLJKW��EXW�FRPSULVLQJ�WZR�W\SHV�RI�VFDWWHULQJ�HOHPHQWV�����

Page 20: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

�������

39Y�ϑ��� [>39Y�ϑ���@$��������±�[�>39Y�ϑ���@%�����[���±�[�>49Y�ϑ���@$% ���D�

>49Y�ϑ���@$% �>39Y�ϑ���@$%��±��^>39Y�ϑ���@$�����>39Y�ϑ���@%` ���E�

ZKHUH�[� �Z$ψ$�ψVROXWH�DV�DERYH��DQG�ψVROXWH�≠�����+HUH��>39Y�ϑ���@$�DQG�>39Y�ϑ���@%�DUH�FDOFXODWHG�E\�WKH

H[SUHVVLRQ�JLYHQ�DERYH��DQG�>39Y�ϑ���@$%�E\�D�YDULDWLRQ�RI�WKLV�H[SUHVVLRQ�ZLWK�RQH�VXP�HDFK�RYHU

VFDWWHULQJ�HOHPHQWV�RI�W\SH�$�DQG�%���7KH�H[SUHVVLRQV�IRU�39Y�ϑ����LQ�7DEOH���DSSO\�IRU�>39Y�ϑ���@$�DQG

>39Y�ϑ���@%��EXW�>39Y�ϑ���@$%�PXVW�EH�FRPSXWHG�IRU�HDFK�FDVH���([SDQVLRQ�RI�>49Y�ϑ���@$%�JLYHV�WKHOHDGLQJ�WHUP�∆�

$%T�����ZLWK�∆�

$%�DV�GHILQHG�DERYH��L�H���>49Y�����@$%� �����([DPSOHV�DUH�DYDLODEOH�IRU

UDQGRP�IOLJKW�OLQHDU�FKDLQV�������,QVSHFWLRQ�VKRZV�WKDW�WKH�LQLWLDO�WDQJHQW�∂>39Y�ϑ���@±��∂T��PD\�EH

QHJDWLYH��]HUR�RU�SRVLWLYH��UHIOHFWLQJ�WKH�SRVVLELOLW\�PHQWLRQHG�DERYH�WKDW��5�*�/6�PD\�EH�SRVLWLYH��]HUR�RU

QHJDWLYH��UHVSHFWLYHO\��IRU�VXFK�D�VROXWH���)RU�D�VSKHUH�ZLWK�UDGLXV�5$�DQG�VFDWWHULQJ�HOHPHQWV�RI�W\SH�$

FRDWHG�E\�D�VKHOO�ZLWK�RXWHU�UDGLXV�5%�!�5$�DQG�VFDWWHULQJ�HOHPHQWV�RI�W\SH�%����M�

39Y�ϑ���

8

[>39Y�ϑ���@���$ ������±�[�

5�%>39Y�ϑ���@

���% �±�5�

$>39Y�ϑ���@���$

5�%�±�5

�$

��

����

ZKHUH�WKH�H[SUHVVLRQV�IRU�>39Y�ϑ���@%�DQG�>39Y�ϑ���@$�DUH�WKH�IXQFWLRQV�IRU�VSKHUHV�ZLWK�UDGLL�5%�DQG�5$�

UHVSHFWLYHO\��JLYHQ�LQ�7DEOH������7KLV�H[SUHVVLRQ�UHGXFHV�WR�39Y�ϑ����IRU�D�VKHOO�RI�WKLFNQHVV�∆� �5%�±�5$

ILOOHG�ZLWK�WKH�VROYHQW�IRU�[� ����RU�WR�39Y�ϑ����IRU�D�VSKHUH�RI�UDGLXV�5$�LI�[� �����,Q�XVLQJ�WKLV�UHODWLRQ��LWPXVW�EH�UHPHPEHUHG�WKDW�Z$�+ �ρ$5

�$�DQG�Z%� ���±�Z$�+ �ρ%�5

�%�±�5

�$����,I�ψVROXWH� ����WKHQ�>R9Y���F��.F@

R

����EXW�>R9Y�ϑ�F��.F@R�IRU�ϑ�!���PD\�EH�FRPSXWHG�XVLQJ�(TXDWLRQ������ZLWK�[�DQG���±�[�UHSODFHG�E\

Z$ψ$�DQG�Z%ψ%��UHVSHFWLYHO\��7KH�UHVXOW�ZLOO�H[KLELW�D�VHULHV�RI�PD[LPD�IRU�ϑ�!����ZLWK�D�VXSHUILFLDO

VLPLODULW\�WR�R9Y�ϑ�F��REVHUYHG�ZLWK�FKDUJHG�VSKHUHV��DULVLQJ�IURP�LQWHUDFWLRQV�DPRQJ�WKH�VFDWWHUHUV��VHH

([DPSOHV�EHORZ�

2.4.2 Isotropic solute beyond the RGD regime. $OWKRXJK�WKH�DFFXUDF\�RI�WKH�5*'�DSSUR[LPDWLRQYDULHV�ZLWK�ϑ�DQG�x��GHYLDWLRQV�IURP�WKH�0LH�WKHRU\�DUH�XVXDOO\�VPDOO�LI�α_x��±���_���������EXW�WKLV�GHSHQGV

RQ�ϑ�DQG�ERWK�α�DQG�x�LQGLYLGXDOO\�LQ�GHWDLO�����N����K���:LWK�WKH�5*'�DSSUR[LPDWLRQ��3+K�ϑ����

39Y�ϑ���FRV��ϑ���EXW�WKLV�UHODWLRQ�GRHV�QRW�XVXDOO\�KROG�LI�WKH�SKDVH�VKLIW�LV�QRW�VPDOO���7KH�0LH�WKHRU\

SURYLGHV�H[SUHVVLRQV�IRU�39Y�ϑ�����3+K�ϑ����DQG�3+Y�ϑ����IRU�RSWLFDOO\�LVRWURSLF�QRQDEVRUELQJ�VSKHUHV�DV

Page 21: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

WKH�VTXDUH�RI�VXPV�RYHU�IXQFWLRQV�RI�ϑ�DQG�WKH�UHOHYDQW�UHIUDFWLYH�LQGLFHV�������G����P����K���([DPSOHVVKRZQ�LQ�)LJXUH���JLYH�39Y�ϑ����DV�D�IXQFWLRQ�RI�T

��5�*�/6�IRU�D�SDUWLFXODU�YDOXH�RI�α� ��π5�λ��RYHU�D

UDQJH�RI�x��ZLWK�λ� �λR�QPHGLXP��H�J���WKH�α�FKRVHQ�LQ�WKH�H[DPSOH�ZRXOG�FRUUHVSRQG�WR�DTXHRXV

VXVSHQVLRQV�RI�VSKHUHV�ZLWK�5�≈�����QP��ZLWK�λR� �����QP�����7KH�H[WUHPH�GHSHQGHQFH�RQ�x�PD\�EH

REVHUYHG��HPSKDVL]LQJ�WKH�QHHG�WR�NQRZ�WKLV�SDUDPHWHU�DFFXUDWHO\�LQ�WKLV�UHJLPH��DQG�VKRZLQJ�WKDW�LW

ZRXOG�EH�LPSRVVLEOH�WR�DQDO\]H�WKH�VL]H�GLVWULEXWLRQ�IRU�DQ�HQVHPEOH�RI�VSKHUHV�ZLWK�KHWHURJHQHLW\�RIERWK�x�DQG�5���7KH�GDWD�LQ�)LJXUH���DUH�VKRZQ�DV�39Y�ϑ����YV�T

��5�*�/6�WR�HPSKDVL]H�WKH�FRUUHVSRQGHQFH�DW

VPDOO�T��EXW�WKH�V\VWHPDWLF�YDULDWLRQ�RI�T��5�*�/6�IRU�WKH�ILUVW�PLQLPXP�LQ�39Y�ϑ����ZLWK�x���,Q�WKLV�IRUPDW�

WKH�PLQLPD�LQ�39Y�ϑ����WHQG�WR�RFFXU�QHDU�WKH�YDOXHV�RI�T��5�

*�/6�IRU�WKH�PLQLPD�LQ�WKH�5*'

DSSUR[LPDWLRQ���6LPLODU�EHKDYLRU�PD\�EH�REVHUYHG�IRU�RWKHU�YDOXHV�RI�α��LQFOXGLQJ�α�ODUJH�HQRXJK�WR�EH

LQ�WKH�)UDXQKRIHU�GLIIUDFWLRQ�OLPLW�GLVFXVVHG�EHORZ�������1XPHULFDO�PHWKRGV�WR�FRPSXWH�39Y�ϑ����DUH�DYDLODEOH�IRU�D�QXPEHU�RI�SDUWLFOH�VKDSHV�������K���������

)RUWXQDWHO\��HOHFWURQLF�FRPSXWDWLRQ�DW�WKH�GHVNWRS�FDQ�IDFLOLWDWH�WKH�XVH�RI�WKHVH��DOWKRXJK�H[WHQVLYH�WDEOH

RI�WKH�IXQFWLRQV�DSSHDULQJ�LQ�WKH�0LH�WKHRU\�IRU�WKH�VFDWWHULQJ�IURP�VSKHULFDO�SDUWLFOHV�DUH�DYDLODEOH���Q�

�WKH�IXQFWLRQV�UHSRUWHG�KHUHLQ�ZHUH�FDOFXODWHG�XVLQJ�0DWK&DG��NLQGO\�SURYLGHG�E\�'��&��3ULHYH��RI�WKH

'HSDUWPHQW�RI�&KHPLFDO�(QJLQHHULQJ�RI�&DUQHJLH�0HOORQ�8QLYHUVLW\��ZLWK�WKH�QXPEHU�RI�WHUPV�LQ�WKHUHOHYDQW�VXPV�WHUPLQDWHG�DW�WKH�QH[W�LQWHJHU�ODUJHU�WKDQ�α + 4α� �������VOLJKWO\�ODUJHU�WKDQ�DQ�H[SUHVVLRQ

DGYRFDWHG�LQ�WKH�OLWHUDWXUH���L��IRU�DFFHVVLEOH���GDWD�LQ�SXEOLVKHG�WDEOHV��������DUH�XVHIXO�WR�FRQILUP�WKH

PHWKRGV�XVHG�LQ�VXFK�FDOFXODWLRQV����&RPSDUDEOH�H[SUHVVLRQV�DUH�DYDLODEOH�LQ�WKH�0LH�DSSUR[LPDWLRQ�IRU

VKHOOV��VWUDWLILHG�VSKHUHV�DQG�H[DPSOHV�ZLWK�D�FRQWLQXRXV�UDGLDOO\�V\PPHWULF�YDULDWLRQ����J����S������������

F\OLQGHUV�DQG�HOOLSVRLGV����T����������7KH�DSSOLFDWLRQ�RI�WKHVH�IRU�SRO\GLVSHUVH�V\VWHPV�UHTXLUHV�WKH�XVH�RI(TXDWLRQ����D��WR�FRPSXWH�WKH�REVHUYDEOH�39Y�ϑ�����XVXDOO\�E\�D�QXPHULFDO�DQDO\VLV�

������)RU�ERWK�x�!!���DQG�SKDVH�VKLIW�PDJQLWXGH�α_x��±���_�!�����WKH�DQJXODU�GHSHQGHQFH�UHGXFHV�WR�D�UHJLPH

WHUPHG�WKH�)UDXQKRIHU�GLIIUDFWLRQ�OLPLW��������M����U����L���,Q�WKDW�UHJLPH��WKH�DQJXODU�GHSHQGHQFH�LV

LQGHSHQGHQW�RI�x��DQG�WKH�VDPH�IRU�DEVRUELQJ�RU�QRQDEVRUELQJ�SDUWLFOHV���)RU�H[DPSOH��IRU�D�VSKHULFDO

VROXWH��WKH�DQJXODU�GHSHQGHQFH�RI�WKH�VFDWWHULQJ��IRU�D�PRQRGLVSHUVH�VROXWH�DW�LQILQLWH�GLOXWLRQ��LV�WKDW�IRU

)UDXQKRIHU�GLIIUDFWLRQ�IURP�D�FLUFXODU�DSHUWXUH

OLP5�λ!!�

�39Y�ϑ��� ^�-��αVLQ�ϑ���αVLQ�ϑ�`� ����

ZKHUH�α� ��π5�λ��-��«��LV�WKH�%HVVHO�IXQFWLRQ�RI�WKH�ILUVW�NLQG�DQG�ILUVW�RUGHU���)RU�D�SRO\GLVSHUVH

Page 22: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

VSKHULFDO�VROXWH�LQ�WKLV�UHJLPH�

OLP5�λ!!�

�>R9Y�ϑ�F��F@R

+�Σµ�Qµα

�µ�^�-��αµVLQ�ϑ���α

�µVLQ�ϑ�`

� ����

ZKHUH�Qµ�LV�WKH�QXPEHU�IUDFWLRQ�RI�VSKHUHV�ZLWK�UDGLXV�5µ���$V�GLVFXVVHG�EHORZ��WKH�VLPSOLFLW\�RI�WKLV

UHVXOW�FDQ�EH�H[SORLWHG�LQ�PHWKRGV�WR�GHWHUPLQH�WKH�VL]H�GLVWULEXWLRQ�IURP�>R9Y�ϑ�F��F@R���6LPLODU�UHVXOWV

REWDLQ�IRU�RWKHU�SDUWLFOH�VKDSHV���)RU�H[DPSOH��IRU�F\OLQGHUV�ZLWK�OHQJWK�/F\O�DQG�UDGLXV�5��LQ�WKH�VDPH

OLPLW��DQG�ZLWK�/F\O�!!�5�!!�λ,���L�

OLP5�λ!!�

39Y�ϑ��� VLQ��αϑ���αϑ)� ����

6LQFH�WKH�SDWWHUQV�RI�WKH�H[WUHPD�DUH�VLPLODU�IRU�WKHVH�WZR�IXQFWLRQV��LW�ZRXOG�QRW�EH�SRVVLEOH�WR

GLIIHUHQWLDWH�EHWZHHQ�VROXWHV�ZLWK�WKHVH�WZR�VKDSHV�IURP�WKH�VFDWWHULQJ�LQ�WKLV�OLPLW���1RU�FDQ�WKHH[SUHVVLRQ�IRU�F\OLQGHUV�ZLWK�/F\O�5�!!���EH�XVHG�WR�GHWHUPLQH�WKH�GLVWULEXWLRQ�RI�F\OLQGHU�OHQJWKV�

������,W�KDV�EHHQ�REVHUYHG�WKDW�LQ�WKH�UHJLPH�IRU�ZKLFK�0LH�VFDWWHULQJ�WKHRU\�DSSOLHV�IRU�RSWLFDOO\�LVRWURSLF

VSKHUHV��WKH�DQJXODU�GHSHQGHQFH�IRU�VPDOO�DQJOH�PD\�EH�DSSUR[LPDWHG�E\�WKH�H[SUHVVLRQ�IRU�WKH)UDXQKRIHU�UHJLPH�JLYHQ�DERYH��HYHQ�LI�5�LV�QRW�PXFK�ODUJHU�WKDQ����H�������$OWKRXJK�WKH�GLVFXVVLRQ�RI�5�

*�/6�LQ�WKH�SUHFHGLQJ�VKRZV�WKDW�WKLV�FDQQRW�EH�DFFXUDWH�IRU�VPDOO�DQJOH��DQG�LV�LQDFFXUDWH�IRU�WKH�5*'

UHJLPH���LW�PD\��QHYHUWKHOHVV��EH�D�XVHIXO�DSSUR[LPDWLRQ�RYHU�PRVW�RI�WKH�UHJLPH�IRU�ZKLFK�WKH�0LH

WKHRU\�LV�QHHGHG��RIIHULQJ�D�VXEVWDQWLDO�VLPSOLILFDWLRQ�LQ�WKH�DQDO\VLV�RI�WKH�VL]H�GLVWULEXWLRQ�LQ�VXFK�FDVHV�������,I�α >> 1��EXW�x�≈����H�J���IRU�D�SDUWLFOH�LPPHUVHG�LQ�D�VROYHQW�ZLWK�FORVHO\�PDWFKLQJ�UHIUDFWLYH�LQGH[��

VR�WKDW�WKH�SKDVH�VKLIW�α_x��±���_�LV�VPDOO��WKH�DQJXODU�GHSHQGHQFH�GLIIHUV�FRQVLGHUDEO\�IURP�WKDW�IRU

)UDXQKRIHU�GLIIUDFWLRQ�IRU�ODUJHU�ϑ��LQ�D�UHJLPH�FDOOHG�DQRPDORXV�GLIIUDFWLRQ�������M��JLYLQJ�ZKDW�KDV�EHHQ

FKDUDFWHUL]HG�DV��D�VHW�RI�TXHHU�VFDWWHULQJ�GLDJUDPV�����M���6R�FDOOHG�DQRPDORXV�VFDWWHULQJ�DSSUR[LPDWLRQV

WR�WKH�0LH�WKHRU\�KDYH�EHHQ�REWDLQHG�LQ�WKLV�UHJLPH�IRU�VSKHUHV����N��UHSRUWHG�WR�EH�DFFXUDWH�IRUFRPSXWDWLRQ�RI�39Y�ϑ����LQ�WKH�UHJLPH�x�±�����������α_x��±���_�������DQG�α�!���������8VH�RI�WKH�)UDXQKRIHU

GLIIUDFWLRQ�DSSUR[LPDWLRQ�ZRXOG��IRU�H[DPSOH��JLYH�DQ�HUURQHRXV�HVWLPDWH�RI�WKH�VL]H�GLVWULEXWLRQ���VHH�WKH

([DPSOHV���,W�LV�UHSRUWHG�WKDW�GHSRODUL]HG�VFDWWHULQJ�PD\�UHVXOW�IURP�LVRWURSLF�VSKHUHV�LQ�WKLV�UHJLPH�����

7KH�SUHFHGLQJ�GLVFXVVLRQ�KDV�EHHQ�OLPLWHG�WR�VFDWWHULQJ�ZLWK�WKH�SRODUL]DWLRQ�RI�WKH�LQFLGHQW�DQG�VFDWWHUHG

EHDPV�HLWKHU�SHUSHQGLFXODU�RU�SDUDOOHO�WR�WKH�VFDWWHULQJ�SODQH��WKH�SODQH�GHILQHG�E\�LQFLGHQW�DQG�VFDWWHUHGEHDPV���$�PRUH�JHQHUDO�QRWDWLRQ�LV�QHHGHG�WR�GLVFXVV�WKH�DQLVRWURSLF�VFDWWHULQJ�IRU�VSKHUHV�VLQFH�3+Y�ϑ���

Page 23: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

DV�GHILQHG�DERYH�LV�]HUR�IRU�LVRWURSLF�VSKHUHV���,Q�D�PRUH�JHQHUDO�GHVFULSWLRQ��WKH�VFDWWHULQJ�SODQH�PD\FRQWDLQ�WKH�LQFLGHQW�EHDP��DQG�EH�DW�DQ�D]LPXWKDO�DQJOH�ϕ�UHODWLYH�WR�WKH�SRODUL]DWLRQ�RI�WKH�LQFLGHQW�OLJKW

IRU�YHUWLFDOO\�SRODUL]HG�OLJKW���7KXV��ϕ� �π���IRU�WKH�VFDWWHULQJ�SODQH�FRQVLGHUHG�WKXV�IDU���$Q�DOWHUQDWLYH

QRPHQFODWXUH�OHWV�9Y�DQG�+Y�LQGLFDWH�SDUDOOHO�DQG�FURVVHG�SRODUV��UHVSHFWLYHO\��DV�LQ�WKH�SUHFHGLQJ��EXWVXSSOHPHQWV�WKH�GHVFULSWLRQ�E\�DGGLQJ�WKH�D]LPXWKDO�DQJOH��H�J���3+Y�ϑ�ϕ�F���VR�WKDW�3+Y�ϑ�����39Y�ϑ����

DQG�3+K�ϑ����GLVFXVVHG�DERYH�EHFRPH�3+Y�ϑ�π/2�����39Y�ϑ�π/2�����DQG�39Y�ϑ�������UHVSHFWLYHO\���,W�KDV

ORQJ�EHHQ�NQRZQ�WKDW�3+Y�ϑ�π/4����LV�QRW�]HUR�IRU�RSWLFDOO\�DQLVRWURSLF�VSKHUHV��VHH�EHORZ���ZLWK�D�ILUVW

PD[LPXP�LQ�3+Y�ϑ�π/4����RFFXUULQJ�DW�DQ�DQJOH�ϑ�WKDW�PD\�EH�XVHG�WR�HVWLPDWH�WKH�VL]HG�RI�WKH�VSKHUH�

VHH�EHORZ������&DOFXODWLRQV�LQ�WKH�5�*�'�DSSUR[LPDWLRQ�DQG�XVLQJ�WKH�0LH�WKHRU\�UHYHDO�WKDW�D�VLPLODU

PD[LPXP�RFFXUV�ZLWK�RSWLFDOO\�LVRWURSLF�VSKHUHV�LQ�WKH�DQRPDORXV�GLIIUDFWLRQ�UHJLPH������LQ�DJUHHPHQW

ZLWK�REVHUYDWLRQV�RQ�VSKHUHV�WKRXJKW�WR�EH�RSWLFDOO\�LVRWURSLF�����

2.4.3 Anisotropic solute.��:LWK�WKH�H[FHSWLRQ�RI�VHPLIOH[LEOH�FKDLQV�ZLWK�UHODWLYHO\�ODUJH�k�/��DQLVRWURSLF

VFDWWHULQJ�PD\�QRUPDOO\�EH�QHJOHFWHG�LQ�WKH�H[FHVV�VFDWWHULQJ�IRU�SRO\PHU�VROXWLRQV��QRWH�WKDW�PDQ\

VROYHQWV�ZLOO�H[KLELW�DQLVRWURSLF�VFDWWHULQJ��ZKLFK�PXVW�EH�DFFXUDWHO\�GHWHUPLQHG�WR�VWXG\�WKH�H[FHVVDQLVRWURSLF�VFDWWHULQJ�GXH�WR�WKH�VROXWH����7KH�IXQFWLRQV�3+Y�ϑ����DQG�39Y�ϑ����IRU�URGOLNH�FKDLQV�DUH

JLYHQ�LQ�7DEOH����DQG�DUH�GLVFXVVHG�LQ�PRUH�GHWDLO�EHORZ�LQ�DQ�([DPSOH��DORQJ�ZLWK�WKH�DQLVRWURSLF

VFDWWHULQJ�IURP�SDUWLFOHV�������([SUHVVLRQV�IRU�39Y�ϑ����DQG�3+Y�ϑ����IRU�RSWLFDOO\�DQLVRWURSLF�URGOLNH�PROHFXOHV�LQ�WKH�5*'�UHJLPH

DUH�JLYHQ�LQ�7DEOH����DQG�GLVFXVVHG�EHORZ�LQ�WKH�VHFWLRQ�RQ�([DPSOHV���7KH�IXQFWLRQV�3+Y�ϑ�ϕ����DQG

39Y�ϑ�ϕ����GHILQHG�DERYH�KDYH�EHHQ�FRPSXWHG�IRU�RSWLFDOO\�DQLVRWURSLF�VSKHUHV�DQG�RWKHU�SDUWLFOH

VKDSHV��������������$�SULQFLSDO�UHVXOW�IRU�DQLVRWURSLF�VSKHUHV�LV�WKDW�3+Y�ϑ�π/4����H[KLELWV�H[WUHPD�DV�D

IXQFWLRQ�RI�T5�IRU��PRQRGLVSHUVH�VSKHUHV�������V������������������VHH�WKH�([DPSOHV�EHORZ�

2.5 The size distribution from scattering data at infinite dilution �����,Q�WKH�SUHFHGLQJ��WKH�FKDUDFWHUL]DWLRQ�RI�WKH�VL]H�GLVWULEXWLRQ�LV�WKURXJK�DYHUDJHV�RI�0�DQG�5�

*���7KXV�

ZLWK�D�PRGHO�UHODWLQJ�5�*�WR�0��WKH�GLIIHUHQW�DYHUDJHV�LQ�0/6�DQG��5�

*�/6�FDQ�SHUPLW�DQ�HVWLPDWH�RI�WKH

EUHDGWK�RI�WKH�VL]H�GLVWULEXWLRQ���7ZR�SULQFLSDO�PHWKRGV�DUH�XVHG�WR�HVWLPDWH�PRUH�GHWDLOHG�LQIRUPDWLRQ�RQWKH�VL]H�GLVWULEXWLRQ���L��FRPSDULVRQ�RI�H[SHULPHQWDO�39Y�ϑ����ZLWK�WKDW�FDOFXODWHG�ZLWK�DQ�DVVXPHG

GLVWULEXWLRQ�RI�0��RU�VRPH�RWKHU�HTXLYDOHQW�VL]H�SDUDPHWHU��VXFK�DV�5�IRU�VSKHUHV���DQG��LL��LQYHUVLRQ�RI39Y�ϑ����WR�REWDLQ�WKH�VL]H�GLVWULEXWLRQ�IXQFWLRQ���1HLWKHU�LV�HQWLUHO\�VDWLVIDFWRU\��HDFK�ZLWK�LWV�RZQ�VHW�RI

OLPLWDWLRQV���,Q�HLWKHU�FDVH��LW�LV�QHFHVVDU\�WR�KDYH�D�PRGHO�IRU�39Y�ϑ�����DQG�WR�DVVXPH�WKDW�WKH�PRGHO

DSSOLHV�WR�DOO�VFDWWHUHUV�LQ�WKH�V\VWHP���)XUWKHU��DV�D�SUDFWLFDO�PDWWHU��LW�PXVW�EH�DVVXPHG�WKDW�DOO

Page 24: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

FRPSRQHQWV�DUH�LGHQWLFDO�LQ�FRPSRVLWLRQ���,Q�SUDFWLFH��GDWD�RQ�R9Y�ϑ�F��.F�DUH�RIWHQ�XVHG�WR�HVWLPDWH�D

VL]H�GLVWULEXWLRQ��UDWKHU�WKDQ�39Y�ϑ�����RU�HYHQ�>R9Y�ϑ�F��.F@R���$V�GLVFXVVHG�LQ�WKH�QH[W�VHFWLRQ��WKLV

SUDFWLFH�PD\�LQWURGXFH�GLVWRUWLRQV�LQWR�WKH�VL]H�HVWLPDWH�XQOHVV���$��/60ZF��������0XOWLSOH�VFDWWHULQJ�LV

DQ�DGGLWLRQDO�SUDFWLFDO�LVVXH�VRPHWLPHV�HQFRXQWHUHG��HVSHFLDOO\�LQ�WKH�VFDWWHULQJ�IURP�GLVSHUVLRQV�RISDUWLFOHV�IRU�ZKLFK�R9Y�ϑ�F��.F�LV�QRW�H[WUDSRODWHG�WR�LQILQLWH�GLOXWLRQ���6RPH�VFKHPHV�KDYH�EHHQ

LQWURGXFHG�WR�DFFRXQW�IRU�WKLV�HIIHFW��HVSHFLDOO\�LQ�WKH�VFDWWHULQJ�IURP�ODUJH�VSKHUHV���������EXW�LQ�JHQHUDO�

LW�VKRXOG�EH�DYRLGHG�E\�UHGXFLQJ�WKH�VROXWH�FRQFHQWUDWLRQ��WKRXJK�WKLV�FDQ�KDYH�D�GHOHWHULRXV�HIIHFW�RQ�WKH

HVWLPDWH�RI�WKH�SRSXODWLRQ�RI�YHU\�VPDOO�VFDWWHULQJ�FRPSRQHQWV�LQ�WKH�SUHVHQFH�RI�ODUJH�SDUWLFOHV�������,Q�WKH�ILUVW�PHWKRG��D�PRGHO�LV�XVHG�WR�FRPSXWH�39Y�ϑ,���IRU�FRPSDULVRQ�ZLWK�WKH�H[SHULPHQWDO�GDWD�

EDVHG�RQ�DQ��DVVXPHG��VROXWH�VWUXFWXUH�DQG�DQ�DVVXPHG�WZR�RU�WKUHH�SDUDPHWHU�PROHFXODU�ZHLJKWGLVWULEXWLRQ�IXQFWLRQ��H�J���RQH�RI�WKH�VHYHUDO�IXQFWLRQV�JLYHQ�LQ�UHIHUHQFH����ZLWK�SDUDPHWHUV�0Z�0Q�

0]�0Z��HWF���RU�DOWHUQDWLYHO\��IRU�VSKHUHV��WKHVH�IXQFWLRQV�H[SUHVVHG�DV�D�GLVWULEXWLRQ�LQ�5�ZLWK�SDUDPHWHUV5Z�5Q��5]�5Z��HWF���(VWLPDWHV�RI�0Z�DQG��5

�*�/6�PD\�EH�XVHG�WR�JXLGH�HVWLPDWLRQ�RI�WKH�SDUDPHWHUV�LQ�WKH

GLVWULEXWLRQ�IXQFWLRQ�LI�WKHVH�DUH�DYDLODEOH��LQ�VRPH�FDVHV��IRU�D�VROXWH�ZLWK�YHU\�ODUJH�0Z�LW�PD\�QRW�EH

SRVVLEOH�WR�REWDLQ�WKH�UHOLDEOH�H[WUDSRODWLRQ�WR�]HUR�VFDWWHULQJ�DQJOH�QHHGHG�WR�HVWLPDWH�WKHVH�SDUDPHWHUV�)RU�H[DPSOH��H[SHULPHQWDO�GDWD�RQ�39Y�ϑ,0��IRU�OLQHDU�IOH[LEOH�FKDLQV�RU�VSKHUHV��LQ�WKH�5*'�UHJLPH�

FRXOG�EH�FRPSDUHG�ZLWK�)LJXUH����FDOFXODWHG�XVLQJ�WKH�WZR�SDUDPHWHU�H[SRQHQWLDO�IXQFWLRQ�PHQWLRQHGDERYH��WR�HVWLPDWH�WKH�PROHFXODU�ZHLJKW�GLVSHUVLRQ���&RPSDULVRQ�ZLWK�39Y�ϑ����IRU�VHPLIOH[LEOH�FKDLQV

SURYLGHV�DQ�H[DPSOH�RI�WKH�DPELJXLW\�LQ�PDWFKLQJ�H[SHULPHQWDO�DQG�FDOFXODWHG�39Y�ϑ����XQOHVV�D�UHOLDEOH

PRGHO�LV�DYDLODEOH���$�VLPLODU�VLWXDWLRQ�REWDLQV�ZLWK�SDUWLFOHV��H�J���GHYLDWLRQV�IURP�VSKHULFDO�V\PPHWU\

ZLOO�UHVXOW�LQ�GLVWRUWLRQV�RI�WKH�VFDWWHULQJ�IXQFWLRQ�VLPLODU�WR�WKRVH�FDXVHG�E\�D�GLVWULEXWLRQ�RI�VL]H�LQ

VSKHUHV�������7KHUH�LV�D�ORQJ�KLVWRU\�RI�DWWHPSWV�WR�LPSOHPHQW�D�GLUHFW�LQYHUVLRQ�RI�39Y�ϑ�����RU�>R9Y�ϑ�F��F@

R��IRU

SRO\GLVSHUVH�VFDWWHUHUV��XVXDOO\�SDUWLFOHV�ZLWK�VSKHULFDO�V\PPHWU\��WR�REWDLQ�D�VL]H�GLVWULEXWLRQ�RI�WKH

VFDWWHULQJ�VSHFLHV��PXFK�RI�LW�GHPRQVWUDWLQJ�WKH�GLIILFXOW\�RI�REWDLQLQJ�UHOLDEOH�UHVXOWV���3UHVHQW�GD\

WUHDWPHQWV�DUH�IDFLOLWDWHG�E\�WKH�DYDLODELOLW\�RI�FRPSXWDWLRQDO�IDFLOLWLHV�DW�WKH�GHVN�WRS�WR�LPSOHPHQW�WKH

FRPSXWDWLRQV��ZLWK�DOPRVW�DOO�DSSOLFDWLRQV�EHLQJ�WR�WKH�VL]H�GLVWULEXWLRQ�RI�SDUWLFOHV�RZLQJ�WR�WKH�QDWXUHDQG�OLPLWHG�DFFHVVLEOH�VSDQ�RI�39Y�ϑ����IRU�PDFURPROHFXOHV���7ZR�SULQFLSDO�PHWKRGV�DUH�XVHG��GHSHQGLQJ

RQ�WKH�VL]H�RI�WKH�SDUWLFOHV��QXPHULFDO�LQYHUVLRQ�RI�WKH�GDWD�YLD�LWHUDWLYH�WHFKQLTXHV���������DQG�HYDOXDWLRQ

RI�DQ�LQWHJUDO�H[SUHVVLRQ�EDVHG�RQ�)UDXQKRIHU�GLIIUDFWLRQ�IRU�SDUWLFOHV�ZLWK�GLPHQVLRQ�PXFK�JUHDWHU�WKDQ

WKH�ZDYHOHQJWK��x�!!�����������������7KH�QXPHULFDO�LQYHUVLRQV�UHTXLUHG�DUH�VLPLODU�LQ�NLQG�WR�WKRVH�DSSOLHG

WR�HVWLPDWH�VL]H�GLVWULEXWLRQV�IURP�G\QDPLF�OLJKW�VFDWWHULQJ�GDWD��ZKLFK�LQYROYHV�D�VLPLODU�LQYHUVLRQ

Page 25: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

UHODWLRQ��ZLWK�VLPLODU�OLPLWDWLRQV���)RU�H[DPSOH��LQYHUVLRQ�LV�IUHTXHQWO\�DWWHPSWHG�IRU�WKH�QRUPDOL]HGHOHFWULF�ILHOG�FRUUHODWLRQ�IXQFWLRQ�J��/6�τ��T�F��RI�G\QDPLF�OLJKW�VFDWWHULQJ��JLYHQ�E\�����D�����������������������

J��/6�τ��T� Σµ�Zµ0µ>39Y�ϑ���@µH[S>�τ�γµ�T�@�0Z39Y�ϑ��� ����

LQ�WKH�OLPLW�RI�LQILQLWH�GLOXWLRQ��ZLWK�γµ�T��WKH�UHOD[DWLRQ�UDWH�RI�WKH�FRPSRQHQW�µ���7KH�VLPLODULW\�RI�WKLV�WR

WKH�H[SUHVVLRQ

39Y�ϑ��� Σµ�Zµ0µ>39Y�ϑ���@µ�0Z ����

RI�LQWHUHVW�KHUH�LV�HYLGHQW��ZLWK�D�SULQFLSDO�GLVWLQFWLRQ�EHLQJ�WKDW�WKH�UDQJH�RI�τ�PD\�EH�PDGH�PXFK�ODUJHU

WKDQ�WKH�FRUUHVSRQGLQJ�UDQJH�LQ�ϑ��RU�T���WR�WKH�DGYDQWDJH�RI�DFFXUDF\�LQ�WKH�LQYHUVLRQ���2Q�WKH�RWKHU

KDQG��GDWD�DFTXLVLWLRQ�LV�XVXDOO\�PRUH�WLPH�FRQVXPLQJ�LQ�G\QDPLF�VFDWWHULQJ���,Q�VRPH�FDVHV��LW�LVFRQYHQLHQW�WR�UHSODFH�Zµ�E\�WKH�QXPEHU�IUDFWLRQ�Qµ�RI�VSHFLHV�ZLWK�PROHFXODU�ZHLJKW�0µ��ZLWK�Zµ�

Qµ0µ�0Q��EXW�LQ�HLWKHU�FDVH��LPSOHPHQWDWLRQ�RI�DQ�LQYHUVLRQ�SURWRFRO�UHTXLUHV�D�UHODWLRQ�EHWZHHQ�0µ�DQGD�VL]H�SDUDPHWHU�DSSHDULQJ�LQ�>39Y�ϑ���@µ��H�J���DV�LQ�7DEOH�����)XUWKHUPRUH��WKH�LQYHUVLRQV�DUH�LOO�SRVHG

IRU�ERWK�VWDWLF�DQG�G\QDPLF�VFDWWHULQJ�IXQFWLRQV��DQG�FRQVWUDLQWV�PXVW�EH�LPSRVHG�WR�REWDLQ�D�VWDEOH

LQYHUVLRQ�

������,W�PD\�EH�QRWHG�WKDW�H[SUHVVLRQV�RI�WKLV�NLQG�KDYH�EHHQ�XVHG�IRU�PDQ\�\HDUV�LQ�WKH�DQDO\VLV�RI�[�UD\VFDWWHULQJ�GDWD�RQ�SDUWLFOHV��RIWHQ�ZLWK�39Y�ϑ����≈�H[S�±5

�*T

������DORQJ�ZLWK�D�PRGHO�WR�H[SUHVV�5�*�LQ

WHUPV�RI�0��HJ���5�*�+ �0

����IRU�D�VSKHULFDO�SDUWLFOH����F���7KH�VHYHUDO�GLIILFXOWLHV�WKDW�KDPSHU�WKH

GHWHUPLQDWLRQ�RI�WKH�PROHFXODU�ZHLJKW��RU�VL]H��GLVWULEXWLRQ�E\�DQ�LQYHUVLRQ�RI�39Y�ϑ�����LQFOXGH

�L� WKH�LOO�SRVHG�FKDUDFWHU�RI�WKH�LQYHUVLRQ�LL� WKH�QHHG�WR�KDYH�D�WKHRUHWLFDO�39Y�ϑ���

�LLL� QRLVH�LQ�WKH�GDWD�LY� WKH�SK\VLFDO�UDQJH�RI�ϑ��DQG�KHQFH�WKH�OLPLWHG��DFFHVVLEOH�T

�Y� XQFHUWDLQW\�LQ�WKH�UHODWLYH�UHIUDFWLYH�LQGH[�x� �QVROXWH�QPHGLXP�YL� WKH�HIIHFWV�RI�VROXWH�DJJUHJDWLRQ

�YLL� WKH�HIIHFWV�RI�PXOWLSOH�VFDWWHULQJ

9DULRXV�SURFHGXUHV�KDYH�EHHQ�LQYHVWLJDWHG�WR�HIIHFW�WKH�LQYHUVLRQ��LQFOXGLQJ�YHUVLRQV�RI�WKH�PHWKRGV�XVHG

WR�LQYHUW�G\QDPLF�VFDWWHULQJ�GDWD��VXFK�DV�WKH�FRQVWUDLQHG�UHJXODUL]DWLRQ�PHWKRG�FDOOHG�&217,1�����������

Page 26: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

DV�ZHOO�DV�RWKHU�PHWKRGV���F���������������������������$V�GLVFXVVHG�DERYH��WKH�5*'�DSSUR[LPDWLRQ�LV

JHQHUDOO\�YDOLG�IRU�QRQDEVRUELQJ�VROXWH�LI�WKH�SKDVH�VKLIW�ZLWKLQ�WKH�PROHFXOH�RU�SDUWLFOH�LV�VPDOO�HQRXJK�$OWKRXJK�WKLV�LV�JHQHUDOO\�PHW�IRU�D�SRO\PHULF�VROXWH��D�GLUHFW�LQYHUVLRQ�RI�39Y�ϑ����LV�VHOGRP�RI�LQWHUHVWLQ�VXFK�FDVHV�RZLQJ�WR�WKH�OLPLWHG�UDQJH�RI��5�

*�/6T��W\SLFDOO\�DFFHVVLEOH�IRU�WKH�VFDWWHULQJ�IRU�D�SRO\PHULF

VROXWH��DV�ZHOO�DV�WKH�OLPLWDWLRQV�GXH�WR�QRLVH�LQ�WKH�H[SHULPHQWDO�GDWD��H�J���VHH�WKH�FRPPHQWV�DERYH�RQ

WKH�GLIILFXOWLHV�RI�REWDLQLQJ�UHOLDEOH�EHKDYLRU�DW�ODUJH�T���%\�FRQWUDVW��ZLWK�ODUJHU�SDUWLFXODWH�VROXWHV�39Y�ϑ����PD\�W\SLFDOO\�FRYHU�D�ZLGHU�UDQJH��DQG�SHUKDSV�H[KLELW�PD[LPD�DQG�PLQLPD��IRU�WKH�DFFHVVLEOHUDQJH�RI��5�

*�/6T����$V�GLVFXVVHG�DERYH��WKH�5*'�DSSUR[LPDWLRQ�PD\�EH�XVHG�IRU�D�UDQJH�RI�SDUWLFOH�VL]H�

EXW�LQ�VXFK�FDVHV��WKH�UDQJH�RI��5�*�/6T

��PD\�QRW�EH�ODUJH��LQ�ZKLFK�FDVH�WKH�LQYHUVLRQ�PD\�QRW�EH

DFFXUDWH��GHSHQGLQJ�RQ�WKH�SDUWLFOH�VKDSH���)RU�ODUJHU�SKDVH�VKLIW��0Z�PXVW�EH�UHSODFHG�E\�0/6��DQG�WKH

0LH�WKHRU\�PD\�EH�XVHG�IRU�VSKHUHV�WR�FRPSXWH�WKH�>39Y�ϑ���@µ�QHHGHG�LQ�WKH�LQYHUVLRQ�IRU�SDUWLFOHV�ZLWK

VSKHULFDO�V\PPHWU\��DOEHLW�ZLWK�DQ�LQFUHDVH�LQ�WKH�FRPSXWDWLRQDO�WLPH�UHTXLUHG���6LPLODU�WUHDWPHQWV�DUH

DYDLODEOH�IRU�RWKHU�VKDSHV��LQFOXGLQJ�VSKHULFDO�VKHOOV����N������VSKHURLGV�RI�UHYROXWLRQ�����DQG�URGV������EXW

LW�LV�QRW�SRVVLEOH�WR�SHUPLW�ERWK�WKH�SDUWLFOH�VKDSH�DQG�WKH�VL]H�GLVWULEXWLRQ�WR�EH�XQNQRZQV�LQ�DQ�LQYHUVLRQ

RI�WKH�VFDWWHULQJ�IURP�D�SRO\GLVSHUVH�VDPSOH���,QYHUVLRQV�LQ�WKLV�UHJLPH�PD\�EH�UHDVRQDEO\�VWDEOH�DQGDFFXUDWH��EXW�XVXDOO\�UHTXLUH�DQ�DFFXUDWH�HVWLPDWH�RI�QVROXWH�QPHGLXP��DORQJ�ZLWK�WKH�DWWHQWLRQ�RI�RQH�VNLOOHG

LQ�WKH�DUW�WR�DYRLG�HUURQHRXV�UHVXOWV��VHH�WKH�VHFWLRQ�RQ�([DPSOHV�EHORZ�������7KH�H[SUHVVLRQ�IRU�>R9Y�ϑ�F��F@

R�JLYHQ�DERYH�LQ�WKH�)UDXQKRIHU�OLPLW��ZLWK�5�!!��PD\�EH�XVHG�WR

REWDLQ�DQ�LQWHJUDO�HTXDWLRQ�IRU�WKH�QXPEHU�IUDFWLRQ�VSKHUHV�ZLWK�D�JLYHQ�UDGLXV��HOLPLQDWLQJ�WKH�LQWHUDWLYH

PHWKRGV�GHVFULEHG�DERYH���([SHULPHQWDO�LQVWUXPHQWV�WR�DFTXLUH�GDWD�IRU�WKLV�SXUSRVH�GLIIHU�LQ�WKHLU

GHVLJQ��DQG�LQ�WKH�IRUP�RI�WKH�LQWHJUDO�H[SUHVVLRQ�XVHG�����������������������������������$�V\VWHPDWLF�

FRQVLVWHQW�DQDO\VLV�RI�WKHVH�JLYHQ�LQ�UHIHUHQFH�����LV�GLVFXVVHG�EHORZ�LQ�WKH�VHFWLRQ�RQ�([DPSOHV�

2.6 Extrapolation to infinite dilution������$OO�RI�WKH�SUHFHGLQJ�KDV�SUHVXPHG�WKDW�RLVR�ϑ�F��F�DQG�RDQLVR�ϑ�F��F�PD\�EH�UHOLDEO\�H[WUDSRODWHG�WRLQILQLWH�GLOXWLRQ���)RU�GLOXWH�VROXWLRQV��DV�GLVFXVVHG�LQ�6HFWLRQ������RLVR�ϑ�F��F�PD\�EH�H[SUHVVHG�LQ�WKHIRUP

RLVR�ϑ�F��.0F 6LVR�ϑ�F��� ��3LVR�ϑ�F��^������FΓLVR�F�3LVR�ϑ�F�+LVR�ϑ�F�` ����

ZKHUH�.� �.ψ�VROXWH��ZLWK�D�VLPLODU�H[SUHVVLRQ�IRU�RDQLVR�ϑ�F��F���7KH�IXQFWLRQ�+LVR�ϑ�F���ZKLFK�LV�XVXDOO\

FORVH�WR�XQLW\��LV�GLVFXVVHG�EHORZ��DV�LV�WKH�SRVVLEOH�GHSHQGHQFH�RI�3LVR�ϑ�F��RQ�F��WKH�ODWWHU�SULQFLSDOO\

Page 27: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

UHIOHFWV�FKDQJHV�LQ�WKH�PHDQ�VTXDUH�UDGLXV�RI�J\UDWLRQ�ZLWK�F������6LQFH�3LVR�ϑ�F�������IRU�T��5�

*�/6�!!��

RQH�FDQ�DQWLFLSDWH�WKDW�RLVR�ϑ�F��.0F��≈��3LVR�ϑ�F���IRU�DQ\�FRQFHQWUDWLRQ�LQ�WKDW�OLPLW���7KH�UDQJH�RI�5�

*�/6T��UHTXLUHG�WR�REVHUYH�WKLV�FRQYHUJHQFH�GHSHQGV�VWURQJO\�RQ�WKH�VROXWH�VWUXFWXUH�

������)RU�ϑ� ����3LVR���F�� �+LVR���F�� ���DQG�IRU�GLOXWH�VROXWLRQV��D�YLULDO�H[SDQVLRQ�PD\�XVXDOO\�EH�XVHG�WR

UHSUHVHQW�ΓLVR�F���ZLWK�WKH�UHVXOW����������D�����

.F�RLVR���F� 0��/6^��������$��/60/6F�������$��/60/6F

������«` ����

)RU�V\VWHPV�ZLWK�ODUJH�$����JRRG�VROYHQWV����WKH�WHUP�LQ�F��PD\�LQWURGXFH�DSSUHFLDEOH�FXUYDWXUH�

PRWLYDWLQJ�WKH�XVH�RI�WKH�UHODWLRQ�������

>.F�RLVR���F�@��� 0����/6 ^�������$��/60/6F�������$��/60/6F�

������«` ����

ZKHUH�α�� �^��$��/60/6���$��/60/6����±���`����α��WHQGV�WR�EH�VPDOO�IRU�V\VWHPV�ZLWK�ODUJH�$���PDNLQJ�WKH

H[WUDSRODWLRQ�PRUH�QHDUO\�OLQHDU�WR�ODUJHU��$��/60/6F�WKDQ�ZLWK�WKH�ILUVW�IRUP���3RVVLEOH�H[FHSWLRQV�WR�WKH

EHKDYLRU�JLYHQ�E\�WKHVH�UHODWLRQV�PD\�REWDLQ�LI�WKH�VROXWH�LV�FKDUJHG�DQG�WKH�VROYHQW�LV�RI�YHU\�ORZ�LRQLF

VWUHQJWK���������

������$OWKRXJK�WKH�EHKDYLRU�IRU�PRUH�FRQFHQWUDWHG�VROXWLRQV�LV�RXWVLGH�WKH�VFRSH�KHUH��LW�PD\�EH�QRWHG�WKDW

H[SUHVVLRQV�DUH�DYDLODEOH�IRU�PRGHUDWHO\�FRQFHQWUDWHG�VROXWLRQV��ERWK�LQ�JRRG�VROYHQWV��DQG�XQGHU�)ORU\WKHWD�FRQGLWLRQV��IRU�ZKLFK�$���EXW�QRW�$���LV�]HUR���,Q�WKH�ODWWHU�FDVH��WKH�H[SUHVVLRQ�JLYHQ�DERYH

WHUPLQDWHG�DW�WKH�WHUP�LQ�F��SURYLGHV�D�JRRG�ILW�WR�WKH�GDWD��ZKHUHDV�ZLWK�JRRG�VROYHQWV��SRZHU�ODZH[SUHVVLRQV�LQ�$�0F�PD\�EH�XVHG�WR�UHSODFH�WKH�IDFWRU�LQ�^«`�LQ�(TXDWLRQ�������������

������7KH�H[SUHVVLRQ�IRU��$��/6�LQYROYHV�D�GRXEOH�VXPPDWLRQ�RYHU�FRPSRQHQWV��DQG�QHHG�QRW�EH�HODERUDWHG

KHUH��KRZHYHU��VHH�WKH�([DPSOH�RQ�DVVRFLDWLRQ�EHORZ���H[FHSW�WR�QRWH�WKDW�IRU�D�SRO\GLVSHUVH�VROXWH��$��/6�LV�QRW�HTXDO�WR�WKH�FRUUHVSRQGLQJ�YDOXH��$���REWDLQHG�E\�RVPRWLF�SUHVVXUH������)XUWKHU��LW�PD\�EH

QRWHG�WKDW�IRU�SRO\PHU�FKDLQV��IRU�PRQRGLVSHUVH�VROXWH��$��PD\�EH�H[SUHVVHG�LQ�WKH�IRUP��D�����������F�����

$� �$��52'�)�/�k��]� ����

ZKHUH��$��52'� ��π1$/���0��GWKHUPR�LV�WKH�VHFRQG�YLULDO�FRHIILFLHQW�IRU�D�URGOLNH�FKDLQ�ZLWK

WKHUPRG\QDPLF�GLDPHWHU�GWKHUPR��]� ����GWKHUPR���k���/�πk�����LV�D�WKHUPRG\QDPLF�LQWHUDFWLRQ�SDUDPHWHU�

DQG�)�/�k��]��LV�D�IXQFWLRQ�WKDW�GHSHQGV�RQ�FKDLQ�FRQIRUPDWLRQ��ZLWK�)�/�k����� �)����]�� �����)RU

Page 28: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

XQFKDUJHG�VROXWH��GWKHUPR�LV�]HUR�DW�WKH�)ORU\�WKHWD�WHPSHUDWXUH��DQG�LQFUHDVHV�WR�DERXW�WZLFH�WKH�JHRPHWULF

GLDPHWHU�GJHR�IRU�XQFKDUJHG�VROXWH�LQ�VR�FDOOHG��JRRG�VROYHQWV����,Q�JRRG�VROYHQWV��$�0�>η@��≈����IRU

OLQHDU�IOH[LEOH�FKDLQV��ZLWK�>η@�WKH�LQWULQVLF�YLVFRVLW\�������%\�FRPSDULVRQ��IRU�SDUWLFOHV�LQWHUDFWLQJ

WKURXJK�D�KDUG�FRUH�SRWHQWLDO����G�

$� �1$I9SDUWLFOH�0� ����

ZKHUH�9SDUWLFOH�LV�WKH�SDUWLFOH�YROXPH�DQG�I�LV�D�SDUDPHWHU�WKDW�GHSHQGV�RQ�WKH�SDUWLFOH�VKDSH��H�J���I� ���IRUD�VSKHUH��DQG�I� �/��GJHR�IRU�D�URG�RI�GLDPHWHU�GJHR����/��$�0�>η@��≈�������IRU�VSKHUHV���7KH�EHKDYLRU

ZLWK�FKDUJHG�VROXWHV�RU�SDUWLFOHV�LV�GLVFXVVHG�LQ�WKH�VHFWLRQ�RQ�([DPSOHV�

������6LPLODU�UHODWLRQV�REWDLQ�IRU�RSWLFDOO\�DQLVRWURSLF�SRO\PHUV��EXW�WKH�FRHIILFLHQWV�DUH�JHQHUDOO\�VPDOOHU�

UHIOHFWLQJ�WKH�RULJLQ�RI�WKH�VFDWWHULQJ�IURP�IOXFWXDWLRQV�LQ�WKH�RULHQWDWLRQ�RI�WKH�VFDWWHULQJ�HOHPHQWV�

7KXV��IRU�URGOLNH�FKDLQV�����������H������

Γ9Y�F� ^��$��/60/6�����«`�������δ����Γ9K�F� ����

Γ9K�F� �$��/60/6�������« ����

RU�DQ�HLJKW�IROG�VPDOOHU�OHDGLQJ�WHUP�IRU�GHSRODUL]HG�VFDWWHULQJ�WKDQ�REWDLQV�ZLWK�SRODUL]HG�VFDWWHULQJ������7KH�SRVVLEOH�GHSHQGHQFH�RI�3LVR�ϑ�F��DQG�+LVR�ϑ�F��RQ�F�PD\�FRPSOLFDWH�WKH�H[WUDSRODWLRQ�RI�GDWD�WR

LQILQLWH�GLOXWLRQ��RU�WKH�LQWHUSUHWDWLRQ�RI�GDWD�DW�D�VLQJOH�FRQFHQWUDWLRQ���)RU�H[DPSOH���WKH�LQLWLDO�WDQJHQW�

JLYHQ�E\

�∂>.F�RLVR�ϑ�F�@�∂T� 0��

/6^∂>3LVR�ϑ�F����∂T������FΓLVR�F�∂+LVR�ϑ�F��∂T

�` ����

∂>.F�RLVR�ϑ�F�@�∂T� 0��

/6^∂3LVR�ϑ������∂T������FΓLVR�F�∂:LVR�ϑ�F��∂T

�` ����

PD\�GHSHQG�RQ�F��WKH�SRWHQWLDO�GHSHQGHQFH�RI�3LVR�ϑ�F��RQ�F�LV�VXEVXPHG�LQ�WKH�IXQFWLRQ�:LVR�ϑ�F��LQ�WKHVHFRQG�IRUP���ΓLVR�PD\�EH�H[SUHVVHG�DV�D�YLULDO�H[SDQVLRQ�LQ�GLOXWH�VROXWLRQV���)RU�WKH�UDQJH�RI��5

�*�/6T

QRUPDOO\�DFFHVVLEOH�ZLWK�SRO\PHU�FKDLQV��SORWV�RI�.0F�RLVR�ϑ�F��YV�T��DUH�XVXDOO\�REVHUYHG�WR�EHHVVHQWLDOO\�SDUDOOHO�IRU�GLOXWH�VROXWLRQV�RYHU�D�UDQJH�RI�F��VXJJHVWLQJ�WKDW�∂:LVR�ϑ�F��∂T

��LV�VPDOO�²H[FHSWLRQV�PD\�RFFXU�IRU�FKDLQV�ZLWK�YHU\�ODUJH�0��DQG�WKH�FRUUHVSRQGLQJ�ODUJHU�UDQJH�RI��5�

*�/6T����1RWH

Page 29: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

WKDW�ZLWK�WKH�H[SUHVVLRQ�IRU�+LVR�ϑ�F��IRU�VSKHUHV�JLYHQ�EHORZ��SORWV�RI�.0F�RLVR�ϑ�F��YV�T��ZRXOG�QRW�EH

H[SHFWHG�WR�EH�SDUDOOHO��XQOLNH�WKH�H[SHULHQFH�ZLWK�IOH[LEOH�FKDLQ�SRO\PHUV���)RU�FRQYHQLHQFH��WKH�UDWLR�RIWKH�LQLWLDO�WDQJHQW�IRU�VPDOO�ϑ�WR�WKH�LQWHUFHSW�.F�RLVR���F��DW�FRQFHQWUDWLRQ�F�LV�GHQRWH�E�F�

��

>F�RLVR���F�@±�∂>F�RLVR�ϑ�F�@�∂T

���VR�WKDW

E�F�� ������5�

*�/6�����FΓLVR�F�∂:LVR�ϑ�F��∂T�

������FΓLVR�F�� ����

&RQVHTXHQWO\��HYHQ�LI�∂:LVR�ϑ�F��∂T��WHQGV�WR�]HUR��OHDGLQJ�WR�SDUDOOHO�SORWV�RI�.0F�RLVR�ϑ�F��YV�T

��RYHUD�UDQJH�RI�F���E�F���ZLOO�QRW�HTXDO��5�

*�/6�XQOHVV�FΓLVR�F���≈����$��/60/6F��≈�����DV�DW�YHU\�KLJK�GLOXWLRQ��RU

IRU�D�GLOXWH�VROXWLRQ�ZLWK��$��/6� ���������)RU�ϑ�!����WKH�IXQFWLRQ�+LVR�ϑ�F��PD\�LQWURGXFH�DQ�DGGLWLRQDO�GHSHQGHQFH�RQ�ϑ,�DQG�IRU�SRO\PHU

FKDLQV��3LVR�ϑ�F��PD\�YDU\�ZLWK�F��UHIOHFWLQJ�SULQFLSDOO\�FKDQJHV�LQ�WKH�PHDQ�VTXDUH�UDGLXV�RI�J\UDWLRQ

ZLWK�F����������7KH�EHKDYLRU�IRU�VSKHULFDO�SDUWLFOHV�LQWHUDFWLQJ�WKURXJK�D�KDUG�FRUH�SRWHQWLDO�SURYLGHV�DQ

H[DPSOH�RI�WKLV�EHKDYLRU���,Q�WKDW�FDVH�������G�

+LVR�ϑ�F� >3LVR�ϑ�F�@����3LVR�ϑ�F� ����

ZKHUH�VLQ�ϑ���� ��VLQ�ϑ�����DQG�3LVR�ϑ�F�� �3LVR�ϑ����IRU�WKLV�PRGHO���&RQVHTXHQWO\��3LVR�ϑ�F�+�ϑ�F�� >3LVR�ϑ���@

�����DQG�RLVR�ϑ�F��.0F��≈��3LVR�ϑ����IRU�ODUJH��5�*�/6T

��DV�H[SHFWHG�

������)RU�IOH[LEOH�FKDLQ�SRO\PHUV��WKH�PHDQ�VTXDUH�UDGLXV�RI�J\UDWLRQ��5�*�F�DW�FRQFHQWUDWLRQ�F�WHQGV�WR�LWV

YDOXH�k/���REWDLQLQJ�XQGHU�)ORU\�WKHWD�FRQGLWLRQV�ZLWK�LQFUHDVLQJ�F��HYHQ�LQ��JRRG�VROYHQWV��IRU�ZKLFK�5�

*�F�H[FHHGV�WKLV�YDOXH�DW�LQILQLWH�GLOXWLRQ����������$�ILUVW�DSSUR[LPDWLRQ�WR�3LVR�ϑ�F��DQG�+LVR�ϑ�F��IRU

IOH[LEOH�FKDLQ�SRO\PHUV�LQ�WKLV�VLWXDWLRQ�LV�WR�XVH�WKH�UHODWLRQ�IRU�3LVR�ϑ�F��IRU�D�UDQGRP�IOLJKW�FKDLQ�ZLWKWKH�REVHUYHG��5�

*�F�DW�FRQFHQWUDWLRQ�F��DV�RSSRVHG�WR�WKH�YDOXH�DW�LQILQLWH�GLOXWLRQ���DORQJ�ZLWK�WKH�DERYH

DSSUR[LPDWLRQ�IRU�+LVR�ϑ�F�����������������$OWKRXJK�WKLV�SURYLGHV�D�TXDOLWDWLYHO\�XVHIXO�DSSUR[LPDWLRQ��LW

PD\�QRW�EH�TXDQWLWDWLYHO\�FRUUHFW��DQG�VKRXOG�QRW�EH�UHOLHG�RQ�LI�DFFXUDF\�LV�FULWLFDO��LQ�RQH�DOWHUQDWLYH��WKH)ORU\�.ULJEDXP�SDLU�SRWHQWLDO���E��KDV�EHHQ�XVHG�WR�HVWLPDWH�+LVR�ϑ�F���������7KH�HIIHFWV�RI�HOHFWURVWDWLF

LQWHUDFWLRQV�DPRQJ�FKDUJHG�VSKHUHV�DUH�GLVFXVVHG�LQ�WKH�([DPSOHV�

3. EXPERIMENTAL METHODS

Page 30: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

3.1 Instrumentation������'LVFXVVLRQ�RI�WKH�LQVWUXPHQWDWLRQ��DOLJQPHQW�DQG�FDOLEUDWLRQ�PHWKRGV��DQG�PHWKRGV�RI�WUHDWLQJ�GDWD

PD\�EH�IRXQG�LQ�D�QXPEHU�RI�SODFHV�����G��������������������DQG�RQO\�D�EULHI�DFFRXQW�ZLOO�EH�JLYHQ�KHUH�

/LJKW�VFDWWHULQJ�SKRWRPHWHUV�ZLWK�D�YDULHW\�RI�GHVLJQV�DQG�VSHFLDO�SXUSRVHV�DUH�FRPPHUFLDOO\�DYDLODEOH�

7KHVH�FRPSULVH�VHYHUDO�FRPSRQHQWV��LQFOXGLQJ�

��� WKH�LQFLGHQW�OLJKW�VRXUFH�DQG�LWV�DVVRFLDWHG�RSWLFV�

��� WKH�OLJKW�VFDWWHULQJ�FHOO�

��� WKH�GHWHFWRU�DQG�LWV�DVVRFLDWHG�RSWLFV�

��� WKH�HOHFWURQLF�FRPSRQHQWV�DVVRFLDWHG�ZLWK�WKH�GHWHFWRU�

,Q�DGGLWLRQ��WKH�H[SHULPHQW�FRXOG�UHTXLUH�VSHFLDOL]HG�DSSDUDWXV�LQ�VSHFLDO�FDVHV��H�J���ILOWHUV�WR�UHPRYH

�PRVW�RI��DQ\�IOXRUHVFHQFH�HPLVVLRQ��PHDQV�WR�FRQWURO�WKH�WHPSHUDWXUH��HWF�������6HYHUDO�IDFWRUV�DUH�QHFHVVDU\�LQ�FRQYHUWLQJ�WKH�UHVSRQVH�*�ϑ��IURP�WKH�GHWHFWRU�WR�XVHIXO�SDUDPHWHUV

LQ�WKH�DQDO\VLV�RI�VWDWLF�OLJKW�VFDWWHULQJ��LQFOXGLQJ������G�������������������

��� WKH�GHSHQGHQFH�RI�WKH�VFDWWHULQJ�YROXPH�RQ�DQJOH�DQG�VROYHQW�

��� WKH�HIIHFWV�RI�DWWHQXDWLRQ�RI�WKH�LQFLGHQW�RU�VFDWWHUHG�UD\V�

��� WKH�SRODUL]DWLRQ�VWDWH�RI�WKH�LQFLGHQW�DQG�VFDWWHUHG�UD\V�

��� WKH�UHODWLRQ�RI�WKH�GHWHFWHG�VLJQDO�WR�WKH�5D\OHLJK�UDWLR�

0RVW�OLJKW�VFDWWHULQJ�SKRWRPHWHUV�PDNH�XVH�RI�ODVHU�OLJKW�VRXUFHV��UDQJLQJ�IURP�D�IHZ�PLOOLZDWWV�WR�D

KXQGUHG�PLOOLZDWWV�RU�VR�LQ�RXWSXW�SRZHU���8VXDOO\�WKLV�LV�D�SODQH�SRODUL]HG�VWDWH�ZLWK�WKH�HOHFWULF�YHFWRU

LQ�WKH�GLUHFWLRQ�YHUWLFDO�WR�WKH�VFDWWHULQJ�SODQH��WKH�SODQH�FRQWDLQLQJ�WKH�LQFLGHQW�DQG�VFDWWHUHG�UD\V���VHH

EHORZ���7KH�SODQH�RI�SRODUL]DWLRQ�PD\�WKHQ�EH�URWDWHG�E\�URWDWLRQ�RI�D�KDOI�ZDYH�SODWH�SODFHG�LQ�WKH

LQFLGHQW�EHDP��SURYLGLQJ�D�FRQYHQLHQW�WRRO�IRU�RSWLFDO�DOLJQPHQW���7KH�GHWHFWRU�RSWLFV�DUH�GHVLJQHG�WR

FRQWURO�WKH�DQJXODU�DFFHSWDQFH�RI�WKH�VFDWWHUHG�OLJKW��DQG�WKH�KRUL]RQWDO�DQG�YHUWLFDO�GLPHQVLRQV�RI�WKH

VFDWWHULQJ�YROXPH�²�WKH�GHSWK�RI�WKH�VFDWWHULQJ�YROXPH�LV�FRQWUROOHG�E\�WKH�ZLGWK�RI�WKH�LQFLGHQW�EHDP�

2QH�RI�D�IHZ�RSWLFDO�GHVLJQV�LV�XVXDOO\�HPSOR\HG�LQ�WKH�GHWHFWRU�RSWLFV������G��������������������DQG�RQH�RI

WZR�JHQHUDO�DUUDQJHPHQWV�WR�PDNH�XVH�RI�WKHVH�UHODWLRQV�PD\�EH�IRXQG�LQ�SUDFWLFH���L��WKH�XVH�RI�D�VLQJOH

GHWHFWRU�PRXQWHG�RQ�D�JRQLRPHWHU�IRU�XVH�RYHU�D�UDQJH�RI�VFDWWHULQJ�DQJOHV��DQG��LL��WKH�XVH�RI�D�VHSDUDWH

GHWHFWRU�IRU�HDFK�DQJOH���7KH�DQJXODU�UHVROXWLRQ�DQG�VFDWWHULQJ�YROXPH�PXVW�EH�NQRZQ�DW�HDFK�VFDWWHULQJ

YROXPH�WR�SHUPLW�DVVHVVPHQW�RI�WKH�5D\OHLJK�UDWLR���,Q�VRPH�GHVLJQV�WKLV�LV�IDFLOLWDWHG�E\�LQVXULQJ�WKDW�WKH

VFDWWHULQJ�YROXPH�KDV�D�YHUWLFDO�GLPHQVLRQ�VPDOOHU�WKDQ�WKDW�RI�WKH�LQFLGHQW�EHDP��������������EXW�RWKHU

SURFHGXUHV�PD\�EH�DGRSWHG���,W�LV�XVXDOO\�DGYLVDEOH�WR�SODFH�D�EDQG�SDVV�ILOWHU�ZLWK�D�KLJK�WUDQVPLVVLRQ

Page 31: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

IRU�WKH�VFDWWHUHG�OLJKW�EHIRUH�WKH�GHWHFWRU�WR�PLQLPL]H�WKH�HIIHFWV�RI�DQ\�IOXRUHVFHQFH�IURP�WKH�VDPSOH�RU

VWUD\�OLJKW�IURP�VRXUFHV�RWKHU�WKDQ�WKH�LQFLGHQW�EHDP���6LPLODUO\��D�EDQG�UHMHFW�ILOWHU�PD\�EH�XVHG�WR

DVVHVV�WKH�SUHVHQFH�RI�IOXRUHVFHQFH���,W�LV�DOVR�DGYLVDEOH�WR�SODFH�D�SRODUL]LQJ�ILOWHU�RI�VRPH�NLQG�EHIRUH

WKH�GHWHFWRU��DQG�LW�LV�HVVHQWLDO�WR�GR�WKLV�LI�WKH�DQLVRWURSLF�VFDWWHULQJ�LV�WR�EH�VWXGLHG���8QIRUWXQDWHO\��QRW

DOO�FRPPHUFLDOO\�DYDLODEOH�LQVWUXPHQWV�SURYLGH�WKH�RSWLRQ�WR�SODFH�ILOWHUV�LQ�WKH�VFDWWHUHG�EHDP�

������6SHFLDOL]HG�LQVWUXPHQWV�WR�H[DPLQH�WKH�VFDWWHULQJ�SURILOH�LQ�WKH�)UDXQKRIHU�GLIIUDFWLRQ�OLPLW��YHU\

VPDOO�VFDWWHULQJ�DQJOHV��KDYH�EHHQ�FRQVWUXFWHG��DQG�DUH�FRPPHUFLDOO\�DYDLODEOH��H�J���VHH�UHIHUHQFHV����

DQG�����IRU�D�GLVFXVVLRQ�RI�VRPH�RI�WKHVH���7KH�LQVWUXPHQWV�GLIIHU�SULQFLSDOO\�LQ�WKH�PDQQHU�RI�GDWDFROOHFWLRQ��PHDVXUHPHQW�RI�WKH�LQWHQVLW\�DW�VRPH�DQJOH�ϑ��ZLWKLQ�D�VPDOO�VSDQ�δϑ���RU�FROOHFWLRQ�RYHU�DQDSSUHFLDEOH�DQJXODU�UDQJH�∆ϑ� �ϑPD[�±�ϑPLQ��RYHU�D�UDQJH�RI�YDOXHV�IRU�ϑPD[��VHH�WKH�([DPSOHV�IRU

IXUWKHU�GLVFXVVLRQ���,Q�VRPH�FDVHV��WKHVH�VPDOO�DQJOH�PHDVXUHPHQWV�DUH�DXJPHQWHG�E\�VFDWWHULQJ

PHDVXUHPHQWV�DW�ODUJHU�DQJOH��RU�DQJOHV���VRPHWLPHV�XVLQJ�OLJKW�IURP�D�ODVHU�ZLWK�H[FLWDWLRQ�DW�PRUH�WKDQ

RQH�ZDYHOHQJWK�WR�SURYLGH�VFDWWHULQJ�RYHU�D�UDQJH�RI�T�

3.2 Methods������7KH�RSWLFDO�FODULILFDWLRQ�RI�WKH�VFDWWHULQJ�VDPSOH�LV�RI�SDUDPRXQW�LPSRUWDQFH�LQ�REWDLQLQJ�UHOLDEOH

UHVXOWV�LQ�OLJKW�VFDWWHULQJ���7KH�FODULILFDWLRQ�VKRXOG�UHPRYH�H[WUDQHRXV�PRWHV��µGXVW¶���XQGLVVROYHG

SRO\PHU��JDV�EXEEOHV��DQG�DQ\�RWKHU�VFDWWHULQJ�VRXUFH�QRW�LQWULQVLF�WR�WKH�VDPSOH�RI�LQWHUHVW���$W�WKH�VDPH

WLPH��WKH�FODULILFDWLRQ�SURFHVV�VKRXOG�QRW�FDXVH�XQZDQWHG�UHPRYDO�RI�D�SRUWLRQ�RI�WKH�VDPSOH���2IWHQ��LQ

WKH�ILQDO�VWDJHV�RI�FODULILFDWLRQ��WKH�QXPEHU�RI�H[WUDQHRXV�PRWHV�LV�YHU\�VPDOO��JLYLQJ�WKH�DSSHDUDQFH�RI�D

IHZ�ZLGHO\�VHSDUDWHG�EULJKW�VSRWV�LQ�WKH�VDPSOH�ZKHQ�WKH�VFDWWHULQJ�LV�YLHZHG�DW�D�VPDOO�VFDWWHULQJ�DQJOH�

,Q�VRPH�LQVWUXPHQWV�WKH�VFDWWHULQJ�YROXPH�LV�PDGH�VPDOO�LQ�D�VWUDWHJ\�WR�UHGXFH�WKH�QXPEHU�RI�H[WUDQHRXV

SDUWLFOHV�LQ�WKH�VFDWWHULQJ�YROXPH�WR�]HUR�RU�RQH�IRU�WKH�PRVW�SDUW�RZLQJ�WR�WKH�ZLGH�VHSDUDWLRQ�RI�DQ\

UHPDLQLQJ�H[WUDQHRXV�PRWHV���6LQFH�WKH�VFDWWHULQJ�ZLOO�WKHQ�QRUPDOO\�EH�UDWKHU�GLIIHUHQW�IRU�WKHVH�WZR

VWDWHV��LW�LV�SRVVLEOH�WR�GLVFULPLQDWH�DJDLQVW�WKH�VFDWWHULQJ�IURP�WKH�H[WUDQHRXV�PDWWHU���$�VLPLODU�VWUDWHJ\

LV�VRPHWLPHV�HPSOR\HG�LQ�FRPSXWHU�DLGHG�GDWD�DFTXLVLWLRQ��E\�FROOHFWLQJ�GDWD�RYHU�VRPH�WLPH�LQWHUYDO

ORQJ�LQ�FRPSDULVRQ�ZLWK�WKH�WLPH�VFDOH�IRU�QRUPDO�LQWHQVLW\�IOXFWXDWLRQV��EXW�VKRUWHU�WKDQ�WKH�WLPH�VFDOH

IRU�IOXFWXDWLRQV�GXH�WR�GLIIXVLRQ�RI�WKH�H[WUDQHRXV�PDWWHU���7KH�VWURQJHU�WKDQ�QRUPDO�VFDWWHUHG�LQWHQVLW\

GXH�WR�WKH�PRWHV�PD\�WKHQ�EH�GLVFULPLQDWHG�DJDLQVW�LQ�WKH�GDWD�FROOHFWLRQ�

������,Q�VRPH�FDVHV��WKH�H[SHULPHQWDO�GDWD�HQFRPSDVV�D�OLPLWHG�UDQJH�RI�DQJOHV��H�J���WZR�RU�WKUHH���OHDGLQJ

WR�WKH�XVH�RI��GLVV\PPHWU\�PHWKRGV��WR�DQDO\]H�VFDWWHULQJ�GDWD�LQ�WKH�5*'�UHJLPH��IROORZLQJ�D

SURFHGXUH�LQWURGXFHG�HDUO\�LQ�WKH�XVH�RI�OLJKW�VFDWWHULQJ�WR�FKDUDFWHUL]H�VROXWH�GLPHQVLRQV���2IWHQ��RQH�RI

Page 32: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

WKH�VFDWWHULQJ�DQJOHV�LV�WDNHQ�WR�EH����GHJUHHV���7KH�GLVV\PPHWU\�=�ϑ��ϑ��� �*�ϑ��9�ϑ���*�ϑ��9�ϑ���

ZLWK�LQVWUXPHQW�UHVSRQVH�*�ϑ��DQG�VFDWWHULQJ�YROXPH�9�ϑ��IRU�ϑ����ϑ���PD\�EH�XVHG�WR�HVWLPDWH�5�

*�/6�λ���ZLWK� λ� �λο�QPHGLXP��SURYLGHG�D�PRGHO�LV�DYDLODEOH��LQFOXGLQJ�WKH�HIIHFWV�RI�PROHFXODU�ZHLJKW

KHWHURJHQHLW\���7KH�GLVV\PPHWU\�PHWKRG�PD\�QRW�EH�DSSOLHG�EH\RQG�WKH�5*'�UHJLPH��DV�WKHQ�=�ϑ��ϑ���LVQRW�JHQHUDOO\�D�VLQJOH�YDOXHG�IXQFWLRQ�RI��5�

*�/6�λ��������7KH�XVH�RI�VXSSOHPHQWDU\�DQJOHV��ϑ�� �π�±�ϑ��

ZLOO�XVXDOO\�PDNH�WKH�VFDWWHULQJ�YROXPHV�HTXDO�DW�WKH�WZR�VFDWWHULQJ�DQJOHV��VLPSOLI\LQJ�WKH�DQDO\VLV�1RWH�WKDW�LQ�JHQHUDO��>R9Y�ϑ��F��F@

R�>R9Y�ϑ��F��F@R�≠�R9Y�ϑ��F��R9Y�ϑ��F���UHTXLULQJ�H[WUDSRODWLRQ�WR

LQILQLWH�GLOXWLRQ�WR�GHWHUPLQH�=�ϑ��ϑ�����,Q�WKH�RULJLQDO�GLVV\PPHWU\�PHWKRG��ϑ��DQG�ϑ��ZHUH�HTXDO�WR���

DQG�����GHJUHHV��UHVSHFWLYHO\��VR�WKDW�9�ϑ��� �9�ϑ���LQ�D�FRQYHQLHQW�FHOO�JHRPHWU\���H�J���F\OLQGULFDO��DQG�=�ϑ��ϑ��� �*�ϑ���*�ϑ������W�������7KH�YDOXH�RI��5

�*�/6�λ

��PD\�WKHQ�EH�XVHG�WR�HVWLPDWH�ZLWK�39Y�ϑ����

IRU�WKH�DVVXPHG�PRGHO�ZLWK�WKH�FRUUHFWLRQ�QHHGHG�WR�GHGXFH�>R9Y���F��F@R�IURP�>R9Y�ϑ��F��F@

R

GHWHUPLQHG�DW�VRPH�SDUWLFXODU�DQJOH��H�J���ϑ�� ����GHJUHHV�LQ�WKH�RULJLQDO�PHWKRG���,Q�VRPH�FDVHV��RQO\

WZR�VFDWWHULQJ�DQJOHV�DUH�XVHG��RQH�EHLQJ�IDLUO\�VPDOO��DQG�WKH�RWKHU�EHLQJ����GHJUHHV��ZLWK�GXH�DWWHQWLRQWR�WKH�UDWLR�9�ϑ���9�ϑ���������������7DEOHV�WR�DVVLVW�WKLV�WUHDWPHQW�DUH�DYDLODEOH�IRU�D�QXPEHU�RI

PRGHOV������������RU�WKH�QHHGHG�UHODWLRQV�PD\�EH�UHDGLO\�FDOFXODWHG�DV�UHTXLUHG�XVLQJ�D�GHVNWRS�FRPSXWHU�7KH�XVH�RI�39Y�ϑ����IRU�D�OLQHDU�FKDLQ�WR�HVWLPDWH��5�

*�/6��E\�WKH�GLVV\PPHWU\�UDWLR�IRU�D�FKDLQ�WKDW�LV

EUDQFKHG�PD\�LQWURGXFH�DQ�HUURU�LQ�WKH�HVWLPDWH�IRU��5�*�/6�LI��5

�*�/6T

��H[FHHGV�DERXW�����)RU�H[DPSOH��WKH

GHYLDWLRQV�VKRZQ�LQ�)LJXUH���ZRXOG�OHDG�WR�LQFUHDVLQJO\�VHULRXV�RYHUHVWLPDWLRQ�RI��5�*�/6�ZLWK�LQFUHDVLQJ

�5�*�/6T

����$Q�H[DPSOH�RI�WKLV�HIIHFW�PD\�EH�VHHQ�IRU�=����������YV��5�*�/6�λ

��IRU�PRQRGLVSHUVH�OLQHDU

FKDLQV�DQG�UHJXODU�IRXU�DUP�VWDU�EUDQFKHG�PROHFXOHV�IRU�WKH�UDQGRP�IOLJKW�PRGHO������

��������)LQDOO\��RWKHU�PHWKRGV�RI�GDWD�WUHDWPHQW�PD\�EH�IRXQG�LQ�WKH�OLWHUDWXUH���([DPSOHV�LQFOXGH�*XLQLHUSORWV�RI�OQ�R9Y�ϑ�F��.F��YV�T

���EDVHG�RQ�WKH�DSSUR[LPDWLRQ��39Y�ϑ���� �H[S�±�5�*�/6T

��������H��&DVDVVD

SORWV�RI�.F�R9Y�ϑ�F��YV�T�IRU�URGOLNH�VFDWWHUHUV��EDVHG�RQ�(TXDWLRQ������DERYH����������3RURG�SORWV�RI

T�R9Y�ϑ�F��.F�YV�T��EDVHG�RQ�39Y�ϑ����IRU�ZRUPOLNH�FKDLQV��VHH�EHORZ���E���������������DQG�SORWV�RI

�.F�R9Y�ϑ�F������YV�T���LQWURGXFHG�E\�WKH�DXWKRU�������7KHVH�DUH�XVHIXO�IRU�DQDO\VLV�RI�GDWD�RQ�GLOXWH

VROXWLRQV�XQGHU�VSHFLDO�FLUFXPVWDQFHV���7KXV��WKH�*XLQLHU�SORW�ZDV�GHYLVHG�IRU�XVH�ZLWK�WKH�VFDWWHULQJ

IURP�SDUWLFOHV�SRO\GLVSHUVH�LQ�VL]H�DQG�VKDSH��IRU�ZKLFK�D�PRUH�GHWDLOHG�WUHDWPHQW�ZDV�QRW�IHDVLEOH��DV

VHHQ�LQ�)LJXUH����WKH�DFWXDO�VFDWWHULQJ�EHKDYLRU�LV�XVXDOO\�QRW�UHSUHVHQWHG�E\�WKH�H[SRQHQWLDO�IXQFWLRQ�RYHUD�UDQJH�RI�T��XQOHVV��5�

*�/6�LV�YHU\�VPDOO���ZLWK�WKH�H[SRQHQWLDO�IXQFWLRQ�SURYLGLQJ�D�XVHIXO�DSSUR[LPDWLRQ

WR�ODUJHU�T�5�*�IRU�VSKHUHV�WKDQ�IRU�WKH�RWKHU�H[DPSOHV�LQ�)LJXUH�����7KH�&DVDVVD�SORW�LV�RQO\�XVHIXO�IRU

YHU\�ORQJ�URGOLNH�VROXWH�IRU�ZKLFK�WKH�DV\PSWRWLF�EHKDYLRU�IRU�ODUJH�T�PD\�GRPLQDWH�WKH�VFDWWHULQJ�IRU�DOO

DFFHVVLEOH�T��LQ�ZKLFK�FDVH�WKH�WDQJHQW�SURYLGHV�OHQJWK�SHU�XQLW�PDVV����6LPLODUO\��WKH�3RURG�SORW�LV

Page 33: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

GHVLJQHG�WR�HOXFLGDWH�WKH�EHKDYLRU�DW�ODUJH�T��DQG�PD\��IRU�H[DPSOH�UHYHDO�WKH�SHUVLVWHQFH�OHQJWK�RI�D

VHPLIOH[LEOH��ZRUPOLNH��FKDLQ�LI�ODUJH�HQRXJK�T�FDQ�EH�DWWDLQHG��WKH�3RURG�SORW�LV�XVXDOO\�RI�PRVW�LQWHUHVW

ZLWK�WKH�VFDWWHULQJ�IURP�[�UD\�RU�QHXWURQ�UDGLDWLRQ�RZLQJ�WR�WKH�QHHG�WR�UHDFK�ODUJH�T���7KH��VTXDUH�URRW�

SORW�LV�EDVHG�RQ�WKH�REVHUYDWLRQ�WKDW�IRU�D�OLQHDU��PRQRGLVSHUVH�UDQGRP�IOLJKW�OLQHDU�FKDLQ�PRGHO��IRUZKLFK�5�

*�0�LV�LQGHSHQGHQW�RI�0��WKH�UHODWLRQ

3LVR�ϑ������� ������5�

*T��������« ����

IDFLOLWDWHV�HYDOXDWLRQ�RI�WKH�LQLWLDO�WDQJHQW������DQG�KHQFH�5�*��VLQFH�LQ�WKLV�FDVH�WKH�FRHIILFLHQW�RI�T

��WHQGV

WR�EH�VPDOOHU�LQ�WKLV�H[SDQVLRQ�WKDQ�LQ�WKH�H[SDQVLRQ�IRU�3LVR�ϑ������&OHDUO\��WKH�XVH�RI�39Y�ϑ���±����WR

IDFLOLWDWH�GDWD�DQDO\VLV�VKRXOG�EH�DSSOLHG�RQO\�XQGHU�DSSURSULDWH�FRQGLWLRQV��H�J���LW�ZRXOG�EH

LQDSSURSULDWH�IRU�WKH�SRO\GLVSHUVH�VROXWH�ZLWK�D�PRVW�SUREDEOH�GLVWULEXWLRQ�RI�PROHFXODU�ZHLJKW��VHHEHORZ���6LPLODUO\��IRU�PRQRGLVSHUVH�VSKHUHV��3LVR�ϑ����LV�FORVHO\�DSSUR[LPDWHG�E\�H[S�±5

�*T

�����IRU�5�*T

�����ZLWK�WKH�GHYLDWLRQV�JURZLQJ�IRU�ODUJHU��5�*T

���VHH�)LJXUHV���DQG����WKLV�ILW�LV�OHVV�VDWLVIDFWRU\�IRU

VSKHUHV�KHWHURJHQHRXV�LQ�VL]H��DV�PD\�EH�GHGXFHG�IURP�)LJXUH���

4. EXAMPLES

4.1 Static scattering and size separation chromatography��������7KH�DSSOLFDWLRQ�RI�OLJKW�VFDWWHULQJ�DQG�GLIIHUHQWLDO�UHIUDFWRPHWU\�LQ�RQ�OLQH�DQDO\VLV�RI�WKH�HOXHQW�LQ

VL]H�H[FOXVLRQ�FKURPDWRJUDSK\�WKDW�VHSDUDWHV�WKH�HOXHQW�E\�VL]H�SURYLGHV�D�SRZHUIXO�WRRO�IRU�DQDO\VLV�DQG

FKDUDFWHUL]DWLRQ�DQG�KDV�IRXQG�ZLGH�DSSOLFDWLRQ��H�J���VHH�UHIHUHQFHV�����DQG�������([DPSOHV�LQFOXGH�VL]H

H[FOXVLRQ�FKURPDWRJUDSK\��6(&��DQG�IORZ�ILHOG�IORZ�FKURPDWRJUDSK\��)))&����6LQFH�WKH�VROXWHFRQFHQWUDWLRQ�LV�XVXDOO\�YHU\�ORZ�LQ�WKH�HOXHQW��LW�LV�QRUPDOO\�DVVXPHG�WKDW�FΓ9Y�F���≈����IRU�DOO�HOXWLRQ

YROXPHV��RU�D�FRUUHFWLRQ�LV�PDGH�EDVHG�RQ�DQ�HVWLPDWH�IRU�$�0F���:LWK�RSWLFDOO\�LVRWURSLFKRPRSRO\PHUV��WKH�UHVSRQVH�KH�RI�WKH�GLIIHUHQWLDO�UHIUDFWRPHWHU�DW�HOXWLRQ�YROXPH�9H�SHUPLWV�HYDOXDWLRQ

RI�WKH�ZHLJKW�IUDFWLRQ�ZH� �KH�ΣKH�IRU�HDFK�9H��H[FHSWLQJ�SRVVLEOH�HQG�JURXS�HIIHFWV�ORZ�0����7KHQ��WKH

VWDWLF��H[FHVV��VFDWWHULQJ�GDWD�>R9Y�ϑ�F�@H�DW�HDFK�HOXWLRQ�YROXPH�PD\�EH�XVHG�WR�FRPSXWH�WKH�PROHFXODU

ZHLJKW�DV�0H��≈��>R9Y�ϑ�F�@H�.FZH>39Y�ϑ�F�@H��JLYHQ�WKH�FRQFHQWUDWLRQ�F�+ �ΣKH�DQG�∂Q�∂F���7KH�IDFWRU

>39Y�ϑ�F�@H�PD\�EH�HYDOXDWHG�XVLQJ�HLWKHU�DQ�H[SHULPHQWDO�HVWLPDWH�IRU�>39Y�ϑ�F�@H�IURP�RQ�OLQH

PHDVXUHPHQWV�RI�>R9Y�ϑ�F�@H�DV�D�IXQFWLRQ�RI�ϑ��RU�DV�>39Y�ϑ�F�@H��≈����LI�ϑ�LV�VPDOO�HQRXJK���,Q�DGGLWLRQ�RQ�OLQH�PHDVXUHPHQWV�RYHU�D�UDQJH�RI�VFDWWHULQJ�DQJOHV�DOORZ�GHWHUPLQDWLRQ�RI��5�

*�H�DV�D�IXQFWLRQ�RI�9H�

Page 34: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

,Q�VRPH�LQVWUXPHQWV��>R9Y�ϑ�F�@H�LV�PHDVXUHG�RQO\�DW�D�VLQJOH�DQJOH��H�J������GHJUHHV��ZLWK�WKH�UHVXOWLQJ

QHHG�WR�HVWLPDWH�>39Y�ϑ�F�@H�DW�WKDW�DQJOH�D�SRVVLEOH�VRXUFH�RI�LQDFFXUDF\���,Q�RWKHU�LQVWUXPHQWV��LW�LV

SRVVLEOH�WR�PHDVXUH�WKH�VFDWWHULQJ�DW�WZR�RU�WKUHH�DQJOHV��SHUPLWWLQJ�WKH�XVH�RI�GLVV\PPHWU\�PHWKRGV�WRHVWLPDWH�>39Y�ϑ�F�@H�EDVHG�RQ�DQ�DVVXPHG�IXQFWLRQDO�IRUP�H�J���VHH�WKH�GLVFXVVLRQ�RI�GLVV\PPHWU\

PHWKRGV�DERYH���&RPSDULVRQ�RI�0Z��≈��ΣZH0H�FDOFXODWHG�IURP�WKH�GDWD�RQ�WKH�HOXHQW�ZLWK�0Z

GHWHUPLQHG�GLUHFWO\�RQ�WKH�XQIUDFWLRQDWHG�SRO\PHU�SURYLGHV�D�VHOI�FRQVLVWHQF\�FKHFN�

��������$Q�H[DPSOH�RI�WKH�XVH�RI�PXOWL�DQJOH�OLJKW�VFDWWHULQJ�ZLWK�6(&�WR�VWXG\�WKH�GLPHQVLRQV�RI�SRO\�GL�

n�KH[\OVLODQH���3'+6��DQG�SRO\�SKHQ\O�n�KH[\OVLODQH���33+6��LV�JLYHQ�LQ�)LJXUH����IURP�UHIHUHQFHV���DQG�������7KH�XSSHU�SDQHO�JLYHV�0H�DQG��5

�*�H�UHVXOWLQJ�IURP�DQDO\VLV�RI�WKH�PXOWL�DQJOH�VFDWWHULQJ�GDWD��DQG

WKH�ORZHU�SDQHO�JLYHV�WKH�UHVSRQVH�IURP�WKH�GLIIHUHQWLDO�UHIUDFWLYH�LQGH[�GHWHFWRU��QRUPDOL]HG�WR�JLYH�WKHVDPH�SHDN�UHVSRQVH���$V�H[SHFWHG�IURP�WKH�PHFKDQLVP�RI�6(&��WKH�YDOXHV�RI��5�

*�H�DUH�WKH�VDPH�DW�D

JLYHQ�HOXWLRQ�YROXPH�IRU�WKH�WZR�SRO\PHUV��EXW�WKH�YDOXHV�RI�0H�GLIIHU���,I�WKH�HOXWLRQ�YROXPH�LQFUHPHQWVDUH�VPDOO�HQRXJK��WKHQ��5�

*�H�0H�LV�H[SHFWHG�WR�DSSUR[LPDWH�WKH�YDOXH�IRU�D�PRQRGLVSHUVH�FKDLQ�

$QDO\VLV�RI�WKHVH�GDWD�SHUPLWWHG�DVVHVVPHQW�RI�WKH�GLIIHUHQFH�LQ�5�*�0�IRU�WKHVH�SRO\PHUV��UHYHDOLQJ�WKH

VXEVWDQWLDOO\�ODUJHU�SHUVLVWHQFH�OHQJWK�IRU�33+6��RZLQJ�WR�WKH�HIIHFWV�RI�WKH�SKHQ\O�VXEVWLWXHQW�

��������$QRWKHU�H[DPSOH�LV�SURYLGHG�E\�WKH�DQDO\VLV�DQG�FKDUDFWHUL]DWLRQ�RI�EUDQFKHG�PDFURPROHFXOHV�

&HUWDLQ�SRO\PHUL]DWLRQV�DUH�H[SHFWHG�WR�SURGXFH�D�UDQGRPO\�EUDQFKHG�FKDLQ�VWUXFWXUH��LQ�ZKLFK�WKH

QXPEHU�RI�EUDQFK�QRGHV�DQG�WKHLU�SODFHPHQWV�DUH�UDQGRPO\�GLVWULEXWHG�DPRQJ�WKH�FKDLQV�LQ�WKH

HQVHPEOH����F���,Q�VXFK�D�FDVH��LW�LV�QRW�SRVVLEOH�WR�DFKLHYH�D�VLPXOWDQHRXV�VHSDUDWLRQ�E\�WKH�QXPEHU�P�RI

EUDQFK�QRGHV�DQG�RYHUDOO�PROHFXODU�ZHLJKW�0��DV�HDFK�PROHFXOH�LQ�WKH�HQVHPEOH�LV�GLVWLQFW�LQ�WKLV

UHVSHFW���2QH�FRXOG�FRQFHLYH�D�VHSDUDWLRQ�E\�HLWKHU�S�RU�0��ZLWK�HDFK�VHSDUDWHG�FRPSRQHQW�WKHQ�QDUURZ

LQ�RQH�IHDWXUH��DQG�SRO\GLVSHUVH�LQ�WKH�RWKHU���$QDO\VLV�RI�6(&�RI�VXFK�D�SRO\PHU�VXJJHVWV�WKDW�DOWKRXJKWKH�SRO\PHU�DW�HDFK�HOXWLRQ�YROXPH�9H�LV�SRO\GLVSHUVH�LQ�ERWK�S�DQG�0��WKH�GLVWULEXWLRQ�LQ�0�LV�PXFKQDUURZHU�WKDQ�WKDW�LQ�S��������&RQVHTXHQWO\��RQ�OLQH�GHWHUPLQDWLRQ�RI�0Z�DQG��5

�*�/6�RI�WKH�HOXHQW�DV

IXQFWLRQV�RI�9H�RIIHUV�WKH�SRVVLELOLW\�WKDW�DQ�DYHUDJH�JH�PD\�EH�HVWLPDWHG�IRU�DQ�HQVHPEOH�WKDWDSSUR[LPDWHV�PRQRGLVSHUVLW\�LQ�0��ZLWK�D�UDQGRP�GLVWULEXWLRQ�LQ�S��ZLWK�JH� ��5

�*�/6��>5

�*�/6@OLQ��ZKHUH

>�5�*�/6@OLQ�LV�IRU�D�OLQHDU�SRO\PHU�ZLWK�VDPH�PROHFXODU�ZHLJKW�DV�WKH�EUDQFKHG�FKDLQ���,Q�WKLV

DSSUR[LPDWLRQ��WKHRUHWLFDO�H[SUHVVLRQV������IRU�J�IRU�D�SRO\PHU�PRQRGLVSHUVH�LQ�0��ZLWK�D�UDQGRP

GLVWULEXWLRQ�LQ�S��ZRXOG�EH�XVHG�WR�HVWLPDWH�S��WKH�IRUPXOD��LQYROYLQJ�VXPPDWLRQV��LV�UHDGLO\�FDOFXODWHG

ZLWK�D�GHVN�WRS�FRPSXWHU���$Q�H[DPSOH�RI�GDWD�RI�WKLV�W\SH�LV�JLYHQ�LQ�)LJXUH���IRU�VDPSOHV�RI�OLQHDU�DQG

EUDQFKHG�SRO\�PHWK\O�PHWKDFU\ODWHV����������$FFRUGLQJ�WR�WKH�SUHFHGLQJ��WKHVH�GDWD�PD\�EH�XVHG�WRHVWLPDWH�JH��DQG�KHQFH�WKH�EUDQFKLQJ�IUHTXHQF\��DV�D�IXQFWLRQ�RI�PROHFXODU�ZHLJKW�SURYLGHG�D�UHOLDEOH

Page 35: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

HVWLPDWH�IRU�>�5�*�/6@OLQ�LV�DYDLODEOH���$V�GHPRQVWUDWHG�LQ�)LJXUH����WKH�ODWWHU�PD\�QRW�EH�UHDGLO\�DYDLODEOH

DW�WKH�KLJKHU�PROHFXODU�ZHLJKWV�HQFRXQWHUHG�ZLWK�EUDQFKHG�FKDLQV���)RU�WKH�GDWD�LQ�)LJXUH����WKHGHSHQGHQFH�RI�>�5�

*�/6�0Z@OLQ�RQ�0Z�LV�VWURQJHU�WKDQ�DQWLFLSDWHG�IRU�WKH�ODUJHU�9H��SHUKDSV�UHIOHFWLQJ�WKH

HIIHFWV�RI�LQFUHDVHG�PROHFXODU�ZHLJKW�GLVSHUVLW\�ZLWK�LQFUHDVLQJ�9H�ZLWK�WKH�FROXPQ�VHW�XWLOL]HG���7ZR

H[WUDSRODWLRQV�KDYH�EHHQ�SUHVHQWHG�DQG�XVHG�WR�HVWLPDWH�JH��ZLWK�WKH�WUXH�YDOXH�OLNHO\�VRPHZKHUH

EHWZHHQ�WKHVH�HVWLPDWHV�

��������7KH�VL]H�GLVWULEXWLRQV�LQ�YHVLFOH�SUHSDUDWLRQV�VLPLODU�WR�WKDW�GHVFULEHG�LQ�WKH�QH[W�VHFWLRQ�KDYH�EHHQ

H[DPLQHG�XVLQJ�IORZ�ILHOG�IORZ�FKURPDWRJUDSK\��)))&���������$OWKRXJK�D�SURFHGXUH�LQYROYLQJ

VLPXOWDQHRXV�GHWHUPLQDWLRQ�RI�WKH�VFDWWHULQJ�DQG�WKH�FRQFHQWUDWLRQ�RI�WKH�HOXHQW�FRXOG�KDYH�EHHQIROORZHG��RQO\�DQ��H[FHVV��LQVWUXPHQW�UHVSRQVH�*�ϑ�F��SURSRUWLRQDO�WR�R9Y�ϑ�F��ZDV�GHWHUPLQHG�DV�D

IXQFWLRQ�RI�HOXWLRQ�YROXPH���2ZLQJ�WR�WKH�ORZ�FRQFHQWUDWLRQV�XVHG��VXFK�WKDW��$�0F�������LW�ZDVDVVXPHG�WKDW�FΓ9Y�F���≈����LQ�FDOFXODWLRQV�RI�WKH�QXPEHU�IUDFWLRQ�GLVWULEXWLRQ�Qµ���7KHQ��VLQFH�>R9Y�ϑ�F�@µ �.0�

µ3µ�ϑ���νµ1$�IRU�HDFK�IUDFWLRQ�LQ�WKLV�DSSUR[LPDWLRQ��ZLWK�νµ�WKH�QXPEHU�FRQFHQWUDWLRQ��WKH

QXPEHU�IUDFWLRQ�ZDV�EH�FRPSXWHG�DV

Qµ *µ�ϑ�F��0

�µ3µ�ϑ���

Σ*µ�ϑ�F��0�µ3µ�ϑ���

����

,Q�WKH�DQDO\VLV��3µ�ϑ����ZDV�ILWWHG�WR�WKH�H[SUHVVLRQ�IRU�D�KROORZ�VKHOO��WKH�5*'�DSSUR[LPDWLRQ�EHLQJ

DGHTXDWH���WR�JLYH�WKH�RXWHU�UDGLXV�5µ�IRU�HDFK�HOXHQW�IUDFWLRQ��RQ�WKH�DVVXPSWLRQ�WKDW�WKH�VKHOO�WKLFNQHVV

∆VK�ZDV�LQYDULDQW�ZLWK�5µ��DQG�FRXOG�EH�HYDOXDWHG�IRU�WKH�XQIUDFWLRQDWHG�SRO\PHU��DV�GHVFULEHG�LQ�WKH�QH[WVHFWLRQ���7KH�H[SUHVVLRQ�JLYHQ�DERYH�ZDV�WKHQ�XVHG�WR�FRPSXWH�0µ��XVLQJ�5µ��∆VK�DQG�Y���WR�SHUPLW

HYDOXDWLRQ�RI�Qµ�IRU�HDFK�5µ���$V�DQWLFLSDWHG�IURP�WKH�PHFKDQLVP�IRU�)))&��5µ�LQFUHDVHG�OLQHDUO\�ZLWK

HOXWLRQ�YROXPH��H[FHSW�IRU�HDUO\�WLPHV��IRU�ZKLFK�WKH�ZHDN�VFDWWHULQJ�PD\�KDYH�LQWURGXFHG�HUURU�LQ�WKHHYDOXDWLRQ�RI�5µ�

4.2 Light scattering from vesicles and stratified spheres��������0DQ\�XQLODPHOODU�YHVLFOHV�FRPSULVH�D�VLQJOH�FORVHG�VKHOO�ELOD\HU��������7KH\�PD\�EH�SUHSDUHG�ZLWK�D

VSKHULFDO�VKDSH��DQG�WKDW�VKDSH�PD\�EH�IXUWKHU�VWDELOL]HG�E\�D�VOLJKW�LPEDODQFH�LQ�WKH�FRPSRVLWLRQV�RI�WKH

YHVLFOH�LQWHULRU�DQG�H[WHULRU��WR�FUHDWH�D��VPDOO��SRVLWLYH�RVPRWLF�SUHVVXUH�RQ�WKH�LQWHULRU���6XFK�YHVLFOHVSURYLGH�DQ�H[DPSOH�RI�D�VKHOO�OLNH�VWUXFWXUH��ZLWK�D�VKHOO�WKLFNQHVV�∆VK�JHQHUDOO\�PXFK�VPDOOHU�WKDQ�WKH

RXWHU�UDGLXV�5�RI�WKH�YHVLFOH���7KH�WKLFNQHVV�∆SODQDU�RI�DQ�DQDORJRXV�SODQDU�ELOD\HU�PD\�EH�FRPSXWHG�DV

Page 36: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

∆SODQDU� ��9OLSLG�$OLSLG��ZKHUH�9OLSLG�DQG�$OLSLG�DUH�WKH�YROXPH�DQG�FURVV�VHFWLRQDO�DUHD�RI�WKH�PROHFXOHV�LQ

WKH�ELOD\HU��UHVSHFWLYHO\���,W�LV�H[SHFWHG�WKDW�∆VK��≈��∆SODQDU�ZLWK�LQFUHDVLQJ�5���)RU�D�VKHOO��∆VK�PD\�EH

FDOFXODWHG�IURP�WKH�UDWLR�RI�LWV�YROXPH�Y�0�1$�WR�LWV�VXUIDFH�DUHD��π5���ZKHUH�Y��LV�WKH�VSHFLILF�YROXPH

RI�WKH�VKHOO�

Y�0�1$ �π5�∆VK^���±���∆VK�5�������∆VK�5�

���` ����

&RQVHTXHQWO\��WKH�UDWLR�RI�Y�0�WR�5�*�PD\�EH�XVHG�WR�DSSUR[LPDWH�∆VK�IRU�VSKHULFDO��PRQRGLVSHUVH

YHVLFOHV���7KH�UHODWLRQ�39Y�ϑ����JLYHQ�DERYH�IRU�D�VKHOO�PD\�EH�XVHG�WR�FRPSXWH�5�*�DV

5�* 5��

88

�����±����±��∆VK�5�

����±����±��∆VK�5�

�� � ���D�

5 �5�*�

����^�����������β�����������β������«` ���E�

ZKHUH�β� �Y�0��π1$�5�*�

������7KHQ�

∆VK Y�0

�π1$5�*�^�����������β�����������β������«`�� ����

,QVSHFWLRQ�VKRZV�WKDW�∆VK��≈��Y�0��π1$5�*�DQG�5��≈���5

�*�

����WR�D�JRRG�DSSUR[LPDWLRQ�IRU������ZLWK

FRUUHFWLRQ�IDFWRUV�UHDGLO\�FDOFXODWHG�XVLQJ�H[SHULPHQWDO�GDWD�IRU���/LJKW�VFDWWHULQJ�GDWD�RQ�XQLODPHOODU

YHVLFOHV�RI�SKRVSKDWLG\OFKROLQH�SUHSDUHG�RYHU�D�UDQJH�RI�VL]H�ZHUH�DQDO\]HG�WR�REWDLQ�5�DQG�∆VK��DIWHU

H[WUDSRODWLRQ�WR�LQILQLWH�GLOXWLRQ��ZLWK�UHVXOWV�ZKLFK�JDYH�∆VK�D�ZHDNO\�GHFUHDVLQJ�IXQFWLRQ�RI�LQFUHDVLQJ

5��WHQGLQJ�WR�∆SODQDU��∆VK��≈������QP�DQG�5��≈��������QP�IRU�WKH�VHYHUDO�VDPSOHV�H[DPLQHG������������

��������6L]H�GLVWULEXWLRQV�IRU�YHVLFOHV�ZLWK�FKDUDFWHULVWLFV�VLPLODU�WR�WKRVH�GLVFXVVHG�DERYH�KDYH�EHHQUHSRUWHG�IURP�LQYHUVLRQ�RI�39Y�ϑ�F���XVLQJ�D�QRQQHJDWLYH�OHDVW�VTXDUHV�ILW�RYHU�D�SUHGHWHUPLQHG�VHOHFWLRQ

RI�UDGLL��XVLQJ�39Y�ϑ�F��IRU�D�YHVLFOH��DQG�WKH�DVVXPSWLRQ�WKDW�FΓ9Y�F���≈����LQ�WKH�DQDO\VLV��������7KH

DXWKRUV�UHSRUW�QR�VLJQLILFDQW�GLIIHUHQFH�EHWZHHQ�WKH�XVH�RI�WKH�5*'�DSSUR[LPDWLRQ�DQG�WKH�0LH�WKHRU\

IRU�KROORZ�YHVLFOHV��RZLQJ�WR�WKH�VPDOO�UDGLXV��≈����QP���DQG�DOWKRXJK�WKH�GLVWULEXWLRQ�IXQFWLRQV�REWDLQHG

ZHUH�UHSURGXFLEOH��WKH\�GLG�GLIIHU�VLJQLILFDQWO\�IURP�WKRVH�REWDLQHG�E\�LQYHUVLRQ�RI�G\QDPLF�OLJKW

VFDWWHULQJ�GDWD���7KH�ODWWHU�JDYH�D�EURDGHU�GLVWULEXWLRQ��HVSHFLDOO\�IRU�ODUJHU�SDUWLFOH�UDGLL���$PRQJ

Page 37: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

SRVVLEOH�UHDVRQV�FLWHG�IRU�WKLV�GLVFUHSDQF\��LW�ZDV�QRWHG�WKDW�WKH�H[SHULPHQWDO�WLPH�UHTXLUHG�IRU�G\QDPLF

GDWD�DFTXLVLWLRQ�ZDV�PXFK�ORQJHU�WKDQ�WKDW�IRU�VWDWLF�GDWD��KRXUV�FRPSDUHG�ZLWK�PLQXWHV���DQG�WKDW

LQWHUSDUWLFOH�DJJUHJDWLRQ�PD\�KDYH�LQWHUYHQHG�GXULQJ�WKDW�ORQJHU�WLPH�WR�LQWURGXFH�HUURUV�LQ�WKH�G\QDPLF

GDWD���$QRWKHU�H[DPSOH�RI�DQ�DQDO\VLV�RQ�KROORZ�SRO\VW\UHQH�VSKHUHV�GLVSHUVHG�LQ�ZDWHU������SURGXFHG�WKHUHVXOWV�VKRZQ�LQ�)LJXUH����DJDLQ�XQGHU�WKH�DVVXPSWLRQ�WKDW�FΓ9Y�F���≈������7KH�VSKHUHV�KDG�D�UDGLXV�RI

DERXW�����µP��ODUJH�HQRXJK�WR�UHTXLUH�WKH�XVH�RI�0LH�WKHRU\�LQ�WKH�DQDO\VLV�RI�WKH�GDWD�DW�WKH�ODUJHU�T��WKH

GLIIHUHQFH�EHWZHHQ�WKH�XVH�RI�0LH�WKHRU\�DQG�WKH�5*'�DSSUR[LPDWLRQ�LV�VKRZQ�LQ�)LJXUH�����7KH�VL]H

GLVWULEXWLRQ�REWDLQHG�IURP�G\QDPLF�OLJKW�VFDWWHULQJ�ZDV�VKLIWHG�WR�VPDOOHU�VL]HV��VHH�)LJXUH��E��IRU

UHDVRQV�QRW�GHILQLWLYHO\�XQGHUVWRRG���������%ORFN�FRSRO\PHUV�PD\�IRUP�D�FRUH�VKHOO�PLFHOOH�LQ�VROXWLRQ��ZLWK�D�UHVHPEODQFH�WR�D�YHVLFOH�RU

KROORZ�VKHOO��EXW�ZLWK�VFDWWHULQJ�IURP�WKH�FRUH�DV�ZHOO�DV�WKH�VKHOO��������,Q�WKHVH�FDVHV��IRU�D�V\VWHP�ZLWK

PLFHOOHV�QHDUO\�PRQRGLVSHUVH�LQ�VL]H�DQG�VWUXFWXUH��39Y�ϑ,F��ZRXOG�EH�JLYHQ�E\�(TXDWLRQ������IRU�D�VKHOO

LQ�WKH�5*'�UHJLPH��RU�DQ�DSSURSULDWH�UHODWLRQ�IRU�WKH�0LH�UHJLPH����S��ZLWK�VFDWWHULQJ�VLPLODU�WR�WKDW�IRU�D

YHVLFOH��EXW�ZLWK�D�FRUH�ZLWK�D�UHIUDFWLYH�LQGH[�GLIIHUHQW�IURP�WKDW�RI�WKH�VROYHQW���)RU�H[DPSOH��LQ�WKLV

FDVH��VLQFH�∆�$%� ����IRU�WKH�FHQWUR�V\PPHWULF�PLFHOOH��DQG

�5�*�/6 �����^�[5�

$������±�[�>5�%�±�5

�$@�>5

�%�±�5

�$@` ����

ZLWK�WKH�UHODWLRQ�GLVFXVVHG�DERYH�IRU�D�VSKHUH�RI�UDGLXV�5$�FRDWHG�E\�D�VKHOO�RI��RXWHU��UDGLXV�5%�DQG

WKLFNQHVV�∆� �5%�±�5$��DQG�[� ��Z$ψ$�>Z$ψ$������±�Z$�ψ%@��6LQFH�WKH�UHIUDFWLYH�LQFUHPHQWV�ψ$��DQG�ψ%

PD\�EH�HLWKHU�QHJDWLYH��SRVLWLYH�RU�]HUR��DV�PD\��5�*�/6��ZKLFK�FRQVHTXHQWO\�GRHV�QRW�EHDU�DQ\�VLPSOH

JHRPHWULF�VLJQLILFDQFH���2ZLQJ�WR�V\PPHWU\���5�*�/6�IRU�D�VSKHUH�ZLWK�PRUH�FRPSOH[��EXW�VSKHULFDOO\

V\PPHWULF��GLVWULEXWLRQ�ψ�U��RI�UHIUDFWLYH�LQGH[�LQFUHPHQW�DQG�GHQVLW\�ρ�U��DERXW�WKH�FHQWHU�RI�PDVV�PD\

EH�H[SUHVVHG�E\�FRQYHUWLQJ�WKH�VXPPDWLRQV�XVHG�DERYH�LQ�WKH�5*'�DSSUR[LPDWLRQ�WR�LQWHJUDOV�����

�5�*�/6 ∫

5U�ψ�U�ρ�U�GU�∫�

5U�ψ�U�ρ�U�GU ����

)RU�H[DPSOH��WKH�SUHFHGLQJ�H[SUHVVLRQ�UHVXOWV�E\�VHSDUDWLQJ�WKH�LQWHJUDOV�LQWR�WZR�SDUWV��IURP���WR�5$��DQG

5$�WR�5%�

Page 38: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

4.3 Scattering from very large particles��������$V�QRWHG�DERYH��IRU�YHU\�ODUJH�VSKHUHV��ZLWK�ERWK�x�!!���DQG�SKDVH�VKLIW�PDJQLWXGH�α_x��±���_�!����

39Y�ϑ�F��UHGXFHV�WR�WKH�IRUP�IRU�)UDXQKRIHU�GLIIUDFWLRQ�IURP�D�FLUFXODU�DSHUWXUH��RU�RSDTXH�GLVN���ZLWK�WKH

UHVXOW�WKDW�DQ�H[DFW�LQWHJUDO�H[SUHVVLRQ�PD\�EH�ZULWWHQ�IRU�WKH�LQYHUVLRQ�RI�39Y�ϑ�F��WR�REWDLQ�WKH�VL]H

GLVWULEXWLRQ�LQ�WHUPV�RI�WKH�VFDWWHUHG�LQWHQVLWLHV���7KXV��LQ�WKLV�WUHDWPHQW��XVH�LV�VRPHWLPHV�PDGH�RI�WKH

H[SUHVVLRQ����������

/�[��[�� ∫[�[�

�V^�-��V��V`�GV� ��-���[�����-

���[����±��>-

���[�����-

���[��@ ����

,Q�WKLV�UHJDUG��DQ�DSSDUDWXV�LV�XVHG�ZLWK�D�VHULHV�RI�FRQFHQWULF�ULQJ�SKRWRGLRGHV��ZLWK�HDFK�SKRWRGLRGHV

VSDQQLQJ�VXFFHVVLYH�DQJXODU�LQFUHPHQWV���7KXV��WKH�IRUZDUG�VFDWWHULQJ�LQWHQVLW\�LV�GHWHUPLQHG�RYHU�D�VHW

RI�DQQXODU�ULQJV�LQ�WKLV�DSSDUDWXV��UDWKHU�WKDQ�DV�D�IXQFWLRQ�RI�ϑ��ZLWK�WKH�IXQFWLRQ�/�ϑ�,ϑ���UHSUHVHQWLQJ

WKH�IUDFWLRQ�RI�WKH�LQWHQVLW\�LQFLGHQW�RQ�D�SDUWLFOH�VFDWWHUHG�EHWZHHQ�DQJOHV�ϑ��DQG�ϑ����7KH�IXQFWLRQ

/���ϑ��H[KLELWV�D�VHULHV�RI�SODWHDXV�IRU�YDOXHV�RI�ϑ�IRU�ZKLFK�-��αϑ��αϑ� ����WKH�ILUVW�WKUHH�RI�WKHVH�JLYHQ

E\�αϑ�HTXDO�WR������������DQG��������H�J���VHH�UHIHUHQFHV���P����P������DQG�������,Q�SUDFWLFH��WKH

DYDLODEOH�DQJXODU�UDQJH�LV�DGMXVWHG�IRU�WKH�VHW�RI�ULQJ�SKRWRGLRGHV�ZLWK�IL[HG�JHRPHWU\�E\�XVLQJ�D�VHULHV

RI�OHQVHV�RI�GLIIHULQJ�IRFDO�OHQJWK�I�WR�PDQLSXODWH�WKH�DQJXODU�UDQJH��ZLWK�ϑ�≈�U�I��ZKHUH�U�LV�WKH�UDGLDO

SRVLWLRQ�RI�WKH�OLJKW�RQ�WKH�SKRWRGLRGH���7KH�PD[LPXP�DQJOH�XVHG�VKRXOG�EH�ODUJH�HQRXJK�WR�HQFRPSDVV

HVVHQWLDOO\�DOO�RI�WKH�VFDWWHULQJ��IRU�H[DPSOH�WR�DYRLG�VNHZLQJ�WKH�PHDVXUHPHQW�WR�WKH�ODUJHU�FRPSRQHQWV

LQ�D�SRO\GLVSHUVH�PL[WXUH��D�SUREOHP�FDOOHG��YLJQHWWLQJ��LQ�VRPH�RI�WKH�VSHFLDOL]HG�OLWHUDWXUH�LQ�WKLV

DUHD�������KRZHYHU��VHH�EHORZ�IRU�DQ�H[DPSOH�RI�D�UHODWHG�SUREOHP�LI�WKH�PLQLPXP�DQJOH�LV�WRR�ODUJH�

:KHQ�DSSOLHG�WR�WKH�DQDO\VLV�RI�D�SRO\GLVSHUVH�VDPSOH��ZLWK�VLQ�ϑ��≈�ϑ������������

/�ϑ��ϑ�� + Σµ�Qµα

�µ^-

���αµϑ�����-

���αµϑ����±��>�-

���αµϑ�����-

���αµϑ��@` ����

ZKHUH�Qµ�LV�WKH�QXPEHU�IUDFWLRQ�RI�VSKHUHV�ZLWK�UDGLXV�5µ���,Q�SUDFWLFH��WKH�VXP�RYHU�µ�LV�DSSUR[LPDWHG

E\�D�VPDOO�QXPEHU�RI�GLVFUHWH��FRPSRQHQWV���HDFK�RI�WKHVH�DFWXDOO\�UHSUHVHQWLQJ�DQ�DYHUDJH�RYHU

FRPSRQHQWV�LQ�D��VL]H�FODVV��GHWHUPLQHG�E\�WKH�PHDQ�UDGLXV�RI�WKH�GHWHFWRU�ULQJ�DQG�WKH�IRFDO�OHQJWK�RI

WKH�OHQV�LQ�XVH������

��������$V�PHQWLRQHG�DERYH��D�V\VWHPDWLF��FRQVLVWHQW�GLVFXVVLRQ�RI�PHDVXUHPHQWV�LQ�WKH�)UDXQKRIHU

GLIIUDFWLRQ�UHJLPH�PD\�EH�IRXQG�LQ�UHIHUHQFH����IRU�WKH�UHSUHVHQWDWLYH�RSWLFV�DQG�LQYHUVLRQ�PHWKRGV�

,QVWUXPHQWV�FROOHFWLQJ�WKH�VFDWWHUHG�OLJKW�RYHU�D�VPDOO�DQJXODU�LQFUHPHQW�DW�D�JLYHQ�ϑ�DUH�FRQVLGHUHG�

Page 39: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

DORQJ�ZLWK�LQVWUXPHQWV�FROOHFWLQJ�OLJKW�IURP�VRPH�VPDOO�DQJOH�ϑPLQ�WKURXJK�DQJOHV�XS�WR�ϑ��ERWK�W\SHV

DUH�XVHG�LQ�SUDFWLFH���7KH�IRUPV�RI�WKH�LQWHJUDO�H[SUHVVLRQV�XVHG�LQ�WKH�LQYHUVLRQ�GHSHQG�QRW�RQO\�RQ�WKH

RSWLFDO�DUUDQJHPHQW��EXW�DOVR�RQ�WKH�QXPEHU�RI�WLPHV�DQ�LQWHJUDWLRQ�E\�SDUWV�LV�XVHG�WR�GHYHORS�WKH

LQWHJUDO�HTXDWLRQ�XVHG��ZLWK�FRQVHTXHQW�FKDQJH�LQ�WKH�ZD\�GDWD�DUH�SURFHVVHG�LQ�WKH�LQYHUVLRQ���,Q�WKH

LGHDO�FDVH��WKH�DFFXUDF\�RI�WKH�LQYHUVLRQ�ZRXOG�QRW�GHSHQG�RQ�WKHVH�IDFWRUV��EXW�ZLWK�UHDO�GDWD��FRQWDLQLQJ

QRLVH��DQG�OLPLWHG�WR�D�UDQJH�RI ϑ�E\�LQVWUXPHQW�GHVLJQ��WKHVH�IDFWRUV�XVXDOO\�ZLOO�DIIHFW�WKH�RXWFRPH���,Q

DGGLWLRQ��WKH�PHWKRG�XVHG�WR�SUHVHQW�WKH�VFDWWHULQJ�PHGLXP��HLWKHU�DV�D�GLVSHUVLRQ�LQ�D�IOXLG��RU�DQ

DHURVRO��PD\�DIIHFW�WKH�UHVXOWV���,Q�WKLV�DQDO\VLV��WKH�H[SUHVVLRQ�IRU�R9Y�ϑ�F��LQ�WKH�)UDXQKRIHU�OLPLW�LV

UHFDVW�DV�DQ�LQWHJUDO�����

ϑDR9Y�ϑ�F� + ∫

∞�NDE�α��ϑ�αEQ�α�Gα (��

ZKHUH�α� ��π5�λ��Q�α��LV�WKH��QXPEHU��IUDFWLRQ�RI�VSKHUHV�ZLWK�UDGLXV�EHWZHHQ�5�DQG�5�����G5��IRU�IL[HG

λ���WKH�IDFWRUV�ϑD�DQG�ϑE�DFFRXQW�IRU�SRVVLEOH�YDULDWLRQ�RI�WKH�DSHUWXUH�RYHU�ZKLFK�WKH�VFDWWHULQJ�LV

FROOHFWHG��DQG�WKH�FRQYHUVLRQ�WR�GLVWULEXWLRQV�LQ�WHUPV�RI�SDUWLFOH�YROXPH��E� ����RU�DUHD��E� ����

UHVSHFWLYHO\��DQG�NDE�α��ϑ��LV�WKH�DSSURSULDWH�VFDWWHULQJ�IXQFWLRQ�IRU�WKH�SDUWLFOH���)RU�VSKHUHV���ZLWK

VLQ�ϑ)��≈��ϑ�

NDE�α��ϑ� -���αϑ��ϑ��DαE�� ����

7KLV�H[SUHVVLRQ�PD\�WKHQ�EH�LQYHUWHG�WR�REWDLQ�αEQ�α��IRU�HDFK�α�DV�DQ�LQWHJUDO�RYHU�ϑ��IURP���WR�∞��RI�D

NHUQHO�FRPSULVLQJ�IXQFWLRQV�RI�αϑ�DQG�GHULYDWLYHV�RI�ϑDR9Y�ϑ�F����7KH�UHVXOW�PD\�EH�FDVW�LQ�VHYHUDOIRUPV��GHSHQGLQJ�RQ�D��E��DQG�ZKHWKHU�XVH�LV�PDGH�RI�LQWHJUDWLRQ�E\�SDUWV�LQ�REWDLQLQJ�WKH�UHODWLRQ�XVHG�LQ

WKH�LQYHUVLRQ���7KH�UHTXLUHG�UDQJH�RI�ϑ�LV��RI�FRXUVH��QRQSK\VLFDO��EXW�DV�WKH�NHUQHO�LQYROYHG�UHGXFHV�WR

HVVHQWLDOO\�]HUR�ZLWK�LQFUHDVLQJ�ϑ��WKH�HIIHFW�RI�WKH�QRQSK\VLFDO�XSSHU�OLPLW�RQ�ϑ�LV�XVXDOO\�QLO���7KH

LQYHUVLRQ�RI�QRLVH�IUHH�VFDWWHULQJ�GDWD�RYHU�D�VSDQ�LQ�ϑ�W\SLFDO�RI�FRPPHUFLDOO\�DYDLODEOH�SKRWRPHWHUV�LV

FRQVLGHUHG�LQ�UHIHUHQFH����IRU�ILYH�GLIIHUHQW�DUUDQJHPHQWV��DQG�D�UDQJH�RI�SDUWLFOH�VL]HV��PHDQ�GLDPHWHUV

RI���WR�����µP��RYHU�D�FHUWDLQ�GLVWULEXWLRQ�RI�VL]HV�JLYHQ�E\�D�ORJ�QRUPDO�IXQFWLRQ�LQ�WKH�SDUWLFOH�DUHD�

6HYHUDO�VWDWLVWLFDO�PHDVXUHV�RI�WKH�ILW�RI�WKH�LQYHUVLRQ�WR�WKH�VWDUWLQJ�VL]H�GLVWULEXWLRQ�JLYHQ�E\�WKH�DXWKRUV

ZKHUH�HYDOXDWHG�WR�DUULYH�DW�WKH�IROORZLQJ�SULQFLSDO�FRQFOXVLRQV�LQ�WKLV�LGHDOL]HG�FRPSDULVRQ���L��WKH

YDULRXV�PHWKRGV�DUH�HVVHQWLDOO\�HTXLYDOHQW�RYHU�D�UHODWLYHO\�QDUURZ�UDQJH�RI�SDUWLFOH�VL]H��EXW�GLIIHU

PDUNHGO\�IRU�HLWKHU�VPDOO�RU�ODUJH�SDUWLFOHV���LL��QRQH�RI�WKH�PHWKRGV�SURYLGH�D�VDWLVIDFWRU\�UHSUHVHQWDWLRQ

Page 40: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

RI�WKH�GLVWULEXWLRQ�IRU�WKH�VPDOOHU�SDUWLFOHV��DQG��LLL��WKH�PHWKRGV�YDU\�FRQVLGHUDEO\�LQ�WKHLU�SHUIRUPDQFH

IRU�GLVWULEXWLRQ�RI�ODUJHU�SDUWLFOHV���7KHVH�UHVXOWV�VXJJHVW�WKDW�ZKHUHDV�WKH�UHVSRQVH�PD\�EH�UHSURGXFLEOH�

DQG�WKHUHIRUH�RI�XVH�DV�D�TXDOLW\�FRQWURO�SURWRFRO��WKH�DEVROXWH�GLVWULEXWLRQ�VKRXOG�EH�DFFHSWHG�ZLWK

FDXWLRQ�

��������$Q�H[DPSOH�RI�WKH�FRPSDULVRQ�RI�WKH�VL]H�GLVWULEXWLRQ�GHGXFHG�IRU�VRPH�DHURVROV�XVLQJ�DQ�DSSDUDWXV

RI�WKH�W\SH�GHVFULEHG�DERYH�ZLWK�/�ϑ��ϑ���GHWHUPLQHG�RYHU�D�VHW�RI�DQJOHV�LV�VKRZQ�LQ�)LJXUH����

LQFOXGLQJ�UHVXOWV�REWDLQHG�E\�LQYHUVLRQ�RI�R9Y�ϑ�F���DQG�E\�ILWWLQJ�R9Y�ϑ�F��ZLWK�DQ�DVVXPHG�VL]HGLVWULEXWLRQ��������$Q�H[DPSOH�RI�WKH�HIIHFW�RI�WKH�FKRLFH�RI�WKH�IRFDO�OHQJWK�I�RI�WKH�OHQV�XVHG�RQ�WKH

DQDO\VLV�LV�LOOXVWUDWHG�LQ�)LJXUH����IRU�WKH�VFDWWHULQJ�IURP�SRO\GLVSHUVH�JODVV�EHDGV�ZLWK�D�VL]H�GLVWULEXWLRQ

���±����µP��FDOLEUDWHG�E\�PLFURVFRSLF�PHDVXUHPHQWV�RQ�D�ODUJH�VDPSOH�RI�WKH�EHDGV��1,67�6WDQGDUG

5HIHUHQFH�0DWHULDO�������������������'DWD�ZHUH�WDNHQ�LQ�WKH�)UDXQKRIHU�UHJLPH��x�≈�������DQG�SKDVH�VKLIW

PDJQLWXGH�α_x��±���_�!�����ZLWK�ERWK�����DQG�����PP�IRFDO�OHQJWK�OHQVHV���:KHUHDV�WKH�ODWWHU�ILWWHG�WKH

UHSRUWHG�VL]H�GLVWULEXWLRQ�ZHOO��H[FHSW�IRU�WKH�ODUJHVW�VL]H��WKH�GDWD�ZLWK�WKH�VPDOOHU�IRFDO�OHQJWK�OHQV�GLG

QRW�DIIRUG�D�PHDVXUHPHQW�DW�VPDOO�HQRXJK�ϑ�WR�SHUPLW�D�VDWLVIDFWRU\�DVVHVVPHQW�RI�WKH�SRSXODWLRQ�RI�WKH

ODUJHU�EHDGV�

������$V�PHQWLRQHG�DERYH��WKH�VFDWWHULQJ�IURP�ODUJH�SDUWLFOHV�LPPHUVHG�LQ�D�VROYHQW�VXFK�WKDW�x�≈���PD\�QRW

EH�LQ�WKH�)UDXQKRIHU�UHJLPH��EXW�UDWKHU�PD\�H[KLELW�DQRPDORXV�GLIIUDFWLRQ���7KH�DVVXPSWLRQ�WKDW

)UDXQKRIHU�GLIIUDFWLRQ�DSSOLHV�PD\�OHDG�WR�VHULRXV�HUURU�LQ�WKH�VL]H�GLVWULEXWLRQ�GHWHUPLQHG�IURP�WKH

DQJXODU�SURILOH�RI�WKH�VFDWWHUHG�OLJKW��$Q�H[DPSOH�RI�WKLV�LV�JLYHQ�LQ�)LJXUH�����VKRZLQJ�GDWD�REWDLQHG

ZLWK�WKH�����PP�IRFDO�OHQJWK�OHQV�DQG�GLVSHUVLRQV�LQ�GLIIHUHQW�OLTXLGV�WR�SURYLGH�WZR�YDOXHV�RI�x�FORVH�WR

XQLW\��x�≈������DQG������������������7KH�GDWD�RQ�/�ϑ��ϑ���H[KLELW�WKH�SURIRXQG�HIIHFW�RI�x���7KH

H[SUHVVLRQV�IRU�WKH�DQRPDORXV�VFDWWHULQJ�UHJLPH�ZHUH�XVHG�WR�FRPSXWH�/�ϑ��ϑ���XVLQJ�WKH�VL]H

GLVWULEXWLRQ��ZLWK�WKH�UHVXOWV�JLYH�WR�EH�D�UHDVRQDEOH�ILW�WR�WKH�GDWD�IRU�ERWK�YDOXHV�RI�x���)XUWKHU��WKH�GDWD

IRU�x�≈������ZHUH�LQYHUWHG�XQGHU�WZR�DVVXPSWLRQV��WKH�XVH�RI�WKH�UHODWLRQV�IRU�WKH�)UDXQKRIHU�DQG

DQRPDORXV�VFDWWHULQJ�UHJLPHV���:KHUHDV�WKH�ODWWHU�ZDV�LQ�UHDVRQDEOH�DJUHHPHQW�ZLWK�WKH�UHVXOW�REWDLQHG

ZLWK�GDWD�LQ�WKH�)UDXQKRIHU�UHJLPH��x�≈���������WKH�XVH�RI�WKH�H[SUHVVLRQV�IRU�WKH�)UDXQKRIHU�UHJLPH�JDYH

HUURQHRXV�UHVXOWV��DV�H[SHFWHG�

4.4 Intermolecular association������,QWHUPROHFXODU�DVVRFLDWLRQ�LV�QRW�XQFRPPRQ�LQ�PDFURPROHFXODU�VROXWLRQV�RU�GLVSHUVLRQV�RI�SDUWLFOHV�

HVSHFLDOO\�LQ�DTXHRXV�VROYHQW���,Q�JHQHUDO��WZR�IRUPV�PD\�EH�HQFRXQWHUHG�LQ�WKH�H[WUHPH��DVVRFLDWLRQ

LQYROYLQJ�WZR�RU�PRUH�FRPSRQHQWV�DW�HTXLOLEULXP�DW�DQ\�JLYH�FRQFHQWUDWLRQ��DQG�PHWDVWDEOH�DVVRFLDWLRQ�

Page 41: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

LQ�ZKLFK�WKH�FRPSRQHQWV�SUHVHQW�GHSHQG�RQ�SURFHVVLQJ�KLVWRU\��EXW�GR�QRW�FKDQJH�VHQVLEO\�ZLWK

FRQFHQWUDWLRQ�LQ�WKH�UDQJH�RI�LQWHUHVW�IRU�OLJKW�VFDWWHULQJ���2I�FRXUVH��LQWHUPHGLDWH�VLWXDWLRQV�PD\�DOVR

RFFXU�

������$VLGH�IURP�FULWHULRQ�LPSRVHG�E\�WKH�DQWLFLSDWHG�QDWXUH�RI�WKH�VROXWH��WKH�H[SHULPHQWHU�PD\�KDYH�OLWWOH

UHDVRQ�WR�VXVSHFW�DVVRFLDWLRQ�IURP�WKH�GHSHQGHQFH�RI�WKH�VFDWWHULQJ�RQ�FRQFHQWUDWLRQ�LQ�WKH�FDVH�RI�D

PHWDVWDEOH�DVVRFLDWLRQ���,Q�VRPH�FDVHV�RI�PHWDVWDEOH�DVVRFLDWLRQ��WKH�PROHFXODU�ZHLJKW�GHGXFHG�IURP

H[WUDSRODWLRQ�RI�.F�RVv�ϑ�F��WR�]HUR�T�DQG�LQILQLWH�GLOXWLRQ�ZLOO�GHSHQG�RQ�WHPSHUDWXUH�RU�VROYHQW�

UHYHDOLQJ�WKH�DVVRFLDWLRQ���$Q�H[DPSOH�RI�WKLV�VRUW�LQ�ZKLFK�WKH�QDWXUH�RI�LQWHUPROHFXODU�DVVRFLDWLRQ�RI�D

VROXWH�ZLWK�D�KHOLFDO�FRQIRUPDWLRQ�ZDV�HOXFLGDWHG�E\�WKH�XVH�RI�VWDWLF�DQG�G\QDPLF�OLJKW�VFDWWHULQJ�DV�D

IXQFWLRQ�RI�WHPSHUDWXUH�LV�JLYHQ�LQ�UHIHUHQFH��������,Q�WKH�FLWHG�FDVH��WKH�VFDWWHULQJ�DW�DQ\�JLYHQ

WHPSHUDWXUH�H[KLELWHG�QRUPDO�EHKDYLRU��DQG�FRXOG�QRW�KDYH�EHHQ�DQDO\]HG�WR�UHYHDO�DVVRFLDWLRQ�LI�WDNHQ

DORQH���,Q�D�GLIIHUHQW�DQG�VRPHZKDW�XQXVXDO��EXW�QRW�XQLTXH��H[DPSOH��LW�KDV�EHHQ�UHSRUWHG�WKDW

.F�RVv�ϑ�F��LV�OLQHDU�LQ�T���DOEHLW�JLYLQJ�D�PROHFXODU�ZHLJKW�WKDW�LV�PXFK�ODUJHU�WKDQ�WKH�WUXH�YDOXH�RI�0Z

IRU�WKH�VROXWH��������7KLV�ZDV�REVHUYHG�ZLWK�D�V\VWHP�WKDW�IRUPHG�D�JHO�DW�D�KLJKHU�VROXWH�FRQFHQWUDWLRQ�

VXJJHVWLQJ�WKDW�WKH�REVHUYHG�VFDWWHULQJ�EHKDYLRU�UHIOHFWV�WKH�DQWLFLSDWHG�39Y�ϑ�F��IRU�D�UDQGRPO\�EUDQFKHG

SRO\PHU������0RUH�IUHTXHQWO\��ZLWK�LQWHUPROHFXODU�DVVRFLDWLRQ�LQYROYLQJ�IOH[LEOH�FKDLQ�SRO\PHUV�

.F�RVv�ϑ�F��H[KLELWV�HQKDQFHG�VFDWWHULQJ�DW�VPDOO�T���7KLV�LV�RIWHQ�WDNHQ�DV�HYLGHQFH�IRU�WKH�SUHVHQFH�RI

DQ�DJJUHJDWHG�VSHFLHV�PL[HG�ZLWK�VROXWH�WKDW�LV�HLWKHU�IXOO\�GLVVRFLDWHG��RU�PXFK�OHVV�DJJUHJDWHG�

$OWKRXJK�UHDVRQDEOH��LW�VKRXOG�EH�UHDOL]HG�WKDW�VXFK�DQ�LQWHUSUHWDWLRQ�LV�QRW�XQLTXH�

��������$�ZHOO�GHILQHG�DQDO\VLV�LV�SRVVLEOH��DW�OHDVW�LQ�SULQFLSOH��IRU�D�FDVH�ZLWK�HTXLOLEULD�DPRQJ�RWKHUZLVH

PRQRGLVSHUVH�PRQRPHUV��GLPHUV��HWF���H�J���WKH�HTXLOLEULD�REWDLQLQJ�DPRQJ�PRQRPHUV��GLPHUV�DQG

WHWUDPHUV�IRU�KHPRJORELQ�LQ�VROXWLRQ�������������(TXLOLEULXP�DVVRFLDWLRQ�FDQ�OHDG�WR�QRQSDUDOOHO��SORWV�RI

.F�RVv�ϑ�F��YV�T��LI�WKH�VSHFLHV�DUH�ODUJH�HQRXJK���,Q�WKH�LGHDO�VLWXDWLRQ��WKH�UDWLR�RI�5�*�IRU�WKH�DJJUHJDWHV

WR�WKH�XQLPHU�ZRXOG�EH�SUHFLVHO\�NQRZQ��DV�ZRXOG�EH�WKH�HIIHFW�RI�DVVRFLDWLRQ�RQ�$���SHUPLWWLQJ�DQ

DVVHVVPHQW�RI�WKH�HTXLOLEULXP�FRQVWDQW�IRU�WKH�DVVRFLDWLRQ�JLYHQ�D�PRGHO��������$Q�LOOXVWUDWLYH�H[DPSOH�RI

WKH�HIIHFWV�RI�DVVRFLDWLRQ�LV�JLYHQ�LQ�)LJXUH������7KH�H[DPSOH�ZDV�FDOFXODWHG�RQ�WKH�DVVXPSWLRQ�WKDW�D

PRQRGLVSHUVH�OLQHDU�IOH[LEOH�FRLO�FKDLQ�RI�PROHFXODU�ZHLJKW�0�PD\�XQGHUJR�HQG�WR�HQG�GLPHUL]DWLRQ�WR

FUHDWH�D�OLQHDU�FKDLQ�RI�PROHFXODU�ZHLJKW��0��ZLWK�HTXLOLEULXP�FRQVWDQW�.HT���)XUWKHU��LW�ZDV�DVVXPHG

WKDW�∂OQ5�*� �∂OQ0� �ε��DQG�∂OQ$�� �∂OQ0� �γ��ZLWK�ε� �����±�γ�����IROORZLQJ�WKH�XVXDO�DSSUR[LPDWLRQ�IRU

IOH[LEOH�FKDLQ�SRO\PHUV����I����G�������)LQDOO\��LQ�DGGLWLRQ�WR�WKH�H[SUHVVLRQV�IRU�0/6� �0Z���5�*�/6� ��5

�*�]�

DQG�39Y�ϑ�F��JLYHQ�DERYH���$��/6�ZDV�FDOFXODWHG�DV��������

Page 42: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

�$��/6 ΣµΣν�Zµ0µZν0ν�$��µν�0Z ����

ZKHUH��$��µµ�LV�$��IRU�PRQRGLVSHUVH�FRPSRQHQW�µ��DQG��$��µν�LV�DSSUR[LPDWHG�E\�^�$��µµ�$��νν`��������

�����:LWK�WKHVH�UHODWLRQV�

0Z 0����±��ζ� ����

�5�*�] �5�

*�0>ζ��������ε����±��ζ�@�����±��ζ� ����

39Y�ϑ�F� ^α>39Y�ϑ�F�@0����������±��ζ�>39Y�ϑ�F�@�0`�����±��ζ� ����

�$��/60Z �$��00^ζ��������γ/2����±��ζ�@������±��ζ� ����

ζ �a.HT���$��00F�^���������$��00F�a.HT������±���` ����

ZKHUH�ζ�LV�WKH�GHJUHH�RI�DVVRFLDWLRQ��DQG�39Y�ϑ�F��LV�JLYHQ�E\�WKH�H[SUHVVLRQ�LQ�7DEOH����ZLWK�X�UHSODFHG

E\��εX��IRU�>39Y�ϑ�F�@�0���7KH�FDOFXODWLRQV�ZHUH�FRPSOHWHG�IRU�ε� ������γ� �������RYHU�D�UDQJH�RI��$��00F

DQG�a.HT� ��$��00�.HT���,W�PD\�EH�QRWHG�WKDW�IRU�ODUJH�

a.HT��WKH�H[WUDSRODWLRQ�WR�REWDLQ�WKH�WUXH�PROHFXODU

ZHLJKW�0�DW�LQILQLWH�GLOXWLRQ��ζ� ����PD\�QRW�EH�SRVVLEOH��DQG�WKH�H[SHULPHQWHU�PD\�HUURQHRXVO\�DVVXPH

WKDW�WKH�PROHFXODU�ZHLJKW�RI�WKH�SRO\PHU�DW�LQILQLWH�GLOXWLRQ�LV��0���7KH�HIIHFW�RI�WKH�DVVRFLDWLRQ�LQ

SURGXFLQJ�QRQSDUDOOHO�.F�RVv�ϑ�F��YV�T��IRU�GDWD�DW�GLIIHUHQW�FRQFHQWUDWLRQ�LV�LOOXVWUDWHG�LQ�)LJXUH����

��������7KH�VLWXDWLRQ�LV�XVXDOO\�PRUH�FRPSOH[�WKDQ�WKH�LGHDOL]HG�HTXLOLEULXP�DVVRFLDWLRQ��DQG�DQDO\VLV�RI

VXFK�EHKDYLRU�LV�VRPHWLPHV�IDFLOLWDWHG�E\�DQ�DSSUR[LPDWH�UHSUHVHQWDWLRQ�ZLWK�D�IHZ�SVHXGR�FRPSRQHQWV�RIWHQ�WZR���HDFK�RI�ZKLFK�GRPLQDWHV�WKH�VFDWWHULQJ�RYHU�D�OLPLWHG�UDQJH�RI�T��ZLWK�0��$��DQG�39Y�ϑ�F�

UHSODFHG�E\�WKHLU�OLJKW�VFDWWHULQJ�DYHUDJHV�IRU�HDFK�SVHXGR�FRPSRQHQW���7KDW�LV�

RVv�ϑ�F� ≈ Σµ>RVv�ϑ�F�@µ�� ��.�Σµ

80F

39Y�ϑ�F�������$�0F

µ�F����

ZKHUH�WKH�VXEVFULSW��F��LQGLFDWHV�WKDW�WKH�SDUDPHWHUV�0�DQG�$���DQG�WKH�FKDUDFWHU�RI�WKH�IXQFWLRQ�39Y�ϑ�F�

PD\�DOO�GHSHQG�RQ�F�WKURXJK�WKH�GHSHQGHQFH�RI�WKH�VWDWH�RI�DJJUHJDWLRQ�RQ�F��QRWH�WKDW�WKLV�IRUP�GRHV�QRW

SURSHUO\�DFFRXQW�IRU�WKH�DYHUDJLQJ�DPRQJ�VFDWWHULQJ�HOHPHQWV��EXW�LW�FDQ�SURYLGH�D�XVHIXO�DSSUR[LPDWLRQ

Page 43: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

LI�WKH�FRPSRQHQWV�DUH�IHZ�DQG�ZLGHO\�VHSDUDWHG�LQ�VL]H���7KH�DQDO\VLV�RI�WKH�VXVSHFWHG�DVVRFLDWLRQ�ZLWK

WKLV�UHODWLRQ�LV�VLPLODU�WR�WKH�GHWHUPLQDWLRQ�RI�WKH�VL]H�GLVWULEXWLRQ�GLVFXVVHG�DERYH�LQ�WKH�DEVHQFH�RI

DVVRFLDWLRQ��EXW�LV�PDGH�PRUH�FRPSOH[�DV�LW�LQYROYHV�GDWD�RYHU�D�UDQJH�RI�F��ZLWK�FRQFHQWUDWLRQ�GHSHQGHQWSDUDPHWHUV��DQG�WKH�IXQFWLRQ�39Y�ϑ�F��PD\�QRW�EH�WKH�VDPH��RU�HYHQ�NQRZQ��IRU�DOO�RI�WKH�DJJUHJDWHV

SUHVHQW��DQG�PD\�GHSHQG�RQ�F���,Q�VRPH�RI�WKH�OLWHUDWXUH�RQ�VPDOO±DQJOH�[±UD\�VFDWWHULQJ��LW�KDV�EHHQFRPPRQ�WR�DVVXPH�WKDW�39Y�ϑ�F��≈�H[S>±�5�

*�/6T���@�IRU�HDFK�SVHXGR�FRPSRQHQW��DQG�IUHTXHQWO\�WR

DVVXPH�WKDW��$�F������LQ�DQ�DQDO\VLV�WR�HVWLPDWH��0Z�µZµ�DQG�>�5�*�/6@µ�IRU�WKH�DVVXPHG�SVHXGR

FRPSRQHQWV��DV�D�IXQFWLRQ�RI�WKH�RYHUDOO�FRQFHQWUDWLRQ�F����F���6LPLODU�WUHDWPHQWV�DUH�DSSOLHG�ZLWK�OLJKWVFDWWHULQJ��RIWHQ�UHVWULFWHG�WR�VPDOO�HQRXJK�T�WKDW�WKH�H[SDQVLRQ�RI�39Y�ϑ�F��PD\�EH�DSSOLHG���7KH�DGYHQW

RI�G\QDPLF�OLJKW�VFDWWHULQJ�KDV�DOORZHG�VRPH�LPSURYHPHQW�LQ�DQDO\VHV�RI�WKLV�W\SH��VLQFH�RQH�FDQ�DSSO\�D

VLPLODU�H[SUHVVLRQ�IRU�WKH�G\QDPLF�VFDWWHULQJ�LQ�WHUPV�RI�SVHXGR�FRPSRQHQWV�

J���τ��ϑ�F� ≈ Σµ

Uµ�ϑ�F�H[S>�τ�γµ�ϑ�F�@ ����

ZKHUH�Uµ�ϑ�F�� �>RVv�ϑ�F�@µ�RVv�ϑ�F����$QDO\VLV�RI�J���τ��ϑ�F��WKHQ�SURYLGHV�LQIRUPDWLRQ�RQ��0Z�µZµ�DQG

D�K\GURG\QDPLF�OHQJWK�>D/6�@µ� �N7T��6πηVγµ�ϑ�F��IRU�HDFK�FRPSRQHQW��DQG�VRPH�GHJUHH�RI�FRQVLVWHQF\�LV

H[SHFWHG�DPRQJ�WKH�HVWLPDWHV�IRU��0Z�µZµ�REWDLQHG�LQ�WKH��WZR�H[SHULPHQWV���)XUWKHU��FRPSDULVRQ�RI>D/6@µ�DQG�>�5�

*�/6@µ�FDQ�SURYLGH�LQVLJKW�RQ�WKH�QDWXUH�RI�WKH�FRPSRQHQW���,Q�VRPH�FDVHV��LW�PD\�EH

UHDVRQDEOH�WR�HVWLPDWH��0Z�µ�IRU�WKH�FRPSRQHQW�ZLWK�VPDOOHVW��0Z�µ�ZLWK�WKH�DVVXPSWLRQ�WKDW�Zµ��≈���

IRU�WKDW�FRPSRQHQW��L�H���WKH�VFDWWHULQJ�DW�VPDOO�T�UHIOHFWV�D�VPDOO�IUDFWLRQ�RI�D�ODUJH�FRPSRQHQW���$Q

H[DPSOH�RI�D�WUHDWPHQW�RI�WKLV�NLQG�PD\�EH�IRXQG�LQ�UHIHUHQFH�������,Q�VRPH�FDVHV��WKH�GHSRODUL]HG

VFDWWHULQJ�FDQ�EH�SDUWLFXODUO\�XVHIXO�LI�WKH�DVVRFLDWLRQ�LQGXFHV�RUGHU�LQ�WKH�DJJUHJDWHG�VSHFLHV�����������

4.5 Scattering with charged species������,Q�VRPH�FDVHV��WKH�SRO\PHULF�DQG�FROORLGDO�VFDWWHULQJ�VSHFLHV�PD\�EHDU�HOHFWULF�FKDUJH���:KHUHDV

V\QWKHWLF�SRO\HOHFWURO\WHV�XVXDOO\�EHDU�HLWKHU�DQLRQLF�RU�FDWLRQLF�FKDUJH��ELRORJLFDO�PDFURPROHFXOHV�DUH

RIWHQ�DPSKRWHULF��ZLWK�D�FKDLQ�EHDULQJ�ERWK�SRVLWLYH�DQG�QHJDWLYH�FKDUJHV���(OHFWURVWDWLF�LQWHUDFWLRQV

DPRQJ�WKH�VFDWWHUHUV�PD\�KDYH�WZR�HIIHFWV�ZLWK�PDFURPROHFXOHV���L��WKH\�PD\�FDXVH�DQ�H[SDQVLRQ�RI�WKH

FKDLQ�GLPHQVLRQV�RI�PDFURPROHFXOHV�E\�LQWUDPROHFXODU�LQWHUDFWLRQV��DQG��LL��WKH\�PD\�DOWHU�WKH�VFDWWHULQJ

WKURXJK�WKH�HIIHFWV�RI�LQWHUPROHFXODU�LQWHUDFWLRQV���2QO\�WKH�ODWWHU�HIIHFW�LV�UHOHYDQW�ZLWK�FKDUJHG�SDUWLFOHV�

,Q�WKH�H[WUHPH��WKHVH�LQWHUDFWLRQV�PD\�OHDG�WR�LQWHUDFWLRQV�ZLWK�D�YHU\�ORQJ�FRKHUHQFH�OHQJWK��PDNLQJ�LW

LPSRVVLEOH�WR�DSSO\�WKH�UHODWLRQV�GLVFXVVHG�LQ�WKH�SUHFHGLQJ�������)RUWXQDWHO\��IRU�SXUSRVHV�RI�VL]H

Page 44: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

FKDUDFWHUL]DWLRQ��WKH�HIIHFWV�RI�HOHFWURVWDWLF�LQWHUDFWLRQV�RQ�R9Y�ϑ�F��DQG�R+Y�ϑ�F��PD\�EH�VXSSUHVVHG��RU

VFUHHQHG��E\�WKH�SUHVHQFH�RI�VXSSRUWLQJ�VLPSOH�HOHFWURO\WH�LQ�WKH�VROXWLRQ��WKHUHE\�SHUPLWWLQJ�DSSOLFDWLRQ

RI�WKH�UHODWLRQV�SUHVHQWHG�LQ�WKH�SUHFHGLQJ��ZLWK�RQH�VWLSXODWLRQ��WKH�UHIUDFWLYH�LQGH[�LQFUHPHQW��∂Q�∂F�ΠPXVW�EH�GHWHUPLQHG�IRU�WKH�VROXWLRQ�LQ�RVPRWLF�HTXLOLEULXP�ZLWK�WKH�VROYHQW�FRQWDLQLQJ�WKH�VXSSRUWLQJ

HOHFWURO\WH�����������0HDVXUHPHQW��∂Q�∂F�Π�RI�FDQ�EH�DFKLHYHG�E\�HTXLOLEUDWLQJ�WKH�VROXWLRQ�ZLWK�WKH�PL[HG

VROYHQW�WKURXJK�D�PHPEUDQH�RI�WKH�NLQG�XVHG�LQ�PHDVXUHPHQWV�RI�WKH�RVPRWLF�SUHVVXUH���7KH�VDPH

SURFHGXUH�PXVW�EH�PDGH�ZLWK�DQ\�PL[HG�VROYHQW�ZLWK�FRPSRQHQWV�RI�GLIIHUHQW�UHIUDFWLYH�LQGH[��H�J���D

PL[HG�VROYHQW�FRPSULVLQJ�WZR�RUJDQLF�OLTXLGV�

������7KH�'HE\H�HOHFWURVWDWLF�OHQJWK���SURYLGHV�DQ�LPSRUWDQW�PHDVXUH�RI�WKH�VSDWLDO�UDQJH�RI�HOHFWURVWDWLF

LQWHUDFWLRQV��ZLWK�HOHFWURVWDWLF�LQWHUDFWLRQV�VXSSUHVVHG�DPRQJ�FKDUJHG�VSHFLHV�PXFK�IXUWKHU�DSDUW�WKDQ

GLVWDQFH�����+HUH��LQ�WKH�HVX�V\VWHP�RI�XQLWV��PRVW�RIWHQ�HPSOR\HG�E\�SK\VLFDO�FKHPLVWV�

κ ��π1Α/Β,����� ����

ZLWK�,�� �∑]�µPµ���WKH�LRQLF�VWUHQJWK�GHULYHG�IURP�VPDOO�PROHFXOH�LRQV�LQ�WKH�VROXWLRQ��Pµ�EHLQJ�WKH

PRODU�FRQFHQWUDWLRQ�RI�VSHFLHV�µ�ZLWK�FKDUJH�]µ��DQG�/Β� �H��εN7�WKH�%MHUUXP�OHQJWK��ZLWK�ε�WKH�GLHOHFWULF

FRQVWDQW��UHODWLYH�SHUPLWWLYLW\��RI�WKH�VROYHQW�DQG�H�WKH�FKDUJH�RQ�DQ�HOHFWURQ���,W�VKRXOG�EH�QRWHG�WKDW

YDULDWLRQV�RI�WKLV�H[SUHVVLRQ�ZLWK�D�IDFWRU��πεο�PXOWLSO\LQJ�ε�DSSHDU�LI�6,�XQLWV�DUH�HPSOR\HG��ZLWK�εR�WKH

SHUPLWWLYLW\�RI�IUHH�VSDFH����7KXV��DW���$&��/Β�QP��≈�����ε DQG�κ±��QP��≈����ā��π1Α∑]

�µPµ�ε�

������RU�/Β��≈

����QP��DQG�κ±��QP��≈��������∑ aPµ�PRO/���� ��IRU�DQ�DTXHRXV�VROXWLRQ�RI�XQLYDOHQW�FKDUJHG�VLPSOH

HOHFWURO\WH�DW���$&���:LWK�SRO\HOHFWURO\WH�PDFURPROHFXOHV��LW�LV�RIWHQ�FRQYHQLHQW�WR�DGMXVW�WKH�VXSSRUWLQJ

HOHFWURO\WH�FRPSRVLWLRQ�WR�D�OHYHO�VXFK�WKDW���LV�FRPSDUDEOH�WR�WKH�JHRPHWULF�GLPHQVLRQV�RI�D�FKDLQ

HOHPHQW���,Q�WKDW�FDVH��WKH�WKHUPRG\QDPLF�GLDPHWHU�GWKHUPR�DSSHDULQJ��IRU�H[DPSOH�LQ�H[SUHVVLRQV�IRU�$��

ZLOO�QRW�EH�GRPLQDWHG�E\�WKH�HOHFWURVWDWLF�LQWHUDFWLRQV�DPRQJ�FKDLQV��DQG�WKH�HIIHFWV�RI�LQWUDPROHFXODU

HOHFWURVWDWLF�LQWHUDFWLRQV�RQ�WKH�FKDLQ�GLPHQVLRQV�ZLOO�EH�ODUJHO\�VXSSUHVVHG��������������������,I�WKLV�LV�QRW

GRQH��UHOLDEOH�H[WUDSRODWLRQ�RI�.F�R���F��WR�LQILQLWH�GLOXWLRQ�PD\�EH�LPSRVVLEOH�LI���!��0�F1$������DQ

H[DPSOH�RI�WKLV�HIIHFW�IRU�D�URGOLNH�FKDLQ�LV�VKRZQ�LQ�)LJXUH���D��������$�VLPLODU�HIIHFW�ZLOO�REWDLQ�ZLWK

FKDUJHG�SDUWLFOHV�LQ�VROXWLRQV��H�J���DV�LV�ZHOO�NQRZQ��LQWHU�SDUWLFOH�HOHFWURVWDWLF�UHSXOVLRQ�DPRQJ�VSKHUHV

FDQ�EH�VWURQJ�HQRXJK�WR�OHDG�WR�DQ�RUGHUHG�PHVRSKDVH�ZLWK�LQFUHDVLQJ�F�LI�WKH�DYHUDJH�VHSDUDWLRQ�RI�WKH

VSKHUHV�LV�OHVV�WKDQ����������,Q�DGGLWLRQ��IRU�PDFURPROHFXOHV��WKH�FKDLQ�GLPHQVLRQV�PD\�H[SDQG�ZLWK

LQFUHDVLQJ���LI���!�GJHR��ZLWK�GJHR�WKH�JHRPHWULF�GLDPHWHU�RI�WKH�FKDLQ�UHSHDW�XQLW��DQ�H[DPSOH�RI�WKLV

LV�VKRZQ�LQ�)LJXUH���E�

Page 45: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

������,W�VKRXOG�EH�UHDOL]HG�WKDW�DQ�DTXHRXV�VROXWLRQ�RI�DQ�RUJDQLF�VROXWH�LV�RIWHQ�FORVH�WR�LQWHUPROHFXODU

DVVRFLDWLRQ��DQG�WKDW�WKH�DGGLWLRQ�RI�VDOW��DQG�FRQVHTXHQW�VXSSUHVVLRQ�RI�HOHFWURVWDWLF�LQWHUDFWLRQV��PD\

LQGXFH�DVVRFLDWLRQ���7KXV��ZLWK�DPSKRWHULF�SURWHLQV��LW�LV�RIWHQ�IRXQG�WKDW�DVVRFLDWLRQ�ZLOO�RFFXU�LI�WKH�S+

LV�DGMXVWHG�WR�WKH�LVRHOHFWULF�SRLQW��D�FRQGLWLRQ�IRU�ZKLFK�DSSUHFLDEOH�QXPEHUV�RI�DQLRQLF�DQG�FDWLRQLF

VLWHV�FRH[LVW�RQ�WKH�FKDLQ�������)RU�D�S+�IDU�IURP�WKH�LVRHOHFWULF�SRLQW��WKH�DPSKRWHULF�PDFURPROHFXOH

EHKDYHV�DV�HLWKHU�DQ�DQLRQLF�RU�FDWLRQLF�SRO\HOHFWURO\WH��DQG�WKH�QHW�FKDUJH�FDQ�KHOS�VWDELOL]H�WKH�VROXWLRQ

DJDLQVW�DVVRFLDWLRQ�

������7KH�HIIHFWV�RI�HOHFWURVWDWLF�LQWHUDFWLRQV�DPRQJ�FKDUJHG�VSKHUHV�GLVSHUVHG�LQ�D�PHGLXP�RI�ORZ�LRQLFVWUHQJWK�FDQ�OHDG�WR�D�VWULNLQJ�HIIHFW�RQ�RLVR�ϑ�F��.0F��UHVXOWLQJ�IURP�ODUJH�YDOXHV�RI�FΓLVR�F��IURP

HOHFWURVWDWLF�UHSXOVLRQ�DPRQJ�WKH�VSKHUHV���7KXV��LQ�WKLV�UHJLPH�

RLVR�ϑ�F��.0F 3LVR�ϑ�F�

^������FΓLVR�F�3LVR�ϑ�F�+LVR�ϑ�F�`��≈��^FΓLVR�F�+LVR�ϑ�F�`

�� ����

ZKHUH�+LVR�ϑ�F����LV�H[SHFWHG�WR�H[KLELW�D�PD[LPXP�DVVRFLDWHG�ZLWK�WKH�GLVWDQFH�RI�DYHUDJH�FORVHVW

DSSURDFK�RI�WKH�VSKHUHV��H�J���WKH�H[SUHVVLRQ�IRU�+LVR�ϑ�F��JLYHQ�DERYH�IRU�XQFKDUJHG�VSKHUHV���'DWD�RQ

VHYHUDO�GLOXWH�GLVSHUVLRQ�RI�FKDUJHG�SRO\VW\UHQH�VSKHUHV��5� ����QP��DUH�JLYHQ�LQ�)LJXUH�����������6LPLODU

UHVXOWV�DUH�UHSRUWHG�IRU�VROXWLRQV�RI�SRO\HOHFWURO\WHV�DQG�IRU�RWKHU�FKDUJHG�SDUWLFOHV��������$V�PHQWLRQHG

DERYH��WKHVH�FXUYHV�EHDU�D�TXDOLWDWLYH�VLPLODULW\�WR�WKRVH�REWDLQLQJ�IRU�FRDWHG�VSKHUHV�XQGHU�VRPH

FRQGLWLRQV�ZLWK�WKH�]HUR�DYHUDJH�UHIUDFWLYH�LQGH[�LQFUHPHQW��EXW�WKHLU�RULJLQ�LV�YHU\�GLIIHUHQW��DV�LV�WKHLUVKDSH�LQ�GHWDLO���$�ILUVW�DSSUR[LPDWLRQ�WR�+LVR�ϑ�F��PLJKW�EH�REWDLQHG�E\�XVLQJ�VLQ�ϑ����≈���/κ�5�VLQ�ϑ���

LQ�WKH�H[SUHVVLRQ�IRU�KDUG�VSKHUHV�LI�/κ�!!�5��ZKHUH�/κ�LV�DQ�HOHFWURVWDWLF�OHQJWK��H[SHFWHG�WR�EH�UHODWHG�WR

κ���������������7KLV�DSSUR[LPDWLRQ�JLYHV�IDU�WRR�VKDUS�D�PD[LPXP��DQG�YDOXHV�RI�/κ�WR�PDWFK�WKH�SRVLWLRQ

RI�WKH�PD[LPXP�WKDW�DUH�IDU�ODUJHU�WKDQ����������,Q�DGGLWLRQ�WR�WKH�ZHDNQHVV�RI�WKH�ad hoc�PRGHO��DW�OHDVW

D�SDUW�RI�WKLV�GLVFUHSDQF\�PD\�UHIOHFW�KHWHURJHQHLW\�RU�IOXFWXDWLRQ��RI�WKH�FKDUJH�GHQVLW\��ZKLFK�PD\

EURDGHQ�WKH�SHDN�

4.6 Scattering from optically anisotropic solute������$OWKRXJK�WKH��H[FHVV��VFDWWHULQJ�IURP�SRO\PHU�VROXWLRQV�LV�XVXDOO\�WRR�VPDOO�WR�EH�RI�PXFK�LQWHUHVW�

H[FHSWLRQV�FDQ�DULVH�IRU�FKDLQV�ZLWK�D�VHPLIOH[LEOH��RU�URGOLNH��FRQIRUPDWLRQ��DQG�ZLWK�VSKHUHV

FRPSULVLQJ�RSWLFDOO\�DQLVRWURSLF�VFDWWHULQJ�HOHPHQWV��,W�LV�RIWHQ�DVVXPHG�WKDW�WKH�UHIUDFWLYH�LQGH[�WHQVRU

RI�WKH�VFDWWHULQJ�HOHPHQWV�KDV�F\OLQGULFDO�V\PPHWU\��ZLWK�UHIUDFWLYH�LQGH[�Q__�DQG�Q⊥�SDUDOOHO�DQG

Page 46: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\������

��

SHUSHQGLFXODU�WR�WKH�F\OLQGHU�D[LV��UHVSHFWLYHO\�����������)RU�WKLV�PRGHO��WKH�RULHQWDWLRQDOO\�DYHUDJHG

UHIUDFWLYH�LQGH[�LV�xVROXWH� ��Q__����Q⊥�����ψVROXWH�≈��xVROXWH�±�QPHGLXP��ρVROXWH��DQG�γVROXWH�≈��Q__�±��Q⊥��ρVROXWH�

ZLWK�ρVROXWH�WKH�GHQVLW\�RI�WKH�VROXWH���,I�ψVROXWH�≠����LW�LV�FRQYHQLHQW�WR�GHILQH�WKH�RSWLFDO�DQLVRWURS\�RI�WKH

VFDWWHULQJ�HOHPHQW�DV�δο� �γVROXWH�ψVROXWH�

������$�PDFURPROHFXODU�PRGHO�RI�LQWHUHVW�LV�WKDW�RI�WKH�SHUVLVWHQW��RU�ZRUPOLNH�FKDLQ�RI�FRQWRXU�OHQJWK�/

DQG�SHUVLVWHQFH�OHQJWK�k��ZLWK�D�F\OLQGULFDO�SRODUL]DELOLW\�WHQVRU�IRU�WKH�VFDWWHULQJ�HOHPHQWV��HDFK�KDYLQJ

DQ�RSWLFDO�DQLVRWURS\�δR���)RU�WKLV�PRGHO��WKH�PHDQ�VTXDUHG�PROHFXODU�DQLVRWURS\�IRUP�IDFWRU�LV�JLYHQ

E\����������������

�δ/δο�� ����=�^���±����=���>���±��H[S�±�=�@` ����

ZLWK�=� �/�k��WKH�FRUUHVSRQGLQJ�H[SUHVVLRQ�IRU�5�*�LV�JLYHQ�LQ�7DEOH�����,Q�WKH�OLPLW�ZLWK�k����/��DV�ZLWK�D

IOH[LEOH�FKDLQ�SRO\PHU��H�J���YLQ\O�SRO\PHUV�DQG�PRVW�FRQGHQVDWLRQ�SRO\PHUV����δ/δο���WHQGV�WR

SURSRUWLRQDOLW\�ZLWK�k�/� �k0/�0��ZLWK�0/�WKH�PDVV�SHU�XQLW�FKDLQ�FRQWRXU�OHQJWK���$V�D�FRQVHTXHQFH

R+Y���F��LV�SURSRUWLRQDO�WR�WKH�PROHFXODU�ZHLJKW�RI�D�FKDLQ�HOHPHQW�RI�OHQJWK�k����/��DQG�LV�PXFK�VPDOOHU

WKDQ�R9Y���F��IRU�VXFK�FKDLQV��DQG�PD\�EH�QHJOHFWHG�LQ�FRQVLGHUDWLRQ�RI�R9Y���F����,Q�WKH�RSSRVLWH

H[WUHPH�ZLWK�/����k��DV�IRU�D�URGOLNH�FKDLQ��δ�≈�δο��DQG�WKH�DQLVRWURSLF�VFDWWHULQJ�PXVW�EH�WDNHQ�LQWR

DFFRXQW�WR�GHWHUPLQH�0Z�IURP�R9Y���F����)RU�FKDLQV�ZLWK�DQ�RYHUDOO�URGOLNH�FKDUDFWHU�DULVLQJ�IURP�KHOLFDO

VWUXFWXUH��δο�PD\�EH�VR�VPDOO�WKDW�WKH�DQLVRWURSLF�VFDWWHULQJ�PD\�VWLOO�EH�LJQRUHG�LQ�GHWHUPLQDWLRQ�RI�0Z

IURP�R9Y���F����1HYHUWKHOHVV��R+Y���F��PD\�EH�RI�LQWHUHVW�LWVHOI�WR�HYDOXDWH��IRU�XVH�LQ�DQ�HVWLPDWLRQ�RI

WKH�SHUVLVWHQFH�OHQJWK���$Q�H[DPSOH�RI�FRPSDULVRQ�RI�δ��DV�D�IXQFWLRQ�RI�/�XVHG�WR�HVWLPDWH�δ�ο�DQG�k�IRU�D

URGOLNH�SRO\PHU�LV�JLYHQ�LQ�)LJXUH����

������$V�PHQWLRQHG�DERYH��3+Y�ϑ�π/4����H[KLELWV�H[WUHPD�DV�D�IXQFWLRQ�RI�T5�IRU��PRQRGLVSHUVH�VSKHUHV�

)RU�FDOFXODWLRQV�LQ�WKH�5*'�UHJLPH�����DQG�LQ�WKH�DQRPDORXV�GLIIUDFWLRQ�DSSUR[LPDWLRQ������WKH�YDOXHV�RI

T5�IRU�WKHVH�ILUVW�PD[LPD�DQG�IROORZLQJ�PLQLPD�PD\�EH�XVHG�WR�HVWLPDWH�5���,Q�DGGLWLRQ��WKH�HIIHFWV�RQ

WKH�VFDWWHULQJ�SDWWHUQ�RI�WKH�GLVWRUWLRQ�RI�WKH�DQLVRWURSLF�VSKHUH��DV�PLJKW�RFFXU�XQGHU�D�GHIRUPDWLRQ��KDYH

EHHQ�VWXGLHG��H�J���VHH�WKH�GLVFXVVLRQ�DQG�OLWHUDWXUH�FLWDWLRQV�LQ�UHIHUHQFH�����

Page 47: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

45

4.7 Scattering gels and suspensions of dispersed particles

The characterization of gels and suspensions of dispersed particles can introduce a number of

complicating factors, including non ergodic behavior, in which the observed light scattering intensity

depends on the position in the sample from which the scattering arises, and multiple scattering, in which

the initially scattered ray acts a source of scattering before exiting the sample; in the extreme, multiple

scattering gives rise to a turbid appearance. Methods to suppress these effects to obtain the meaningful

characterization of the sample are discussed in the following. These are based on the use of autocorrelation

of the scattered intensity to augment the measurements of the total scattered intensity; the electric field

autocorrelation function was introduced briefly in Section 2.5 in the context of dilute solutions. The

ensemble-averaged autocorrelation G(2)E (q,τ) of the scattered intensities is given by the function

G(2)E (q,τ) = 〈I(q,0)I(q,τ)〉E (79)

where I(q,τ) is the scattered intensity at time τ after the measurement of the intensity I(q,0), and subscript

"E" indicates the ensemble-average. The corresponding function G(2)E (q,∞) obtained for τ large enough that

the intensities I(q,0) and I(q,τ) are no longer correlated is given by

G(2)E (q,∞) = 〈I(q,0)I(q,∞)〉E = 〈I(q,0)〉E〈I(q,∞)〉E = 〈I(q)〉2

E (80)

Finally, the normalized function g(2)E (q,τ) is given by

g(2)

E (q,τ) = G(2)E (q,τ)/G(2)

E (q,∞) (81)

If the scattering volume contains many uncorrelated regions then scattering sampled over the full

ensemble is a zero-mean complex Gaussian variable, and g(2)E (q,τ) is related to the more fundamental

ensemble-averaged electric field autocorrelation g(2)E (q,τ) by the expression

g(2)E (q,τ) = 1 + β[g(1)

E (q,τ)]2 (82)

where β is a measure of the coherence of the scattering, with β = 1 for full coherence, decreasing

monotonically with decreasing coherence (some authors designate this parameter as β2). Equation �44� is the

expression for g(2)E (q,τ) normally applied with dilute solutions of polymers or suspensions of particles. The

Page 48: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

46

condition for coherence may be visualized by its appearance on a screen in the far field, it will appear as a

field of speckles. For a scattering from an ergodic sample, the intensity from the speckles will wax and

wane with time; the effects of non ergodicity are considered in the following paragraphs. The parameter β

will be unity for the scattering confined to a single speckle, but will decrease if the scattering from more

speckles is averaged to determine g(2)E (q,τ). The arrangement used in the detector optics of many light

scattering photometers utilizes a pinhole to adjust the number of coherent areas from which the scattering is

accepted, and hence the value of β, with β increasing with decreasing pinhole size. Since g(1)E (q,τ) is not

altered with decreased β, an arrangement with β less than unity may be accepted as increasing β will be

accompanied by reduced intensity, and decreasing signal to noise in the determination of g(1)E (q,τ).

For reference in the following we note that some applications, such as electrophoretic light scattering,

require scattering from a mixture of the scattering from a solution or suspension with that from a static

source, such that

g(2)E (q,τ) = 1 + βX2

Fg(1)F;E(q,τ)2 + 2βnXF( 1– XF)g(1)

F;E(q,τ) (83)

where XF and g(1)F;E(q,τ) are, respectively, the ensemble-averaged parameters for the fraction of the total

intensity due to the solution or suspension and the electric field autocorrelation function for the solution or

suspension. The exponent n on β has variously been given the values 1 or 1/2. (149)

4.7.2 Non ergodic behavior in light scattering. The light scattering experiment involves averages over

time at a fixed location. Non ergodic light scattering behavior is marked by results that depend on the

volume element in the sample from which the scattering is obtained. This does not occur if the scattering

components have free access to all diffuse throughout the sample on length scales probed by the scattering.

Thus, non ergodic behavior is not expected with a dilute polymer solution or particle suspension. However,

constraints to such motion may be imposed in gels or more concentrated suspensions. In that case, light

scattering may not yield the ensemble-averaged quantities assumed throughout the preceding sections, but

instead give time-averaged measurements representing the behavior a particular volume element in the

sample, with the time-averaged autocorrelation function G(2)T (q,τ) given by

G(2)T (q,τ) = 〈I(q,0)I(q,τ)〉T (84)

Page 49: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

47

Similar to the preceding, the corresponding function G(2)T (q,∞) obtained for τ large enough that the

intensities I(q,0) and I(q,τ) are no longer correlated is given by

G(2)T (q,∞) = 〈I(q,0)I(q,∞)〉T = 〈I(q,0)〉T〈I(q,∞)〉T = 〈I(q)〉2

T (85)

Finally, the normalized function g(2)T (q,τ) is given by

g(2)

T (q,τ) = G(2)T (q,τ)/G(2)

T (q,∞) (86)

Before proceeding to detailed analysis of g(2)T (q,τ) for samples exhibiting non ergodic behavior, it is useful

to consider qualitative examples of g(2)T (q,τ) and g(2)

E (q,τ) for a single speckle presented in Table 3 following

the discussion of these in reference [149] (since a single speckle provides fully coherent scattering, β = 1

for the examples in Table 3). In the first example for rigid media, e.g., for the scattering from a rigid

material or a ground glass screen, both g(2)T (q,τ) and g(2)

E (q,τ) are constant, but differ in their values: for

g(2)T (q,τ) the intensity is invariant at any spot in the medium, and thus 〈I(q,0)I(q,τ)〉T = 〈I(q,0)〉T〈I(q,τ)〉T =

〈I(q)〉2T and g(2)

T (q,τ) = 1 for all τ; however, if the scattering is averaged as the sample is moved (rotated or

translated), the statistics become those of a zero-mean Gaussian, so that 〈I(q,0)I(q,τ)〉E = 〈I2(q)〉E and

g(2)E (q,τ) = 2 for all τ. For ergodic media, such as a dilute solution or suspension, time and ensemble

averages are equivalent, and g(2)T (q,τ) = g(2)

E (q,τ) for all τ, decreasing from 2 for τ = 0 to 1 for very large τ.

Finally, the scattering for non ergodic media presents a mixture of the preceding cases such that the

fluctuations cause g(2)E (q,τ) to decrease from 2 for τ = 0 to approach a constant value g(2)

E (q,∞) representing a

rigid behavior with increasing τ, whereas these two effects cause g(2)T (q,τ) decreases from ≤ 2 for τ = 0

(fluctuating behavior) to 1 for very large τ (rigid behavior). In practice, as mentioned in the following, it is

possible for G(2)T (q,τ) to exhibit a very slowly relaxing component, leading to a plateau that would be

followed by further decrease in G(2)T (q,τ) for still larger τ, giving rise to an apparent non ergodic behavior if

not included.

<Table 3>

Three methods are of interest with samples that appear to exhibit non ergodic behavior:

Page 50: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

48

1: The scattering may be treated as one with a fluctuating component with time-averaged intensity

〈I(q)〉F,T and a time-averaged total intensity 〈I(q)〉T, using the expression for so-called heterodyne

behavior, i.e., the experimental arrangement with an external static scatterer used in electrophoretic

scattering. In this case data on G(2)T (q,τ) are interpreted to yield g(1)

F (q,τ) = g(1)E (q,τ) – g(1)

E (q,∞).

2: Use of the ensemble-averaged total intensity 〈I(q)〉E determined by averaging the total scattering

obtained at different locations in the sample, e.g., by translation or rotation of the sample cell, and a

theoretical evaluation of G(2)T (q,τ) to yield g(1)

E (q,τ).

3: Methods to permit averaging and measurement durations such that G(2)T (q,τ) becomes a reliable

estimate of G(2)E (q,τ).

In the first method, it is assumed that the non ergodic behavior in the scattering from a gel or

concentrated suspension is caused by clusters of some kind that are either completely stationary or move so

slowly that they can be assumed to act as a static source in a heterodyne mode in mixing with the

fluctuating source from the scattering from the solution or suspension, such that the observed g(2)T (q,τ) may

be analyzed with Equation (83) in the form (150-152)

g(2)T (q,τ) = 1 + βX2

Fg(1)F;E(q,τ)2 + 2βnXF( 1– XF)g(1)

F;E(q,τ) (87)

Here, g(1)F;E(q,τ) is related to the total ensemble-averaged electric field correlation function given by the

relation

g(1)F;E(q,τ) = g(1)

E (q,τ) – g(1)E (q,∞) (88)

and XF = 〈I(q)〉F,T/〈I(q)〉T. Since g(1)F (q,∞) = 0 and g(2)

T (q,∞) = 1, XF is given experimentally by the result

XF = 1 – [2 – g(2)T (q,0)]1/2 (89)

Solution of Equation (87) for g(1)F;E(q,τ) gives

g(1)F (q,τ) = 1 + (1/XF){– 1 + [1 + g(2)

T (q,τ) – g(2)T (q,0)]1/2} (90)

Page 51: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

where β has been taken to be unity. Otherwise, if β < 1 and n = 1 in Equation (87), the result would be

modified by replacing [2 – g(2)T (q,0)] by [1 + β – g(2)

T (q,0)]/β. (152) These data permit evaluation of 〈I(q)〉F,T =

XF〈I(q)〉T for use in the analysis of R(ϑ,c), as well as a diffusion constant D using g(1)F (q,τ) in Equation �44�.

Since no ensemble averaged estimate of g(1)E (q,∞) noted in Equation (88) the method does not yield an

ensemble average for g(1)E (q,∞), and hence unlike the methods discussed below, it cannot provide an

estimate for g(1)E (q,τ) = g(1)

F;E(q,τ) + g(1)E (q,∞).

An example of the use of Equations (87-90) to interpret data on g(2)T (q,τ) for a poly(N-

isopropylacrylamide) hydrogel is shown in Figure (16) for g(2)T (q,τ) determined at different positions. (150)

As may be seen, although the data at different positions display quite different values for g(2)T (q,τ) and XF,

the calculated g(1)F (q,τ) and 〈I(q)〉F,T are independent of the position in the gel, as expected with the

assumptions made in using this method.

<Figure 16>

A full evaluation of g(1)E (q,τ) from g(2)

T (q,τ) and an ensemble-averaged total intensity 〈I(q)〉E is provided by

an alternative procedure, based on a theoretical treatment of the scattering from moderately concentrated

solutions of spherical particles in a suspension developed by Pusey and van Megen. (149) In this treatment it

is assumed that the (apparent) non ergodic behavior observed for an aqueous suspension of polystyrene

spheres is due to constrained diffusion of the particles about their unchanging mean position in the

suspension during the measurement of g(2)T (q,τ). The analysis presumed that each particle is constrained to

movements from the average position, with a mean-square displacement 〈δ2〉 along wave vector q to give

g(2)T (q,τ) = 1 + X2

Eβ{g(1)E (q,τ)2 – g(1)

E (q,∞)2} + 2XE( 1– XE)βn{g(1)E (q,τ) – g(1)

E (q,∞)}(91)

for a suspension of identical spheres, where XE is the ratio XE = 〈I(q)〉E/〈I(q)〉T with 〈I(q)〉T the time-

averaged intensity during measurement of g(2)T (q,τ) and 〈I(q)〉E the ensemble-averaged intensity. Repeated

measurements of the total intensity at various positions in the sample are used as the measure of 〈I(q)〉E,

e.g., by translation or rotation of the sample cell, along its vertical axis in the original studies. Evaluation

of g(1)E (q,τ) from Equation (91) gives

g(1)E (q,τ) = 1 + (1/XE){ – 1 + [1 + g(2)

T (q,τ) – g(2)T (q,0)]1/2} (92)

gcberry1
gcberry1
49
Page 52: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

for β = 1. Pusey and van Megen noted that if a location in the cell is located for which XE = 1, then

Equation (2) simplifies to read

g(1)E

(q,τ) = [1 + g(2)T

(q,τ) – g(2)T

(q,0)]1/2; for XE = 1 (93)

They also concluded that evaluation of the exponent n in Equation (91) is complex, and recommended that

the best approximation is to put n = 1, and to work with detector optics that makes β greater than 0.95.

Finally, they suggest that the results may be used for systems for which the non ergodic behavior arises

from causes other than the restricted mobility of the spheres primarily of concern in their paper, including,

for example, polymeric gels or suspensions of particles, where the non ergodic behavior may be caused by

the presence of clusters, such as polymeric aggregates in gels, or clusters of the particles, perhaps via van

der Waals attractive interactions in suspensions. The method, which is applied to a single speckle requires

β = 1 and scattering centers characterized by g(1)E

(q,τ) by a well-established g(1)E

(q,∞).

A model with non-interacting, harmonically bound particles was presented as an example of a model of

constrained mobility, permitting evaluation of g(1)E

(q,τ) in terms of the diffusion coefficient D and the mean-

square displacement 〈δ2〉 along q: (149)

g(1)E

(q,τ) = exp{– q2〈δ2〉[1 – exp(±�Dτ/〈δ2〉)]} (94)

g(1)E

(q,τ) = 1 – Dq2τ + …. (95)

g(1)E

(q,∞) = exp{– q2〈δ2〉} (96)

Consequently, according to Equation (95), the particles diffuse for short times as if in a dilute suspension,

with the constraint to that motion realized as their root-mean-square displacement approaches 〈δ2〉1/2 per

Equation (96).

An example of the use of the direct determination of g(1)E

(q,∞) from measurement of g(2)E (q,τ) obtained

over a very long time is given in Figure (17), along with an evaluation of g(1)E

(q,∞) from of g(2)T

(q,τ) and XE

using Equation (92). (153) The direct determination of g(1)E

(q,∞) required 13 hours, whereas the one on

g(2)T

(q,τ) required 30 minutes; the sample comprised an aqueous polyacrylamide gel (2.5 wt% polymer)

gcberry1
gcberry1
50
Page 53: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

containing 0.02 wt% of 82 nm polystyrene spheres, with most of the scattering arising from the spheres.

A substantial difference between g(2)T (q,τ) and of g(2)

E (q,τ) is shown in the upper part, along with the

agreement between the g(1)E (q,∞) determined directly from g(2)

E (q,τ) and that calculated from g(2)T (q,τ) using

Equation (92). (154) Additional examples of g(2)E (q,τ) calculated from g(2)

T (q,τ) using Equation (92) and a

detailed analysis of the results are available on gels of polystyrene particles in polyacrylamide gels. (155)

<Figure 17>

The use of Equation (92) requires an optical arrangement with β ≈ 1, and is based on an assumption that

g(2)T (q,τ) and the average intensity 〈I(q)〉F,T for the fluctuating component are invariant with position in the

cell, even though the total intensity 〈I(q)〉T may vary with position, giving rise to the non ergodic behavior.

Although these constraint on β is relaxed with the use the use of Equations (89) –(90), that method does not

provide an evaluation of g(1)E (q,∞). Consequently, methods were developed to provide the averaging needed

for a direct evaluation of G(2)E (q,τ). As mentioned in the preceding, the image of the scattered light on a

screen in the far-field reveals a field of speckles, the intensity of which fluctuates in time unless the

scattering centers are stationary. As noted above, the variation of this field with rotation or translation of

the sample has been used to determine 〈I(q)〉E for use in Equation (90). (149,151,155) With improved

computational assets, it became possible to collect data on many speckles and compute G(2)T (q,τ) over a long

enough time to permit evaluation of G(2)E (q,τ) by averaging those results. (156-158) The methods are

implemented by rotating the light scattering cell so that the field of speckles changes, to return to the

original configuration after one full rotation, with slightly altered intensities of the speckles in the field,

unless the scattering entities are static. The rotation will direct many speckles into the detector during one

full rotation (of the order of 1,000).

An early example of this method utilized a relatively slow rotation to calculate G(2)T (q,τ) continuously. (156)

The rotation translates spatial fluctuations into temporal fluctuations, resulting in the desired averaging

modulated by a cutoff as a particular speckle leaves the field of view, limiting the result to short τ, of the

order τ < 1 s. (156) Interleave methods at faster rotation to compute G(2)T (q,τ) for each of these speckles, with

τ = nT, where n is the number of rotations with period T starting with the onset of the calculation of G(2)T

(q,τ); the shortest correlation time is then τmin = T on of the order 1s, with the maximum τ limited by the

available software and the patience of the experimenter (157-158) Averaging these data finally yields G(2)E (q,τ),

from which g(1)E (q,τ) may be determined, including the g(1)

E (q,∞) contribution provided that the data are

gcberry1
gcberry1
gcberry1
51
Page 54: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

collected and analyzed for a time long enough for τ to reach the limiting value behavior. The time for such

an analysis may be several orders of magnitude shorter than would be required for a comparable analysis

with sequential measurements of G(2)T (q,τ) for different positions by manual movement of the cell.

The measurement time required to obtain a satisfactory evaluation of g(1)E (q,∞) by the methods described

above may be reduced by the so-called "echo method", in which the photon counts are collected as a single

stream of data as the sample is rotated. (159) In a method utilizing a vertical cylindrical cell, rotated about

the cell axis, data were analyzed using the expression

G(2)OBS(q,τ) = 1 + β[g(1)

E (q, τ) g(1)ROT(q,τ)]2 (97)

with

g(1)OBS(q,τ) = g(1)

E (q,τ) g(1)ROT(q,τ) (98)

where g(1)OBS(q,τ) and g(1)

ROT(q,τ), respectively, are normalized electric field correlation functions as observed

and accounting for the effects of the cell rotation. The function g(1)ROT(q,τ) may be determined

experimentally by evaluation of g(1)OBS(q,τ) for a rigid sample, for which g(1)

E (q,τ) = 1. For rotation of a

cylindrical cell about its axis,

g(1)ROT(q,τ) =

2J1(qRστ)

qRστ (99)

where στ = 2sin(ωτ/2) and R is the radius of the scattering volume; ω is the angular velocity of the rotation.

With this function, [g(1)ROT(q,τ)]2 appearing in Equation (99) is periodic with period T = 2π/ω, with main

maxima, or echos, of amplitudes that are unity for τ = nT, where n = 0, 1, 2, 3, … , and is close to zero

otherwise. Thus, following n rotations g(1)OBS(q,τ) calculated from the stream of data collected will appear as

a series of peaks (echos) for τ = nT, with the shaped specified by g(1)ROT(q,τ), but with a peak value

modulated by g(1)E (q,τ = nT). Although the peaks will appear as a linearly progressing sequence, a procedure

is available to increase the separation between the longer to reduce the time on calculations that do

gcberry1
52
Page 55: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

53

not add usefully to the estimate for g(1)E (q,τ). (159) As with the interleaved method mentioned above (157-158)

the smallest value of τ that may be determined by the echo method is limited by the rotational period T.

The example in Figure (18) shows results for an ergodic scattering system obtained by (156), displaying the

agreement between these for the range of τ for which the overlap, and reduced scatter of the echo derived

data at the longest τ.

<Figure 18>

A light scattering cell has been described with the sample confined in a slab-shaped cylindrical cell,

permitting use of the echo method for scattering angles down to 30°, and also applicable for the methods

described in the next section re multiple scattering. (160)

4.7.2 Cross-correlation to suppress weak multiple scattering effects. As the concentration of solute in

a solution or particles in a suspension increases, one will usually encounter the effects of multiple

scattering, in which a SKRWRQ scattered in the light scattering cell suffers more than a single scattering event

before leaving the cell. Attempts to determine the static scattering behavior, e.g., for analysis of

thermodynamic and conformational properties by studies on R(ϑ,c) described in preceding sections,

require the suppression of multiple scattering, e.g., by using thin cells, or the suppression of the effects of

multiple scattering in some way. Effects experienced with more concentrated, turbid systems are discussed

in the next section. Multiple scattering destroys the coherence required for auto-correlation in the scattered

intensity, even though it adds to the total intensity. As a consequence, analysis of a properly defined cross-

correlation intensity function permits evaluation of properties of the scattering that does not experience

rescattering before exiting the scattering cell. Cross-correlation requires two distinct, simultaneous auto-

correlation experiments, each with its own incident laser source (mutually incoherent) and detector

arrangement, on the same scattering volume and with different angles providing the same q. The use of

cross-correlation methods to suppress the effects of multiple scattering discussed in thLV section was

introduced by Phillies and implemented in an instrument restricted to the scattering at 90°. (161-162) Since

that time, both the theory and experimental methods have been refined. (163-167)

The theoretical treatment of cross-correlation involves an ensemble-averaged autocorrelation G(2)12(q,τ) of

the scattered intensities from each of the two scattering detectors, given by the function

G(2)12(q,τ) = 〈I1(q,0)I2(q,τ)〉E (100)

gcberry1
Page 56: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

54

where the subscript "E" has been suppressed on G(2)12(q,τ) for simplicity. Division by the two average

intensities gives the intensity cross-correlation function g(2)12(q,τ), relate to the results in an expression for

the field cross-correlation g(1)12(q,τ) by the expression

g(2)12(q,τ) = 1 + β12[g(1)

12(q,τ)]2 (101)

(again suppressing notation to indicate the ensemble average), where β12 involves the coherence factors β1

and β2 from each of the detectors, a factor βV accounting for the incomplete overlap of the scattering

volume viewed by the two detectors, a factor βS accounting for incomplete separation of the scattering

detected by the two detectors, discussed in more detail below, and βMS a measure of the single to multiple

scattering:

β12 = [β1β2]1/2βVβSβMS (102)

βMS = 〈I

ss1 (q)〉〈I

ss2 (q)〉

〈I1(q)〉〈I2(q)〉 (103)

where 〈I

ss1(q)〉 and 〈I

ss2(q)〉 are the single scattered components of the total intensities 〈I1(q)〉 and 〈I2(q)〉,

respectively. As discussed further in the following, βS varies from 1 to 0.25, depending on the arrangement

used in the cross-correlation analysis (168) Although β1, β2 and βV may all be controlled, it is best to

determine [β1β2]1/2βVβS as the value of (β12)single, which may depend on q, from measurements of β12 on a

system with no multiple scattering, such as a dilute polymer solution or particle suspension, so that βMS = 1.

Such an evaluation will subsequently permit use of β12/{[β1β2]1/2βVβS} = β12/(β12)single to compute βMS for

systems with multiple scattering, and hence evaluation of the single scattered intensity, permitting

computation of R(ϑ ,c) for use in analysis of the static scattering.

Two methods have been in the forefront of cross-correlation technology: (1) scattering with incident

laser light of two different wavelengths, with the incident light and the detectors all in the scattering plane,

and (2) a so-called 3-D arrangement, with scattering with a single wavelength, but with the two incident

beams lying in the same plane orthogonal to the scattering plane, with one above and the other below that

plane by some angle, with the two detectors similarly positioned above and below the scattering plane by

corresponding angles. Each of these methods offers advantages and disadvantages. For example, with the

two color arrangement, one can ensure that βS = 1 by placing a laser line pass filter in front of each of the

Page 57: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

relevant detectors, but great care must be given to accurate adjustment of the angle between the two

detectors to ensure that account is taken of the different wavelengths of each required to give the q in

common for the detected scattering, but βV may depend on the scattering angle, especially at large

scattering angle. An elegant photometer has been custom designed and constructed using a 4-arm

goniometer to permit accurate setting of the angles of incident beams and detectors, single-mode fiber

optics to guide the incident and scattered light, and laser line filters to suppress contamination of the

detectors by light of the wrong wavelength. (169) Examples of data taken with this instrument will be

discussed in the following. On the other hand, although the setup is easier, the optical arrangement for the

detectors in the 3-D method permits their contamination by light scattered from both incident beams. If not

suppressed, that contamination will result in βS = 0.25, reducing the sensitivity of the cross-correlation

result. The use of oppositely polarized incident beams of the incident light and appropriately oriented

polars in front of the detectors may suppress the cross-talk over a reasonable range of scattering angle if a

flat cell is utilized, with a result that did about double βS in one arrangement. (160) The use of a flat cell also

facilitates the use of the echo method to obtain an ensemble average if the scattering system demonstrates

non ergodic behavior. A method to suppress the effects of this contamination by modulating the light beam

intensity and gating the detector outputs at a frequency much greater than any of interest in the system

dynamics to temporally separate the detectors, giving the desired increase in βS to close to unity. (168) A

commercial photometer is available for such measurements, including the beam modulation and gating of

the detector outputs needed to enhance the value of βS as mentioned above (the 3D LS Photometer, LS

Instruments; http://www.lsinstruments.ch/).

Some experimental results obtained by two color cross-correlation on aqueous dispersions of

polystyrene spheres are displayed in Figure (19). (169) Based on the data seen for β ≈ 0.9 for normal auto-

correlation and β12 ≈ 0.45 for a dilute solution in Figure (19) without multiple scattering suggests that in βS

= 0.5, indicating one of the difficult alignment issues. The data shown in Figure (19) were analyzed to give

a hydrodynamic radius Rh determined in by the usual expression for dilute solutions for a monodisperse

scatterer (17):

g(1)12(q,τ) = exp[– Dq2τ] (104)

with D the diffusion constant in dilute solutions or suspensions, and Rh = kT/6πηD, with η the viscosity of

the media. The values of Rh determined via the cross-correlation were found to be independent of the

transmission as the concentration of the spheres increased, whereas the similar value determined from the

auto-correlation function g(1)E (q,τ) decreases rapidly owing to the effects of multiple scattering. (169) The

gcberry1
gcberry1
gcberry1
gcberry1
,
gcberry1
gcberry1
gcberry1
55
Page 58: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

substantial effect of multiple scattering on R(ϑ,c) determined from 〈Iss

(q)〉 for the scattering from spheres

in the Mie scattering regime are illustrated in Figure (19), showing the smearing of the minima

characteristic of multiple scattering.

<Figure 19>

4.7.3 Diffusing wave spectroscopy in turbid media. With increasing concentration dispersions the

multiple scattering can become so pervasive that the suspension becomes too turbid for use of the methods

described in the previous paragraphs. In the diffusing wave spectroscopy (DWS) method described in this

section the scattering is evaluated in the forward and back directions for a turbid suspension. (170-172) This

method, which utilizes the scattering from a single speckle or coherence area, is based on the notion that in

the highly multiple scattering environment, the direction of a photon is randomized by the very large

number of multiple scattering events, with a resultant change in the phase of its wavevector giving rise to

effects that may be approximated by the contribution on an averaged event to compute the effect on the

field autocorrelation g(2)E (ϑ,τ); here, for reasons explained in the following, the notation indicates a

scattering angle ϑ instead of the usual magnitude q of the scattering wavevector. The transport mean free

path l* a photon must travel before its direction is completely randomized is an important parameter in the

model. Usually, l* is much larger than the scattering mean free path l that a photon must travel to undergo

a scattering event, i.e., l* > l. Owing to the randomization of the scattering wavevector, the scattering

angle is not important, and either the transmitted or the backscattering is used in the measurement of g(2)E

(ϑ,τ), i.e., ϑ either 0 or (essentially) π radians, respectively; since q does not enter in the final analysis,

these angles should be taken as nominal values. As developed in the following, the transmission and

backscattering differ in that the interpretation of g(2)E (ϑ,τ) requires a value for l* for transmission, but not in

backscattering. Although the backscattering mode may be the only option if the suspension is very turbid,

some of the assumptions made in the model may not be valid, resulting in inaccurate analysis in the

backscattering mode, in particular whether the photon scattering wavevector is randomized in the

penetration length for the light. (171) A schematic diagram indicating the length l* in comparison to the

distance l between scattering events, and a flat cell arrangement used to study the transmitted scattering

from a gel, with non ergodic effects in the scattering is given in Figure 1 of reference [173]. The scattering

from the gel is passed through a second cell containing a slightly turbid suspension with ergodic behavior

to assist in the averaging needed to obtain g(2)E (ϑ,τ) with the non ergodic behavior of the gel. Two

correlators analyze the scattering received via an optical fiber, with the light divided into two optical fibers

gcberry1
gcberry1
gcberry1
gcberry1
56
gcberry1
Page 59: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

delivered to two, independent detectors. The signals from those detectors are cross-correlated to remove

any effect of random after-pulsing that might affect measurements at very small τ.

In addition to l* and l introduced in the preceding paragraph, parameters in the interpretation of g(2)E (ϑ,τ)

in terms of the DWS model include the (spherical) particle radius R, the sample thickness L for

transmission and a reduced time given by (2π/λ)2Dτ with D the diffusion constant for diffusive (Brownian)

motion of the particles or by replacing Dτ by 〈Δr2(τ)〉/6 for non-diffusive particle motion where 〈Δr2(τ)〉 is

the mean-square particle displacement. To be most effective, the particles should have R close to the

wavelength λ in the medium, so that the particle scattering factor will involve Mie scattering, and be

strongly peaked in the forward directions for each scattering event. With the DWS model, it is assumed

that owing to the randomization, a transmitted photon will experience (L/l*)2 random walk steps on leaving

the sample, with l*/l scattering events per step, or an average n = (L/l*)2 (l*/l) number of scattering events.

The field auto-correlation scattering events are averaged over q for each step, using the relevant particle

scattering function for the particle. The calculation is sensitive to the experimental conditions, e.g.,

transmission or backscattering, point source or extended source to illuminate a wide area on the sample.

The necessary averaging is represented in Equation (105)

g(2)E (ϑ,τ) = 1 + β[g(1)

E (ϑ,τ)]2 (105a)

g(1)E (ϑ,τ) = ∫

∞0 ds P(s)exp[–(s/l*)(2τ/τ0)] (105b)

where β ≈ 1 in optical arrangements relevant to DWS, and P(s) depends on the geometric nature of the

experimental optical arrangement and τo is a time constant characteristic of the process, see below. (170-

171,174) For example, for the use of an extended source, and scattering collected from a small area near the

center defined by the illuminated area, g(1)E (0,τ) in transmission and g(1)

E (π,τ) in backscattering are given by

Equations (106) and (107), respectively, with ã = L/l* and a* = 〈zo〉/l*, where 〈zo〉 ≈ l* is a distance from

the illuminated face for which the scattering wavevector has become randomized:

g(1)E (0,τ) =

[ã+ (4/3)]{sinh[a*x] + (2x/3) cosh[a*x]} [a* + (2/3)]{[1 + (4x2/9)]sinh[ãx] + (4x/3) cosh[ãx]} (106a)

g(1)E (0,τ) ≈

[ã+ (4/3)]x[1 + (4x2/9)]sinh[ãx] + (4x/3) cosh[ãx] ; for x << 1 (106b)

gcberry1
57
gcberry1
gcberry1
gcberry1
Page 60: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

58

g(1)E (π,τ) =

sinh[(ã – a*)x] + (2x/3) cosh[(ã – a*)x][1 + (4x2/9)]sinh[ãx] + (4x/3) cosh[ãx] (107a)

, g(1)E (π,τ) ≈

exp(–a*x)1 + 2x/3 ≈ exp(–γx) for ã >>1 and x << 1 (107b)

with γ = a* + 2/3. It should be emphasized that other expressions must be used for optical arrangments not

used in the calculation of Equations (106-107). (171,175) A method has been given to correct g(1)E (0,τ) for the

effects of reflection at the air-glass interfaces. (176) The parameter ã may be determined from the static

optical transmission Tscat as affected by the scattering (i.e., without absorption at the scattering wavelength,

which if present requires a known correction) by the expression (176)

Tscat = 53ã/01

2341 +

43Nã

-1

(108)

For a diffusive process, x = (2π/λ)(6Dτ)1/2 in either Equations (106) or (107). For a non diffusive process

x = (2π/λ)〈Δr2(τ)〉1/2 in Equation (106) for transmission, but should not be applied with Equation (107) in

backscattering because the diffusion approximation and central limit theorem used in arriving at this result

are valid only for long paths, and break down for short paths characteristic of backscattering in turbid

media. (171) In practice, these expressions (or others, relating to alternative optical arrangements��DUH�XVHG to

determine either D or 〈Δr2(τ)〉. Examples of typical behavior for 〈Δr2(τ)〉 DUH given in Figure (20), with the

tangent to 〈Δr2(τ)〉 tending to unity with increasing τ for the solutions, but decreasing gradually with

increasing τ until it decreases rapidly tending to zero over a short range in large τ for a densely crosslinked

sample, these attributes are discussed further in the next paragraphs. (175)

<Figure 20>

Although DWS is used to characterize media for which the particle diffusion is diffusive, e.g., to

evaluate properties changing with some processing time, e.g., as in Figure (20), (177-180) the DSSOLFDWLRQ of WKH

method in its application to the use of 〈Δr2(τ)〉 in microrheology is of more interest here. For example, the

scattering from polymeric solutions or gels serving as a matrix in a suspension containing a sufficient

number of spherical particles to dominate the scattering and the resultant turbidity, but not so concentrated

that the rheological properties of the matrix are affected.

The calculation of the linear viscoelastic properties from 〈Δr2(τ)〉 based on its connection to a diffusion

process begins with a version of a generalized Langevin equation incorporating a time-dependent memory

function ζ(t), (175,181-183)

gcberry1
gcberry1
gcberry1
gcberry1
gcberry1
gcberry1
gcberry1
gcberry1
gcberry1
gcberry1
Page 61: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

mv̇(t) = frand(t) – ∫ t

0 dτ ζ(t - τ) v(τ) (109)

where ζ(t) is a generalized time-dependent memory function, frand(t) represents random forces acting on the

particle, v(t) is the particle velocity, v̇(t) its acceleration and m its mass. The merits and potential problems

with approximations used in this calculation, and especially the use of the generalized Stokes-Einstein

relation have been considered in detail. (184) The unilateral Laplace transform of Equation (108) involves the

approximation that a generalized time-dependent Stokes-Einstein holds with proportionality of ζ(τ) and the

real component η'(ω) dynamic viscosity η*(ω), so that after the Laplace transform (indicated by the "~"),

~ζ(s) = 6πR~η'(s) (110)

After rearrangement, and with neglect of an inertial term (which could cause inaccuracies for τ < 10-6s), the

result relates the Laplace transform 〈 ~Δr2(s)〉 of the mean-square displacement in terms to η'(s)

η'(s) = ~G(s)/s = kT

πRs2〈 ~Δr2(s)〉

(111)

where ~G(s) = s~GR(s), with ~GR(s) the Laplace transform of the shear stress relaxation modulus GR(t). For

freely diffusing particles, s2〈 ~Δr2(s)〉 = 6D, and Equation (111) is seen to be a frequency-dependent form of

the usual Stokes-Einstein expression ηo = kT/6πRD. (183) Alternatively, since the Laplace transforms of

GR(t) and the shear creep compliance J(t) are related by s~G(s)~J(s) = 1 for a linear viscoelastic material,

Equation (111) may be rearranged to give ~J(s) = (kT/πR)〈 ~Δr2(s)〉, or after inverse Laplace transformation,

(185)

〈Δr2(t)〉 = (kT/πR)J(t) = (kT/πR)[R(t) + t/η] (112)

with η the viscosity and R(t) the recoverable creep compliance. For a linear viscoelastic material, it is

useful to express R(t) in the form

R(t) = R∞ – [R∞ – R0]ρ( t) (113)

gcberry1
59
Page 62: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

where ρ(t) decreases from unity to zero with increasing t, R0 ≈ 10-10 Pa-1 in the normally accessible

experimental range used to determine R(t) (decreasing still further toward zero with still smaller times),

with R(t) increasing to reach a value R∞ with increasing t for large t. Here, R∞ is the steady-state

recoverable creep compliance for a fluid or the equilibrium compliance Je for a solid. The retardation

function ρ(t) is often represented to within experimental uncertainty as a sum of weighted exponential

terms exp(-t/λi), e.g., by methods used to represent g(1)E (q,τ) as a weighted sum of exponential terms

exp(-q2Diτ) in dynamic light scattering on dilute solutions to investigate the distribution of molecular

weight for samples. (186) For either a fluid or a solid, R(t) may exhibit a plateau with value JN over an

intermediate range of t for a polymer or its solution reflecting a pseudo-network in the entanglement

regime, although this property will be suppressed if Je < JN. (186) These attributes are seen in the

experimentally determined 〈Δr2(t)〉, e.g., 〈Δr2(t)〉 ∝ t, perhaps for the entire accessible range of t for a low

viscosity fluid, and 〈Δr2(t)〉 increasing gradually approaching a limiting value at large t for a solid.

Examples for a schematic representations of R(t) and other linear viscoelastic functions are shown in

Figure (20), along with experimental data on a 〈Δr2(t)〉 determined from g(1)E (0,τ) for a polymer solution and

gels prepared therefrom. (186-187) The similarity between 〈Δr2(t)〉 and J(t) is evident (the contribution of the

term t/η to J(t) being dominant for the solution, but suppressed for the gel). Nevertheless, although J(t)

may be determined with commercially available instrumentation, there does not seem to be any direct

evaluation of the accuracy of the Equation (112) in the literature, even though such is certainly feasible

using commercially available instrumentation for the range of t encompassed by the measurements of both

〈Δr2(t)〉 and J(t).

Rather, most, if not all, of the examples in the literature utilize qualitative comparisons of the storage and

loss components G'(ω) and G"(ω), respectively, derived from an analysis of 〈Δr2(t=1/ω)〉 in terms of the

complex modulus G*(ω) along with the dynamic modulus |G*(ω)| given by:

|G*(ω)| = {[G'(ω)]2 + [G"(ω)]2}1/2 (113)

Both G'(ω) and G"(ω) may be computed from J(t), either by available exact or quite good approximate

methods. (186) For example, G'(ω) = J'(ω)/|J*(ω)|2 and G"(ω) = J'(ω)/|J*(ω)|2, where J'(ω) and J"(ω) are the

storage and loss components of the complex compliance J*(ω) = 1/G*(ω),

gcberry1
gcberry1
gcberry1
60
Page 63: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

J'(ω) = R∞ – ω[R∞ – R0] ∫ ∞

0 dτ ρ( τ) sin(ωτ) (114a)

J"(ω) = (1/ωη) + ω[R(∞ – R0] ∫ ∞

0 dτ ρ( τ) cos(ωτ) (114b)

|J*(ω)| = {[J'(ω)]2 + [J"(ω)]2}1/2 (114c)

The required range of the integration may usually be problematic given the limited (albeit large) range of t

for which J(t) is known from 〈Δr2(t)〉 via Equation (112). Alternative approximate relations that provide

close approximations to the dynamic compliances from R(t) are available, for example, (186,188)

J'(ω) = {[1 – m(2t)]0.8R(t)}ωτ = 1 (115a)

J'(ω) = (1/ωη) + {[1 – m(2t/3)]0.8R(t)}ωτ = 1 (115b)

m(t) = ∂ln R(t)/∂ln t (115c)

where R(t) and η would be derived from 〈Δr2(t)〉 using Equation (112) in opto-microrheology.

A similar use of the tangent α(τ) = ∂ln 〈Δr2(τ)〉/∂ln τ has been incorporated into an approximation used

for the Laplace inversion and the subsequent Fourier transformation to frequency space to represent

〈Δr2(τ)〉-1 in terms of the dynamic moduli. (175) It may be noted that α(τ) = [R(τ)/J(τ)]m(τ) + t/ηJ(t), so that

α(τ) ≈ m(τ) for small τ, but that these differ for large τ, with α(τ) tending to unity and m(τ) tending to zero.

The approximations lead to the result

|G*(ω)| = {[kT/(πR〈Δr2(τ)〉)]Γ[ 1 + α(τ)]}τω = 1 (116a)

G'(ω) = |G*(ω)|cos(πα(ω)/2) (116b)

G"(ω) = |G*(ω)|sin(πα(ω)/2) (116c)

where Γ[…] is the gamma function; the behavior of 〈Δr2(τ)〉 at small and large τ are reflected in the

properties of the moduli. Well-known limits exist for the dependence of G'(ω) and G"(ω) in the extremes

of small and large ω: for both linear viscoelastic fluids and solids G"(ω) ∝ ω for small ω, and for large ω,

G'(ω) tends to 1/R0 and G"(ω) tends to zero; whereas, for small ω, G'(ω) ∝ ω2 for a fluid or becomes

independent of ω and equal to the equilibrium modulus Ge = 1/Je for a solid, such as a gel. The data on

G'(ω) and G"(ω) given in Figure (21), determined using the 〈Δr2(τ)〉 given in that figure for a colloidal

dispersion, (175) show that in that case the data on 〈Δr2(τ)〉 extend to large enough τ (small enough ω) so

gcberry1
gcberry1
gcberry1
61
gcberry1
gcberry1
Page 64: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

that G'(ω) may have nearly reached the limiting low-ω behavior with G'(ω) = Ge for the gel, but that

cannot be certain since the corresponding low-ω behavior with G"(ω) ∝ ω for small ω is not seen.

<Figure 21>

The opto-microrheology described above affords a useful method to obtain linear viscoelastic data, and

a light scattering apparatus is available (DWS RheoLab II, LS Instruments; http://www.lsinstruments.ch/).

The commercial apparatus incorporates a flat cell with arrangements to use the two-cell measurements

described above, with echo technology to assist determination of g(1)E (0,τ) for non ergodic samples, as

would be encountered in the study of gels or other solid materials, and the use of software to compute and

present results on 〈Δr2(τ)〉, G'(ω) and G"(ω). Examples in the literature from different laboratories, on

differently designed equipment and methods of analysis, give inconsistent results on the comparison of

viscoelastic results, almost always in the form of G'(ω) and G"(ω), from opto-microrheology with those

from the traditional use of rheometers. Deviations by a factor of two are not unusual, e.g., see the example

in Figure (21), even though some reports give close correspondence over the range of ω studied. The

reported deviations could reflect some assortment of potential errors, including failure of the generalized

Stokes-Einstein relation in the calculation of Equation (111) for the particular set of viscoelastic properties

of interest, unwanted effects of the filler particles on the viscoelastic properties of the matrix at the

concentration of particles needed to obtain the strong multiple scattering necessary for the theory to apply,

failure of the "stick" boundary conditions assumed between the particles and the matrix, especially in a gel

failure to obtain a full measure of g(1)E (0,τ) for a non ergodic sample, or failure of the optical arrangement to

conform to the analytical expression given for g(1)E (0,τ) (the expressions given in Equations (106-107) are

for a particular optical arrangement, with different expressions needed for other arrangements (171));

additional issues are discussed in detail in the literature. (175-176,184) Despite these potential sources of error,

with the appropriate equipment, opto-microrheology can at the least provide a method to discriminate

between the viscoelastic properties of a range of samples of interest, at the best may provide useful

viscolastic data on materials in the relevant viscosity range, approximately from >≈ 0.1 mPa s (provided

suspended particles do not settle from the suspension) to <≈ 1 kPa s.

gcberry1
62
Page 65: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

4.8 The intramolecular structure factor for wormlike chains The increasing interest in the scattering from wormlike macromolecules and micelles warranted an

improved version of the PVv(ϑ,0) for the behavior at large q (as only the Vv scattering will be of interest in

this section, the subscript "Vv" will be suppressed in the following). The limitations of the versions for

PRF(ϑ,0) for the random flight and the persistent linear chains for âq greater than about 2 are well known,

where â is the persistence length of the chain. For example, as shown by Equation (38) in Section 2.4.1,

the random flight chain model does not provide the relevant properties for âq > 2, as it misses the rodlike

character of any real chain in such a range of q, for which the rodlike expression in Table 1 is more

appropriate for a chain molecule, albeit requiring some modification for "thick" micelle rodlike structures

(see below). Improved treatments presented in numerical formats addressing these deficiencies are

discussed in the following, providing a crossover from PRF(ϑ,0) for R2Gq2 << 1 to P(ϑ,0) for the rodlike

chain for âq >> 1. The results for P(ϑ,0) are presented as a fairly complicated expression involving a

number of numerical parameters chosen to fit the numerical results of the calculation of P(ϑ,0). They are

well represented by PW-RF(ϑ,0) obtained from PRF(ϑ,0) in the range 0.1 ≤ L/â ≤ 20,000 with R2G =

(âL/3)S(â/L) for the wormlike chain used in place of the value âL/3 for the random-flight chain, see Table 1.

A set of curves for the functions (âLq2/3)P(ϑ,0) and (Lq/π)P(ϑ,0) as functions of âq for the Kratky-

Porod wormlike chain model developed by Yamakawa and Yoshizaki (2,189) as presented elsewhere is

reproduced in Figure (22). (190-191) The curves were obtained using a set of data given as bilogarithmic

plots of (L/2â)P(ϑ,0) vs 2âq for twelve values of L/â, ranging from 0.6 to 1,280. (192) Additional

calculations have produced similar results. (193-195)

<Figure 22>

Although the computations and various numerical presentations are complex one might anticipate that a

Padé approximation for P(ϑ,0) calculated for persistent chain models could provide a useful approximation

in many cases, using the limiting forms for the random flight and rodlike chains for large and small L/â,

respectively, e.g., see the discussion of these limits in Section 2.4.1. It is found that the following

expression provides a satisfactory representation of the data in Figure (22) for L/â >5: (190-191)

P(ϑ,0) = #$%

&'(

PmW-RF

(ϑ,0) + #$%

&'(1 – exp[–(âq)2]

1 + Lq/π

m 1/m

(11�)

with m = 3 provides a good representation of the more complex crossover expression for L/â > 5; the

second term in the brackets is devised to go to zero as q tends to zero, and to give the correct asymptotic

gcberry1
gcberry1
63
Page 66: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

behavior for a rodlike chain for larger q. (Unfortunately, the prior rendition of Equation (11�) in

reference [191] included an error in which the term Lq/π was entered as Lq2/π�. The deviation

of the Padé approximation with m = 3 from the numerical P(q,0) for smaller L/â reflects the sharpening

character of the crossover noted above, and accordingly, may be minimized by permitting m to increase

with decreasing L/â, e.g., m equal to 6 for L/â of 2.5 to 0.6.

The behavior displayed in Figure (22) is usually considered in three regimes: Regimes I for which R2Gq2 is

small enough so that P(ϑ,0) is fitted by PI(ϑ,0) ≈ PW-RF(ϑ,0), a crossover in Regime II, with P(ϑ,0) ≈

PII(ϑ,0), and a rodlike behavior in Regime III for large âq for which P(ϑ,0) ≈ PIII(ϑ,0) with

PIII(ϑ,0) = (π/Lq)Psection(ϑ,0) (11�)

where Psection(ϑ,0) ≈ 1 for a scatterHU for which the effective radius Rc is small enough that Rcq << 1, despite

the large âq. For cylindrical symmetry of the scatterHU about its long axis,

Psection(ϑ,0) = #$%

&'(2J1(Rcq)

Rcq

2

≈ exp[– (Rcq/2)2] (11�)

where J1(…) is the first-order Bessel function of the first kind, and the exponential function is within 10%

of the Bessel function fo Rcq < 2, deviating rapidly with increasing Rcq. Regime III is rarely reached with

light scattering, but can be dominant for neutron or x-ray scattering, i.e., since ϑ < π, â/λ must be larger

than about (3/2π2)(1 + 4â/L) ≈ 0.24 if the transition to Regime III is to be observed�

Analysis of (âLq2/3)P(ϑ,0)PII(ϑ,0) and âLq2/3)P(ϑ,0)PIII(ϑ,0) shows that the intersection between these

two functions occurs for a q = q* given by

âq* ≈ (6/π)S(â/L)-1 ≈ (6/π)(1 + 4â/L) �����������(1��)

providing a means to estimate â if Regime III is to be observed, indicating that it will usually require the

smaller wavelenths of neutrons or x-rays for the analysis. If thDW regime is reached, e.g., in neutron or x-ray

scattering��(TXDWLRQ������ provides a means to determine â. If not, methods discussed in Section 2.4.1, �VXFK�DV

gcberry1
64
gcberry1
gcberry1
gcberry1
gcberry1
gcberry1
gcberry1
gcberry1
Page 67: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

evaulation of the dependence of R2G on the chain coutour length L obtained for R2

Gq2 << 1, using the

expression for R2G = (âL/3)S(â/L) = (âL/3)S(â/L) given in Table 1, or the comparison of P(ϑ,0)) over the

available range of q with the improved versions mentioned above, displayed in Figure (22). (192-195)

gcberry1
65
gcberry1
Page 68: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\�������

��

5. FREQUENTLY USED NOTATION

k 3HUVLVWHQFH�OHQJWK�IRU�VHPLIOH[LEOH�FKDLQV�$���$� 7KH�VHFRQG�YLULDO�FRHIILFLHQW��WKH�WKLUG�YLULDO�FRHIILFLHQW��HWF���VHH�(TXDWLRQ�����E�F� $�FRUUHODWLRQ�OHQJWK�REWDLQHG�IURP�WKH�GHSHQGHQFH�RI�R9Y�ϑ��RQ�ϑ��VHH�(TXDWLRQ������F��Fµ 7KH�VROXWH�FRQFHQWUDWLRQ��ZW�YRO���FRQFHQWUDWLRQ�RI�VROXWH�FRPSRQHQW�µ�)LVR�ϑ�F� 7KH�LQWHUPROHFXODU�VWUXFWXUH�IDFWRU�RLVR�ϑ�F��.F03LVR�ϑ�F���VHH�(TXDWLRQ�����J���τ��ϑ�F� 7KH�QRUPDOL]HG�HOHFWULF�ILHOG�DXWRFRUUHODWLRQ�IXQFWLRQ��J���τ��ϑ���VHH�(TXDWLRQ������+LVR�ϑ�F� 7KH�IXQFWLRQ�^)LVR�ϑ�F�

���±��`�FΓLVR�F�3LVR�ϑ�F���VHH�(TXDWLRQ���N %ROW]PDQQV�FRQVWDQW�. $Q�RSWLFDO�FRQVWDQW�UHODWLQJ�LQWHQVLWLHV�WR�WKH�5D\OHLJK�UDWLR�/ &KDLQ�FRQWRXU�OHQJWK�/6 $�VXEVFULSW�WR�LQGLFDWH�WKH�DYHUDJH�RI�D�IXQFWLRQ�RU�SDUDPHWHU�REWDLQHG�LQ�OLJKW�VFDWWHULQJ�0 0ROHFXODU�ZHLJKW�0/ 7KH�PDVV�SHU�XQLW�OHQJWK��0�/�Qµ 1XPEHU�IUDFWLRQ�RI�VROXWH�FRPSRQHQW�µ�QPHGLXP 5HIUDFWLYH�LQGH[�RI�WKH�PHGLXP�QVROXWH 5HIUDFWLYH�LQGH[�RI�WKH�VROXWH�x 7KH�UDWLR�QVROXWH�QPHGLXP�1$ $YDJDGURV�FRQVWDQW�3LVR�ϑ�F� 7KH�LQWUDPROHFXODU�VWUXFWXUH�IDFWRU��VHH�(TXDWLRQ�����3+Y�ϑ�F� 7KH�LQWUDPROHFXODU�VWUXFWXUH�IDFWRU�IRU�WKH�KRUL]RQWDOO\�SRODUL]HG�FRPSRQHQW�RI�WKH�VFDWWHULQJ

ZLWK�YHUWLFDOO\�SRODUL]HG�LQFLGHQW�OLJKW�39Y�ϑ�F� 7KH�LQWUDPROHFXODU�VWUXFWXUH�IDFWRU�IRU�WKH�YHUWLFDOO\�SRODUL]HG�FRPSRQHQW�RI�WKH�VFDWWHULQJ

ZLWK�YHUWLFDOO\�SRODUL]HG�LQFLGHQW�OLJKW�T 7KH�ZDYH�YHFWRU��ZLWK�PRGXOXV�T� ���π�λ�VLQ�ϑ����IRU�DQ�LVRWURSLF�PHGLXP�R�ϑ�F� 7KH�H[FHVV�5D\OHLJK�UDWLR�RDQLVR�ϑ�F� 7KH�DQLVRWURSLF�FRPSRQHQW�RI�R�ϑ�F��RLVR�ϑ�F� 7KH�LVRWURSLF�FRPSRQHQW�RI�R�ϑ�F��R+Y�ϑ�F� 7KH�KRUL]RQWDOO\�SRODUL]HG�FRPSRQHQW�RI�R�ϑ�F��IRU�YHUWLFDOO\�SRODUL]HG�LQFLGHQW�OLJKW�R9Y�ϑ�F� 7KH�YHUWLFDOO\�SRODUL]HG�FRPSRQHQW�RI�R�ϑ�F��IRU�YHUWLFDOO\�SRODUL]HG�LQFLGHQW�OLJKW�5�* 0HDQ±VTXDUH�UDGLXV�RI�J\UDWLRQ�

5+ +\GURG\QDPLF�UDGLXV��GHILQHG�DV�N7��πηV'7��ZLWK�'7�WKH�WUDQVODWLRQDO�GLIIXVLRQ�FRQVWDQW�DQGηV�WKH�VROYHQW�YLVFRVLW\�

6LVR�ϑ�F� 7KH�WRWDO�VWUXFWXUH�IDFWRU�RLVR�ϑ�F��.F0��VHH�(TXDWLRQ�����Z��Zµ 7KH�VROXWH�ZHLJKW�IUDFWLRQ��ZHLJKW�IUDFWLRQ�RI�VROXWH�FRPSRQHQW�µ�

gcberry1
gcberry1
gcberry1
Page 69: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

EHUU\��������

��

α 7KH�SDUDPHWHU��π5�λ�IRU�VSKHUHV�RI�UDGLXV�5�ΓLVR�F� 7KH�IXQFWLRQ�^)LVR���F�

���±��`�F��VHH�(TXDWLRQ�����δ� 0HDQ�VTXDUH�PROHFXODU�RSWLFDO�DQLVRWURS\��VHH�(TXDWLRQ�����δR 7KH�RSWLFDO�DQLVRWURS\�RI�D�VFDWWHULQJ�HOHPHQW�ZLWK�PROHFXODU�ZHLJKW�PR�ϑ 7KH�VFDWWHULQJ�DQJOH�λ 7KH�ZDYHOHQJWK�RI�OLJKW�LQ�WKH�VFDWWHULQJ�PHGLXP��λR�WKH�VDPH�in vaccuo.ν 7KH�QXPEHU�FRQFHQWUDWLRQ�RI�WKH�VROXWH��HTXDO�WR�F1$�0Q�ρ 7KH�GHQVLW\��ZW�YRO��ψVROXWH 7KH�FRQWUDVW�IDFWRU�IRU�RSWLFDOO\�LVRWURSLF�VROXWH�ψµ 7KH�FRQWUDVW�IDFWRU�IRU�FRPSRQHQW�µ�IRU�RSWLFDOO\�LVRWURSLF�PHGLD�

Page 70: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

6�

References

1. G. C. Berry, P. M. Cotts, 'Static and dynamic light scattering', in Modern Techniques for Polymer

Characterisation, ed. R. A. Pethrick, J. V. Dawins, J Wiley & Sons Ltd, New York, 81-108 1999.

2. H. Yamakawa, Helical wormlike chains in polymer solutions, Springer-Verlag: New York, 418 1997.

3. W. Brown, ed., Light scattering: Principles and development, Clarendon Press, Oxford, UK, 544

1996.

4. G. C. Berry, 'Static and dynamic light scattering on moderately concentrated solutions: Isotropic

solutions of flexible and rodlike chains and nematic solutions of rodlike chains', Adv Polym Sci, 114,

233-90 (1994).

5. R. S. Stein, M. Srinivasarao, 'Fifty years of light scattering: a perspective', J Polym Sci: Part B:

Polym Phys, 31, 2003-10 (1993).

6. W. Burchard, 'Static and dynamic light scattering approaches to structure determination in

biopolymers', in Laser light scattering in biochemistry, eds. S. E. Harding, D. B. Sattelle, V. A.

Bloomfield, Royal Society Chemistry, Cambridge, UK, 3-22 1992.

7. B. Chu, Laser light scattering 2nd ed., Academic Press Inc, Boston, 343 1991.

8. P. W. Barber, S. C. Hill, Light scattering by particles: Computational methods, World Scientific,

Singapore, 261 1990.

9. G. Gouesbet, G. Grehan,eds., Optical particle sizing: Theory and practice, Plenum Press, New York,

642 1988.

10. G. C. Berry, 'Light scattering', in Encyclopedia of polymer science and engineering 8, ed. H. Mark et

al, John Wiley & Sons, New York, 721-94 1987.

11. E. Gulari, A. Annapragada, E. Gulari, B. Jawad, 'Determination of particle size distributions using

light-scattering techniques', ACS Symp Ser, 332, 133-45 (1987).

12. W. Burchard, 'Static and dynamic light scattering from branched polymers and biopolymers', Adv

Polym Sci, 48, 1-124 (1983).

13. C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles, John Wiley &

Sons, New York, 544 1983.

14. P. Kratochvil, 'Advances in classical light scattering from polymer solutions', Pure Appl Chem, 54,

379-93 (1982).

15. O. Glatter, O. Kratky, eds., Small angle x-ray scattering, Academic Press, New York, 515 1982.

16. H. Eisenberg, Biological macromolecules and polyelectrolytes in solution, Oxford Univ Press,

London, 272 1976.

17. B. J. Berne, R. Pecora, Dynamic light scattering, John Wiley & Sons, Inc, New York, 376 1976.

Page 71: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

6�

18. E. F. Casassa, G. C. Berry, 'Light scattering from solutions of macromolecules', in Polymer

Molecular Weights, Pt 1, ed. P. E .Slade Jr, , Marcel Dekker, Inc, New York, 161-286 1975.

19. M. B. Huglin, ed., Light scattering from polymer solutions, Academic Press, London, 885 1972.

20. H. Yamakawa, Modern theory of polymer solutions, Harper and Row, New York, 419 1971.

21. M. Kerker, The scattering of light, and other electromagnetic radiation, Academic Press, New York,

666 1969.

22. H. C. van de Hulst, Light scattering by small particles, John Wiley & Sons Inc, New York, 470 1957.

23. K. A. Stacey, Light-scattering in physical chemistry, Academic Press, New York, 230 1956.

24. A. Guinier, G. Fournet, Small-angle scattering of x-rays, John Wiley & Sons Inc, New York, 268

1955.

25. D. McIntyre, F. Gornick, eds., Light scattering from dilute polymer solutions, Gordon and Breach,

New York, 318 1964.

26. M. Kerker, Selected papers on light scattering, SPIE milestone series Vol 951, parts 1 & 2, SPIE Int

Soc Opt Eng, Bellingham WA, 1016 1988.

27. W. Brown, ed., Dynamic light scattering, Clarendon Press, Oxford, UK, 735 1993.

28. Y. Einaga, F. Abe, H. Yamakawa, 'Light scattering method of determining the second virial

coefficient for simple molecules and oligomers', J Phys Chem, 96, 3948-53 (1992).

29. P. J. Flory, Principles of polymer chemistry, Cornell University Press, Ithaca, NY, 680 1953.

30. F. R. Hallet, 'Size Distributions from Static Light Scattering', in Light Scattering: Principles and

Development, ed. W. Brown, Clarendon Press, Oxford, 477-93 1996.

31. B. H. Zimm, 'Apparatus and methods for measurement and interpretation of the angular variation of

light scattering; Preliminary results on polystyrene solutions', J Chem Phys, 16, 157-74 (1948).

32. M. Nagasawa, A. Takahashi, 'Light scattering from polyelectrolyte solutions', in Light scattering

from polymer solutions, ed. M. B. Huglin, Academic Press, New York, 671-723 1972.

33. P.-G. de Gennes, Scaling concepts in polymer physics, Cornell University Press, Ithaca NY, 324

1979.

34. G. R. Mitchell, 'X-ray scattering from non-crystalline and liquid crystalline polymers', in

Comprehensive Polymer Science 1, ed. G. Allen, Pergamon Press, New York, 687-729 1988.

35. D. M. Sadler, 'Neutron scattering from solid polymers', in Comprehensive Polymer Science 1, ed. G.

Allen, Pergamon Press, New York, 731-63 1988.

36. H. Benoit, D. Froelich, 'Application of light scattering to copolymers', in Light scattering from

polymer solutions, ed. M. B. Huglin, Academic Press, New York, 467-501 1972.

37. H. Benoit, 'Light scattering by dilute solutions of high polymers', in Electromagnetic scattering, ed.

M. Kerker, Pergamon Press, Elmworth, NY, 285-301 1963.

Page 72: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

��

38. R. B. Penndorf, 'Approximation formula for forward scattering', J Opt Soc Am, 52, 797- 800 (1962).

39. J. R. Urwin, 'Molecular weight distribution by turbidimetric titration', in Light scattering from

polymer solutions, ed. M. B. Huglin, Academic Press, New York,, 789-824 1972.

40. H. Benoit, 'Étude de la dépolarisation de la lumière diffusée par les chaînes moléculaires', CR Acad

Sci, 236, 687-9 (1953).

41. P. Horn, 'Light scattering in solutions of anisotropic macromolecules', Ann Phys, 10, 386- 434

(1955).

42. G. C. Berry, 'Molecular weight distribution', in Encyclopedia of materials science and engineering,

ed. M. B. Bever, Pergamon Press, Oxford, 3759-68 1986.

43. S. Boron, B. Waldie, 'Particle sizing by forward lobe scattered intensity ratio technique: Errors

introduced by applying diffraction in the Mie regime', Appl Opt, 17, 1644-8 (1978).

44. J. R. Hodkinson, 'Particle sizing by means of the forward scattering lobe', Appl Opt, 5, 839-44

(1966).

45. D. K. Hahn, S. R. Aragon, 'Mie scattering from anisotropic thick spherical shells', J Chem Phys, 101,

8409-17 (1994).

46. S. Asano, M. Sato, 'Light scattering by randomly oriented spheroidal particles', Appl Opt, 19, 962-74

(1980).

47. G. C. Berry, 'Properties of an optically anisotropic heterocyclic ladder polymer (BBL) In solution', J

Polym Sci: Polym Symp, 65, 143-72 (1978).

48. K. Nagai, 'Theory of light scattering by an isotropic system composed of anisotropic units with

application to the Porod-Kratky chanis', Polym J, 3, 67-83 (1972).

49. H. Benoit, 'Determination of the dimensions of anisotropic macromolecules by means of light

scattering', Makromol Chem, 18/19, 397-405 (1956).

50. B. H. Zimm, 'The scattering of light and the radial distribution function of high polymer solutions', J

Chem Phys, 16, 1093-9 (1948).

51. E. F. Casassa, G. C. Berry, 'Polymer solutions', in Comprehensive Polymer Science 2, ed. G. Allen,

Pergamon Press, New York, 71-120 1988.

52. A. Peterlin, 'Light scattering by non-Gaussian macromolecular coils', in Electromagnetic scattering,

ed. M. Kerker, Pergamon Press, Elmworth, NY, 357-75 1963.

53. E. F. Casassa, G. C. Berry, 'Angular distribution of intensity of Rayleigh scattering from comblike

branched molecules', J Polym Sci: Part A-2: Polym Phys 4, 881 (1966).

54. H. Benoit, 'On the effect of branching and polydispersity on the angular distribution of light scattered

by Gaussian coils', J Polym Sci, 11, 507-11 (1953).

Page 73: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

��

55. D. R. Miller, E. M. Valles, C. W. Macosko, 'Calculation of molecular parameters for stepwise

polyfunctional polymerization', Polym Eng Sci, 19, 272-83 (1979).

56. E. F. Casassa, 'Light scattering from very long rod-like particles and an application to polymerized

fibrinogen', J Chem Phys, 23, 596-7 (1955).

57. F. Mallamace, N. Micali, 'Low Angle Light Scattering and its Applications', in Light Scattering:

Principles and Development, ed. W. Brown, Clarendon Press, Oxford, 381-438 1996.

58. C. M. Sorensen, 'Scattering and absroption of light by particles and aggregates', in Handbook of

surface and colloid chemistry, ed. K. S. Birdi, C R C Press, Boca Raton, 533-58 1997.

59. C. F. A. Bohren, 'Recurrence relations for the Mie scattering coefficients', J Opt Soc Am A, 4, 612-

13 (1986).

60. W. J. Wiscombe, 'Improved Mie scattering algorithms', Appl Opt, 19, 1505-9 (1980).

61. R. H. Boll, J. A. Leacock, G. C. Clark, S. W. Churchill, Tables of light scattering functions; relative

indices of less than unity, and infinity, University of Michigan Press, Ann Arbor, 360 1958.

62. W. J. Pangonis, W. Heller, A. Jacobson, Tables of light-scattering functions for spherical particles,

Wayne State University Press, Detroit, 116 1957.

63. R. O. Gumprecht, C. M. Sliepcevich, Tables of light-scattering functions for spherical particles,

University of Michigan Press, Ann Arbor, 574 1951.

64. R. Bhandari, 'Scattering coefficients for a multilayered sphere: Analytic expressions and algorithms',

Appl Opt, 24, 1960-7 (1985).

65. S. Levine, 'Scattering of electromagnetic waves from two concentric spheres, when outer shell has a

variable refractive index', in Electromagnetic scattering: ICES, ed. M Kerker, Pergamon Press, New

York, 205-12 1963.

66. P. J. Wyatt, 'Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric

objects', Phys Rev, 127, 1837-43 (1962).

67. J. Buitenhus, J. K. G. Dhont, H. N. W. Lekkerkerker, 'Scattering of light from cylindrical particles:

Coupled dipole method calculations and the range of validity of the Rayleigh-Gans- Debye

approximation', J Colloid Interface Sci, 162, 19-24 (1994).

68. C. S. Buehler, J. M. Caruthers, E. I. Franses, 'Light scattering theory from monodisperse spheroidal

particles in the Rayleigh-Debye-Gans regime', J Chem Phys, 92, 140-56 (1990).

69. S. Asano, 'Light scattering properties of spheroidal particles', Appl Opt, 18, 712-23 (1979).

70. G. H. Meeten, P. Navard, 'Small-angle scattering of polarized light. I. Comparison of theoretical

predictions for isotropic and anisotropic spheres', J Polym Sci: Part B: Polym Phys, 27, 2023-35

(1989).

Page 74: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

7�

71. G. H. Meeten, 'Small-angle light scattering by spherulites in the anomalous diffraction approximation',

Opt Acta, 29, 759-70 (1982).

72. M. B. Rhodes, R. S. Stein, 'Scattering of light from assemblies of oriented rods', J Polym Sci: Part A-

2: Polym Phys, 7, 1539-58 (1969).

73. J. Holoubek, 'Small-angle light scattering from an anisotropic sphere: anisotropy and size effects', J

Polym Sci: Part B: Polym Phys, 32, 351-7 (1994).

74. J. Holoubek, 'Small-angle light scattering from an anisotropic sphere: the Mueller matrix approach', J

Polym Sci: Part B: Polym Phys, 29, 1057-68 (1991).

75. C. Arvieu, P. Navard, 'Small-angle scattering of polarized light. III. Isotropic sphere in an anisotropic

medium (large refractive index mismatch)', J Polym Sci: Part B: Polym Phys, 27, 2157-8 (1989).

76. J. V. Champion, A. Killey, G. H. Meeten, 'Small-angle polarized light scattering by spherulites', J

Polym Sci: Polym Physics Ed, 23, 1467-76 (1985).

77. S. Asano, 'Light scattering by horizontally oriented spheroidal particles', Appl Opt, 22, 1390-6

(1983).

78. S. Clough, J. J. van Aartesn, R. S. Stein, 'Low-angle light-scattering equations for polymer

spherulites', J Polym Sci: Part A-2: Polym Phys 9, 1147-48 and citations therein (1971).

79. H. Schnablegger, O. Glatter, 'Sizing of colloidal particles with light scattering: Corrections for

beginning multiple scattering', Appl Opt, 34, 3489-501 (1995).

80. H. Schnablegger, O. Glatter, 'Particle sizing of turbid colloidal systems: a multiple scattering

correction', Prog Colloid Polym Sci, 93, 352-4 (1993).

81. E. D. Hirleman, 'General solution to the inverse near-forward-scattering particle-sizing problem in

multiple-scattering environments: theory', Appl Opt, 30, 4832-8 (1991).

82. E. D. Hirleman, 'Modeling of multiple scattering effects in Fraunhofer diffraction particle size

analysis', Part Part Syst Charact, 5, 57-65 (1988).

83. E. D. Hirleman, 'Modeling of multiple scattering effects in Fraunhofer diffraction particle analysis',

in Optical particle sizing: Theory and practice, eds. G. Gouesbet, G. Gréhan, Plenum Press, New

York, 159-75 1988.

84. A. K. Roy, S. K. Sharma, 'Inverse scattering problem involving soft Mie particles', Appl Opt, 36,

9487-95 (1997).

85. R. Finsy, L. Deriemaeker, E. Geladé, J. Joosten, 'Inversion of static light scattering measurements for

particle size distributions', J Colloid Interface Sci, 153, 337-54 (1992).

86. H. Schnablegger, O. Glatter, 'Optical sizing of small colloidal particles: an optimized regularization

technique', Appl Opt, 30, 4889-96 (1991).

Page 75: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

7�

87. O. Glatter, M. Hofer, 'Particle sizing of polydisperse samples by Mie-scattering', in Optical particle

sizing: Theory and practice, eds. G. Gouesbet, G. Gréhan, Plenum Press, New York,, 121-33 1988.

88. N. Ostrowsky, D. Sornette, R. Parker, E. R. Pike, 'Exponential sampling method for light scattering

polydispersity analysis', Opt Acta, 28, 1059-70 (1981).

89. O. Glatter, 'Determination of particle-size distribution functions from small-angle scattering data by

means of the indirect transformation method', J Appl Cryst, 13, 7-11 (1980).

90. P. J. Wyatt, 'Differential light scattering: A physical method for identifying living bacterial cells',

Appl Opt, 7, 1879-96 (1968).

91. J.-J. Liu, 'Essential parameters in particle sizing by integral transform inversions', Appl Opt, 36,

5535-45 (1997).

92. J. H. Koo, E. D. Hirleman, 'Synthesis of integral transform solutions for the reconstruction of

particle–size distributions from forward-scattered light', Appl Opt, 31, 2130-40 (1992).

93. E. D. Hirleman, P. A. Dellenback, 'Adaptive Fraunhofer diffraction particle sizing instrument using a

spatial light modulator', Appl Opt, 28, 4870-8 (1989).

94. L. P. Bayvel, J. C. Knight, G. N. Robertson, 'Application of the Shifrin inversion to the Malvern', in

Optical particle sizing: Theory and practice, eds. G. Gouesbet, G. Gréhan, Plenum Press, New York,

311-9 1988.

95. M. Bertero, P. Boccacci, C. De Mol, E. R. Pike, 'Particle-size distributions from Frauhofer diffraction',

in Optical particle sizing: Theory and practice, eds. G. Gouesbet, G. Gréhan, Plenum Press, New

York, 99-105 1988.

96. D. J. Brown, E. J. Weatherby, K. Alexander, 'Shape, concentration and anomalous diffraction effects

in sizing solids in liquids', in Optical particle sizing: Theory and practice, eds. G. Gouesbet, G.

Gréhan, Plenum Press, New York,, 351-62 1988.

97. D. Kouzelis, S. M. Cande, E. Esposito, S. Zikikout, 'Particle sizing by laser light diffraction:

Improvements in optics and algorithms', in Optical particle sizing: Theory and practice, eds. G.

Gouesbet, G. Gréhan, Plenum Press, New York, 335-49 1988.

98. E. D. Hirleman, 'Optimal scaling of the inverse Fraunhofer diffraction particle sizing problem: The

linear system produced by quadrature', in Optical particle sizing: Theory and practice, eds. G.

Gouesbet, G. Gréhan, Plenum Press, New York, 135-46 1988.

99. E. D. Hirleman, 'Optimal scaling of the inverse Fraunhofer diffraction particle sizing problem: The

linear system produced by quadrature', Part Charact, 4, 128-33 (1987).

100. J. H. Koo, E. D. Hirleman, 'Investigation of integral transform techniques for laser diffraction particle

size analysis', Chem Phys Processes Combust, 1-77, (1985).

Page 76: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

7�

101. E. D. Hirleman, V. Oechsle, N. A. Chigier, 'Response characteristics of laser diffraction particle size

analyzers: optical sample volume extent and lens effects', Opt Eng, 23, 610-19 (1984).

102. S. W. Provencher, 'A constrained regularization method for inverting data represented by linear

algebraic or integral equations', Comput Phys Comm, 27, 213-27 (1982).

103. S. W. Provencher, 'CONTIN: a general purpose constrained regularization program for inverting

noisy linear algebraic and integral equations', Comput Phys Comm, 27, 229-42 (1982).

104. J. Wang, F. R. Hallett, 'Spherical particle size determination by analytical inversion of the UV-

visible-NIR extinction spectrum', Appl Opt, 35, 193-7 (1996).

105. M. R. Jones, B. P. Curry, M. Quinn Brewster, K. H. Leong, 'Inversion of light-scattering

measurements for particle size and optical constants: theoretical study', Appl Opt, 33, 4025- 34

(1994).

106. M. R. Jones, K. H. Leong, M. Quinn Brewster, B. P. Curry, 'Inversion of light-scattering

measurements for particle size and optical constants: experimental study', Appl Opt, 33, 4035-41

(1994).

107. K. B. Strawbridge, F. R. Hallett, 'Size distributions obtained from the inversion of I(Q) using

integrated light scattering spectroscopy', Macromolecules, 27, 2283-90 (1994).

108. K. B. Strawbridge, F. R. Hallett, 'Polydisperse Mie theory applied to hollow latex spheres: an

integrated light-scattering study', Can J Phys, 70, 401-6 (1992).

109. K. S. Shifrin, I. B. Kolmakov, 'Calculation of a certain class of definite integrals containing the

square of a first order Bessel function (English translation)', Izv USSR Acad Sci Atmos Ocean Phys, 3,

749-53 (1967).

110. J. H. Chin, C. M. Sliepsevich, M. Tribus, 'Particle size distributions from angular variation of

intensity of forward-scattered light at very small angle', J Phys Chem, 59, 841-4 (1955).

111. J. H. Chin, C. M. Sliepsevich, M. Tribus, 'Determination of particle size distribution in polydisperse

systems by means of measurement of angular variation of intensity of forward- scattered light at very

small angle', J Phys Chem, 59, 845-8 (1955).

112. H. Benoit, W. H. Stockmayer, 'A study of the influence of interactions on light scattered by a

collection of particles', J Phys Radium, 17, 21-6 (1956).

113. S. Yue, G. C. Berry, 'Moderately concentrated solution of polystyrene. Part 5. Static and dynamic

light scattering in bis(2-ethylhexyl) phthalate', Macromol Symp, 98, 1005-27 (1995).

114. S. J. Chen, G. C. Berry, 'Moderately concentrated solutions of polystyrene. 4. Elastic and quasi-

elastic light scattering at the Flory theta temperature', Polymer, 31, 793-804 (1990).

Page 77: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

115. S. H. Kim, D. J. Ramsay, G. D. Patterson, J. C. Selser, 'Static and dynamic light scattering of poly(α-

methylstyrene) in toluene in the dilute region', J Polym Sci: Part B: Polym Phys, 28, 2023-56

(1990).

116. N. C. Ford Jr, 'Light scattering apparatus', in Dynamic light scattering, ed. R. Pecora, Plenum Press,

New York, 7-58 1985.

117. H. Utiyama, 'Light scattering instruments', in Light scattering from polymer solutions, ed. M. B.

Huglin, Academic Press, New York, 41-60 1972.

118. H. Utiyama, 'Calibration and correction factors', in Light scattering from polymer solutions, ed. M. B.

Huglin, Academic Press, New York, 62-88 1972.

119. R. Frank, L. Frank, N. C. Ford, 'Molecular characterization using a unified refractive-index-light-

scattering intensity detector', in Chromatographic Characterization of Polymers: Hyphenated and

Multidimensional Techniques, eds. T. Provder, H. G. Barth, M .W. Urban, American Chemical

Society, Washington DC, 109-21 1995.

120. T. H. Mourey, H. Coll, 'Size-exclusion chromatography with light-scattering detection at two angles',

in Chromatographic Characterization of Polymers: hHyphenated and Multidimensional Techniques,

eds. T. Provder, H. G. Barth, M. W. Urban, American Chemical Society, Washington DC, 123-40

1995.

121. E. F. Casassa, 'Particle scattering factors in Rayleigh scattering', in Polymer Handbook, eds. E. H

Immergut, J. Branderup, John Wiley & Sons, New York, VII/485-91 1989.

122. P. Kratochvil, 'Particle scattering functions', in Light scattering from polymer solutions, ed. M. B.

Huglin, Academic Press, New York, 333-84 1972.

123. G. Porod, 'X-ray and light scattering by chain molecules in solution', J Polym Sci, 10, 157-66 (1953).

124. G. C. Berry, 'Thermodynamic and conformational properties of polystyrene. I. Light-scattering

studies on dilute solutions of linear polystyrenes', J Chem Phys, 44, 4550 (1966).

125. S. Shiga, E. Kato, 'Characterization of polymers by GPC-LALLS. I. Computer simulation of

fractionation of branched polymers by GPC', Rubber Chem Techol, 59, 693-708 (1986).

126. M. Kurata, M. Fukatsu, 'Unperturbed dimension and translational friction constant of branched

polymers', J Chem Phys, 41, 2934-44 (1964).

127. C. Jackson, Y.-J. Chen, J. W. Mays, 'Dilute solution properties of randomly branched poly(methyl

methacrylate)', J Appl Polym Sci, 59, 179-88 (1996).

128. B. A. Korgel, J. H. van Zanten, H. G. Monbouquette, 'Vesicle size distributions measured by flow

field-flow fractionation coupled with multiangle light scattering', Biophys J, 74, 3264-72 (1998).

129. J. H. van Zanten, 'Characterization of vesicles and vesicular dispersions via scattering techniques', in

Vesicles, ed. M. Rosoff, Marcel Dekker, Inc, New York, 240-94 1996.

Page 78: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

7�

130. J. H. van Zanten, 'The Zimm plot and its analogs as indicators of vesicle and micelle size

polydispersity', J Chem Phys, 102, 9121-8 (1995).

131. J. H. van Zanten, 'Unilamellar vesicle diameter and wall thickness determined by Zimm's light

scattering technique', Langmuir, 10, 4391-3 (1994).

132. K. B. Strawbridge, L. R. Palmer, A. R. Merrill, F. R. Hallett, 'Integrated light-scattering spectroscopy,

a sensitive probe for peptide-vesicle binding: application to the membrane-bound colicin E1 channel

peptide', Biophys J, 68, 131-6 (1995).

133. Z. Tuzar, P. Kratochvil, 'Scattering from Block Copolymer Micellar Systems', in Light Scattering:

Principles and Development, ed. W. Brown, Clarendon Press, Oxford, 327-42 1996.

134. J. Swithenbank, J. Cao, A. A. Hamidi, 'Spray diagnostics by laser diffraction', in Combustion

measurements, ed. N. Chigier, Hemisphere Publishing Corp, New York, 179-227 1991.

135. B. B. Weiner, 'Particle and droplet sizing using Fraunhofer diffraction', in Modern Methods of

Particle Size Analysis, ed. H. G. Barth, John Wiley & Sons, New York, 135-72 1984.

136. P. Meyer, N. Chigier, 'Dropsize measurements using a Malvern 2000 Particle Sizer', Atomisation

Spray Tech, 2, 261-98 (1986).

137. D. J. Brown, K. Alexander, J. Cao, 'Anomalous diffraction effects in the sizing of solid particles in

liquids', Part Part Syst Charact, 8, 175-8 (1991).

138. S. Yue, G. C. Berry, M. S. Green, 'Intermolecular association and supramolecular organization in

dilute solution. 2. Light scattering and optical activity of poly(p-biphenylmethyl-L-glutamate',

Macromolecules, 29, 6175-82 (1996).

139. D. W. Tanner, G. C. Berry, 'Properties of cellulose acetate in solution. I. Light scattering, osmometry

and viscometry on dilute solutions', J Polym Sci: Polym Phys Ed, 12, 941 (1974).

140. T. Nicolai, D. Durand, J.-C. Gimel, 'Scattering Properties and Modelling of Aggregating and Gelling

Systems', in Light Scattering: Principles and Development, ed. W. Brown, Clarendon Press, Oxford,

201-31 1996.

141. H. G. Elias, 'The study of association and aggregation via light scattering', in Light scattering from

polymer solutions, ed. M. B. Huglin, Academic Press, New York, 397-457 1972.

142. S. Yue, G. C. Berry, R. D. McCullough, 'Intermolecular association and supramolecular organization

in dilute solution. 1. Regioregular poly(3-dodecylthiophene)', Macromolecules, 29, 933-9 (1996).

143. R. Furukawa, G. C. Berry, 'Studies on dilute solutions of rodlike macroions. 4. Aggregation with

enhanced orientational correlation', Pure Appl Chem, 57, 913-20 (1985).

144. M. Sedlak, 'Polyelectrolytes in Solution', in Light Scattering: Principles and Development, ed. W.

Brown, Clarendon Press, Oxford, 120-65 1996.

Page 79: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

7�

145. V. J. Sullivan, G. C. Berry, 'Light scattering studies on dilute solutions of semiflexible

polyelectrolytes', Intl J Polym Anal Charact, 2, 55-69 (1995).

146. R. B. Russel, D. A. Saville, W. R. Schowalter, Colloidal dispersions, Cambridge University Press,

Cambridge, 343 1989.

147. F. Grüner, W. Lehmann, 'On the long time diffusion of interacting Brownian particles', in Light

Scattering in Liquids and Macromolecular Solutions, eds. V. Degiorgio, M. Corti, M. Giglio, Plenum

Press, New York, 51-69 1980.

148. P. Doty, R. F. Steiner, 'Macro-ions. I. Light scattering theory and experiments with bovine serum

albumin', J Chem Phys, 20, 85-94 (1952).

149. P. N. Pusey, W. Van Megen, 'Dynamic light scattering by non-ergodic media', Physica A 157, 705-

41 (1989).

150. K. László, K. Kosik, C. Rochas, E. Geissler, 'Phase transition in poly(N-isopropylacrylamide)

hydrogels induced by phenols', Macromolecules, 36, 7771-6 (2003).

151. J. G. E. Joosten, J. L. McCarthy, P. N. Pusey, 'Dynamic and static light scattering by aqueous

polyacrylamide gels', Macromolecules, 24, 6690-9 (1991).

152. F. Horkay, W. Burchard, E. Geissler, M.-A. Hecht, 'Thermodynamic properties of poly(vinyl alcohol)

and poly(vinyl alcohol-vinyl acetate) hydrogels', Macromolecules, 26, 1296-303 (1993).

153. J. G. H. Joosten, 'Dynamic light scattering by non-ergodic media', Prog Colloid Polym Sci, 91, 149-

52 (1993).

154. F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, et al., 'New trends

in optical microrheology of complex fluids and gels', Prog Colloid Polym Sci, 123, 141-6 (2004).

155. J. G. H. Joosten, E. T. F. Geladé, P. N. Pusey, 'Dynamic light scattering by nonergodic media:

Brownian particles trapped in polyacrylamide gels', Phys Rev A, 42, 2161-75 (1990).

156. J. Z. Xue, D. J. Pine, S. T. Milner, X. L. Wu, P. M. Chaikin, 'Nonergodicity and light scattering from

polymer gels', Phys Rev A, 46, 6550-63 (1992).

157. J. Müller, T. Palberg, 'Probing slow fluctuations in nonergodic systems: Interleaved sampling

technique', Prog Colloid Polym Sci, 100, 121-6 (1996).

158. W. Van Megen, T. C. Mortensen, S. R. Williams, J. Müller, 'Measurement of the self-intermediate

scattering function of suspensions of hard spherical particles near the glass transition', Phys Rev E,

58, 6073-85 (1998).

159. K. N. Pham, S. U. Egelhaaf, A. Moussaïd, P. N. Pusey, 'Ensemble-averaging in dynamic light

scattering by an echo technique', Rev Sci Instrum, 75, 2419-31 (2004).

160. M. Medebach, N. Freiberger, O. Glatter, 'Dynamic light scattering in turbid nonergodic media', Rev

Sci Instrum, 79, 073907/1-12 (2008).

gcberry1
Page 80: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

7�

161. G. D. J. Phillies, 'Suppression of multiple scattering effects in quasielastic light scattering by

homodyne cross-correlation techniques', J Chem Phys, 74, 260-2 (1980).

162. G. D. J. Phillies, 'Experimental demonstration of multiple-scattering suppression in quasielastic-light-

scattering spectroscopy by homodyne coincidence techniques', Phys Rev A, 24, 1939-43 (1981).

163. M. Drewel, J. Ahrensr, U. Podschus, 'Decorrelation of multiple scattering for an arbitrary scattering

angle.', J Opt Soc Am A, 7, 206-10 (1989).

164. K. Schatzel, 'Suppression of multiple scattering by photon cross-correlation techniques', J Mod Opt,

38, 1849-65 (1991).

165. P. N. Segrè, W. Van Megen, P. N. Pusey, K. Schätzel, W. Peters, 'Two-colour Dynamic Light

Scattering', J Mod Opt, 42, 1929-52 (1995).

166. E. Overbeck, C. Sinn, T. Palberg, K. Schätzel, 'Probing dynamics of dense suspensions: Three-

dimensional cross- correlation technique', Colloids Surf A, 122, 83-7 (1997).

167. A. Moussaïd, P. N. Pusey, 'Multiple scattering suppression in static light scattering by cross-

correlation spectroscopy', Phys Rev E, 60, 5670-6 (1999).

168. I. D. Block, F. Scheffold, 'Modulated 3D cross-correlation light scattering: Improving turbid sample

characterization', Rev Sci Instrum, 81, 123107/1-7 (2010).

169. A. Lederer, H. J. Schöpe, 'Easy-use and low-cost fiber-based two-color dynamic light-scattering

apparatus', Phys Rev E, 85, 031401/1-8 (2012).

170. D. A. Weitz, J. X. Zhu, D. J. Durian, H. Gang, D. J. Pine, 'Diffusing-wave spectroscopy: the

technique and some applications', Phys Scr, T 49B, 610-21 (1993).

171. D. A. Weitz, D. J. Pine. 'Diffusing Wave Spectroscopy', in Dynamic Light Scatteing: The Method

and Some Applications, ed. W. Brown, Oxford UK, Oxford University Press, 652-720. 1993.

172. D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer, 'Diffusing-wave spectroscopy · dynamic light

scattering in the multiple scattering limit', J Phys (Paris), 51, 2101-27 (1990).

173. H. M. Wyss, S. Romer, F. Scheffold, P. Schurtenberger, L. J. Gauckler, 'Diffusing-wave spectroscopy

of concentrated alumina suspensions during gelation', J Colloid Interface Sci, 240, 89-97 (2001).

174. M. Alexander, D. G. Dalgleish, 'Diffusing Wave Spectroscopy of aggregating and gelling systems',

Curr Opin Colloid Interface Sci 12, 179-86 (2007).

175. T. G. Mason, 'Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-

Einstein equation', Rheol Acta, 39, 371-8 (2000).

176. P. D. Kaplan, M. H. Kao, A. G. Yodh, D. J. Pine, 'Geometric constraints for the design of diffusing-

wave spectroscopy experiments', Appl Opt, 32, 3828-36 (1993).

177. P. N. Pusey, 'Suppression of multiple scattering by photon cross-correlation techniques', Curr Opin

Colloid Interface Sci, 4, 177-85 (1999).

Page 81: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

7�

178. M. M. Robins, A. D. Watson, P. J. Wilde, 'Emulsions - Creaming and rheology', Curr Opin Colloid

Interface Sci, 7, 419-25 (2002).

179. F. Scheffold, R. Cerbino, 'New trends in light scattering', Curr Opin Colloid Interface Sci 12, 50-7

(2007).

180. G. Titapiccolo, M. Alexander, M. Corredig, 'Rennet-induced aggregation of homogenized milk:

Impact of the presence of fat globules on the structure of casein gels', Dairy Sci Tech, 90, 623-39

(2010).

181. J. L. Harden, V. Viasnoff, 'Recent advances in DWS-based micro-rheology', Curr Opin Colloid

Interface Sci, 6, 438-45 (2001).

182. W. Hess, R. Klein, 'Generalized hydrodynamics of systems of Brownian particles', Adv Phys, 32,

173-283 (1983).

183. T. G. Mason, D. A. Weitz, 'Optical measurements of frequency-dependent linear viscoelastic moduli

of complex fluids', Phys Rev Lett, 74, 1250-3 (1995).

184. T. M. Squires, T. G. Mason, 'Fluid Mechanics of Microrheology', Annu Rev Fluid Mech, 42, 413-38

(2010).

185. A. Palmer, J. Xu, D. Wirtz, 'High-frequency viscoelasticity of crosslinked actin filament networks

measured by diffusing wave spectroscopy', Rheol Acta, 37, 97-106 (1998).

186. G. C. Berry. 'Polymer rheology: Principles, techniques and applications', in Comprehensive Desk

Reference of Polymer Characterization and Analysis, ed. J. R.Brady, Washington, DC, American

Chemical Society, 574-623. 2003.

187. T. Narita, A. Knaebel, J. P. Munch, M. Zrínyi, S. J. Candau. Microrheology of chemically

crosslinked polymer gels by diffusing-wave spectroscopy. Macromol Symp 207, 17-30 (2004).

188. D. J. Plazek, N. Raghupathi, S. J. Orbon, 'Determination of dynamic storage and loss compliances

from creep data', J Rheol, 23, 477-88 (1979).

189. T. Yoshizaki, H. Yamakawa, 'Scattering functions of wormlike and helical wormlike chains',

Macromolecules, 13, 1518-25 (1980).

190. G. C. Berry 'Total Intensity Light Scattering from Solutions Macromolecule',

������in Soft-Matter Characterization, eds. R. Borsali, R. Pecora, New York, Springer, 41-132. 2008.

191. G. C. Berry, 'Light Scattering', in Monitoring Polymerization Reactions, eds. W. F. Reed,

A . M. Alb, Johh Wiley & Sons, Hoboken NJ, 150-70 2014.

192. J. S. Pedersen, P. Schurtenberger, 'Scattering Functions of Semiflexible Polymers with and without

Excluded Volume Effects', Macromolecules, 29, 7602-12 (1996).

193. H. U. Ter Meer, W. Burchard, 'Determination of chain flexibility by light scattering', Polym Commun,

26, 273-5 (1985).

gcberry1
Page 82: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

��

194. A. L. Kholodenko, 'Analytical calculation of the scattering function for polymers of arbitrary

flexibility using the Dirac propagator', Macromolecules, 26, 4179-83 (1993).

195. D. Potschke, P. Hickl, M. Ballauff, P.-O. Astrand, J. S. Pedersen, 'Analysis of the conformation of

worm-like chains by small-angle scattering: Monte Carlo simulations in comparison to analytical

theory', Macromol Theory Simul, 9, 345-53 (2000).

Page 83: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry1/6/99

55

Table 1Intramolecular Structure Factor for Several Models (a)

(Rayleigh-Gans-Debye Approximation)

Model R 2 G

(b) PVv(ϑ,0)

random-flight linear coil âL/3 u = âLq2/3 pc (u) = (2/u2)[u – 1 + exp(–u)] persistent (wormlike) linear chain(c) (âL/3)S(â/L) v = uâ/L exp(v)

i=0Σ(–v/i!)−1pc[(v + i)L/â]

disk ("infinitely thin") (d) R2/2 y = Rq (2/y2)[1 – J1(2y)/y] sphere 3R2/5 y = Rq (9/y6)[sin(y) – ycos(y)]2

shell ("infinitely thin") R y = Rq [sin(y)/y]2

rod ("infinitely thin") (e) L2/12 x = Lq p1(x) = (2/x2)[xSi(x) – 1 + cos(x)]

5 With one exception, the original citations for the entries for PVv(ϑ ,0), along withexpressions for a number of additional models may be found in reference 21h. Allfunctions are for full orientational averaging.

6 â is the persistence length; L = M/ML is the chain contour length (mass per unit lengthML); R is the radius for a disk or shell.

7 S(Z) = 1 – 3Z + 6Z2 – 6Z3[1 – exp(–Z−1)] ≈ (1 + 4Z)−1; the expression for PVv(ϑ,0)is limited to â/L < 0.1; a more complete representation may be found in reference 52.

8 J1(…) is the Bessel function of 1st order and kind.

9 Si(x) = ∫ 0 x ds{sin(s)/s} is the sine integralFor rods with optically anisotropic

elements:(10, 18. 41)

(1 + 4δ2/5)PVv(ϑ ,0) = p1(x) + δ2{(4/5) p3(x) – (2 – δ−1)m1(x) + (9/8)m2(x) + m3(x)}PHv(ϑ ,0) = p3(x) + (5/8)sin2(ϑ/2)m2(x)

p2(x) = (6/x3)[x – sin(x)]p3(x) = (10/x5)[x3 + 3xcos(x) – 3sin(x)]

m1 = p1 – p2

m2 = 3p1 – p2 – 2p3

m3 = p3 – p2

Page 84: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry1/6/99

56

Table 2

Light Scattering AverageMean-Square Radius of Gyration and Hydrodynamic Radius

(Rayleigh-Gans-Debye Approximation)

(R 2 G)LS (RΗ)LS

Exact Relation(a)(1/Mw)ΣwµMµ (R2

G)µ Mw

/Σ wµMµ (RΗ−1)µ

Approximation for(b)

RΗ ∝ R G ∝ Mε/2(R2

G/Mε) M(ε+1)ε+1

/Mw (RΗ/Mε/2) Mw

/M(1–ε/2)1–ε/2

Random-flight coil(c);ε = 1

(R2G/M) Mz (RΗ/M1/2) M

w/M(1/2)

1/2

≈ (RΗ/M1/2) Mw.

1/2 (M

w/M

n)0.10

Rodlike chain(c);ε ≈ 2

(R2G/M2) MzMz+1 (RΗ/M) M

w

Sphere(c);ε = 2/3

(R2G/M2/3) M(5/3)

5/3/Mw

≈ (R2G/M2/3) M

z

2/3(M

w/M

z)

0.10

(RΗ/M1/3) Mw

/M(2/3)2/3

≈ (RΗ/M1/3) Mw.

1/3 (M

w/M

n)0.10

(a) For optically isotropic solute, and with ∂n/∂c the same for all scattering elements

(b) M(α) = ∑wµMµα

1/α and Mn = 1/Σ

µwµMµ

−1; Mw = Σ

µwµMµ; Mz = Σ

µwµMµ

2/Σ

µwµMµ

(c) Approximations are for a solute with a Schulz-Zimm (two-parameter exponential)distribution of M, for which M(α) ≈ Mw{Γ(1+h+α)/Γ(1+h)}1/α/(1+h), see reference 42.

Page 85: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

66

Table 3. Media type dependent examples of g(2)T (q,τ) and g(2)

E (q,τ) for a single speckle

Media Type τ; correlation time g(2)T (q,τ)

Time-averaged

g(2)E (q,τ)

Ensemble-averaged

Rigid media:

Non fluctuating scatters

τ = 0

τ ⇒ ∞

1

1

2

2

Ergodic media:

Fully fluctuating scatters

τ = 0

τ ⇒ ∞

2

1

2

1

Non ergodic media: τ = 0

τ ⇒ ∞

≥ 1; ≤ 2

1

2

≥ 1; ≤ 2

Page 86: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

Figure Captions

Figure 1 The ratio MLS/M (= msph(ñ,α)2) of the light scattering averaged molecular weight MLS formonodisperse spheres of radius R to the molecular weight M as a function of the relativerefractive index ñ for the indicated values of the size parameter α = 2πR/λ. The dashed linesgive the limiting behavior for small ñ – 1 (see Equation (15)).

Figure 2 The ratio (R2G)LS/(3R2/5) (= ysph(ñ,α)) of the light scattering averaged mean square radius of

gyration (R2G)LS for monodisperse spheres of radius R to the geometric square radius of

gyration as a function of (a) the size parameter α = 2πR/λ for the indicated values of therelative refractive index ñ, and (b) the relative refractive index ñ for the indicated values of thesize parameter α = 2πR/λ.

Figure 3 Examples of PVv(ϑ ,0)-1 versus q2R2G

for monodisperse model structures (see Table 1):(a) rodlike chains (R), random-flight linear chains (C), disks (D), spheres (S), shells (Sh) and

the exponential function exp(–q2R2G/3) (E), included for comparison;

(b) the persistent or wormlike chain, for the indicated values of the ratio of the persistencelength â to the contour length L.

Figure 4 Examples of PVv(ϑ ,0)-1 versus q2(R2G)LS

for model structures with a weight distribution givenby the two-parameter Zimm-Schulz distribution function, with h = 1/[(Mw/Mn) – 1] per thediscussion in the text, for random-flight linear chains (a) and spheres (b), for the indicatedvalues of h, with h decreasing from top to bottom in each set of curves (the uppermost curvefor the monodisperse case is bold in each set). The dashed line in (b) is the initial tangent.

Figure 5 Examples of [PVv(ϑ ,0)]BR vs. q2R2G for comb-shaped branched chain polymers divided by

[PVv(ϑ ,0)]LIN for linear chains with the same R2G (not the same molecular weight). The number

of branches is indicated, along with the fraction ϕ of mass in the backbone of the branchedchain. From reference 53.

Figure 6 Examples of PVv(ϑ ,0) vs. q2(R2G)LS for spheres with size parameter α = 2πR/λ = 4 for the

indicated values of the relative refractive index ñ. The angular range is 0 to 180 degrees in allcases except for ñ = 2. The RGD limiting case for very small ñ – 1 is given by the dashedcurve. The dashed line gives the initial tangent. Values of (R2

G)LS/(3R2/5) may be seen for thisα in Figure 2.

gcberry1
Typewritten Text
1 June 2014
Page 87: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

Figure 7 An example of the use of multi-angle light scattering as an SEC detector in the analysis ofpoly(di-n-hexylsilane), PDHS, and poly(phenyl-n--hexylsilane), PPHS.(a) Mw and (R2

G)LS resulting from analysis of the multi-angle scattering data;(b) The response from the differential refractive index, normalized to give the same peak

response.From reference 1.

Figure 8 An example of the use of multi-angle light scattering as an SEC detector in the analysis ofrandomly branched poly(methyl methacrylate), PMMA.(a) Mw and (R2

G)LS/Mw for the eluent for heterodisperse linear (•) and branched polymers (°)resulting from analysis of the multi-angle scattering data, with the dashed line and solidcurves giving power law and polynomial extrapolations, as discussed in the text;

(b) The ratio [(R2G)LS]BR/[(R2

G)LS]LIN from the data in part (a), using the powerlaw (°) andpolynomial (•) extrapolations to estimate [(R2

G)LS]LIN.Adapted from figures in reference 132.

Figure 9 An example of the scattering from an aqueous dispersion of heterodisperse hollowpolystyrene spheres.(a) the scattering function and fits thereto using the RGD approximation and the Mie theory;(b) the number fraction distribution of particles with a give size deduced from the inversion of

the scattering function using the RGD approximation and the Mie theory; an estimatedetermined from analysis of the dynamic light scattering is included for comparison.

From figures in reference 107.

Figure 10 An example of the scattering from an heterodisperse aerosol.(a) the scattering function (solid curve) and fits thereto using the Fraunhofer diffraction

approximation and an assumed size distribution function;(b) the weight fraction distribution of particles with a give size deduced from the inversion of

the scattering function using the Fraunhofer diffraction approximation (solid curve) andthe function used in part (a) (dashed curve)Adapted from figures in reference 140.

Page 88: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

Figure 11 An example of the scattering from heterodisperse glass particles dispersed in differentsolvents to span a range of ñ.(a) the scattering function (points and solid curve) obtained using a lens with a 100 mm focal

length and solvents to give the indicated |ñ – 1|, and fits thereto using the Mie theory andthe known size distribution function (dashed curves);

(b) the cumulative weight distribution of particles with a give size deduced by severalmethods: filled squares, from microscopic measurements (the "known" distributionfunction), as reported by NIST (see text), unfilled squares and diamonds, from inversionof inversion of the scattering function using the Mie theory for |ñ – 1| ≈ 0.15 and twolenses, with focal lengths 300 mm (squares) and 100 mm (diamonds), and circles, forsolvents to give |ñ – 1| ≈ 0.02 calculated with the assumption of Fraunhofer diffraction(filled and dashed line) or anomalous diffraction (unfilled and solid line)Adapted fromfigures in reference 141.

Figure 12 Scattering functions for an illustrative example of a flexible chain polymer undergoing end-to-end dimerization.(a) dependence on angle, calculated as discussed in the text for a reduced equilibrium

constant ~Keq = 0.1 and the indicated values of (A2)MMc, with the constant equal to zero or0.2 for the solid and dashed curves, respectively;

(b) scattering extrapolated to zero angle as a function of (A2)MMc, for the indicated values of~Keq.

Figure 13 Scattering from a semi-flexible polyelectrolyte chain in solvents with low and high ionicstrengths (unfilled and filled circles, respectively).Adapted from figures in reference 150.

Figure 14 The dependence of the structure factor on qR for polystyrene spheres (R = 45 nm) immersedin deionized water, with the number concentration ν/particles·µm-3 = 2.53, 5.06, 7.59 and10.12 for the circles with increasing depth of the shading, respectively.Adapted from figures in reference 152.

Figure 15 The dependence of (R2G)LS and (δ/δο) 2

LS on the ratio of the weight average contour length to thepersistence length for rodlike molecules with a distribution of contour lengths.Adapted fromfigures in reference 10.

gcberry1
Typewritten Text
Page 89: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

Figure 16. The intensity correlation function g(2)T (q,τ) for aqueous poly(N-isopropylacrylamide) hydrogels

analyzed via Equations (88-90) for several positions in the light scattering cell, each with a

different total intensity 〈I(q)〉T and factor XF = 〈I(q)〉F,T/〈I(q)〉T. The figure displays the

g(2)T (q,τ) for each position, along with the value of XF for that position, with the uppermost

curve giving g(1)F;E(q,τ) obtained from g(2)

T (q,τ) using Equation (90). The insert shows 〈I(q)〉F,T

obtained at the various positions, showing it to be nearly independent of position, despite the

wide variation in 〈I(q)〉F,T with position. (150), Copyright 2003. Reproduced with permission

from the American Chemical Society.

Figure 17. Autocorrelations functions for a polyacrylamide hydrogel containing 2.5 and 0.02 wt%

polymer and polystyrene spheres (diameter 82 nm), respectively.

Upper: The intensity correlation functions g(2)E (q,τ) measured by extensive averaging, and the

normal time average g(2)T (q,τ) obtained with much shorter averaging duration.

Lower: The ensemble averaged g(1)E (q,τ) determined directly from g(2)

E (q,τ), and that determined

from g(2)T (q,τ) with the use of Equation (92) and supporting measurements of XE, showing that

the two estimates are essentially equivalent. (153), Copyright 1993. Reproduced with permission

from Springer-Verlag.

Figure 18. Examples of g(1)E (q,τ) determined on a slowly relaxing colloidal suspension by two methods:

g(1)E (q,τ) from averages of 100 measurements of G(2)

T (q,τ), (+), and the echo technique, (o). The

data from the echo method are normalized to agree with the data from the averaged

measurements in the overlap region. The echo method is seen give better results at long τ than

the average of the 100 measurements, despite the much shorter experimental time needed for

the echo measurement than for the 100 averges. (159), Copyright 2004. Reproduced with

permission from the American Institute of Physics.

Figure 19. Upper: The function g(2)T (q,τ) – 1 determined at 90° scattering angle, either by a normal single

correlator or cross-correlation (unfilled and filled symbols, respectively, for aqueous

Page 90: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

suspensions of spheres (48.5 nm radius) at two different transmission levels, showing the

suppression of multiple scattering by the cross-correlation the cross-correlation method.

Lower: The scattered intensity as a function of q for a suspension of spheres (322 nm radius)

determined either by a normal single correlator or cross-correlation (filled circles or stars,

respectively. The solid line represents the form factor given by Mie scattering, including the

effects of particle size distribution determined by electron microscopy. (169), Copyright 2012.

Reproduced with permission from the American Physical Society.

Figure 20. Upper: Examples of the linear viscoelastic recoverable compliance R(t) = J(t) – t/η for a linear,

high molecular weight polymer, with J(t) and η the creep compliance and the viscosity,

respectively. The mean-square-displacement 〈Δr2(t)〉 determined in DWS is proportional to J(t)

in Equation (112). Also shown is the shear relaxation modulus GR(t), denoted simply as G(t)

in the figure); the Laplace transform of GR(t) appears in the theory leading Equation (112);

comparisons of the dynamic compliance J'(ω) with J(t) and the dynamic modulus G(ω) with

GR(t) are also shown in the figure. (186)

Lower: (a) Examples of g(1)E (0,τ) for samples of poly(vinyl alcohol) chemically crosslinked gels

and a gel-precursor solution in water, obtained by transmission DWS with samples containing

≈ 5% polymer and 1% polystyrene spheres (535 nm radius); the ratio Rc of the crosslinker to

the polymer repeat units is given in the figure for the gels

(b) The mean-square-displacement 〈Δr2(t)〉 obtained from g(1)E (0,τ) in panel (a) using Equation

(106a). For the solution (and water dispersion) 〈Δr2(t)〉 ∝ t expected with Equation (112) when

the contribution from the recoverable compliance R(t) << t/η; the 〈Δr2(t)〉 for the gels are in

accord with R(t) expected for a gel, leading to the compliance Je of the gel for large t for the

sample with the larger crosslink density Rc, but showing that the data do not extend to large

enough t to obtain Je for the sample with smaller Rc. (187), Copyright 2004. Reproduced with

permission from John Wiley & Sons Inc.

Figure 21. The dynamic moduli G'(ω) and G"(ω) calculated from 〈Δr2(t)〉 shown in the insert; the data are

for an aqueous suspension volume fraction 0.56 of polystyrene spheres. The mean-square-

displacement 〈Δr2(t)〉 was obtained from g(1)E (0,τ) determined in transmission DWS using

Page 91: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

Equation (106a). The dynamic moduli were obtained by analysis of ~G(s) = s~GR(s) given in

Equation (111), rather than by the evaluation from J(t) using Equation (112), with subsequent

calculation of G'(ω) and G"(ω) from J(t) by a method described in the text. (183), Copyright

1995. Reproduced with permission from the American Physical Society.

Figure 22. The functions (âLq2/3)P(ϑ,0) (upper) and (Lq/π)P(ϑ,0) (lower) vs âq for the Kratky–Porod

wormlike chain model (2,189) for chains of contour length L and persistence length â as

presented previously. (190) Copyright 2008. Reproduced with permission from Springer-Verlag.

For convenience of comparison, the values of L/â used are among those in an alternative

bilogarithmic representation of (L/2â)P(ϑ,0) vs 2âq presented in the literature (192): 640, 160, 80,

40, 20, 10, 5 for the curves from top to bottom in the lower panel, and all of these except 160 in

the upper panel for the curves from left to right.

Page 92: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

2

1.8

0 1

n - 1~

0.2 0.4 0.6 0.8

4.0

2.0

6.0

1.5

(b)

3

4

1

2

3

4

1

2

0 2 4 6 8

α = 2πR/ λ

(a)

1.2

1.4

2 G(R

)

/(

3R /

5)

2LS

gcberry1
Typewritten Text
Figure 2
Page 93: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

Sh

0 2 4 6 8 10

[P

(ϑ, 0

)]-1

Vv

1

2

3

4

5â/L∞

0.0050.010.030.050.08

0

(b) Wormlike chain

2Gq R 2

SD

C

R

(a) Various models

E

1

2

3

4

5

6

gcberry1
Typewritten Text
Figure 3
Page 94: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

1 2 3 4 5 60

h = ∞201051

[P

(ϑ, 0

)]-1

Vv

0 2 4 6 8 10

1

2

3

4

5

6

(a) Random-flight flexible chain

(b) Spheres

2Gq (R )2

LS

1

2

3

4

5

6

gcberry1
Typewritten Text
Figure 4
Page 95: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

u = (qR )G2

1.00

0.95

0.90

1.00

0.95

0.90

1.00

0.95

0.900 2 4 6 8 10 12

2

20

9

4

20

2

94

20

9

42

ϕ = 0.1

ϕ = 0.3

ϕ = 0.7

[P (

ϑ,0

)]

/[P

(ϑ,

0)]

BR

LIN

Vv

Vv

gcberry1
Typewritten Text
Figure 5
Page 96: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

0 20 40 60

2.0

1.8

1.6

1.4

RGD

2.0

1.8

1.6

1.4

1.2

1.05

1.1

α = 4

0

-1

-2

-3

-4

-5

80

2Gq (R ) 2

LS

Log

[P

(ϑ,0

)]V

v

gcberry1
Typewritten Text
Figure 6
Page 97: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

PPHS

PPHS

PDHS

PDHS

Elution Volume 18 20 22 24 26

10

100

1000

Ref

ract

ive

Inde

x

°

R

/n

m;

M/1

0 ;

4

G

gcberry1
Typewritten Text
Figure 7
Page 98: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

-1.4

-1.3

-1.2

0.2

0.4

0.6

0.8

1.0

5.0 6.0 7.0

(a)

(b)

Log M w

0.5

log

(R

/M ) w

2 LS/(

R

)2 LS

LIN

(R

)2 LS

BR

gcberry1
Typewritten Text
Figure 8
Page 99: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

Radius/µ m

Num

ber

Fra

ctio

n

q /nm-1

R

(ϑ, c

)/ar

bitr

ary

units

Vv

0.1 0.2 0.3 0.4

RGD

MIE

DYN

0.2

0.3

0.1

0

0.01

0.10

1.00

0.01 0.02 0.03 0.040

RGD

MIE

(a)

(b)

gcberry1
Typewritten Text
Figure 9
Page 100: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

Ring-photodiode Number

(a)

0 1 2 3

log(R/ µm)

0

0.04

0.08

0.12

Wei

ght F

ract

ion

R

(ϑ,0

)/ar

bitr

ary

units

Vv

0

1

2

0 10 20 30

(b)

gcberry1
Typewritten Text
Figure 10
Page 101: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

|n - 1|≈ 0.15~

|n -1| ≈ 0.02~

|n - 1|≈ 0.08~

|n -1| ≈ 0.02~

Cum

ulat

ive

Wei

ght F

ract

ion

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

Ring-photodiode Number

2 4 6 8N

orm

aliz

ed E

nerg

y

Size/µm

0

10 12 14

0 20 40 60 80 100 120 140 160

(a)

(b)

gcberry1
Typewritten Text
Figure 11
Page 102: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

1.0

0.8

1.2

1.4

1.6

1.8

0.0001

0.03

0.01

1.0

0.6

1.2

1.4

0.8

0 0.2 0.4 0.6 0.8 1

2Gq (R )2

monomer

0 0.2 0.40.1 0.3

2(A Mc) 2 monomer

(a)

(b)

cst.

+ K

cM

/R

,c)

mon

omer

V

v

0.03

0.1

0.3

0.2K

cM

/R

(0,

c)m

onom

er

Vv

0.0001

0.01

0.001

0.1

110

gcberry1
Typewritten Text
Figure 12
Page 103: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

10 √

[Kc/

RV

v(0,

c)]

310

Kc/

RV

v(ϑ,

0)6

Concentration (g/L)

0 0.2 0.4 0.6 0.8 1

sin (ϑ /2)2

10

20

30

40

0 0.2 0.4 0.616

12

8

4

(a)

(b)

gcberry1
Typewritten Text
Figure 13
Page 104: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

2

0 0.2 0.4 0.6 0.8 1 1.2

qR

2

1

0

S

(q,c

)V

v

gcberry1
Typewritten Text
Figure 14
Page 105: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

berry

0

–1

Log [L /â ] w

–2 –1 0 1 2

–2

–1

0

oLo

g [(

δ/δ

)

]2 LS

(a)

(b)

Log

12(R

)

2 GLS

L L

z +

1z

gcberry1
Typewritten Text
Figure 15
Page 106: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

Figure (16)

Page 107: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

Figure (17)

Page 108: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

Figure (18)

Page 109: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

Figure (19)

Page 110: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

Figure (20)

Page 111: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

Figure (21)

Page 112: Instrumentation and Applications, LIGHT SCATTERING, CLASSICAL

105

7. The functions (âLq2/3)P(q,0) (upper) and (Lq/!)P(q,0) (lower) vs âq for the Kratky–Porod

wormlike chain model [5, 91], for chains of contour length L and persistence length â. For

convenience of comparison, the values of L/â used are the same are among those in an

alternative bilogarithmic representation (L/2â)P(q,0) vs 2âq presented in the literature [102]:

640, 160, 80, 40, 20, 10, 5 for the curves from top to bottom in the lower panel, and all of

these except 160 in the upper panel for the curves from left to right.

gcberry1
Typewritten Text
Figure 22