integration within textiles

24
1 February, 2003 March, 2003 [email protected] INTEGRATION TECHNOLOGIES FOR AUTONOMOUS WIRELESS SENSORS

Upload: nirmala-last

Post on 17-May-2015

535 views

Category:

Business


0 download

TRANSCRIPT

Page 1: Integration Within Textiles

1 February, 2003March, 2003

[email protected]

INTEGRATION TECHNOLOGIESFOR AUTONOMOUS WIRELESS SENSORS

Page 2: Integration Within Textiles

2 February, 2003March, 2003

Sommaire

Functional blocks

Applications

Enabling technologies Energy scavenging, storage and management Sensors & sensor interfaces Data transmissions (standards, RFID, RF, UWB)

System design and IC design issues

Conclusions

Page 3: Integration Within Textiles

3 February, 2003March, 2003

Functional blocks of wireless sensors

Contactless generic core

Radio comEnergy

Management

Sensor/actuators

interface

ADC / DAC

DigitalProcessing

Non VolatileMemory

SecurityManagement

Antenna

Micro-sensors

Micro power sources

Micro-actuators

Contactless generic core

Radio comEnergy

Management

Sensor/actuators

interface

ADC / DAC

DigitalProcessing

Non VolatileMemory

SecurityManagement

Antenna

Micro-sensors

Micro power sources

Micro-actuators

actuation/sensing wireless connectivity embedded intelligence energy management

Page 4: Integration Within Textiles

4 February, 2003March, 2003

0.35µ 0.25µ 0.18µ 0.13µ 90n 65n

3.5

0.5

2.5

Analog ICs Voltage

Vdd(v)

b

3.3

0.8

Silicon Technologies Trends

Page 5: Integration Within Textiles

5 February, 2003March, 2003

Applications : mobile terminals

MIMOSA

Cellular networkCellular

network

Services(e.g,community,content)

IPnetworkIPnetwork

Battery-powered sensor (BPS) 2 m

Wireless remote-powered sensor (WRPS,selected)

Mobileterminal

Shortrange

radio

UserInterface

to AI

Applications

CellularEngine

Em

bedded sensors

10 m

Smart accessory(Processors )

Ultra

low pow

erlow

costSR

radio

Inputdevices(sensors)

Memory(Datalogger)

Smart accessory

(Processors)

Input devices(sensors)

Memory(Datalogger)

Ultralow

power

low costS

R radio

RFIDtag(selected)

selectedBPS

Optical PointMe selection of objects

WRPS

Cellular networkCellular

network

Services(e.g, community,content)

IPnetworkIP network

Battery-powered Sensor (BPS) 2 m

Wireless remote-powered sensor (WRPS, selected)

Mobileterminal

Short range

radio

UserInterface

to AmI

Applications

CellularEngine

Em

bedded sensors

10 m

Smart accessory(Processors )

Ultra

low pow

erlow

costSR

radio

Inputdevices(sensors)

Memory(Datalogger)

Smart accessory

(Processors)

Input devices(sensors)

Memory(Datalogger)

Ultralow

power

low costS

R radio

Smart accessory(Processors )

Ultra

low pow

erlow

costSR

radio

Inputdevices(sensors)

Memory(Datalogger)

Smart accessory

(Processors)

Inputdevices( sensors)

Memory(Datalogger)

Ultra

low pow

er low

cost SR

radio

RFID tag(selected)

selected BPS

Optical Point Me selection of objects

WRPS

MIMOSA vision: the mobile terminal serves as a user interface to ambient intelligence and as a gateway between local (sensor) information and global mobile services

The architecture is open for development of different vertical applications (well-being, health, home automation, etc.)

15 partners, 6 countries ST

Microelectronics Nokia Legrand Suunto Sonion …

Page 6: Integration Within Textiles

6 February, 2003March, 2003

Context capturing

REAL PHYSICAL ENVIRONMENT

ELECTRONICALLY PERCEIVED ENVIROENMNT

e

S

E

N

S

ESituation Aware Wireless Communications

Situation Aware Mobile Applications

Leisure

Home

Vehicle

Leisure

Building

Travel

Body

WorkWork

Building

BodyTravel

Home

Off-lineContent

VehicleProfile

PAN PAN

Personal

Family

Community

Personal

Family

CommunityContext Capturing

Actuation

Context Sensing

Information Accessing the User

User Accessing Information

• Provide heterogeneous wireless sensor network solutions to enable Context Capturing to make Ambient networks Intelligent, in particular wireless and mobile systems beyond 3G; thus

• To enable truly Multi-

sensory and Personal mobile applications and services as well as assisting mobile communications through sensor information

25 partners: Philips, IBM, EADS, Thales, Telefonica, Fujitsu, Mitsubishi, …

Coordinator: LETI

FP6 Call 4: Mobile & systems beyond 3G

Page 7: Integration Within Textiles

7 February, 2003March, 2003

Applications : health/fitness

SuuntoSensewear

CEA-LETI

Challenges and future needs: motion capture, speed, … integration within textiles, large area low cost electronics Physiological parameters monitoring (lactate, glucose,…)

Page 8: Integration Within Textiles

8 February, 2003March, 2003

Applications : transports

Source : EADS

Accelerometers

tire pressure sensors

health monitoring (P,T, HUM, VIB)

Page 9: Integration Within Textiles

9 February, 2003March, 2003

Applications : environment & security

structural health monitoring

Industrial plants

forest fire detection

Parasits in homes & forests

Homeland security

Page 10: Integration Within Textiles

10 February, 2003March, 2003

Energy Scavenging & Energy Storage

Energy scavenging1,3 mV, 3V, 0,8 Hz

Source : MIT Medialab

Energy storage

Li Ion batteries

Thickness : 10 µm

Surfacic capacity : 100 µAh/cm²

Discharge peak current : 500 µA/cm² to 1 mA/cm2

Micro Fuel cells

Catalyst

electrolyte

Silicon

Current Collector

Insulator

Catalyst support

Catalyst

Current CollectorAir

Hydrogen

Page 11: Integration Within Textiles

11 February, 2003March, 2003

Logic (HW/SW) Adaptation to available energy Dynamic power supply management Wake up and idle mode

Energy Management

Vdd1

Down Converter

Up Converter

Vdd2

Command

DC/DC

Load regulation

Monitoring

Adaptation

C

Page 12: Integration Within Textiles

12 February, 2003March, 2003

Sensors

Humidity

Accelerometer

Magnetometer

Pressure sensor

Gyroscope

Temp Force Chemical Bio …

Page 13: Integration Within Textiles

13 February, 2003March, 2003

Sensor Interfaces

Capteur

SignalConditionning

ADC

CorrectionsGain, Bias, T

TemperatureSensor

Page 14: Integration Within Textiles

14 February, 2003March, 2003

802.15.3UWB

802.15.3UWB

Wireless communications standards

10 kbits/s 100 kbits/s 1Mbits/s 10 Mbits/s 100 Mbits/sDébit

Distance

TextGraphics

InternetHiFi Audio Video

streaming

DigitalVideo Multi-channel

Video

1 m

10 m

100 m

1 km

10 km

100 km

BAN

PAN

LAN

WAN

802.11.a/b/gWi-Fi/HL

802.11.a/b/gWi-Fi/HL

802.15.1Bluetooth

802.15.1Bluetooth

802.15.4Zigbee, UWB

802.15.4Zigbee, UWB

GSM/CDMAGSM/CDMA GPRS/3GGPRS/3G LMDSLMDS

802.16WI-Max

802.16WI-Max

Page 15: Integration Within Textiles

15 February, 2003March, 2003

Contactless links (RFID)

2 fonctions élémentaires

1- Power Transfer 2- Bi-directional data transfer

2 fonctions élémentaires

1- Power Transfer 2- Bi-directional data transfer

POWER

DATA

POWER

DATA

Inductive coupling Magnetic field (Near field) at 13,56 MHz Antenna = Bobine

Electrical coupling Electric field (Far field) at 868 MHz, 2,45 GHz Antenna = planar or filaire ou planaire

Challenges: Performance : antenna, reading distance complex functions (sensing tags)

7 mm

Pressure Sensor

• Fe= 200Hz, 14 bits

• Capacitive Pressure Sensor from Tronic’s

• Miniaturized Antennae

Page 16: Integration Within Textiles

16 February, 2003March, 2003

cFigure of merit :Figure of merit : sMbitsBitrate

mWDCpowerbitnJEb

/

)(/

Wireless link:

Page 17: Integration Within Textiles

17 February, 2003March, 2003

Wireless link: narrow band zigbee like

• specifications 802.15.4 : Zigbee

• 250kbit/s, 10 m

• ISM band 16 channels in [2400-2480MHz]

• Various topologies, tens of nodes

Low-noiseLNA/Mixer

T/Rswitch

0.5-1dB

2-3dBBAW

Balun 1:2 or 1:4

100 200 or 400 1k-2k

100 Antenna

100 BAW Filter

LC matching impedance

Challenges:

Power reduction• RF Mems integration (BAW filters)• RF functions integration

Routing protocols

0

1

2

3

4

5

Data ratet

range

power

location

manufacturingcost

node-density

ZIGBEE

Page 18: Integration Within Textiles

18 February, 2003March, 2003

Wireless link : UWB

Principle : very short pulses (< 1ns)

pFCC=-41.3 dbm/MHz802.11a

PTX=-7.9 dBmPTX=-11.8 dBm

Low data rate + location

challenges : New architectures

• direct sampling• pulse genrators

Synchronisation Energy detetction antenna

• Objectifs :

0

1

2

3

4

5

Data rate

range

power

location

manufacturingcost

Nodedensity

UWBobjecif

Page 19: Integration Within Textiles

19 February, 2003March, 2003

Integrating system level design & IC design

Page 20: Integration Within Textiles

20 February, 2003March, 2003

Design tuning at system level (v.1)

• Breakthroughs in ULP radios complete system modeling

IC design

System design

fine-tuning of specifications through system modeling

Intensive use of high-level languages (Matlab, System C)

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

-6 -4 -2 0 2 4 6 8 10

CNR (dB)

BE

R

Theory

Ref float

Ref 3 bits

Bits=3 - Gain=97 - OffDC=0.1 - Ftol=2 -FStol=0 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=0

Bits=3 - Gain=97 - OffDC=0.3 - Ftol=2 -FStol=0 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=0

Bits=3 - Gain=97 - OffDC=0.1 - Ftol=2 -FStol=1 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=1

Bits=3 - Gain=97 - OffDC=0.3 - Ftol=2 -FStol=1 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=1

Bits=3 - Gain=97 - OffDC=0.5 - Ftol=2 -FStol=1 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=1

Bits=3 - Gain=97 - OffDC=0.7 - Ftol=2 -FStol=1 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=1

Bits=3 - Gain=97 - OffDC=0.9 - Ftol=2 -FStol=1 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=1

Bits=3 - Gain=97 - OffDC=0.1 - Ftol=2 -FStol=2 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=2

Bits=3 - Gain=97 - OffDC=0.3 - Ftol=2 -FStol=2 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=2

Bits=3 - Gain=97 - OffDC=0.5 - Ftol=2 -FStol=2 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=2

Bits=3 - Gain=97 - OffDC=0.7 - Ftol=2 -FStol=2 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=2

Bits=3 - Gain=97 - OffDC=0.9 - Ftol=2 -FStol=2 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=2

Bits=3 - Gain=97 - OffDC=0.1 - Ftol=2 -FStol=3 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=3

Bits=3 - Gain=97 - OffDC=0.3 - Ftol=2 -FStol=3 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=3

Bits=3 - Gain=97 - OffDC=0.5 - Ftol=2 -FStol=3 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=3

Bits=3 - Gain=97 - OffDC=0.7 - Ftol=2 -FStol=3 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=3

Bits=3 - Gain=97 - OffDC=0.9 - Ftol=2 -FStol=3 - ImbA=0 - ImbP=0 - Dcps=2 - Filter=3

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

-6 -4 -2 0 2 4 6 8 10

CNR (dB)

BE

R

Theory

Ref float

Ref 3 bits

Gain=97 - 3 bits -OffDC=0 - Ftol=0Gain=97 - 3 bits -OffDC=0 - Ftol=5Gain=97 - 3 bits -OffDC=0 - Ftol=10Gain=97 - 3 bits -OffDC=0 - Ftol=15Gain=97 - 3 bits -OffDC=0 - Ftol=20Gain=97 - 3 bits -OffDC=0 - Ftol=25Gain=97 - 3 bits -OffDC=0 - Ftol=30Gain=97 - 3 bits -OffDC=0 - Ftol=35Gain=97 - 3 bits -OffDC=0 - Ftol=40Gain=97 - 3 bits -OffDC=0 - Ftol=45Gain=97 - 3 bits -OffDC=0 - Ftol=50Gain=97 - 3 bits -OffDC=0 - Ftol=55Gain=97 - 3 bits -OffDC=0 - Ftol=60Gain=97 - 3 bits -OffDC=0 - Ftol=65Gain=97 - 3 bits -OffDC=0 - Ftol=70Gain=97 - 3 bits -OffDC=0 - Ftol=75Gain=97 - 3 bits -OffDC=0 - Ftol=80

Impact of receiver imperfections on BER :

Page 21: Integration Within Textiles

21 February, 2003March, 2003

Design tuning at system level (v.2)

• Breakthroughs in ULP radios complete system modeling

IC design

System design

RF MEMSdesign

electrical models ofRF MEMS &CAD tools

system models of RF MEMS

demand new devices or specifications

(from the IC point of view, eg. load impedance)

demand new devices or specifications

(from the system point of view, eg. filter performance)

• exploit new opportunities offered by RF MEMS• define complete system simulation tools at a very early stage.• reinforce collaboration between all actors : system, IC, and

MEMS designers.

fine-tuning of specifications through system modeling

Intensive use of high-level languages (Matlab, System C)

Page 22: Integration Within Textiles

22 February, 2003March, 2003

Matlab simulation chain

Choix d’un typede trame

Intialisations deschamps de la

trame

Initialisation duTx et du Rx

Initialisation desparamètres de

simulation

Boucle surparamètres

Tirage MHR+MSDU

Calcul CRC =>FCS => MFR

ConcaténationPPDU

Bit to Symbolmapping (6.5.2.2)

Symbol to chipmapping (6.5.2.3)

O-QPSKmodulation

(6.5.2.4)

Pulse shape(sinus) (6.5.2.5)

Calcul niveau debruit AWGN (fixe)

Calcul niveau designal reçu

(dépend du CNR)

Modèle de canal(attenuation +

déphasagelinéaire)

Sommation bruit+ signal reçu

Gain G

Offset DC

Quantification surB bits

Filtrage adapté àl’impulsion

Downsampling(2 epc)

Récupérationrythme (CP)

Banque decorrélateurs (CP)

Détection noncohérente

Mesure LQI

Mesure de BER

Calcul de CRC

Mesure de PER

Courbesthéoriques

Sortie Fichier

Sortie Ecran

Offset defréquence

d’échantillonnage

Ajout du bruit dephase

Filtre passe haut

Limiteur

IQ Mismatch

Troncature dedynamique

Demappingsymbole

Détection SFD

Extraction PHR

Extraction PSDU

Version 6.6Mars 2004transmitter

receiver

channel and some impairments

Page 23: Integration Within Textiles

23 February, 2003March, 2003

Matlab simulation chain•Models for

– Receiver A/D bits– « bit true » digital model– Carrier frequency offsets– Symbol clock frequency

offset– RF oscillator phase noise

(1/f² and white– Limiter amplifier

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

-6 -4 -2 0 2 4 6 8 10

CNR (dB)

BE

R

Theory

Ref float

Ref 3 bits

Bits=3 - Gain=97 - OffDC=0 - Ftol=0 - FStol=0 -ImbA=0 - ImbP=0 - Dcps=0 - Filter=0 - Dpn=0

Bits=3 - Gain=97 - OffDC=0 - Ftol=0 - FStol=0 -ImbA=0 - ImbP=0 - Dcps=0 - Filter=0 - Dpn=0

Bits=3 - Gain=97 - OffDC=0 - Ftol=0 - FStol=0 -ImbA=0 - ImbP=0 - Dcps=0 - Filter=0 - Dpn=0

Bits=3 - Gain=97 - OffDC=0 - Ftol=0 - FStol=0 -ImbA=0 - ImbP=0 - Dcps=0 - Filter=0 - Dpn=0

Bits=3 - Gain=97 - OffDC=0 - Ftol=0 - FStol=0 -ImbA=0 - ImbP=0 - Dcps=0 - Filter=0 - Dpn=0

15 dB relative

20 dB relative

0 to 10 dB relative

with channel filter : 2nd order Butterworth @ 1.25 MHz

example : adjacent channel rejection

•Models for– Receiver NF– Receiver gain– DC offset– DC offset rejection filter– IQ imbalance– Adjacent and alternate

channel– Channel filter

•Reference BER formula (non coherent)

•Reference simulation chain

– PER target = 1e-2

– PSDU = 22 bytes

– BER = 5.7e-5

16

2

1 1**20exp16

1*16

1*

15

8

kk

k SNIRk

BER

Page 24: Integration Within Textiles

24 February, 2003March, 2003

Conclusions

Microtechnologies/Mems may lead to breakthrough in wireless sensors

Radio architectures

Sensor interfaces

Energy scavenging and management

The convergence of mechanical/thermal/chemical functions and electrical world of ICs

new design methodologies

new design tools