integer partitions - school of mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 ·...

43
Outline Partitions Partition Identities The Rogers-Ramanujan Identities Integer Partitions George Kinnear June 11, 2009 George Kinnear Integer Partitions

Upload: others

Post on 25-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Integer Partitions

George Kinnear

June 11, 2009

George Kinnear Integer Partitions

Page 2: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

1 Partitions

2 Partition Identities

3 The Rogers-Ramanujan Identities

George Kinnear Integer Partitions

Page 3: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Definition

Definition

A partition of a positive integer n is a way of writing n as asum of positive integers.

The summands of the partition are known as parts.

Example

4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

George Kinnear Integer Partitions

Page 4: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Definition

Definition

A partition of a positive integer n is a way of writing n as asum of positive integers.The summands of the partition are known as parts.

Example

4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

George Kinnear Integer Partitions

Page 5: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Definition

Definition

A partition of a positive integer n is a way of writing n as asum of positive integers.The summands of the partition are known as parts.

Example

4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

George Kinnear Integer Partitions

Page 6: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Example: Permutations of n objects

Cycle notation: e.g. (1 2), (1 2 3).

Conjugacy classes of Sn are labelled by cycle type:

(1 2 3) cycle type 3

(1 2)(5 7 8) cycle type 2, 3.

Example (S4)

Conjugacy class rep.

Sum of cycle lengths

e

(1)(2)(3)(4) 1 + 1 + 1 + 1

(1 2)

(1 2)(3)(4) 2 + 1 + 1

(1 2 3)

(1 2 3)(4) 3 + 1

(1 2)(3 4)

(1 2)(3 4) 2 + 2

(1 2 3 4)

(1 2 3 4) 4

George Kinnear Integer Partitions

Page 7: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Example: Permutations of n objects

Cycle notation: e.g. (1 2), (1 2 3).Conjugacy classes of Sn are labelled by cycle type:

(1 2 3) cycle type 3

(1 2)(5 7 8) cycle type 2, 3.

Example (S4)

Conjugacy class rep.

Sum of cycle lengths

e

(1)(2)(3)(4) 1 + 1 + 1 + 1

(1 2)

(1 2)(3)(4) 2 + 1 + 1

(1 2 3)

(1 2 3)(4) 3 + 1

(1 2)(3 4)

(1 2)(3 4) 2 + 2

(1 2 3 4)

(1 2 3 4) 4

George Kinnear Integer Partitions

Page 8: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Example: Permutations of n objects

Cycle notation: e.g. (1 2), (1 2 3).Conjugacy classes of Sn are labelled by cycle type:

(1 2 3) cycle type 3

(1 2)(5 7 8) cycle type 2, 3.

Example (S4)

Conjugacy class rep.

Sum of cycle lengths

e

(1)(2)(3)(4) 1 + 1 + 1 + 1

(1 2)

(1 2)(3)(4) 2 + 1 + 1

(1 2 3)

(1 2 3)(4) 3 + 1

(1 2)(3 4)

(1 2)(3 4) 2 + 2

(1 2 3 4)

(1 2 3 4) 4

George Kinnear Integer Partitions

Page 9: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Example: Permutations of n objects

Cycle notation: e.g. (1 2), (1 2 3).Conjugacy classes of Sn are labelled by cycle type:

(1 2 3) cycle type 3

(1 2)(5 7 8) cycle type 2, 3.

Example (S4)

Conjugacy class rep.

Sum of cycle lengths

e (1)(2)(3)(4)

1 + 1 + 1 + 1

(1 2) (1 2)(3)(4)

2 + 1 + 1

(1 2 3) (1 2 3)(4)

3 + 1

(1 2)(3 4) (1 2)(3 4)

2 + 2

(1 2 3 4) (1 2 3 4)

4

George Kinnear Integer Partitions

Page 10: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Example: Permutations of n objects

Cycle notation: e.g. (1 2), (1 2 3).Conjugacy classes of Sn are labelled by cycle type:

(1 2 3) cycle type 3

(1 2)(5 7 8) cycle type 2, 3.

Example (S4)

Conjugacy class rep. Sum of cycle lengths

e (1)(2)(3)(4) 1 + 1 + 1 + 1

(1 2) (1 2)(3)(4) 2 + 1 + 1

(1 2 3) (1 2 3)(4) 3 + 1

(1 2)(3 4) (1 2)(3 4) 2 + 2

(1 2 3 4) (1 2 3 4) 4

George Kinnear Integer Partitions

Page 11: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

The partition function

Definition

p(n) denotes the number of partitions of n

n 1 2 3 4 5 6 7 8 9 10

p(n) 1 2 3 5 7 11 15 22 30 42

p(200) = ?

3 972 999 029 388

p(n) = 1π√

2

∞∑k=1

Ak(n)√

k

d

dx

sinh(πk

√23

(x − 1

24

))√x − 1

24

x=n

George Kinnear Integer Partitions

Page 12: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

The partition function

Definition

p(n) denotes the number of partitions of n

n 1 2 3 4 5 6 7 8 9 10

p(n) 1 2 3 5 7 11 15 22 30 42

p(200) = ?

3 972 999 029 388

p(n) = 1π√

2

∞∑k=1

Ak(n)√

k

d

dx

sinh(πk

√23

(x − 1

24

))√x − 1

24

x=n

George Kinnear Integer Partitions

Page 13: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

The partition function

Definition

p(n) denotes the number of partitions of n

n 1 2 3 4 5 6 7 8 9 10

p(n) 1 2 3 5 7 11 15 22 30 42

p(200) = ?

3 972 999 029 388

p(n) = 1π√

2

∞∑k=1

Ak(n)√

k

d

dx

sinh(πk

√23

(x − 1

24

))√x − 1

24

x=n

George Kinnear Integer Partitions

Page 14: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

The partition function

Definition

p(n) denotes the number of partitions of n

n 1 2 3 4 5 6 7 8 9 10

p(n) 1 2 3 5 7 11 15 22 30 42

p(200) =

?

3 972 999 029 388

p(n) = 1π√

2

∞∑k=1

Ak(n)√

k

d

dx

sinh(πk

√23

(x − 1

24

))√x − 1

24

x=n

George Kinnear Integer Partitions

Page 15: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

The partition function

Definition

p(n) denotes the number of partitions of n

n 1 2 3 4 5 6 7 8 9 10

p(n) 1 2 3 5 7 11 15 22 30 42

p(200) =

?

3 972 999 029 388

p(n) = 1π√

2

∞∑k=1

Ak(n)√

k

d

dx

sinh(πk

√23

(x − 1

24

))√x − 1

24

x=n

George Kinnear Integer Partitions

Page 16: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Open problems

Is p(n) prime for infinitely many n?

Is the value of p(n) even approximately half of the time?

George Kinnear Integer Partitions

Page 17: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Open problems

Is p(n) prime for infinitely many n?

Is the value of p(n) even approximately half of the time?

George Kinnear Integer Partitions

Page 18: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

The basic idea

Rather than just p(n), we can consider placing conditions onthe kinds of partitions allowed.

Example (Partitions of 4)

4 = 4

= 3 + 1

odd parts

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

odd parts

p(4 | odd parts) = 2.

George Kinnear Integer Partitions

Page 19: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

The basic idea

Rather than just p(n), we can consider placing conditions onthe kinds of partitions allowed.

Example (Partitions of 4)

4 = 4

= 3 + 1

odd parts

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

odd parts

p(4 | odd parts) = 2.

George Kinnear Integer Partitions

Page 20: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

The basic idea

Rather than just p(n), we can consider placing conditions onthe kinds of partitions allowed.

Example (Partitions of 4)

4 = 4

= 3 + 1 odd parts

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1 odd parts

p(4 | odd parts) = 2.

George Kinnear Integer Partitions

Page 21: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

The basic idea

Rather than just p(n), we can consider placing conditions onthe kinds of partitions allowed.

Example (Partitions of 4)

4 = 4

= 3 + 1 odd parts

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1 odd parts

p(4 | odd parts) = 2.

George Kinnear Integer Partitions

Page 22: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Partition identities

Remarkably, there are many identities of the form

p(n | condition A) = p(n | condition B)

Example (Partitions of 4)

4 = 4

distinct parts

= 3 + 1

distinct parts

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

p(4 | distinct parts) = 2

= p(4 | odd parts).

George Kinnear Integer Partitions

Page 23: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Partition identities

Remarkably, there are many identities of the form

p(n | condition A) = p(n | condition B)

Example (Partitions of 4)

4 = 4

distinct parts

= 3 + 1

distinct parts

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

p(4 | distinct parts) = 2

= p(4 | odd parts).

George Kinnear Integer Partitions

Page 24: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Partition identities

Remarkably, there are many identities of the form

p(n | condition A) = p(n | condition B)

Example (Partitions of 4)

4 = 4 distinct parts

= 3 + 1 distinct parts

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

p(4 | distinct parts) = 2

= p(4 | odd parts).

George Kinnear Integer Partitions

Page 25: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Partition identities

Remarkably, there are many identities of the form

p(n | condition A) = p(n | condition B)

Example (Partitions of 4)

4 = 4 distinct parts

= 3 + 1 distinct parts

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

p(4 | distinct parts) = 2

= p(4 | odd parts).

George Kinnear Integer Partitions

Page 26: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Partition identities

Remarkably, there are many identities of the form

p(n | condition A) = p(n | condition B)

Example (Partitions of 4)

4 = 4 distinct parts

= 3 + 1 distinct parts

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

p(4 | distinct parts) = 2 = p(4 | odd parts).

George Kinnear Integer Partitions

Page 27: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Euler’s identity

Theorem (Euler’s identity)

p(n | odd parts) = p(n | distinct parts)

Proof.

odd parts distinct parts

merge pairs of equal parts

split even parts in half

George Kinnear Integer Partitions

Page 28: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Euler’s identity

Theorem (Euler’s identity)

p(n | odd parts) = p(n | distinct parts)

Proof.

odd parts distinct parts

merge pairs of equal parts

split even parts in half

George Kinnear Integer Partitions

Page 29: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Euler’s identity

Theorem (Euler’s identity)

p(n | odd parts) = p(n | distinct parts)

Proof.

odd parts distinct parts

merge pairs of equal parts

split even parts in half

George Kinnear Integer Partitions

Page 30: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Euler’s identity

Theorem (Euler’s identity)

p(n | odd parts) = p(n | distinct parts)

Proof.

odd parts distinct parts

merge pairs of equal parts

split even parts in half

George Kinnear Integer Partitions

Page 31: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Generating functions

(q1 + q3)(q2 + q4)

= q1+2 + q1+4 + q3+2 + q3+4

= q3 + 2q5 + q7

∞∑n=1

p(n | condition )qn = f(q)

Example ∞∑n=0

p(n | distinct parts )qn =

∞∏n=1

(1 + qn)

∞∑n=0

p(n | odd parts )qn =

∞∏n=1n odd

1

(1 − qn)

George Kinnear Integer Partitions

Page 32: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Generating functions

(q1 + q3)(q2 + q4) = q1+2 + q1+4 + q3+2 + q3+4

= q3 + 2q5 + q7

∞∑n=1

p(n | condition )qn = f(q)

Example ∞∑n=0

p(n | distinct parts )qn =

∞∏n=1

(1 + qn)

∞∑n=0

p(n | odd parts )qn =

∞∏n=1n odd

1

(1 − qn)

George Kinnear Integer Partitions

Page 33: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Generating functions

(q1 + q3)(q2 + q4) = q1+2 + q1+4 + q3+2 + q3+4

= q3 + 2q5 + q7

∞∑n=1

p(n | condition )qn = f(q)

Example ∞∑n=0

p(n | distinct parts )qn =

∞∏n=1

(1 + qn)

∞∑n=0

p(n | odd parts )qn =

∞∏n=1n odd

1

(1 − qn)

George Kinnear Integer Partitions

Page 34: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Generating functions

(q1 + q3)(q2 + q4) = q1+2 + q1+4 + q3+2 + q3+4

= q3 + 2q5 + q7

∞∑n=1

p(n | condition )qn = f(q)

Example ∞∑n=0

p(n | distinct parts )qn =

∞∏n=1

(1 + qn)

∞∑n=0

p(n | odd parts )qn =

∞∏n=1n odd

1

(1 − qn)

George Kinnear Integer Partitions

Page 35: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Generating functions

So Euler’s identity is equivalent to

∞∏n=1

(1 + qn) =

∞∏n=1n odd

1

(1 − qn)

This is easily verified:

∞∏n=1

(1 + qn)

=

∞∏n=1

(1 − q2n)

(1 − qn)

=

∞∏n=1n odd

1

(1 − qn)

George Kinnear Integer Partitions

Page 36: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Generating functions

So Euler’s identity is equivalent to

∞∏n=1

(1 + qn) =

∞∏n=1n odd

1

(1 − qn)

This is easily verified:

∞∏n=1

(1 + qn)

=

∞∏n=1

(1 − q2n)

(1 − qn)

=

∞∏n=1n odd

1

(1 − qn)

George Kinnear Integer Partitions

Page 37: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Generating functions

So Euler’s identity is equivalent to

∞∏n=1

(1 + qn) =

∞∏n=1n odd

1

(1 − qn)

This is easily verified:

∞∏n=1

(1 + qn) =

∞∏n=1

(1 − q2n)

(1 − qn)

=

∞∏n=1n odd

1

(1 − qn)

George Kinnear Integer Partitions

Page 38: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

Generating functions

So Euler’s identity is equivalent to

∞∏n=1

(1 + qn) =

∞∏n=1n odd

1

(1 − qn)

This is easily verified:

∞∏n=1

(1 + qn) =

∞∏n=1

(1 − q2n)

(1 − qn)

=

∞∏n=1n odd

1

(1 − qn)

George Kinnear Integer Partitions

Page 39: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

The Rogers-Ramanujan identities

p(n | parts ≡ 1 or 4 (mod 5)) = p(n | 2-distinct parts)

p(n | parts ≡ 2 or 3 (mod 5)) = p(n | 2-distinct parts, each > 2)

There is no known direct bijective proof (bijections can beconstructed iteratively, though).

In terms of generating functions:

1 +

∞∑m=1

qm2

(1 − q)(1 − q2) · · · (1 − qm)=

∞∏n=1

1

(1 − q5n−4)(1 − q5n−1)

1 +

∞∑m=1

qm2+m

(1 − q)(1 − q2) · · · (1 − qm)=

∞∏n=1

1

(1 − q5n−3)(1 − q5n−2)

George Kinnear Integer Partitions

Page 40: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

The Rogers-Ramanujan identities

p(n | parts ≡ 1 or 4 (mod 5)) = p(n | 2-distinct parts)

p(n | parts ≡ 2 or 3 (mod 5)) = p(n | 2-distinct parts, each > 2)

There is no known direct bijective proof (bijections can beconstructed iteratively, though).

In terms of generating functions:

1 +

∞∑m=1

qm2

(1 − q)(1 − q2) · · · (1 − qm)=

∞∏n=1

1

(1 − q5n−4)(1 − q5n−1)

1 +

∞∑m=1

qm2+m

(1 − q)(1 − q2) · · · (1 − qm)=

∞∏n=1

1

(1 − q5n−3)(1 − q5n−2)

George Kinnear Integer Partitions

Page 41: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

The Rogers-Ramanujan identities

p(n | parts ≡ 1 or 4 (mod 5)) = p(n | 2-distinct parts)

p(n | parts ≡ 2 or 3 (mod 5)) = p(n | 2-distinct parts, each > 2)

There is no known direct bijective proof (bijections can beconstructed iteratively, though).

In terms of generating functions:

1 +

∞∑m=1

qm2

(1 − q)(1 − q2) · · · (1 − qm)=

∞∏n=1

1

(1 − q5n−4)(1 − q5n−1)

1 +

∞∑m=1

qm2+m

(1 − q)(1 − q2) · · · (1 − qm)=

∞∏n=1

1

(1 − q5n−3)(1 − q5n−2)

George Kinnear Integer Partitions

Page 42: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

History

Discovered in 1894 by L. J. Rogers (1862-1933).

Rediscovered in 1912 by S. Ramanujan (1887-1920), withoutproof.

George Kinnear Integer Partitions

Page 43: Integer Partitions - School of Mathematics › gkinnear › files › colloq1.pdf · 2011-12-20 · OutlinePartitionsPartition IdentitiesThe Rogers-Ramanujan Identities Definition

Outline Partitions Partition Identities The Rogers-Ramanujan Identities

History

Discovered in 1894 by L. J. Rogers (1862-1933).

Rediscovered in 1912 by S. Ramanujan (1887-1920), withoutproof.

George Kinnear Integer Partitions