interference fitting

14
Lecture 9 Lecture 9

Upload: mariappan-arumugam

Post on 12-Dec-2015

249 views

Category:

Documents


2 download

DESCRIPTION

evaluation of Interference fitting

TRANSCRIPT

Page 1: interference fitting

Lecture 9Lecture 9

Page 2: interference fitting

Stresses in thick walled cylinders:Cylindrical pressure vessels, hydraulic cylinders, gun barrels, and pipes carrying fluids at high pressures develop both radial and tangential stresses with values that depend upon the radius of the element under consideration. In determining the radial stress σ

rand the tangential

stress σt.

Consider the element shown in Figure in a pressure cylinder loaded with internal and external pressure Pi &Powith internal and external pressure Pi &Po

Page 3: interference fitting

The element force balance will be a) ΣFr = 0 in the radial direction for unit length

)1(0.

0))(.(2...2..

LL====−−−−−−−−

====++++++++−−−−++++

dr

dr

ddrrdrdr

dddrdr

rrt

rrtr

σσσσσσσσσσσσ

φφφφσσσσ

σσσσφφφφ

σσσσφφφφσσσσ

b) Strain

).(1

)3(..2

..2).(.2

)2(

2 trr

t

tt

r

u

E

r

u

r

rur

L

dr

du

εεεεµµµµεεεεσσσσ

ππππππππππππ

εεεε

εεεε

++++−−−−

====

====−−−−++++

====∆∆∆∆

====

====

LL

LL

Page 4: interference fitting

3,2

).(1

)4()..(1

)4().(1

3,2

2

22

2

2

2

LL

LL

++++−−−−

====

++++−−−−−−−−

====

++++−−−−

====

from

u

E

dr

du

r

u

r

u

dr

ud

u

E

dr

d

r

u

dr

du

u

E

from

rtt

r

r

εεεεµµµµεεεεσσσσ

µµµµσσσσ

µµµµσσσσ

)6(0.1

15,4

)5().(1

3,2

22

2

2

LL

LL

====−−−−++++

++++−−−−

====

r

u

dr

du

rdr

ud

infrom

dr

du

r

u

u

E

from

t µµµµσσσσ

Equation “6” is a second degree differential equation has a general solution:

Page 5: interference fitting

)(1

5,4

)7(

.

22

122

12

22

1

21

LL

r

CC

r

CC

E

from

r

CC

dr

du

r

CrCu

r

−−

++++++++−−−−

−−−−====

−−−−====

++++====

µµ

µµµµµµµµ

σσσσ

)9()1(

)1(1

)(1

)8()1(

)1(1

22212

22

122

12

22212

LL

LL

r

BA

rCC

E

r

CC

r

CC

E

r

BA

rCC

E

t

t

r

++++====

−−−−++++++++

−−−−====

−−−−++++++++

−−−−====

−−−−====

−−−−−−−−++++

−−−−====

µµµµµµµµ

µµµµσσσσ

µµµµµµµµ

σσσσ

µµµµµµµµ

µµµµσσσσ

Page 6: interference fitting

A & B from boundary conditions:At r = a (inner radius) …… σr = -Pi & at r = b (outer radius) …… σr = -Po

- Pi = A – B/a2 ……… - Po = A – B/b2

Solving for A & B:

22

2

2222

22

22

22

22

).(.

..

)(..

..

ab

PPr

abbPaP

ab

PPabB

ab

bPaPA

iooi

r

iooi

−−−−

−−−−−−−−−−−−====

−−−−

−−−−====

−−−−

−−−−====

σσσσ

LL

22

2

2222

22

2

2222

22

).(.

..

).(.

..

ab

PPr

abbPaP

or

ab

PPr

abbPaP

ab

iooi

rort

iooi

t

r

−−−−

−−−−±±±±−−−−====

−−−−

−−−−++++−−−−====

−−−−

σσσσ

σσσσ

Page 7: interference fitting

Case of internal pressure only:Po = 0

aratabP

r

b

ab

aP

r

b

ab

aP

it

it

ir

====++++

====

++++−−−−

====

−−−−−−−−

====

LL).(

)1.()(

.

)1.()(

.

22

max

2

2

22

2

2

2

22

2

σσσσ

σσσσ

σσσσ

aratab

bP

aratab

irt

it

====−−−−

====−−−−

====

====−−−−

====

LL

LL

).(2

)(

)(

22

2

max

22max

σσσσσσσσττττ

σσσσ

In thin wall cylinder b – a = t (thickness)b2 – a2 = (a + b).(a – b) ≅ 2 a . t & b2 + a2 ≅ 2 a2

σt = Pi . a/t

Page 8: interference fitting

Case of external pressure only:Pi = 0

aratab

bP

r

a

ab

bP

r

a

ab

bP

ot

ot

or

====−−−−

−−−−====

++++−−−−

−−−−====

−−−−−−−−

−−−−====

LL22

2

max

2

2

22

2

2

2

22

2

.2.

)1.(.

)1.(.

σσσσ

σσσσ

σσσσ

aratab

t ====−−−−

−−−−==== LL22maxσσσσ

Case of Solid shaft:a = 0σr = σt = - Po

Page 9: interference fitting

DeformationIf σσσσr and σσσσt are known:

.

.

r

rtt

trr

radiusinincreaseu

EE

EE

σσσσµµµµ

σσσσεεεε

σσσσµµµµ

σσσσεεεε

====∆∆∆∆====

−−−−====

−−−−====

)..(.

..2

..2).(.2

rtt

t

r

E

rru

r

u

r

rur

radiusinincreaseu

σσσσµµµµσσσσεεεε

ππππππππππππ

εεεε

−−−−========

====−−−−++++

====

====∆∆∆∆====

Page 10: interference fitting

Stresses produced by Shrink-Fits

Page 11: interference fitting

Using Superposition method for both cylinders σσσσt = σσσσt (created from shrink fit) + σσσσt (created from internal pressure)

ba

rt

cb

rt

oi

E

b

E

b

bacylUcbcylU

−−−−−−−−

−−−−++++

−−−−====

−−−−++++−−−−====

)..()..(

)2()1(

22

11

σσσσµµµµσσσσσσσσµµµµσσσσδδδδ

δδδδ LL

Page 12: interference fitting

222

22

2122

22

1

222

22

222

22

2122

22

1

....

....

ab

ab

E

bP

bc

bc

E

bP

ab

ab

ab

ab

E

bP

bc

bc

E

bP

shsh

shsh

−−−−

−−−−

++++++++

++++

−−−−

++++====

⟩⟩⟩⟩⟩⟩⟩⟩−−−−

++++

++++

−−−−

++++−−−−++++

++++

−−−−

++++====

µµµµµµµµδδδδ

µµµµ

µµµµµµµµδδδδ

2

22

222

2222

21

.2

)(.

.

0

).(.2

)).((.

2&1.&

c

bc

b

EP

ashaftsolidfor

acb

bcab

b

EP

cylforsametheareEif

abEbcE

sh

sh

−−−−====

====

−−−−

−−−−−−−−====

−−−− −−−−

δδδδ

δδδδ

µµµµ

Page 13: interference fitting

Maximum torque that can be transmitted by shrink-fit connection

T = f . Psh .π . d2 . L /2

f = coefficient of frictionL = length of contact aread = shaft diameter

Force required to assemble the two members

F = f . Psh .π . d . L

Page 14: interference fitting

Design considerations: If shaft radius has maximum tolerance + s1 and minimum + s2 , and the maximum disc tolerance +d1 and minimum +d2

Where s1 > s2 > d1 > d2

maximum interference δmax = maximum shaft radius – minimum disc radiusδmax = (b + s1) – (b + d2) = s1 – d2

where b = nominal radius of the assembly Minimum interference δmin = (b + s2) – (b + d1) = s2 – d1

The joint must transmit torque in case of minimum interference, and to have safe stress in case of maximum interference.

22min

min)(

.. bcE

Psh−−−−

====δδδδ

T = f . Psh min .π . 2 . b2 . L

2min

min.2

.cb

Psh ====

b

E

bc

cP

c

bc

b

EP

sh

sh

.2

.

).(

.2

)(.

.

maxmax

22

2

maxmax

2

22max

max

δδδδττττ

ττττ

δδδδ

====

−−−−====

−−−−====