internat. workshop on math. issues in info. sciences (miis...

68
Internat. Workshop on Math. Issues in Info. Sciences (MIIS) Xi’an, July 2012 Interference Calculus A General Framework for Interference Management and Network Utility Optimization Martin Schubert joint work with Holger Boche (TU Munich) Fraunhofer Institute for Telecommunications (HHI), Berlin, Germany Fraunhofer Heinrich-Hertz-Institut Institut Nachrichtentechnik HHI Heinrich Hertz Chair for Mobile Communications, Technical Univ. of Berlin

Upload: others

Post on 21-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Internat. Workshop on Math. Issues in Info. Sciences (MIIS)

Xi’an, July 2012

Interference CalculusA General Framework for Interference Management and

Network Utility Optimization

Martin Schubert

joint work with Holger Boche (TU Munich)

Fraunhofer Institute forTelecommunications(HHI), Berlin, Germany

Fraunhofer

Heinrich−Hertz−Institut

InstitutNachrichtentechnik

HHI

Heinrich Hertz Chair forMobile Communications,Technical Univ. of Berlin

Page 2: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Outline

1 Introduction and History

2 Axiomatic Framework

3 QoS Sets

4 User-Centric (“Fair”) Strategies based on Monotonicity

5 Concave and Convex Interference Functions

6 Log-Convex Interference Functions

7 Conclusions

2

Page 3: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Design Principles for Wireless Communication Systems

Conventional approach: interference-free (orthogonal)point-to-point links, (carriers, slots, beams, ...)

Pro: easy to handle, enables separate optimization of link leveland system levelCon: ignores the interdependencies between links (interference,limited power/resources)

Future wireless networks: high user density, high rates, mixture ofmacro cells with unplanned pico/femto cells, relays, MIMO, . . .

Challenge: Optimization of coupled multi-user systems

Flexible, system-wide resource allocation (put resources wherethey are needed and don’t use more than necessary)Interference avoidance/management (many deploymentscenarios are interference-limited)

3

Page 4: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Coupled Multiuser Systems

System abstraction: Quality-of-service (QoS) of link k is stronglymonotone in the SINR, which depends on transmission powersp = [p1, . . . , pK ]T

QoSk(p) = φk(SINRk(p)) = φk

(pk

I(p)

)

Examples: BER, data rate, MMSE, . . .

Tradeoff due to power/resource constraints and interference

pK

p1...

SIR1 = p1

I1(p)

...

SIRK = pL

IK(p)

interference

QoS link 2

QoS link 1

QoS feasible region

4

Page 5: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Motivation

The behavior of any coupled multiuser system depends on theproperties of the underlying interference functions I(p)

Situation in the literature: Many variations ofinterference-coupled system. Sometimes only minordifferences in the problem fomulations, slight modification ofassumptions, similar algorithms.

Are there common patterns? What are the key properties thatenable efficient algorithmic solutions? Can we find a high-leveltheory that explains previous results as special cases?

We will show examples showing that interference is often

homogeneous: I(αp) = αI(p) for all α > 0monotone: I(p) ≥ I(p′) if p ≥ p′

5

Page 6: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Linear Interference Functions (since 1970s)

given a non-negative coupling matrix V, the interferenceexperienced by link l is

Il(p) = [Vp]l

linear interference function with noise:

Il(p) = [Vp + n · σ2n]l where p = [p1, . . . , pL, σ

2n]T

= [V′p]l with V′ = [V|n]

Framework for analyzing and optimizing such systems:Perron-Frobenius theory of non-negative matrices

6

Page 7: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Joint Beamforming and Power Control (since 1990s)

Interference at the beamformer output

Ik(p) =pk

max‖wk‖=1 SINRk(p,wk)= min‖wk‖=1

pk

SINRk(p,wk)

= min‖wk‖2=1

∑l 6=k plw

Hk Rlwk + ‖wk‖2σ2

n

wHk Rkwk

Defining interference coupling coefficients

[vwk]l =

wHk Rlwk

wHk Rkwk

1 ≤ j ≤ K , j 6= l

‖wk‖2

wHk Rkwk

j = K + 1,

0 j = l .

à interference Ik(p) = min‖wk‖2=1 pTvwk

7

Page 8: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Beamforming with Deterministic Channel Vectors hk

if Rk = hkhHk , then the maxSINR solution has a closed form

w∗k =(σ2nI +

j 6=l

plRl

)−1hk

where Rl 6=k = E[hlhHl ] (stochastic CSI from interferers)

à interference function

Ik(p) =1

hHk

(σ2nI +

∑j 6=l plRl

)−1hk

8

Page 9: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Interference in a Multiuser MIMO Channel

t1t2t3

s1s2s3

w1w2

w3

t4t5t6

s4s5s6

w4w5

w6interference

Hs1 = wH

1 Ht1s1 + I1 + n1

s2s3

s4s5s6

For fixed transmit filters, the interference can be modeled byfunctions

Ik(p) = min‖wk‖2=1

pTvwk

Same for fixed receive filters (via uplink/downlink duality)

9

Page 10: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Base Station Assignment

Consider the problem of combined beamforming and basestation assignment [Yates and Ching-Yao, 1995; Rashid-Farrokhi

et al., 1998; Hanly, 1995; Bengtsson, 2001].

From a set of base stations Bk , choose the one thatmaximizes the SINR.

Ik(p) = minbk∈Bk

(min

wk :‖wk‖=1

wHk

(∑l 6=k plR

(bk )l + σ2

nI)wk

wHk R

(bk )k wk

).

10

Page 11: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Robust Signal Processing

Channel estimation errors or system imperfections aremodeled by an uncertainty region CkThe system is optimized with respect to the worst-caseinterference (e.g. [Biguesh et al., 2004; Payaro et al., 2007])

Ik(p) = maxck∈Ck

pTv(ck), ∀k ,

11

Page 12: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Power Control with Standard Interference Functions

Definition 1 (Yates, 1995)

A function J (p) is called a standard interference function if thefollowing axioms are fulfilled.

Y1 (positivity) J (p) > 0 for all p ∈ RK+

Y2 (scalability) αJ (p) > J (αp) for all α > 1

Y3 (monotonicity) J (p) ≥ J (p′) if p ≥ p′

There always exist a homogeneous monotone I such that

I([

p1

])= J (p) [Boche and Schubert, 2010]

Examples: linear: Ik(p) = Jk(p) = [Vp + n]k

non-linear: I(p) = Jk(p) = minz [V(z)p + n(z)]k

. . .

12

Page 13: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Link Coupling by Limited Powers/Resources

Transmission powers of all links are chosen from a set

P = {p ≥ 0 : ‖p‖ ≤ Pmax}

Examples for the norm ‖ · ‖:Total power contraint ‖p‖ =

∑Kk=1 pk

Per-user power constraint: ‖p‖ = maxk pk

Per-base station constraints ‖p‖ = maxb∈B∑

k∈Abpk

where Ab is the set of all users assigned to base station b

Observation: ‖ · ‖ behaves like interference (monotonehomogeneous function)

13

Page 14: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Admission Control

SI(N)R (resp. QoS) values γ = [γ1, . . . , γK ] are feasible ifffor any ε > 0

SINRk(p) =pk

Ik(p)≥ γk + ε for all links k = 1, . . . ,K

Indicator for feasibility:

C (γ) ≤ 1 where C (γ) = infp>0

(maxk

γkIk(p)

pk

)

C (γ) also behaves like “interference” (monotonehomogeneous function)

14

Page 15: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Outline

1 Introduction and History

2 Axiomatic Framework

3 QoS Sets

4 User-Centric (“Fair”) Strategies based on Monotonicity

5 Concave and Convex Interference Functions

6 Log-Convex Interference Functions

7 Conclusions

15

Page 16: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Axiomatic Framework of General Interference Functions

Monotone homogeneous functions are ubiquitous.They model the dependency on underlying resources r ≥ 0.

Is there a comon pattern? Are the previous examples specialcases of a general framework?

The following set of axioms provides a common basis.

Definition 2 (general interference function I defined on RL+)

A1 (positivity) There exists an r > 0 such that I(r) > 0

A2 (scale invariance) I(αr) = αI(r) for all α > 0

A3 (monotonicity) I(r) ≥ I(r′) if r ≥ r′

16

Page 17: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Adding Structure

A1,A2,A3 is useful as a common basis for analysis andoptimization of coupled systems

But in most cases we want to consider additional properties:

strict monotonicity (dependency between links)convexitylogarithmic convexity. . .

This additional structure can be exploited for the design ofalgorithms (as shown later)

17

Page 18: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Outline

1 Introduction and History

2 Axiomatic Framework

3 QoS Sets

4 User-Centric (“Fair”) Strategies based on Monotonicity

5 Concave and Convex Interference Functions

6 Log-Convex Interference Functions

7 Conclusions

18

Page 19: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

The SIR Feasible Set is Comprehensive

The indicator function

C (γ) = infp>0

(max

1≤k≤KγkIk(p)

pk

)s.t. ‖p‖ = Pmax

is an interference function (thus monotone).

à The SIR feasible region

S = {γ : C (γ) ≤ 1}

is downward-comprehensive, i.e.,

for all γ ∈ S and γ ′ ∈ RK++

γ ′ ≤ γ =⇒ γ ′ ∈ S����������������

γ2

γ1

S

γ

19

Page 20: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

The QoS Region is Comprehensive

QoSk = φk

(pk

Ik(p)

)

Properties of the QoS regiondepend on underlying interferencefunctions I and the monotonic“utility function” φ

Let γ(q) be the SINR required forachieving some QoS values q ������

������������������

������������������������

Qq

q2

q1

The QoS region

Q ={

q : C(γ(q)

)≤ 1}

is downward-comprehensive.

20

Page 21: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Representation of General Interference Functions

Theorem 3 ([Boche and Schubert, 2008c])

Let I be an arbitrary interference function, then

I(p) = minp∈L(I)

maxk

pk

pk

= maxp∈L(I)

mink

pk

pk

I(p) can always be represented as the optimum of a weightedmax-min (or min-max) optimization problem

The weights p are elements of con-vex/concave level sets

L(I) = {p > 0 : I(p) ≤ 1}L(I) = {p > 0 : I(p) ≥ 1}

21

Page 22: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Interference Functions and Utility/Cost Regions

the set L(I) is closed bounded anddownward-comprehensive

p ≤ p′ , p′ ∈ L(I) =⇒ p ∈ L(I)

p2

p′

p1

L(I)

the set L(I) is closed andupward-comprehensive

p ≥ p′ , p′ ∈ L(I) =⇒ p ∈ L(I)

p2

p1

p′

L(I)

à Every interference function can be interpreted as an optimumof a utility/cost optimization problem

22

Page 23: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Comprehensive Power Sets

Set of transmission powers:

P = {p ≥ 0 : ‖p‖ ≤ Pmax}

If the norm ‖ · ‖ is monotone, then P is comprehensive(“free disposability of powers”)

If ‖ · ‖ is convex, then P is convex

à Useful properties for the design of algorithms that optimizeover the set P

23

Page 24: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Interference Functions and Comprehensive Sets

Theorem 4 ([Boche and Schubert, 2008b])

Every compact comprehensive utility set from RK++ can be

expressed as a sub-level set of an interference function C (u).

U = {u ∈ RK++ : C (u) ≤ 1}

The sub-level set U is convex if and only if C (u) is a convex

Interference functions and comprehensive sets are closelyconnected.Analyzing interference functions helps to better understandthe structure of utility/cost sets. Applications in resourceallocation, game theory, algorithm design, etc.Example: Computation of the comprehensive/convex hull of agiven non-comprehensive set [Schubert and Boche, 2012].

24

Page 25: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Outline

1 Introduction and History

2 Axiomatic Framework

3 QoS Sets

4 User-Centric (“Fair”) Strategies based on Monotonicity

5 Concave and Convex Interference Functions

6 Log-Convex Interference Functions

7 Conclusions

25

Page 26: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

QoS-Constrained Power Minimization

Frequently used problem formulation: Minimize the totalpower subject to QoS targets q1, . . . , qK

minp∈P

l∈Kpl s.t. φk

(SINRk(p)

)≥ qk for all k .

QoS link 1

q2

q1

QoS link 2min. power operating point

QoS feasible region

26

Page 27: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

QoS-Constrained Power Minimization (cont.)

Problem only meaningful with standard interference functions

J (p) = I([

pσ2n

])

(otherwise no solution exists)

QoS is a strongly monotone function of the SINR. à ReplaceQoS constraints by SINR constraints γ = [γ1, . . . , γK ].

minp≥0

K∑

k=1

pk s.t.pk

Jk(p)≥ γk , ∀k ,

27

Page 28: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Fixed Point Iteration

For standard interference functions it was shown [Yates, 1995]

If target SINR γ = [γ1, . . . , γK ] are feasible then for anyinitialization p(0) ≥ 0, the iteration

p(n+1)k = γk · Jk(p(n)), k = 1, 2, . . . ,K

converges to the optimum of the power minimization problem

minp≥0

K∑

k=1

pk s.t.pk

Jk(p)≥ γk , ∀k ,

28

Page 29: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Properties of the Fixed Point Iteration

The fixed-point iteration has thefollowing properties:

component-wisemonotonicity

optimum achieved iff

p(n+1)k = γkJk(p(n)), ∀k

optimizer limn→∞ p(n) isunique

0 10 20 30 40 50 60 700

0.5

1

1.5

2

2.5

3

3.5

4x 10

−4

convergence to the optimal power levels

C(γ) = 0.81

29

Page 30: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

QoS Balancing

Another possiblestrategy: maximizethe worst-case QoS:

maxp∈P

(minl∈L

pl

γlIl(p)

)

QoS link 1

QoS link 2 total power minimum

maxmink QoSk (max-min fairness)

QoS feasible region

q2

q1

For “strongly coupled” interference functions [Vucic and Schubert,

2011], the problem is solved by the iteration

p(n+1) =1

‖I‖ · ΓI(p(n))

where I = [I1, . . . , IK ] and Γ = diag{[γ1, . . . , γK ]}Observation: if I = Vp, then this is the well-known Power Method

30

Page 31: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Discussion

Convexity is commonly considered as the dividing line between“easy” and “difficult” problems

Interference functions have a special structure that enablesglobally optimal solutions, even without convexity

Monotonicity is a key property

If the interference functions are additionally convex orconcave, then more efficient solutions are possible(à following slides)

31

Page 32: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Outline

1 Introduction and History

2 Axiomatic Framework

3 QoS Sets

4 User-Centric (“Fair”) Strategies based on Monotonicity

5 Concave and Convex Interference Functions

6 Log-Convex Interference Functions

7 Conclusions

32

Page 33: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Power Minimization with Convex/Concave Jk(p)

The problem can be written as

minp≥0

1≤l≤Kpl s.t. γkJk(p)− pk ≤ 0 , ∀k . (1)

If Jk are convex (e.g. robust optimization), then (1) is convex

If Jk are concave (e.g. beamforming), then (1) is non-convexin general

Monotonicity enables an equivalent convex reformulation

maxp≥0

l∈Kpl s.t. pk − γkJk(p) ≤ 0 for all k .

33

Page 34: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Special Case: Multiuser Downlink Beamforming

minw1,...,wK∈CM

K∑

k=1

pk s.t. SINRk(w1, . . . ,wK ) ≥ γk , ∀k

This problem was studied for more than a decade. Differentsolutions exist based on uplink/downlink duality [Rashid-Farrokhi

et al., 1998; Schubert and Boche, 2004], semidefinite ralaxation[Bengtsson and Ottersten, 2001] and conic optimization [Wiesel

et al., 2006]

Interference calculushelps to better understand the underlying structure of theproblem (equivalent convex reformulation)generalizes the results to arbitrary concave or convexinterference functions

34

Page 35: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Representation of Concave Interference Functions

Theorem 5 ([Boche and Schubert, 2008b])

Let I(p) be an arbitrary concave interference function, then

I(p) = minw∈N0(I)

K∑

k=1

wkpk , for all p > 0.

whereN0(I) = {w ∈ RK

+ : I∗(w) = 0}

and I∗(w) = infp>0

(∑Kl=1 wlpl − I(p)

)is the conjugate of I.

35

Page 36: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Interpretation of Concave Interference Functions

I(p) = minw∈N0(I)

K∑

k=1

wkpk

the set N0(I) is closed,convex, andupward-comprehensive

any concave interferencefunction can be interpretedas the solution of a loss/costminimization problem

w1

w2

region N0(I)p

36

Page 37: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Structure of Concave Standard Interference Functions

Theorem 6 ([Boche and Schubert, 2010])

Jl(p) is a concave standard interference function iff there exists anon-empty, closed, convex, comprehensive set Vl ⊂ RL+1

+ such that

Jl(p) = minv∈Vl

( L∑

j=1

pjvj + vL+1

), where v l

L+1 > 0

Interpretation: interference resulting from adaptive receivestrategies zk :

Ik(p) = minzk∈Zk

(pTv(zk)︸ ︷︷ ︸Interference

+ nk(zk)︸ ︷︷ ︸Noise

), k = 1, 2, . . . ,K

37

Page 38: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Exploiting the Structure of Concave Interference Functions

Structure of concave interference functions can be exploitedfor the development of (sub-)gradient algorithms

Example: power minimization problem

minp∈P

k∈Kpk s.t.

pk

Ik(p)≥ γk for all k .

The constraints can be rewritten as

d(p) = p− ΓI(p)

Due to strict monotonicity, the unique global optimum iscompletely characterized by d(p) = 0 (fixed point)

38

Page 39: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Newton-Type Iteration

p

dk(p)

global optimum

p(n)p p(n+1)

tangential hyperplane

g(n)k (p)

Newton-type iteration [Boche and Schubert, 2008d]

Jacobian: coupling matrix V(z) = [v1(z1), . . . , vK (zK )]T

No assumptions on smoothness

39

Page 40: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Example: Adaptive Receive Strategy

Alternating optimization of receive strategies z (n) and powerallocation p(n)

1 z(n)k = arg minzk∈Zk

[V(z)p(n) + n(z)

]k, k ∈ {1, 2, . . . ,K}

2 p(n+1) = (I− ΓV(z(n)))−1 · ΓN(z(n))

This algorithm can be applied whenever the underlyinginterference functions are strongly monotone (standard) andconcave

Corresponding results can be shown for convex interferencefunctions (robust optimization) [Schubert and Boche, 2012]

40

Page 41: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Convergence Analysis

The sequence p(n) hassuper-linearconvergence [Boche and

Schubert, 2008d].

limn→∞

‖p(n+1) − p∗‖1

‖p(n) − p∗‖1= 0

0 5 10 15 20 25 30 350

0.5

1

1.5

2

2.5

3

3.5

pow

er (5

use

rs)

iterations

improved algorithm that

exploits concavity fixed−pointiteration

41

Page 42: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Convex Interference Functions

Similar results can be shown for convex interference functions

Example: Robust Optimizaztion. Worst-case interference

Ik(p) = maxck∈Ck

pTv(ck), ∀k ,

where the parameter ck models an ‘uncertainty’ (e.g. causedby channel estimation errors or system imperfections).

the optimization is over a compact uncertainty region Ck

42

Page 43: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Representation of Convex Interference Functions

Theorem 7 ([Boche and Schubert, 2008b])

Let I(p) be an arbitrary convex interference function, then

I(p) = maxw∈W0(I)

K∑

k=1

wk · pk , for all p > 0.

whereW0(I) = {w ∈ RK

+ : I∗(w) = 0}

and I∗(w) = supp>0

(∑Kl=1 wlpl − I(p)

)is the conjugate of I.

43

Page 44: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Interpretation of Convex Interference Functions

I(p) = maxw∈W0(I)

K∑

k=1

wk · pk

the set W0(I) is closed,convex, anddownward-comprehensive

any convex interferencefunction can be interpretedas the solution of a utilitymaximization problem

W0(I)

p

w1

w2

44

Page 45: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Weighted Sum Rate Maximization

QoS link 1

QoS link 2

Q2

Q1

maxmink QoSk (max-min fairness)

total power minimum

maxP

k QoSk (best overall efficiency)

max∑

k αkQoSk (weighted sum optimization)

QoS feasible region

R(α) = maxp∈P

L∑

l=1

αl log

(1 +

pl

Il(p)

)

NP hard [Hayashi and Luo, 2009]. For global optimization it isimportant to exploit concavity and monotonicity

45

Page 46: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Exploiting Concavity and Monotonicity

Problem can be rewritten as

R(α) = maxp∈P

L∑

l=1

αl log(

1 +pl

Il(p)

)

= maxp∈P

( L∑

l=1

αl log(pl + Il(p)

)−

L∑

l=1

αl log(Il(p)

))

Difference of monotone functions à polyblock strategies

Difference of convex functions à DC programming

à Efficient algorithms available, e.g. [Eriksson et al., 2010] (but stillexponential complexity)

46

Page 47: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Outline

1 Introduction and History

2 Axiomatic Framework

3 QoS Sets

4 User-Centric (“Fair”) Strategies based on Monotonicity

5 Concave and Convex Interference Functions

6 Log-Convex Interference Functions

7 Conclusions

47

Page 48: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Motivation: “Hidden Convexity”

In the context of linear interfererence functions, it wasobserved ([Sung, 2002; Stanczak et al., 2008; Tan et al., 2007]) thatcertain power control problems can be convexified by a changeof variable

p = exp s (component-wise exponential)

A more general approach is provided by the framework oflog-convex interference functions

Two main aspects:

convexification of the QoS region

convexification/concavification of the target function

48

Page 49: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Log-Convex Interference Functions

Definition 8

We say that I : RK+ 7→ R+ is a log-convex interference function if

it fulfills the axioms:

A1 (non-negativeness) I(p) ≥ 0

A2 (scale invariance) I(αp) = αI(p) ∀α ∈ R+

A3 (monotonicity) I(p) ≥ I(p′) if p ≥ p′

C3 (log-convexity) Ik(es) is log-convex on RK

49

Page 50: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Examples of Log-Convex Interference Functions

Any convex interference function is a log-convex interferencefunction (notice the change of variable!)

this includes the class of linear interference functions

This also includes the class of worst-case designs

Ik(p) = maxck∈Ck

pTv(ck), ∀k ,

where the parameter ck models an ‘uncertainty’ (e.g. causedby channel estimation errors or system imperfections).

Another example: multiplicative utility function

I(r) =K∏

l=1

(rl)wl where

k

wk = 1

50

Page 51: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Categories of Interference Functions

log-convex interference functions

general interference functions

convex interference functions

concave

interference functions

51

Page 52: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Representation of Log-Convex Interference Functions

Theorem 9 ([Boche and Schubert, 2008a])

Every log-convex interference function I(p), with p > 0, can berepresented as

I(p) = maxw∈L(I)

(fI(w) ·

K∏

l=1

(pl)wl

).

where fI(w) = infp>0

I(p)∏K

l=1(pl)wl

, w ∈ RK+,

∑k

wk = 1

L(I) ={

w ∈ RK+ : fI(w) > 0

}

52

Page 53: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Application Example: Weighted Sum QoS

infs∈RK

k

αk g(Ik(es)/esk

)s.t. ‖es‖1 ≤ Pmax ,

Theorem 10 ([Boche and Schubert, 2008a])

Suppose that Ik(es) is log-convex for all and g is monotoneincreasing. Then the problem is convex if and only if g(ex) isconvex on R.

Application example:

maxp≥0

k

log(1 + SINR(p)) (Sum Rate Maximization)

can be convexified under the approximationlog(1 + SINR(p)) ≈ log(SINR(p))

53

Page 54: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Application Example: Cooperative Nash Bargaining

K players try to reach an unanimous agreement on utilitiesu = [u1, . . . , uk ]

the utility region U ⊂ RK++

is convex, comprehensive,closed, bounded

Depending on the chosenstrategy, the solutionoutcome ϕ results

If the bargaining fails, thedisagreement outcome dresults

u1

d

U

d1

d2

bargaining game (U ,d)

ϕ(U ,d)solution outcome

u2

54

Page 55: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Axiomatic Framework for Symmetric Nash Bargaining

WPO Weak Pareto Optimality. The players should not be able tocollectively improve upon the solution outcome.

IIA Independence of Irrelevant Alternatives. If the feasible setshrinks but the solution outcome remains feasible, then theoutcome is also the solution of the smaller set.

SYM Symmetry. If the region is symmetric, then the outcomedoes not depend on the identities of the users.

STC Scale Transformation Covariance. The outcome iscomponent-wise scale-invariant.

55

Page 56: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

The Nash Product

For convex comprehensive sets the unique Nash bargaining solutionfulfilling the axioms WPO, IIA, SYM, STC is obtained as thesolution of

max{u∈U :u>d}

K∏

k=1

(uk − dk)

Often, the choice of the zero of the utility scales does not matter,so we can choose d = 0

maxu∈U

K∏

k=1

uk

56

Page 57: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Nash Bargaining and Proportional Fairness

the product optimization approach is equivalent toproportional fairness [Kelly et al., 1998]

u = arg maxu∈U

K∏

k=1

uk = arg maxu∈U

log

K∏

k=1

uk = arg maxu∈U

K∑

k=1

log uk

if the region U is convex closed comprehensive and bounded,then symmetric Nash bargaining and proportional fairness areequivalent

57

Page 58: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Bargaining over SIR Feasible Sets

for wireless systems, an important performance measure is thesignal-to-interference ratio

SIRk(p) =pk

Ik(p)

← useful power← interference (+noise) power

indicator of feasibility: C (γ) = infp>0

(maxk

γkIk (p)pk

)

the SIR region

S = {γ ∈ RK+ : C (γ) ≤ 1}

is generally not convex, so results fromclassical bargaining theory cannot be applieddirectly

feasible

infeasible

C(γ) ≤ 1

C(γ) > 1

γ1

γ2

58

Page 59: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

The Log-Convex Case

Let I1, . . . , IK be log-convex interference functions, then

C (γ) = infp>0

(max

1≤k≤KγkIk(p)

pk

)

is a log-convex interference function, i.e., C (exp q) is alog-convex (thus convex) function.

the SIR feasible set S = {γ : C (γ) ≤ 1} is convex on alogarithmic scale

this “hidden convexity” can be exploited for designingresource allocation algorithms

59

Page 60: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Logarithmically Convex Regions, “Hidden Convexity”

If the underlying interference functions are log-convex, thenthe SIR region is log-convex

logSIR2

logSIR1

SIR2

SIR1

SIR region log-SIR region

SIR region has special properties which can be exploited forbargaining (closed, comprehensive, log-convex)

60

Page 61: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Extension of the Classical Nash Bargaining Framework

The classical Nash bargaining framework extends to utilitysets that are strictly convex after a log-transformation [Boche

and Schubert, 2009]

à the axioms WPO, IIA, SYM, STCcharacterize a single-valued solution outcome

0 1 2 3 4 5 6 70

0.5

1

1.5

2

2.5

3

3.5

4

SIR1

SIR

2

Σ log SIR =0.89609

proportional fairness

max-min fairness

“Nash curve”

61

Page 62: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Outline

1 Introduction and History

2 Axiomatic Framework

3 QoS Sets

4 User-Centric (“Fair”) Strategies based on Monotonicity

5 Concave and Convex Interference Functions

6 Log-Convex Interference Functions

7 Conclusions

62

Page 63: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

Conclusions

Coupled multiuser systems are often difficult to handle.Adaptive strategies for interference mitigation/avoidance(MIMO, scheduling, etc) offer new degrees of freedom, butthey also complicate the task of resource allocation.

A thorough understanding of the interference structure is thekey to the development of efficient algorithmic solutions

Interference calculus offers

à abstract model, focus on core propertiesà rigorous, allows to handle problems analyticallyà provides intuition and roadmap for design of algorithms

Applications beyond wireless communications. Coupledsystems also play a central role in other disciplines.

63

Page 64: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

References I

Bengtsson, M. (2001).Jointly optimal downlink beamforming and base station assignment.In Proc. IEEE Internat. Conf. on Acoustics, Speech, and Signal Proc. (ICASSP).

Bengtsson, M. and Ottersten, B. (2001).Handbook of Antennas in Wireless Communications, chapter 18: Optimal and Suboptimal TransmitBeamforming.CRC Press.

Biguesh, M., Shahbazpanahi, S., and Gershman, A. B. (2004).Robust downlink power control in wireless cellular systems.EURASIP Journal on Wireless Communications and Networking, (2):261–272.

Boche, H. and Schubert, M. (2008a).A calculus for log-convex interference functions.IEEE Trans. Inform. Theory, 54(12):5469–5490.

Boche, H. and Schubert, M. (2008b).Concave and convex interference functions – general characterizations and applications.IEEE Trans. Signal Processing, 56(10):4951–4965.

Boche, H. and Schubert, M. (2008c).The structure of general interference functions and applications.IEEE Trans. Inform. Theory, 54(11):4980 – 4990.

64

Page 65: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

References II

Boche, H. and Schubert, M. (2008d).A superlinearly and globally convergent algorithm for power control and resource allocation with generalinterference functions.IEEE/ACM Trans. on Networking, 16(2):383–395.

Boche, H. and Schubert, M. (2009).Nash bargaining and proportional fairness for wireless systems.IEEE/ACM Trans. on Networking, 17(5):1453–1466.

Boche, H. and Schubert, M. (2010).A unifying approach to interference modeling for wireless networks.IEEE Trans. Signal Processing, 58(6):3282–8297.

Eriksson, K., Shi, S., Vucic, N., Schubert, M., and Larsson, E. (2010).Globally optimal resource allocation for achieving maximum weighted sum rate.In Proc. Globecom, Miami, USA.

Hanly, S. (1995).An algorithm for combined cell-site selection and power control to maximize cellular spread spectrumcapacity.IEEE Journal on Selected Areas in Communications, 13(7):1332–1340.

Hayashi, S. and Luo, Z.-Q. (2009).Spectrum management for interference-limited multiuser communication systems.IEEE Trans. Inform. Theory, 55(3):1153–1175.

65

Page 66: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

References III

Kelly, F., Maulloo, A., and Tan, D. (1998).Rate control for communication networks: Shadow prices, proportional fairness and stability.Journal of Operations Research Society, 49(3):237–252.

Payaro, M., Pascual-Iserte, A., and Lagunas, M. A. (2007).Robust power allocation designs for multiuser and multiantenna downlink communication systems throughconvex optimization.IEEE Selec. Areas in Commun., 25(7):1390 – 1401.

Rashid-Farrokhi, F., Tassiulas, L., and Liu, K. J. (1998).Joint optimal power control and beamforming in wireless networks using antenna arrays.IEEE Trans. Commun., 46(10):1313–1323.

Schubert, M. and Boche, H. (2004).Solution of the multi-user downlink beamforming problem with individual SINR constraints.IEEE Trans. Veh. Technol., 53(1):18–28.

Schubert, M. and Boche, H. (2012).Interference Calculus – A General Framework for Interference Management and Network UtilityOptimization.Springer.ISBN: 978-3-642-24620-3.

66

Page 67: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

References IV

Stanczak, S., Wiczanowski, M., and Boche, H. (2008).Fundamentals of Resource Allocation in Wireless Networks: Theory and Algorithms, volume 3 ofFoundations in Signal Processing, Communications and Networking.Springer.

Sung, C. W. (2002).Log-convexity property of the feasible SIR region in power-controlled cellular systems.IEEE Communications Letters, 6(6):248–249.

Tan, C. W., Palomar, D. P., and Chiang, M. (2007).Exploiting hidden convexity for flexible and robust resource allocation in cellular networks.In IEEE Infocom, pages 964–972.

Vucic, N. and Schubert, M. (2011).Fixed point iteration for max-min sir balancing with general interference functions.In Proc. IEEE Internat. Conf. on Acoustics, Speech, and Signal Proc. (ICASSP), Prague, Czech Republic.

Wiesel, A., Eldar, Y. C., and Shamai (Shitz), S. (2006).Linear precoding via conic optimization for fixed MIMO receivers.IEEE Trans. Signal Proc., 54(1):161–176.

Yates, R. and Ching-Yao, H. (1995).Integrated power control and base station assignment.IEEE Trans. on Vehicular Technology, 44(3):638 – 644.

67

Page 68: Internat. Workshop on Math. Issues in Info. Sciences (MIIS ...meeting.xidian.edu.cn/.../20120824/20120824100335.pdf · Interference Calculus A General Framework for Interference Management

References V

Yates, R. D. (1995).A framework for uplink power control in cellular radio systems.IEEE J. Select. Areas Commun., 13(7):1341–1348.

68