interface magnonswith superconducting quantum circuit tone (ghz) /2 1 dispersive resonator shift 2...

38
Magnon-polaritons from room temperature down to milliKelvin temperature Martin P. Weides Johannes Gutenberg University Mainz, Germany and Karlsruhe Institute of Technology (KIT), Germany Interface magnons with superconducting quantum circuits

Upload: lekien

Post on 12-May-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Magnon-polaritons from room

temperature down to milliKelvin

temperature

Martin P. WeidesJohannes Gutenberg University Mainz, Germany

and Karlsruhe Institute of Technology (KIT), Germany

Interface magnons with

superconducting quantum circuits

Martin Weides KIT & JGU Mainz 2

� Introduction

� QuantumMagnonics

� Superconducting quantum circuits

� Multi-level spectroscopy, magnetic dipole qubit,

high coherence

� Magnonics

� Classical to quantum

Martin Weides KIT & JGU Mainz 3

Magnon: quantized spin wave excitation

Future information technology

(e.g. spin-torque oscillator, spin-wave propagation control for logic)

Strong magnon damping: magnon/phonon/electron scattering

Grand challenge:

To understand physics, single magnon information needed!

Slavin et al., Nat. Nanotech. ´09 Vogt et al., Nat. Commun. ´14

Attenuation length ~10 umLinewidth Δf > 1 MHz

Magnonics: spin waves in nanostructures

Martin Weides KIT & JGU Mainz 4

‘Classical measurement’:

� Inelastic scattering (neutron, photon, electron)

� Ferromagnetic resonance

Drawbacks:

� Weakly (not coherent) coupled

� Large flux, small signal (statistics)

� Thermally excited population (T > 4 K)

Difficult to access magnon ground state!

Status quo

magnonscattered

incident

Martin Weides KIT & JGU Mainz 5

� Quantum ground state (T=10 mK)

� Ultra-low power spectroscopy, coherent coupling

� How to achieve?

Extend magnon to artificial spin!

Access magnon lifetime and coherence via coherent coupling

How to probe a single magnon?

Martin Weides KIT & JGU Mainz 6

Strong coupling:

� Qubit < 1 MHz

� Magnon Ni80Fe20 < 50 MHz, Y3Fe5O12< 5 MHz

Coupling rate g (N number of spins in qubit mode volume V0)

> 10 MHz (strong coupling)

Coherent coupling requirement

Martin Weides KIT & JGU Mainz 7

� Introduction

� QuantumMagnonics

� Superconducting quantum circuits

� Multi-level spectroscopy, magnetic dipole qubit,

high coherence

� Magnonics

� Classical to quantum

Martin Weides KIT & JGU Mainz 8

Transmons: capacitively shunted Josephson junction

� Anharmonic oscillator

Non-linear, tunable LC oscillator

Magnetic flux Φ changes LJ(φ)

Φ

Two lowest levels � Bloch sphere

Martin Weides KIT & JGU Mainz 9

KIT quantum lab

�Al, Nb, NbN films

�Al-AlOx-Al tunnel junctions (shadow evaporated)

� Lithography, etching (Nanostructure Service Laboratory)

�He3/He4 dilution fridge (40cm base plate)

�18 RF & 24 DC lines, filters, 5 amps

�9 quantum chips

� Spectroscopy, time-domain setups

� Software (simulation, measurement)

�QKIT on GitHub

200 nm

Martin Weides KIT & JGU Mainz 11

Anharmonic many-level quantum circuit

Consider higher quantum levels

transmon qubit:

weak anharmonicity

Neeley Nat. Phys. 4 (2008)

Fedorov Nat. 481 (2011)

Bruß PRL 88 (2002)

Cerf PRL 88 (2002)

Paraoanu JLTP 175 (2014)

enhanced security of key

distribution in quantum

cryptography

quantum

simulation

spin-½ ↔ two levels

spin-1 ↔ three levels

efficient & robust

quantum gates

Martin Weides KIT & JGU Mainz 12

Qubit sample

� microstrip geometry

� overlap Josephson junction

� transmon regime: �� ≫ �� ⇒ ��~0.05

� spectroscopic measurements

� VNA readout tone

� microwave drive/probe tone

TL

Blais PRA 69 (2004)

Koch PRA 76 (2007)

Sandberg APL 102 (2013)

Martin Weides KIT & JGU Mainz 13

High power spectroscopy

exc

ita

tio

nto

ne

(G

Hz)

dis

pe

rsiv

e r

eso

na

tor

shif

t

���/2�

1

2���/2�

1

3���/2�

1

4���/2�

Multi-photon transitions

�determine qubit parameter EJ, E

C

Koch et al. PRA 2007

Braumüller et al., PRB 2015

Martin Weides KIT & JGU Mainz 14

Multiphoton dressing – pumping the |��-level

Dynamical coupling of levels by probe tone �

Autler-Townes doublet like avoided crossing

measurement

simulation

Braumüller et al., PRB 2015

Sweep drive & probe freqs.

Martin Weides KIT & JGU Mainz 15

Transmon qubit – Concentrically shaped electrodes

pad geometry

� dipole antenna

Sandberg, MW, APL 102 (2013)

concentric geometry

� reduced radiation/crosstalk

Koch, PRA 76 (2007)

� �� � 4�� �� ��� �� cos �

� Operation in phase regime, �� ≫ ��

Martin Weides KIT & JGU Mainz 16

Geometry of concentric, gradiometric transmon

� Central island and concentric ring electrode,

interconnected by two Josephson junctions, �� ��⁄ ~120

� Gradiometric dc-SQUID loop � fast frequency control

� Dispersive qubit readout

Martin Weides KIT & JGU Mainz 17

Main features

� Hybrid coplanar/microstrip design

� Minimize defect loss at surface and interface oxides

� Straightforward fabrication:

� Optical lift-off lithography

� Electron beam lithography, shadow-angle evaporation

Martin Weides KIT & JGU Mainz 18

Pulsed (time-domain) measurement setup

Martin Weides KIT & JGU Mainz 19

Dissipative dynamics – Loss contributions

Purcell

Γ�� � 16μs

Dielectric defects

Γ�� � 26μsRadiation

Γ�� � 100μs

⇒Γ�� � 9μs

Martin Weides KIT & JGU Mainz 20

Qubit coherence – Hahn echo sequence

Martin Weides KIT & JGU Mainz 21

Pulsed measurements – fast control of qubit frequency

Braumüller et al., APL (2016)

Martin Weides KIT & JGU Mainz 22

Fast qubit tuning � Full tomographic control

SSB-mixing, shaped pulses (DRAG)

�Gate benchmarking (99.54%)

Measured

Expected

x

y

z

Martin Weides KIT & JGU Mainz 23

Consider geometric loop inductance

� Good agreement for �� � 0.6nH

Artificial spin array with non-trivial

couplings

� (analog) spin system simulation

Reiner, Marthaler, Braumüller, MW, et al.

arXiv 1602.05600 (2016)

Martin Weides KIT & JGU Mainz 24

Quantum SWAP (Qubit-Resonator)

1. Excite qubit off-resonance to resonator

2. Bring on-resonance and hold for ∆t

3. Detune qubit and readout

� Quantum-Setup works! DC & RF electronics, pulse shaping, bias tee, software…

� Controlled quantum SWAPs (qubit-HO)

P0

P1

Martin Weides KIT & JGU Mainz 25

� Introduction

� QuantumMagnonics

� Superconducting quantum circuits

� Multi-level spectroscopy, magnetic dipole qubit,

high coherence

� Magnonics

� Classical to quantum

Martin Weides KIT & JGU Mainz 26

Yttrium iron garnet (Y3Fe

5O

12)

� Electrically insulating ferrimagnet

� Empty 4s, half filled 3d orbitals � no orbital momentum, s=5/2

� Five Fe3+ ions per unit cell form sublattices of opposing

magnetization � approximated as ferromagnet

� Extremely low spin-wave damping

spin wave decay length on the order of centimeters

� TCurie = 559K

� High spin density ρ= 4.22∙1027 1/m3

� Anisotropic, [110]-axis is soft magnetic

Martin Weides KIT & JGU Mainz 27

Magnons

Precessional motion of magnetization M, Landau–Lifshitz eq.

k=0 � precessing macrospin with Kittel resonance frequency

Quasiparticles, collective excitation of the electrons' spin structure

in crystal lattice

Outer magnetic field H removes degeneracy

Martin Weides KIT & JGU Mainz 28

Spin waves affect static and dynamic magnetization

Spin wave: spin-lattice excitation in magnetically ordered material

Harmonic variation (wavelength �) in phase of precession of adjacent spins

about the local magnetization direction (parallel to magnetic field �)

Single magnon= � flip (i.e. 180° rotation) of a single spin

Saturation magnetization �S

Change in static magnetization: Δ�Z= �

S(1 − cos �)

� notional precessional angle of spins about magnetization direction

AC magnetization perturbation (vector rotating at magnon frequency �)

Δ�AC

= �Ssin � in-plane perpendicular to Δ�

Z.

For small �:

� Reduction in static magnetization Δ�Z≃�

S�2/2

� Increase in dynamic magnetization Δ�AC

= �S�

Martin Weides KIT & JGU Mainz 29

Magnon-Cavity experiments (incomplete…)

Since 2014 rapid growth of publications

� Tabuchi et al. PRL 2014Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit

� Zhang et al. PRL 2014Strongly Coupled Magnons and Cavity Microwave Photons

� Goryachev et al. PR Applied 2014High-Cooperativity Cavity QED with Magnons at Microwave Frequencies

� Cao et al. PRB 2015Exchange magnon-polaritons in microwave cavities

� Zhang et al. NPJ 2015Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere

� Tabuchi et al. Science 2015Coherent coupling between a ferromagnetic magnon and a superconducting qubit

� Bourhill et al. arXiv 2016Ultra-High Cooperativity Interactions between Magnons and Resonant Photons in a YIG sphere

Martin Weides KIT & JGU Mainz 30

3d cavity resonator

Marcel Langer BA thesis KIT (2015)

Magnetic field distribution

1st mode 2nd mode

YIG sphere

Martin Weides KIT & JGU Mainz 31

3d cavity-Kittel mode (YIG) � strong coupling

� Few/ single magnon excitations (mK)

� Linewidth and noise

� Extend to qubit

� 4 to 300 K

� Up to Tesla-fields

� Extend to thin films

Two setups

(classical and quantum)

Martin Weides KIT & JGU Mainz 32

Temperature dependence down to 5K

Reducing temperature

� Coupling strength g increases

� Resonant magnetic field decreases

� Additional modes appear & disappear

cf. Zhang et al. NPJ 2015

Reentrant cavity,

see Goryachev et al.

PR Applied 2014

Martin Weides KIT & JGU Mainz 33

Approaching quantum: magnon-polaritons at 500mK

κin = 65 kHz

κm = 2.4 MHz

κr = 0.9 MHz

g= 27.8 MHz

Extraction from fit

Non-uniform modes visible

Martin Weides KIT & JGU Mainz 34

Coupling qubit to magnon

+ qubit readout resonator (not shown)

Straightforward:

coupling via 3d cavity (modes for coupling, Q-readout)

Tabuchi et al., Science 2015

Martin Weides KIT & JGU Mainz 35

Transmon qubit coupled to 3d cavity

Grünhaupt MA thesis (2016)

3d cavity: quantized field suppresses radiative loss

low E-fields and weak coupling to surface TLSs

� Long coherence T1 ≈15 µs, T2 ≈ 16 µs, T2* ≈ 30 µs

Martin Weides KIT & JGU Mainz 36

Hybrid quantum systems

Dry 10mK fridge (July `16)�Magnon-polaritons from RT � 0.5K

�YIG sphere and thin films

�Spectroscopy and pulsed measurement setup ready

Martin Weides KIT & JGU Mainz 37

QKIT framework - an extension to qtlab written in python

Open-source measurement software QKIT https://github.com/qkitgroup/qkit

• Collection of ipython notebooks for measurement and data analysis

• hdf5 based data storage of 1,2 and 3d data

• 1 and 2d data viewer

• Extended and maintained drivers for low and high frequency electronics

• Large parts of the framework can be used independently of qtlab

• Classes for data fitting, e.g. of microwave resonator data. This includes also a

robust circle fit algorithm (Probst et al. Rev. Sci. Instrum. 86, 024706 (2015))

Martin Weides KIT & JGU Mainz 38

Team

BA

Oliver Hahn

Moritz Kappeler

Tomislav Piskor

MA

Julius Krause

Lukas Grünhaupt

Yannick Schön

Patrick Winkel

Max Zanner

PhD

Jochen Braumüller

Marco Pfirrmann

Steffen Schlör

Andre Schneider

Ping Yang

Technician

Lucas Radtke

Scientists

Hannes Rotzinger

Sasha Lukashenko

Alexey Ustinov

@JGU Mainz

Isabelle Boventer

Mathias Kläui

Martin Weides KIT & JGU Mainz 39

Thank you for your attention