integratedsolarradiation) data)sources)over) australia) … ·...

37
1 Integrated Solar Radiation Data Sources over Australia Final report: project results and lessons learnt Lead organisation: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Project commencement date: 1 st September 2012 Completion date: 27 th August 2015 Date published: Contact name: Alberto Troccoli Title: Dr Email: [email protected] Phone: 02 6281 8251 Website: http://weru.csiro.au

Upload: others

Post on 16-Feb-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

 

1  

   

 

Integrated  Solar  Radiation  Data  Sources  over  Australia  

Final  report:  project  results  and  lessons  learnt    

Lead  organisation:   Commonwealth  Scientific  and  Industrial  Research  Organisation  (CSIRO)  

Project  commencement  date:     1st  September  2012   Completion  date:   27th  August  2015  

Date  published:    

Contact  name:     Alberto  Troccoli  

Title:     Dr  

Email:     [email protected]   Phone:   02  6281  8251  

Website:   http://weru.csiro.au    

 

 

Page 2: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

 

2  

Table  of  Contents  Table  of  Contents  ..................................................................................................................................  2  

Executive  Summary  ...............................................................................................................................  3  

Project  Overview  ...................................................................................................................................  6  

Project  summary  ............................................................................................................................  6  

Project  scope  .................................................................................................................................  8  

Outcomes  ....................................................................................................................................  12  

Transferability  ..............................................................................................................................  32  

Conclusion  and  next  steps  ...........................................................................................................  32  

References  ...................................................................................................................................  34  

Lessons  Learnt  .....................................................................................................................................  35  

Lessons  Learnt  Report:  Availability  of  quality  solar  data  .............................................................  35  

Lessons  Learnt  Report:  Analysis  of  direct  beam  data  ..................................................................  36  

Lessons  Learnt  Report:  Delays  in  signing  the  agreement  between  CSIRO  and  NREL  ..................  37  

 

Page 3: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

 

3  

Executive  Summary  Solar  generating  capacity  in  Australia  has  been  growing  to  an  estimated  installed  capacity  exceeding  4,000  MW,  particularly  with  the  proliferation  of  grid-­‐connected  roof-­‐top  PV,  as  well  as  the  more  recent  large  scale  solar  installation  at  Nyngam,  Broken  Hill  and  Royalla  (with  other  MW-­‐scale  plants  due  to  become  operational  in  the  near  term).  An  accurate  and  reliable  solar  resource  assessment  is  therefore  essential  to  assist  with  planning  and  development  of  new  solar  generation.  Indeed,  solar  power  developers  and  financiers  regard  uncertainty  in  the  volatility  (or  inter-­‐annual  variability)  of  solar  irradiance  as  a  crucial  element  in  the  estimation  of  the  power  output  of  solar  farms,  and  ultimately  their  financing.    

The  aim  of  the  36-­‐month,  1.4  million,  project  Integrated  Solar  Radiation  Data  Sources  over  Australia  (ISRDSA)  was  to  provide  solar  power  developers  and  installers  with  an  improved  solar  data  resource  and  an  enhanced  understanding  of  its  uncertainty  by  exploiting  three  sources  of  solar  radiation  data:  ground  based,  satellite-­‐  derived  and  atmospheric  model  output  (Figure  1).  The  project,  co-­‐funded  by  the  Australian  Renewable  Energy  Agency  (ARENA),  was  coordinated  by  the  Commonwealth  Scientific  and  Industrial  Research  Organisation  (CSIRO)  and  was  executed  in  partnership  with  the  Bureau  of  Meteorology  (BoM)  and  the  US  Renewable  Energy  Laboratory  (NREL).    

Conventionally  the  main  widely  available  sources  of  resource  (or  historical)  solar  radiation  data  for  Australia  have  been  ground  station  observations  and  satellite-­‐derived  products.  The  former  represent  the  best  quality  data,  since  it  provides  what  is  actually  seen  at  ground  level,  where  potential  solar  plants  are  planned  and/or  installed.  However,  high-­‐quality  ground  stations  are  expensive  to  set  up  and  maintain.  This  is  why  the  current  network  is  sparse  and  often  not  sufficient  for  industry  needs.  Satellite-­‐derived  radiation  data,  on  the  other  hand,  offer  the  advantage  of  a  much  wider  coverage  at  the  expense  of  accuracy  (it  is  a  derived  quantity)  and  temporal  resolution  (currently  only  hourly  instantaneous  data  are  available).    

With  this  “Integrated  Solar  Radiation  Data  Sources  over  Australia”  project  two  main  features  have  been  included  so  as  to  provide  an  important  complement  to  the  ground  station  and  satellite-­‐derived  radiation  data:    

• The  output  of  a  high-­‐resolution  global  atmospheric  model  developed  by  CSIRO,  called  CCAM.  The  Bureau  of  Meteorology’s  model  used  for  operational  weather  predictions,  called  ACCESS,  has  also  been  used  as  a  reference  

• Solar  radiation  observations  from  as  many  ground  stations  as  practical  have  been  collected  and  assembled  into  a  self-­‐consistent  database.  

By  combining  these  three  main  sources  of  solar  data,  as  depicted  in  Figure  1,  and  evaluating  their  respective  accuracy,  this  project  has  produced  a  new  and  improved  solar  resource  data  for  Australia  at  the  regional  scale  to  assist  prospective  solar  power  developers  for  resource  estimation.  In  particular,  the  addition  of  atmospheric  models  output  for  solar  resource  assessment  has  allowed  us  to  better  address  questions  such  as  “What  is  the  best  location  for  a  new  solar  monitoring  station?”,  “How  large  is  the  uncertainty  of  solar  radiation  at  any  given  location?”  and  “How  can  we  compute  solar  power  yields  at  a  given  site?”.    

Page 4: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  4    

Specifically,  this  project  had  three  main  objectives,  all  of  which  were  achieved  to  a  high  standard,  as  discussed  in  the  following.  

1.  Assess  requirements  for  an  optimal  solar  observations  network  layout    

This  assessment  has  allowed  the  quantification  of  the  degree  of  improvement  in  solar  radiation  uncertainty  (or  accuracy)  as  a  function  of  increased  quantity,  spatial  distribution  and  quality  of  surface  observations.  The  optimal  network  layout  is  described  in  Davy  and  Troccoli  (2014).  

This  quantification  provides  guidance  to  the  design  of  a  solar  radiation  observation  network  across  Australia  for  an  improved  solar  resource  mapping  estimation  for  solar  farm  developments.    

2.  Development  of  an  integrated  solar  radiation  data  set  

This  integrated  solar  radiation  data  set  has  been  generated  through  the  combination  of  in  situ  observations,  satellite-­‐derived  data  and  high-­‐spatial  resolution  model  data,  along  with  uncertainty  estimates.  A  key  element  of  this  data  set  is  the  34-­‐year  (1979-­‐2012)  atmospheric  model  run  using  the  CCAM  model,  which  has  produced  time  series  for  the  whole  of  Australia  and  at  30  minute  time  resolution  and  10  km  spatial  resolution.  This  dataset  has  been  used  for  the  solar  resource  mapping  of  a  proposed  large-­‐scale  solar  farm.  A  manuscript  is  being  finalised  for  publication  in  an  international  journal  (Davy  et  al.  2015).  

3.  Development  of  high  temporal  resolution  solar  radiation  time  series  

High  temporal  resolution  solar  radiation  time  series  (1  min)  have  been  produced  using  lower  resolution  (1  hour)  solar  data  from  the  integrated  solar  radiation  data  set.  A  statistical  approach  has  been  developed  to  produce  solar  time  series  for  generic  sites  across  Australia  (and  elsewhere).    

These  higher  frequency  time  series  provide  suitable  benchmarking  for  forecasting  tools  to  be  developed  to  help  energy  market  operators  plan  and  schedule  large-­‐scale  solar  power  generation;  they  also  assist  with  a  finer  assessment  of  solar  resource  by  allowing  to  better  quantify  effects  such  as  ramp  events.  A  manuscript  is  being  drafted  for  publication  in  an  international  journal.  

In  addition  to  these  tasks,  a  major  complementary  task  has  been  identified  as  providing  a  critical  contribution  towards  a  more  effective  project  implementation  and  delivery.  This  is  the  development  of  a  Solar  Radiation  Database,  including  quality  control  flags.  With  this  solar  radiation  database  we  have  made  marked  advances  towards  gathering  solar  radiation  data  coming  from  different  ground  station  sources  collected  by  research  institutes,  government  organisation  and  commercial  companies,  whether  for  solar  power,  agriculture  or  other  purposes.  This  database  has  been  designed  to  also  include  solar  radiation  from  numerical  weather  models  and  those  derived  from  satellite  at  the  locations  for  which  ground  stations  are  available.  The  ultimate  aim  is  to  create  a  repository,  together  with  a  web  interface,  capable  of  dealing  with  all  these  heterogeneous  ground  station  observations  and  managing  the  problem  of  different  format,  quality,  spatial  and  temporal  resolutions  from  each  of  the  data  sources.  Building  a  database  like  this  is  a  complex  technical  endeavour.  Thus,  with  this  project  only  some  of  the  solar  radiation  database  building  blocks  have  been  realised.    

A  key  outcome  of  this  project  has  been  the  development  of  uncertainty  measures  for  solar  radiation  data  accuracy  with  important  implications  for  project  financing  and  for  reducing  the  cost  of  incorporating  solar  energy  into  the  grid.  This  project  will  benefit  considerably  from  the  experience  of  NREL  experts  who  are  working  on  analogous  problems  for  the  USA.  

Page 5: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  5    

All  the  developments  in  this  project  have  followed  internationally  consistent  standards  for  deployment  of  solar  radiation  monitoring  equipment,  data  acquisition  schedules,  statistical  analyses  and  communication  protocols.  The  project  has  also  greatly  benefitted  from  our  active  participation  in  the  following  two  world-­‐leading  activities:  the  International  Energy  Agency  (IEA)  Task  46  ‘Solar  Resource  Assessment  and  Forecasting’  and/or  the  European  COST  Action  ‘Weather  Intelligence  for  Renewable  Energies’  (WIRE).      

Integral  part  of  the  project  have  been  outreaching  activities  such  as  two  stakeholder  workshops  and  the  convening  with  the  ASEFS  project  of  a  Solar  Resource  Assessment  &  Forecasting  Science  Day  in  Sydney  in  February  2014  to  discuss  progress  is  solar  resource  assessment  and  forecasting  both  from  an  academic  and  industry  perspectives.  The  event  was  very  well  received  by  the  over  fifty  attendees.  

The  three  main  benefits  of  this  project  have  been:  

• To  have  markedly  advanced  the  science  of  solar  radiation,  including  its  monitoring,  modelling,  prediction,  and  application  to  solar  energy  devices  to  assist  Australia  to  establish  itself  as  a  worldwide  leading  player  in  this  field;  

• To  have  provided  a  significant  contribution  to  bridging  the  gap  between  the  meteorology  community  and  the  Australian  solar  community,  by  providing  radiation  data  (observations,  simulations  and  forecasts)  that  is  critical  for  modelling  solar  power  stations  and  predicting  their  annual  output.  

• To  have  prepared  the  ground  for  potentially  successful  commercial  opportunities  in  the  linkage  between  the  meteorology  and  solar  energy  communities.  

The  key  barrier  to  continue  to  accrue  these  benefits  is  in  the  delivery  and  dissemination  of  the  data  and  associated  information.  Discussions  have  started  with  the  Australian  Renewable  Energy  Mapping  Infrastructure  (AREMI)  project  to  make  a  version  of  the  solar  radiation  data  developed  with  this  project  to  be  available  to  the  public  through  the  AREMI’s  web-­‐interface.  At  present  the  AREMI’s  portal  appears  to  be  the  best  vehicle  for  the  sustainability  of  the  provision  to  the  public  of  the  solar  radiation  data  developed  with  this  project.    

 Figure  1  –  The  three  main  sources  of  solar  radiation:  satellite-­‐derived  data,  ground  station  

observations  and  atmospheric  model  data    

Page 6: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

 

6  

Project  Overview  

Project  summary    The  aim  of  the  36-­‐month,  1.4  million,  project  Integrated  Solar  Radiation  Data  Sources  over  Australia  (ISRDSA)  was  to  provide  solar  power  developers  and  installers  with  an  improved  solar  data  resource  and  an  enhanced  understanding  of  its  uncertainty  by  exploiting  three  sources  of  solar  radiation  data:  ground  based,  satellite-­‐  derived  and  atmospheric  model  output.    

The  project,  co-­‐funded  by  the  Australian  Renewable  Energy  Agency  (ARENA),  was  coordinated  by  the  Commonwealth  Scientific  and  Industrial  Research  Organisation  (CSIRO)  and  was  executed  in  partnership  with  the  Bureau  of  Meteorology  (BoM)  and  the  US  Renewable  Energy  Laboratory  (NREL).    

The  ISRDSA  project  commenced  on  1st  September  2012.  Since  then  there  had  been  some  delays,  particularly  with  the  signing  of  the  agreement  between  CSIRO  and  NREL,  and  to  a  lesser  extent  with  the  agreement  between  CSIRO  and  BoM  too.  The  agreement  with  NREL  was  only  officially  signed  in  early  2015.  

The  ISRDSA  project  has  successfully  achieved  the  great  majority  of  its  tasks.  Specifically,  this  project  had  three  main  objectives,  all  of  which  were  achieved  to  a  high  standard,  as  discussed  in  the  following.  

1.  Assess  requirements  for  an  optimal  solar  observations  network  layout    

This  assessment  has  allowed  the  quantification  of  the  degree  of  improvement  in  solar  radiation  uncertainty  (or  accuracy)  as  a  function  of  increased  quantity,  spatial  distribution  and  quality  of  surface  observations.  The  optimal  network  layout  is  described  in  Davy  and  Troccoli  (2014).  

This  quantification  provides  guidance  to  the  design  of  a  solar  radiation  observation  network  across  Australia  for  an  improved  solar  resource  mapping  estimation  for  solar  farm  developments.    

2.  Development  of  an  integrated  solar  radiation  data  set  

This  integrated  solar  radiation  data  set  has  been  generated  through  the  combination  of  in  situ  observations,  satellite-­‐derived  data  and  high-­‐spatial  resolution  model  data,  along  with  uncertainty  estimates.  A  key  element  of  this  data  set  is  the  34-­‐year  (1979-­‐2012)  atmospheric  model  run  using  the  CCAM  model,  which  has  produced  time  series  for  the  whole  of  Australia  and  at  30  minute  time  resolution  and  10  km  spatial  resolution.  This  dataset  has  been  used  for  the  solar  resource  mapping  of  a  proposed  large-­‐scale  solar  farm.  A  manuscript  is  being  finalised  for  publication  in  an  international  journal  (Davy  et  al.  2015).  

3.  Development  of  high  temporal  resolution  solar  radiation  time  series  

High  temporal  resolution  solar  radiation  time  series  (1  min)  have  been  produced  using  lower  resolution  (1  hour)  solar  data  from  the  integrated  solar  radiation  data  set.  A  statistical  approach  has  been  developed  to  produce  solar  time  series  for  generic  sites  across  Australia  (and  elsewhere).    

Page 7: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  7    

These  higher  frequency  time  series  provide  suitable  benchmarking  for  forecasting  tools  to  be  developed  to  help  energy  market  operators  plan  and  schedule  large-­‐scale  solar  power  generation;  they  also  assist  with  a  finer  assessment  of  solar  resource  by  allowing  to  better  quantify  effects  such  as  ramp  events.  A  manuscript  is  being  drafted  for  publication  in  an  international  journal.  

In  addition  to  these  tasks,  a  major  complementary  task  has  been  identified  as  providing  a  critical  contribution  towards  a  more  effective  project  implementation  and  delivery.  This  is  the  development  of  the  CSIRO  Weather  and  Energy  Research  Unit  (WERU)  Solar  Radiation  Database,  including:  quality  control  flags,  the  development  of  metadata  management  and  processes  for  each  data  source;  a  more  flexible  way  to  deal  with  time  aggregation  so  as  to  speed  up  access  to  various  averaging  periods  (5  min,  10  min,  etc.);  a  more  elaborated  web  interface  which  allows  to  both  visualise  the  location  and  the  values  of  the  data  and  also  to  download  the  selected  data.  

The  ISRDSA  project  has  organised  two  well-­‐attended  stakeholder  workshops,  one  at  the  start  of  the  project  and  the  other  half-­‐way  through  the  project.  These  have  been  very  useful  towards  a  better  understanding  of  solar  industry  concerns  around  solar  radiation  data  provision  and  their  uncertainty.  Participant  included  experts  from  a  variety  of  organisations,  from  government  agencies,  to  network  operators  and  regulators.  The  feedback  obtained  via  the  above  mentioned  stakeholder  workshops  as  well  as  other  direct  interactions  have  allowed  this  project  to  pursue  a  research  programme  relevant  to  the  solar  industry,  as  demonstrated  for  instance  by  the  service  provided  by  CSIRO  to  an  Australian  solar  power  developer.  In  addition,  in  collaboration  with  the  ASEFS  project,  the  ISRDSA  project  convened  a  Solar  Resource  Assessment  &  Forecasting  Science  Day  in  Sydney  in  February  2014  to  discuss  progress  is  solar  resource  assessment  and  forecasting  both  from  an  academic  and  industry  perspectives.  The  event  was  very  well  received  by  the  over  fifty  attendees.  

This  project  has  been  developed  by  following  international  standards  for  deployment  of  solar  radiation  monitoring  equipment,  data  acquisition  schedules,  statistical  analyses  and  communication  protocols.  Aside  from  keeping  abreast  with  the  international  literature,  this  process  has  been  greatly  facilitated  by  our  participation  in  international  leading-­‐edge  activities  such  as  the  International  Energy  Agency  (IEA)  Task  46  ‘Solar  Resource  Assessment  and  Forecasting’  and  the  European  COST  Action  ‘Weather  Intelligence  for  Renewable  Energies’  (WIRE).  This  interaction  has  happened  via  attendance  to  meetings  9at  least  once  a  year)  as  well  as  regular  email  contacts.  The  direct  participation  of  NREL  in  the  project  has  also  been  highly  beneficial.  

Specifically,  our  involvement  in  the  IEA  Task  46  and  the  WIRE  network  has  allowed  us  to  benchmark  our  tools  against  worldwide  standards.  This  has  been  improving  the  way  solar  resource  information  is  delivered  to  energy  market  operators  and  solar  power  generation  developers.  

Our  research  findings  have  been  communicated  at  around  15  scientific  and/or  industry  events  and  have  disseminated  our  results  through  international  publications:  one  accepted  publication,  two  nearly  ready  for  submission  and  regular  input  to  the  IEA  Task  46  reporting.  In  addition,  our  solar  ground  station  observations  are  made  available  through  our  web  site  http://weru.csiro.au  and  have  attracted  wide  interest.  

 

   

Page 8: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  8    

Project  scope  High  quality  solar  radiation  data  from  ground  stations,  together  with  their  uncertainty,  are  critical  to  solar  power  plants  planning,  project  finance  and  due  diligence  processes.  Yet,  provision  of  ground  station  data  over  Australia  is  still  very  patchy  and  often  insufficient  for  banks  and  project  financiers  to  gain  confidence  in  prospective  solar  power  plant  generation  and  revenue  projections.  Despite  current  efforts  to  enhance  the  solar  radiation  data  set  several  gaps  are  still  present.    

Conventionally  the  main  widely  available  sources  of  resource  (or  historical)  solar  radiation  data  for  Australia  have  been  ground  station  observations  and  satellite-­‐derived  products.  The  former  represent  the  best  quality  data,  since  it  provides  what  is  actually  seen  at  ground  level,  where  potential  solar  plants  are  planned  and/or  installed.  However,  high-­‐quality  ground  stations  are  expensive  to  set  up  and  maintain.  This  is  why  the  current  network  is  sparse  and  often  not  sufficient  for  industry  needs.  Satellite-­‐derived  radiation  data,  on  the  other  hand,  offer  the  advantage  of  a  much  wider  coverage  at  the  expense  of  accuracy  (it  is  a  derived  quantity)  and  temporal  resolution  (currently  only  hourly  instantaneous  data  are  available).    

With  this  “Integrated  Solar  Radiation  Data  Sources  over  Australia”  project  two  main  features  have  been  included  so  as  to  provide  an  important  complement  to  the  ground  station  and  satellite-­‐derived  radiation  data:    

• The  output  of  a  high-­‐resolution  global  atmospheric  model  developed  by  CSIRO,  called  CCAM  (Conformal  Cubical  Atmospheric  Model).  The  Bureau  of  Meteorology’s  model  used  for  operational  weather  predictions,  called  ACCESS,  has  also  been  used  as  a  reference  

• Solar  radiation  observations  from  as  many  ground  stations  as  practical  will  be  collected  and  assembled  into  a  self-­‐consistent  database;  basic  quality  assurance  procedures  will  also  be  provided.  

 

By  combining  these  three  main  sources  of  solar  data,  as  depicted  in  Figure  1,  and  evaluating  their  respective  accuracy,  this  project  has  produced  a  new  and  improved  solar  resource  data  for  Australia  at  the  regional  scale  to  assist  prospective  solar  power  developers  for  resource  estimation.  In  particular,  the  addition  of  atmospheric  models  output  for  solar  resource  assessment  has  allowed  us  to  better  address  questions  such  as  “What  is  the  best  location  for  a  new  solar  monitoring  station?”,  “How  large  is  the  uncertainty  of  solar  radiation  at  any  given  location?”  and  “How  can  we  compute  solar  power  yields  at  a  given  site?”.    

In  order  to  provide  a  better  understanding  of  the  temporal  and  spatial  correlation  and  variance  of  incoming  solar  radiation  across  Australia  to  support  the  solar  energy  industry  it  is  important  to  understand  the  features  of  each  of  the  three  sources:  

• Ground  station  observations;  • Satellite-­‐derived  solar  irradiance,  and;  • Atmospheric  model  data.  

Ground  observations  measure  the  amount  of  incoming  solar  energy  that  reaches  the  surface.  The  data  are  characterised  as  high  temporal  resolution  (up  to  1  second)  but  spatially  sparse.  The  best  set  of  ground  observations  in  Australia  is  the  Bureau  of  Meteorology’s  network  of  solar  radiation  instruments  due  to  the  quality  of  data  (instrument  calibration  and  maintenance)  and  long  time  

Page 9: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  9    

series  for  many  stations.  CSIRO  has  also  been  monitoring  the  three  solar  irradiance  components  at  two  high-­‐quality  monitoring  stations,  one  in  Canberra  and  the  other  in  Newcastle.  Global  irradiance  only  is  measured  at  a  number  of  additional  sites  spread  across  the  Australian  Capital  Territory.  Other  sources  of  ground  global  irradiance  observations  have  been  acquired  from  a  collaborative  network  of  South  Australian  agriculture  sensors  and  a  New  South  Wales  Department  of  Primary  Industries  solar  monitoring  network.  Some  work  has  been  done  to  define  new  quality  flags  for  the  South  Australian  data  based  on  time  series  analyses  and  expected  values.  

Satellite-­‐derived  solar  data  are  characterised  by  continental  spatial  coverage  and  instantaneous  pixel  values  at  reasonable  spatial  (0.05  degrees  or  approximately  5  km)  and  temporal  (hourly,  instantaneous)  resolution.  The  satellite  data  are  from  a  selection  of  geostationary  satellites,  which  provide  the  hourly  temporal  resolution  at  the  cost  of  reduced  spatial  resolution  (higher  spatial  resolution  satellites  are  generally  polar-­‐orbiting).  The  satellite  data  are  processed  with  cloud  masking  procedures  and  a  one-­‐dimensional  radiative  transfer  model  to  estimate  the  global  radiation  at  the  surface.  Direct  solar  estimates  are  derived  from  the  global  estimates  and  the  solar  zenith  angle.  A  bias  correction  is  also  applied  to  the  satellite  data.  This  bias  correction  is  currently  computed  by  regressing  the  overall  average  bias  of  all  the  Bureau  of  Meteorology’s  radiation  stations  (on  a  monthly  basis),  although  there  are  plans  to  consider  the  geographical  and  physical  (e.g.  clearness  index)  distribution  of  the  error  (I.  Grant,  pers.  comm.).  

The  atmospheric  model  data  are  characterised  by  their  potential  for  more  flexible  spatial  and  temporal  resolutions  as  well  as  for  providing  a  large  amount  of  additional  meteorological  data.  The  relative  accuracy  is  constrained  by  the  parameterisation  of  atmospheric  physics  in  the  model  and  the  available  resolution  is  limited  by  the  computer  capacity  required  to  generate  high  spatial  and  temporal  resolution  data.  Data  from  two  models  are  available  for  this  project,  namely  CCAM  and  ACCESS.  However,  given  the  limited  temporal  coverage  of  the  ACCESS  model,  this  will  be  mainly  used  to  benchmark  the  CCAM  model  for  the  overlapping  period.    

It  is  also  important  to  distinguish  between  the  three  solar  radiation  components  because  their  availability  and  accuracy  varies  markedly  among  them.  What  is  normally  referred  to  as  solar  radiation  is  technically  called  global  horizontal  irradiance  (GHI).  This  is  the  amount  of  downward  incoming  solar  (or  shortwave)  radiation  seen  by  the  ground  and  it  is  the  main  driver  of  PhotoVoltaic  (PV)  solar  technology.  As  shown  in  Figure  2,  GHI  is  the  sum  of  various  contributions:  transmitted,  reflected  and  scattered  radiation  and  direct  normal  irradiance  (DNI).  Practically  these  contributions  are  grouped  into  two  components,  the  DNI  (also  known  as  direct  beam)  and  the  diffuse  radiation  (the  sum  of  all  other  contributions).    

It  is  worth  noting  that  ground  station  observations  measure  DNI,  whereas  atmospheric  models  normally  compute  the  DHI  component.  Although  it  is  straightforward  to  derive  one  from  the  other  via  the  solar  zenith  angle  as  in  the  relationship  above,  the  relatively  coarse  temporal  resolution  of  solar  radiation  time  series,  especially  that  from  models  (typically  one  hour),  may  introduce  approximation  errors.  In  the  case  of  satellite-­‐derived  data,  GHI  is  usually  the  main  output,  with  DNI  derived  from  GHI  by  means  of  statistical  or  physical  relationships.  

In  order  to  take  into  account  the  recommendations  of  the  first  stakeholder  workshop,  two  main  modifications  to  the  solar  data  used  for  this  project  have  been  introduced:  

1. The  longest  available  historical  solar  data  from  the  Bureau  stations  have  been  acquired;  2. A  model  run  for  the  34-­‐year  period  (1979-­‐2012)  using  the  CCAM  model  has  been  set-­‐up.    

Page 10: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  10    

 

Figure  2  –  The  three  solar  radiation  (or  irradiance)  components.  

 

The  Conformal  Cubical  Atmospheric  Model  (CCAM)  

Given  the  central  role  of  the  CCAM  model  of  this  project  some  additional  detail  is  provided  here.  

CCAM  is  a  global  atmospheric  model  principally  designed  for  climate  modelling  and  regional  climate  downscaling.  In  contrast  to  limited-­‐area  models,  the  CCAM  employs  a  cubic  conformal  grid,  thereby  avoiding  the  need  for  any  special  treatment  of  simulation  boundaries.  Through  the  use  of  the  Schmidt  transformation,  this  grid  is  highly  stretchable  such  that  the  places  of  interest  can  be  resolved  at  desired  fine  spatial  resolutions  while  maintaining  a  global  configuration.  

CCAM  is  a  very  versatile  model  which  has  been  used  for  various  applications,  from  regional  climate  downscaling  for  climate  change  studies,  to  wind  speed  and  solar  time  series  for  the  power  industry,  to  localised  wind  forecasts  for  sailing  boat  competitions  such  as  the  America’s  cup  or  the  London  Olympics,  to  urban  modelling.  Thus,  CCAM  can  be  used  for  a  variety  of  scenarios,  spatial  and  temporal  resolutions  and  can  therefore  overcome  some  of  the  limitations  of  ground  station  observations  and  satellite-­‐derived  solar  data.  

The  CCAM  output  used  here  is  part  of  a  large-­‐scale  study  of  atmospheric  processes  affecting  renewable  energy  production.  The  CCAM  simulation  covers  the  entire  Australia  centring  at  longitude  133°,  latitude  -­‐27.5°.  With  312  grid  points  across  each  of  the  six  panels  of  a  cube,  the  spatial  resolution  is  approximately  0.09°.  

To  develop  the  time  series  relevant  to  the  high  quality  solar  stations  we  constrain  the  large-­‐scale  atmospheric  circulation  with  the  simultaneous  atmospheric  fields  which  describe  the  state  of  the  atmosphere.  In  this  case,  these  are  taken  from  the  ERA-­‐Interim  reanalysis  of  the  European  Centre  for  Medium-­‐Range  Weather  Forecasts  (ECMWF),  which  covers  the  period  from  1979  to  near  present.  Its  resolution  is  6-­‐hourly  in  time  and  1.5°  ×  1.5°  in  space.  The  ERA-­‐Interim  reanalysis  product  is  derived  from  a  combination  of  model  information  and  observations  in  an  optimal  way  and  consists  of  the  

Page 11: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  11    

best  estimate  of  various  atmospheric  parameters  (such  as  components  of  wind  velocity,  pressure,  temperature,  and  relative  humidity).    

In  order  to  better  characterize  the  volatility  (or  inter-­‐annual  variability)  of  the  solar  resource,  a  much  longer  model  run  was  set-­‐up  by  using  the  atmospheric  model  CCAM  (ACCESS  does  not  currently  have  the  framework  to  perform  long  historical  runs).  Given  the  complexity  introduced  by  the  combination  of  an  extended  period  and  the  high  horizontal  resolution,  considerable  work  was  required  to  adapt  the  CCAM  code  to  run  over  this  historical  period.    

Time  series  for  most  meteorological  variables,  therefore  including  solar  radiation  data,  are  available  for  the  whole  of  Australia  over  the  34-­‐year  period  (1979-­‐2012)  and  at  30  minute  time  resolution  and  10  km  spatial  resolution.  

 

 

Figure  3  –  An  example  of  a  CCAM  grid,  similar  to  the  one  used  in  this  work.  To  enhance  readability,  only  every  third  grid  line  is  plotted.  

 

   

Page 12: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  12    

Outcomes  The  main  outcomes  are  presented  according  to  the  following  structure:  

• The  Weather  and  Energy  Research  Unit  (WERU)  solar  radiation  database  system  • Assessment  of  solar  radiation  • An  optimal  solar  ground  stations  layout  • Integration  of  solar  radiation  sources  • Interannual  variability  • Validating  the  Improvements  in  NREL’s  National  Solar  Radiation  Data  Base  • Synthetic  high  temporal  resolution  solar  radiation  time  series  

 

The  Weather  and  Energy  Research  Unit  (WERU)  solar  radiation  database  system  The  objective  of  the  Weather  and  Energy  Research  Unit  (WERU)  solar  radiation  database  is  to  gather  solar  radiation  data  coming  from  different  ground  station  sources  collected  by  research  institutes,  government  organisation  and  commercial  companies,  whether  for  solar  power,  agriculture  or  other  purposes.  This  database  is  designed  to  also  include  solar  radiation  from  numerical  weather  models  and  those  derived  from  satellite  at  the  locations  for  which  ground  stations  are  available.  The  ultimate  aim  is  to  create  a  repository,  together  with  a  web  interface,  capable  of  dealing  with  all  these  heterogeneous  ground  station  observations  and  managing  the  problem  of  different  format,  quality,  spatial  and  temporal  resolutions  from  each  of  the  data  sources.  The  initial  purpose  of  the  WERU  solar  radiation  database  was  to  provide  a  tool  to  assist  the  scientific  research  carried  out  with  this  project.  However,  building  a  database  like  this  is  a  complex  technical  endeavour.  Thus,  with  this  project  only  some  of  the  WERU  solar  radiation  database  building  blocks  have  been  realised.    

Overview  of  Available  ground  stations  

The  ISRDSA  project  aims  to  bring  together  solar  radiation  data  from  multiple  networks  of  ground  stations.  A  key  outcome  of  this  activity  is  to  provide  consistent  quality  and  format  ground  station  data  for  comparison  with  model  and  satellite  data,  and  so  provide  a  spatially  explicit  and  rigorous  view  of  solar  radiation  resources  across  Australia.  

The  current  highest  quality  and  easily  accessible  ground  station  data  is  from  the  network  operated  by  the  Bureau  of  Meteorology.  This  project  seeks  to  collect,  process  and  analyse  ground  station  data  from  a  number  of  other  known  networks  with  varying  data  quality  and  format  but,  importantly  with  a  larger  spatial  and  perhaps  temporal  spread  than  the  Bureau  network  alone.  

The  spatial  distribution  of  ground  stations  from  the  Bureau  (red),  NSW  Department  of  Primary  Industries  (black)  and  the  OzFlux  network  (blue)  are  shown  in  Figure  4  Not  shown  are  the  ground  stations  associated  with  the  South  Australian  network,  as  these  are  all  tightly  clustered  around  Adelaide  relative  to  the  scale  of  the  map  in  Figure  4,  and  the  CSIRO  network,  which  will  be  included  in  the  next  version  of  the  figure.  

While  the  Bureau  network  of  stations  cover  the  majority  of  macro-­‐scale  areas  that  are  serviced  by  the  other  networks,  it  can  be  seen  that  the  other  networks  provide  more  spatially  explicit  coverage  

Page 13: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  13    

than  the  Bureau  network  alone,  in  particular  through  NSW  and  southern  Queensland.  This  project,  which  will  study  the  viability  of  the  non-­‐Bureau  ground  station  networks  for  national  integrated  solar  resource  assessment,  will  also  provide  valuable  information  on  the  locations  where  more  (or  less)  solar  ground  stations  should  be  deployed,  which  may  be  important  as  the  Bureau  assesses  which  of  their  stations  will  be  maintained  into  the  future.  

 

 

Figure  4  –  Overview  of  the  location  of  available  ground  station  networks.  

 

Data  system  overview  

The  data  system  has  three  main  parts:  

• Data  processing  and  storage;  • Fast  access  database,  and;  • The  web  application  service  that  exposes  this  data  to  the  end  user  through  an  interactive  

web  interface.  

Most  of  the  work  has  focussed  on  the  data  storage  (system  infrastructure  and  database  design)  and  processing  component,  which  has  not  identified  any  issue  with  the  overall  design  that  would  force  an  amendment.  While  the  overall  design  does  remain  flexible,  it  is  encouraging  that  the  system  has  not  required  a  change  due  to  the  processing  of  source  data  and  the  implementation  of  the  database  schema.  

Due  to  budget  constraints  at  CSIRO,  this  part  of  the  work,  in  strong  support  but  not  an  official  component  of  ISRDSA,  could  not  be  completed.  Most  of  the  components  needed  to  continue  building  a  robust  data  system  is  however  available  for  potential  future  projects,  at  both  national  and  international  levels.  

 

Page 14: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  14    

Figure  5  –  Schematic  of  the  overall  design  of  the  Solar  Radiation  Database  system.    

 

Assessment  of  solar  radiation  Solar  radiation  data  derived  from  satellite  and  from  the  output  of  the  two  atmospheric  models,  CCAM  and  ACCESS,  are  compared  to  ground  station  observations.  Although  ground  observations  are  affected  by  errors  (instrumental,  calibration,  and  others),  these  errors  are  generally  smaller  than  those  for  satellite-­‐derived  and  atmospheric  model  data.  Thus,  for  our  purposes  ground  observations  can  be  taken  as  the  true  value  of  radiation.  Also,  whenever  the  two  components  GHI  and  DNI  are  available  the  comparison  is  carried  out  for  both.    

The  results  are  presented  as  annual  or  monthly  means,  which  are  computed  from  hourly  values,  except  for  the  ACCESS  output  for  which  daily  values  were  available.  The  statistics  used  are:  mean  bias  as  a  fraction  of  the  monthly  mean  value,  root  mean  square  error  (RMSE)  as  fraction  of  the  monthly  mean,  and  Pearson  correlation  coefficient  (or  just  correlation).  For  the  ACCESS  model,  the  relative  mean  absolute  error  (MAE)  is  used  instead  of  the  relative  RMSE.  These  statistics  are  commonly  used  for  the  assessment  of  solar  irradiance.  

Page 15: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  15    

Satellite  vs  ground  measurements  

The  instantaneous  satellite-­‐derived  data  over  Australia  has  been  compared  to  60-­‐minute  averages  of  the  Bureau’s  ground  station  observations,  centred  on  the  nominal  satellite  data  time  stamp.  Mean  statistics  improve  for  averaging  periods  up  to  about  60  minutes  under  broken  cloud  conditions,  though  these  statistics  are  not  much  dependent  on  the  averaging  period  for  clear  sky  or  overcast  conditions.  Similar  results  are  obtained  for  the  USA  data,  even  if  in  this  case  a  30-­‐minute  averaging  period  was  adopted.  

Global  horizontal  irradiance  over  Australia    

Figure  6  (left  hand  side)  shows  that  the  annual  mean  correlation  for  satellite-­‐derived  GHI  is  very  high  (larger  than  0.9)  for  all  Bureau’s  sites,  indicating  a  remarkable  performance  in  terms  of  this  key  statistic.  It  should  be  noted,  however,  that  it  is  likely  that  a  large  fraction  of  this  correlation  is  due  to  the  diurnal  cycle,  which  would  be  closely  reproduced  by  the  algorithm  used  to  derive  solar  radiation  from  satellite  data.  The  relative  RMSE  is  also  comparatively  small,  with  Learmonth,  Kalgoorlie-­‐Boulder  and  Alice  Springs  displaying  the  smallest  errors  (Figure  6  right  hand  side).  With  relative  errors  between  0.5  and  0.6  (50-­‐60%),  Cairns  and  Mount  Gambier  are  the  worst  performers.    

 

 Figure  6  –  Comparison  of  satellite  vs  ground  measurements  for  GHI:  annual  means  of  Pearson  correlation  (left)  and  relative  RMSE  (right)  from  hourly  values.  

 

Direct  Normal  Irradiance  over  Australia  

The  performance  of  the  DNI  in  terms  of  mean  annual  correlation  and  relative  RMSE  is  shown  in  Figure  7.  The  correlation  is  still  high  but  smaller  than  for  the  GHI.  For  most  stations  correlation  ranges  from  0.8  to  0.9,  but  it  is  a  little  less  for  Darwin  and  Cairns  (between  0.7  and  0.8,  Figure  7  left  hand  side).  The  fact  that  correlation  for  DNI  is  worse  than  for  GHI  is  expected  since  DNI  is  derived  from  GHI  via  a  statistical  relationship.  A  reduction  in  performance  is  more  noticeable  in  the  relative  RMSE  (Figure  7  right  hand  side).  While  error  pattern  broadly  reflect  that  for  GHI  (Figure  6  right  hand  side),  with  the  highest  errors  for  the  stations  of  Cairns  and  Mount  Gambier,  the  relative  errors  are  at  least  0.3  (30%)  larger.  Even  the  best  performing  stations,  e.g.  Learmonth,  have  an  error  of  between  0.4  and  0.5.  Cairns  and  Mount  Gambier  have  an  error  larger  than  100%.  

110 120 130 140 150

−45

−40

−35

−30

−25

−20

−15

−10

GHI Annual Correlation for SAT vs Ground Stations

Longitude

Latit

ude

●●●●●●●●●●●

−0.1 00.10.20.30.40.50.60.70.80.9 1

●ADELAIDE AIRPORT

●ALICE SPRINGS AIRPORT

●BROOME AIRPORT ●

CAIRNS AERO

●DARWIN AIRPORT

●GERALDTON AIRPORT

●KALGOORLIE−BOULDER AIRPORT

●LEARMONTH AIRPORT

●MELBOURNE AIRPORT

●MILDURA AIRPORT

●MOUNT GAMBIER AERO

●ROCKHAMPTON AERO

●TENNANT CREEK AIRPORT

●WAGGA WAGGA AMO

110 120 130 140 150

−45

−40

−35

−30

−25

−20

−15

−10

GHI Annual Rel RMSE for SAT vs Ground Stations

Longitude

Latit

ude

●●●●●●●●●●●

00.10.20.30.40.50.60.70.80.9 11.1

●ADELAIDE AIRPORT

●ALICE SPRINGS AIRPORT

●BROOME AIRPORT ●

CAIRNS AERO

●DARWIN AIRPORT

●GERALDTON AIRPORT

●KALGOORLIE−BOULDER AIRPORT

●LEARMONTH AIRPORT

●MELBOURNE AIRPORT

●MILDURA AIRPORT

●MOUNT GAMBIER AERO

●ROCKHAMPTON AERO

●TENNANT CREEK AIRPORT

●WAGGA WAGGA AMO

Page 16: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  16    

 Figure  7  –  Comparison  of  satellite  vs  ground  measurements  for  DNI:  annual  means  of  Pearson  correlation  (left)  and  relative  RMSE  (right).  

CCAM  vs  ground  measurements  

Global  horizontal  irradiance    

The  mean  annual  correlation  for  the  GHI  produced  by  CCAM  is  shown  in  Figure  8.  Comparing  Figure  8  with  its  satellite  equivalent  (Figure  6),  it  can  be  seen  that  there  is  deterioration  in  performance  of  CCAM  relative  to  the  satellite-­‐based  model.  This  is  reflected  in  the  results  for  the  annual  correlation  (which  are  lower  than  for  the  satellite  model)  and  relative  RMSE  (higher).  

Direct  normal  irradiance    

The  mean  annual  correlation  for  the  DNI  produced  by  CCAM  is  shown  in  Figure  9.  Comparing  Figure  9  with  its  satellite  equivalent  (Figure  7),  it  can  be  seen  again  that  CCAM  is  generally  worse  than  the  satellite-­‐based  model.  This  is  reflected  in  the  results  for  the  annual  correlation  (which  are  lower  than  for  the  satellite  model)  and  relative  RMSE  (higher).  The  Cairns  location  is  the  one  anomaly,  where  the  relative  RMSE  is  lower  in  CCAM,  possibly  due  to  a  lower  bias.  

 

 Figure  8  –  Comparison  of  CCAM  vs  ground  measurements  for  GHI:  annual  means  of  Pearson  correlation  (left)  and  relative  RMSE  (right).  

 

110 120 130 140 150

−45

−40

−35

−30

−25

−20

−15

−10

DNI Annual Correlation for SAT vs Ground Stations

Longitude

Latit

ude

●●●●●●●●●●●

−0.1 00.10.20.30.40.50.60.70.80.9 1

●ADELAIDE AIRPORT

●ALICE SPRINGS AIRPORT

●BROOME AIRPORT ●

CAIRNS AERO

●DARWIN AIRPORT

●GERALDTON AIRPORT

●KALGOORLIE−BOULDER AIRPORT

●LEARMONTH AIRPORT

●MELBOURNE AIRPORT

●MILDURA AIRPORT

●MOUNT GAMBIER AERO

●ROCKHAMPTON AERO

●TENNANT CREEK AIRPORT

●WAGGA WAGGA AMO

110 120 130 140 150

−45

−40

−35

−30

−25

−20

−15

−10

DNI Annual Rel RMSE for SAT vs Ground Stations

Longitude

Latit

ude

●●●●●●●●●●●

00.10.20.30.40.50.60.70.80.9 11.1

●ADELAIDE AIRPORT

●ALICE SPRINGS AIRPORT

●BROOME AIRPORT ●

CAIRNS AERO

●DARWIN AIRPORT

●GERALDTON AIRPORT

●KALGOORLIE−BOULDER AIRPORT

●LEARMONTH AIRPORT

●MELBOURNE AIRPORT

●MILDURA AIRPORT

●MOUNT GAMBIER AERO

●ROCKHAMPTON AERO

●TENNANT CREEK AIRPORT

●WAGGA WAGGA AMO

110 120 130 140 150

−45

−40

−35

−30

−25

−20

−15

−10

GHI Annual Correlation for CCAM vs Ground Stations

Longitude

Latit

ude

●●●●●●●●●●●

−0.1 00.10.20.30.40.50.60.70.80.9 1

●ALICE SPRINGS AIRPORT

●BROOME AIRPORT ●

CAIRNS AERO

●DARWIN AIRPORT

●GERALDTON AIRPORT

●KALGOORLIE−BOULDER AIRPORT

●LEARMONTH AIRPORT

●MELBOURNE AIRPORT

●MILDURA AIRPORT

●MOUNT GAMBIER AERO

●ROCKHAMPTON AERO

●TENNANT CREEK AIRPORT

●WAGGA WAGGA AMO

110 120 130 140 150

−45

−40

−35

−30

−25

−20

−15

−10

GHI Annual Rel RMSE for CCAM vs Ground Stations

Longitude

Latit

ude

●●●●●●●●●●●

00.10.20.30.40.50.60.70.80.9 11.1

●ALICE SPRINGS AIRPORT

●BROOME AIRPORT ●

CAIRNS AERO

●DARWIN AIRPORT

●GERALDTON AIRPORT

●KALGOORLIE−BOULDER AIRPORT

●LEARMONTH AIRPORT

●MELBOURNE AIRPORT

●MILDURA AIRPORT

●MOUNT GAMBIER AERO

●ROCKHAMPTON AERO

●TENNANT CREEK AIRPORT

●WAGGA WAGGA AMO

Page 17: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  17    

 Figure  9  –  Comparison  of  CCAM  vs  ground  measurements  for  DNI:  annual  means  of  Pearson  correlation  (left)  and  relative  RMSE  (right).  

 

An  optimal  solar  ground  stations  layout  Large  solar  projects  cannot  obtain  finance  without  having  on  site  measurements.  These  measurements  are  used  both  to  quantify  the  short-­‐term  variability  and  the  inter-­‐annual  variability.  In  the  case  of  the  latter,  it  is  only  feasible  to  measure  for  a  few  years  at  most.  Therefore,  it  is  necessary  to  infer  the  past  solar  irradiance  by  correlation  with  a  long-­‐term  time  series.  

Long-­‐term  solar  time  series  may  be  derived  from  three  sources:  ground  measurements,  satellite  model  and  weather  model.  The  coverage  of  the  ground  station  network  is  quite  sparse  and  there  are  many  candidate  locations  for  solar  projects  that  would  not  have  a  ground  station  nearby.  In  such  cases,  satellite-­‐based  time  series  may  serve  as  the  long-­‐term  reference.  

An  important  role  for  ground  station  measurements  is  in  performing  bias  correction  for  the  satellite  model.  Satellite  model  bias  can  vary  with  cloud  cover,  zenith  angle  and  latitude.  A  more  complete  ground  station  network  can  help  improve  the  satellite  record  and  hence  reduce  the  uncertainty  in  the  long-­‐term  resource.  

If  ground  stations  are  used  as  the  long-­‐term  reference,  it  is  necessary  to  monitor  for  10  years  or  more  –  a  very  time-­‐consuming  and  expensive  task.  Even  so,  having  a  ground  station  reference  of  a  few  years’  length  can  reduce  the  uncertainty  in  the  resource  at  a  nearby  location,  with  the  satellite  information  making  up  the  remainder.  

The  work  in  this  section  is  aimed  at  designing  a  solar  monitoring  network  which  would  be  optimal  in  some  respects  –  especially  in  its  coverage  of  areas  that  are  close  to  transmission  infrastructure.  

Variability  

A  key  factor  in  resource  estimation  and  measurement  is  the  variability  over  time.  Areas  where  the  resource  is  too  variable  may  not  be  suited  for  some  kinds  of  generation.  Also,  measurements  are  more  spatially  representative  when  the  temporal  variability  is  lower.  

As  a  preliminary  step,  a  measure  of  the  resource  variability  was  calculated.  Firstly,  the  seasonal  cycle  was  subtracted  at  each  location  by  fitting  periodic  sinusoidal  functions  to  the  time  series.  This  gives  the  fluctuations  left  over  after  accounting  for  predictable  seasonal  variations.  Because  these  

110 120 130 140 150

−45

−40

−35

−30

−25

−20

−15

−10

DNI Annual Correlation for CCAM vs Ground Stations

Longitude

Latit

ude

●●●●●●●●●●●

−0.1 00.10.20.30.40.50.60.70.80.9 1

●ALICE SPRINGS AIRPORT

●BROOME AIRPORT ●

CAIRNS AERO

●DARWIN AIRPORT

●GERALDTON AIRPORT

●KALGOORLIE−BOULDER AIRPORT

●LEARMONTH AIRPORT

●MELBOURNE AIRPORT

●MILDURA AIRPORT

●MOUNT GAMBIER AERO

●ROCKHAMPTON AERO

●TENNANT CREEK AIRPORT

●WAGGA WAGGA AMO

110 120 130 140 150

−45

−40

−35

−30

−25

−20

−15

−10

DNI Annual Rel RMSE for CCAM vs Ground Stations

Longitude

Latit

ude

●●●●●●●●●●●

00.10.20.30.40.50.60.70.80.9 11.1

●ALICE SPRINGS AIRPORT

●BROOME AIRPORT ●

CAIRNS AERO

●DARWIN AIRPORT

●GERALDTON AIRPORT

●KALGOORLIE−BOULDER AIRPORT

●LEARMONTH AIRPORT

●MELBOURNE AIRPORT

●MILDURA AIRPORT

●MOUNT GAMBIER AERO

●ROCKHAMPTON AERO

●TENNANT CREEK AIRPORT

●WAGGA WAGGA AMO

Page 18: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  18    

fluctuations  tend  to  vary  in  magnitude  with  the  seasons  and  with  location,  the  time  series  was  then  normalised  by  the  fitted  seasonal  cycle.  The  result  is  a  time  series  representing  the  daily  fluctuation  as  a  fraction  of  the  daily  climatological  mean.  For  each  grid  point,  the  standard  deviation  of  this  quantity  was  calculated.  This  was  performed  for  both  global  horizontal  and  direct  normal  irradiance.  Generally,  the  fractional  standard  deviation  is  lower  for  GHI  than  for  DNI,  and  the  spatial  gradients  are  lower  also.  The  highest  variability  occurs  in  the  east  and  south  east  of  the  continent.  There  are  also  areas  of  high  DNI  variability  in  far  north  Queensland  and  in  the  south  west  of  Western  Australia.  

Optimising  a  station  layout  based  on  spatial  prediction  

The  problem  of  designing  an  optimum  spatial  measurement  network  is  one  of  continual  interest  in  the  fields  of  geostatistics  and  environmental  monitoring.  It  has  been  applied  to  areas  as  diverse  as  air  pollution,  radioactivity  and  river  sediment.  The  problem  of  optimal  solar  monitoring  has  also  been  studied  but  work  thus  far  has  made  use  of  a  clustering  algorithm  to  classify  different  regions  of  Greece  into  areas  that  are  similar  in  terms  of  solar  irradiance  variations.  

In  this  work,  we  design  network  around  techniques  that  are  frequently  used  in  industry  to  estimate  the  long-­‐term  renewable  energy  resource.  In  the  wind  industry  this  is  sometimes  referred  to  as  “measure-­‐correlate-­‐predict”.    If  short-­‐term  measurements  are  available  along  with  a  long-­‐term  reference  time  series,  it  is  possible  to  use  linear  regression  to  predict  the  “missing”  measurements  from  the  past.    Since  we  are  looking  for  candidate  locations  for  monitoring,  and  the  available  measurements  are  so  sparse,  we  can  use  the  satellite  irradiance  as  a  model  for  the  spatial  correlation  of  the  solar  irradiance.  This  also  enables  testing  the  accuracy  of  a  linear  regression  model.  

Here  we  take  the  mainland  of  Australia  and  assume  the  placement  of  16  monitoring  “stations”  (time  series  derived  from  satellite).  Then,  a  multiple  linear  regression  model  is  formed  for  every  location  across  the  mainland,  with  the  16  “stations”  serving  as  predictors.  The  regression  models  are  formed  over  the  time  period  2007-­‐2009  and  their  performance  is  quantified  using  the  years  2010-­‐2012.  Relative  mean  absolute  error  is  used  as  the  performance  metric.  

Results  for  global  horizontal  irradiance  

In  the  results  that  follow,  stations  are  not  always  placed  in  the  areas  of  highest  resource.  This  algorithm  is  mostly  aimed  at  reducing  the  overall  resource  uncertainty,  rather  than  specifically  targeting  areas  of  highest  resource.  However,  some  of  the  chosen  locations  are  in  areas  with  excellent  solar  resource.  

Under  the  equal  weight  scenario,  the  16  stations  are  placed  fairly  uniformly  across  the  mainland.  The  overall  regression  error  is  largest  in  the  coastal  regions,  except  for  the  north  west  where  it  is  relatively  small.  This  largely  reflects  the  in  daily  variability  in  the  solar  resource.  Comparing  the  left  and  right  hand  plots  of  Figure  10,  it  can  be  seen  that  stations  that  are  placed  in  areas  of  lower  variability  appear  to  have  a  larger  spatial  influence.  In  the  left  hand  plot,  the  dark  red  patches  around  the  station  locations  represent  areas  where  the  mean  relative  prediction  error  from  the  regression  is  quite  low  –  less  than  0.05.  These  dark  red  patches  are  largest  in  the  centre  of  the  mainland  and  in  the  north  west  where  the  variability  of  the  global  horizontal  irradiance  is  lowest.  

Results  for  direct  normal  irradiance  

Many  of  the  same  observations  apply  for  the  case  of  direct  normal  irradiance.  However,  it  can  be  seen  that  the  predictability  is  markedly  worse  than  for  global  horizontal  irradiance.  This  is  a  

Page 19: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  19    

reflection  that  the  spatial  variability  and  daily  variability  is  higher.  Much  of  the  transmission  network  is  in  areas  along  the  east  coast  where  the  DNI  resource  is  somewhat  low.  Overall,  it  can  be  seen  that  the  placement  of  monitoring  stations  represents  a  compromise  between  at  least  three  different  goals:  

1. Monitoring  in  areas  of  excellent  resource  in  order  to  achieve  highest  energy  yield.  

2. The  need  to  quantify  the  resource  in  areas  with  high  variability.  

3. The  need  to  accommodate  the  existing  transmission  infrastructure.  

The  left  hand  plot  of  Figure  11  indicates  that  stations  in  areas  of  lower  DNI  variability  have  a  larger  spatial  influence  in  terms  of  reducing  the  prediction  error.  This  is  indicated  by  the  regions  of  darker  red  surrounding  those  locations.  

 

 

Figure  10  –  Optimal  monitoring  locations  with  equal  spatial  weighting.  Left:  plotted  against  contours  of  the  relative  mean  absolute  error.  Right:  plotted  against  the  solar  irradiance  variability.  

 

 

Figure  11  –  Optimal  monitoring  locations  with  equal  spatial  weighting.  Left:  plotted  against  contours  of  the  relative  mean  absolute  error.  Right:  plotted  against  the  solar  irradiance  variability.  

 

An  analysis  was  performed  to  estimate  the  radius  around  a  station  within  which  it  could  be  considered  effective  at  modelling  the  surrounding  irradiance.  The  overall  area  with  prediction  error  less  than  some  fixed  amount  was  calculated.  Taking  the  square  root  of  this  quantity  gives  something  

Page 20: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  20    

akin  to  a  radius  (distance).  For  a  given  error  level  in  the  lower  range  0.05—0.09,  on  average  the  radius  of  effectiveness  was  about  7—8  times  higher  for  GHI  than  for  DNI.  As  the  allowable  error  amount  is  allowed  to  increase,  the  difference  between  GHI  and  DNI  becomes  smaller.  Naturally,  these  results  would  vary  from  location  to  location.  Also,  the  satellite  model  does  not  capture  the  full  variability  of  actual  ground  measurements,  as  was  shown  in  the  previous  report.  

Additional  results  can  be  found  in  Davy  and  Troccoli  (2014).  

Integration  of  solar  radiation  sources  For  solar  resource  assessment,  two  main  sources  of  data  have  traditionally  been  used:  ground  measurements  and  satellite-­‐derived  modelling.  More  recently,  it  has  been  found  that  reanalysis-­‐based  irradiance  estimates  can  be  useful  when  the  satellite  irradiance  is  not  available.  This  suggests  that  there  is  opportunity  to  combine  all  three  data  products  in  a  way  that  is  better  than  either  the  satellite  or  reanalysis  on  its  own.  This  is  particularly  important  for  Australia,  where  there  is  a  heavy  reliance  on  the  satellite  irradiance  to  provide  estimates  over  vast  amounts  of  terrain  where  there  are  no  nearby  ground  stations.  

The  satellite-­‐derived  irradiance  has  errors  that  depend  on  clear  sky  index  and  solar  zenith  angle,  as  well  as  other  variables  such  as  aerosols,  cloud  properties  and  satellite  viewing  angle.  Corrections  can  be  performed  if  ground  measurements  are  available,  assuming  ground  stations  represent  the  truth.  Ground  stations  are  the  most  reliable  source  of  solar  irradiance  measurements,  but  these  are  sparsely  located.  Successful  attempts  have  been  made  at  fusion  of  model  and  measurements,  but  this  has  generally  used  daily  mean  irradiance  and  a  relatively  dense  ground  station  network.  Recently,  an  optimal  interpolation  approach  for  combining  numerical  weather  model  estimates  of  irradiance  with  ground  measurements  for  monthly-­‐averaged  data  has  also  been  published.  These  methods  rely  on  knowledge  of  the  spatial  co-­‐  variance  of  the  errors  in  the  data.  In  Australia,  the  sparse  monitoring  network  makes  estimating  the  spatial  covariance  highly  problematic.  This  suggests  that  a  more  empirical  approach  may  be  more  appropriate.  

Some  random  error  in  gridded  satellite  irradiance  is  inevitable  due  to  its  spatially  averaged  nature,  in  contrast  with  ground  stations.  Regarding  systematic  errors,  polynomial  regression  models  have  been  used  for  correcting  the  bias  of  the  satellite  irradiance  as  a  function  of  satellite  clear  sky  index  (the  ratio  of  the  irradiance  to  the  clear  sky  value)  and  cosine  of  the  solar  zenith  angle.  Fourth-­‐order  models  have  been  reported  in  the  literature  in  a  fore-­‐  casting  context.  Third-­‐order  polynomials  have  also  been  used  for  hourly  data.  Here,  we  adopt  nonparametric  generalised  additive  models  (GAM)  using  cubic  smoothing  splines,  and  demonstrate  a  useful  performance  gain.  Expanding  upon  this  regression  model,  we  investigate  the  value  of  including  irradiance  derived  from  a  reanalysis  weather  model  (expressed  as  a  clear  sky  index)  as  an  additional  predictor  for  the  hourly  measured  solar  irradiance.  As  part  of  this  analysis,  an  estimate  for  the  error  variance  as  a  function  of  the  two  irradiance  sources  and  the  zenith  angle  is  developed.  We  investigate  the  extent  to  which  the  weather  model  irradiance  contributes  knowledge  regarding  the  uncertainty  in  the  combined  irradiance  estimate.  From  here  we  explore  spatial  interpolation  of  the  regression  functions.  Generally  speaking  this  process  results  in  an  improvement  in  RMSE  compared  with  the  raw  satellite  irradiance,  but  there  is  a  risk  of  increased  absolute  bias  when  the  distance  from  a  ground  station  is  very  large.  The  implications  of  this  for  resource  estimation  are  discussed.  

Page 21: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  21    

The  main  contributions  of  this  work  can  be  summarised  into  three  main  areas.  Firstly,  in  bias-­‐correcting  satellite  irradiance  against  ground  measurements,  there  is  a  performance  gain  in  using  GAM  regression  with  smoothing  splines,  together  with  interactions  between  zenith  angle  and  clear  sky  index,  compared  with  fourth-­‐order  polynomial  models  (Figure  12  and  Figure  13  for  GHI;  analogous  figures  for  DNI  can  be  found  in  Davy  et  al.  2015).  The  trade-­‐off  is  an  increase  in  complexity  –  the  lack  of  simple  set  of  coefficients  which  can  be  tabulated.  Given  the  importance  of  accurate  solar  radiation  assessments,  this  is  likely  to  be  a  worthwhile  trade-­‐off  in  most  applications.  Whether  this  performance  gain  has  practical  significance  when  combined  with  weather  model  forecast  error  is  something  that  needs  to  be  further  assessed.  

Secondly,  including  solar  irradiance  derived  from  the  CCAM  weather  model  as  an  additional  predictor  provides  a  further  increase  in  RMSE  performance.  The  reasons  for  this  may  be  due  to  the  instantaneous  nature  of  the  satellite  irradiance  which,  when  integrated  spatially  over  a  grid  square,  has  inherent  random  deviation  when  compared  with  the  nearest  ground  station.  The  analysis  of  conditional  variance  from  the  regression  models  suggests  that  satellite  irradiance  has  highest  variance  for  large  zenith  angles,  and  that  the  addition  of  CCAM  irradiance  as  a  predictor  can  reduce  variance  under  some  conditions  and  when  it  is  in  broad  agreement  with  the  satellite.  

Thirdly,  we  explore  the  potential  for  spatial  interpolation  of  these  regression  models  and  find  that  there  are  improvements  in  RMSE  compared  with  the  un-­‐  corrected  satellite  irradiance.  However,  there  is  some  uncertainty  in  the  bias  performance  depending  on  the  distance  to  the  nearest  ground  station.  For  GHI,  there  was  a  reduction  in  RMSE  at  most  sites,  but  an  increase  in  absolute  bias  at  one-­‐third  of  locations,  as  a  result  of  the  spatial  interpolation  of  the  regression  functions  over  long  distances.  The  interpolation  distances  involved  in  this  exercise  were  very  large.  The  closest  pair  of  ground  stations  is  about  300  km  apart.  Three  ground  stations  are  more  than  700  km  remote  from  the  nearest  other  station.  This  exercise  therefore  provides  no  information  on  extrapolating  the  regression  coefficients  in  a  small  region  surrounding  the  ground  station,  and  the  decay  in  performance  with  distance.  It  is  therefore  not  possible  to  specify  the  optimal  distance  from  ground  station  over  which  this  technique  could  be  applied.  The  possibility  of  an  increased  bias  with  respect  to  the  satellite-­‐  derived  irradiance  would  be  problematic  for  solar  resource  estimation  because  the  long  term  mean  is  an  important  measure  in  quantifying  the  resource.  It  would  therefore  be  unwise  to  employ  this  method  operationally  in  regions  that  are  a  long  way  from  a  measurement  station.  However,  the  method  should  work  quite  well  within  some  region  around  the  measurement  stations,  where  the  regression  functions  remain  valid  and  the  atmospheric  turbidity  properties  are  similar.  

Of  the  stations  where  bias  increases,  it  is  difficult  to  isolate  the  reasons  why  this  has  occurred.  Interpolating  across  different  climate  zones  is  clearly  problematic.  In  this  work  the  use  of  a  constant  turbidity  value  (ignoring  daily  and  seasonal  fluctuations)  is  a  source  of  error  when  interpolating  between  climatic  types.  For  instance,  Wagga  Wagga  is  quite  different  climatologically  to  its  two  closest  neighbours,  Mildura  and  Cobar.  The  short  measurement  record  of  some  stations  (Woomera,  Townsville,  Longreach  and  Cobar)  is  also  a  possible  factor  in  model  error,  since  in  this  work  the  regression  models  developed  from  their  data  are  applied  across  the  years  prior  to  the  stations  being  operational.  

Overall,  the  work  here  shows  that  there  are  opportunities  for  substantial  performance  gains  through  bias  correction  of  the  satellite  irradiance  via  additional  ground  stations.  These  additional  ground  stations  could  be  operated  over  short-­‐term  campaigns.  The  work  in  Davy  and  Troccoli  (2014)  

Page 22: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  22    

provides  an  objective  framework  for  establishing  new  ground  stations  in  addition  to  the  ones  recently  operated  by  the  BoM.  Combining  the  satellite-­‐derived  irradiance  with  weather  model  irradiance,  using  appropriate  regression  models  calibrated  to  the  ground  stations,  can  provide  additional  accuracy.  

 

 Figure  12  –  Change  in  mean  cross-­‐validated  RMSE  when  CCAM  is  included  as  predictor  for  GHI.  

 

 

 Figure  13  –  Leave-­‐one-­‐out  cross  validation  of  spatial  interpolation.  RMSE  change,  GAM  vs  raw  satellite  irradiance  for  GHI.  

 

Interannual  variability  Financing  for  solar  projects  is  based  on  estimates  of  the  annual  production  and  its  uncertainty.  Generally  speaking,  a  project  will  need  conduct  on-­‐site  monitoring  for  a  year  or  so,  and  then  infer  the  past  solar  irradiance  by  correlation  with  another  data  source,  such  as  satellite  or  weather  model.  

Page 23: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  23    

Usually  a  figure  is  produced  known  as  P90,  which  is  the  level  of  production  that  we  are  90  per  cent  confident  of  exceeding  in  any  given  year.  

The  length  and  the  quality  of  the  reference  data  both  impact  on  the  P90  calculations.  As  the  length  of  the  reference  dataset  increases,  there  is  greater  information  about  the  long  term  interannual  variability  in  solar  production.  

Crucially,  the  reference  dataset  needs  to  be  consistent  over  time.  Systematic  changes  or  drifts  in  the  reference  data  due  to  calibration  or  instrumentation  can  introduce  large  unspecified  errors  in  the  P90  estimates.  As  shown  in  the  previous  section,  satellite-­‐derived  data  is  more  subject  to  changes  than  CCAM  is.  This  is  due  to  the  fact  that  while  solar  radiation  derived  from  satellite  relies  on  a  limited  stream  of  (satellite)  observations  (essentially  cloud  images),  CCAM  is  constrained  by  a  much  more  abundant  set  of  (satellite  and  ground)  data,  encompassing  a  wide  range  of  meteorological  variables.  

In  this  part  of  the  report  we  investigate  the  use  of  CCAM  as  a  long  term  reference  for  solar  P90  calculations.  

Estimating  measurements  using  reference  data  

We  will  assume  that  ground  measurements  have  been  taken  spanning  one  calendar  year.  We  then  try  to  model  these  measurements  using  either  CCAM  or  satellite  irradiance  as  predictors.  In  fact  we  use  the  very  same  models  used  to  estimate  the  bias  as  a  function  of  clearness  index  and  cosine  of  SZA,  i.e.  generalised  additive  models  based  on  hourly  observations.  These  are  capable  of  fitting  smooth  nonlinear  functions  to  the  data.  We  then  apply  this  model  to  the  remaining  calendar  years  and  validate  it  using  the  ground  station  data.  

These  calculations  were  performed  for  all  measurement  sites  on  the  mainland,  and  all  available  calendar  years.  The  example  results  are  presented  here  for  GHI.  

Figure  14  shows  calculations  for  Wagga  Wagga.  The  statistical  models  are  calibrated  in  2008  (left  plot)  and  2010  (right  plot).  In  both  cases,  a  statistical  model  based  on  CCAM  seems  to  be  fairly  capable  of  capturing  the  interannual  fluctuations  at  Wagga  Wagga.  At  least,  the  fluctuations  are  not  dissimilar  to  those  produced  using  the  satellite  data.  

In  general,  CCAM  seemed  to  perform  quite  well  at  the  inland  measurement  sites.  At  some  coastal  sites  and  some  of  the  subtropical/tropical  sites,  CCAM–based  estimates  seemed  to  depart  from  the  satellite.  Figure  15  shows  some  results  for  Rockhampton,  where  2004  and  2010  were  used  for  calibration  in  the  left  and  right  plots  respectively.  It  can  be  seen  that  2010  was  a  low  year.  If  2010  is  used  for  calibration,  the  CCAM-­‐based  estimates  don’t  capture  the  interannual  fluctuations  as  well  as  the  satellite  estimates.  Similarly,  when  2004  is  used  for  calibration,  the  low  of  2010  is  not  well  predicted  by  CCAM.  

From  this  exercise  it  can  be  concluded  that  CCAM  may  be  a  useful  tool  for  the  calculation  of  P90  solar  production  at  inland  sites.  The  main  advantage  of  CCAM  is  in  the  additional  years  (1979—1989)  prior  to  the  beginning  of  the  satellite  product  in  1990.  These  extra  years  provide  valuable  information  about  interannual  fluctuations  in  solar  energy  production.  Further  calculations  are  required  to  quantify  the  likely  reduction  in  uncertainty,  and  therefore  the  potential  increases  in  P90  values,  as  a  result  of  including  these  extra  years.  

 

 

Page 24: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  24    

 

Figure  14  –  Using  CCAM  (red)  and  Satellite  (green)  to  infer  interannual  variablility  in  mean  GHI  at  Wagga  Wagga.  Left:  2008  used  for  calibration  (as  indicated  by  the  plus  sign).  Right:  2010  used  for  calibration.  

 

 

 

 

Figure  15  –  Using  CCAM  (red)  and  Satellite  (green)  to  infer  interannual  variablility  in  mean  GHI  at  Rockhampton.  Left:  2004  used  for  calibration.  Right:  2010  used  for  calibration.  

 

Page 25: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  25    

Validating  the  Improvements  in  NREL’s  National  Solar  Radiation  Data  Base  This  section  presents  the  validation  results  of  the  current  NREL  National  Solar  Radiation  Database  (NSRDB)  dataset  compared  to  ground  measurements.  The  NSRDB  has  become  the  industry-­‐standard  for  establishing  long-­‐term  solar  resources.  Data  products  such  as  a  Typical  Meteorological  Year  (TMY),  Typical  Direct  Year  (TDY),  and  Typical  Global  Year  (TGY)  have  been  produced  from  the  NSRDB  dataset.  NSRDB  and  TMY  variants  are  the  basis  for  system  performance  and  economic  models.  The  recent  NSRDB  update,  which  is  used  in  this  validation,  was  developed  by  NREL  in  collaboration  with  the  University  of  Wisconsin  and  NOAA  to  produce  a  physics-­‐based  satellite-­‐derived  solar  radiation  data.  The  satellite-­‐based  data  are  available  every  30  minutes  for  4-­‐km-­‐resolution  pixels.  The  available  data  fields  include  solar  radiation  and  meteorological  information  that  can  be  used  in  economic  and  production  models  such  as  the  System  Advisor  Model  (SAM).  The  current  release  of  the  data  set  encompasses  the  years  from  2005  to  2012.  The  model  uses  a  two-­‐stage  scheme  that  retrieves  cloud  properties  and  uses  those  properties  in  a  radiative  transfer  model  to  calculate  surface  radiation.  The  cloud  properties  are  generated  using  the  AVHRR  Pathfinder  Atmospheres-­‐Extended  (PATMOSx)  algorithms.  Our  original  use  of  the  SASRAB  model  for  solar  resource  assessment  resulted  in  an  underestimate  of  DNI  and  GHI  during  clear-­‐sky  conditions  and  especially  during  when  the  solar  zenith  angle  was  low.  This  was  because  the  SASRAB  algorithm  uses  a  background  reflectance  field  to  calculate  solar  insolation  for  the  current  image,  which  is  generated  by  recording  the  second-­‐darkest  value  for  each  image  pixel  from  the  previous  28  days.  This  is  a  visible  channel  measurement  that  is  adversely  affected  by  the  Earth’s  surface  reflectivity.  Thus,  desert  environments,  snow,  or  any  high-­‐albedo  conditions  that  existed  at  the  time  of  the  background  calibration  forces  the  model  to  assume  it  was  actually  caused  by  high  atmospheric  aerosols.  This  results  in  the  SASRAB  clear-­‐sky  shortwave  radiation  results  being  lower  than  the  actual  surface  radiation.  At  the  time  of  this  algorithm’s  development,  in  the  early  1980s,  aerosol  content  over  land  via  satellite  imagery  did  not  exist;  however,  with  satellite  aerosol  data  now  available,  NREL  used  this  opportunity  to  replace  the  SASRAB  model  with  newer  clear  sky  radiative  transfer  models.  These  models  use  high  resolution  Aerosol  Optical  Depth  (AOD)  data  derived  from  MODIS/MISR  and  Aeronet  network  ground  stations.  The  time-­‐series  irradiance  data  for  each  pixel  is  quality-­‐checked  to  ensure  that  they  are  within  acceptable  physical  limits  and  gaps  were  filled.  The  GOES-­‐East  satellite  measurements  are  shifted  by  15  minutes  in  time  from  the  GOES-­‐West  satellite.  To  provide  the  data  on  a  uniform  temporal  map  the  GOES-­‐East  data  had  to  be  shifted  in  time  by  15  minutes.  Finally,  the  GOES  East  and  West  data  sets  were  blended  to  create  a  contiguous  national  dataset  of  irradiance  data  for  the  period  from  2005  to  2012.  

The  purpose  of  this  study  is  to  investigate  the  performance  of  the  NSRDB  satellite  derived  data  compared  to  ground  observations.  The  comparison  also  includes  scenarios  of  different  sky  conditions  where  all  times  are  clear  and  cloudy  sky  conditions.  The  comparison  was  conducted  for  the  period  covering  2005-­‐2012  for  8  ground  stations.    

The  half-­‐hourly  averaged  comparison  results  (Table  1)  show  that  NSRDB  satellite  derived  data  have  a  systematic  (bias)  difference  under  clear  sky  condition  ranging  from  17  to  37  W/m2  for  GHI  and  -­‐1  to  34  W/m2  for  DNI.  However,  under  cloudy  sky  condition  the  bias  ranges  from  -­‐  29  to  11  W/m2  for  GHI  and  -­‐68  to  30  W/m2  for  DNI.  The  random  errors  (RMSE)  under  clear  sky  condition  ranging  from  36  to  

Page 26: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  26    

68  W/m2  for  GHI  and  78  to  169  W/m2  for  DNI,  and  under  cloudy  conditions  the  ranges  are  98  to  135  W/m2  for  GHI  and  178  to  275  W/m2  for  DNI.  

Overall,  the  results  of  the  comparison  demonstrate  good  agreement  between  the  current  NSRDB  datasets  and  surface  measured  solar  radiation.  The  biases  and  random  differences  are  significantly  improved  when  compared  to  the  previous  version  of  the  NSRDB.  These  improvements  are  attributed  to  improvement  in  both  the  models  and  inputs  to  those  models.  This  research  and  the  results  are  especially  relevant  to  ARENA  for  three  reasons:  

a) The  Australian  BOM  is  adopting  the  same  framework  from  producing  satellite-­‐based  solar  radiation  datasets  as  NREL.  Future  collaborative  research  under  ARENA  between  BOM,  CSIRO  and  NREL  is  expected  to  significantly  improve  the  capability  to  develop  solar  projects  with  lower  production  uncertainty  in  Australia.  

b) NREL  is  working  on  developing  example  aerosol  datasets  for  Australia  as  part  of  the  project  and  this  dataset  will  provide  a  useful  input  for  BOM.  

c) NREL’s  development  and  use  of  newer  radiative  transfer  models  will  be  especially  useful  for  ARENA  research  and  development  as  these  models  can  be  used  directly  by  Australian  organizations  such  as  CSIRO,  BOM  and  UNSW.  

 

Table  1  –  GHI  and  DNI  Half-­‐hourly  Statistics  results  (MBE,  MAE,  RMSE  and  R2)  for  the  7  SURFRAD  locations  in  W/m2  

Sky  condition  

Site  Code  

TBL   DRA   GCM   PSU   BON   FPK   SXF  

  GHI     DNI     GHI     DNI     GHI   DNI     GHI     DNI   GHI   DNI   GHI     DNI     GHI     DNI    

clear   MBE   17   2   20   14   37   34   30   29   22   -­‐1   26   27   22   13  

MAE   22   56   23   42   41   103   37   119   30   109   29   72   28   89  

RMSE   39   98   36   78   68   153   64   169   50   148   44   117   45   132  

R2   0.98   0.43   0.99   0.62   0.95   0.46   0.95   0.37   0.97   0.40   0.98   0.45   0.97   0.40  

cloudy   MBE   -­‐29   -­‐68   -­‐16   -­‐41   11   24   4   30   1   13   -­‐15   -­‐14   -­‐6   10  

MAE   87   194   67   175   69   113   76   125   66   114   64   145   63   119  

RMSE   135   275   107   249   108   178   117   201   101   182   100   215   98   187  

R2   0.77   0.40   0.85   0.39   0.83   0.56   0.77   0.43   0.83   0.53   0.81   0.44   0.82   0.55  

All   MBE   -­‐19   -­‐52   3   -­‐11   22   28   11   30   8   9   -­‐4   -­‐2   3   11  

MAE   73   163   43   103   58   109   66   124   54   112   54   125   52   109  

RMSE   121   247   77   178   94   169   106   193   89   172   88   193   85   171  

R2   0.84   0.61   0.94   0.74   0.91   0.77   0.85   0.68   0.90   0.75   0.89   0.70   0.91   0.77  

 

 

Page 27: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  27    

Synthetic  high  temporal  resolution  solar  radiation  time  series  High  temporal  resolution  datasets  of  solar  irradiance  are  often  required  for  an  appropriate  assessment  of  the  expected  energy  to  be  produced  by  a  solar  power  plant,  which  is  critical  for  their  planning,  project  finance  and  due  diligence  process.  This  is  because  rapid  changes  in  solar  power  output  due  to  intermittent  clouds  are  a  common  occurrence,  and  it  is  important  to  understand  these  rapid  changes  in  order  to  effectively  integrate  a  solar  power  plant  into  the  electricity  grid.  

Ground  station  observations  are  one  potential  source  of  high  temporal  resolution  data,  but  their  networks  are  usually  sparsely  and  irregularly  distributed  such  that,  for  any  given  location  of  interest,  it  is  unlikely  that  a  suitable  nearby  site  would  be  available.  Another  potential  data  source  are  gridded  datasets  derived  from  satellites  or  numerical  weather  prediction  (NWP)  models.  These  datasets  benefit  from  a  continuous  spatial  coverage,  and  are  often  available  for  a  long  time  period.  However,  the  temporal  resolution  is  usually  hourly  at  best.  For  example,  in  Australia  an  hourly  satellite-­‐derived  solar  radiation  dataset  produced  by  the  Bureau  of  Meteorology  is  available  with  a  spatial  resolution  of  0.05°x0.05°,  or  about  5x5  km2,  while  one-­‐minute  resolution  ground  station  data  series  are  often  separated  by  hundreds  of  kilometres.  

The  aim  of  this  stage  of  the  project  is  therefore  to  provide  a  methodology  and  a  tool  for  generating  high  temporal  resolution  solar  radiation  time  series  for  any  location  in  Australia.  

The  integrated  dataset  developed  in  the  previous  stage  of  this  project  is  used  as  the  base  data  for  the  high  temporal  resolution  data.  This  dataset  combines  satellite-­‐derived  data  with  numerical  model  and  ground  station  data  in  order  to  generate  a  more  accurate  and  complete  hourly  gridded  dataset.  The  integrated  dataset  has  a  spatial  resolution  of  0.1°x0.1°  (ca  10x10  km2).  

In  order  to  develop  methods  for  generating  high  temporal  resolution  time  series,  data  from  ground  measurement  stations  have  been  used  together  with  statistical  modelling  techniques  which  combine  the  high  temporal  resolution  station  data  with  the  high  spatial  resolution  integrated  dataset.  The  approach  used  has  been  developed  from  that  used  by  NREL  who  used  the  variability  in  the  spatial  and  temporal  datasets,  and  the  probabilistic  relationship  between  the  two,  to  develop  algorithms  to  model  sub-­‐hourly  irradiance  data  in  western  United  States.  

Thus,  a  tool  is  developed  that  provides  realistic  solar  radiation  time  series  at  a  generic  location  in  Australia  with  the  necessary  time  resolution  for  an  accurate  assessment  of  the  energy  production  by  a  solar  power  plant.  

Model  development    

The  approach  used  involves  making  inferences  about  the  temporal  variability  of  solar  radiation  within  each  hour  from  the  spatial  variability  of  the  mini-­‐grid  of  values  from  the  gridded  dataset  for  that  hour.  The  justification  for  this  approach  is  that  a  higher  spatial  variability  of  cloudiness  indicates  that  intermittent  cloud  conditions  are  likely  to  be  prevalent,  which  would  lead  to  higher  temporal  variability  at  the  point  of  interest.  There  is  a  probability  that  clouds  within  40  km  may  pass  across  the  sun  within  the  following  hour.  

In  order  to  make  comparisons  between  the  spatial  and  temporal  mean  and  variability,  the  distance-­‐weighted  mean  and  standard  deviation  were  calculated  for  each  hour  of  the  mini-­‐grid  time  series.  

Page 28: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  28    

The  hourly  mean  and  standard  deviation  of  the  1-­‐minute  observed  CI  data  were  also  calculated.  The  comparison  was  restricted  to  hours  with  solar  zenith  angle  (SZA)  <  80°  and  less  than  10%  missing  observed  data.  There  is  a  strong  positive  relationship  between  the  spatial  and  temporal  means,  and  a  moderate  positive  relationship  for  the  variability.  These  relationships  give  added  confidence  to  the  approach  taken.  Alice  Springs  is  the  sunniest  location,  which  also  leads  to  it  having  the  lowest  variability  and  the  highest  correlations.  

Assessment  of  Results  

The  results  were  verified  using  a  number  of  different  metrics,  as  well  as  by  visual  inspection  of  plots  comparing  observed  with  modelled  time  series.  The  metrics  were  designed  to  assess  how  successful  the  methods  are  in  meeting  the  aims  of  replicating  the  statistical  properties  of  observed  high  temporal  resolution  solar  data,  including  autocorrelation  and  the  probability  distribution,  and  in  maintaining  an  accurate  overall  solar  resource  estimate,  including  the  seasonal  cycle  and  spatial  differentiation  of  the  resource.  Verification  results  were  used  in  the  development  of  methods  to  compare  alternative  approaches.  Results  are  shown  here  in  order  to  provide  an  assessment  of  the  quality  of  the  final  methods  used.  

Figure  16  shows  time  series  of  the  synthetic  solar  radiation  compared  with  the  observed  data  for  example  hours  at  Wagga  Wagga.  Plots  are  representative  examples  where  the  observed  class  was  the  same  as  the  modelled  class.  It  can  be  seen  that  the  modelled  series  are  generally  similar  in  character,  level  and  variability  to  the  observed  series.  Greater  differences  often  occur  when  the  modelled  class  is  different  to  the  observed  class,  although  good  results  can  still  be  obtained  for  similar  classes.    

Subsequent  results  were  converted  back  from  CI  to  GHI,  as  this  is  the  quantity  of  interest.  Figure  17  shows  that  the  total  annual  GHI  values  from  the  synthetic  series  match  well  to  observed  values,  with  very  similar  interannual  variability  and  correlation  coefficients  ranging  from  0.79  to  0.97.  Monthly  totals,  normalised  by  the  monthly  mean  for  the  calendar  month,  also  match  very  well  with  correlation  in  excess  of  0.85  for  all  sites.  These  relationships  are  due  to  the  methods  which  link  the  synthetic  series  to  the  observed  gridded  data  each  hour.  There  is,  however,  a  slight  bias  in  the  overall  solar  resource  in  the  synthetic  series  compared  to  the  observed,  particularly  at  Adelaide  where  the  modelled  total  is  3.5%  lower  than  that  observed.  Part  of  this  bias  is  probably  caused  by  a  bias  in  the  satellite-­‐derived  gridded  data,  which  for  Adelaide  is  1.4  %  lower  than  the  ground  station  data.  

Discussion  

A  methodology  has  been  described  which  has  been  shown  to  generate  realistic  high  temporal  resolution  time  series  of  solar  radiation  for  any  location  in  Australia.  The  methods  have  the  advantage  that  they  do  not  require  the  availability  of  any  local  ground  station  data,  and  only  rely  on  the  availability  of  gridded  datasets  for  which  operational  products  derived  from  satellite  images  exist  covering  Australia,  as  well  as  other  areas  including  Europe  and  North  America.  

The  methods  model  the  unique  characteristics  of  solar  radiation  by  classifying  each  hour  into  a  typical  weather  situation.  The  classification  makes  use  of  the  spatial  variability  of  the  gridded  input  dataset,  and  is  calibrated  to  observed  one-­‐minute  datasets  from  four  ground  stations.  The  resulting  time  series  are  semi-­‐synthetic,  in  that  they  are  based  on  the  real  cloud  information  incorporated  into  the  gridded  datasets,  and  tied  to  the  solar  radiation  value  for  the  nearest  grid  point  on  each  

Page 29: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  29    

hour.  This  leads  to  high  temporal  resolution  time  series  which  have  been  shown  to  match  closely  the  observed  monthly  and  interannual  variability.  The  synthetic  part  of  the  high  resolution  time  series  is  the  minute-­‐to-­‐minute  variability  within  each  hour.  The  low  variability  situations  are  modelled  using  an  autoregressive  process  which  is  applied  to  ramps  of  clear-­‐sky  index.  The  autoregressive  model  and  its  innovations  are  based  on  empirical  analyses  of  autocorrelation  and  the  probability  distribution  of  ramps,  grouped  by  class,  to  ensure  that  the  time  series  produced  are  realistic.  High  variability  situations  are  modelled  as  a  transition  between  states  of  clear-­‐sky  conditions  and  different  levels  of  cloud  opacity.  Again,  the  methods  are  calibrated  to  ground  station  observations  through  an  empirical  analysis  of  state  durations  and  probabilities.  

There  is  limited  availability  of  observed  high  temporal  resolution,  high  quality,  long  period  solar  radiation  data  across  Australia.  This  means  that  it  is  difficult  to  carry  out  a  spatial  calibration  of  the  methods  due  to  the  large  distances  between  available  ground  stations.    The  approach  taken  was  to  combine  together  data  from  four  representative  stations  in  order  to  tailor  the  methods  to  Australian  conditions,  for  characteristics  such  as  ramp  distribution  and  class  probabilities  by  spatial  segment.  However,  there  are  climatological  differences  between  the  stations  which  lead  to  some  difference  in  the  characteristics  being  modelled.  A  potential  improvement  to  the  methods  described  would  be  to  make  a  full  assessment  of  the  spatial  variability  of  these  characteristics  using  all  available  data,  for  example  grouped  by  climate  zone  or  using  spatial  interpolation  techniques.  

Other  alternative  methods  for  generating  simulated  time  series  could  also  be  explored  further,  for  example  using  a  Markov  process  to  model  the  dependence  between  adjacent  observations  or  the  Iterative  Amplitude  Adjusted  Fourier  Transform  (IAAFT).  The  Markov  process  has  been  shown  to  produce  good  results,  but  requires  a  long  series  of  training  data  for  robust  results.  The  IAAFT  method  is  able  to  make  surrogate  data  which  has  the  same  autocorrelations  and  probability  distribution  as  the  data.  However  it  is  uncertain  whether  it  could  replicate  the  particular  characteristics  of  solar  radiation  data,  which  the  current  methods  have  done  by  careful  consideration  of  modelling  the  different  conditions  which  affect  solar  radiation  and  its  short-­‐term  changes  (ramps).  

 

 

 

 

 

 

 

 

 

 

 

 

Page 30: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  30    

 Figure  16  –  Examples  comparing  observed  and  modelled  time  series  of  GHI  CI  for  Wagga  Wagga;  times  are  in  AEST    

Page 31: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  31    

 

Figure  17  –  Observed  and  modelled  annual  total  global  horizontal  solar  radiation  (kWh)  for  four  stations,  2003/4  to  2012/13  (years  start  from  September  and  the  end  year  is  shown)  

 

 

Meetings  and  Stakeholder  Engagement  

Regular  project  meetings  as  well  as  stakeholder  workshops  were  integral  to  the  execution  and  success  of  the  project.  Details  of  the  stakeholder  workshops  can  be  found  in  the  technical  final  project  report.  A  Solar  Forecasting  &  Storage  Stakeholder  Workshop,  where  solar  radiation  and  other  meteorological  data  relevant  for  renewables  were  also  central  to  the  discussion,  was  also  recently  held  (10  August  2015).  

 

   

Page 32: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  32    

Transferability  The  three  main  benefits  of  this  project  have  been:  

• To  have  markedly  advanced  the  science  of  solar  radiation,  including  its  monitoring,  modelling,  prediction,  and  application  to  solar  energy  devices  to  assist  Australia  to  establish  itself  as  a  worldwide  leading  player  in  this  field;  

• To  have  provided  a  significant  contribution  to  bridging  the  gap  between  the  meteorology  community  and  the  Australian  solar  community,  by  providing  radiation  data  (observations,  simulations  and  forecasts)  that  is  critical  for  modelling  solar  power  stations  and  predicting  their  annual  output.  

• To  have  prepared  the  ground  for  potentially  successful  commercial  opportunities  in  the  linkage  between  the  meteorology  and  solar  energy  communities.  

This  project  has  been  supporting  the  anticipated  rapid  growth  of  the  Australian  solar  industry  through  access  to  more  reliable  solar  radiation  data.  Access  to  high  quality  radiation  data  enables  financiers  and  government  approvers  to  proceed  more  easily  and  rapidly  with  new  developments.  For  Government  bodies,  the  availability  of  the  solar  resource  data  and  output  prediction  tools,  provides  a  technical  basis  for  developing  policies  that  foster  solar  technology  deployment.  Developing  solar  power  stations  is  assumed  to  be  part  of  Australia’s  energy  mix  in  reducing  greenhouse  gas  emissions.  

Conclusion  and  next  steps  The  aim  of  the  36-­‐month,  1.4  million,  project  Integrated  Solar  Radiation  Data  Sources  over  Australia  (ISRDSA)  was  to  provide  solar  power  developers  and  installers  with  an  improved  solar  data  resource  and  an  enhanced  understanding  of  its  uncertainty  by  exploiting  three  sources  of  solar  radiation  data:  ground  based,  satellite-­‐  derived  and  atmospheric  model  output.  The  project,  co-­‐funded  by  ARENA,  was  coordinated  by  CSIRO  and  was  executed  in  partnership  with  the  BoM  and  the  NREL.    

This  project  had  three  main  objectives,  all  of  which  were  achieved  to  a  high  standard:  

1.  Assess  requirements  for  an  optimal  solar  observations  network  layout    

This  assessment  has  allowed  the  quantification  of  the  degree  of  improvement  in  solar  radiation  uncertainty  (or  accuracy)  as  a  function  of  increased  quantity,  spatial  distribution  and  quality  of  surface  observations.  The  optimal  network  layout  is  described  in  Davy  and  Troccoli  (2014).  

2.  Development  of  an  integrated  solar  radiation  data  set  

This  integrated  solar  radiation  data  set  has  been  generated  through  the  combination  of  in  situ  observations,  satellite-­‐derived  data  and  high-­‐spatial  resolution  model  data,  along  with  uncertainty  estimates.  This  dataset  has  been  used  for  the  solar  resource  mapping  of  a  proposed  large-­‐scale  solar  farm.  A  manuscript  is  being  finalised  for  publication  in  an  international  journal  (Davy  et  al.  2015).  

3.  Development  of  high  temporal  resolution  solar  radiation  time  series  

High  temporal  resolution  solar  radiation  time  series  (1  min)  have  been  produced  using  lower  resolution  (1  hour)  solar  data  from  the  integrated  solar  radiation  data  set.  A  statistical  approach  has  been  developed  to  produce  solar  time  series  for  generic  sites  across  Australia  (and  elsewhere).    

Page 33: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  33    

These  higher  frequency  time  series  provide  suitable  benchmarking  for  forecasting  tools  to  be  developed  to  help  energy  market  operators  plan  and  schedule  large-­‐scale  solar  power  generation;  they  also  assist  with  a  finer  assessment  of  solar  resource  by  allowing  to  better  quantify  effects  such  as  ramp  events.  A  manuscript  is  being  drafted  for  publication  in  an  international  journal.  

In  addition  to  these  tasks,  a  major  complementary  task  has  been  identified  as  providing  a  critical  contribution  towards  a  more  effective  project  implementation  and  delivery.  This  is  the  development  of  a  Solar  Radiation  Database,  including  quality  control  flags.  With  this  solar  radiation  database  we  have  made  marked  advances  towards  gathering  solar  radiation  data  coming  from  different  ground  station  sources  collected  by  research  institutes,  government  organisation  and  commercial  companies,  whether  for  solar  power,  agriculture  or  other  purposes.  This  database  has  been  designed  to  also  include  solar  radiation  from  numerical  weather  models  and  those  derived  from  satellite  at  the  locations  for  which  ground  stations  are  available.  The  ultimate  aim  is  to  create  a  repository,  together  with  a  web  interface,  capable  of  dealing  with  all  these  heterogeneous  ground  station  observations  and  managing  the  problem  of  different  format,  quality,  spatial  and  temporal  resolutions  from  each  of  the  data  sources.  Building  a  database  like  this  is  a  complex  technical  endeavour.  Thus,  with  this  project  only  some  of  the  solar  radiation  database  building  blocks  have  been  realised.    

A  key  outcome  of  this  project  has  been  the  development  of  uncertainty  measures  for  solar  radiation  data  accuracy  with  important  implications  for  project  financing  and  for  reducing  the  cost  of  incorporating  solar  energy  into  the  grid.  This  project  will  benefit  considerably  from  the  experience  of  NREL  experts  who  are  working  on  analogous  problems  for  the  USA.  

The  two  stakeholder  workshops  carried  out  with  this  project,  as  well  as  the  many  interactions  with  industry  experts  at  other  events,  have  indicated  a  strong  need  for  more  accurate  solar  resource  assessment  data.  A  tangible  demonstration  of  this  need  is  service  work  provided  by  CSIRO  to  a  solar  power  developer  for  the  resource  assessment  at  an  Australian  site  using  the  data  developed  with  this  project.  In  addition  to  our  interactions  with  Australian-­‐based  industry  experts,  our  involvement  in  international  leading-­‐edge  activities  such  as  the  International  Energy  Agency  (IEA)  Task  46  ‘Solar  Resource  Assessment  and  Forecasting’  and  the  European  COST  Action  ‘Weather  Intelligence  for  Renewable  Energies’  (WIRE)  have  allowed  our  research  to  be  showcased  at  international  forums  and  benchmarked  against  analogous  work  produced  by  other  world  experts  in  this  field.  This  process  has  allowed  us  to  further  consolidate  our  understanding  of  the  potential  for  the  commercialization  of  these  data.    

The  benefits  of  this  project  relate  to  the  availability  of  new  uncertainty  information  for  solar  radiation  data.  Such  uncertainty  estimation  naturally  yields  to  more  reliable  data.  This  has  been  achieved  by  integrating  numerical  weather  predictions  and  satellite  data  and  through  the  in-­‐depth  analysis  of  several  sources  of  radiation  data.  Given  the  new  technology  and  terminology  introduced  with  this  project,  the  accrual  of  such  benefits  is  going  to  be  part  of  an  ongoing  process.  

The  key  barrier  to  continue  to  accrue  these  benefits  is  in  the  delivery  and  dissemination  of  the  data  and  associated  information.  Discussions  have  started  with  the  Australian  Renewable  Energy  Mapping  Infrastructure  (AREMI)  project  to  make  a  version  of  the  solar  radiation  data  developed  with  this  project  to  be  available  to  the  public  through  the  AREMI’s  web-­‐interface.  At  present  the  AREMI’s  portal  appears  to  be  the  best  vehicle  for  the  sustainability  of  the  provision  to  the  public  of  the  solar  radiation  data  developed  with  this  project  even  though  a  web  portal  specifically  for  solar  radiation  

Page 34: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

Integrated  Solar  Radiation  Data  Sources  over  Australia  |  Page  34    

and  other  meteorological  data,  to  complement  the  current  Solar  PV  mapping  portal,  may  be  also  developed.    

While  a  version  of  the  integrated  solar  radiation  data  set  is  going  to  be  made  publicly  available,  higher  resolution  data,  including  solar  energy  yields  for  specific  devices  and  locations,  is  available  through  a  commercial  service.  In  order  to  ensure  that  the  tools  developed  with  this  project  are  directly  relevant  to  the  solar  power  industry,  CSIRO  will  continue  to  meet  and  discuss  with  industrial  counterparts.  CSIRO  might  also  engage  with  an  industrial  advisor  to  assist  in  the  planning  and  set  up  of  a  commercial  entity  to  provide  services  related  to  the  output  of  this  project.  A  commercialisation  plan  for  the  ISRDSA  project  can  be  found  in  the  technical  final  project  report.  

 

References  Davy,   R.   J.   and   Troccoli,   A.,   2014.   Continental-­‐scale   spatial   optimisation   of   a   solar   irradiance  

monitoring  network.  Solar  Energy  109,  36–44.    Davy,   R.   J.,   Huang   J.   and   Troccoli,   A.,   2015.   Integration   of   hourly   solar   radiation   sources:   ground  

station,  satellite  and  numerical  weather  prediction  model.  Manuscript  under  revision.      

 

 

Page 35: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

 

35  

Lessons  Learnt  

Lessons  Learnt  Report:  Availability  of  quality  solar  data    Project  Name:  Integrated  Solar  Radiation  Data  Sources  over  Australia  

Knowledge  Category:   Technical  Knowledge  Type:   Technology    Technology  Type:   Solar  PV  State/Territory:   National  

Key  learning  High-­‐standard  solar  radiation-­‐based  tools  for  the  solar  industry  require  quality  observations.  In  principle  a  number  of  solar  radiation  data  sources  are  available  –  e.g.  solar  radiation  collected  for  agriculture  purposes.  In  practice,  however,  their  quality  is  disparate.  So,  although  these  data  can  be  used,  the  effort  required  to  quality  control  and  assure  them  should  not  be  underestimated.    

Implications  for  future  projects  Given  the  scarcity  of  solar  radiation  monitoring  sites,  it  would  be  very  beneficial  for  the  solar  industry  to  be  able  to  collect  solar  radiation  observations  from  as  many  ground  stations  as  practical  and  to  assemble  them  into  a  self-­‐consistent  database  so  as  to  improve  solar  resource  assessments.  Therefore,  it  needs  to  be  appreciated  that  while  not  naturally  lending  itself  to  innovation,  work  devoted  to  data  quality  control  and  assurance,  as  well  as  to  properly  catalogue  the  data,  is  key.  

Knowledge  gap  None  

Background  

Objectives  or  project  requirements  

The  plan  was  to  collect  solar  radiation  observations  from  as  many  ground  stations  as  practical  in  order  to  have  a  stronger  base  than  just  the  BoM’s  observations  for  the  development  of  solar  radiation  tools  in  this  project.  

Process  undertaken  

As  documented  in  the  report,  we  have  gathered  solar  radiation  data  from  different  ground  station  sources  collected  by  research  institutes,  government  organisation  and  commercial  companies,  whether  for  solar  power,  agriculture  or  other  purposes.    

 

Page 36: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

 

36  

Lessons  Learnt  Report:  Analysis  of  direct  beam  data  Project  Name:  Integrated  Solar  Radiation  Data  Sources  over  Australia  

Knowledge  Category:   Technical  Knowledge  Type:   Technology    Technology  Type:   Solar  PV  State/Territory:   National  

Key  learning  The  dearth  of  quality  direct  beam  (the  direct  normal  irradiance,  DNI)  observations  together  with  the  higher  complexity  of  these  data  compared  to  the  more  standard  global  horizontal  irradiance  (GHI)  have  meant  that  more  time  had  to  be  spent  in  cleaning  and  interpreting  these  direct  beam  data.    

Implications  for  future  projects  Focussing  only  on  direct  beam  rather  than  including  also  GHI  may  be  a  way  to  plan  future  projects.  However,  since  most  of  the  lessons  learned  with  GHI  can  be  transferred  to  direct  beam,  allowing  for  more  project  resources  would  be  a  better  way  to  ensure  that  more  robust  direct  beam  analyses  and  products  are  achieved.  

Knowledge  gap  A  fuller  analysis  of  direct  beam,  particularly  in  the  context  of  high  resolution  (1  min)  time  series,  could  not  be  carried  out  in  a  satisfactory  way.  

Background  

Objectives  or  project  requirements  

The  project  plan  was  to  develop  analogous  tools  for  both  global  solar  radiation  and  direct  beam.  Given  the  complexities  of  handling  direct  beam  data,  but  also  due  to  the  predominance  of  PV  –  for  which  global  radiation  is  sufficient  –  compared  to  concentrating  solar  power  plants  –  for  which  direct  beam  is  critical  –  a  slight  priority  was  given  to  tools  for  global  radiation  data.  However,  approaches  developed  for  global  radiation  are  normally  transferrable  to  direct  beam.  

Process  undertaken  

Whenever  possible  analysis  and  developments  for  both  global  solar  radiation  and  direct  beam  were  carried  out  in  parallel.      

Page 37: IntegratedSolarRadiation) Data)Sources)over) Australia) … · IntegratedSolarRadiationDataSourcesoverAustralia! |Page4!! Specifically,thisproject!hadthree!mainobjectives,allofwhichwereachievedtoahighstandard

 

37  

Lessons  Learnt  Report:  Delays  in  signing  the  agreement  between  CSIRO  and  NREL  Project  Name:  Integrated  Solar  Radiation  Data  Sources  over  Australia  

Knowledge  Category:   Technical  Knowledge  Type:   Human  Resources    Technology  Type:   Solar  PV  State/Territory:   Non-­‐state  specific  

Key  learning  The  signing  of  the  agreement  between  CSIRO  and  NREL,  a  subcontractor  to  CSIRO  in  the  project,  took  much  longer  than  anticipated.  Such  unexpected  delay,  due  to  the  complexity  of  the  two  organisations  involved,  led  to  both  lengthy  negotiations  and  delays  in  the  execution  of  the  project.  

Implications  for  future  projects  It  is  difficult  to  anticipate  legal  obstacles  in  specific  project  agreements  but  circulation  of  terms  and  conditions  ahead  of  the  planned  exchange  of  contracts  could  help  iron  out  potential  legal  issues  in  time  for  the  execution  of  the  project.  

Knowledge  gap  None  

Background  

Objectives  or  project  requirements  

The  agreement  between  CSIRO  and  NREL,  a  subcontractor  to  CSIRO  in  the  project,  should  have  been  signed  at  the  start  of  the  project.  The  ISRDSA  project  commenced  in  September  2012  but  the  agreement  with  NREL  was  only  officially  signed  in  early  2015.    

Process  undertaken  

Many  email  and  phone  communications,  including  lengthy  negotiations  had  been  necessary  in  order  to  reach  an  agreement  between  CSIRO  and  NREL.  However,  despite  the  agreement  being  finally  signed  in  early  2015,  NREL  had  managed  to  contribute  to  ISRDSA  ahead  of  that  date,  when  it  was  apparent  substance  issues  had  been  resolved.