instrumentation for ambient ultrafine particle measurement

27
Instrumentation for Ambient Ultrafine Particle Measurement historic perspectives and recent developments ---- Susanne Hering Aerosol Dynamics Inc.

Upload: others

Post on 15-Oct-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Instrumentation for Ambient Ultrafine Particle Measurement

Instrumentation for Ambient UltrafineParticle Measurement

historic perspectivesand

recent developments----

Susanne HeringAerosol Dynamics Inc.

Page 2: Instrumentation for Ambient Ultrafine Particle Measurement

80x103

60

40

20

0

Ultr

afin

e P

artic

le N

umbe

r C

once

ntra

tion

(10

- 96

nm

)

80x103

6040200Total Particle Number Concentration (10 - 360 nm)

Fresno First StreetDecember 2000 - Feburary 2001R = 0.97slope = 0.71 ± 0.003 intercept = 1120 ± 90

14x103

12

10

8

6

4

2

0

Ultr

afin

e P

artic

le N

umbe

r C

once

ntra

tion

(10

- 96

nm

)

14x103

121086420Total Particle Number Concentration (10 - 360 nm)

Angiola (San Joaquin Valley farming area )December 2000 - Feburary 2001R= 0.95slope = 0.82 ± 0.007intercept = -470 ± 30

Ultrafine Particles Dominate Particle Number Concentrations

Rural and Urban Sites : Similar Relationship between Ultrafine Particle Number Concentrationsand Total Particle Number Concentrations

Page 3: Instrumentation for Ambient Ultrafine Particle Measurement

Simplest Indicator for Ultrafine

Particles:

Particle NumberConcentration

Bricard et al, 1976

Hering et al, 2005

Page 4: Instrumentation for Ambient Ultrafine Particle Measurement

1889: First Measurement of Atmospheric Particle Number Concentrations

John Aitken,

“On the Number of Dust Particles in the Atmosphere”,

Transactions of the Royal Society of Edinburgh, 1889

Page 5: Instrumentation for Ambient Ultrafine Particle Measurement

How Aitken’sInstrument

Worked

• Humidified air sample

• Expanded adiabatically

• Droplets formed around particles, which then settled

• Counted manually

• Repeated with dilution

lens

Receiving flask into which sample is expanded, with counting stage

filter

Sample collection flask

Page 6: Instrumentation for Ambient Ultrafine Particle Measurement

“The reason of the greater number of particles in the room than that found outside was due to the particles produced by the two gas flames burning in the room at the time.”

What Aitken Observed:

Page 7: Instrumentation for Ambient Ultrafine Particle Measurement

• 1912: Wilson Cloud Chamber

– 1929: Nobel Prize for particle physics

– Determined precise expansion ratios for avoiding homogeneous and ion-induced nucleation of particles

• 1930s: Scholz: Automated expansion for particle counting

• 1950s: Vonnegut: Automated counting by recognizing particles grow to uniform size.

Page 8: Instrumentation for Ambient Ultrafine Particle Measurement

1950s: Vonnegut, Automated Counting

Automated, but not continuous( condensing vapor: water )

Page 9: Instrumentation for Ambient Ultrafine Particle Measurement

Bricard et al, 1976

1970s: Thermally Diffusive Condensation Particle Counter (CPC)

Automated & Continuous ( condensing vapor: butanol or other alcohol )Widely used, suitable as detector for size distribution instrumentsMany models, sold by several companies

Page 10: Instrumentation for Ambient Ultrafine Particle Measurement

• Challenge : too small for direct optical detection

• Approach: Create region of supersaturation to activate particle growth => form droplets

• Why Supersaturation? Equilibrium vapor pressure over a droplet is greater than over a flat surface due to free energy associated with surface (surface tension)

• Kelvin Relation:

Pdroplet = Pflat surface exp( 2 σ σ σ σ v / kTρρρρ R )

Surface tension Particle radius

Can you have a Continuous, Automated Particle Counter without Butanol?

Page 11: Instrumentation for Ambient Ultrafine Particle Measurement

Thermally Diffusive CPCs: Operational Principle

• Saturate flow with vapor

• Flow into cold-walled tube

• Vapor condenses on particles

• Requires slowly diffusing vapor (e.g. butanol)

Saturator, 35°C Condenser, 10°C Optics Head

Thermal Diffusivity, Mass Diffusivity,air = 0.215 cm 2/s butanol = 0.081 cm 2/s

Note: diffusivity of water = 0.265 cm2/s > airDoes not work well with water

Page 12: Instrumentation for Ambient Ultrafine Particle Measurement

2003: Water Condensation Particle Counter (WCPC)

• Cold flow enters warm wet-walled tube

• Water vapor diffuses more quickly than flow warms

• Supersaturation, particle activation and growth occurs inside of a warm, wet walled tube.

Saturator, 20C

Saturator, 12C

Condenser, 60C

Condenser, 75C

Optics Head2003 WCPC(~5 nm) :

2004: Nano-WCPC (~2.5 nm)

Thermal Diffusivity, Mass Diffusivity,air = 0.215 cm 2/s water = 0.265 cm 2/s

Page 13: Instrumentation for Ambient Ultrafine Particle Measurement

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 1 2 3 4

Non-Dimensional Axial Position (x/UR2)

Cen

terli

ne S

atur

atio

n R

atio

WCPC Approach

Traditional Approach

Comparison of Centerline

Water Saturation

Ratios

WCPC: Inlet flow at 20°C & 100%RH, Wetted walls at 60°C

----------------------------------------------------Traditional: Inlet flow 60°C & 100%RH

Wetted walls at 20C

Page 14: Instrumentation for Ambient Ultrafine Particle Measurement

Water Condensation Particle Counter

Hering et al, 2005

Page 15: Instrumentation for Ambient Ultrafine Particle Measurement

First laminar-flow WCPC Response to Ambient Aerosols & Vehicle Emissions

Tunnel Measurements with Antonio Miguel, Arantza Eiguren-Fernandez, UCLA

1.0

0.8

0.6

0.4

0.2

0.0

Det

ectio

n E

ffici

ency

2 3 4 5 6 7 8 910

2 3 4 5 6

Particle Diameter (nm)

Ambient Aerosol (Berkeley, CA) Vehicle Tunnel Aerosol (Caldecott)

TSI-3785

Page 16: Instrumentation for Ambient Ultrafine Particle Measurement

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5µ v = πα v z/Q

Rad

ial P

ositi

on, r

/R

1.92 nm, S=2.96

1.96 nm, S=2.89

2.00 nm, S=2.83

2.05 nm, S=2.76

2.10 nm, S=2.69

2.17 nm, S=2.59

2.37 nm, S=2.38

Calculated Supersaturation Profiles within the Ultrafine Water – CPC

αv = vapor mass diffusivityz = axial distanceQ = volumetric flow rate

Page 17: Instrumentation for Ambient Ultrafine Particle Measurement

100

80

60

40

20

0

WC

PC

-410

/WC

PC

-410

x (%

)

12 3 4 5 6 7 8 9

10 Particle Diameter (nm)

Efficiency for TSI-3786(water residue particles)

Positvely Charged Particles D50 = 2.4 nm

Negatively Charged Particles D50 = 2.1 nm

Calibration of the Ultrafine WCPC Water Residue Particles

TSI-3786

Page 18: Instrumentation for Ambient Ultrafine Particle Measurement

Comparison of Water CPC and TSI Ultrafine,Queen’s College, NY (Univ. at Albany, EPA Supersite)

Size-Selection

by

Electrical Mobility

Filtered room air

WCPC(TSI 3785)

TSI 3025

(ultrafine)

Compare:0.2-sec average

11-sec running average

counts/cm 3 measured below nanoSMPS(not ambient size distribution – no charging correct ion)

1.5 lpm

1 lpm

0.6 lpm

Ambient air inlet

Page 19: Instrumentation for Ambient Ultrafine Particle Measurement

Comparison to Butanol Ultrafine CPC with Nano-DMAParticle counts per 0.2 sec window (average over two scans)

TSI-3025: 1.1±1.0 particles (0.5cc/s)WCPC: 35 ± 6 particles (16.7 cc/s) --- much better counting statistics

In collaboration with ASRC, University at Albany

30

25

20

15

10

5

0

Par

ticle

Num

ber

durin

g S

MP

S S

can

(cm

-3)

3 4 5 6 7 8 910

2 3 4 5 6 7 8 9100

Diameter (nm)

Run 742/3/2004 18:15

WCPC-0.2sec WCPC-10sec TSI3025-0.2sec TSI3025-10sec

12

10

8

6

4

2

0

Par

ticle

Num

ber

durin

g S

MP

S S

can

(cm

-3)

4 5 6 7 8 910

2 3 4 5 6 7 8 9100

Diameter (nm)

Run 742/3/2004 18:15

WCPC-2sec WCPC-20sec TSI3025-2sec TSI3025-20sec

Page 20: Instrumentation for Ambient Ultrafine Particle Measurement

����������� �� ���������

Page 21: Instrumentation for Ambient Ultrafine Particle Measurement

200x103

150

100

50

0

Veh

icle

Tu

nne

l Pa

rtic

le C

once

ntra

tion

(#/

cm3)

1:00 PM3/1/2005

2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM

Freeway Tunnel

Ultrafine Water CPC: TSI-3786 Butanol Ultrafine CPC: TSI-3025

Total Particle Number Concentrations for Traffic Em issions

Ultrafine WCPC (TSI-3786) compared to Butanol UCPC (T SI-3025)

Page 22: Instrumentation for Ambient Ultrafine Particle Measurement

Ambient Sampling In Riverside, CaliforniaUltrafine WCPC – 3786 & Butanol UCPC - 3025

50000

40000

30000

20000

10000

0

Indi

cate

d P

artic

le N

umbe

r C

once

ntra

tion

(#/c

m3)

9:00 PM7/25/2005

12:00 AM7/26/2005

3:00 AM 6:00 AM 9:00 AM

Pacific Standard Time

Riverside SOAR -ICAT

Water CPC TSI-3786 Butanol CPC T3025

60x103

50

40

30

20

10

0

Ultr

afin

e W

ater

CP

C (

#/cm

3)

50x103

403020100Butanol Ultrafine CPC (TSI-3025, #/cm3)

July 20 - August 14, 2005SOAR - ICAT Study, Riverside, CA

One-Minute Data

One-to-One Lineslope=1.065, R=0.993

Page 23: Instrumentation for Ambient Ultrafine Particle Measurement

2005: Micro-Environmental WCPC

Size: 7” x 7” x 5”

Weight: 5 lb

Power 12 V, 30 Watts

Features:

internal data logging

one week unattended

up to 10 6 particles/cm 3

in single count mode

Page 24: Instrumentation for Ambient Ultrafine Particle Measurement

Response to Near-Monodisperse Aerosols

1.0

0.8

0.6

0.4

0.2

0.0

Re

spon

se R

ela

tive

to B

utan

ol U

CP

C

4 5 6 7 8 910

2 3 4 5 6 7 8 9100

2

Particle Diameter (nm)

MICRO-ENVIRONMENTAL W ater-CPC DMA-Selected Aerosol, 10/15/0510% mobility window with TSI "long" DMAReference: TSI-3025 Butanol Ultraf ine CPC/ Eff

Freeway-influenced Ambient (Berkeley) Isopropanol Residue

TSI-3781 prototype

Page 25: Instrumentation for Ambient Ultrafine Particle Measurement

ME-WCPC Measurements in a Residential Kitchen

103

104

105

106

Par

ticle

Num

ber

Con

cent

ratin

(#/

cm3)

6:00 PM1/7/2006

7:00 PM 8:00 PM

Residential KitchenButanol CPCs

T3025 T3022

Water CPCs T3786 QME2 QME3 T3785_Calc

Oven on at 6:05 pm

Page 26: Instrumentation for Ambient Ultrafine Particle Measurement

Summary

• 1890’s

Aitken, first explorations of airborne particles nu mber concentration

Identified combustion as source of particles

• 1920s-1950s

Advances on Aitken’s approach: automated instrument s

• 1970’s

First continuous flow condensation particle counter s

widely used, especially as detectors for mobility s ize distributions

• 2003

Introduction of continuous water-based condensation counters

Page 27: Instrumentation for Ambient Ultrafine Particle Measurement

Acknowledgements

• California Air Resources Board, who provided funding for many of the field comparisons.

• ASRC, University at Albany and the EPA SupersitesProgram who made possible the measurements in New York City.

• TSI Inc., who loaned equipment for our field and laboratory testing.

• Quant Technologies LLC, who provided the engineering and detailed instrument design.