instrumentation for the future1 outline of talk: introduction (groups, competences, projects...

30
Instrumentation for the future 1 Outline of talk: Introduction (groups, competences, projects underway, infrastructure, related projects) Four sub-projects: 1. R&D for future silicon systems 2. The Norwegian technical student program at CERN 3. Support for an Industry Liaison with extended responsibilities related to Technology Transfer and recruitment 4. Participation in the CLIC accelerator R&D at CERN Summary Advanced instrumentation 2006-2011

Upload: beryl-boyd

Post on 23-Dec-2015

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 1

Outline of talk:

Introduction (groups, competences, projects underway, infrastructure, related projects)

Four sub-projects:

1. R&D for future silicon systems

2. The Norwegian technical student program at CERN

3. Support for an Industry Liaison with extended responsibilities related to Technology Transfer and recruitment

4. Participation in the CLIC accelerator R&D at CERN

Summary

Advanced instrumentation 2006-2011

Page 2: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 2

Advanced instrumentation 2006-2011

Background : Traditionally around half of the students in the Norwegian program are

instrumentation students – true also during LEP running due to the RDn programs at CERN

Group competences and infrastructure; see next slides International projects underway (SLHC, CMB at FAIR, ILC, medical imaging);

also in next slides

In additon to having a very solid scientific program at LHC; to have more Norwegian CERN users at all levels must be the main goal for next period (this is also to be kept in mind for the ”physics” projects)

The following subprojects are essential for our CERN exploitation: We now have around 10 technical students at CERN – program led by Jens Vigen with

financial contributions from the Norwegian Research Council, with additional contributions from the Universities and University Collegues sending the students (Bergen, NTNU, Sør-Trøndelag mostly)

We have temporarily an ILO (ex technical student from NTNU with one year background in the Technology Transfer area at CERN) covering several areas of interest for the general Norwegian CERN exploitation

A student is interested in carrying out a ph.d projects in accelerator physics (CERN has asked for in-kind contributions to CLIC R&D) .... this person is finishing his Fellowship in ATLAS (Toroid system)

Page 3: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 3

Recent/on-going activities relevant for the future

Five major technology activities related to CERN : Construction of silicon modules for ATLAS (UiB - Stugu, UiO – Stapnes/Dorholt, SINTEF earlier - Avseth, HiG

at some level - Wroldsen). Key effort from the electronics and mechanical workshops in Oslo, partly true also for workshops at UiB

Completed successfully

PHOS detector for ALICE (UiB - Klovning, UiO - Skaali, AME earlier - Hansen) – note that AME and their technology development was strongly linked to CERN in 1980’ies for LEP

Ongoing

High Level Trigger development for ALICE (UiB-Rohrich and Ullaland, HiB-Helstrup, UiO-Skaali and Tveter) – high rates and high data-flow into readout and primary ”analysis” stage

Ongoing

Construction of cryogenics tanks for ATLAS (NTNU-Owren, SB-verksted-Hansen, UiO partly-Stapnes) – technology transfer NTNU/SINTEF to SB-verksted, and reference contract with CERN

Completed succesfully

RD50 (UiO – Svensson and SINTEF) – important and interesting R&D work for the future linked to new facilities in Gaustadbekkdalen

Onging and very important

Here you find all skills needed to construct any detector system, including readout and datahandling ...

___________________________________________________________________________________________________

Important note – worth mentioning in other talks (for a different audience) than this:

This overview does not include ”the other half” of the Norwegian CERN activities related to physics studies, simulation

of physics processes and detectors, pattern recognition, data-analysis, GRID, computing methods, statistical methods

etc, etc ..... I refer to the talks earlier today

Page 4: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Apr 19, 2023 Jan-04

RD50 - Radiation hard semiconductor devices for very high luminosity colliders 

57 institutes(43 from EU)>250 scientists

Particle Detectors – research lines @ UiO/PE

• Defect and impurity engineering of high-resistivity Si

• New materials; primarily silicon carbide (SiC)

• Three-dimensional detector structures

Page 5: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 5

MRL (Oslo, Aug-2003) – 5000 m2

MeV ion accelerator at UiO/MRLIon implantation and RBS-analysis

National Electrostatics Corporation, 1 MV terminal voltage

SIMS instrument at UiO/MRL

Equipment:

• Characterization laboratories, etc

• Electrical measurements; Probe station, C-V, DLTS, ADSPEC/TSCAP (20- 106 Hz) (cryostats 10-700 K, uniaxial stress), Laplace-&O-DLTS

• Optical measurements; PL, interferometry, inverse photoemission

• Scanning Nanoprobe -scopy (AFM, SSRM, TUNA, SCM); Foparken

• SIMS & surface profilometer

• MEMS-lab; etching, optical microscopes, etc

Page 6: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 6

Electron microscope for e-beam lithography at UiO

JEOL model: JSM-6400F + ELPHI Quantum (Raith)

Equipment – Status Clean Room (Synthesis,processing andcharacterization)o Processing equipment (RTP,

furnaces, evaporation, bonder, ....);

o ALCVD-labo Electron beam lithography (JEOL

6400F+ Raith-kit) (FUN-/NanoMAT)

o MeV implanter & Rutherford Backscattering Spectrometry (RBS)

o Equipment from old SINTEF-lab is expected in late 2004 (early 2005)

o

Page 7: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 7

SINTEF R&D for CERN projects:

Partner (important) in infrastructure buildup in Gaustadbekkdalen – their sensor lab has been moved to same facilities

RD-20, CERN 1992-1994

Dev.of High Resolution Si Strip Detectors for Exp.at High Luminosity at the LHC

RD-48 (ROSE), CERN 1996-2000 Radiation Hardening of Silicon Detectors

RD-50, CERN 2002 - Collaboration with UiO Development of Radiation Hard Semiconductor Devices for Very High

Luminosity Colliders

SINTEF very interested in 3D sensors (Andreas Werner) and this project; preparing a SFI application where 3D sensors is one sub-project.

Page 8: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 8

Advanced instrumentation – projects underway

New R&D period underway internationally (traditionally the periods where the CERN technology exchange is the most interesting for us):

For LHC upgrades (CMS and ATLAS have now R&D SG for upgrades with timescale 2014 ± 2 years

The detector technology close to the interaction point needs new development (in fact, the IDs will be completely replaced).

The ATLAS B-layer is foreseen to be replaced in 2012 and new sensors, more integrated approached, ”deeper” sub-micron, new power schemes will need to be developed.

For linear collider detectors several R&D projects are ongoing and a conseptual design reports are foreseen by end 06-07 for accelerators and detectors: https://wiki.lepp.cornell.edu/wws/bin/view/Projects/WebHome

Increased CERN R&D for medical systems over the next decade (EU projects), and Norwegian activities at CERN related to Technology Transfer agreements and medical instrumentations

For heavy ions see later

Driven by this plot, but alsoby lifetime of IR quads 700 fb-1

Page 9: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 9

LHC detector changes ID changes

In the current ATLAS/CMS trackers a factor ten luminosity increase would imply that the detectors die within months, and/or become useless due to increased occupancy creating problems for the tracking, and/or going beyond the acceptable readout rates.

This applies to both PIXEL and Strip systems in ATLAS and CMS. The TRT in ATLAS will have an occupancy which approaches 100% and cannot be used.

An other way of saying this is that the current technologies, with important new developments could work at a factor 3 higher radius.

So we are looking at a full silicon tracker (the best current example is CMS)

TRT endcap A+B TRT endcap CTRT barrel

SCT barrel SCT endcap

Pixels

Page 10: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 10

10,000e

5000e

Sensors: main issues are : Reverse currents rise. Trapping increases. Bulk type inverts to effectively p-type – depletion voltage

increase. Consider to use p type bulk material to operate more effectively

under-depleted, collection electrons (less trapping) For example: A conservative target for SLHC short strips

would be survival of ~2 ×1015 cm-2 1MeV neutron equivalent, with S/N > 10

For PIXEL area more difficult, replaceable or 3D type (see RD50 studies for 1016 cm-2 1MeV neutron equivalent sensors)

Both CMS and ATLAS have very good experience with sensor production and quality in current experiments

For the innermost layer(s) special measures or replaceable system need to be considered – most significant R&D area

LHC detector upgrade Elements of new IDs ?

Cost comparison for fixed volume

-

5.00

10.00

15.00

20.00

25.00

30.00

10,000 50,000 100,000 200,000 500,000

Volume required

$/c

hip

025

013 unscaled

013 1/2

013 1/4

013 1/8

(65 $/chip)

Electronics in DSM work well, parts already tested to 100 MRad (and more but not powered), ie 0.13um or 0.09um processes can do the job (CMOS or SiGe) - and costs are quite reasonable

The lowest layers need special attention – even more true for sensors (make replaceable?)

Yield/costs; ATLAS PIXEL chip has around 80% yield, production costs promising (but prototyping costs large – one iteration assumed in plot on the left)

Important R&D area: Very significant improvements in power distribution (serial powering or rad hard DC/DC) needed

Page 11: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 11

Advanced instrumentation – projects underway

For ALICE running after 2012, there are a number of running options, the relative importance of which will depend on the initial results. Most probably this program will focus on rare probes and thus require higher luminosity and/or faster detectors and readout chains.

A high-granularity silicon pixel detector, which is radiation hard and can be read out at high rates, is mandatory.

QCD matter at large baryon densities is not sufficiently explored, neither experimentally nor theoretically. Nuclear reaction experiments at FAIR, the future facility at GSI (e.g. Compressed Baryonic Matter - CBM experiment) aim at a detailed and comprehensive investigation of super-dense baryonic matter. The research program includes the measurement of penetrating probes, which escape essentially undistorted from the compressed nuclear collision zone. The planned Compressed Baryonic Matter experiment at GSI is a natural follow-up of the ALICE program. Important physics questions would include the production of heavy quarks in nuclear matter.

Due to the low energies involved the rate would be low, and successful measurements would require high rate collisions and triggers, and corresponding high-speed detectors and readout chains

So in both cases the following technologies/research fields are interesting: 3D silicon pixel detectors have electrodes that go all the way through the bulk of the

material. This allows the electrodes to be positioned much closer together without the need to reduce the thickness of the detector, and thus the active volume. The close positioning of the electrodes is beneficial for both the full depletion voltage and charge collection efficiency. 3d detectors are expected to be radiation tolerant.

However, reading out the fine-granular pixels with high-speed requires the integration of electronics component on the detector and the development of a new high-speed readout and on-chip processing scheme in order to handle the huge data rate The DAQ concept will use self-triggered front-end electronics, where each particle hit is autonomously detected and the measured hit parameters are stored with precise timestamps in large buffer pools.

Page 12: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 12

Advanced instrumentation – CBM studies

Vertex tracker (possible example of specs) : 700 μm material budget tolerable about 35 μm x 35 μm pixel size needed only a small part (50 cm2) is exposed to very

high doses replacing this part after a major D run is feasible

required dose and also interaction rate depends on D0 efficiency thin detectors (100 μm) require significantly less than thick (700 μm) ones

fast readout allowing clear event association very valuable (at least)

THUS WANTED: thin (<700 μm) high resolution (σ ~ 10 μm) fast (best <100 ns) radiation tolerant (30, better >100 Mrad) self-triggered, high bandwidth FEE

Page 13: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 13

International Research Training Group = Forskerskole

”Graduiertenkolleg” – ”Forskerskole”

Starting date: 1.10.2004 Successful meeting at UiB in April

with 30-40 participants, follow up now in September in Heidelberg, next meeting in Oslo in April

Duration: 4.5 years –

extendable by 4.5 years Funding

DFG: 12 stipends + running costs UiB, UiO, HiB:

a few stipends + 700 kNOK + ?

Page 14: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 14

IRTG - participants

Page 15: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 15

IRTG – research program

Development and Application of Intelligent Detectors

Includes• physics simulation • detector simulation• detector construction, system

integration• readout design, development and

operation• trigger design, development and

operation • data handling and data management • online data analysis • offline data analysis • GRID computing

Applies to • Nuclear Physics• High Energy Physics • Space Physics • Detector Physics • Sensoric• Microelectronics and

Electronics • Computer Engineering • Computer Science

Page 16: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 16

Looming in the background: Prototype cardiology CdZnTe camera (IDEAS), and an X-ray camera (INTERON goal) – medical instrumentation

Page 17: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 17

Advanced instrumentation – proposed strategy

Given the points discussed above the four sub-projects on page 1 have six main

goals: Join forces to develop challenging new silicon technology taking

advantage of knowledge base and new infrastructure in Norway Focus on basic technology development the first three years, related

to 3D silicon sensors and new integration methods for sensors and electronics.

Include a large number of students, in silicon detector system research using fully the link to “Forskerskole” students.

Establish a new ILO and TT system where the focus is longer term and on technology transfer and knowledge, via projects and human resources spending time on CERN, in addition to the traditional CERN contract follow up.

Strengthen the technical students program, and co-ordinate training of Norwegian students to provide an overall consistent environment for them where there is increased contact between the students, Norwegian CERN staff and researchers, and Norwegian Industries being involved in CERN projects.

Participate in CLIC accelerator research to have a minimal activity in accelerator research, and also to answers CERN request for voluntary contributions to CLIC.

Page 18: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 18

Advanced instrumentation – R&D for future silicon systems

As mentioned the overall research objective is to produce and characterize 3D silicon sensors – andto integrate transistors on the surface of these sensors. The production and characterization of the 3D detector itself will be done in collaboration with the MiNaLab in Oslo.

The key steps are: Formation of 3D structures Annealing and passivation of process induced defects in 3D structures Formation of p-n junctions in the 3D detector structures Characterisation of detector

The integrated electronics has to be added as a second processing round with an appropriate CMOS process. The main goals of the project are therefore (one iteration):

Design and processing of 3D sensors In 2006 Design of electronics and evaluation First half 2006 Integrate electronics readout, transistor structures During 2006/early 2007 Evaluate in lab (3D sensors with test-electronics and integrated devices)

During 2006, first half 2007

Irradiation tests and evaluation of results Towards end 2006 and during 2007

Evaluation of results Mid 2007

Page 19: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 19

 

-

Schematics of 3D- and ordinary detector structures

Proposed by S.I. Parker, C.J. Kenney and J. Segal (NIM A 395 (1997) 328)

Called 3-D because, in contrast to silicon planar technology, have three dimensional (3-D) electrodes penetrating the silicon substrate

Important researches are now under investigation by a collaboration (not in RD50) within Brunel Univ., Hawaii Univ., Stanford Univ. and CERN

depletion thickness depends on p+ and n+ electrode distance, not on the substrate thickness (1) can operate at very low voltages or (2) can have a high doping for ultra-high radiation hardness

Page 20: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 20

Charge collection in 3D sensors

lower collection length than planar technology lower charge collection time than planar technology higher charge collection efficiency

computer simulations of the charge collection dynamics for planar and 3D detectors

Page 21: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 21

Real 3D devices

200 m

15 m

a 3D detector structure: a 3D structure grown at SINTEF:

4 m

Page 22: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 22

Beyond DSM processes (from CERN academic training) : 1. Is there an end to CMOS 2. Ultimate CMOS nanoscale technology3. Introduction to mesoscopic physics4. Quantum confinement, and electronic transport in nanowires5. Quantum dots and Single Electron Tunneling (SET) Transistor6. Nanoelectronic systems

8192 pixel cells/die13 millions transistors/die5 dies /detectorDifferential preampPower/die:0.8WPixel size:50 x 450 mAll processing functions on cellENC = 100 e- rms @ Cdet=0.1pFThreshold mismatch:150 e- rmsVdd=1.8VFiltering: 2 conjugate complex poles

Semi-conductor systems Trends to be noted – deep sub micron

Page 23: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 23

Motivation to develop a new pixel detector Radiation hardness improvement

(leakage, reverse annealing issues)

Decrease fabrication cost of pixel detector

Develop a thin pixel detector Easy fabrication of large area

devices Overcome readout limitation of

Imaging architecture DEPFET MAPS

Concepts of silicon pixel detectors in HEP(CCD excluded) 1st Hybrid silicon pixel 2nd DEPFET Monolithic on high

resistivity substrate, bulk or SOI 3rd MAPS Monolithic on CMOS

wafer substrate 4th concept not yet exploited

deposition of detector material film on ASIC

Hybrid pixel

DEPFET pixel

MAPS

CERN and semi-conductor systems Trends to be noted – monolithic systems

Page 24: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 24

Start 3D sensor development – can start now – will join forces/collaborate with US groups through ATLAS R&D projects

Evaluate electronics/readout components to integrate, methods to do it, and partner for carrying out the electronics development – this project is less developed than the first

Support and readout electronics, preparation for irradiations, etc can start right away too

So basically this project can start immediately as soon as we have a funding base agreed

Semi-conductor systems Next steps

Page 25: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 25

Advanced instrumentation – Technical Students

The Norwegian Technical student program is currently very successful and we wish to continue it. The ambitions are to keep it at the level of 10-12 students yearly. From an initial investment of support for 3-4 months the students are typically extended by CERN to 12 months, and even 14 months in some cases. The monthly cost is 3414 CHF, i.e 17750 NOK.

The two Norwegian CERN staff members who have been doing most of the work have been Jens Vigen and Nils Høimyr, and they are willing to continue to promote the program. Jens Vigen will lead the sub-project.

Contract signed in 2005 on the right

Name Start Institution

Support CERN

Rune Andresen 16.01.05 NTNU 4 8

Håvard Bjerke 01.01.05 NTNU 4 3

Andreas Braathen 16.01.05 NTNU 4 8

Martin Bugge Jensen

01.03.05 NTNU 3 9

Magnus Lieng 16.01.05 NTNU 4 8

Thomas Johansen 16.04.05 HiB 3 9

Øyvind Østlund 01.05.05 HiB 0 12

Stian Erlend Førde 16.06.05 HiB 4 8

Camilla Stenersen 01.05.05 HiB 3 5

Christian Bråten 01.01.05 HiST 4 4

Thomas Rognmo 01.01.05 HiST 3 3

Edel Roedsjøsæther 01.01.05 HiST 3 9

Theodor Torgersen 01.07.05 HiST 0 12

Martin Handzus 16.01.05 HiM 3 9

Page 26: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 26

Advanced instrumentation – ILO

Based on the experiences from 2005 and a project study carried out by the Norwegian Research Council the following

job-description seems appropriate to covers these tasks:

Work as the Norwegian Industry Liaison Officer (ILO) Identify tenders at CERN that can be relevant for Norwegian companies and contact these companies Give support to the companies which want to receive an invitation to tender Participate in the negotiation between CERN and companies when this is needed Keep an active relationship with the technical department and the Norwegian staff at CERN to get Norwegian

companies involved in the requirement specification process in forthcoming projects Attend to Norwegian technology and trade shows to promote CERN as a potential buyer of products and

services

Work as the Norwegian Technology Transfer Officer (TTO) Identify technologies developed at CERN which can be interesting for Norwegian companies Carry through marked researches for Norway on these technologies and contact the relevant companies Attempt to get Norwegian companies, research institutions and university into relevant pre-competitive R&D

collaborations at CERN Attend to Norwegian technology and trade shows to promote CERN technology

Work as an employment contact Function as a contact person for Norwegian CERN job applicants and for the Norwegian employment service

(AETAT) Contribute in the recruitment and promotion work of CERN at Norwegian universities and university colleges

with the purpose of increasing the number of students and scientist at CERN and increase the interest for in general

Establish, maintain and update a Norwegian webpage about CERN Collect information from all the scattering webpages concerning CERN and streamline the information Information should be focused towards job applicants, students, researchers and the industry. Establish a transparent PTT (Project Tracking WEB system used at CERN) follow up of all parts of this project.

This work will be carried out as a contract placed by this project. The contract will be annual, renewable up to 3 years

Page 27: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 27

Advanced instrumentation – accelerator physics

The specific goal of this sub-project is to support a Norwegian activity, specifically a Ph.D grant, with the goal of setting up a test beam line to prove the feasibility of the CLIC drive beam RF power generation.

The compact linear collider study at CERN aims to develop the technology for an electron-positron linear collider with a centre-of-mass beam collision energy in the multi-TeV range. The concept is based on a two-beam scheme in which the RF power to accelerate the main beam is not produced by klystrons but rather by a low-energy, high-current drive beam. This drive beam is generated centrally and transported to the main linacs. Here, it is sent through a sequence of Power Extraction and Transfer Structures (PETS) in which the beam generates the RF power for the main beam. This process leads to a strong deceleration of the drive beam, which in conjunction with the high current and low energy could affect the beam stability and the power production efficiency.

In order to test the feasibility of the drive-beam generation and RF power production, the CLIC Test Facility 3 (CTF3) is under construction at CERN. It will also be used to benchmark the drive beam stability in the decelerator and compare experimental results with theoretical simulations. To this end, a Test Beam Line (TBL), which consists of a number of PETS, will be installed and tested with beam to produce up to 5 TWatts of RF power.

The student will play a key role in the design of the TBL. He or she will model the beam conditions for different options of the PETS and TBL lattice. This study should lead to a choice of a specific PETS and lattice that allows to verify the predictions of the beam stability simulations. The work therefore includes the specification of the instrumentation. It is planned to build and test a prototype TBL PETS during the duration of the PhD project. CTF3 will run each year and provides the opportunity of participation in the test program allowing the student to gain experience in machine operation and the actual performance of the different hardware components.

The student needs to work in close collaboration with experts in different fields, in particular accelerator operation, accelerator physics, beam diagnostics and RF.

Page 28: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 28

Organisation

This project will be run as four independent subprojects with the following structure: Silicon part: UoO centrally: Ole Dorholt, MiNilab: Bengt Svensson, UoB: Kjetil

Ullaland. Techncial students: Jens Vigen. ILO: Steinar Stapnes executes the contracts in close co-operation with the

Norwegian Research Council (for detailed mandate, budget framework and reporting)

CLIC: Steinar Stapnes supervises Erik Adli. For the International Research Team: Dieter Roehrich and Bernhard Skaali

will act as main contacts at UoB and UoO, respectively. The people mentioned above, including the ILO and specific resource

persons as needed connected to the project, will formally meet at least twice a year to review the status, plans and progress, and to co-ordinate the efforts. In this process we will draw in people involved in the CERN technology transfer program in order to support Norwegians activities and industries taking part. One way to do this is steer a few technical students at CERN into such project. All together aim of this project is create a common meeting place for University researchers, and industry partners involved in CERN related technologies and instrumentation projects.

The project will be lead by Prof. Steinar Stapnes, UoO, and have as deputy leader Prof. Kjetil Ullaland, UiB.

Page 29: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 29

Participants

Not a closed project: Welcome and expert other people to participate

Page 30: Instrumentation for the future1 Outline of talk:  Introduction (groups, competences, projects underway, infrastructure, related projects)  Four sub-projects:

Instrumentation for the future 30

Conclusions

The overall project is well based given experience, expertise and infrastructure

The timing is good for R&D with respect to a number of future projects

We integrate all the technical CERN related projects to improve communication and collaboration – something new in the Norwegian programme

The resources are currently too small to do enough concerning integration of electronics – need to work with partners abroad and plan this in more detail next

Would benefit the project very significantly if we could find decent support for Norwegian “Forskerskole” grants