international scientific conference · let mbe a smooth connected riemannian manifold of dimension...

132
International Scientific Conference Algebraic and Geometric Methods of Analysis 26-30 may 2020 Odesa, Ukraine

Upload: others

Post on 25-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

International Scientific Conference

Algebraic and Geometric Methods of Analysis

26-30 may 2020 Odesa, Ukraine

Page 2: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

1

List of topics

• Algebraic methods in geometry• Dierential geometry in the large• Geometry and topology of dierentiable manifolds• General and algebraic topology• Dynamical systems and their applications• Geometric problems in mathematical analysis• Geometric and topological methods in natural sciences

Organizers

• Ministry of Education and Science of Ukraine• Odesa National Academy of Food Technologies• Institute of Mathematics of the National Academy of Sciences of Ukraine• Odessa I. I. Mechnikov National University• Taras Shevchenko National University of Kyiv• International Geometry Center• Kyiv Mathematical Society

Program Committee

Chairman: Prishlyak A.(Kyiv, Ukraine)Balan V.(Bucharest, Romania)Banakh T.(Lviv, Ukraine)Bolotov D.(Kharkiv, Ukraine)Borysenko O.(Kharkiv, Ukraine)Cherevko Ye.(Odesa, Ukraine)Fedchenko Yu.(Odesa, Ukraine)Karlova O.(Chernivtsi, Ukraine)

Kiosak V.(Odessa, Ukraine)Kirillov V.(Odesa, Ukraine)Konovenko N.(Odesa, Ukraine)Lyubashenko V.(Kyiv, Ukraine)Maksymenko S.(Kyiv, Ukraine)Matsumoto K.(Yamagata, Japan)Mormul P.(Warsaw, Poland)Mykhailyuik V.(Chernivtsi, Ukraine)Plachta L.(Krakov, Poland)

Pokas S.(Odesa, Ukraine)Polulyakh E.(Kyiv, Ukraine)Sabitov I.(Moscow, Russia)Savchenko A.(Kherson, Ukraine)Sergeeva À.(Odesa, Ukraine)Shelekhov A.(Tver, Russia)Volkov V.(Odesa, Ukraine)Zarichnyi M.(Lviv, Ukraine)

Page 3: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

2

Administrative committee

• Egorov B., chairman, rector of the ONAFT;• Povarova N., deputy chairman, Pro-rector for scientic work of the ONAFT;• Mardar M., Pro-rector for scientic-pedagogical work and international communications of theONAFT;• Fedosov S., Director of the International Cooperation Center of the ONAFT;• Kotlik S., Director of the P.M. Platonov Educational-scientic institute of computer systemsand technologies Industry 4.0;• Svytyy I., Dean of the Faculty of Computer Systems and Automation.

Organizing commitee

Kirillov V.Konovenko N.Fedchenko Yu.

Maksymenko S.Cherevko Ye.

Osadchuk E.Prus A.

Page 4: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

3

On the geometry of submersions

G. M. Abdishukurova(National University of Uzbekistan, Tashkent, 100174, Tashkent, Uzbekistan)

E-mail: [email protected]

A. Ya. Narmanov(National University of Uzbekistan, Tashkent, 100174, Tashkent, Uzbekistan)

E-mail: [email protected]

Let M be a smooth connected Riemannian manifold of dimension n with Riemannian metric g.

Denition 1. Dierentiable mapping π : M → B of maximal rank, where B is a smooth Riemannianmanifold of dimension m, called submersion for n > m.

Submersion of π : M → B generates a foliation F of dimension k = n−m on the manifoldM, whoseleaves are the submanifolds Lp = π−1(p), p ∈ B. For a point q ∈ Lp we denote by TqF the tangentspace of the leaf Lp at the point q, by H(q) the orthogonal complement of the tangent space TqF ofthe leaf Lp, i.e. TqM = TqF ⊕H(q). We have two distributions TF : q → TqF, H : q → H(q). Each

vector eld X can be represented as X = Xv + Xh, where Xv, Xh are the orthogonal projections ofX onto TF, H respectively. Here, for convenience, TF,H are considered as subbundles of the tangentbundle TM. If Xh = 0, then X is called a vertical eld (it is tangent to the foliation), and if Xv = 0,then X is called a horizontal eld.

Denition 2. A dieomorphism ϕ : M → M is called a dieomorphism of the foliated manifold(M,F ), if the image ϕ(Lα) of each leaf Lα is a leaf of the foliation F.

The dieomorphism ϕ : M →M of the foliated manifold (M,F ), is denoted by ϕ : (M,F )→ (M,F ).The set of all dieomorphisms of a foliated manifold is denoted by DiffF (M). The set DiffF (M)is a group with respect to the superposition of mappings and is a subgroup of the group Diff(M)of dieomorphisms of the manifold M. The group DiffF (M) was studied in [2], in particular, it wasproved that this group is a closed subgroup of the group Diff(M) with respect to a compactly opentopology.

Denition 3. A dieomorphism ϕ : (M,F ) → (M,F ) is called an isometry of the foliated manifold(M,F ), if the restriction of the mapping ϕ to each leaf of the foliation F is an isometry, that is, foreach leaf Lα the map ϕ : Lα → f(Lα) is an isometry between the manifolds Lα and ϕ(Lα).

Denote by GF (M) the set of isometries of the foliated manifold (M,F ). The group GF (M) issubgroup of Diff(M) and therefore it is topological group in compact open topology.Let us consider submersion π : Rn+1 → R1, where

π(x1, x2, · · ·, xn, xn+1) = xn+1 − f(x1, x2, · · ·, xn), (1)

f(x1, x2, · · ·, xn) is a dierentiable function.

Theorem 4. Dieomorphism ϕ : Rn+1 → Rn+1, dened by formula

ϕλ(x1, x2, · · ·xn, xn+1) = (x1, x2, · · ·, xn, xn+1 + λπ) (2)

at λ 6= −1 is an isometry of foliation, generated by submersion (1).

Theorem 5. The set of dieomorphisms

GΛ = ϕλ : λ ∈ R1, λ 6= −1, (3)

is a subgroup of the group GF (M).

Page 5: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

4

Using the mapping ϕλ → λ we identify the set GΛ with the set R1 \ −1 of real numbers otherthan −1. On the set R1 \ −1 we dene the multiplication as follows

λ1 · λ2 → λ1 + λ2 + λ1λ2, (4)

The inverse element is determined by the formula

λ→ − λ

1 + λ(5)

and it is obvious that they are dierentiable. Therefore, we have following.

Proposition 6. The set GΛ is a one-dimensional Lie group.

Example 7. Consider the submersion π : R3 → R1, where π(x1, x2, x3) = x3 − f(x1, x2), f(x1, x2) =x2

1 + x22. This submersion generates a two-dimensional foliation F. The following vector elds

V1 =∂

∂x1+ 2x1

∂x3, V2 =

∂x2+ 2x2

∂x3

are vertical vector elds. Vector eld

X = −x2∂

∂x1+ x1

∂x2+

∂x3

is a foliated vector eld for the foliation F, as shown by the following equalities [V1, X] = V2, [V2, X] =−V1. It is known that the ow of foliated vector eld consists of dieomorphisms of foliated manifold(M,F ) [1]. The vector eld X is a Killing vector eld.Therefore, the ow of a vector eld X consistsof isometries of a foliated manifold. Indeed, the ow of the vector eld X consists of dieomorphisms

x→ A(t)x+ bt

where t ∈ R, b = 0, 0, 1T , x = (x1, x2, x3)T ,

A(t) =

cos t − sin t 0sin t cos t 0

0 0 1

,

which are isometries of the foliated manifold (F,R3).

Theorem 8. Suppose for a vector eld

V =

n∑i=1

ξi∂

∂xi

holds equaality V (f) = 0. Then the ow of the vector eld

X = V +∂

∂xn+1

consists of dieomorphisms of the foliated manifold (F,Rn+1) generated by submersion (1). If the eldV is a Killing eld, then the ow of the vector eld X consists of isometries of the foliated manifold(F,Rn+1).

References

[1] Molino P. Riemannian foliations. BostonBasel: Burkhauser, 1988.[2] Narmanov A.Y., Zoyidov A.N. On the group of dieomorphisms of foliated manifolds. Vestnik Udmurtskogo Univer-

siteta. Matematika. Mekhanika. Kompyuternye Nauki, 2020, vol. 30, issue 1, pp. 4958.

Page 6: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

5

Hyperbolic 4-cobordisms, Teichmuller spaces and quasiregularmappings in space

Boris N. Apanasov(Univ of Oklahoma, Math Dept, Norman, OK 73019, USA)

E-mail: [email protected]

We present a new eect in the theory of deformations of hyperbolic 3-manifolds/orbifolds or theiruniform hyperbolic lattices Γ ⊂ IsomH3 (i.e. in the Teichmuller spaces of conformally at structureson closed hyperbolic 3-manifolds, cf. [1, 2]). We show that such Teichmuller space or the correspondingvariety of conjugacy classes of discrete representations ρ : Γ → IsomH4 may have connected compo-nents whose dimensions dier by arbitrary large numbers, cf. [3, 5]. This is based on our Siamesetwins construction of non-faithful discrete representations of hyperbolic lattices related to non-trivialsymmetric hyperbolic 4-cobordisms [8] and Gromov-Piatetski-Shapiro interbreeding construction [11].There are several applications of this result, from new non-trivial hyperbolic homology 4-cobordisms(cf. [9]) and wild 2-knots in the 4-sphere (cf. [5]), to bounded quasiregular locally homeomorphic map-pings in 3-space, especially to their asymptotics in the unit 3-ball and to quasisymmetric embeddingsof a closed ball inextensible in neighborhoods of any boundary points (cf. [10, 12, 13, 14, 15]).The last part is based on our construction of a new type of bounded locally homeomorphic quasireg-

ular mappings in 3-sphere (and in the unit 3-ball), see [6]. It addresses long standing problems for suchmappings, including M. A. Lavrentiev problem, Pierre Fatou problem and Matti Vuorinen injectivityand asymptotics problems (cf. [7]). The construction of such mappings comes from our construc-tion of non-trivial compact 4-dimensional cobordisms M with symmetric boundary components andwhose interiors have complete 4-dimensional real hyperbolic structures (cf. [4]). Such bounded locallyhomeomorphic quasiregular mappings are dened in the unit 3-ball B3 ⊂ R3 as mappings equivariantwith the standard conformal action of uniform hyperbolic lattices Γ ⊂ IsomH3 in the unit 3-ball andwith its discrete representation G = ρ(Γ) ⊂ IsomH4 (cf. [6]). Here G is the fundamental group ofour non-trivial hyperbolic 4-cobordism M = (H4 ∪ Ω(G))/G and the kernel of the homomorphismρ : Γ→ G is a free group Fm on arbitrary large number m generators.

References

[1] Boris Apanasov, Nontriviality of Teichmuller space for Kleinian group in space. - In: Riemann Surfaces and RelatedTopics, Proc. 1978 Stony Brook Conference (I.Kra and B.Maskit, eds), Ann. of Math. Studies 97, Princeton Univ.Press, 1981, 2131.

[2] Boris Apanasov, Conformal geometry of discrete groups and manifolds, De Gruyter Exp. Math. 32, W. de Gruyter,Berlin - New York, 2000.

[3] Boris Apanasov, Nonstandard uniformized conformal structures on hyperbolic manifolds, Invent. Math. 105, 1991,137152.

[4] Boris Apanasov, Hyperbolic 4-cobordisms and group homomorphisms with innite kernel, Atti Semin. Mat. Fis. Univ.Modena Reggio Emilia 57, 2010, 3144.

[5] Boris Apanasov, Group Actions, Teichmuller Spaces and Cobordisms, Lobachevskii J. Math., 38, 2017, 213-228.[6] Boris Apanasov, Topological barriers for locally homeomorphic quasiregular mappings in 3-space, Ann. Acad. Sci.

Fenn. Math. 43, 2018, 579596.[7] Boris Apanasov, Hyperbolic topology and bounded locally homeomorphic quasiregular mappings in 3-space, (Bogdan

Bojarski Memorial Volume), J. Math. Sci. 242, 2019, 760-771 (Óêðà¨íñüêèé ìàòåìàòè÷íèé âiñíèê, Òîì 16 (2019), 1, 10-27)

[8] Boris Apanasov, Non-faithful discrete representations of hyperbolic lattices, hyperbolic 4-cobordisms and applications½Preprint, Univ. of Oklahoma, 2020, 25 pp.

[9] Boris N. Apanasov and Andrei V. Tetenov, Nontrivial cobordisms with geometrically nite hyperbolic structures, J.Di. Geom. 28, 1988, 407422.

Page 7: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

6

[10] K. F. Barth, D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math. Soc.16, 1984, no. 5, 490517.

[11] Mikhael Gromov and Ilia I. Piatetski-Shapiro, Non-arithmetic groups in Lobachevsky spaces, Publ. Math. IHES 66,1988, 93-103.

[12] W.K.Hayman and E.F. Lingham, Research problems in function theory, arXiv: 1809.07200[13] Mikhael A. Lavrentiev, On a class of continuous mappings, Mat. Sbornik, 42, 1935, 407424. (in Russian).[14] Seppo Rickman, Quasiregular Mappings, Ergeb. Math. Grenzgeb. 26, Springer, Berlin-Heidelberg, 1993.[15] Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math 1319, Springer, Berlin-

Heidelberg, 1988.

Page 8: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

7

Representation of gravi-electromagnetism using matrix algebra

Ismail Aymaz(Kutahya Dumlupnar University, Graduate School of Sciences, Department of Physics, Kutahya,

Turkey)E-mail: [email protected]

Mustafa Emre Kansu(Kutahya Dumlupnar University, Faculty of Art and Science, Department of Physics, Kutahya,

Turkey)E-mail: [email protected]

The vector, matrix and tensor algebras are frequently used in order to formulate many physical sys-tems and engineering problems [1]. The nature of quantum mechanics, which is one of the signicantareas of physics, has increased the importance of matrix algebra due to including non-commutativestructures. Therefore, matrix algebra satises the great contributions and developments. In this study,after dening matrix denitions of quaternion algebra [2, 3], which is one of the member of higher di-mensional algebra, both electromagnetism and linear gravity [4, 5, 6] are combined by using matrixrepresentation with dual [7] and complex [8] units. By this way, we have rstly showed the isomorphismand similarity between quaternion and matrix algebras for gravi-electromagnetism [9, 10].

References

[1] B. Jancewicz. Multivectors and Cliord Algebra in Electrodynamics. Singapore: World Scientic, 1989.[2] W. R. Hamilton. Elements of Quaternions. New York: Chelsea Publishing, 1969.[3] K. Gurlebeck and W. Sprossig. Quaternionic and Cliord Calculus for Physicists and Engineers. Chichester: Wiley,

1997.[4] O. Heaviside. A Gravitational and Elecromagnetic Analogy (Part I). The Electrician, 31: 281, 1893.[5] A.S. Rawat and O.P.S. Negi. Quaternion gravi-electromagnetism. Int. J. Theor. Phys., 51(3): 738, 2012.[6] B.S. Rajput. Unication of generalized electromagnetic and gravitational elds. J. Math. Phys., 25(2): 351, 1984.

[7] S. Demir and K. Ozdas. Dual quaternionic reformulation of electromagnetism. Acta Phys. Slov., 53(6): 429, 2003.[8] S. Demir, M. Tansl, N. Sahin and M.E. Kansu. Biquaternionic reformulation of multiuid plasma equations. Chinese

J. Phys., 55(4): 1329, 2017.[9] M. A. Gungor and M. Sarduvan. A note on dual quaternions and matrices of dual quaternions. Scientia Magna, 7(1):

1, 2011.[10] S. Demir. Matrix realization of dual quaternionic electromagnetism. Cent. Eur. J. Phys., 5(4): 487, 2007.

Page 9: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

8

Uniqueness of pretangent spaces at innity

Viktoriia Bilet(IAMM of the NASU, Dobrovolskogo Str. 1, Sloviansk, 84100, Ukraine)

E-mail: [email protected]

Oleksiy Dovgoshey(IAMM of the NASU, Dobrovolskogo Str. 1, Sloviansk, 84100, Ukraine)

E-mail: [email protected]

The pretangent spaces to an unbounded metric space (X, d) at innity are, by denition, some limits

of rescaling metric spaces(X, 1

rnd)with rn tending to innity. The GromovHausdor convergence and

the asymptotic cones are most often used for construction of such limits. Both of these constructionsare based on highorder logic abstractions (see, e.g., [5]), which makes them very powerful, but it doesaway the constructiveness. In [2, 3] we present and consider a more constructive approach to buildingan asymptotic structure of unbounded metric spaces at innity.The object of the present abstract is metric spaces having with unique pretangent spaces at innity.

The theorem below gives the necessary and sucient conditions under which an unbounded metricspace X has an unique pretangent space ΩX

∞,r at innity for every xed scaling sequence r.We will denote by A the class of spaces having the property

((X, d) ∈ A)⇔ ((X, d) is unbounded and ∀ r there is a unique ΩX∞,r).

Let (X, d) be a metric space and let p ∈ X. For each pair of nonempty sets C, D ⊆ X write

∆(C,D) := supd(x, y) : x ∈ C, y ∈ D.In addition we dene, for every ε ∈ (0, 1), the set S2

ε as

S2ε :=

(r, t) ∈ Sp2(X) : r 6= 0 6= t and

∣∣∣rt− 1∣∣∣ ≥ ε ,

where Sp2(X) is the Cartesian square of Sp(X) = d(x, p) : x ∈ X.

Theorem 1. [4] Let (X, d) be an unbounded metric space and let p be a point of X. Then (X, d) ∈ Aif and only if the following conditions are satised simultaneously.

(1) The limit relations

limk→1

lim supr→∞

diam(A(p, r, k))

r= lim

r→∞

diam(S(p, r))

r= 0

hold, where r ∈ (0,∞), k ∈ [1,∞), A(p, r, k) is the annulus x ∈ X : rk ≤ d(x, p) ≤ rk and

S(p, r) is the sphere x ∈ X : d(x, p) = r.(2) Let ε ∈ (0, 1). If ((qn, tn))n∈N ⊂ S2

ε and

limn→∞

qn = limn→∞

tn =∞,

and there islimn→∞

qntn

= c0 ∈ [0,∞],

then there exists a nite limit

limn→∞

∆(S(p, qn), S(p, tn))

|qn − tn|:= κ0.

It can be proved that conditions (1) and (2) from Theorem 1 are mutually independent in the sensethat no one of them implies the another.

Page 10: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

9

Corollary 2. Let (X, d) be a metric space and let Y be an unbounded subspace X. Then (X, d) ∈ Aimplies (Y, d) ∈ A.

Consider, for simplicity, logarithmic spirals having the pole at 0. The polar equation of these spiralsis

ρ = kbϕ, (1)

where k and b are constants, k ∈ (0,∞) and b ∈ (0, 1) ∪ (1,∞). The rotation of the polar axis on theangle ϕ1 = − ln k

ln b transforms (1) to the form

ρ = bϕ. (2)

Let us denote by S∗ the set of all complex numbers lying on spiral (2) and let

S = S∗ ∪ 0,i.e., S is the closure of S∗ in the complex plane C. In the following theorem we consider S as a metricspace with the usual metric d(z, w) = |z − w|.

Theorem 3. [4] Each pretangent space to (S, d) at innity is unique and isometric to S.

These results have natural innitesimal analogs (see [1]).

References

[1] F.Abdullayev, O. Dovgoshey, M. Kucukaslan. Metric spaces with unique pretangent spaces. Conditions of the unique-ness. Ann. Acad. Sci. Fenn. Math., 36(2): 353 392, 2011.

[2] V. Bilet, O. Dovgoshey. Asymptotic behavior of meric spaces at innity. Dopov. Nac. akad. nauk Ukr., 9: 9 14,2017.

[3] V. Bilet, O. Dovgoshey. Finite asymptotic clusters of metric spaces. Theory and Applications of Graphs, 5(2): 1 33,2018.

[4] V. Bilet, O. Dovgoshey. Uniqueness of pretangent spaces to metric spaces at innity. Ukrainian Math. Bulletin, 16(1):28 58, 2019.

[5] J. Roe. Lectures on Coarse Geometry, University Lecture Series 31, Providence, RI: American Mathematical Society,2003.

Page 11: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

10

Foliations of 3-manifolds with small module of mean curvature

Dmitry Bolotov(B. Verkin ILTPE of NASU, 47 Nauky Ave., Kharkiv, 61103, Ukraine)

E-mail: [email protected]

A taut foliation is a codimension one transversely oriented foliation of an oriented 3-manifold Mwith the property that for each leaf there is a transverse circle intersecting it.D. Sullivan proved that F is taut i each leaf is a minimal surface for some Riemannian metric on

M which is equivalent that F does not contain generalized Reeb components [1]. Recall that a surfaceF is called minimal if the mean curvature H of F is identically zero.In the present work we announce the following result.

Theorem 1 (Main theorem). Let (M, g) be a closed oriented Riemannian 3-Manifold sutisfying thefollowing properties:

(1) the volume V ol(M, g) ≤ V0;(2) the sectional curvature γ of (M, g) satises γ ≤ γ0 for the constant γ0 ≥ 0;(3) mininj(M, g), π

2√γ0 ≥ i0.

Then there is a constant H0(V0, γ0, i0) such that any transversally oriented foliation F of codimensionone on M with the mean curvature of the leaves satisfying |H| < H0, must be taut. The constant H0

is dened as wollowing:

H0 =

min2√

3i20V0

, 3

√2√

3V0, if γ0 = 0,

min2√

3i20V0

, x0, if γ0 > 0,

(∗)where x0 is the positive root of the equation

4

γ0arcctg2 x

√γ0− 2V0√

3x = 0.

Let us recall that, by the Novikov's theorem [2], if π1(M) < ∞ or π2(M) 6= 0, then excepting thefoliation of S2×S1 by spheres, F contains a Reeb component. Thus we obtain the following corollary.

Corollary 2. Let (M, g) be a Riemannian manifold that satises the properties in the theorem above.If π1(M) < ∞ or π2(M) 6= 0, then excepting the foliation of S2 × S1 by spheres, (M, g) does notadmit a foliation with the mean curvature H of leaves satisfying the inequality |H| < H0, where H0 isdetermined from (∗).

References

[1] Dennis Sullivan. A homological characterization of foliations consisting of minimal surfaces Commentari Math. Hel-vetici , 54 : 218223, 1979.

[2] Ñ. Ï. Íîâèêîâ. Òîïîëîãèÿ ñëîåíèé Òð. Ìîñê. ìàò. î-âà., 14 : 249278, 1965.

Page 12: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

11

On integrability of geodesic ows on 3-dimensional manifolds

Alexey Bolsinov(School of Mathematics, Loughborough University, Leicestershire, LE11 3TU, UK)

E-mail: [email protected]

The goal of the talk is to discuss the behaviour of geodesics on 3-manifolds M with SL(2,R)geometry, one of the eight natural geometries according to Thurston, appearing on three-dimensionalmanifolds. It has been known that the corresponding geodesic ows cannot be integrable, however,this particular case has not been studied in detail. The situation turned out quite interesting: we haveobserved (joint work with Alexander Veselov and Yiru Ye [6]) that the phase space T ∗M contains to twoopen domains, complementary to each other and having common boundary, with integrable and chaoticbehaviour of geodesics. In the integrable domain, we have integrability in the class of real-analyticintegrals, whereas in the chaotic domain the geodesic ow has positive topological entropy. As a specicexample, we study in more detail the geodesic ow on the modular 3-manifoldM = SL(2,R)/SL(2,Z)homeomorphic to the complement of a trefoil knot K in 3-sphere.I will try to talk about these results in the context of a more general problem on topological ob-

structions to integrability of geodesic ows on smooth manifolds following papers by V.V.Kozlov [1],I. A.Taimanov [6, 4] and L.Butler [3, 5].This work was supported by the Russian Science Foundation grant no. 17-11-01303 Topological

and algebraic aspects of the theory of integrable systems: new trends and applications.

References

[1] V.V. Kozlov Topological obstructions to the integrability of natural mechanical systems. Soviet Math. Dokl. 20 (1979),1413-1415.

[2] I.A. Taimanov Topological obstructions to integrability of geodesic ows on non-simply-connected manifolds. Math.USSR Izv. 30 (1988), 403-409.

[3] L. Butler A new class of homogeneous manifolds with Liouville-integrable geodesic ows. C. R. Math. Acad. Sci. Soc.R. Can. 21(1999), no. 4, 127-131.

[4] A.V. Bolsinov, I.A. Taimanov Integrable geodesic ows with positive topological entropy. Invent. Math. 140 (2000),639-650.

[5] L.T. Butler Invariant brations of geodesic ows. Topology 44:4 (2005), 769-789.[6] A.V.Bolsinov, A.P.Veselov, Y.Ye Chaos and integrability in SL(2,R)-geometry (in progress)

Page 13: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

12

Algebraic and geometric questions about the EM helix

Enzo Bonacci(Liceo Scientico Statale G.B. Grassi, Latina, Italy)E-mail: [email protected]

The recent proposal to detect Dark Matter through the Aharonov-Bohm eect [10] has renovatedthe interest for cosmological solutions based upon magnetic monopoles [8]. Challenging the Λ-CDMparadigm, some alternative representations are grounded on interactions with hypothetical magneticcharges [6] whereas others suppose the inuence of relic magnetic atoms [4]. This raises two apparentlyseparate issues about why magnetic monopoles have never been spotted and where those elusive parti-cles come from. More than a decade ago [1, 2, 3] we described the materialization of mass from radiantenergy as a process requiring the indistinguishability between the inertial reference frames at v = c(SOL, i.e., speed of light) and those at v < c (STL, i.e., slower than light). Such rigorous interpretationof the relativity principle could clarify the entanglement between temporally separated photons [7] andwould allow the self-interacting electromagnetic rings, possible in SOL reference frames (characterizedby atemporality), to be perceived as electromagnetic helices for STL observers. Namely, we assumedthat a charged mass (both electric and magnetic) could be an electromagnetic helix, thus explainingsome intrinsic quantities of particles and the absence of magnetic monopoles at low energies. Ourmodel has been indirectly corroborated by the observation of the light self-torque [9] and could ndfuture conrmation from a promising method to determine the geometry of an electron [5]. We wish toillustrate the algebraic and geometric questions behind a so formulated mathematical-physical theory,included a falsication test currently being assembled at CERN's MoEDAL.

References

[1] Enzo Bonacci. Absolute Relativity. Turin : Carta e Penna, 2007.[2] Enzo Bonacci. Extension of Einstein's Relativity, volume 42 of Physical Sciences. Rome : Aracne Editrice, 2007.[3] Enzo Bonacci. Beyond Relativity, volume 43 of Physical Sciences. Rome : Aracne Editrice, 2007.[4] Vladimir V. Burdyuzha. Magnetic Monopoles and Dark Matter. Journal of Experimental and Theoretical Physics,

127(4) : 638646, 2018.[5] Leon C. Camenzind et al. Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields. Physical Review

Letters, 122(20) : 207701, 2019.[6] Valentin V. Khoze & Gunnar Ro. Dark matter monopoles, vectors and photons. Journal of High Energy Physics,

10(61), 2014.[7] Eli Megidish et al. Entanglement Swapping between Photons that have Never Coexisted. Physical Review Letters,

110(21) : 210403, 2013.[8] Arttu Rajantie. Magnetic Monopoles in Field Theory and Cosmology. Philosophical Transactions of The Royal Society

A Mathematical Physical and Engineering Sciences, 370(1981) : 57055717, 2012.[9] Laura Rego et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science,

364(6447) : eaaw9486, 2019.[10] John Terning & Christopher B. Verhaaren. Detecting Dark Matter with Aharonov-Bohm. Journal of High Energy

Physics, 12(152), 2019.

Page 14: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

13

Geodesics on regular tetrahedra in spherical space

Alexander A. Borisenko( B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of

Sciences of Ukraine, Kharkiv, Ukraine)E-mail: [email protected]

Darya D. Sukhorebska( B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of

Sciences of Ukraine, Kharkiv, Ukraine)E-mail: [email protected]

The full classication of closed geodesics on regular tetrahedra in Euclidean space follows from thetiling of Euclidean plane by regular triangles [1].In [2] we described a complete classication of simple (without self-intersections) closed geodesics

on regular tetrahedra in hyperbolic 3-space. In addition, we presented the asymptotic of the numberof simple closed geodesics of length not greater than L as L tends to innity.In current work we described all simple closed geodesics on regular tetrahedra in three-dimensional

spherical spaces. In this space the tetrahedron's curvature is concentrated both into its vertices andinto its faces. The value α of the faces' angle of a tetrahedron satises π/3 < α < 2π/3. The intrinsicgeometry of a tetrahedron depends on α.By denition a simple closed geodesic on a tetrahedron has the type (p, q) if it has p points on each

of two opposite edges of the tetrahedron, q points on each of another two opposite edges, and thereare (p+ q) points on each edges of the third pair of opposite one.We proved that on a regular tetrahedron in spherical space there exists the nite number of simple

closed geodesic. The length of all these geodesics is less than 2π. Furthermore, for any coprimeintegers (p, q) we found the numbers α1 and α2 depending on p, q and satisfying the inequalitiesπ/3 < α1 < α2 < 2π/3 such that1) if the faces' angle of a regular tetrahedron is measured α ∈ (π/3, α1) then in spherical space thereexists unique, up to the rigid motion, simple closed geodesic of type (p, q) on this tetrahedron,2) if the value α of faces' angle is in (α2, 2π/3) then there is no simple closed geodesic of type (p, q)on the tetrahedron with such faces' angle in spherical space.

References

[1] D. B. Fuchs, E. Fuchs. Closed geodesics on regular polyhedra. Mosc. Math. J., 7:2, 2007, p. 265279.[2] A. A. Borisenko, D. D. Sukhorebska. Simple closed geodesics on regular tetrahedra in hyperbolic space, Mat. Sb.,

211:5, 2020, p. 3-30 (in Russian). English translation: SB MATH, 2020, 211(5), DOI:10.1070/SM9212

Page 15: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

14

Motivic hypercohomology solutions in eld theory II

Francisco Bulnes(IINAMEI, Research Department in Mathematics and Engineering, TESCHA, Chalco, Mexico. )

E-mail: [email protected]

2010 AMS Classication: 13D03, 13D09, 18G40, 19D23, 19D55, 24D23.

Keywords: Derived Categories, Derived Tensor Products, Etale Sheaves, Geometrical MotivesCategories, Hypercohomology, Quantum Field Equations, Tensor Derived Category.

The determination of a hypercohomology as cohomology group where are dened the solutions of theeld equations obeys to the triangulated derived categories that permit an scheme (triangle) commu-tative whose integrals are solutions of the eld equations. The determination of this hypercohomologyarises of the fact of that derived motivic category DMgm(k), which is of the motivic objects whoseimage is under Spec(k), that is to say, an equivalence of the underlying triangulated tensor categories,

compatible with respective functors on SmOpk . The geometrical motives will be risked with the moduli

stack to holomorphic bundles. kewise, is analysed the special case where complexes C = Q(q), areobtained when cohomology groups of the isomorphism Hp

et(X,Fet)∼= Hp

Nis(X,FNis), can be vanishedfor p > dim(Y ). We observe also the Beilinson-Soule vanishing conjectures where we have the van-ishing Hp(F,Q(q)) = 0, if p ≤ 0, and q > 0, which conrms the before established. Then survivesa hypercohomology Hq(X,Q). Then their objects are in Spec(Smk). Likewise for the complex Rie-mannian manifold the integrals of this hypercohomology are those whose functors image will be inSpecHSymT(OPLG(D)), which is the variety of opers on the formal disk D, or neighborhood of allpoint in a surface Σ.

References

[1] Francisco Bulnes, Characteristic Cycles Integration on D- Modules to obtaining of Field Equations solutions on LHolomorphic Bundles, International Journal of Advances in Mathematics, Volume 2019, Number 4, pp. 117, 2019.

[2] Francisco Bulnes, & Ivan Verkelov. (2020). Scheme of Derived Moduli Problem to the quantum version of an algebrasymT. IJRDO Journal of Mathematics (ISSN: 2455-9210), 6(3), 0112. Retrieved from https://www.ijrdo.org/

index.php/m/article/view/3534

[3] F. Bulnes. (2020) Geometrical Motives Categories to Determine Co-Cycles as Solutions in Field Theory, TheoreticalMathematics and Applications, Vol. 10 (2), pp. 1531.

[4] F. Bulnes. (2017) Extended ∂ Cohomology and Integral Transforms in Derived Geometry to QFTequationsSolutions using Langlands Correspondences, Theoretical Mathematics and Applications, Vol. 7 (2), pp. 5162.

Page 16: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

15

Estimate of maximum of the products of inner radii of mutuallynon-overlapping domains

Iryna Denega(Department of complex analysis and potential theory, Institute of mathematics of the National

Academy of Sciences of Ukraine, 3 Tereschenkivska St, 01024 Kyiv, Ukraine)E-mail: [email protected]

Let N, R be the sets of natural and real numbers, respectively, C be the complex plane, C = C⋃∞

be its one point compactication, U be the open unit disk in C and R+ = (0,∞). Let r(B, a) be aninner radius of the domain B ⊂ C relative to a point a ∈ B [14]. The inner radius of the domain Bis connected with Green's generalized function gB(z, a) of the domain B by the relations

gB(z, a) = − ln |z − a|+ ln r(B, a) + o(1), z → a,

gB(z,∞) = ln |z|+ ln r(B,∞) + o(1), z →∞.

The system of points An := ak ∈ C, k = 1, n , n ∈ N, n > 2, is called n-radial, if |ak| ∈ R+ fork = 1, n and

0 = arg a1 < arg a2 < . . . < arg an < 2π.

Consider the following extremal problem.Problem. For all values of the parameter γ ∈ R+ to nd estimate of the maximum of the functional

Jn(γ) = [r (B0, 0) r (B∞,∞)]γn∏k=1

r (Bk, ak) , (1)

where n ∈ N, n > 2, a0 = 0, An = aknk=1 ∈ C/0,∞ be any xed n-radial system of dierent points,

B0, B∞, Bknk=1 be a system of mutually non-overlapping domains, 0 ∈ B0 ⊂ C, ∞ ∈ B∞ ⊂ C,ak ∈ Bk ⊂ C, k = 1, n.The following proposition is true.

Theorem 1. Let n ∈ N, n > 2, γ ∈ R+. Then, for any xed n-radial system of dierent pointsAn = aknk=1 ∈ C/0,∞ and any mutually non-overlapping domains B0, B∞, Bk, a0 = 0 ∈ B0 ⊂ C,∞ ∈ B∞ ⊂ C, ak ∈ Bk ⊂ C, k = 1, n, the following inequalities hold

Jn(γ) 6

(n+ 1)−γ

n+1n+2

[n∏k=1

r (Bk, ak)

]1− 2γn+2 n∏

k=1

|ak|2γn+2 , if γ ∈

(0, n+2

2

];

(n+ 1)−n+1

2

n∏k=1

|ak|, if γ > n+22 .

Remark 2. If γ = n+22 and

n∏k=1

|ak| 6 1, then from above posed Theorem 1, the following inequality

holds

[r (B0, 0) r (B∞,∞)]n+2

2

n∏k=1

r (Bk, ak) 6 (n+ 1)−n+1

2 .

In this case the structure of points and domains is not important.

Page 17: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

16

For any n-radial system of points An = aknk=1, |ak| = 1, and any pairwise non-overlapping domains

Bknk=1, ak ∈ Bk ⊂ C, k = 1, n, the inequalityn∏k=1

r(Bk, ak) 6 2nn∏k=1

αk

is valid (see Corollary 5.1.3 [1]). In Theorem 6.11 [2] for any dierent points ak on the circle |ak| = 1,k = 1, n (n > 2), and any pairwise non-overlapping domains Bk ⊂ C such that ak ∈ Bk, k = 1, n, theinequality

n∏k=1

r (Bk, ak) 6

(4

n

)nis proved. Thus, from Theorem 1 we have next result.

Corollary 3. Let n ∈ N, n > 2, γ ∈ R+. Then, for any system of dierent points aknk=1 of the

unit circle |ak| = 1 and any mutually non-overlapping domains B0, B∞, Bk, a0 = 0 ∈ B0 ⊂ C,∞ ∈ B∞ ⊂ C, ak ∈ Bk ⊂ C, k = 1, n, the following inequalities hold

Jn(γ) 6

(n+ 1)−γ

n+1n+2

(4

n

)n− 2γnn+2

, if γ ∈(0, n+2

2

];

(n+ 1)−n+1

2 , if γ > n+22 .

If B0 ⊂ U, then from the proof of the Theorem 1, the following results are valid.

Corollary 4. Let n ∈ N, n > 2, γ ∈ R+ and B0 ⊂ U. Then, for any system of dierent points aknk=1

of the unit circle |z| = 1 and any mutually non-overlapping domains Bk, ak ∈ Bk ⊂ C, k = 0, n, a0 = 0,and the domains Bk, k = 1, n, are mirror-symmetric relative to the unit circle |z| = 1, the inequalityholds

r2γ (B0, 0)n∏k=1

r (Bk, ak) 6 (n+ 1)−n+1

2 .

Corollary 5. Let n ∈ N, n > 2, γ ∈ R+, R > 0 and B0 be an arbitrary domain belonging to the opencircle |w| < R. Then, for any n-radial system of dierent points An = aknk=1 such that |ak| = R,

k = 1, n, and any mutually non-overlapping domains Bk, ak ∈ Bk ⊂ C, k = 0, n, a0 = 0, and thedomains Bk, k = 1, n, are mirror-symmetric relative to the circle |w| = R, the inequality holds

r2γ (B0, 0)n∏k=1

r (Bk, ak) 6 (n+ 1)−n+1

2 ·R2γ .

This work was supported by the budget program "Support of the development of priority trends ofscientic researches" (KPKVK 6541230).

References

[1] A.K. Bakhtin, G.P. Bakhtina, Yu.B. Zelinskii. Topological-algebraic structures and geometric methods in complexanalysis. Zb. prats of the Inst. of Math. of NASU, 2008. (in Russian)

[2] V.N. Dubinin. Condenser capacities and symmetrization in geometric function theory. Birkhauser/Springer, Basel,2014.

[3] G.V. Kuz'mina. Problems of extremal decomposition of the Riemann sphere. Zap. Nauchn. Sem. POMI, 276 : 253275, 2001. (in Russian)

[4] P.M. Tamrazov. Extremal conformal mappings and poles of quadratic dierentials. Izv. Akad. Nauk SSSR Ser. Mat.,32(5) : 10331043, 1968. (in Russian)

Page 18: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

17

Inverse problem for tree of Stietjes strings

A. Dudko(South Ukrainian National Pedagogical University named after K.D. Ushynsky)

E-mail: [email protected]

V. Pivovarchik(South Ukrainian National Pedagogical University named after K.D. Ushynsky)

E-mail: [email protected]

Finite-dimensional spectral problems on an interval were considered in [1] (some recent results seein [4], [3] and applications in [2]). Finite-dimensional spectral problems on graphs occur in variouselds of physics (see e.g. [5], [6] and [7]).We consider a tree T rooted at a pendant vertex. All edges are directed away from the root. Each

edge ej of this tree is a Stieltjes string with point masses mjk (k = 1, 2, . . . , nj , j = 1, 2, ..., q) and

subintervals ljk (k = 0, 1, . . . , nj). The total length of ej is lj =nj∑k=0

ljk. We denote nj = nj − 1 if

ljnj = 0 and nj = nj if ljnj > 0. The Dirichlet problem on this tree consists of the following equations.

For each edge:

ujk − ujk+1

ljk+ujk − u

jk−1

ljk−1

−mjkλ

2ujk = 0, (k = 1, 2, . . . , nj , j = 1, 2, ..., q). (1)

For each interior vertex with incoming edge ej and outgoing edges er we have

ujnj+1 = ur0, (2)

andujnj+1 − u

jnj

ljnj

+∑r

ur0 − ur1lr0

=

0, if ljnj > 0,

−mjnjλ

2ujnj , if ljnj = 0.(3)

For an edge ej incident with a pendant vertex (except of the root) we have the Dirichlet boundarycondition:

ujnj+1 = 0. (4)

If e1 is the edge incident with the root then at the root we have

u10 = 0. (5)

The Neumann problem consists of equations (1)(4) and

u10 = u1

1. (6)

at the root.First of all we notice that interior vertices of degree 2 do not inuence the results and we can

assume absence of such vertices without losses of generality. Let P be a path in the tree T involvingthe maximum number of masses. Obviously it starts and nishes with pendant vertices. We denotethe initial vertex of P by v0 and choose it as the root of the tree. The enumeration of other verticesis arbitrary. We denote the edge incoming into a vertex vi by ei for all i. Then P : v0 → v1 → vs2 →vs3 → ...→ vsr−1 → vsr . Deleting v0 and e1 we obtain a new tree T ′ rooted at the vertex v1.Since the degree of v1 is d(v1) > 2 we can divide our tree T ′ into subtrees T ′1, T

′2, ..., T

′d(v1)−1 having

v1 as the only common vertex. (We say that T ′1, T′2, ..., T

′d(v1)−1 are complementary subtrees of T

′.

Page 19: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

18

Denote by φN(v0)(z) (where z = λ2) the characteristic polynomial of problem (1) (4), (6) on the

tree T and by φD(v0)(z) the characteristic polynomial of problem (1) (4), (5) on this tree. These

polynomials are normalized such that

φD(v0)(0)

φN(v0)(0)= l1 +

1

d(v1)−1∑r=1

φNr(v1)(0)

φDr(v1)(0)

,

φD,r(v1)(z) is the characteristic polynomial of the Dirichlet problem (1) (4), (5) on T ′r and φN,r(v1)(z)is the characteristic polynomial of the Neumann problem (1) (4), (6) on T ′r and so on.

The inverse problem lies in recovering the spectral problem data mjknjk=1, l

jknjk=0 using the spectra

µknk=−n, k 6=0 and νknk=−n, k 6=0 of the Neumann and Dirichlet problems.The following theorem gives sucient conditions for existence of solution of such inverse problem.

Theorem 1. Let µknk=−n, k 6=0 and νknk=−n, k 6=0 be symmetric (µ−k = −µk, ν−k = −νk) andmonotonic sequences of real numbers which interlace:

0 < (µ1)2 < (ν1)2 < ... < (µn)2 < (νn)2.

Let T be a metric tree of a prescribed form rooted at a pendant vertex v0 with prescribed lengths ofedges lj > 0 (j = 1, 2, ..., q, q is the number of edges in T ).Then1) there exist numbers nj ∈ 0 ∪ N (j = 1, 2, ..., q), sequences of positive numbers mj

knjk=1 (point

masses on the edge ej, j = 1, 2, ..., q) and numbers ljknjk=0 (ljk > 0 for all k = 0, 1, ..., nj − 1, lnj ≥ 0

for all j = 1, 2, ..., g such thatnj∑k=0

ljk = lj,q∑j=1

nj = n, the spectrum of Neumann problem (1)(4),

(6), coincides with µknk=−n, k 6=0 and the spectrum of Dirichlet problem (1)(4), (5) coincides with

νknk=−n, k 6=0;

2) the two spectra µknk=−n, k 6=0 and νknk=−n, k 6=0 and the length l1 of the edge incident with the

root uniquely determine the masses m1kn1k=1 (point masses on the edge e1) and lengths l1k

n1k=0 of the

subintervals on this edge.

References

[1] F.R.Gantmakher and M.G.Krein. Oscillating matrices and kernels and vibrations of mechanical systems. AMS ChelseaPublishing, Providence, RI, 2002.

[2] A. F. Filimonov and A. D. Myshkis. On properties of large wave eect in classical problem bead string vibration. J.Dierence Equations and Applications, 10(13-15) : 11711175, 2004.

[3] Che-Wei Tsao, Chun-Kong Law. The Stieltjes string and its associated nodal points. Operators and Matrices, 13(2):363373, 2019.

[4] S.J. Cox, M. Embree and J.M. Hokanson. One can hear the composition of a string: experiments with an inverseeigenvalue problem. SIAM Rev., 54(1) : 157178, 2012.

[5] A. Morassi, G. Gladwell. Dynamical Inverse Problems: Theory and Applications. CISM Courses and Lectures 529,129, 2011.

[6] G. Gladwell. Inverse problems in vibration. SIAM Rev., 2004.[7] J.S. Maybee, J. Genin. Mechanical vibration trees. J. Math. Anal. Appl., 45: 746763, 1974.

Page 20: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

19

Formal groups and algebraic cobordism

Nikolaj Glazunov(NAU, Kiev, Ukraine)

E-mail: [email protected]

We present our algorithm for constructing of Lazard`s one dimensional universal commutative formalgroup. We apply it to some constructions of complex and algebraic cobordism.

Algorithm for constructing of Lazard`s one dimensional universal formal group

Here we follow to [1, 5, 8]. We extract from Lazard [1] an algorithm of constructing of Lazard`s onedimensional universal formal group law. The constructions of n(n ≥ 1)-buds, formal groupoids andmoduli spaces of one dimensional formal groups are investigated and are used. Let Aq and A

‘q be the

rings of polynomials Aq = Z[α1, . . . , αq] and A‘q = Q[α1, . . . , αq].

Proposition 1. The structure of the algorithm has the next form. For the (one-dimensional) 1-budx+ y + α1xy we put:

f1(x, y) = x+ y + α1xy; ϕ1 = x− 1

2α1x

2;

fq+1(x, y) = fq(x, y) + h‘(x, y) + αq+1Cq+2(x, y), fq(x, y) ∈ Aq;

compute ϕq+1, ϕq+1 ∈ A‘q.

Remark 2. The algorithm and expressions for ϕq+1, h‘(x, y), Cq+2(x, y) will be given in my talk.

Denition 3. The ring L = Z[α1, α2, · · · ] is called the Lazard ring.

Formal groups in complex cobordism

Here we follow to [2, 3, 4, 6].LetM be a smooth manifold, TM be the tangent bundle onM and Rm the trivial realm-dimensional

bundle of M .

Denition 4. A manifoldM is stably complex if for some natural m the real vector bundle TM⊕

Rmadmits a complex structure.

Let M1 and M2 be two smooth manifolds of dimension n, and W be the smooth manifold ofdimension n+ 1 with a boundary that is the union of M1 and M2, i.e. ∂W = M1 +M2.

Denition 5. Let M1,M2,W be stably complex manifolds. In above notations the complex (unitary)cobordism between M1 and M2 is a manifold W whose boundary is the disjoint union of M1, M2,∂W = M1 + M2 where the corresponding structure on ∂W is induced from W and M2 denotes themanifold with opposite structure.

Remark 6. Suppose we have the relation of complex cobordism. Then the relation divides stablycomplex manifolds on equivalence classes called classes of complex cobordisms.

Lemma 7. The set of classes of complex cobordisms with operations of disjoint union and product ofstable manifolds form commutative graded ring L = Z[v1, v2, · · · ] .

Page 21: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

20

Theorem 8 (A. S. Mishchenko). Let g(t) be the logarithm of Lazard universal formal group, and [CPn]are classes of unitary cobordisms of complex projective spaces. Then

g(t) =∑n≥0

[CPn]

n+ 1tn+1, [CP 0] = 1.

Formal groups in algebraic cobordism

Here we follow to [7]. Let k be a eld of characteristic zero and Sm(k) be the full subcategoryof smooth quasi-projective k-schemes of the category of separable nite-type k-schemes. Let A∗ bean oriented cohomology theory on Sm(k) and let c1(L) be the rst Chern class of line bundle L onX ∈ Sm(k).

Proposition 9 (Quillen, [7]). Let L, M be line bundles on X ∈ Sm(k). There exists formal grouplaw FA with coecients in A∗ such that

c1(L⊗M) = FA(c1(L), c1(M)).

Theorem 10 (Levine-Morel). There is a universal oriented cohomology theory Ω over k called algebraiccobordism. The classifying map φΩ : L → Ω∗(k) is an isomorphism , so FΩ is the universal formalgroup law.

Problem 11. It seems that very little is known about applying n(n ≥ 2)-dimensional commutativeformal groups to cobordism theory. For instance what is the application of a two-dimensional 1-bud ?

References

[1] M. Lazard. Sur les groupes de Lie formels a un parametre, Bull. Soc. Math. France, 83(3): 251-274, 1955,[2] S.P. Novikov. Homotopy properties of Thom complexes.Mat. Sbornik, vol. 57, no. 4, 407-442, 1962.[3] Vi. Buchstaber, A. Mishchenko, S. Novikov. Formal groups and their role in the apparatus of algebraic topology.

Uspekhi Mat. Nauk, vol. 26, no. 2, 131-154, 1971.[4] S.P. Novikov. Algebraic topology at the Steklov mathematical institute of the academy of sciences of the USSR Trudy

Mat. Inst. Steklov, vol. 169, 27-49, 1985.[5] M. Hazewinkel. Formal groups and applications, New York : Academic Press, 1978.[6] V. M. Buchstaber, T. E. Panov. Torus actions in topology and in combinatorics, Moscow : MTcNMO, 2004.[7] Mark Levine, Fabien Morel. Algebraic cobordism, Monographs in Mathematics. Berlin & New York : Springer, 2007.[8] N. Glazunov. Duality in abelian varieties and formal groups over local elds. I. Chebyshevskii Sbornik, vol. 19, no.1,

44-56, 2018.

Page 22: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

21

A note on tensor product of Archimedean vector lattices

Omer Gok(Yildiz Technical University, Mathematics Department, Istanbul, Turkey)

E-mail: [email protected]

Let E ,F and G be Archimedean vector lattices. We say that a linear operator T : E → F is a latticehomomorphism if T (x∨ y) = Tx∨ Ty for every x, y ∈ E. A bilinear map Φ : E ×F → G is said to bepositive if |Φ(x, y)| ≤ Φ(|x|, |y|) for all x ∈ E and y ∈ F . The bilinear map Φ : E×F → G is said to belattice bilinear map (or lattice bimorphism) whenever it is separately lattice homomorphisms for eachvariable or equivalently, |Φ(x, y)| = Φ(|x|, |y|) for all x ∈ E and y ∈ F . Let E and F be Archimedeanvector lattices. Then, by [6] and [7] there exists an Archimedean vector lattice E

⊗F (called Fremlin

tensor product) and a map⊗

: E × F → E⊗F with the following well-known properties :

(i)⊗

is a lattice bimorphism and represents E⊗F as a linear subspace of E

⊗F .

(ii) If G is any Archimedean vector lattice, there is a one to one correspondence between latticebimorphisms ψ : E × F → G and lattice homomorphisms τ : E

⊗F → G given by ψ = τ

⊗.

(iii) E⊗F is dense in E

⊗F . It means that for any u ∈ E

⊗F there exist 0 ≤ x ∈ E and

0 ≤ y ∈ F such that for every δ > 0 there is a v ∈ E⊗F with | u− v |≤ δx⊗ y.

(iv) E⊗F is order dense in E

⊗F . That is, if 0 < u in E

⊗F there exist 0 < x in E, 0 < y in F

such that 0 < x⊗ y ≤ u.(v) f u ∈ E

⊗F there exist 0 ≤ x ∈ E, 0 ≤ y ∈ F such that | u |≤ x⊗ y.

(vi) If G is any Archimedean vector lattice and Φ : E × F → G is a lattice bimorphism such thatΦ(x, y) > 0 whenever x > 0 in E and y > 0 in F , then E

⊗F may be identied with the lattice

subspace of G generated by Φ(E × F ).

Denition 1. Let E be a vector lattice and U be a subset of E. U is called a solid subset if | x |≤| y |and y ∈ U imply x ∈ U . A solid subspace of E is called an order ideal. An order closed ideal is saidto be a band.

In this talk, we deal with tensor product of two order ideals. Let E be a uniformly complete vectorlattice and x ∈ E. An order ideal generated by x is given by

Ux = y :| y |≤ λ | x | for some λ > 0.

Order unit norm on Ux is given by

‖y‖ = infλ > 0 :| y |≤ λ | x |.

Ux is algebraically and order isomorphic to an AM space with unit. Every AM space with unit is aC(K) space for some compact Hausdor space K with unit. Hence, Fremlin tensor product of twoorder ideals generated by single elements is an order ideal. For general case, we need the denition oforthomorphism. A linear operator T : E → E is called an orthomorphism if it is both band preservingand order bounded. By using orthomorphism, we can show that Fremlin tensor product of two orderideals is an order ideal.

Theorem 2. Fremlin tensor product of two order ideals generated by single elements in a uniformlycomplete vector lattice is an order ideal.

For this subject, we give the following references.

Page 23: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

22

References

[1] C.D. Aliprantis, Owen Burkinshaw, Positive Operators. New York: Academic Press, 1985.[2] Y.Azouzi, M.A. Ben Amor, J. Jaber, The tensor product of f-algebras, Quastiones Math., 41(3), (2018), 359-369.[3] K.Boulabiar, M.A. Toumi, Lattice bimorphisms on f-algebras, Algebra Univers.,48(2002),103-116.[4] K.Boulabair, Extensions of orthosymmetric lattice bilinear maps revisted, Proc. Am. Math. Soc., 135 (2007), 2007-

2009.[5] G.Buskes, A.G. Kusraev, Representation and extension of orthoregular bilinear operators, Vladikavkaz. Mat. Zh., 9,

1(2007), 16-29.[6] D.H. Fremlin, Tensor product of Archimedean vector lattices, Amer. J. Math. vol. 94, (1972),777-798.[7] D.H. Fremlin, Tensor products of Banach lattices,Math. Ann.211,(1974), 87-106.[8] J.J. Grobler, C.C.A. Labuschagne G.Buskes,The tensor product of Archimedean ordered vector spaces,Math. Proc.

Camb.Philos., Soc. 104 (1988), 331-345.

Page 24: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

23

Trace Regularization Problem On a Banach Space

Erdal Gul(Yildiz Technical University, Mathematics Department, Istanbul, Turkey)

E-mail: [email protected]

Let H be a separable Hilbert space and let S1[H] be the trace class operators on H (First SchattenClass, [3]).

Consider H1 = L2(H; [0, π]) and dene an inner product on H1 by:

(f, g)H1=

∫ π

0(f(t), g(t))Hdt

for all f, g ∈ H1.

• With this inner product, H1 is also a separable Hilbert space.

Here, we study the same problem in [2], with H replaced by a arbitrary separable Banach space B,under the following conditions:

(1) Q(t) has a weak second-order derivative in [0, π] and for t ∈ [0, π], Q(i)(t) (i = 0, 1, 2) is a selfadjoint trace class operator on B.

(2) ‖Q‖H1< 1.

(3) H1 has an o.n.b. ϕn∞n=1 such that∑∞

n=1 ‖Qϕn‖H1<∞.

(4)∥∥Qi(t)∥∥

S1[B](i = 0, 1, 2) is a bounded measurable function on [0, π].

It is clear from (4), that this is a nontrivial problem since, among other things, in the standardapproach, there are a number of possible denitions of S1[B] (see [3] and Pietsch [9]).We assume that B is a continuous dense embedding in a separable Hilbert space H and for eachf, g ∈ B, (f, g)h = (f, g)H is the Hilbert functional on B.

Theorem 1 (Polar Representation Theorem). Let B be a separable Banach space. If A ∈ C[B], thenthere exists a partial isometry U and a self-adjoint operator T , with D(T ) = D(A) and A = UT .

Furthermore, T = [A∗A]1/2 in a well-dened sense.

Def. If A ∈ S1[B], we called it a trace class (or nuclear) operator on B.* Since Sp[H] is a two sided ∗ideal, it follows that the same is true for Sp[B].* For 1 ≤ p <∞, A ∈ Sp[B] and B ∈ L[B] then AB,BA ∈ Sp[B] and

‖AB‖Sp[B] ≤ ‖B‖L[B] ‖A‖Sp[B]

‖BA‖Sp[B] ≤ ‖B‖L[B] ‖A‖Sp[B]

Lemma 2. If λ /∈ σ(L0) then QR0(λ) ∈ S1[H1]

Lemma 3. The operator valued function R(λ)−R0(λ) is analytic in ρ(L), the resolvent set of L, withrespect to the S1[H1] norm.

Theorem 4. The regularized trace formula for operator L on B with the conditions on operator func-tion Q(t) is given by

∞∑m=0

[ ∞∑n=1

(λmn − µm)− 1

π

∫ π

0trQ(t)dt

]=

1

4[tr(Q(0) + trQ(π)

Page 25: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

24

References

[1] A. Grothendieck, Products tensoriels topologiques et espaces nucleaires, Memoirs of the American MathematicalSociety, 16 (1955).

[2] E. Gul, On the regularized trace of a second order dierential operator, Applied Mathematics and Computation 198:471-480, 2008.

[3] T. L. Gill and W. W. Zachary, Functional Analysis and the Feynman operator Calculus, Springer, New York, (2016).[4] J. Kuelbs, Gaussian measures on a Banach space, Journal of Functional Analysis 5 (1970), 354367.[5] P. D. Lax, Symmetrizable linear tranformations, Comm. Pure Appl. Math. 7 (1954), 633-647.[6] G. Lumer, Spectral operators, Hermitian operators and bounded groups, Acta. Sci. Math. (Szeged) 25 (1964), 75-85.[7] L. A. Lusternik and V. J. Sobolev, Elements of functional analysis, (English Translation) Fredrich Ungar, New York,

(1979).[8] G. Maksudov, M. Bayramoglu and E. E. Adguzelov, On regularized trace of Sturm-Liouville operator on a nite

interval with the unbounded operator coecient, Dokl. Akad. Nauk SSSR 30(1), (1984), 169-173.[9] A. Pietsch, History of Banach Spaces and Operator Theory, Birkhauser, Boston, (2007).[10] S. J. Szarek, Banach space without a basis which has the bounded approximation property, Acta Math. 159, (1987),

81-98.

Page 26: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

25

Centrally extended generalization of the superconformal loop Liealgebra and integrable heavenly type systems on supermanifolds

Oksana Ye. Hentosh(Pidstryhach Inst. for Applied Problems of Mech. and Math., NASU, Lviv, Ukraine)

E-mail: [email protected]

Let us consider the semi-direct sum G n G∗reg of the loop Lie algebra G := diff(T1|N ), consisting of

the superconformal vector elds on a supertor T1|N in the forms:

a := a∂/∂x+1

2

∑N

i=1(Dϑia)Dϑi , a := a(x, ϑ;λ), (1)

where a ∈ C∞(T1|N × (D1+ ∪D1

−); Λ0), (x, ϑ) ∈ T1|N ' S1×ΛN1 , Λ := Λ0⊕Λ1 is a innite-dimensional

Grassmann algebra over C ⊃ Λ0, ϑ := (ϑ1, ϑ2, . . . , ϑN ) and Dϑi := ∂/∂ϑi + ϑi∂/∂x, i = 1, N , whichare holomorphic in the "spectral" parameter λ ∈ C on the interior D1

+ ⊂ C and exterior D1− ⊂ C

regions of the unit centrally located disk D1 ⊂ C, and its regular dual space G∗reg with respect to theparity:

(l, a)0 = resλ−1

∫T1|N

dxdNϑ (la), l := l(x, ϑ;λ)(dx+∑N

i=1ϑidϑi) ∈ G∗reg, (2)

where l ∈ C∞(T1|(2k−1)× (D1+ ∪D1

−); Λ1) if N = 2k− 1 and l ∈ C∞(T1|2k × (D1+ ∪D1

−); Λ0) if N = 2k,

k ∈ N. The superconformal loop Lie algebra G possesses the commutator:

[a, b] = c, c := c∂/∂x+1

2

∑N

i=1(Dϑic)Dϑi ,

c := a(∂b/∂x)− b(∂a/∂x) +1

2

∑N

i=1(Dϑia)(Dϑib), a, b ∈ G,

splits into the direct sum of its Lie subalgebras G = G+ ⊕ G−, for which the following dual spaces areidentied: G∗+,reg ' G−, G∗−,reg ' G+. Here a(∞) = 0 for any a(λ) ∈ G−. On G n G∗reg one determinesthe commutator:

[an l, bn m] := [a, b] n (ad∗am− ad∗b l), a, b ∈ G, l, m ∈ G∗reg,

where ad∗ is the co-adjoint action of G with respect to the parity (2) and

ad∗al = lxa+4−N

2lax +

(−1)N+1

2

∑N

i=1(Dϑi l)(Dϑia)

for any vector eld a ∈ G and a xed element l ∈ G∗reg, as well as nondegenerate symmetric bilinearform:

(an l, bnm) = (l, b)0 + (m, a)0.

One constructs the central extension G := G ⊕ C of the Lie algebra G :=∏z∈S1(G n G∗reg) by the

2-cocycle [1]:

ω2(an l, bnm) =

∫S1

dz((l, ∂b/∂z)0 − (m, ∂a/∂z)0), (an l), (bn m) ∈ G, z ∈ S1.

The Lie algebra G permits the standard splitting G := G+ ⊕ G− of the Lie algebra G into the directsum of its Lie subalgebras G+ :=

∏z∈S1(G+n G∗−,reg) and G− :=

∏z∈S1(G−n G∗+,reg)). Thus, by means

of the R-operator approach [2] one introduces the following Lie-Poisson bracket:

µ, νR = (an l, [R∇rµ(an l),∇lν(an l)] + [∇rµ(an l), R∇lν(an l)]) +

+ω2(R∇rµ(an l),∇lν(an l)) + ω2(∇rµ(an l), R∇lν(an l)), (3)

Page 27: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

26

where µ, ν ∈ D(G∗) are arbitrary smooth by Frechet functionals on G∗, R = (P+ − P−)/2, P+ and

P− are projectors on G+ and G− respectively, on the dual space G∗ ' G to the Lie algebra G. Here∇lh(an l) := (∇lhl n∇lha) ∈ G and ∇rh(an l) := (∇rhl n∇rha) ∈ G are left and right gradients of

any smooth functional h ∈ D(G∗) at a point (an l) ∈ G∗. Due to the Adler-Kostant-Symes theory [2]the Lie-Poisson bracket (3) generates the hierarchy of Hamiltonian ows:

∂(an l)/∂tp := −ad∗P+∇lh(p)(anl)(an l) = an l, h(p)R, (an l) ∈ G∗, p ∈ Z+,

where P+∇lh(p)(an l) = (∇lh(p)

l,+n∇lh

(p)a,+), ∇lh(p)(an l) = λp∇lh(an l), ∇lhl ∼

∑j∈Z+

∇lhl,jλ−j and

∇lha ∼∑

j∈Z+∇lha,jλ−j as |λ| → ∞, for any Casimir invariant h ∈ I(G∗), satisfying, by denition,

the following relationship:ad∗∇lh(anl)(an l) = 0, (an l) ∈ G∗.

Any two Hamiltonian ows on G∗ in the forms:

∂(an l)/∂y = an l, h(y)(an l)R, ∂(an l)/∂t = an l, h(t)(an l)R,

where ∇lh(y) = λpy∇lh(a n l), ∇lh(t) = λpt∇lh(a n l), py, pt ∈ Z+, and h ∈ I(G∗), give rise to theseparately commuting evolution equations:

∂a/∂y = −[∇lh(y)

l,+, a] + ∂(∇lh

(y)

l,+)/∂z, ∂a/∂t = −[∇lh

(t)

l,+, a] + ∂(∇lh

(t)

l,+)/∂z, (4)

and

∂l/∂y = −ad∗∇lh

(y)

l,+

l + ad∗a∇lh(y)a,+ + ∂(∇lh

(y)a,+)/∂z,

∂l/∂t = −ad∗∇lh

(t)

l,+

l + ad∗a∇lh(t)a,+ + ∂(∇lh

(t)a,+)/∂z.

Proposition 1. The commutativity of evolutions (4) is equivalent to the relationship:

[∇lh(y)

l,+,∇lh

(t)

l,+]− ∂(∇lh

(y)

l,+)/∂t+ ∂(∇lh

(t)

l,+)/∂y = 0, (5)

which is reduced on every coadjoint orbit of the Lie algebra G to the Lax-Sato representation for somesystem of nonlinear heavenly type equations on a functional supermanifold. The relationship (5) is acompatibility condition for the following linear vector equations:

∂ψ/∂y +∇lh(y)

l,+ψ = 0, ∂ψ/∂z + aψ = 0, ∂ψ/∂t+∇lh

(t)

l,+ψ = 0,

where (y, t;λ, z, x, θ) ∈ (R2 × (C× S1 × T1|N )) and ψ ∈ C2(R2 × (C× S1 × T1|N ));C).

By use of the Lax-Sato compatibility condition (5) one can construct integrable systems of heavenlytype equations on functional supermanifolds, which can be considered as generalizations of Lax-Satointegrable superanalogs [3] of the Mikhalev-Pavlov heavenly type equation, choosing the smooth func-

tions a :=∑K−1

k=1 wk,x(x, θ)λk − λK and l :=∑K−1

k=1 ξk,x(x, θ)λk, K ∈ N, in (1) and (2) respectively.

References

[1] Valentin Ovsienko, Claude Roger. Looped cotangent Virasoro algebra and non-linear integrable systems in dimension2 + 1. Communications in Mathematical Physics, 273(2) : 357378, 2007.

[2] Ludwig D. Faddeev, Leon A. Takhtadjan. Hamiltonian methods in the theory of solitons, Classics in mathematics.Berlin, Heidelberg : Springer-Verlag, 2007.

[3] Oksana Hentosh, Yarema Prykarpatsky Ya. The Lax-Sato integrable heavenly equations on functional supermanifoldsand their Lie-algebraic structure. European Journal of Mathematics, 6(1) : 232247, 2020.

Page 28: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

27

Structure of functions on an oriented 2-manifold with the boundary

Bohdana Hladysh(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)

E-mail: [email protected]

Alexandr Prishlyak(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)

E-mail: [email protected]

Smooth functions are the tool of investigation in many scientic elds. Thus, their classication areimportant enough. There is a number of papers devoted to functions with nondegenerate singularitieson a surface with the boundary [15]. Furthermore, there are signicant results dedicated to topologicalstructure of spaces of smooth functions with isolated critical points was presented in [610].LetM (and N) be smooth compact connected oriented surface with the boundary ∂M . We consider

the class of functions Ω(M) = f : M → R|CP (f) = NDCP (f) ⊃ CP (f |∂M ) = NDCP (f |∂M ),where CP (f) (NDCP (f)) is the set of (non-degenerated) critical points of f .

Theorem 1. The following statements hold true:1) for arbitrary function f ∈ Ω(M) there exists the m-function g : M → R which is topologically

equivalent to f ;2) for arbitrary m-function g : M → R there exists the function f ∈ Ω(M) such that f and g are

topologically equivalent.

Denition 2. Smooth functions f ∈ Ω(M) and g ∈ Ω(N) are called O-equivalent if there exists ahomeomorphism λ : M → N , which maps the components of the level sets of f onto the componentsof the level sets of g, preserve the growing directions of functions and preserve the orientation. TheO-equivalence class of the pair (U, f |U ) is called and O-atom for an oriented surface, where U is theunion of connected component of the (small enough) neighborhood of critical level, which contain thecritical points.

Let f ∈ Ω(M). The components of level lines of the function f are said to be layers. These layers arehomeomorphic to the circle or to the line segment for regular values of the function. Then, the surfaceM can be considered as the union of layers and we get the foliation with singularities. We call a layerby the layer of the rst (the second) type if it corresponds to the component homeomorphic to theline segment (circle). Let us consider the equivalence relation on M , such that points are equivalent ifand only if they belong to the same layer. Thus, after examining of nature factor-topology we get thegraph Γf with edges of two types. In such a way we get the classication of edges being called edgesdivision of graph Γf .

Denition 3. The vertices with degrees 3 and 4 of graph Γf of function f , which are incident to therst type edges are said to be Y and X-vertices correspondingly.

Denition 4. Equipped Reeb graph of a function f ∈ Ω(M) is graph Γf with edges division, orientationand cycle order at Y and X-vertices.

Denition 5. Equipped Reeb graphs Γf and Γg of functions f, g ∈ Ω(M) are said to be equivalentby means of the isomorphism ϕ : Γf → Γg (denote by Γf ∼ Γg or Γf ∼ϕ Γg) if ϕ satises the followingstatements:

(1) preserve the division of the edges;(2) preserve the cycle orders of the edges at each X and Y-vertex;(3) preserve the edges orientation.

Page 29: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

28

Theorem 6. Let M,N be smooth compact surfaces (with the boundaries), such that f ∈ Ω(M),g ∈ Ω(N). Then f and g are O-equivalent if and only if their equipped Reeb graphs Γf and Γg areequivalent.

Further the rst and the second type edges of the graph Γf are said to be I and O-edges corre-spondingly. To dene the genus of the surface we consider the following designation: let EI (EO) bea number of I-edges (O-edges) and VI (VO) be a number of the vertices which are incident only withI-edges (O-edges). The number of components of the boundary of the surface M we denote by ∂.

Theorem 7. Let graph Γf of a function f ∈ Ω(M) includes either O-edges, or I-edges. Then the genusof the surface can be calculated from the formulas (1) and (2) correspondingly, where

gO = EO − VO + 1 (1)

gI =EI − VI + 2− ∂

2(2)

Denition 8. A vertex with degree 2 (3) of the graph Γf of a function f , which are incident with theedges of both types, are said to be T-vertex (D-vertex ).

Theorem 9. The genus of a surface can be calculated from the following formula

g = gO + gI + VD + VT − cO − cI + 1 (3)

where gO is a summary genus of the subgraph which consists only edge of the second type, such thatthe genus of each graph components is dened by the formula 1, gI is a summary genus of the subgraphwhich consists only edge of the rst type, such that the genus of each graph components is dened bythe formula 2, VD is the number of D-vertices and VT is the number of T-vertices, cO is the number ofconnected components of the subgraph which consists only edge of the second type and cI is the numberof connected components of the subgraph which consists only edge of the rst type.

Corollary 10. Let f be m-function. Then the formulas 1, 2 and 3 hold true.

References

[1] A. Jankowski, R. Rubinsztein. Functions with non-degenerate critical points on manifolds with boundary. Comment.Math., 16 : 99112, 1972.

[2] S.I. Maksumenko. Classication of m-functions on surfaces. Ukrainian Mathematical Journal, 51(8): 11291135 ,1999.

[3] B.I. Hladysh, A.O. Prishlyak. Functions with nondegenerate critical points on the boundary of the surface. UkrainianMathematical Journal, 68(1): 2837, 2016.

[4] M. Borodzik, A. Nemethi, A. Ranicki. Morse theory for manifolds with boundary. Algebraic and Geometric Topology,16: 9711023, 2016.

[5] B.I. Hladysh, A.O. Prishlyak. Simple Morse functions on an oriented surface with boundary. Journal of MathematicalPhysics, Analysis, Geometry, 15(3): 354368, 2019.

[6] V. V. Sharko. Smooth and topological equivalence of functions on surfaces. Ukrainian Mathematical Journal, 55(5):832846, 2003.

[7] A.O. Prishlyak. Topological equivalence of smooth functions with isolated critical points on a closed surface. Topologyand its Applications, 119(3): 257267, 2002.

[8] A.O. Polulyakh. On the Pseudoharmonic Functions Dened On a Disk, volume 80 of Pr. Inst. Mat. Nats. Akad.Nauk Ukr. Mat. Zastos. Kyiv: Inst. Mat. NAN Ukr., 2009.

[9] B.I. Hladysh, A.O. Prishlyak. Topology of functions with isolated critical points on the boundary of a 2-dimensionalmanifold. Symmetry, Integrability and Geometry: Methods and Applications, 13(050): 2017.

[10] B.I. Hladysh. Functions with isolated critical points on the boundary of a nonoriented surface. Nonlinear Oscillations,23(1): 2637, 2020.

Page 30: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

29

The Cauchy problem for matrix factorizations of the Helmholtzequation in a multidimensional bounded domain

D. A. Juraev(The Higher Military Aviation School of the Republic of Uzbekistan, Karshi city, Uzbekistan)

E-mail: [email protected]

It is known that the Cauchy problem for elliptic equations is unstable relatively small change in thedata, i.e., is incorrect (Hadamard's example). In unstable problems the image of the operator is notclosed, therefore the solvability condition can not be written in terms of continuous linear functionals.Thus, in the Cauchy problem for elliptic equations with data on a part of the boundary of the region,the solution is usually unique, the problem is solvable for an everywhere dense set of data, but this setnot closed. Consequently, the theory of solvability of such problems is essentially It is more dicultand deeper than the theory of solvability of the Fredholm equations. The rst results in this directionappeared only in the mid-1980s in the works of L.A. Aizenberg, A.M. Kytmanov, N.N. Tarkhanov(See, for instance [1]).Let x = (x1, ..., xn), y = (y1, ..., yn) be are points of the Euclidean space Rn and G ⊂ Rm be a

bounded simply-connected domain with piecewise smooth boundary consisting of the plane T : ym = 0and of a smooth surface S lying in the half-space ym > 0, that i.s., ∂G = S

⋃T .

We consider in the domain G a system of dierential equations

D

(∂

∂x

)U(x) = 0, (1)

where D

(∂

∂x

)is the matrix of rst-order dierential operators.

We denote by A(G) the class of vector functions in a domain G continuous on G = G⋃∂G and

satisfying system (1).

Problem 1. Suppose that U(y) ∈ A(G) and

U(y)|S = f(y), y ∈ S.

Here, f(y)− a given continuous vector-valued function on S.It is required to restore the vector function U(y) in the region G, based on its values f(y) on S.

Theorem 2. Let U(y) ∈ A(G) it satisfy the inequality

|U(y)| ≤M, y ∈ T.

If

Uσ(x) =

∫S

Nσ(y, x)U(y)dsy, x ∈ G,

then the following estimate holds

|U(x)− Uσ(x)| ≤ C(x)σe−σxm , σ > 1, x ∈ G.

Here and below functions bounded on compact subsets of the domain G, we denote by C(x).

Corollary 3. The limiting equalitylimσ→∞

Uσ(x) = U(x),

holds uniformly on each compact set in the domain G.

Page 31: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

30

In the future, we will construct the Carleman matrix for matrix factorizations of the Helmholtzequation in multidimensional bounded domain and based on it we will nd an approximate solutionto the Cauchy problem in explicit form, using the methodology of previous works (See, for instance[2, 3, 4, 5, 6, 7, 8, 13]).In many well-posed problems for a system of equations of elliptic type of the rst order with constant

coecients, the factorizing operator of Helmholtz, the calculation of the value of the vector functionon the whole boundary is inaccessible. Therefore, the problem of reconstructing, solving a systemof equations of elliptic type of the rst order with constant coecients, the factorizing operator ofHelmholtz, is one of the topical problems in the theory of dierential equations (See, for instance[9, 10, 11, 12, 14]).

References

[1] N.N. Tarkhanov, The Cauchy problem for solutions of elliptic equations, volume 7 of Mathematical topics, Akad.Verl.: Berlin, 1995.

[2] D.A. Juraev, Regularization of the Cauchy problem for systems of equations of elliptic type. LAP, Lambert AcademicPublishing, Saarbrucken: Germany, 2014.

[3] D.A. Juraev, The Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain.Siberian Electronic Mathematical Reports, 14: 752764, 2017.

[4] D.A. Juraev, Cauchy problem for matrix factorizations of the Helmholtz equation. Ukrainian Mathematical Journal,69(10): 13641371, 2017.

[5] D.A. Juraev, On the Cauchy problem for matrix factorizations of the Helmholtz equation in a bounded domain.Siberian Electronic Mathematical Reports, 15: 1120, 2018.

[6] D.A. Juraev, The Cauchy problem for matrix factorizations of the Helmholtz equation in R3. Journal of UniversalMathematics, 1(3): 312319, 2018.

[7] D.A. Juraev, On the Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domainin R2. Siberian Electronic Mathematical Reports, 15: 18651877, 2018.

[8] D.A. Juraev, On a regularized solution of the Cauchy problem for matrix factorizations of the Helmholtz equation.Advanced Mathematical Models & Applications, 4(1): 8696, 2018.

[9] D.A. Juraev, On the ill-posed Cauchy problem for matrix factorizations of the Helmholtz equation. InternationalConference "Complex Analysis, Mathematical Physics and Nonlinear Equations". Book of Abstracts. Ufa, Russia,Pp. 4142, 2019.

[10] D.A. Juraev, On the integral formula for the matrix factorization of the Helmholtz equation in m−dimensionalbounded domain. International Mathematical Conference "Complex Analysis and Approximation Theory". Book ofAbstracts. Ufa, Russia, Pp. 2021, 2019.

[11] D.A. Juraev, On a regularized solution of the Cauchy problem for matrix factorizations of the Helmholtz equation inm−dimensional bounded domain. International scientic conference "Algebraic and geometric methods of analysis".Odessa. Ukraine. Book of abstracts, Pp. 2728, 2019.

[12] D.A. Juraev, On the Cauchy problem for matrix factorization of the Helmholtz equation. Uzbek-Russian ScienticConference "Non-classical equations of mathematical physics and their applications". Tashkent, Uzbekistan, Pp. 563565, 2019.

[13] D.A. Juraev, On the Cauchy problem for matrix factorizations of the Helmholtz equation. Journal of UniversalMathematics, 2(2): 113126, 2019.

[14] D.A. Juraev, The integral formula for matrix factorizations of the Helmholtz equation in multidimensional space.Complex Analysis, Mathematical Physics and Nonlinear Equations, Book of Abstracts of the International Conference.Ufa, Russia, Pp. 3031, 2020.

Page 32: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

31

Fejer Sums and the von Neumann Ergodic Theorem

Alexander Kachurovskii(Sobolev Institute of Mathematics, Novosibirsk, Russia)

E-mail: [email protected]

The Fejer sums of periodic measures and the norms of the deviations from the limit in the vonNeumann ergodic theorem are calculated, in fact, using the same formulas (by integrating the Fejerkernels), so this ergodic theorem is a statement about the asymptotics of the growth of the Fejer sumsat zero for the spectral measure of the corresponding dynamical system.As a result, well-known estimates for the rates of convergence in the von Neumann ergodic theorem

can be restated as estimates of the Fejer sums at the point for periodic measures. For example, naturalcriteria for the polynomial growth and polynomial decrease in these sums can be obtained.On the contrary, available in the literature, numerous estimates for the deviations of Fejer sums

at a point can be used to obtain new estimates for the rate of convergence in this ergodic theorem.For example, for many dynamical systems popular in applications, the rates of convergence in thevon Neumann ergodic theorem can be estimated with a sharp leading coecient of the asymptotic byapplying S.N. Bernstein's more than hundred-year old results in harmonic analysis.

References

[1] Alexander G. Kachurovskii, Kirill I. Knizhov. Deviations of Fejer Sums and Rates of Convergence in the von NeumannErgodic Theorem. Dokl. Math, 97(3) : 211214, 2018.

[2] Alexander G. Kachurovskii, Ivan V. Podvigin. Fejer Sums for Periodic Measures and the von Neumann ErgodicTheorem Dokl. Math., 98(1) : 344347, 2018.

Page 33: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

32

Mixed volumes/areas and distribution of zeros of holomorphicfunctions

Bulat N. Khabibullin(Bashkir State University, Ufa, Bashkortostan, Russian Federation)

E-mail: [email protected]

Roman R. Muryasov(Bashkir State University, Ufa, Bashkortostan, Russian Federation)

E-mail: [email protected]

We denote by N := 1, 2, . . . , R, R+ := x ∈ R : x ≥ 0, R+∗ := R+\0, and C the sets of natural, of

real, of positive, of strictly positive, and of complex numbers, each endowed with its natural order (≤,sup / inf), algebraic, geometric and topological structure.

Mixed areas/volumes. Let S be a bounded subset in C with the support function [1, Ch. 1], [2]

SpS(z) :=z ∈ C

supw∈S

Re(zw), spS(t) :=t ∈ R

SpS(eit), and ∆S(t) :=t ∈ R

(spS)′left

(t) +

∫ t

0spS(x) dx,

where (spS)′left

is the left derivative of spS . The mixed area (of Minkowski) F(S1, S2) of bounded setsS1, S2 ⊂ C is integrals [1, Ch. 1, 3], [2], [3, 4]

F(S1, S2) :=1

2

∫ 2π

0spS1

(t) d∆S2(t) =1

2

∫ 2π

0

(spS1

spS2− (spS1

)′left

(spS2)′left

)(t) dt = F(S2, S1).

Convexity with respect to a pair of functions. Let I ⊂ R be an open interval, and let f1 : I → Rand f2 : I → R be a pair of functions. A function g : I → R will be called convex with respect to thepair f1, f2, or, briey, (f1, f2)-convex if there is a number d > 0 such that for each x1, x2 ∈ I with|x1 − x2| < d and for each C1, C2 ∈ R such that

g(x1) ≤ C1f1(x1) + C2f(x1), g(x2) ≤ C1f1(x2) + C2f(x2),

we have g(x) ≤ C1f1(x) + C2f(x) for each x ∈ (x1, x2) [4, Ch. I, 1]. So, if g : R+∗ → R+

∗ is (f1, f2)-convex for the pair f1 : x 7−→

x ∈ R+∗

x and f1 : x 7−→x ∈ R+

1/x, then we say that g is (x, 1/x)-convex.

Entire functions in C. Even the following special result develops [3, 4], [5], [6, Ch. 3, 4.2].Let f 6= 0 be an entire function of exponential type with the indicator of growth of f denoted by

Ind1[f ](z) := lim sup0<r→+∞

ln∣∣f(rz)

∣∣r

∈z ∈ C

R.

The function Ind1[f ] is convex and positive homogeneous on C. Therefore, there is a non-empty convexcompact set If ⊂ C with SpIf = Ind1[f ] called the indicator diagram of this entire function f .

Theorem 1. Let f 6= 0 be an entire function of exponential type with the indicator diagram If . Supposethat the function f vanish on a sequence Z = (zk)k∈N ⊂ C, i.e., f(zk) = 0 for each k ∈ N. If K is anon-empty convex compact subset in C, and g : R+

∗ → R+∗ is an increasing (x, 1/x)-convex function on

R+∗ , such that

0 < lim inf0<x→+∞

g(x)

x≤ lim sup

0<x→+∞

g(x)

x< +∞, (1)

Page 34: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

33

then

lim sup1<a→+∞

lim supr→+∞

πar∫rg(1/x) dx

∑r<|zk|≤ar

g( 1

|zk|

)spK

( zk|zk|

)≤ F(If ,K). (2)

Besides, for the identity function g : x 7−→x ∈ R+

x and for any non-empty convex compact subsets S and

K in C, there is an entire function f 6= 0 of exponential type with zero sequence Z = (zk)k∈N ⊂ C andthe indicator diagram If = S such that we have the equality in (2).

Theorem 1 can be extended to entire functions of nite order ρ ∈ R+ of one or several complexvariables with signicant generalizations of mixed areas/volumes for ρ-convex sets. Thus, we obtainnumerous exact results on the completeness of systems of entire functions in classical function spaceson sets in Cn for n ∈ N in terms of the mutual indicator of entire function and set [5], [6, Ch. 3, 4.2].Here we note only the simplest version of the application of Theorem 1 to completeness questions.

Completeness of exponential systems. For a compact subset S of C, we denote by C(S)∩Hol(intS)the normed space of all continuous functions f : S → C such that the restriction f to the interior intSof S is holomorphic if this interior intS is non-empty, equipped with the norm ‖f‖S := sup

s∈S

∣∣f(s)∣∣.

Theorem 2. Let S be a compact subset of the complex plane such that C \ S is connected. LetZ = (zk)k∈N ⊂ C be a sequence of pairwise distinct numbers. If there are a non-empty compact convexsubset K ⊂ C and an increasing (x, 1/x)-convex function g : R+

∗ → R+∗ satisfying (1) such that

lim sup1<a→+∞

lim supr→+∞

πar∫rg(1/x) dx

∑r<|zk|≤ar

g( 1

|zk|

)spK

( zk|zk|

)> F(I,K).

then the closure of the linear hull ofezks : k ∈ N

in C(S)∩Hol(intS) coincides with C(S)∩Hol(intS).

Holomorphic functions in the unit disk/ball. In [7] and [8], we rst used ρ-trigonometricallyconvex and ρ-subspherical functions to study zero sets of holomorphic functions on the unit disk in Cand on the unit ball in Cn, respectively. Some of these results can be obtained in a more general formin terms of mixed areas/volumes and Hausdor measures of zero sets.The research was supported by a Grant of the Russian Science Foundation, Project No. 18-11-00002.

References

[1] L. A. Santalo. Integeral Geometry and Geometric Probability. Addison-Wesley, 1976; Ë. Ñàíòàëî. Èíòåãðàëüíàÿãåîìåòðèÿ è ãåîìåòðè÷åñêàÿ âåðîÿòíîñòü. Ì. : Íàóêà, 1983.

[2] K. Leichtweiss. Convex Sets. Berlin : VEB Deutscher Verlag der Wissenshaften, 1980; Ê. Ëåéõòâåéñ. Âûïóêëûåìíîæåñòâà. M. : Íàóêà, 1985.

[3] Á. Í. Õàáèáóëëèí Òåîðåìà åäèíñòâåííîñòè äëÿ ñóáãàðìîíè÷åñêèõ ôóíêöèé êîíå÷íîãî ïîðÿäêà. Ìàòåì. ñá.182(6) : 811827, 1991. http://www.mathnet.ru/rus/person/8650; English transl. in: B. N. Khabibullin A unique-ness theorem for subharmonic functions of nite order Math. USSR-Sb. 73(1) : 195210, 1992.

[4] È. È. Èáðàãèìîâ. Ìåòîäû èíòåðïîëÿöèè ôóíêöèé è íåêîòîðûå èõ ïðèìåíåíèÿ. Ì. : Íàóêà, 1971.[5] Á. Í. Õàáèáóëëèí. Ïîëíîòà ñèñòåì öåëûõ ôóíêöèé â ïðîñòðàíñòâàõ ãîëîìîðôíûõ ôóíêöèé. Ìàòåì. çàìåòêè,

66(4) : 603616, 1999. http://www.mathnet.ru/rus/person/8650; English. transl. in: B. N. Khabibullin. Complete-ness of systems of entire functions in spaces of holomorphic functions. Math. Notes, 66(4) : 495506, 1999.

[6] Á. Í. Õàáèáóëëèí. Ïîëíîòà ñèñòåì ýêñïîíåíò è ìíîæåñòâà åäèíñòâåííîñòè. Èçäàíèå ÷åòâ¼ðòîå, äîïîëí-åííîå. Óôà: ÐÈÖ ÁàøÃÓ, 2012. http://www.researchgate.net/publication/271841461

[7] B. N. Khabibullin, F. B. Khabibullin. Zeros of holomorphic functions in the unit disk and ρ-trigonometrically convexfunctions. Analysis and Math. Physics, 9(3) : 10871098, 2019. See also https://arxiv.org/abs/1811.10390v1

[8] B. N. Khabibullin, F. B. Khabibullin. Zeros of Holomorphic Functions in the Unit Ball and Subspherical Functions.Lobachevskii Journal of Mathematics, 40(5) : 648659, 2019. https://arxiv.org/abs/1811.10391v1

Page 35: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

34

On the behavior at innity of one class of homeomorphisms

Bogdan Klishchuk(Institute of Mathematics of NAS of Ukraine)

E-mail: [email protected]

Ruslan Salimov(Institute of Mathematics of NAS of Ukraine)

E-mail: [email protected]

Let Γ be a family of curves γ in Rn, n > 2. A Borel measurable function ρ : Rn → [0,∞] is calledadmissible for Γ, (abbr. ρ ∈ adm Γ), if ∫

γ

ρ(x) ds > 1

for any curve γ ∈ Γ. Let p ∈ (1,∞). The quantity

Mp(Γ) = infρ∈adm Γ

∫Rn

ρp(x) dm(x)

is called pmodulus of the family Γ.For arbitrary sets E, F and G of Rn we denote by ∆(E,F,G) a set of all continuous curves γ :

[a, b]→ Rn that connect E and F in G, i.e., such that γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ G for a < t < b.Let D be a domain in Rn, n > 2, x0 ∈ D and d0 = dist(x0, ∂D). Set

A(x0, r1, r2) = x ∈ Rn : r1 < |x− x0| < r2 ,

Si = S(x0, ri) = x ∈ Rn : |x− x0| = ri , i = 1, 2 .

Let a function Q : D → [0,∞] be Lebesgue measurable. We say that a homeomorphism f : D → Rnis ring Q-homeomorphism with respect to p-modulus at x0 ∈ D if the relation

Mp(∆(fS1, fS2, fD)) 6∫A

Q(x) ηp(|x− x0|) dm(x)

holds for any ring A = A(x0, r1, r2) , 0 < r1 < r2 < d0, d0 = dist(x0, ∂D) and for any measurablefunction η : (r1, r2)→ [0,∞] such that

r2∫r1

η(r) dr = 1 .

Denote by ωn−1 the area of the unit sphere

Sn−1 = x ∈ Rn : |x| = 1

in Rn and by

qx0(r) =1

ωn−1 rn−1

∫S(x0,r)

Q(x) dA

the integral mean over the sphere

S(x0, r) = x ∈ Rn : |x− x0| = r,

where dA is the element of the surface area. Let L(x0, f, R) = sup|x−x0|6R

|f(x)− f(x0)| .

Page 36: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

35

Theorem 1. Suppose that f : Rn → Rn is a ring Q-homeomorphism with respect to p-modulus at apoint x0 with p > n where x0 is some point in Rn and for some numbers r0 > 0, K > 0 the condition

qx0(t) 6 K tα

holds for a.e. t ∈ [r0,+∞). If α ∈ [0, p− n) then

limR→∞

L(x0, f, R)

Rp−n−αp−n

> K1

n−p

(p− n

p− n− α

) p−1p−n

> 0 .

If α = p− n then

limR→∞

L(x0, f, R)

(lnR)p−1p−n

> K1

n−p

(p− np− 1

) p−1p−n

> 0 .

This work was supported by the budget program Support of the development of priority trends ofscientic researches (KPKVK 6541230).

Page 37: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

36

Automorphisms of cellular divisions of 2-sphere induced by functionswith isolated critical points

Anna Kravchenko(Taras Shevchenko National University of Kyiv, Ukraine)

E-mail: [email protected]

Sergiy Maksymenko(Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine)

E-mail: [email protected]

In general, if f : M → R is an arbitrary smooth function with isolated critical points, then acertain part of its combinatorial symmetries is reected by a so-called Kronrod-Reeb graph ∆f , seee.g. [6, 2, 5, 4, 14, 13, 12, 1]. Such a graph is obtained by shrinking each connected component of eachlevel set f−1(c), c ∈ R, of f into a point.Let D(M) the group of dieomorphisms of M and

S(f) = h ∈ D(M) | f(h(x)) = f(x) for all x ∈M

be the group of dieomorphisms h of M which preserve f in the sense that h leaves invariant eachlevel set f−1(c), c ∈ R, of f . Hence it yields a certain permutation of connected components of f−1(c)being points of ∆f , and thus induces a certain map ρ(h) : ∆f → ∆f . It can be shown that ρ(h) is ahomeomorphism of ∆f , and the correspondence ρ : h 7→ ρ(h) is a homomorphism of groups

ρ : S(f)→ H(∆f ),

where H(∆f ) is the group of homeomorphisms of ∆f . One can also verify that the image of ρ(S(f))is a nite group.Let also Did(M) be the identity path component of D(M), and

S ′(f) = S(f) ∩ Did(M)

be the group of f -preserving dieomorphisms which are isotopic to the identity via an isotopy consistingof not necessarily f -preserving dieomorphsms. We will be interested in the group

Gf = ρ(S ′(f))

of automorphisms of ∆f induced by elements from S ′(f).Suppose that the set Fix(Gf ) of common xed points of all elements of Gf in ∆f is non-empty. Let

also v ∈ Fix(Gf ) be a vertex of ∆f xed under Gf and Star(v) be a star of v, i.e. a small Gf -invariantneighborhood of v. Then each γ ∈ Gf induces a homeomorphism of Star(v), and we can also denethe group

Glocv = γ|Star(v) | γ ∈ Gfof restrictions of elements of Gf to Star(v). We will call Glocv the local stabilizer of v.

Remark 1. We will give now an equivalent description of the group Glocv . Let K be the criticalcomponent of a level-set of f corresponding to the vertex v ∈ ∆f . Since v ∈ Fix(Gf ), we obtain thath(K) = K for all h ∈ S ′(f). Let c = f(K) be the value of f on K, and ε > 0 be a small numbersuch that the segment [c− ε, c+ ε] contains no other critical values of f except for c. Let also NK bethe connected component of f−1[c− ε, c+ ε] containing K. Notice that the quotient map p induces abijection between connected components ∂NK and edges of Star(v). Moreover, h(NK) = NK for allh ∈ S ′(f), and hence h induces a permutation σh of connected components of ∂NK . Then G

locv is the

same as the group of permutations of connected components of ∂NK induced by h.

Page 38: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

37

In [9, 7, 8, 10, 11], the groups Glocv were calculated for all Morse functions on all orientable surfacesdistinct from S2. In the present paper, we give a complete description of the structure of the groupGlocv to the case whenM = S2. For the convenience of the reader we present a general statement aboutthe structure of the group Glocv for all orientable surfaces.

Theorem 2. Let f ∈ C∞(M,R) be a Morse function and v ∈ Fix(Gf ) be some vertex.

(1) If M 6= S2, T 2, then Glocv ≈ Zn, for some n ≥ 1, [9].

(2) If M = T 2, then Glocv ≈ Zm × Zmn, for some m,n ≥ 1, [7, 8, 10].

(3) Let M = S2. Then the following statements hold.

(a) For each vertex v ∈ Fix(Gf ), the group Glocv is isomorphic to a nite subgroup of SO(3),that is, to one of the following groups, see [3, pp. 21-23]:

Zn, Dn, A4, S4, A5, (n ≥ 1). (1)

(b) If Fix(Gf ) has at least one edge, then for any vertex v ∈ Fix(Gf ), the group Glocv is cyclic.

(c) If Fix(Gf ) consists of a unique vertex v and Glocv is non-trivial and cyclic, then Glocv∼= Z2.

References

[1] E. B. Batista, J. C. F. Costa, and I. S. Meza-Sarmiento. Topological classifcation of circle-valued simple Morse-Bottfunctions. J. Singul, 17:388-402, 2018.

[2] A. V. Bolsinov and A. T. Fomenko. Vvedenie v topologiyu integriruemykh gamiltonovykh sistem (Introduction to thetopology of integrable Hamiltonian systems). Nauka, Moscow, 1997.

[3] Felix C. Klein. Lectures on the ikosahedron and the solution of equations of the equations of the th degree. CornelUniversity Library , 322:21-23, 1888.

[4] E. A. Kudryavtseva. Realization of smooth functions on surfaces as height functions. Mat. Sb., 190(3):29-88, 1999.[5] E. V. Kulinich. On topologically equivalent Morse functions on surfaces. Methods Funct. Anal. Topology, 4(1):59-64,

1998.[6] A. S. Kronrod. On functions of two variables.5(1(35)):24-134, 1950. Uspehi Matem. Nauk (N.S.),[7] S. Maksymenko and B. Feshchenko. Orbits of smooth functions on 2-torus and their homotopy types. Matematychni

Studii , 44(1):67-84, 2015.[8] S. Maksymenko and B. Feshchenko. Smooth functions on 2-torus whose kronrod-reeb graph contains a cycle. Methods

Funct. Anal. Topology, 21(1):22-40, 2015.[9] Sergiy Maksymenko. Deformations of functions on surfaces by isotopic to the identity difeomorphisms. page

arXiv:math/1311.3347, 2016.[10] Sergiy Maksymenko and Bogdan Feshchenko. Homotopy properties of spaces of smooth functions on 2-torus.

Ukrainian Math. Journal, 66(9):1205-1212, 2014.[11] A. Kravchenko and S. Maksymenko. Automorphisms of Kronrod-Reeb graphs of Morse functions on compact sur-

faces. European Journal of Mathematics, page arXiv:1808.08746, 2018.[12] 33] Lukasz Patryk Michalak. Realization of a graph as the Reeb graph of a Morse function on a manifold. Topol.

Methods Nonlinear Anal., 52(2):749-762, 2018.[13] E. A. Polulyakh. Kronrod-Reeb graphs of functions on noncompact two-dimensional surfaces. II. Ukrainian Math.

J. , 67(10):1572-1583, 2016. Translation of Ukranian. Mat. Zh. 67 (2015), no. 10, 1398-1408.[14] V. V. Sharko. Smooth and topological equivalence of functions on surfaces.Ukr. Mat. Zh., 55(5):687-700, 2003.

Page 39: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

38

Dynamics and exact solutions of linear PDEs

Alexei G. Kushner(Lomonosov Moscow State University, GSP-2, Leninskie Gory, Moscow, Russia)

E-mail: [email protected]

Elena N. Kushner(Moscow State Technical University of Civil Aviation, 20 Kronshtadtsky blvd, Moscow, Russia)

E-mail: [email protected]

Ruslan I. Matviichuk(Lomonosov Moscow State University, GSP-2, Leninskie Gory, Moscow, Russia)

E-mail: [email protected]

The report presents a new method for constructing exact solutions of the classical linear equationsof mathematical physics of parabolic, hyperbolic, elliptic and variable types. The method is a gener-alization of the theory of nite-dimensional dynamics proposed for evolutionary dierential equations[2, 5]. The theory of nite-dimensional dynamics is a natural development of the theory of dynamicalsystems. Dynamics make it possible to nd families that depends on a nite number of parametersamong all solutions of PDEs (see [3, 3]).Consider the following class of second order linear partial dierential equations

utt + 2b(x)utx + c(x)uxx + h(x)ut + g(x)ux + f(x) = 0, (1)

where b, c, h, g, f are functions of the class C∞. Such equations are equivalent to the following evolu-tionary systems

ut = v,

vt = −2b(x)vx − c(x)uxx − h(x)v − g(x)ux − f(y).(2)

We call the system of ordinary dierential equations of order k + 1y(k+1) = Y

(x, y, z, y′, z′ . . . , y(k), z(k)

),

z(k+1) = Z(x, y, z, y′, z′ . . . , y(k), z(k)

) (3)

a dynamics of equation (1) if the vector function

(ϕ,ψ) := (z0,−2b(x)z1 − c(x)y2 − h(x)z0 − g(x)y1 − f(x))

is a generating function of innitesimal characteristic symmetries of this system [2]. Here x, y0, z0, y1,z1, y2, z2 are canonical coordinates on the space of 2-jets J2(R1,R2).

Theorem 1. The vector eld on Jk(R1,R2)

S = ϕ∂

∂y0+ ψ

∂z0+D(ϕ)

∂y1+D(ψ)

∂z1+ · · ·+Dk(ϕ)

∂yk+Dk(ψ)

∂zk(4)

is an innitesimal characteristic symmetry of system (3) if the following conditions hold:Dk+1(ϕ)− S(Y ) = 0,

Dk+1(ψ)− S(Z) = 0.(5)

Here

D =∂

∂x+ y1

∂y0+ z1

∂z0+ · · ·+ yk

∂yk−1+ zk

∂zk−1+ Y

∂yk+ Z

∂zk.

Page 40: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

39

Let Γk ⊂ J2(R1,R2) be a k-graph of some solution of system (3) and let Φt be the shift along thevector eld S. Then the surface Φt(Γ

k) is a k-graph of a solution of system (2).

Example 2. Consider the telegraph equation

utt − uxx = au+ but + c, (6)

where a, b, c are constants. This equation admits two types of dynamics:y2 =

y1

x+ α,

z2 =z1

x+ α

(7)

and y2 =

2bα− (x+ β)α2

4b2 + 16a− α2(x+ β)2× y1 −

4b2 + 16a− α2(x+ β)2× z1,

z2 = − 4aα

4b2 + 16a− α2(x+ β)2× y1 −

2bα+ α2(x+ β)

4b2 + 16a− α2(x+ β)2× z1.

(8)

Here α, β are arbitrary constants. The general solution of equation (7) isy(x) =C3 + C4(x+ α)2,

z(x) =C1 + C2(x+ α)2,(9)

and the general solution of equation (8) isy(x) =

1

2C2x

2 + C3x+ C4,

z(x) =1

(x(C2β − C3)(2β + x)α2+ + (8C1 + 2bx2C2 + 4bC3x)α− 32

(a+

b2

4

)C2x

).

(10)

Here C1, . . . , C4 are arbitrary constants. Applying the shift transformations Φt to the obtained generalsolutions, we obtain particular solutions of equation (6). For example, the function

u(t, x) =− 1 +1

10

(5

2x2 + 5 + (10x+ 1− t)

√5

)e−

12

(t√

5−1)+

+1

10

(5

2x2 + 5 + (−10x− 1 + t)

√5

)e

12

(t√

5−1) (11)

is a solution of equation (6). It corresponds to solution (10) with a = b = c = 1, α = 1, β = 0 andC1 = 0, C2 = 1, C3 = 0, C4 = 0, C5 = 0.

This work is partially supported by Russian Foundation for Basic Research, project 18-29-10013 (A.Kushner).

References

[1] Kruglikov B. S., Lychagina O. V. Finite dimensional dynamics for Kolmogorov Petrovsky Piskunov equation.Lobachevskii Journal of Mathematics, 19: 1328, 2005.

[2] Kushner A. G., Matviichuk R.I. Exact solutions of the Burgers Huxley equation via dynamics. Journal of Geometryand Physics 151, 2020.

[3] Kushner A. G., Matviichuk R.I. Finite Dimensional Dynamics of Evolutionary Equations with Maple. DierentialGeometry, Dierential Equations, and Mathematical Physics Springer (in press).

[4] Kushner A. G., Lychagin V. V., Rubtsov V. N. Contact geometry and nonlinear dierential equations. Cambridge:Cambridge University Press, xxii+496 pp., 2007.

[5] Lychagin V. V., Lychagina O. V. Finite Dimensional Dynamics for Evolutionary Eguations, Nonlinear Dyn., 48:2948, 2007.

Page 41: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

40

On the squares of dieomorphisms of surfaces

Iryna Kuznietsova(Institute of Mathematics of NAS of Ukraine, Tereshchenkivska str. 3, Kyiv, 01024, Ukraine)

E-mail: [email protected]

Sergiy Maksymenko(Institute of Mathematics of NAS of Ukraine, Tereshchenkivska str. 3, Kyiv, 01024, Ukraine)

E-mail: [email protected]

Let M be a surface and D(M) be the group of C∞-dieomorphisms of M . There is a natural rightaction of the group D(M) on the space of smooth functions C∞(M,R) dened by the following rule:(h, f) 7−→ f h, where h ∈ D(M), f ∈ C∞(M,R).Thus, the stabilizer of f with respect to the action

S(f) = h ∈ D(M) | f h = fconsists of f -preserving dieomorphisms of M .Endow D(M) with Whitney C∞-topology and its subspaces S(f) with induced one. Denote by

Sid(f) the identity path component of S(f).

Denition 1. Denote by F(M) the space of smooth functions f ∈ C∞(M,R) satisfying the followingconditions:

(1) The function f takes constant value at each connected component of ∂M and has no criticalpoints in ∂M .

(2) For every critical point z of f there is a local presentation fz : R2 → R of f near z such thatfz is a homogeneous polynomial R2 → R without multiple factors.

Denition 2. A smooth vector eld F will be called Hamiltonian-like for f ∈ F(M) if the followingconditions hold:

(1) F (x) = 0 if and only if x is a critical point of f ,(2) f takes constant values on orbits of F ,(3) Let z be a critical point of f . Then there exists a local representation of f at z as a homogeneous

polynomial g : (R2, 0)→ (R, 0) without multiple factors such that in the same coordinates (x, y)near the origin 0 in R2 we have F = −g′y ∂

∂x + g′x∂∂y .

The smooth ow F : M × R → M generated by a Hamiltonian-like vector eld for f will be calledHamiltonian-like ow for f .

Denote by ∆−(f) the set of dieomorphisms from S(f) leaving invariant each regular connectedcomponent of each level-set of f and reverses its orientation.

Theorem 3. Let D2 be a 2-disk, f ∈ F(M). Suppose there exists h ∈ ∆−(f), i.e. ∆−(f) 6= ∅. Thenthere exists another g ∈ ∆−(f) such that g = h in a neighborhood of ∂D and g2 ∈ Sid(f).

Theorem 4. Let M be an orientable connected compact surface and f ∈ F(M). If ∆−(f) 6= ∅, thenthere exists another g ∈ ∆−(f) such that g2 ∈ Sid(f).

Page 42: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

41

A recurrent (CHR)-curvature tensor eld in a trans-Sasakianmanifold

Koji Matsumoto(Yamagata University, 2-3-65 Nishi-Odori, Yonezawa, Yamagata, 992-0059, Japan)

E-mail: [email protected]

A tensor eld T in a Riemannian manifold is called recurrent if it satises ∇XT = A(X)T for acertain 1-form A which is called recurrent 1-form, where ∇ means the covariant dierentiation withrespect to the Riemannian metric.Recently, we introduced the notion of (CHR)-curvature tensor eld in an almost contact Riemannian

manifold.In this talk, we consider the (CHR)-curvature tensor eld is recurrent in a trans-Sasakian man-

ifold M , that is, (∇U (CHR))(X,Y, Z,W ) = A(U)(CHR)(X,Y, Z,W ) for any tangent vector eldsU,X, Y, Z,W on M . Then, we show that the Riemannian curvature tensor (resp. (CHR)-curvaturetensor) is written by A,α and β.

Page 43: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

42

Spaces of probability measures and box dimension

Natalia Mazurenko(Department of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National

University, Shevchenka Str., 57, Ivano-Frankivsk,76025, Ukraine.)E-mail: [email protected]

Mykhailo Zarichnyi(Department of Mechanics and Mathematics, Lviv National University, Universytetska Str., 1, Lviv,

79000, Ukraine)E-mail: [email protected]

The topology of hyperspaces of sets of given dimension is investigated in numerous publications (see,e.g., [3, 5, 2, 1]). In particular, in [7] the author described the topology of the hyperspace of sets ofgiven Hausdor dimension.There are dierent denitions of dimension for the probability measures (see, e.g., [4, 6, 6]). The

present talk is devoted to the spaces of probability measures of given box dimension.Let us recall some necessary denitions.Let (X, d) be a complete metric space. For F ⊂ X and r > 0 denote by Nr(F ) the least number of

closed balls of radius r needed to cover the set F . The lower and upper box dimensions of a set F aredened as follows:

dimbox(F ) = limr→0

logNr(F )

log(1/r);

dimbox(F ) = limr→0logNr(F )

log(1/r),

and the box dimension of a set F is dened as

dimbox(F ) = limr→0

logNr(F )

log(1/r)

whenever the last limit exists.Note also that the lower (upper) box dimension of a set coincides with the lower (upper) box

dimensions of its topological closure.Additionally, let the quantity λ0 be given by the formula

λ0 = λ0(X) = infdimbox(Br(x)) | x ∈ X, r > 0,where Br(x) denotes the closed ball of radius r centered at x, is called the smallest local upper boxdimension of X.Now, let P (X) denote the space of probability measures on X and k > 0. We endow P (X) with the

weak* topology. The lower and upper box dimensions of a measure µ ∈ P (X) are dened, respectively,by the formulae:

dimbox(µ) = limk→0

infdimbox(F ) | F ∈ B(X), µ(F ) ≥ 1− k;

dimbox(µ) = limk→0

infdimbox(F ) | F ∈ B(X), µ(F ) ≥ 1− k,

where B(X) denotes the set of Borel subsets in X.

Theorem 1. Let X be an innite complete separable metric space, then the set

µ : dimbox(µ) = 0is homeomorphic to the separable Hilbert space l2.

Page 44: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

43

Theorem 2. Let X be an innite complete separable metric space, then the set

µ : infdimbox(F ) : F ∈ B(X), µ(F ) > 0 ≥ λ0is homeomorphic to the separable Hilbert space l2.

The proofs of these theorems are based on results by Myjak and Rudnicki [9]. They proved that thementioned sets are residual in the space of probability measures. We also apply some characterizationtheorems from innite-dimensional topology [8].

References

[1] T. Banakh, N. Mazurenko, The topology of systems of hyperspaces determined by dimension functions, Topology48(2009), P.4353

[2] R. Cauty R, Suites Fσ-absorbantes en theorie de la dimension, Fund. Math. 159 (1999), N 2, 115126.[3] T. Dobrowolski, L. Rubin, The hyperspace of innite-dimensional compacta for covering and cohomological dimension

are homeomorphic, Pacic J. Math. 164 (1994) 1539.[4] Julia Genyuk, A typical measure typically has no local dimension, Real Analysis Exchange, Vol. 23(2), 19971998,

P.525-537.[5] H. Gladdines, Absorbing systems in infnite-dimensional manifolds and applications. Amsterdam: Vrije Universiteit,

1994. 117pp.[6] Masakazu Tamashiro, Dimensions in a separable metric space, 1995, Volume 49, Issue 1, P.143162.[7] N. Mazurenko, Uncountable absorbing systems related to the Hausdor dimension, Mat. Stud. 31 (2009) 195203.[8] J. van Mill, Innite-Dimensional Topology. Prerequisites and Introduction (North-Holland Mathematical Library Vol-

ume 43), North Holland, 1988. 402pp.[9] Jozef Myjak, Ryszard Rudnicki, On the Box Dimension of Typical Measures, Monatshefte fur Mathematik,

136(2):143150.[10] L. Olsen, A multifractal formalism, Adv. in Math. 116 (1995), P.82196.

Page 45: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

44

Framed cobordism of systems of submanifolds in the classication offree quotients

Lukasz P. Michalak(Adam Mickiewicz University in Poznan, Poznan, Poland)

E-mail: [email protected]

In this talk we will show how framed cobordism of systems of non-separating 2-sided submanifoldsin a closed manifold can be used to classify epimorphisms onto free groups up to equivalence andstrong-equivalence. Such a classication is known for surface groups and was done by GrigorchukKurchanovZieschang by using other methods. We use an extended PontryaginThom construction toassociate for any system of submanifolds an induced homomorphism to a free group. We will presentgeometric operations on submanifolds which realize elementary Nielsen transformations on inducedhomomorphisms. These results are motivated by the notion of Reeb graph of a function on a manifold,which leads to both free quotient and system of submanifold.The results are from joint work with Wac law Marzantowicz.

References

[1] R. I. Grigorchuk, P. F. Kurchanov and H. Zieschang, Equivalence of homomorphisms of surface groups to free groupsand some properties of 3-dimensional handlebodies, Proceedings of the International Conference on Algebra, Part 1(Novosibirsk, 1989), 521530, Contemp. Math. 131, Part 1, Amer. Math. Soc., Providence, RI, 1992.

[2] W. Marzantowicz and L. P. Michalak, Relations between Reeb graphs, systems of hypersufaces and epimorphisms ontofree groups, preprint (2020), arXiv:2002.02388.

Page 46: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

45

The density and the τ−placed of the Nϕτ −nucleus of a space X

F. G. Mukhamadiev(National University of Uzbekistan, Uzbekistan)

E-mail: [email protected]

Let X be a topological space and let ξ be a system of closed subsets of X. The system ξ is calledlinked, if any two elements of it have nonempty intersection. A linked system ξ of closed subsets of Xis called complete, if for any closed set F ⊂ X, the condition

” any neighborhood OF contains the set Φ ∈ ξ ” (?)

implies that F ∈ ξ [1]. The set of all complete linked systems (CLS) in the space X is denoted by NX.Let U1, . . . , Uk, V1, . . . , Vn be a set of nonempty open subsets of X. Set O(U1, . . . , Uk)〈V1, . . . , Vn〉 =

ξ ∈ NX : for any i = 1, . . . , k there exists Fi ∈ ξ such that Fi ⊂ Ui, and for any j = 1, . . . , n andany Φ ∈ ξ, the intersection Φ∩ Vj is nonempty . It is easily seen that the set of subsets of NX of theform O(U1, . . . , Uk)〈V1, . . . , Vn〉 is an open basis of some topology on NX.

Denition 1. Let X be a T1−space, ϕ be a cardinal-valued function, and τ be a cardinal number.The Nϕ

τ −nucleus of a space X is the space

Nϕτ X = ξ ∈ NX : there exists F ∈ ξ such that ϕ(F ) ≤ τ [2].

Denition 2. A topological space X is said to be Nϕτ −nuclear if Nϕ

τ X = NX.

As ϕ, we take a density function d. Let τ = ℵ0.The denition implies that any space X is Nd

τ−nuclear, where τ = d(X); in particular, any separablespace X is Nϕ

ℵ0−nuclear.

Theorem 3. Let X be an innite T1−space. Then1) πw(Nd

ℵ0X) = πw(X);

2) d(Ndℵ0X) = d(X) (taken from [2]).

A set A ⊂ X is called τ−placed in X if for each point x ∈ X \ A there is a set P of type Gτ in Xsuch that x ∈ P ⊂ X \A [3].Put q(X) = minτ ≥ ℵ0 : X is τ−placed in βX; q(X) is called the Hewitt-Nachbin number of X.

We say that X is a Qτ−space if q(X) ≤ τ.A space X is called an mτ−space, where τ is given cardinal, if for each canonical closed set F in X

and each point x ∈ F there is set P of type Gτ in X such that x ∈ P ⊂ F.Clearly, X is an mτ−space for τ = |X|. This allows us to give the following denition: put m(X) =

minτ ≥ ℵ0 : X is an mτ−space . The space X is called a Moscow space if m(X) ≤ ℵ0.

Theorem 4. Let q(Ndℵ0X) ≤ τ and m(NX) ≤ τ , then Nd

ℵ0X is τ−placed in NX.

Theorem 5. Let m(NX) ≤ τ = d(X), then an Ndℵ0−nucleus Nd

ℵ0X is τ−placed in NX.

Theorem 6. Let NX is a Moscow space and X is a separable, then Ndℵ0X is τ−placed in NX.

References

[1] A.V.Ivanov. A space of complete linked systems. // Siberian Mathematical Journal, 27 : 863875, 1986.[2] F.G.Mukhamadiev. On Certain Cardinal Properties of the Nϕ

τ −Nucleus of a Space X. // Journal of MathematicalSciences. 245 : 411415, 2020.

[3] A.V.Arkhangel'skii. Topological Function Spaces, volume 78 of Mathematics and Its Applications. Dordrecht / Boston/ London : Kluwer Academic Publisher, 1992.

Page 47: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

46

Ricci-at Kahler metrics on tangent bundles of rank-one symmetricspaces of compact type

I. V. Mykytyuk(Institute of Applied Problems of Mathematics and Mechanics, Naukova Str. 3b, 79601, Lviv,

Ukraine.)E-mail: [email protected]

We give an explicit description of all complete G-invariant Ricci-at Kahler metrics on the tangentbundle T (G/K) ∼= GC/KC of rank-one Riemannian symmetric spaces G/K of compact type, in termsof associated vector-functions.Over the latest decades there has been considerable interest in Ricci-at Kahler metrics whose

underlying manifold is dieomorphic to the tangent bundle T (G/K) of a Riemannian symmetric spaceG/K of compact type. For instance, a remarkable class of Ricci-at Kahler manifolds of cohomogeneityone was discovered by M. Stenzel [1]. This has originated a great deal of papers. To cite but a few:M. Cvetic, G.W. Gibbons, H. Lu and C.N. Pope [2] studied certain harmonic forms on these manifoldsand found an explicit formula for the Stenzel metrics in terms of hypergeometric functions. Earlier,T.C. Lee [3] gave an explicit formula of the Stenzel metrics for classical spaces G/K but in anothervein, using the approach of G. Patrizio and P. Wong [4]. Remark also that in the case of the standardsphere S2, the Stenzel metrics coincide with the well-known Eguchi-Hanson metrics [5]. On the otherhand, and as it is well known, Stenzel metrics continue being a source of results both in physics anddierential geometry. We cite here only to G. Oliveira [6] and M. Ionel and T.A. Ivey [7].We give an explicit description of all complete G-invariant Ricci-at Kahler metrics on the tangent

bundle T (G/K) of rank-one Riemannian symmetric spaces G/K of compact type or, equivalently, onthe complexication GC/KC of G/K. To this end, we use the method of our article [8], giving theresult in terms of associated vector-functions (see below). It is also shown that this set of metricscontains a new family of metrics which are not ∂∂-exact if G/K ∈ CPn, n > 1, and coincides withthe set of ∂∂-exact Stenzel metrics for any of the latter spaces G/K.Remark here that until now, in the case of the space CPn (n > 1), all known Ricci-at Kahler metrics

were Calabi metrics, so being hyper-Kahlerian and thus automatically Ricci-at (see O. Biquard andP. Gauduchon [9, 10] and E. Calabi [11]). Since by A. Dancer and M.Y. Wang [12, Theorem 1.1]any complete G-invariant hyper-Kahlerian metric on G/K = CPn (n > 2) coincides with the Calabimetric, our new metrics are not hyper-Kahlerian.Note also, that in [12] the Kahler-Einstein metrics on manifolds of G-cohomogeneity one were clas-

sied but only under one additional assumption: It is assumed that the isotropy representation ofthe space G/H (see our notation below) splits into pairwise inequivalent sub-representations. Thiscondition is crucial for the fact that the Einstein equation can be solved. But this assumption fails,for instance, for the symmetric space CPn (n > 2).Let G/K be a rank-one symmetric space of a compact connected Lie group G. The tangent bun-

dle T (G/K) has a canonical complex structure JKc coming from the G-equivariant dieomorphismT (G/K) → GC/KC. The latter space is the above-mentioned complexication of G/K. In our pa-per [8] we described, for such a G/K, all G-invariant Kahler structures (g, JKc ) which are moreoverRicci-at on the punctured tangent bundle T+(G/K) of T (G/K). This description is based on thefact that T+(G/K) is the image of G/H × R+ under certain G-equivariant dieomorphism. HereH denotes the stabilizer of any element of T (G/K) in general position. Such G-invariant Kahlerand Ricci-at Kahler structures are determined completely by a unique vector-function a : R+ → gHsatisfying certain conditions, gH being the subalgebra of Ad(H)-xed points of the Lie algebra of G.

Page 48: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

47

References

[1] Stenzel, M. Ricci-at metrics on the complexication of a compact rank one symmetric space. Manuscripta Math.80: 151163, 1993.

[2] Cvetic, M., Gibbons, G.W., Lu, L., Pope, C.N. Ricci-at metrics, harmonic forms and brane resolutions. Comm.Math. Phys. 232: 457500, 2003.

[3] Lee, T.C. Complete Ricci-at Kahler metric on MnI , M

2nII , M

4nIII . Pacic J. Math. 185(2): 315326, 1998.

[4] Patrizio, G., Wong, P. Stein manifolds with compact symmetric center. Math. Ann. 289: 355382, 1991.[5] Eguchi, T., Hanson, A.J. Asymptotically at self-dual solutions to Euclidean gravity. Phys. Lett. B74: 249251,

1978.[6] Oliveira, G.: Calabi-Yau monopoles for the Stenzel metric. Comm. Math. Phys. 341(2), 699728 (2016)[7] Ionel, M., Ivey, T.A.: Austere submanifolds in CPn. Comm. Anal. Geom. 24(4), 821841 (2016)[8] Gadea, P.M., Gonzalez-Davila, J.C., Mykytyuk, I.V. Invariant Ricci-at Kahler metrics on tangent bundles of compact

symmetric spaces. http://arxiv.org/abs/1903.00044[9] Biquard, O., Gauduchon, P. Hyperkahler metrics on cotangent bundles of Hermitian symmetric spaces, in: J. E.

Andersen, J. Dupont, H. Pedersen, A. Swann (Eds.), Geometry and Physics, Vol. 184, Lect. Notes Pure Appl. Math.,Marcel Dekker, pp. 287298, 1996.

[10] Biquard, O., Gauduchon, P. Geometrie hyperkahlerienne des espaces hermitiens symetriques complexies. Seminairede Theorie spectrale et Geometrie 16: 127173, 1998.

[11] Calabi, E. Metriques kahleriennes et bres holomorphes. Ann. Sci. Ecole Norm. Sup. (4) 12: 269294, 1979.[12] Dancer, A., Wang, M.Y. Kahler-Einstein metrics of cohomogeneity one. Math. Ann. 312(3): 503526, 1998.

Page 49: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

48

On the group of isometries of foliated manifolds

A. Y. Narmanov(Faculty of Mathematics, National University of Uzbekistan, Tashkent, 100174, Tashkent,

Uzbekistan;)E-mail: [email protected]

A. N. Zoyidov(Faculty of Mathematics, National University of Uzbekistan, Tashkent, 100174, Tashkent,

Uzbekistan;)E-mail: [email protected]

LetM be a connected Riemannian C∞-manifold of dimension n.We will denote by (M,F ) manifoldM with k-dimensional foliation F on M.

Denition 1. If for the some Cr- dieomorphism ϕ : M → M the image ϕ(Lα) of any leaf Lα offoliation F is a leaf of foliation F , we say that the ϕ is Cr- dieomorphism of foliated manifold andwrite as ϕ : (M,F )→ (M,F ) [2].

Let's denote as DiffF (M) the set of all Cr- dieomorphisms of foliated manifold (M,F ), wherer ≥ 0. The group DiffF (M) is subgroup of Diff(M) and therefore it is topological group in compactopen topology.Recall a vector eld X is called a foliated eld if for every vector eld Y, tangent to F, Lie brocket

[X,Y ] also is tangent to F. It is known that ow of every foliated eld consists of dieomorphismsof foliated manifold (M,F ) [1]. The set L(M,F ) of foliated vector elds is a Lie subalgebra of Liealgebra V (M) [2]. It follows from here that the group DiffF (M) contains the Lie group for which theLie algebra is an algebra L(M,F ).Let M be a smooth connected nite-dimensional Riemannian manifold.

Denition 2. An isometry ϕ : M → M is called an isometry of foliated manifold (M,F ) if it isdieomorphism of foliated manifold (M,F ) [1].

We will denote by IsoF (M) the set of all Cr-isometries of foliated manifold (M,F ), where r ≥ 0.We have that

IsoF (M) = DiffF (M)⋂

Iso(M).

Let us recall that vector eld X on riemannian manifold (M, g) is called Killing eld if its owconsists of isometries of Riemannian manifold (M, g), that is LXg = 0, where g is riemannian metric,LXg denotes Lie derivative of the metric g with respect to X. If X is foliated Killing vector eld,it's ow consists of isometries of foliated manifold (M,F ).) The set K(M,F ) of foliated Killing vectorelds is a Lie subalgebra of Lie algebra L(M,F ). It follows from here that the group IsoF (M) containsthe Lie group for which the Lie algebra is an algebra K(M,F ).

Theorem 3. Let (M,F ) be a foliated manifold where M is a smooth connected nite-dimensionalRiemannian manifold. Then the group IsoF (M) is closed subset of Iso(M) in compact open topology.

Really Cartan's theorem states that on a closed subgroup of a Lie group there exists a dierentialstructure with respect to which the closed subgroup is a Lie subgroup of a given Lie group.By usingthis fact we formulate following .

Theorem 4. Let (M,F ) be a foliated manifold where M is a smooth connected nite-dimensionalRiemannian manifold. Then the group IsoF (M) is Lie subgroup of Lie group Iso(M).

Page 50: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

49

References

[1] A. Narmanov and A.Sharipov. On the group of foliation isometries,Methods of Functional Analysis and Topology,2009, vol. 15, pp. 1952009.

[2] I. Tamura. Topology of Foliations: An Introduction, American Mathematical Society. Providence, Rhode Island,1992. http://bookre.org/reader?le=582002.

Page 51: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

50

On boundary behavior by prime ends of solutions to Beltramiequations

Igor Petkov(Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine)

E-mail: [email protected]

Vladimir Ryazanov(Institute of Applied Mathematics and Mechanics of National Academy of Sciences of Ukraine;Bogdan Khmelnytsky National University of Cherkasy, Physics Dept., Lab. of Math. Physics)

E-mail: [email protected], [email protected]

It is shown that each homeomorphic W 1,1loc solution to the Beltrami equation is the so-called lower

Q-homeomorphism with Q(z) = Kµ(z) where Kµ(z) is the dilatation quotient of this equation. It isdeveloped on this basis, see e.g. [2], the theory of the boundary behavior of such solutions.

Let D be a domain in the complex plane C and let µ : D → C be a measurable function with|µ(z)| < 1 a.e. in D. The Beltrami equation is the equation of the form

fz = µ(z)fz (1)

where fz = ∂f = (fx+ ify)/2, fz = ∂f = (fx− ify)/2, z = x+ iy, and fx and fy are partial derivativesof f in x and y, correspondingly. The function µ is called the complex coecient and

Kµ(z) =1 + |µ(z)|1− |µ(z)|

(2)

the dilatation quotient for the equation (1) that is degenerate if ess supKµ(z) =∞.

In [2] and [3], we follow Caratheodory in the denition of the prime ends for bounded nitelyconnected domains in C and refer readers to Chapter 9 in [1]. In what follows, DP denotes thecompletion of the domain D by its prime ends with the the topology of prime ends, see Section 9.5in [1]. Further, we assume that Kµ is extended by 0 outside of D.

Theorem 1. Let D and D′ be bounded nitely connected domains in C and let f : D → D′ be ahomeomorphic W 1,1

loc solution of the Beltrami equation (1) with

δ(z0)∫0

dr

||Kµ||(z0, r)= ∞ ∀ z0 ∈ ∂D (3)

where 0 < δ(z0) < d(z0) = supz∈D|z − z0| and ||Kµ||(z0, r) :=

∫|z−z0|=r

Kµ(z) |dz| . Then f can be

extended to a homeomorphism of DP onto D′P .

References

[1] E.F. Collingwood, A.J. Lohwator. The Theory of Cluster Sets, volume 56 of Cambridge Tracts in Math. and Math.Physics. Cambridge: Cambridge Univ. Press, 1966.

[2] D. Kovtonyuk, I. Petkov, V. Ryazanov. Prime ends in theory of mappings with nite distortion in the plane. Filomat,volume 31 (5) : 13491366, 2017.

[3] I.V. Petkov. The boundary behavior of homeomorphisms of the class Wloc1,1 on a plane by prime ends. Dopov.Nac. akad. nauk Ukr., 6 : 1923, 2015 [in Russian]. https://doi.org/10.15407/dopovidi2015.06.019

Page 52: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

51

Some topological obstructions for strong coloring of uniformhypergraphs

Leonid Plachta(L'viv, Ukraine)

E-mail: [email protected]

A hypergraph H = (V,E) based on the vertex set V and with the edge set E is called k-uniform ifall its edges have cardinality k. A strong l-coloring of the hypergraph H is a map h : V → [l] where[l] = 1, 2, . . . , l such that for each edge e = v1, v2, . . . , vk ∈ E the vertices v1, v2, . . . , vk are labeledwith dierent colors. Note that a strong coloring of a uniform hypergraph H is just a proper coloringof its 1-skelethon H(1), which is covered by a collection of k-cliques.Let S be a family of nonempty subsets of some base set X. The generalized Kneser hypergraph

Kgkm(S) where m ≤ k − 1 is dened as follows. The vertices of Kgkm(S) are the elements Si of S andthere is a k-edge e = Si1 , . . . , Sik in Kgkm(S) if and only if Si1 ∩ · · · ∩ Sim+1 = ∅ for any distinct setsSi1 , . . . , Sil+1

from S (see also [1, 12]).In the present talk, we represent k-uniform hypergraphs H as generalized Kneser hypergraphs

Kgkk−1(S). For the given k, l with l ≥ k we dene the generalized Kneser k-uniform hypergraph

Kgkk−1(T) which is called the testing hypergraph for l-coloring of k-uniform hypergraphs. Both

Kgkk−1(S) and Kgkk−1(T) have the natural geometric interpretation as cell complexes, denoted by

Bk(Kgkk−1(S)) and Bk,l(T), respectively. The cell complexes Bk(Kg

kk−1(S)) and Bk,l(T) are en-

hanced with natural action of the symmetric grup Sk. The action of the group Sk is eective onboth cell complexes. For each l-coloring of a k-uniform hypergraph H there is a natural homo-morzm g : Kgkk−1(S) → Kgkk−1(T) of hypergraphs Kgkk−1(S) and Kgkk−1(T). The homomorzm

g : Kgkk−1(S) → Kgkk−1(T) induces an Sk-equivariant cellular map g′ : Bk(Kgkk−1(S)) → Bk,l(T).

Therefore, the nonexistence of such Sk-equivariant map from Bk(Kgkk−1(S)) to Bk,l(T) is a topo-

logical obstruction for existence of strong l-coloring of the k-uniform hypergraph H. We discuss theconditions under which such topological obstructions do not vanish.

References

[1] C.E.M.C. Lange, and G. M. Ziegler, Note on generalized Kneser Hypergraph coloring , J. Comb. Theory, ser. A 114,2007, pp. 159-166.

[2] G. M. Ziegler, Generalized Kneser coloring theorems with combinatorial proofs, Inventiones Math., 147, 2002, pp.671-691.

Page 53: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

52

On quotient spaces and their spaces of continuous maps

Sergiy Maksymenko(Institute of Mathematics of NAS of Ukraine, Tereshchenkivska str. 3, Kyiv, 01024, Ukraine)

E-mail: [email protected]

Eugene Polulyakh(Institute of Mathematics of NAS of Ukraine, Tereshchenkivska str. 3, Kyiv, 01024, Ukraine)

E-mail: [email protected]

Let p : X → Y be a factor map between topological spaces, that is p is surjective and a subsetA ⊂ Y is open if and only if p−1(A) is open in X.Let ∆ = p−1(y) | y ∈ Y be the partition of X into the inverse images of points of Y . A continuous

map h : X → X will be called a ∆-map if for each ω ∈ ∆ its image h(ω) is contained in some elementω′ of ∆. Hence every ∆-map h induces a map ψ(h) : Y → Y making commutative the followingdiagram:

Xh−−−−→ X

p

y ypY

ψ(h)−−−−→ Y

(1)

It is well known that ψ(h) is continuous whenever h is so.Let E(X,∆) be the monoid of all ∆-maps of X, and E(Y ) = C(Y, Y ) be the monoid of all continuous

self-maps of Y . Let also H(X,∆) be the subgroup of E(X,∆) consisting of homeomorphisms and H(Y )be the group of homeomorphisms of Y .Then the correspondence h 7→ ψ(h) is a well dened map

ψ : E(X,∆)→ E(Y ) (2)

being a homomorphism of monoids.The following statement gives sucient conditions under which ψ will be continuous with respect

to compact open topologies on E(X,∆) and E(Y ).

Lemma 1. Let p : X → Y be a factor map having the following property:

(K) for every compact subset L ⊂ Y there exists a compact subset K ⊂ X such that p(K) = L.

Then the homomorphism of monoids ψ : E(X,∆) → E(Y ) is continuous with respect to compact opentopologies.

Recall that a continuous map p : X → Y

• is called proper if p−1(L) is compact for each compact L ⊂ Y ;• admits local cross-sections if for every y ∈ Y there exists an open neighborhood V and acontinuous map f : V → X such that p f = idV .

Corollary 2. Suppose Y is a locally compact Hausdor space. Then each of the following conditionsimplies that the map ψ : E(X,∆)→ E(Y ) is continuous with respect to compact open topologies:

(1) p is a proper map;(2) p is an open map and admits local cross sections;(3) p is a locally trivial bration.

Let Y be a topological space. Say that two points y, z ∈ Y are T2-disjoint (in Y ) if they havedisjoint neighborhoods. Denote by hcl(y) the set of all z ∈ Y that are not T2-disjoint from y. Then

Page 54: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

53

z ∈ hcl(y) if and only if each neighborhood of z intersects each neighborhood of y. We will call hcl(y)the Hausdor closure of y.We will say that y ∈ Y is a branch point whenever hcl(y) \ y 6= ∅, so there are points that are not

T2-disjoint from y. The set of all branch points of Y will be denoted by Br(Y ).

Theorem 3. Let X be a locally compact Hausdor topological space, Y be a T1-space whose set Br(Y )of branch points is locally nite, and p : X → Y be an open continuous and surjective map. Then forevery compact L ⊂ Y there exists a compact subset K ⊂ X such that p(K) = L. In particular, due toLemma 1, the map (2) ψ : E(X,∆)→ E(Y ) is continuous with respect to compact open topologies.

Page 55: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

54

Topology of ows with collective dynamics on surfaces

Alexandr Prishlyak(Taras Shevchenko University of Kyiv)

E-mail: [email protected]

Andrei Prus(Taras Shevchenko University of Kyiv)

E-mail: [email protected]

We investigate the topological structure of ows with collective dynamics on the sphere. Flowswith xed points of hyperbolic type and focus in which there is one heteroclinic (or as a partial casehomoclinic) cycle which divides a surface into two parts and contains all saddle points are considered.One part is connected, homeomorphic to the open disk and has Hamiltonian-type dynamics with focusinside, and the other is divided into regions that have gradient-like dynamics and the same propertiesas the Morse eld. Namely: 1) all points of hyperbolic type; 2) there are no trajectories connecting thesaddles, except for trajectories belonging to the selected heteroclinic cycle; 3) each trajectory beginsand ends at a xed point (sink, source, saddle). A complete topological invariant of these ows isconstructed.This invariant is a planar graph, which has the form of a circle with some segments drawn inside

it. The circle (the selected cycle on the graph) corresponds to a closed trajectory in the Hamiltonianregion, which is quite close to the selected heteroclinic cycle. The vertices correspond to the saddlepoints and sources, and the saddle lying on the boundary of the two components of the connectivityof the gradient region corresponds to two vertices. Segments (edges that do not belong to the selectedcycle) correspond to separatrixes coming from a source and chords connecting vertices correspondingto one saddle. By sequentially numbering the vertices on the circle, we divide them into groups andselected pairs. One group includes those vertices of the saddle, which include separatrixes from onesource (we mark it as (1,2,3)), the chords correspond to the numbers of pairs of vertices (we mark it as1,2). Using these invariants, all possible structures of such ows with no more than 6 saddles werefound. Thus there is a single ow with one saddle: (1). Two ows with two saddles are 1): (1), (2)and 2): (1,2). Four ows with three saddles are: 1): (1), (2), (3); 2): (1,2), (3); 3): (1,2,3); 4): (1),(3), 2,4. 18 ows with 5 saddles and 47 ows of dierent structure with 6 saddles were also found.

References

[1] Î.Î.Ïðèøëÿê, À.À.Ïðóñ. Òðèêîëüîðîâèé ãðàô ïîòîêó Ìîðñà íà êîìïàêòíié ïîâåðõíi ç ìåæåþ. // Íåëiíiéíiêîëèâàííÿ, 2019.

[2] Îøåìêîâ À.À., Øàðêî Â.Â. Î êëàññèôèêàöèè ïîòîêîâ Ìîðñà íà äâóìåðíûõ ìíîãîîáðàçèÿõ// Ìàò.ñáîðíèê,1998, Ò. 189, 8. - Ñ.93-140.

[3] Â.Å. Êðóãëîâ, Ä.Ñ. Ìàëûøåâ, Î.Â. Ïî÷èíêà. Ìíîãîöâåòíûé ãðàô êàê ïîëíûé òîïîëîãè÷åñêèé èíâàðèàíò äëÿΩ−óñòîé÷èâûõ ïîòîêîâ áåç ïåðèîäè÷åñêèõ òðàåêòîðèé íà ïîâåðõíîñòÿõ. Ìàòåì. ñá., 2018, òîì 209, íîìåð 1,100126 DOI: https://doi.org/10.4213/sm8797

Page 56: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

55

On similarity of two families of matrices over a eld

Volodymyr Prokip(IAPMM NAS of Ukraine, L'viv, Ukraine)

E-mail: [email protected]

Let F be a eld of characteristic zero. Denote by Mm,n(F) the set of m× n matrices over F and byMm,n(F[λ]) the set of m× n matrices over the polynomial ring F[λ].

In the ring F[λ] we consider the operation of dierentiation D. Let a(λ) =∑l

i=0 aiλl−i ∈ F[λ].

Put D (a(λ)) =∑l

i=0(l − i)aiλl−i−1 and Dk(a(λ)) = D(a(k−1)(λ)) = a(k)(λ) for every natural k ≥ 2.The dierentiation of a matrix A(λ) =

[aij(λ)

]∈ Mm,n(F[λ]) is understood as its elementwise

dierentiation, i.e., A(1)(λ) = D(A(λ)) = [D(aij(λ))] = [a(1)ij (λ)] and A(k)(λ) = D(A(k−1)(λ))

Let b(λ) = (λ − β1)k1(λ − β2)k2 · · · (λ − βr)kr ∈ F[λ], deg b(λ) = k = k1 + k2 + · · · + kr, and

A(λ) ∈Mm,n(F[λ]). For the monic polynomial b(λ) and the matrix A(λ) we dene the matrix

M [A, b] =

N1

N2...Nr

∈Mmk,n(F), where Nj =

A(βj)

A(1)(βj)...

A(kj−1)(βj)

∈Mmkj ,n(F), j = 1, 2, . . . , r.

The Kronecker product of matrices A = [aij ] (n×m) and B is denoted by A⊗B =[aijB

]. Let non-

singular matrices A(λ), B(λ) ∈ Mn,n(F[λ]) be equivalent and S(λ) = diag (s1(λ), . . . , sn−1(λ), sn(λ))be their Smith normal form (see [5], Chapter 1). For A(λ) and B(λ) we dene the matrix

D(λ) =((s1(λ)s2(λ) · · · sn−1(λ)

)−1B∗(λ)

)⊗At(λ) ∈Mn2,n2(F[λ]),

where At(λ) denote the transpose of A(λ). It may be noted if S(λ) = diag (1, . . . , 1, s(λ)) is the Smithnormal form of the matrices A(λ) and B(λ), then D(λ) = B∗(λ)⊗At(λ).

Denition 1. Two families of n × n matrices A = A1, A2, . . . , Ar and B = B1, B2, . . . , Br overa eld F are said to be similar if there exists a matrix T ∈ GL(n,F) such that Ai = TBiT

−1 for alli = 1, 2, . . . , r.

The task of classifying square matrices up to similarity is one of the core and oldest problems inlinear algebra (see [1] [7] and references therein), and it is generally acknowledged that it is also oneof the most hopeless problems already for r = 2. Standard approaches for deciding similarity dependupon the Jordan canonical form, the invariant factor algorithm and the Smith form, or the closelyrelated rational canonical form. In numerical linear algebra, this leads to deep algorithmic problems,unsolved even up to this date, that are caused by numerical instabilities in solving eigenvalue problemsor by the inability to eectively compute sizes of the Jordan blocks or degrees of invariant factors, ifthe matrix entries are not known precisely. At present such problems are called wild ([2], [3]).The families A and B we associate with monic matrix polynomials

A(λ) = Inλr +A1λ

r−1 +A2λr−2 + · · ·+Ar and B(λ) = Inλ

r +B1λr−1 +B2λ

r−2 + · · ·+Br

over a eld F of degree r respectively, where In is the identity n×n matrix. It is clear that the familiesA and B are similar over F if and only if the matrices A(λ) and B(λ) are similar over F. The purposeof this report is to give a criterion of similarity of two families of matrices over a eld.

Page 57: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

56

Theorem 2. Let matrices A(λ) = Inλr +

∑ri=1Aiλ

r−i, B(λ) = Inλr +

∑ri=1Biλ

r−i ∈ Mn,n(F[λ])of degree r be equivalent, and let S(λ) = diag (s1(λ), . . . , sn−1(λ), sn(λ)) be their Smith normal form.Further, let sn(λ) = (λ− α1)k1(λ− α2)k2 · · · (λ− αr)kr , where αi ∈ F for all i = 1, 2, . . . , r.The families A = A1, A2, . . . , Ar and B = B1, B2, . . . , Br are similar over F if and only if

rank M [D, sn] < n2 and the homogeneous system of equations M [D, sn]x = 0 has a solution x =[v1, v2, . . . , vn2 ]t over F such that the matrix

V =

v1 v2 . . . vnvn+1 vn+2 . . . v2n

. . . . . . . . . . . .vn2−n+1 vn2−n+2 . . . vn2

∈Mn,n(F)

is nonsingular. If detV 6= 0, then Ai = V −1BiV for all i = 1, 2, . . . , r.

Example 3. Let F = Q be the eld of rational numbers. Further, let

A =

A1 =

[−3 0−4 1

], A2 =

[1 11 1

]and B =

B1 =

[1 0−4 −3

], B2 =

[0 01 2

]be two

families of 2× 2 matrices over the eld Q.

Monic matrix polynomials A(λ) = I2λ2 +A1λ+A2 =

[λ2 − 3λ+ 1 1−4λ+ 1 λ2 + λ+ 1

]and

B(λ) = I2λ2 + B1λ + B2 =

[λ2 + λ 0−4λ+ 1 λ2 − 3λ+ 2

]with entries from Q[λ] are equivalent and

S(λ) = diag (1, (λ2 − 1)(λ2 − 2λ)) is their Smith normal form. It may be noted that s1(λ) = 1 ands2(λ) = λ(λ+ 1)(λ− 1)(λ− 2). Construct the matrix

D(λ) = B∗(λ)⊗At(λ) =

[λ2 − 3λ+ 2 0

4λ− 1 λ2 + λ

]⊗[λ2 − 3λ+ 1 −4λ+ 1

1 λ2 + λ+ 1

]and solve the system of equations M [D, s2]x = 0. Crossing out zero rows in the matrix M [D, s2] andafter elementary transformations over the rows of this matrix we get the following system of linearequations 1 1 0 0

3 9 2 67 49 6 42

x1

x2

x3

x4

=

0000

.From this system of equations we obtain x1 = −x2 = t, x3 = 0 and x4 = t. It is obvious that the

matrix V =

[t −t0 t

]is nonsingular for nonzero t ∈ Q. Thus, the families of matrices A and B are

similar, i.e., Ai = V −1BiV , i = 1, 2.

References

[1] Yu.A. Drozd. Representations of commutative algebras. Functional Analysis and Its Appl., 6(4): 286288, 1972.[2] Yu. A. Drozd On tame and wild matrix problems. Matrix Problems, Institute of Mathematics, Ukrainian Academy

of Sciences, Kiev. 1977, pp.104114. (in Russian)[3] Yu. A. Drozd Tame and wild matrix problems. Lecture Notes in Math., 1980, 832, pp.242258.[4] S. Friedland. Simultaneous similarity of matrices. Adv. Math., 50: 189265, 1983.[5] S. Friedland. Matrices: Algebra, Analysis and Applications. Singapore: World Scientic Publishing Co., 2015.[6] K.D. Ikramov. How to check whether given square matrices are congruent? Zapiski Nauchnykh Seminarov POMI.

439: 99-106, 2015.[7] V.V. Sergeichuk. Canonical matrices for linear matrix problems. Linear Algebra Appl., 317: 53-102, 2000.

Page 58: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

57

Some connections between invariant factors of matrix and itssubmatrix

Andriy Romaniv(Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of the NAS of Ukraine,

Department of Algebra, 3 b, Naukova Str., L'viv, 79060, Ukraine)E-mail: [email protected]

Nataliia Dzhaliuk(Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of the NAS of Ukraine,

Department of Algebra, 3 b, Naukova Str., L'viv, 79060, Ukraine)E-mail: [email protected]

Invariant factors and their connections play an important role in the studying of matrix's structure[3, 5]. For instance, at augmented one matrix with a single row to obtain another matrix are usedthe relationships between the invariant factors of these matrices. B.W. Jones [2] state a fact that aunimodular m × n (m < n) matrix A over a principal ideal domain may always be augmented witha single row to obtain a unimodular (m+ 1)× n matrix B. Some relationships between the invariantfactors of an arbitrary matrix A and those of a one row prolongation B over the same area wasestablished by R. Thompson [4]. D. Carlson [1] obtained similar results in terms of a nitely generatedmodule.In this paper, we give necessary and sucient conditions that a matrix A may be augmented with

a single row to obtain a matrix B over elementary divisor domains.Let R be an elementary divisor domain [4] with 1 6= 0, i.e., every m × n matrix A over R have

diagonal reduction, namely A ∼ E = diag(ε1, . . . , εk, 0, . . . , 0), εi|εi+1, i = 1, . . . , k − 1, where thematrix E is called the Smith normal form, the diagonal elements εi are invariant factors of the matrixA. The notation a|b means that the element a is the divisor of the element b, i.e., b = ac, where c ∈ R.

Theorem 1. Let R be an elementary divisor domain, A be an m × n matrix over R, A ∼ E =diag(ε1, . . . , εk, 0, . . . , 0), εi|εi+1, i = 1, . . . , k − 1. Let also δ1, . . . , δk ∈ R be nonzero elements suchthat δi|δi+1, i = 1, . . . , k − 1. Then the matrix A may be augmented with a single row to obtain an(m+ 1)× n matrix B ∼ ∆ = diag(δ1, . . . , δk, 0, . . . , 0), δi|δi+1, i = 1, . . . , k − 1, if and only if

δ1|ε1|δ2|ε2| . . . |δk|εk.

References

[1] Carlson D. Inequalities for the degrees of the elementary divisor of modules. Linear Algebra and Appl., 5: 293298,1972.

[2] Jones B.W. The arithmetic theory of quadratic forms. Carus Monograph, No 10, Math. Assoc. Amer., 1950.[3] Shchedryk V.P. On interdependence between invariant factors of a block-triangular matrix and its diagonal blocks.

Math Notes, 90(4): 584596, 2011.[4] Thompson R. Interlacing inequalities for invariant factors. Linear Algebra and Appl., 24 : 131, 1979.[5] Zabavsky B.V. Diagonal reduction of matrices over rings. Lviv: Mathematical Studies, Monograph Series, V, XVI,

VNTL Pulishers, 2012.

Page 59: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

58

Conjugate time in sub-Riemannian problem on Cartan group

Yuri Sachkov(Program Systems Institute, Russian Academy of Sciences, Pereslavl-Zalessky,152020, Russia)

E-mail: [email protected]

The Cartan group is the free nilpotent Lie group of rank 2 and step 3. We consider the left-invariantsub-Riemannian problem on the Cartan group dened by an inner product in the rst layer of its Liealgebra. This problem gives a nilpotent approximation of an arbitrary sub-Riemannian problem withthe growth vector (2,3,5).In previous works we described a group of symmetries of the sub-Riemannian problem on the Cartan

group, and the corresponding Maxwell time the rst time when symmetric geodesics intersect oneanother. It is known that geodesics are not globally optimal after the Maxwell time.Now we study local optimality of geodesics on the Cartan group. We prove that the rst conjugate

time along a geodesic is not less than the Maxwell time corresponding to the group of symmetries.Geodesics for which the rst conjugate time is equal to the Maxwell time are presented.Earlier we conjectured that the Maxwell time is equal to the cut time the time when geodesics

lose optimality. Our result is an important step in the proof of this conjecture.

Page 60: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

59

The density and the local density of the space of permutation degree

A. Kh. Sadullaev(National University of Uzbekistan, Uzbekistan)

E-mail: [email protected]

F. G. Mukhamadiev(National University of Uzbekistan, Uzbekistan)

E-mail: [email protected]

A permutation group X is the group of all permutations (i.s.one-one and onto mappings X → X.A permutation group of a set X is usually denoted by S(X). If X = 1, 2, 3, ...n, S(X) is denoted bySn , as well [1].Let Xn be the n-th power of a compact X. The permutation group Sn of all permutations, acts on

the n-th power Xn as permutation of coordinates. The set of all orbits of this action with quotienttopology we denote by SPnX . Thus, points of the space SPnX are nite subsets (equivalence classes)of the product Xn. Thus two points (x1, x2, ..., xn) , (y1, y2, ..., yn) ∈ Xn are considered to be equivalentif there is a permutation σ ∈ Sn such that yi = xσ(i).The space SP

nX is called the n -permutationdegree of a space X. Equivalent relation by which we obtained space SPnX is called the symmetricequivalence relation. The n-th permutation degree is always a quotient of Xn. Thus, the quotient mapis denoted by as following: πsn : Xn → SPnX.Where for every x = (x1, x2, ..., xn) ∈ Xn, πsn ((x1, x2, ..., xn)) = [(x1, x2, ..., xn)] is an orbit of the

point X = (x1, x2, ..., xn) ∈ Xn.The concept of a permutation degree has generalizations. Let G be any subgroup of the group

Sn.Then it also acts on Xn as group of permutations of coordinates. Consequently, it generates aG -symmetric equivalence relation on Xn. This quotient space of the product of Xn under the G-symmetric equivalence relation is called G-permutation degree of the space X and it is denoted bySPnG. An operation SP

nG = SPn is also the covariant functor in the category of compacts and it is said

to be a functor of G -permutation degree. If G = Sn then SPnG = SPn. If the group G consists onlyof unique element then SPnG = Xn.We say that the local density of a topological space X is τ at a point x, if τ is the smallest cardinal

number such that x has a neighborhood of density τ in X.The local density at a point x is denoted byld(x). The local density of a topological space X is dened as the supremum of all numbers ld(x) forx ∈ X ld (X) = supld(x) : x ∈ X [2].It is known that, for any topological space we have ld(X) ≤ d(X).

Theorem 1. Let X be an innite T1−space and Y is a dense in X. Then SPnY is also dense inSPnX.

Theorem 2. Let X be an innite T1−space and Y is a local dense in X. Then SPnY is also localdense in SPnX.

References

[1] V.V.Fedorchuk, V.V.Filippov, Topology of hyperspaces and its applications. // Mathematica, cybernetica. Moscow:4 (1989) - 48 p.

[2] R.B.Beshimov, N.K.Mamadaliev, F.G.Mukhamadiev. Some properties of topological spaces related to the local den-sity and the local weak density. // Mathematics and Statistics 3(4): 101-105, 2015.

Page 61: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

60

A short note on Hurewicz and I-Hurewicz properties in topologicalspaces

Upasana Samanta(Jadavpur University, Kolkata-700032, West Bengal, India)

E-mail: [email protected]

Theorem 1. Let X be an ε-space and let I be an ideal having a pseudounoin, then X satisesSfin(Ω,OI-gp) if and only if X has Hurewicz property [4].

Lemma 2. [1, Theorem 4.1.2] (see also [5]) An ideal I of N is meager if and only if there is a partitionPn : n ∈ N of N into nite sets such that each A ∈ I contains atmost nitely many P ′ns.

Proposition 3. For a space X and a meager ideal I, X satises Sfin(Λ,OI-gp) if and only if X hasHurewicz property.

Problem 4. Is there a Lindelof non-ε-space such that Sfin(Ω,OI-gp) holds but Sfin(Λ,OI-gp) fails?.

Denition 5. A space X is said to have I-Hurewicz property (in short IH) if for each sequence(Un : n ∈ N) of open covers of X there is a sequence (Vn : n ∈ N) such that for each n ∈ N,Vn is anite subset of Un and for each x ∈ X, n ∈ N : x 6∈ ∪Vn ∈ I[2].

Theorem 6. Let X be an ε-space satisfying CDRsub(Λ,Λ) and let I be a meager ideal of N. If X hasI-Hurewicz property then X also has Hurewicz property.

Theorem 7. If a lter does not have I-Hurewicz property then χ(F) ≥ b(I).

Remark 8. CH denotes the Continuum Hypothesis. Assume ¬CH. Let I be an ideal of N and letk be an innite cardinal satisfying b < k < b(I). There is X ⊂ NN of size b which is not a Hurewiczspace. But X is I-Hurewicz.

Example 9. There exists a non-I-Hurewicz lter of character b(I). Consider a set fα : α < b(I)which is not I-bounded. Let F be a lter on N × N generated by the family Fα : α < b(I) whereFα = (n,m) : m ≥ fα(n), n ∈ N. For each n ∈ N, U = U(n,m) : m ∈ N is an open cover of Fwhere for each n,m ∈ N, U(n,m) = A ⊂ N× N = mink ∈ N : (n, k) ∈ A.

References

[1] T. Bartoszynski and H. Judah, Set Theory, On the Structure of the Real Line, A.K. Peters, 1995.[2] P. Das, Certain types of open covers and selection principles using ideals, Houston J. Math., 39(2) (2013), 637 - 650.[3] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.[4] P. Das, U. Samanta and D. Chandra, Some observations on Hurewicz and I-Hurewicz property, Topology Appl., 258

(2019), 202 - 214.[5] M. Talagrand, Compacts de fontions measurables et ltres non measurables, Studia Math., 67 (1) (1980), 13 - 43.

Page 62: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

61

About one class of Continual distributions with screw modes

Olena Sazonova(V. N. Karazin Kharkiv National University, Ukraine)

E-mail: [email protected]

The kinetic equation Boltzmann is the main instrument to study the complicated phenomena in themultiple-particle systems, in particular, rareed gas. This kinetic integro-dierential equation for themodel of hard spheres has a form [1, 2]:

D(f) = Q(f, f). (1)

We will consider the continual distribution [3]:

f =

∫R3

ϕ(t, x, u)M(v, u, x)du, (2)

which contains the local Maxwellian of special form describing the screw-shaped stationary equilibriumstates of a gas (in short-screws or spirals) [4]. They have the form:

M(v, u, x) = ρ0eβω2r2

π

) 32

e−β(v−u−[ω×x])2. (3)

Physically, distribution (3) corresponds to the situation when the gas has an inverse temperatureβ = 1

2T , where T = 13ρ

∫R3

(v − u)2fdv and rotates in whole as a solid body with the angular velocity

ω ∈ R3 around its axis on which the point x0 ∈ R3 lies,

x0 =[ω × u]

ω2, (4)

The square of this distance from the axis of rotation is

r2 =1

ω2[ω × (x− x0)]2 (5)

and the density of the gas has the form:

ρ = ρ0eβω2r2

(6)

(ρ0 is the density of the axis, that is r = 0), u ∈ R3 is the arbitrary parameter (linear mass velocityfor x), for which x||ω, and u+ [ω × x] is the mass velocity in the arbitrary point x. The distribution(3) gives not only a rotation, but also a translational movement along the axis with the linear velocity

(ω, u)

ω2ω,

Thus, it really describes a spiral movement of the gas in general, moreover, this distribution is stationary(independent of t), but inhomogeneous.The purpose is to nd such a form of the function ϕ(t, x, u) and such a behavior of all hydrodynamical

parameters so that the uniform-integral remainder [3, 4]

∆ = sup(t,x)∈R4

∫R3

|D(f)−Q(f, f)|dv, (7)

or its modication "with a weight":

∆ = sup(t,x)∈R4

1

1 + |t|

∫R3

|D(f)−Q(f, f)|dv, (8)

Page 63: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

62

tends to zero.Also some sucient conditions to minimization of remainder ∆ and ∆ are found. The obtained

results are new and may be used with the study of evolution of screw and whirlwind streams.

References

[1] C. Cercignani. The Boltzman Equation and its Applications. New York: Springer, 1988.[2] M.N. Kogan. The dinamics of a Rareed Gas. Moscow: Nauka, 1967.[3] V.D. Gordevskyy, E.S. Sazonova. Continual approximate solution of the Boltzmann equation with arbitrary density.

Matematychni Studii., 45(2) : 194204, 2016.[4] V.D. Gordevskyy. Biow Distributions with Screw Modes. Theor. Math. Phys., 126(2) : 234249, 2001.

Page 64: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

63

Asymptotically best possible Lebesgue inequalities on the classes ofgeneralized Poisson integrals

Anatoly S. Serdyuk(Institute of Mathematics of NAS of Ukraine, 01024 Ukraine, Kiev-4, 3, Tereschenkivska st.)

E-mail: [email protected]

Tetiana A. Stepanyuk(University of Lubeck, Institut of Mathematics, Ratzeburger Allee 160, 23562 Lubeck, Germany)

E-mail: [email protected]

Denote by Cα,rβ C, α > 0, r > 0, (see, e.g., [1]) the set of all 2πperiodic functions, sucht that forall x ∈ R can be represented in the form of convolution

f(x) =a0

2+

1

π

π∫−π

Pα,r,β(x− t)ϕ(t)dt, a0 ∈ R, ϕ ⊥ 1, (1)

where ϕ ∈ C, and Pα,r,β(t) is a generalized Poisson kernel of the form

Pα,r,β(t) =

∞∑k=1

e−αkr

cos(kt− βπ

2

), α > 0, r > 0, β ∈ R.

If f and ϕ are connected with a help of equality (1), then the function f in this equality is calledthe generalized Poisson integral of the function ϕ and is denoted by Jα,rβ (ϕ). The function ϕ in the

equality (1) is called the generalized derivative of the function f and is denoted by fα,rβ .

By ρn(f ;x) we denote the deviation of the function f from its partial Fourier sum of order n− 1:

ρn(f ;x) := f(x)− Sn−1(f ;x),

where

Sn−1(f ;x) =a0

2+

n−1∑k=1

(ak cos kx+ bk sin kx) ,

ak = ak(f) =1

π

π∫−π

f(t) cos ktdt, bk = bk(f) =1

π

π∫−π

f(t) sin ktdt,

and by En(f)C we denote the best uniform approximation of the function f by elements of the subspaceτ2n−1 of trigonometric polynomials tn−1(·) of the order n− 1:

En(f)C := inftn−1∈τ2n−1

‖f − Sn−1(f)‖C .

The norms ‖ρn(f ; ·)‖C can be estimated via En(f)C , using the Lebesgue inequality

‖ρn(f ; ·)‖C ≤(

4

π2lnn+O(1)

)En(f)C , n ∈ N. (2)

On the whole space C the inequality (2) is asymptotically exact. At the same time for the sets offunctions Cα,rβ C the inequality (2) is not asymptotically exact.

We establish the asymptotically best possible Lebesgue-type inequalities for the functions f ∈ Cα,rβ C,

in which for all n, starting from the number n1 = n1(α, r), an additional term is estimated by absoluteconstant.

Page 65: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

64

For arbitrary α > 0, r ∈ (0, 1) we denote by n1 = n1(α, r) the smallest integer n ∈ N, such that

1

αr

1

nr

(1 + ln

πn1−r

αr

)+

αr

n1−r ≤1

(3π)3. (3)

Theorem 1. Let α > 0, r ∈ (0, 1), β ∈ R and n ∈ N. Then, for any function f ∈ Cα,rβ C and all

n ≥ n1(α, r) the following inequality holds

‖ρn(f ; ·)‖C ≤ e−αnr

(4

π2lnn1−r

αr+ γn

)En(fα,rβ )C . (4)

Moreover, for arbitrary function f ∈ Cα,rβ C one can nd a function F (x) = F (f, n, x) from the set

Cα,rβ C, such that En(Fα,rβ )C = En(fα,rβ )C , such that for n ≥ n1(α, r) the equality holds

‖ρn(F ; ·)‖C = e−αnr

(4

π2lnn1−r

αr+ γn

)En(fα,rβ )C . (5)

In (4) and (5) for the quantity γn = γn(α, r, β) the estimate holds |γn| ≤ 20π4.

References

[1] A.I. Stepanets Methods of Approximation Theory. VSP: Leiden, Boston, 2005.

Page 66: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

65

Dierential invariants of transformations group

Abdigappar Narmanov(National University of Uzbekistan, Tashkent, 100174, Tashkent, Uzbekistan)

E-mail: [email protected]

Xurshid Sharipov(National University of Uzbekistan, Tashkent, 100174, Tashkent, Uzbekistan)

E-mail: [email protected]

Denition 1. Let M,B be smooth manifolds and p ∈ M. Let f, g : M → B be smooth mappingssatisfying the condition f(p) = g(p) = q.1) f has a rst-order tangency with g at the point p if (df)p = (dg)p as the map TpM → TpB.2) f has a contact of k th order with g at the point p if the map (df) : TM → TB has a contact

of order (k − 1) with map (dg) at each point TpM. This fact can be written as follows: f ∼k g at thepoint p (k -positive number) [2].

We denote by Jk(M,B)p,q the sets of equivalence classes with respect to the "∼k at the point

p" in the space of mappings f : M → B satisfying the condition f(p) = q. We put Jk(M,B) =⋃(p,q)∈M×B J

k(M,B)p,q.

Denition 2. The set Jk(M,B) is called the space of k -jets.

The action of the group G on M gives rise to some action of the group on Jk(M,B). This action iscalled the k -prolongation of the group G on Jk(M,B).

We letG(k) denote the associated prolonged group action on the jet space Jk(M,B). The innitesimalgenerators of the k -th prolongation of the group G to Jk(M,B) are k - prolongations of innitesimalgenerators of the group G.

Denition 3. The function I ∈ C∞(Jk(M,B)) is called a dierential invariant of order k of the groupG if it is preserved under the action of the k -th prolongation G on Jk(M,B), that is, g(I) = I for any

transformation g ∈ G(k).

Dierential invariants of Lie group of transformations are studied in the papers [1], [3], [4].Let G be a Lie group of transformations of the space of two independent u, v and three dependent

x1, x2, x3 variables, and following vector eld

X = ξ1(u, v, x)∂

∂u+ ξ2(u, v, x)

∂v+

3∑i=1

ηi(u, v, x)∂

∂xi(1)

is innitesimal generator of the group G.It is known that any Lie group is similar to the group of translations. This property of the groups

is remarkable and its use permits simplication of nding of dierential invariants of the group.In order to use this possibility we produce the replacement of variables.Let us consider functions F1(u, x) and F2(v, x) which are solutions of following equation

X(F ) = 1. (2)

Let I1(u, v, x), I2(u, v, x) and I2(u, v, x) be are functionally independent invariant functions of thegroup G, i.e. they are satisfy following equations

X(Ii) = 0, i = 1, 2, 3. (3)

Page 67: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

66

We will replace the variables in the space of (u, v, x1, x3, x3) by putting

s = F1(u, x), t = F2(v, x), (4)

yi = Ii(u, v, x), (5)

where i = 1, 2, 3. Using easy deductions, we can verify that in variables (s, t, y1, y2, y3) the vector eld(1) has the following form

X =∂

∂s+∂

∂t. (6)

This form of the vector eld X shows that the group G is similar to the group of translations. Moreoverin the coordinates (s, t, y1, y2, y3) for any k ∈ N for k − th prolongation X(k) of the vector eld (6) it

holds equality X(k) = X.Let us recall dierentiation operator D is called invariant dierentiation operator with respect group

G if it holds DX(F ) = XD(F ) for any smooth function F.It follows from the form of the vector eld (6) invariant dierentiation operators for the group G

are following operators of total derivatives: D = Ds +Dt.If we put

pi,k =∂kyi∂sk

, qi,k =∂kyi∂tk

then we can write total derivatives in following forms:

Ds =∂

∂s+

3∑i=1

pi,1∂

∂yi+

3∑i=1

pi,2∂

∂pi,1+ ... (7)

Dt =∂

∂t+

3∑i=1

qi,1∂

∂yi+

3∑i=1

qi,2∂

∂qi,1+ .... (8)

We have the following equalities

Ds =1

DuF1Du, Dt =

1

DvF2Dv, (9)

which will allow us to return to the old variables, where Du, Dv− also operators of total derivativeswith respect u, v.Let denote by Dk(F ) derivatives Dk

s +Dkt (F ) of order k.

Thus we have the following theorem.

Theorem 4. Suppose I1, I2, I3 are independent invariants of the group G, F1(u, x), F2(v, x), are so-lutions of the equation X(F ) = 1. Then functions Ii(u, v, x) and Dk(Ii) are dierential invariants oforder k.

References

[1] Alekseevsky D.V., Vinogradov A.M., Lychagin V.V. Basic ideas and concepts of dierential geometry. The results ofscience and technology. Modern problems of mathematics. Fundamental directions. - Moscow: VINITI. 1988-28.-298 p.

[2] Golubitskii M., Guiyemin V. Stability maps and their singularities. Moscow publishing house. Mir -1977

[3] Narmanov A.Y., Sharipov X.F. Dierential invariants of submersions. Uzbek mathematical Journal. 2018 N-3 pp.132-138. DOI:10.29229/uzmj.2018-3-12.

[4] Sharipov X.F. Second order dierential invariants of submersions. Uzbek mathematical Journal. 2019 N-3 pp.146-154. DOI:10.29229/uzmj.2019-3-16.

Page 68: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

67

Some remarks on the Metrizability of F-metric spaces

Sumit Som(Department of Mathematics, National Institute of Technology Durgapur, India.)

E-mail: [email protected]

Ashis Bera(Department of Mathematics, National Institute of Technology Durgapur, India.)

E-mail: [email protected]

Lakshmi Kanta Dey(Department of Mathematics, National Institute of Technology Durgapur, India.)

E-mail: [email protected]

In this talk, we will show that the newly introduced F-metric spaces, introduced by Jleli and Sametin [1], are metrizable. Also, we deduce that the notions of convergence, Cauchy sequence, completenessdue to Jleli and Samet for F-metric spaces are equivalent to that of usual metric spaces. Moreover, weshow that the Banach contraction principle in the context of F-metric spaces is a direct consequenceof its standard metric counterpart.

References

[1] M. Jleli and B. Samet. On a new generalization of metric spaces. J. Fixed Point Theory Appl., 20(3):128, (2018).

Page 69: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

68

Triangle Cubics and Conics

Veronika Starodub(American Univesity in Bulgaria, Blagoevgrad, Bulgaria)

E-mail: [email protected]

Skuratovskii Ruslan(The National Technical University of Ukraine Igor Sikorsky Kiev Polytechnic Institute, Ukraine)

E-mail: [email protected]

This is a paper in classical geometry, namely about triangle conics and cubics. In recent years,N.J. Wildberger has actively dealt with this topic using an algebraic perspective. Triangle conics werealso studied in detail by H.M. Cundy and C.F. Parry recently. The main task of the article was todevelop an algorithm for creating curves, which pass through triangle centers. During the research, itwas noticed that some dierent triangle centers in distinct triangles coincide. The simplest example:an incenter in a base triangle is an orthocenter in an excentral triangle. This was the key for creatingan algorithm. Indeed, we can match points belonging to one curve (base curve) with other points ofanother triangle. Therefore, we get a new intersting geometrical object. We may observe the methodthrough deriving one of the results:One can consider as a base conic Jarabek Hyperbola [3]. It passes through circumcenter, orthocenter,

Lemoine point, isogonally conjugated to the de Longchamps point, and vertices of a triangle. We maystudy this hyperbola in the excentral triangle. One can notice that all of the above points havecorrespondence with points in the base triangle: Bevan point, incenter, mittenpunkt, de Longchampspoint, and centers of the excircles, respectively. Therefore, we got a new cubic, which passes throughthe above points. All of the properties of the base hyperbola could be analogically converted in a newview perspective.

Theorem 1. As a consequence, one may apply the described above method to various curves andvarious constructed triangles, such as excentral, medial, mid-arc, Euler triangles, etc. The applicationyields the following results:

Corollary 2. The rst obtained conic is ractangular conic that passes through centers of the excircles,Bevan point, incenter, mittenpunkt and de Longchamps point. The new hyperbola is isogonaly conjugateto the line, which passes through incenter, citcumcenter, Bevan point, isogonaly conjugated point to themittenpunkt with respect to the base triangle, and isogonaly conjugate to the mittenpunkt with respectto the excentral triangle. Moreover, its center lies on the circumscribed circle.

Corollary 3. The second derived conic has vertices in the centroid and de Longchaps point, focusin the orthocenter. Directrix of the hyperbola is perpendicular to the Euler line and passes throughcircumcenter.

Corollary 4. The third derived conic is the rectangular hyperbola that passes through circumcenter,incenter, midpoint of mittenpunkt and incenter, Schier point, and isogonaly conjugate point to theBevan point.

Corollary 5. The rst obtained cubic passes through vertices of the triangle, bases of the altitudes,middles of the triangle sides in the orthic triangle, orthocenter, Euler point, centroid in orthic triangle,Lemoine point, and gomotetic center of the orthic and tangent triangles.

Corollary 6. The second constructed cubic passes through vertices of the triangle, bases of the alti-tudes, orthocenter, Euler center, and circumcenter.

Page 70: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

69

Corollary 7. The third developed cubic passes through Speaker point, center of the Euler circle, cir-cumcenter, orthocenter, complementary conjugate of orthocenter.

Corollary 8. The fourth obtained cubic passes through Lemoine point, centroid, circumcenter, mit-tenpunkt, incenter, and orthocenter.

Corollary 9. The fth derived cubic passes through circumcenter, orthocenter, Euler center and mid-point of the incenter and the orthocenter.

Jarabek and Y hyperbole; Thomsom, Darboux,and Lucas cubics were taken for construction ofthe above curves. The properties of the invented curves and the algorithm of their construction aredescribed in more details in the paper. The originality of the obtained results could be veried [4].

The beauty of the idea of the corresponding points lies in the fact that it can be applied to variousgeometric objects. Many wider results are obtained by applying this technique to straight lines passingthrough triangular centers. Also, one can apply this method to other curves.

The developed idea completely closes the question of curves passing through triangular centers.However, it opens up a number of new questions. What is the topological nature of these transforma-tions? Is it possible to apply a similar idea to non-Euclidean objects? Could one use the same methodover an arbitrary nite eld? Can this idea be further generalized?

References

[1] N.J. Wildberger. Neuberg cubics over nite elds. Algebraic Geometry and its Applications, volume 5, 488-504, 2008.[2] H.M. Cundy and C.F. Parry. Some cubic curves associated with triangle. Journal of Geometry, 53, 41-66, 2000[3] Pinkernell, G. M. "Cubic Curves in the Triangle Plane." J. Geom. 55, 141-161, 1996.[4] Kimberling, C. Encyclopedia of Triangle Centers. https://faculty.evansville.edu/ck6/encyclopedia/.

Page 71: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

70

On some fractal-based estimations of subsidence volume for varioustypes of soils

Tatyana P. Mokritskaya(Dnipro National University, Gagarin Avenue 72, Dnipro, 49050, Ukraine)

E-mail: [email protected]

Anatolii V. Tushev(Dnipro National University, Gagarin Avenue 72, Dnipro, 49050, Ukraine)

E-mail: [email protected]

The idea of loess as a natural multi-fractal was formed in the works of Bird [1], Russell [2]. On thebasis of the fractal characteristics of the pore and particle structure, there were obtained theoreticalmodels describing diusion, deformation of the compaction and the shift of the medium [3], [4]. In [2]the distribution function Ns(L > ds) of the particles sizes is dened as the number of particles of thesize L such that L > ds, where ds runs over the real numbers. The fractal dimension of the particlesize distribution function is dened as follows

Ds = limds→0

− ln(Ns(L > ds))

ln(ds)

In the presented paper we study subsidence of soils, which are eluvial, eluvial-deluvial loess-likedeposits of the Middle-Upper Pleistocene age, lying on the Right-Bank Loess Upland Plain (MiddleDnieper, Ukraine).On the basis of the fractal characteristics of the pore and particle structure, there were obtained

theoretical models describing diusion, deformation of the compaction and the shift of the medium[3], [4]. Under some additional conditions of fractal nature of the loess soil and developing methodsintroduced in [5, 6] we obtained certain predictive estimations of the coecient of porosity after thedisintegration of micro-aggregates. In this note we obtain some estimations of soil subsidence volume,based on the introduced above fractal dimension.The particles forming the ground may have only a nite set of sizes. We denote these sizes

d1, d2, ..., dn−1, dn ranging in decreasing order from the largest. We assume that α = αj = dj/dj−1,where 2 6 j 6 n , does not depend on j. This assumption corresponds to the idea of the self-similarityof fractal structures. In addition, all known mathematical fractals are constructed on this principle.As the structures formed by particles of a xed size are self-similar, we also assume that all thesestructures have the same coecient of porosity kp as well as the same porosity Kp = kp/(1 + kp). Wediscovered that under such conditions two dierent situations may occurred. Let k′ be the coecientof porosity and K ′ be the porosity of the soil after the disintegration of micro-aggregates.

Theorem 1. In the above denotations we have :

1. If Kp > αDs, then k′ =(1+kp)d3−Ds

1∑nj=1 d

3−Dsj

− 1 and K ′ = 1−∑nj=1 d

3−Dsj

(1+kp)d3−Ds1

;

2. If Kp < αDs, then k′ =kpd

3−Dsn∑n

j=1 d3−Dsj

and K ′ =kpd

3−Dsn

kpd3−Dsn +

∑nj=1 d

3−Dsj

.

The results of our experiments and calculations show that on the basis of a new theoretical modelsand the "Microstructure" technique, having the values of the fractal dimension of the particle sizedistribution by volume, it is possible to forecast the volume deformations after the disintegration ofthe micro-aggregates. Depending on the type of soils and the specic experimental conditions, thismay be the amount of subsidence deformation, swelling or suusion. The details of our experimentsand techniques are described in [6].

Page 72: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

71

References

[1] N.R.A. Bird, E. Perrier, M. Rieu. The water retention function for a model of soil structure with pore and solidfractal distributions. Eur. J. Soil Sci., 51: 5563, 2000.

[2] A. R. Russell, O. Buzzi. A fractal basis for soil-water characteristics curves with hydraulic hysteresis. Geotechnique,62(3) : 269274, 2012.

[3] A. N Anderson, J. W. Crawford, A. B. McCartney. On Diusion in Fractal Soil Structures. Soil Sci. Soc. Am. J., 64: 19-24, 2000.

[4] Ce Wang Zhan, Zhang Yang Liu,· Shi-min Fan. Geometric and fractal analysis of dynamic cracking patterns subjectedto wetting-drying cycles. Soil and Tillage Research, 170 : 113, 2017.

[5] Tatiana P. Mokritskaya, Anatoliy V. Tushev, Evgeny V. Nikulchev, Ksenia A. Samoylich. On the Fractal Character-istics of Loess Subsidence. Contemporary Engineering Sciences, 9(17) : 799807, 2016.

[6] Mokritskaya T.P., Tushev A.V., Samoylich K.A. Baranov P.N. Deformations of loess soils caused by changes in the mi-croaggregate structure. Bulletin of Engineering Geology and the Environment.2018. https://doi.org/10.1007/s10064-018-1361-z

Page 73: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

72

Non-acyclic SL2-representations of twist knots andnon-trivial L-invariants

Jun Ueki(Tokyo Denki University, 5 Senju Asahi-cho, Adachi-ku, 120-8551, Tokyo, Japan)

E-mail: [email protected]

In this talk on the joint work [TTU20] withRyoto Tange in Kogakuin university andAnh T. Tranin the University of Texas at Dallas, we study irreducible SL2-representations of twist knots. For eachn ∈ Z, the twist knot J(2, 2n) is dened by the diagram below, the horizontal twists being right handedif n is positive and left handed if negative.

We have J(2, 0) = 01 (unknot), J(2, 2) = 31 (trefoil), J(2, 4) = 52, and J(2,−2) = 41 (gure-eightknot). Regarding a 1/2-full twist to be a half twist, J(2,−2n) and J(2, 2n+ 1) are the mirror imagesto each other, hence we only consider J(2, 2n). The knot group πn := π1(S3 − J(2, 2n)) of J(2, 2n)admits the presentation

πn = 〈a, b | awn = wnb〉 , w = [a, b−1] = ab−1a−1b.

by [HS04, Proposition 1]. Since twist knots are 2-bridge knots, the CullerShalen theory of charactervariety together with Riley's calculation assures that conjugacy classes of ρ ∈ Hom(πn,SL2(SL)) areparametrized by x := tr ρ(a) and y := tr ρ(ab). A representation ρ is said to be acyclic if Hi(π, ρ) = 0holds for every i and non-acyclic if otherwise. Here is our rst theorem.

Theorem 1. Conjugacy classes of non-acyclic irreducible SL2(SL)-representations of J(2, 2n) are ex-

actly given by x = y = 1− 2 cos2πk

3n− 1, 0 < k ≤ |3n− 1| − 1

2, k ∈ Z.

This implies that every such representation corresponds to a point on the diagonal x = y in R2 ⊂ SL2.In order to prove this assertion, we investigate the intersection of curves dened by Chebyshev-likepolynomials fn(x, y), τn(x, y) ∈ Z[x, y]. The polynomial fn(x, y) denes a component of the charactervariety and coincides with the Riley polynomial Φn(x, u) via −u = y−x2 +2. The polynomial τn(x, y)is the Reidemeister torsion regarded as a function so that τn(x, y) = 0 i a representation ρ with(tr ρ(a), tr ρ(ab)) = (x, y) is non-acyclic. We rst prove that the intersection of their zeros lie on x = yand then determine all common roots of fn(x, x) and τn(x, x). We also introduce several Chebyshev-like polynomials gn, hn, kn ∈ Z[x] and prove fn(x, x) = gnkn, τn(x, x) = hnkn, where kn is the greatestcommon divisor. We in addition prove the following theorem, generalizing [Ben20, Remark 4.6].

Theorem 2. The two curves fn(x, y) = 0 and τn(x, y) = 0 in R2 have a common tangent line atevery intersection point, while the second derivatives of their implicit functions do not coincide. In otherwords, every zero of τn(x, y) on fn(x, y) = 0 has multiplicity two in the function ring SL[x, y]/(fn(x, y)).

The following theorems characterize non-acyclic representations.

Theorem 3. The conjugacy class of an irreducible SL2(SL)-representation ρ of J(2, 2n) is on the linex = y if and only if ρ factors through the −3-Dehn surgery.

Theorem 4. The conjugacy class of an irreducible SL2(SL)-representation ρ of J(2, 2n) on x = y isnon-acyclic if and only if ρ(a−1wn) is of order 3.

Our study is indeed motivated by a problem in arithmetic topology. We nally investigate theL-invariants of universal deformations of residual representations, which was introduced in [KMTT18]

Page 74: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

73

in a perspective of the HidaMazur theory. Let ρ : πn → SL2(F ) be a representation over a eldF with char = p > 2 and a completed discrete valuation ring (CDVR) O with the residue eld F . Adeformation (or a lift) of ρ over a complete local O-algebra R is a representation ρ : πn → SL2(R) withthe residual representation ρ. A universal deformation ρ : πn → SL2(R) of ρ over O is a deformationsuch that any deformation over any R uniquely factors through ρ up to strict equivalence. If ρ isabsolutely irreducible, then ρ uniquely exists up to O-isomorphism and strict equivalence.When R is a Noetherian UFD and the group homology H1(πn,ρ) with local coecients is a nitely

generated torsion R-module, the L-invariant Lρ ∈ R/ = is dened to be the order of H1(πn,ρ), where= denotes the equality up to multiplication by units in R. Let ∆ρ,i(t) denote the i-th ρ-twistedAlexander polynomials. Then we have Lρ = ∆ρ,1(1). A general theory of twisted invariants yields Lρ

= τρ∆ρ,0(0). For most cases we have ∆ρ,0 = 1, so that we have Lρ˙6= 1 if and only if τρ = 0, that is,

ρ is non-acyclic. Now B. Mazur's Question 2 in [Maz00, page 440] may be varied as follows:

Problem 5. Investigate the L-invariants Lρ of the universal deformations ρ over O of absolutelyirreducible non-acyclic residual representations ρ.

The following theorem completely answers to this problem, that is, it determines all residual repre-sentations with non-trivial L-invariants, as well as explicitly determine the L-invariants themselves.

Theorem 6. Every absolutely irreducible representation ρ : πn → SL2(F ) of a twist knot correspondsto a root of kn in F . Suppose that ρ corresponds to a root α of kn with multiplicity m and that

α1 = α, · · · , αm are distinct lifts of α with kn(αi) = 0 and α ∈ O. If∂fn∂y

(α, α) 6= 0 holds, so that

there is a universal deformation ρ : πn → SL2(O[[x− α]]) over O, then the equalities

Lρ = kn(x)2 =∏i

(x− αi)2

in R = O[[x− α]] hold. If in addition p - 3n− 1, then m = 1 and Lρ = (x− α)2 holds.

If instead∂fn∂x

(α, α) 6= 0, then a similar equality holds in R = O[[y − α]].

We remark that our work is derived from the scope of the following dictionary of analogy betweenknots and prime numbers (cf. [MT07, MTTU17, KMTT18], [Mor12, Chapter 14]).

Low dimensional topology Number theory

Deformation space of hyperbolic structures Universal p-ordinary modular deformation spaceDehn surgery points with Z-coecient Arithmetic points

References

[Ben20] Leo Benard, Torsion function on character varieties, to appear in Osaka J. Math. arXiv:1711.08781v2, 2020.[HS04] Jim Hoste and Patrick D. Shanahan, A formula for the A-polynomial of twist knots, J. Knot Theory Ramications

13 (2004), no. 2, 193209. MR 2047468[KMTT18] Takahiro Kitayama, Masanori Morishita, Ryoto Tange, and Yuji Terashima, On certain L-functions for

deformations of knot group representations, Trans. Amer. Math. Soc. 370 (2018), 31713195.[Maz00] Barry Mazur, The theme of p-adic variation, Mathematics: frontiers and perspectives, Amer. Math. Soc.,

Providence, RI, 2000, pp. 433459. MR 1754790 (2001i:11064)[Mor12] Masanori Morishita, Knots and primes, Universitext, Springer, London, 2012, An introduction to arithmetic

topology. MR 2905431[MT07] Masanori Morishita and Yuji Terashima, Arithmetic topology after Hida theory, Intelligence of low dimensional

topology 2006, Ser. Knots Everything, vol. 40, World Sci. Publ., Hackensack, NJ, 2007, pp. 213222. MR 2371728[MTTU17] Masanori Morishita, Yu Takakura, Yuji Terashima, and Jun Ueki, On the universal deformations for SL2-

representations of knot groups, Tohoku Math. J. (2) 69 (2017), no. 1, 6784. MR 3640015[TTU20] Ryoto Tange, Anh T. Tran, and Jun Ueki, Non-acyclic SL2-representations of twist knots, preprint.

Page 75: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

74

Mappings with nite length distortion and prime ends on Riemannsurfaces

Sergei Volkov(Donetsk National Technical University, Pokrovsk, Ukraine)

E-mail: [email protected]

Vladimir Ryazanov(Institute of Applied Mathematics and Mechanics of National Academy of Sciences of Ukraine;Bogdan Khmelnytsky National University of Cherkasy, Physics Dept., Lab. of Math. Physics)

E-mail: [email protected], [email protected]

The class of mappings with nite length distortion was introduced in [2] for Rn, n > 2, see also [3].This class is a natural generalization of the classes of isometries and quasiisometries.Here we follow Caratheodory in the denition of the prime ends for nitely connected domains

on Riemann surfaces and DP denotes the completion of the domain D by its prime ends with the thetopology of prime ends, cf. Chapter 9 in [1]. We prove criteria in terms of dilatations Kf for thehomeomorphic extension to the boundary of these mappings f between domains in compacticationsby Kerekjarto-Stoilow of Riemann surfaces by prime ends, see denitions and notations in [4][5].Further, we assume that Kf is extended by 0 outside of D.

Theorem 1. Let S, S∗ be Riemann surfaces, D, D∗ be nitely connected domains on S, S∗, ∂D ⊂ S,∂D∗ ⊂ S∗. Suppose that f : D → D∗ is a homeomorphism with nite length distortion and, for allp0 ∈ ∂D,

ε(p0)∫0

dr

||Kf || (p0, r)= ∞ , ||Kf || (p0, r) : =

∫h(p,p0)=r

Kf (p) dsh(p). (1)

Then f can be extended to a homeomorphism of DP onto D′P .

References

[1] E.F. Collingwood, A.J. Lohwator. The Theory of Cluster Sets, volume 56 of Cambridge Tracts in Math. and Math.Physics. Cambridge: Cambridge Univ. Press, 1966.

[2] Olli Martio, Vladimir Ryazanov, Uri Srebro, Eduard Yakubov. Mappings with nite length distortion. J. Anal.Math., 93 : 215236, 2004.

[3] Olli Martio, Vladimir Ryazanov, Uri Srebro, Eduard Yakubov. Moduli in Modern Mapping Theory, Springer Mono-graphs in Mathematics. New York : Springer, 2009.

[4] Sergei Volkov, Vladimir Ryazanov. Prime ends in the Sobolev mapping theory on Riemann surfaces. Mat. Stud.48(1) : 2436, 2017.

[5] Sergei Volkov, Vladimir Ryazanov. On the boundary behavior of mappings in the class W1,1loc on Riemann surfaces.Complex Anal. Oper. Theory, 11 (7) : 15031520, 2017.

Page 76: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

75

Minimal generating set and structure of a wreath product of groupsand the fundamental group of an orbit of Morse function

Skuratovskii Ruslan(The National Technical University of Ukraine Igor Sikorsky Kiev Polytechnic Institute, Ukraine)

E-mail: [email protected]

Aled Williams(Cardi University, Cardi, UK)

E-mail: [email protected]

The quotient group of the restricted and unrestricted wreath product by its commutator is found.The generic sets of commutator of wreath product were investigated.We generalize the results presented in the book of Meldrum J. [1] about commutator subgroup of

wreath products since, as well as considering regular wreath products, we consider those which are notregular (in the sense that the active group A does not have to act faithfully). The fundamental groupof orbits of a Morse function f : M → R dened upon a Mobius band M with respect to the rightaction of the group of dieomorphisms D(M) has been investigated.Denote the set of all the orbits of A on X by O, if this set is nite then by Of . Recall that the

direct product indexed by innite set consists of all innite sequences, and the direct sum consistsonly of sequences with nitely many elements distinct from zero. Denote by Z(4(B)) the subgroup ofdiagonal subgroup [2] Fun(X,Z(B)) of functions f : X → Z(B) which are constant on each orbit ofaction of A on X for unrestricted wreath product, and denote by Z(4(Bn)) the subgroup of diagonalFun(X,Z(Bn)) of functions with the same property for restricted wreath product, where n is numberof non-trivial coordinates in base of wreath product.

Theorem 1. A centre of the group (A, X) oB is direct product of normal closure of centre of a diagonalof Z(Bn) i.e. (E × Z(4(Bn))), trivial an element, and intersection of (K) × E with Z(A). In otherwords,

Z((A, X) o B) = 〈(1; h, h, . . . , h︸ ︷︷ ︸n

), e, Z(K, X) o E〉 ' (Z(A) ∩ K)× Z(4(Bn)),

where h ∈ Z(B), |X| = n.For restricted wreath product with n non-trivial coordinate: Z((A, X) o B) =

〈(1; . . . , h, h, . . . , h, . . .), e, Z(K, X) o E〉 ' (Z(A) ∩ K)× Z(4(Bn)) ''⊕j∈Of

(Z(A) ∩ K)× Z(B).

In case of unrestricted wreath product we have: Z((A, X) o B) =

〈(1; . . . , h−1, h0, h1, . . . , hi, hi+1, . . . , ), e, Z(K, X) o E〉 ' (Z(A) ∩ K)× Z(4(B))=∏j∈O

(Z(A) ∩ K)× Z(B).

Theorem 2. If W = (A, X) o (B, Y ), where |X| = n, |Y | = m and active group A acts on Xtransitively, then

d(G′)≤ (n− 1)d(B) + d(B′) + d(A′).

Theorem 3. The quotient group of a restricted wreath products G = Z oX Z by a commutator subgroupis isomorphic to Z×Z. In previous conditions if G = AoXB then, G/G′ = A/A′×B/B′. If G = ZnoZm,where (m, n) = 1, then d(G/G′) = 1. If G = Z o Z is an unrestricted regular wreath product thenG/G′ ' Z × E ' Z.

Page 77: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

76

References

[1] John DP Meldrum. Wreath products of groups and semigroups, volume 74. CRC Press, London, 1995.[2] J.D. Dixon, B. Mortimer. Permutation Groups. Springer-Verlag, New York 1996.[3] Skuratovskii R. V. The commutator subgroup of Sylow 2-subgroups of alternating group, commutator width of wreath

product [Source: Arxiv.org], access mode: https://arxiv.org/pdf/1903.08765.pdf.[4] Ruslan Skuratovskii. Minimal generating sets for wreath products of cyclic groups, groups of automorphisms of ribe

graph and fundumental groups of some morse functions orbits. In Algebra, Topology and Analysis, Odessa, Ukraine,2016, 121123.

[5] Skuratovskii R. V., Aled Williams, Minimal Generating Set and a Structure of the Wreath Product of Groups,and the Fundamental Group of the Orbit Morse Function. [Source: Arxiv.org], 3 Sep 2019, access mode:https://arxiv.org/pdf/1901.00061.pdf

[6] Skuratovskii R. V. Involutive irreducible generating sets and structure of sylow 2-subgroups of alternating groups.// ROMAI J. Vol 13, 1 (13): 117139, 2017.

Page 78: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

77

Functors and fuzzy metric spaces

Aleksandr Savchenko(Kherson State Agrarian University, 23 Stretenska str., 73006 Kherson, Ukraine)

E-mail: [email protected]

Mykhailo Zarichnyi(Ivan Franko National University of Lviv, 1 Universytetska str., 79000 Lviv, Ukraine)

E-mail: [email protected]

H. Torunczyk and J. West [11] considered the construction of (completed) innite iteration of thehyperspace functor and established some of its geometric properties. A counterpart of this constructionfor the superextension functor was investigated in [12]. Later, V. Fedorchuk [3] introduced a generalnotion of perfectly metrizable functor and obtained generalizations of results from [12].Having in mind increasing interest to the fuzzy metric spaces we are going to extend the notion of

perfectly metrizable functor over the class of fuzzy metric spaces in the sense of George and Veeramani[5].Let X be a set, ∗ : [0, 1] × [0, 1] → [0, 1] be a continuous t-norm. A GV-fuzzy metric on X is a

mapping m : X ×X × R+ → (0, 1] satises the following conditions for all x, y, z ∈ X, s, t ∈ R+:

(1GV) m(x, y, t) > 0;(2GV) m(x, y, t) = 1 if and only if x = y;(3GV) m(x, y, t) = m(y, x, t);(4GV) m(x, z, t+ s) ≥ m(x, y, t) ∗m(y, z, s);(5GV) the function m(x, y,−) : R+ → [0, 1] is continuous.

We will consider the class of (closed to) normal functors in the category Comp of compact Haus-dor spaces and continuous maps. For any such a functor F , there exists a natural transformationη : 1Comp → F .Suppose that to each compact fuzzy metric space (X,mX , ∗) a fuzzy metricmF (X) on the space F (X)

is assigned (with respect to the same triangular norm ∗). We will make the following assumptions:

(1) If f : (X,mX)→ (Y,mY ) is an isometric embedding, then so is

F (f) : (F (X),mF (X))→ (F (Y ),mF (Y )).

(2) The map ηX : (X,mX)→ (F (X),mF (X)) is an isometric embedding.(3) diam(X,mX) = diam(F (X),mF (X)).

We suppose now that the mentioned functor F is a functorial part of a monad (F, η, ψ). Then weadditionally require that the following holds.

(4) The map ψX : (F 2(X),mF 2(X))→ (F (X),mF (X)) is nonexpanding.

The condition in the denition from [3] that concerns the preservation of uniform continuity (thisis equivalent to the preservation of (ε, δ)-continuity) does not have a unique counterpart in the caseof fuzzy metric spaces, as in the latter case there are dierent notions of uniform continuity (see, e.g.,[6, 4]).In the talk, we discuss the question of completion of the metric direct limits of the form

F+(X) = lim−→X → F (X)→ F 2(X)→ . . . ,

with bonding maps Fn(X)→ Fn+1(X) taken from the set F j(ηFn−j(X)) | 0 ≤ j ≤ n. Remark thatthe completion of fuzzy metric spaces does not necessarily exist [7].

Page 79: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

78

Next, we consider the question of embedding of the (completions of the) spaces F+(X) in the spacesof the form

Fω(X) = lim←−F (X)← F 2(X)← F 3(X)← . . . As an example, we consider the hyperspace functor ([8]; see also [1]). Another example is the functor

of idempotent measures; its fuzzy metrization is constructed in [2]. Recall that the idempotent measuresare counterparts of the probability measures in idempotent mathematics, i.e., the part of mathematicsin which at least one of arithmetic operations in R is replaced by an idempotent operation (e.g., maxor min).In the paper [10], a metrization of functors of nite degree is constructed. The considerations of

this paper are signicantly extended in [1], where the so called `p-metrics are dened on the sets ofthe form F (X), where F is a functor with nite supports on the category of sets.

References

[1] T. Banakh, V. Brydun, L. Karchevska, M. Zarichnyi, The `p-metrization of functors with nite supports, Preprint,arXiv:2004.02017

[2] V. Brydun, A. Savchenko, M. Zarichnyi. Fuzzy metrization of the spaces of idempotent measures. European Journalof Mathematics, 6 (1) : 98109, 2020.

[3] V. V. Fedorchuk. Triples of innite iterates of metrizable functors.Mathematics of the USSR-Izvestiya, 36(2):411433,1991.

[4] V. Gregori, S. Romaguera and A. Sapena, Uniform Continuity in Fuzzy Metric Spaces. Rend. Istit. Mat. Univ. TriesteSuppl. 2, Vol. XXXII : 8188, 2001.

[5] A. George, P. Veeramani. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64 : 395399, 1994.[6] A. George, P. Veeramani. Some theorems in fuzzy metric spaces, J. Fuzzy Math. 3 : 933940, 1995.[7] V. Gregori, S. Romaguera. On completion of fuzzy metric spaces. Fuzzy Sets and Systems. 130 (3) : 399404, 2002.[8] J. Rodriguez-Lopez, S. Romaguera. The Hausdor fuzzy metric on compact sets. Fuzzy Sets and Systems. 147 (2) :

273283, 2004.[9] A. Savchenko. Fuzzy hyperspase monad. Mat. Stud. 33 : 192198, 2010.[10] O. Shukel'. Functors of nite degree and asymptotic dimension zero. Mat. Stud. 29 : 101107, 2008.[11] H. Torunczyk, J. West. A Hilbert spacelimit for the iterated hyperspace functor. Proc. Amer. Math. Soc. 89 :

329335, 1983.[12] M. Zarichnyi. Iterated superextensions, in: General topology, 1986, Moscow, Moscow University, 4559, (in Russian).

Page 80: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

79

Àñèìïòîòè÷íi çîáðàæåííÿ Pω(Y0, Y1, 0)-ðîçâ'ÿçêiâ äèôåðåíöiàëüíèõðiâíÿíü äðóãîãî ïîðÿäêó, ùî ìiñòÿòü äîáóòîê ðiçíîãî òèïó

íåëiíiéíîñòåé ó ïðàâié ÷àñòèíi

×åïîê Îëüãà Îëåãiâíà(Îäåñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi I. I. Ìå÷íèêîâà, Îäåñà, Óêðà¨íà)

E-mail: [email protected]

Ðîçãëÿäà¹òüñÿ äèôåðåíöiàëüíå ðiâíÿííÿ äðóãîãî ïîðÿäêó

y′′ = α0p(t)ϕ0(y)ϕ1(y′), (1)

ó ÿêîìó α0 ∈ −1; 1, p : [a, ω[→]0,+∞[ (−∞ < a < ω ≤ +∞), ϕi : ∆Yi →]0,+∞[ (i ∈ 0, 1) íåïåðåðâíi ôóíêöi¨, Yi ∈ 0,±∞, ∆Yi îäíîái÷íèé îêië Yi.Ââàæà¹ìî òàêîæ, ùî ôóíêöiÿ ϕ1 ¹ ïðàâèëüíî çìiííîþ (äèâ. [1], ðîçäië 1.4, ñòîð. 17) ïðè z →

Y1 (z ∈ ∆Y1) ïîðÿäêó σ1, à ôóíêöiÿ ϕ0 äâi÷è íåïåðåðâíî äèôåðåíöiéîâíà íà ∆Y0 òà òàêà, ùî

limy→Y0y∈∆Y0

ϕ(y) =

àáî 0,àáî +∞, lim

z→Y0z∈∆Y0

ϕ0(z)ϕ′′0(z)(ϕ′0(z)

)2 = 1. (2)

 ñèëó óìîâ (2) ôóíêöiÿ ϕ0 òà ¨¨ ïîõiäíà ïåðøîãî ïîðÿäêó ¹ [1] øâèäêî çìiííèìè ïðè ïðÿ-ìóâàííi àðãóìåíòó äî Y0. Òàêèì ÷èíîì, äîñëiæóâàíå äèôåðåíöiàëüíå ðiâíÿííÿ ìiñòèòü ó ïðàâié÷àñòèíi äîáóòîê øâèäêî òà ïðàâèëüíî çìiííèõ ôóíêöié.Äèôåðåíöiàëüíå ðiâíÿííÿ (1) äîñëiäæó¹òüñÿ ùîäî óìîâ iñíóâàííÿ ó íüîãî Pω(Y0, Y1, 0)-ðîçâ'ÿç-

êiâ, à òàêîæ àñèìïòîòè÷íèõ çîáðàæåíü òàêèõ ðîçâ'ÿçêiâ òà ¨õ ïîõiäíèõ ïåðøîãî ïîðÿäêó.Ðîçâ'ÿçîê y ðiâíÿííÿ (1) íàçèâà¹òüñÿ Pω(Y0, Y1, 0)-ðîçâ'ÿçêîì, ÿêùî âií âèçíà÷åíèé íà ïðîìiæ-

êó [t0, ω[ i çàäîâîëüíÿ¹ óìîâè

limt↑ω

y(i)(t) = Yi (i = 0, 1), limt↑ω

(y′(t))2

y′′(t)y(t)= 0.

Îñíîâíi ðåçóëüòàòè äîâîäÿòüñÿ ó ïðèïóùåííi iñíóâàííÿ äëÿ Pω(Y0, Y1, 0)-ðîçâ'ÿçêiâ ñêií÷åííî¨

÷è íåñêií÷åííî¨ ãðàíèöi limt↑ω

πω(t)y′′(t)y′(t)

òà âèêëàäåíi ó [2]. Çà àïðiîðíèìè âëàñòèâîñòÿìè òàêèõ

ðîçâ'ÿçêiâ ìà¹ìî

limt↑ω

πω(t)y′(t)

y(t)= 0, lim

t↑ω

πω(t)y′′(t)

y′(t)= −1, (3)

äå

πω(t) =

t, ÿêùî ω = +∞,t− ω, ÿêùî ω < +∞. .

Hàðàçi óòî÷íåíà êiëüêiñòü òàêèõ Pω(Y0, Y1, 0)-ðîçâ'ÿçêiâ ðiâíÿííÿ (1). Áóëî îòðèìàíî, ùî ó

âèïàäêó, êîëè limt↑ω

πω(t)I ′2(t)I2(t)

= c ∈ R,

(1) ïðè c(1− σ1) > 0 ðiâíÿííÿ (1) ì๠îäíîïàðàìåòðè÷íó ñiì'þ Pω(Y0, Y1, 0)-ðîçâ'ÿçêiâ,(2) ïðè c(1−σ1) < 0 òà β(1−σ1) < 0 ðiâíÿííÿ (1) ì๠äâîïàðàìåòðè÷íó ñiì'þ òàêèõ ðîçâ'ÿçêiâ,(3) ïðè c(1− σ1) < 0 òà β(1− σ1) > 0 ì๠ïðèíàéìíi îäèí òàêèé ðîçâ'ÿçîê, äå

I2(t) = sign(y01) ·

t∫B2ω

∣∣∣∣πω(τ)p(τ)θ1

(sign(y0

1)

|πω(τ)|

)∣∣∣∣1

1−σ1

dτ ïðè t ∈ [b;ω[⊂ [t0, ω[.

Page 81: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

80

Ó âèïàäêó, êîëè limt↑ω

πω(t)I′2(t)I2(t) = ±∞, ðiâíÿííÿ (1) ì๠îäíîïàðàìåòðè÷íó ñiì'þ Pω(Y0, Y1, 0)-

ðîçâ'ÿçêiâ.

Ëiòåðàòóðà

[1] Bingham N.H., Goldie C.M., Teugels J.L., Regular variation. Encyclopedia of mathematics and its applications,Cambridge university press,Cambridge, 1987.

[2] ×åïîê Î. Î. Àñèìïòîòè÷íi çîáðàæåííÿ ïîâiëüíî çìiííèõ ðîçâ'ÿçêiâ äâî÷ëåííèõ äèôåðåíöiàëüíèõ ðiâíÿíüäðóãîãî ïîðÿäêó ç íåëiíiéíîñòÿìè ðiçíèõ òèïiâ // Áóêîâèíñüêèé ìàòåìàòè÷íèé æóðíàë. 2016. 4, 3-4. C. 190-196.

Page 82: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

81

Ãîëîìîðôíî-ïðîåêòèâíi ïåðåòâîðåííÿ ëîêàëüíîêîíôîðìíî-êåëåðîâèõ ìíîãîâèäiâ ó ñèìåòðè÷íié F -çâ'ÿçíîñòi.

. Â. ×åðåâêî(Îäåñüêà íàöiîíàëüíà àêàäåìiÿ õàð÷îâèõ òåõíîëîãié, âóë. Êàíàòíà, á. 112, ì.Îäåñà, 65039,

Óêðà¨íà)E-mail: [email protected]

Â. . Áåðåçîâñüêèé(Óìàíñüêèé íàöèîíàëüíèé óíiâåðñèòåò ñàäiâíèöòâà, âóë. Iíñòèòóòñüêà, á. 1, ì.Óìàíü,

×åðêàñüêàÿ îáë., 20305, Óêðà¨íà)E-mail: [email protected]

É. Ìiêåø(Óíiâåðñèòåò Ïàëàöüêîãî â Îëîìîóöå, âóë. 17 Ëèñòîïàäà, á. 12, ì. Îëîìîóö, 77147, ×åñüêà

ðåñïóáëiêà)E-mail: [email protected]

Îçíà÷åííÿ 1. Åðìiòîâèé ìíîãîâèä Mn, ì๠íàçâó ëîêàëüíî êîíôîðìíî-êåëåðîâîãî (êîðîòøå,ËÊÊ-) ìíîãîâèäîì, ÿêùî iñíó¹ âiäêðèòå ïîêðèòòÿ U =

Uαα∈A ìíîãîâèäó M òà ñèñòåìà

Σ = σα : Uα → Rα∈Aãëàäêèõ ôóíêöié òàêèõ, ùî

J |Uα , gα = e−2σαg|Uα

êåëåðîâà ñòðóêòóðà äëÿ áóäü ÿêîãî α ∈ A.

Ïåðåõiä âiä ìåòðèêè g|Uα äî ìåòðèêè e−2σαg|Uα ì๠íàçâó ëîêàëüíî êîíôîðìíîãî ïåðåòâîðåííÿñòðóêòóðè. Ôóíêöiÿ σ ì๠íàçâó âèçíà÷àëüíîþ ôóíêöi¹þ êîíôîðìíîãî ïåðåòâîðåííÿ[2].

Íà ËÊÊ-ìíîãîâèäi ãëîáàëüíî âèçíà÷åíî ôîðìà Ëi(Lee):

ω =2

n− 2δΩ J

Âiäîìî, ùî ËÊÊ-ìíîãîâèäè íå äîïóñêàþòü ãîëîìîðôíî-ïðîåêòèâíèõ ïåðåäâîðåíü äëÿ çâ'ÿçíîñòiËåâi-×iâiòà [3]. Àëå ìîæíà íà òàêîìó ìíîãîâèäi çàäàòè ñèìåòðè÷íó F -çâ'ÿçíiñòü, òîáòî òàêó, âÿêié êîìïëåêñíà ñòðóêòóðà ¹ êîâàðiàíòíî ñòàëîþ:

∇XJ = 0.

Öå íå òiëüêè âiäîìà çâ'ÿçíiñòü Âåéëÿ. Íàïðèêëàä, ñèìåòðè÷íó F -çâ'ÿçíiñòü, ìîæíà ïîáóäóâàòèiíøèì ÷èíîì. Íåõàé øóêàíà F -çâ'ÿçíiñòü çàäàíà ôîðìóëîþ:

Γkij = Γkij + P kij ,

äå P kij òåíçîð àôiíî¨ äåôîðìàöi¨, à ñèìâîëîì Γkij ïîçíà÷åíî êîìïîíåíòè çâ'ÿçíîñòi Ëåâi-×iâiòà,óçãîäæåíî¨ ç ËÊÊ-ìåòðèêîþ gij . Òåíçîð àôiíî¨ äåôîðìàöi¨ äëÿ F -çâ'ÿçíîñòi áóäü-ÿêîãî åðìiòî-âîãî ìíîãîâèäó ìîæíà çàäàòè òàê [1]:

P kij = −1

4(∇jJui +∇iJuj )Jku +

1

4(∇jJku −∇uJkj )Jui . (1)

Ñèìâîëîì ∇ ïîçíà÷åíî êîâàðiàíòíó ïîõiäíó ó çâ'ÿçíîñòi Ëåâi-×iâiòà, óçãîäæåíî¨ ç ËÊÊ-ìåòðè-êîþ. Âðàõîâóþ÷è, ùî íà ËÊÊ-ìíîãîâèäi

∇jJki =1

2

(δkj J

tiωt − ωhJij − Jkj ωi + Jkt ω

tgij),

Page 83: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

82

ç (1) îòðèìó¹ìî:

P kij = −1

4

(δkj ωi + δkj ωj + Jkj J

tiωt + Jki J

tjωt − 2ωkgij

).

Íåõàé ãîëîìîðôíî-ïðîåêòèâíèõ ïåðåòâîðÿííÿ ïîðîäæóþòüñÿ ìàéæå àíàëiòè÷íèì âåêòîðíèì ïî-ëåì ξ, òîáòî òàêèì, äëÿ ÿêîãî âèêîíó¹òüñÿ

LξJhi = 0.

Òîäi ïîõiäíà Ëi îá'¹êòó çâ'ÿçíîñòi Ëåâi-×iâiòà ïðè ãîëîìîðôíî-ïðîåêòèâíèõ ïåðåòâîðÿííÿõòîäi ìàòèìå âèãëÿä:

LξΓhij =

1

4

(δhj∇i

(ωαξ

α)

+ δhi ∇j(ωαξ

α)

+ Jhj Jti∇t(ωαξ

α)

+ Jhi Jtj∇t(ωαξ

α)

−ghr∇r(ωαξ

α)gij − ωhLξgij + ghβωα(Lξgβα)gij

)+ ρjδ

hi + ρiδ

hj − ρtJ tiJhj − ρtJ tjJhi .

Äîâåäåíî, ùî îá'¹êò

Πhij = Γhij +

1

2ωhgij −

1

n+ 2

((Γsjs + ωj

)δhi +

(Γsis + ωi

)δhj

+(Γsts −

n

2ωt)J tiJ

hj +

(Γsts −

n

2ωt)J tjJ

hi

)¹ iíâàðiàíòíèì ïðè öèõ ïåðåòâîðåííÿõ. Öiêàâèì ¹ òå, ùî òàêèé ñàìèé îá'¹êò áóäå iíâàðiàíòíèì,ÿêùî ñêîðèñòàòèñÿ äëÿ ãîëîìîðôíî-ïðîåêòèâíèõ ïåðåòâîðåíü çâ'ÿçíiñòþ Âåéëÿ [4].

Ëiòåðàòóðà

[1] K. Yano, Dierential geometry on complex and almost complex spaces. New York: Pergamon Press Book New York:326p. 1965.

[2] Â. Ô. Êèðè÷åíêî Êîíôîðìíî-ïëîñêèå ëîêàëüíî êîíôîðìíî-êåëåðîâû ìíîãîîáðàçèÿ. Ìàòåì. ñá., Ò. 51(5), 5766 1992.

[3] Zh. Radulovich, J. Mikes Geodesic and holomorphically-projective mappings of conformally-Kahlerian spaces. Opava:Silesian Univ. Math. Publ. 1 (1993) pp. 151-156.

[4] . Â. ×åðåâêî Iíâàðiàíòíi îá'¹êòè êîíôîðìíî ãîëîìîðôíî-ïðîåêòèâíèõ ïåðåòâîðåíü ËÊÊ-ìíîãîâèäiâ. Proc.Inter. Geom. Center, v.10, 3-4, 2017 c.29-43.

Page 84: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

83

Ãðàôè ÊðîíðîäàÐiáà ôóíêöié Ìîðñà íà 2-òîði òà ¨õàâòîìîðôiçìè

Áîãäàí Ôåùåíêî(Ëàáîðàòîðiÿ òîïîëîãi¨ ó ñêëàäi âiääiëó àëãåáðè i òîïîëîãi¨, Iíñòèòóò ìàòåìàòèêè ÍÀÍ Óêðà¨íè)

E-mail: [email protected]

Íåõàé M ãëàäêà îði¹íòîâàíà êîìïàêòíà ïîâåðõíÿ. Ãðóïà äèôåîìîðôiçìiâ D(M) äi¹ íà ïðî-ñòîði ãëàäêèõ ôóíêöié C∞(M) çà òàêèì ïðàâèëîì: γ : C∞(M)×D(M)→ C∞(M), γ(f, h) = f h.Âiäíîñíî öi¹¨ äi¨ âèçíà÷èìî ñòàáiëiçàòîð S(f) òà îðáiòó O(f) ïðèðîäíèì ÷èíîì:

S(f) = h ∈ D(M) | f h = f, O(f) = f h |h ∈ D(M).

Íàäiëèìî ïðîñòîðè D(M) òà C∞(M) ñèëüíèìè òîïîëîãiÿìè Ó¨òíi. Öi òîïîëîãi¨ iíäóêóþòü äåÿêiòîïîëîãi¨ íà ïðîñòîðàõ S(f) òà O(f).Íåõàé Did(M) çâ'ÿçíà êîìïîíåíòà òîòîæíüîãî âiäîáðàæåííÿ ïðîñòîðó D(M), Of (f) êîì-

ïîíåíòà çâ'ÿçíîñòi O(f), ùî ìiñòèòü f i S ′(f) = S(f) ∩ Did(M) ãðóïà äèôåîìîðôiçìiâ M , ùîçáåðiãàþòü ãëàäêó ôóíêöiþ f .Ãîìîòîïiéíi âëàñòèâîñòü êîìïîíåíò çâ'ÿçíîñòi ïðîñòîðiâ S(f) òà O(f) äëÿ ôóíêöié Ìîðñà íà

êîìïàêòíèõ ïîâåðõíÿõ äîñëiäæóâàëèñü ó ðîáîòàõ Å. Êóäðÿâöåâî¨, Ñ. Ìàêñèìåíêà òà éîãî ó÷íiâ.Çîêðåìà, áóëî âñòàíîâëåíî, ùî Of (f) ¹ ãîìîòîïiéíî åêâiâàëåíòíîþ ôàêòîð-ïðîñòîðó (S1)m/G(f)ó âèïàäêó êîëè M 6= S2 i SO(3) × (S1)m/G(f), ÿêùî M = S2, äå G(f) ãðóïà àâòîìîðôiçìiâãðàôó ÊðîíðîäàÐiáà ôóíêöi¨ Ìîðñà íà M , ùî ¹ iíäóêîâàíèìè äèôåîìîðôiçìàìè ç S ′(f), ÿêàâiëüíî äi¹ íà (S1)m, m ∈ N, äèâ. îãëÿä ó [4].Ñ. Ìàêñèìåíêî òà À. Êðàâ÷åíêî âèâ÷àëè ìiíiìàëüíó ìíîæèíó êëàñiâ içîìîðôiçìiâ ãðóï G(f)

äëÿ ôóíêöié Ìîðñà íà êîìïàêòíèõ ïîâåðõíÿõ êðiì 2-òîðà òà ïiäìíîæèíè öi¹¨ ìíîæèíè äëÿïðîñòèõ òà çàãàëüíèõ (generic) ôóíêöié Ìîðñà [1, 2, 3]. Ìè äàìî îïèñ ìiíiìàëüíî¨ ìíîæèíè êëàñiâiçîìîðôiçìó ãðóï G(f) äëÿ ôóíöié Ìîðñà íà 2-òîði. Ìàòåðiàë òåç áàçó¹òüñÿ íà ñòàòòi [4].Äëÿ ôîðìóëþâàííÿ ðåçóëüòàòiâ ìè íàãàäà¹ìî îçíà÷åííÿ âiíöåâîãî äîáóòêó ç öèêëi÷íèìè ãðó-

ïàìè òà ðîçãëÿíåìî äåêiëüêà êëàñiâ ãðóï, ùî âèçíà÷àþòüñÿ çà äîïîìîãîþ âiíöåâèõ äîáóòêiâ.Íåõàé G ãðóïà i n,m ≥ 1 íàòóðàëüíi ÷èñëà. Ðîçãëÿíåìî äâi åôåêòèâíi äi¨ α : Gn × Zn → Gn iβ : Gnm× (Zn×Zm)→ Gnm ãðóï Zn òà Zn×Zmn íà Gn òà Gnm âiäïîâiäíî, ùî çàäàíi ôîðìóëàìè:

α((gi)n−1i=0 , a) = (gi+a)

n−1i=0 , β((gi,j)

n−1,m−1i,j=0 , (b, c)) = (gi+b,j+c)

n−1,m−1i,j=0 ,

äå óñi iíäåêñè âçÿòi çà ìîäóëÿìè n òà n,m. Íàïiâïðÿìi äîáóòêè GoZn := GnoαZn i Go(Zn×Zm) :=Gnm oβ (Zn × Zm), ùî âiäïîiâäàþòü öèì äiÿì, ìè áóäåìî íàçèâàòè âiíöåâèìè äîáóòêàìè G ç Znòà G ç (Zn × Zm) âiäïîâiäíî.Äëÿ íàòóðàëüíîãî n, íåõàé Pn ìiíiìàëüíà ìíîæèíà êëàñiâ içîìîðôiçìó ãðóï, ùî çàäîâîëü-

íÿþòü òàêèì óìîâàì:

• îäèíè÷íà ãðóïà 1 íàëåæèòü äî Pn,• ÿêùî A,B ∈ Pn, òî A×B òà A o Zn íàëåæàòü äî Pn.

Íåõàé P ìiíiìàëüíà ìíîæèíà êëàñiâ içîìîðôiçìó ãðóï, ùî ìiñòÿòü Pn ÿê ïiäìíîæèíè äëÿ óñiõn ∈ N. Íåõàé òàêîæ Ei, i = 0, 1, 2 ìiíiìàëüíi ìíîæèíè êëàñiâ içîìîðôiçìó ãðóï òàêèõ, ùî

• E0 ìiñòèòü ãðóïó A0 o (Zn × Zmn), n,m ≥ 1 äëÿ áóäü-ÿêî¨ A0 ∈ P,• E1 ìiñòèòü ãðóïó A1 o Zn, n ≥ 1 äëÿ áóäü-ÿêî¨ A1 ∈ P,• E2 ìiñòèòü ãðóïó A2 o Zn, n ≥ 1 äëÿ áóäü-ÿêî¨ A2 ∈ P2.

Âiäîìî, ùî ãðàô ÊðîíðîäàÐiáà ôóíêöi¨ Ìîðñà íà 2-òîði ¹ àáî äåðåâîì, àáî ìiñòèòü öèêë. Ìi-íiìàëüíó ìíîæèíó êëàñiâ içîìîðôiçìó ãðóï G(f) äëÿ ôóíêöié Ìîðñà íà 2-òîði ãðàôè ÿêèõ ¹

Page 85: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

84

äåðåâàìè ïîçíà÷èìî ÷åðåç G0(T 2), à â iíøîìó âèïàäêó ÷åðåç G1(T 2). Ïîçíà÷èìî ÷åðåç G smp(T 2)ìiíiìàëüíó ìíîæèíó êëàñiâ içîìîðôiçìiâ ãðóï G(f) äëÿ ïðîñòèõ ôóíêöié Ìîðñà íà 2-òîði.Îñíîâíèì ðåçóëüòàòîì ¹ òàêà òåîðåìà.

Òåîðåìà 1 (Theorem 2.5 [4]). Ìàþòü ìiñöå ðiâíîñòi:

G0(T 2) = E0, G1(T 2) = E1, G gen(T 2) = E2.

Ëiòåðàòóðà

[1] A. Kravchenko and S. Maksymenko. Automorphisms of Kronrod-Reeb graphs of Morse functions on 2-sphere,Proceedings of the International Geometry Center, vol. 11 (2018), no. 4, pp. 72-79, arXiv:1903.09721

[2] A. Kravchenko and S. Maksymenko. Automorphisms of Kronrod-Reeb graphs of Morse functions on compact surfaces,European Journal of Mathematics, (2020), 18 pages, arXiv:1808.08746

[3] A. Kravchenko and S. Maksymenko. Automorphisms of cellular divisions of 2-sphere induced by functions withisolated critical points, (2019) 18 pages, arXiv:1911.10808

[4] A. Kravchenko and B. Feshchenko. Automorphisms of Kronrod-Reeb graphs of Morse functions on 2-torus, Methodsof Functional Analysis and Topology vol. 26 (2020), no. 1, pp. 8896, arXiv:1912.00624

Page 86: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

85

Ïðèêëàäè ïîâåðõîíü ç ïëîñêîþ íîðìàëüíîþ çâ'ÿçíiñòþ òà ñòàëîþêðèâèíîþ ãðàññìàíîâîãî îáðàçó â ïðîñòîði Ìiíêîâñüêîãî

Ì. Ãðå÷í¹âà(Çàïîðiçüêèé íàöiîíàëüíèé óíiâåðñèòåò, Çàïîðiææÿ, Óêðà¨íà)

E-mail: [email protected]

Ï. Ñò¹ãàíöåâà(Çàïîðiçüêèé íàöiîíàëüíèé óíiâåðñèòåò, Çàïîðiææÿ, Óêðà¨íà)

E-mail: [email protected]

Âèêîðèñòàííÿ ïîíÿòü ãðàññìàíîâîãî ìíîãîâèäó òà ãðàññìàíîâîãî îáðàçó ïîâåðõíi äîçâîëÿ¹ðîçøèðèòè êîëî çàäà÷ äèôåðåíöiàëüíî¨ ãåîìåòði¨ [1], [2].  ðîáîòi [10] âñòàíîâëåíî, ùî ñåêöié-íà êðèâèíà K(σ) ãðàññìàíîâîãî ìíîãîâèäó G(2, 4) åâêëiäîâîãî ïðîñòîðó R4 ïðèéì๠çíà÷åííÿ çâiäðiçêó [0, 2], à äëÿ ïðîñòîðó Ìiíêîâñüêîãî â [6] äîâåäåíî, ùî öÿ êðèâèíà ìîæå áóòè áóäü-ÿêèìäiéñíèì ÷èñëîì. Äîñëiäæåíi â [9],[3] ïîâåðõíi åâêëiäîâîãî ïðîñòîðó ç ìiíiìàëüíèì òà ìàêñèìàëü-íèì çíà÷åííÿìè êðèâèíè ãðàññìàíîâîãî ìíîãîâèäó âçäîâæ ïëîùèí, äîòè÷íèõ äî ãðàññìàíîâîãîîáðàçó ïîâåðõíi (êðèâèíè ãðàññìàíîâîãî îáðàçó ïîâåðõíi). Äëÿ ïðîñòîðó Ìiíêîâñüêîãî àíàëîãi÷-íå äîñëiäæåííÿ ïðîâåäåíî â [4]. [5] äîñëiäæåíi áàãàòîâèìiðíi ïîâåðõíi åâêëiäîâîãî ïðîñòîðó ç ïëîñêîþ íîðìàëüíîþ çâ'ÿçíiñòþ

òà ïîñòiéíîþ êðèâèíîþ ãðàññìàíîâîãî ìíîãîâèäó. Â öié ðîáîòi äëÿ òàêèõ ïîâåðõîíü ïðîñòîðóÌiíêîâñüêîãî ç ìåòðèêîþ ñiãíàòóðè (−+ ++) îòðèìàíi íàñòóïíi ðåçóëüòàòè.

Òåîðåìà 1. Íåõàé V 2 ⊂1 R4 ¹ ðåãóëÿðíîþ ÷àñîïîäiáíîþ ïîâåðõíåþ ç ïëîñêîþ íîðìàëüíîþçâ'ÿçíiñòþ i íåâèðîäæåíèì ãðàññìàíîâèì îáðàçîì ñòàëî¨ êðèâèíè K. Òîäi K ïðèéì๠çíà÷åííÿç âiäðiçêó [0, 1].

Òåîðåìà 2. Íåõàé V 2 ⊂1 R4 ¹ ðåãóëÿðíîþ ïðîñòîðîâîïîäiáíîþ ïîâåðõíåþ ç ïëîñêîþ íîðìàëüíîþçâ'ÿçíiñòþ i íåâèðîäæåíèì ãðàññìàíîâèì îáðàçîì ñòàëî¨ êðèâèíè K. Òîäi çíà÷åííÿ öi¹¨ êðèâèíèíàëåæàòü ìíîæèíi (−∞,−1]

⋃0, ÿêùî ãðàññìàíîâèé îáðàç ïðîñòîðîâîïîäiáíèé i ìíîæèíi

[0,−∞), ÿêùî ãðàññìàíîâèé îáðàç ÷àñîïîäiáíèé.

Äëÿ îá÷èñëåííÿ êðèâèíè ãðàññìàíîâîãî îáðàçó ÷àñîïîäiáíî¨ òà ïðîñòîðîâîïîäiáíî¨ ïîâåðõîíüç ïëîñêîþ íîðìàëüíîþ çâ'ÿçíiñòþ âèêîðèñòîâó¹ìî âiäïîâiäíî ôîðìóëè, ÿêi âèâåäåíi ç çàïðîïî-íîâàíî¨ â ðîáîòi [8] ôîðìóëè äëÿ ñåêöiéíî¨ êðèâèíè ãðàññìàíîâèõ ìíîãîâèäiâ ïñåâäîåâêëiäîâèõïðîñòîðiâ

K(σ) =(L2

11L222 + L1

22L111)2

(L211L

222)2 + (L1

22L211)2 + (L1

11L222)2 + (L1

11L122)2

(1)

òà

K(σ) = − (L211L

222 − L1

22L111)2

(L211L

222)2 − (L1

22L211)2 − (L1

11L222)2 + (L1

11L122)2

, (2)

â ÿêèõ Lkij - êîåôiöi¹íòè äðóãèõ êâàäðàòè÷íèõ ôîðì âiäïîâiäíèõ ïîâåðõîíü.

Íàâåäåìî ïðèêëàäè, iäåÿ ÿêèõ âçÿòà ç ðîáîòè [7].

Ïðèêëàä 3. ×àñîïîäiáíà ïîâåðõíÿ çàäàíà ôóíäàìåíòàëüíèìè ôîðìàìè ds2 = −du2 +dv2, II1 =a2du2 − b2dv2, II2 = h(du2 + dv2), a, b, h = const. Êðèâèíà ¨¨ ãðàññìàíîâîãî îáðàçó çàäîâîëüíÿ¹íåðiâíîñòi 0 ≤ K(σ) ≤ 1 ïðè áóäü-ÿêèõ çíà÷åííÿõ a, b, h.

Ïðèêëàä 4. Ïðîñòîðîâîïîäiáíà ïîâåðõíÿ, çàäàíà ôóíäàìåíòàëüíèìè ôîðìàìè ds2 = du2 +dv2, II1 = du2 − 4dv2, II2 = du2 + dv2, ì๠ïðîñòîðîâîïîäiáíèé ãðàññìàíîâèé îáðàç. Êðèâèíà

Page 87: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

86

¨ ¨ ãðàññìàíîâîãî îáðàçó äîðiâíþ¹ K(σ) = −2512 . Ïðîñòîðîâîïîäiáíà ïîâåðõíÿ, çàäàíà ôóíäàìåí-

òàëüíèìè ôîðìàìè ds2 = du2 + dv2, II1 = du2 + 4dv2, II2 = 2du2 + 3dv2, ì๠÷àñîïîäiáíèéãðàññìàíîâèé îáðàç. Êðèâèíà ¨¨ ãðàññìàíîâîãî îáðàçó äîðiâíþ¹ K(σ) = 4

21 .

Iñíóâàííÿ ðîçãëÿíóòèõ ïîâåðõîíü âèïëèâ๠ç òîãî, ùî êîåôiöi¹íòè ¨õ ôóíäàìåíòàëüíèõ ôîðìçàäîâîëüíÿþòü ðiâíÿííÿì Ãàóññà-Êîäàööi-Ði÷÷i.

Ëiòåðàòóðà

[1] Àìèíîâ Þ.À. Ãåîìåòðèÿ ïîäìíîãîîáðàçèé // Ê.: Íàóêîâà äóìêà, 2002[2] Áîðèñåíêî À.À. Âíóòðåííÿÿ è âíåøíÿÿ ãåîìåòðèÿ ìíîãîìåðíûõ ïîäìíîãîîáðàçèé // Ì.: Èçä-âî "Ýêçàìåí 2003[3] Áîðèñåíêî À.À., Íèêîëàåâñêèé Þ.À. Î ïîâåðõíîñòÿõ ñ ìàêñèìàëüíîé êðèâèçíîé ãðàññìàíîâà îáðàçà // Ìàò.

çàìåòêè. 1990. 48. (3). Ñ.12-19[4] Ãðå÷íåâà Ì.À., Ñòåãàíöåâà Ï.Ã. Î ïîâåðõíîñòÿõ ñî ñòàöèîíàðíûìè çíà÷åíèÿìè ñåêöèîííîé êðèâèçíû ãðàñ-

ñìàíîâà îáðàçà// Proceedings of the International Geometry Centre. 2016. 9. (2).Ñ.4248[5] Ëèñèöà Â.Ò. Ìíîãîìåðíûå ïîâåðõíîñòè ñ ïëîñêîé íîðìàëüíîé ñâÿçíîñòüþ ñ ïîñòîÿííîé êðèâèçíîé ãðàññìà-

íîâà îáðàçà // Èçâåñòèÿ âóçîâ. Ìàòåìàòèêà. 2004. 5. Ñ.4751[6] Ñòåãàíöåâà Ï.Ã., Ãðå÷íåâà Ì.À. Ãðàññìàíîâ îáðàç íåèçîòðîïíîé ïîâåðõíîñòè ïñåâäîåâêëèäîâà ïðîñòðàíñòâà

// Èçâåñòèÿ âóçîâ. Ìàòåìàòèêà.2017.(2).C.65-75[7] Ôîìåíêî Â.Ò. Äâóìåðíûå ïîâåðõíîñòè ñ ïëîñêîé íîðìàëüíîé ñâÿçíîñòüþ â ïðîñòðàíñòâå ïîñòîÿííîé êðèâè-

çíû, íåñóùèå ãåîäåçè÷åñêèå ïîñòîÿííîé êðèâèçíû // Ìàò. çàìåòêè. 2000.68.(4).C.579-586[8] Ìààçèêàñ È. Ê ðèìàíîâîé ãåîìåòðèè ãðàññìàíîâûõ ìíîãîîáðàçèé íåèçîòðîïíûõ ïîäïðîñòðàíñòâ ïñåâäîåâ-

êëèäîâà ïðîñòðàíñòâà // Ó÷åíûå çàïèñêè Òàðòóññêîãî óíèâåðñèòåòà. 1974. 342. Ñ.76-82[9] Muto Y.The Gauss map of submanifolds in a Euclidean space. // J. Math. Soc. Japan.1978. 30.(1). P.85-100.[10] Wong Y. C. Sectional curvatures of Grassmann manifolds.// Proc. Nat. Acad. Sci. U.S.A.1968.60(1). P.75-79

Page 88: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

87

Ïðî ÷èñëî òîïîëîãi÷íî íååêâiâàëåíòíèõ íàïiâìiíiìàëüíèõãëàäêèõ ôóíêöié íà äâîâèìiðíîìó êðåíäåëi

Î. À. Êàäóáîâñüêèé(ÄÂÍÇ ¾Äîíáàñüêèé äåðæàâíèé ïåäàãîãi÷íèé óíiâåðñèòåò¿, Ñëîâ'ÿíñüê, Óêðà¨íà)

E-mail: [email protected]

ÍåõàéMg çàìêíåíà ãëàäêà îði¹íòîâíà ïîâåðõíÿ ðîäó g ≥ 0, à Cn(Mg) êëàñ ãëàäêèõ ôóíêöiéíà Mg (ç òðüîìà êðèòè÷íèìè çíà÷åííÿìè), ÿêi îêðiì ëîêàëüíèõ ìiíiìóìiâ òà ëîêàëüíèõ ìàêñè-ìóìiâ ìàþòü ëèøå îäíó (â çàãàëüíîìó âèïàäêó âèðîäæåíó) êðèòè÷íó òî÷êó òèïó ñiäëà, iíäåêñÏóàíêàðå ÿêî¨ ñòàíîâèòü 1 − n = 2 − 2g − λ, äå λ ≥ 2 ñóìàðíå ÷èñëî ëîêàëüíèõ ìiíiìóìiâ òàìàêñèìóìiâ (íàïð. [4], [5]).Ôóíêöi¨ f1 i f2 ç êëàñó Cn(Mg) íàçèâàþòü òîïîëîãi÷íî åêâiâàëåíòíèìè, ÿêùî iñíóþòü ãîìåî-

ìîðôiçìè h : Mg →Mg i h′ : R1 → R1 (h′ çáåðiã๠îði¹íòàöiþ), òàêi ùî f2 = h′ f1 h−1.

ßêùî h çáåðiã๠îði¹íòàöiþ, òî ôóíêöi¨ f1 òà f2 íàçèâàþòü òîïîëîãi÷íî ñïðÿæåíèìè (íàïð. [4])àáî æ O-òîïîëîãi÷íî åêâiâàëåíòíèìè (íàïð. [5]).×åðåç Ck,l(Mg) ⊂ Cn(Mg) ïîçíà÷èìî êëàñ ôóíêöié íà Mg, ÿêi ìàþòü òî÷íî k ëîêàëüíèõ ìi-

íiìóìiâ (ìàêñèìóìiâ), l ëîêàëüíèõ ìàêñèìóìiâ (ìiíiìóìiâ) òà îäíó êðèòè÷íó òî÷êó òèïó ñiäëà.ßêùî k = l = 1, òî ôóíêöi¨ ç âiäïîâiäíîãî êëàñó íàçèâàþòü ìiíiìàëüíèìè; ÿêùî æ k = 1, l > 1(àáî l = 1, k > 1), òî ôóíêöi¨ ç âiäïîâiäíîãî êëàñó áóäåìî íàçèâàòè íàïiâìiíiìàëüíèìè.Çàäà÷i ïðî ïiäðàõóíîê ÷èñëà òîïîëîãi÷íî íååêâiâàëåíòíèõ ôóíêöié ç êëàñiâ C1,1(Mg) (g ≥ 0) i

Ck,l(M0) (k, l ∈ N) áóëî ïîâíiñòþ ðîçâ'ÿçàíî ëèøå ó 2015 ð. â ðîáîòàõ [5] òà [6] âiäïîâiäíî. çàãàëüíîìó âèïàäêó, äëÿ íàòóðàëüíèõ g, k, l (àáî æ k, l i n = 2g+k+ l−1, òîáòî äëÿ ôóíêöié

ç ôiêñîâàíèì ñèíãóëÿðíèì òèïîì), çàäà÷à ïðî ïiäðàõóíîê ÷èñëà òîïîëîãi÷íî íååêâiâàëåíòíèõôóíêöié ç êëàñó Ck,l(Mg) âèÿâèëàñü äîñèòü âàæêîþ òà íåðîçâ'ÿçàíîþ äî ñüîãîäíi ïðîáëåìîþ.ßê ç'ÿñóâàëîñÿ (â [2] ç ïîñèëàííÿì íà ðîáîòó [1]), çàäà÷à ïðî ïåðåðàõóâàííÿ îäíîêëiòèíêîâèõ

äâîêîëüîðîâèõ êàðò ç n ðåáðàìè (îäíå ç ÿêèõ ¹ ïîìi÷åíèì), k áiëèìè òà l ÷îðíèìè âåðøèíàìèòiñíî ïîâ'ÿçàíà iç çàäà÷åþ ïðî ïiäðàõóíîê ÷èñëà òîïîëîãi÷íî íååêâiâàëåíòíèõ ôóíêöié ç êëàñóCk,l(Mg). Âiäîìîñòi ïðî êàðòè ìîæíà çíàéòè, íàïðèêëàä, â îãëÿäi [1] òà ðîáîòi [2].ßâíi ôîðìóëè äëÿ ïiäðàõóíêó ÷èñëà O-òîïîëîãi÷íî íååêâiâàëåíòèõ ôóíêöié ç êëàñó Cn(T 2) ≡

Cn(M1) àíîíñîâàíî â [7]. Äëÿ ôiêñîâàíèõ íàòóðàëüíèõ k i l çàäà÷à ïðî ïiäðàõóíîê ÷èñëà òîïîëî-ãi÷íî íååêâiâàëåíòíèõ ôóíêöié ç êëàñó Ck,l(T

2) òàêîæ çàëèøà¹òüñÿ íåðîçâ'ÿçàíîþ.Ç óðàõóâàííÿì ðåçóëüòàòiâ ðîáiò [2] i [3] âñòàíîâëåíî ñïðàâåäëèâiñòü íàñòóïíèõ òâåðäæåíü äëÿ

äâîâèìiðíîãî êðåíäåëÿ P 2.

Òåîðåìà 1. Äëÿ äîâiëüíîãî íàòóðàëüíîãî n = m + 4 ≥ 5 ÷èñëî d∗(n) O-òîïîëîãi÷íî íååêâiâà-ëåíòíèõ ôóíêöié ç êëàñó C1,m(P 2) ìîæíà îá÷èñëèòè çà ôîðìóëîþ

d∗(n) =1

n

(3n2 − n− 6)

8· C6

n+1 +∑

j|n, j∈2;3;4;5;6;8

φ(j) · ρ(n, nj

) , (1)

äå: φ(q) ôóíêöiÿ Åéëåðà; ∀j ∈ N : nj /∈ N âåëè÷èíè ρ(n, nj

)≡ 0, à

∀j ∈ 2; 3; 4; 5; 6; 8 : nj ∈ N âåëè÷èíè ρ(n, nj

)âèçíà÷àþòüñÿ çà äîïîìîãîþ ñïiââiäíîøåíü

ρ(n,n

5

)=

3n

5, ρ

(n,n

6

)=n

6, ρ

(n,n

8

)=n

8,

ρ(n,n

3

)=n(n− 3)

6, ρ

(n,n

4

)=n(n− 4)

32, ρ

(n,n

2

)=n(n− 2)(n− 4)(5n+ 2)

384.

(2)

Page 89: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

88

Òåîðåìà 2 (îñíîâíà). Äëÿ äîâiëüíîãî íàòóðàëüíîãî n = m + 4 ≥ 5 ÷èñëî d∗∗(n) òîïîëîãi÷íîíååêâiâàëåíòíèõ ôóíêöié ç êëàñó C1,m(P 2) ìîæíà îá÷èñëèòè çà ôîðìóëàìè

d∗∗(n) =1

2(d∗(n) + S(n)) , (3)

äå

S(n) =

(n− 3)(n− 1)(n+ 1)(5n+ 7)

384, n = 2k + 1

(n− 4)(n− 2)(5n2 + 34n+ 96

)384

, n = 2k.

(4)

n d(n) d∗(n) d∗∗(n) n d(n) d∗(n) d∗∗(n)5 8 4 4 21 12 087 306 575 592 288 9516 84 16 13 22 17 968 566 816 858 409 9597 469 67 44 23 26 212 571 1 139 677 571 5168 1 869 237 140 24 37 589 475 1 566 377 785 3619 5 985 667 366 25 53 068 015 2 122 723 1 063 72110 16 401 1 649 883 26 73 854 495 2 840 739 1 423 36711 39 963 3 633 1 894 27 101 437 245 3 756 943 1 881 70212 88 803 7 417 3 836 28 137 637 045 4 915 841 2 461 95713 183 183 14 091 7 203 29 184 664 025 6 367 725 3 188 18514 355 355 25 405 12 945 30 245 181 573 8 173 019 4 091 83315 654 654 43 650 22 112 31 322 377 804 10 399 284 5 205 31216 1 154 062 72 166 36 503 32 420 045 164 13 126 768 6 570 27917 1 958 502 115 206 58 086 33 542 668 764 16 444 518 8 229 56918 3 215 142 178 678 90 018 34 695 524 060 20 457 020 10 237 30019 5 126 010 269 790 135 660 35 884 784 516 25 279 560 12 649 06220 7 963 242 398 242 200 162 36 1 117 639 908 31 046 082 15 534 091

Òàáëèöÿ 2.1. Ïî÷àòêîâi çíà÷åííÿ âåëè÷èí d(n), d∗(n) òà d∗∗(n)

Ëiòåðàòóðà

[1] Cori R., Machi A. Maps hypermaps and their automorphisms: a survey I, II, III. Expositiones Mathematicae, 10 :403427, 429447, 449467, 1992.

[2] Àäðèàíîâ Í.Ì. Àíàëîã ôîðìóëû Õàðåðà-Öàãèðà äëÿ îäíîêëåòî÷íûõ äâóêðàøåííûõ êàðò. Ôóíêöèîíàëüíûéàíàëèçè åãî ïðèëîæåíèÿ, 31(3) : 19, 1997.

[3] Goupil A., Schaeer G. Factoring n-cycles and counting maps of given genus. European Journal of Combinatorics,19(7) : 819834, 1998.

[4] Prishlyak A.O. Topological equivalence of smooth functions with isolated critical points on a cloused surface.Topologyand its Aplications, 119(3) : 257267, 2002.

[5] Êàäóáîâñüêèé Î.À. Ïåðåðàõóâàííÿ òîïîëîãi÷íî íååêâiâàëåíòíèõ ãëàäêèõ ìiíiìàëüíèõ ôóíêöié íà çàìêíåíèõïîâåðõíÿõ. Çáiðíèê ïðàöü Iíñòèòóòó ìàòåìàòèêè ÍÀÍ Óêðà¨íè, 12(6) : 105145, 2015.

[6] Êàäóáîâñêèé À.À. Î ÷èñëå òîïîëîãè÷åñêè íåýêâèâàëåíòíûõ ôóíêöèé ñ îäíîé âûðîæäåííîé êðèòè÷åñêîé òî÷êîéòèïà ñåäëî íà äâóìåðíîé ñôåðå, II. Òðóäû ìåæäóíàðîäíîãî ãåîìåòðè÷åñêîãî öåíòðà, 8(1) : 4661, 2015.

[7] Êàäóáîâñüêèé Î.À. Ïðî ÷èñëî òîïîëîãi÷íî íååêâiâàëåíòíèõ ãëàäêèõ ôóíêöié ç îäíi¹þ êðèòè÷íîþ òî÷êîþ òèïóñiäëà íà äâîâèìiðíîìó òîði // Òåçè äîïîâiäåé ìiæíàðîäíî¨ êîíôåðåíöi¨ ¾Àëãåáðà¨÷íi òà ãåîìåòðè÷íi ìåòîäèàíàëiçó¿. Îäåñà, 28 òðàâíÿ 3 ÷åðâíÿ 2019. C. 65-66. 94 c.

Page 90: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

89

Ãåîäåçè÷íi âiäîáðàæåííÿ ïðîñòîðiâ ç ϕ(Ric)-âåêòîðíèìè ïîëÿìè

Â. Êiîñàê(Odesa State Academy of Civil Engineering and Architecture, Didrihson st., 4, 65029 Odesa,

Ukraine.)E-mail: [email protected]

Î. Ëåñå÷êî(Odesa State Academy of Civil Engineering and Architecture, Didrihson st., 4, 65029 Odesa,

Ukraine.)E-mail: [email protected]

Âèõîäÿ÷è ç àëãåáðà¨÷íèõ ìiðêóâàíü áóëè ââåäåíi â ðîçãëÿä ϕ(Ric)-âåêòîðíi ïîëÿ ϕi, ÿêi çàäî-âîëüíÿþòü ðiâíÿííÿì:

ϕi,j = sRij ; s,i = 0,

äå êîìà çíàê êîâàðiàíòíî¨ ïîõiäíî¨, à Rij òåçîð Ði÷÷i. Äåÿêi ãåîìåòðè÷íi âëàñòèâîñòi òàêèõâåêòîðíèõ ïîëiâ âèâ÷åíi â ðîáîòàõ Â. Êiîñàêà òà I. Ãiíòåðëÿéòíåð [1, 2]. Ëiíiéíà ôîðìà îñíîâíèõðiâíÿíü òåîði¨ ãåîäåçè÷íèõ âiäîáðàæåíü ì๠âèãëÿä [3, .ñ121]

aij,k = λigjk + λjgik. (1)

nλi,j = µgij + aαiRαj − aαβR

α β. ij . ,

òóò µ = λα,βgαβ; Rij = Rαjg

αi; Rh kij = Rhijαg

αk, gij ìåòðè÷íèé òåíçîð Vn, à gij åëåìåíòè

ìàòðèöi îáåðíåíî¨ äî íüîãî.Áóëî äîâåäåíî:

Òåîðåìà 1. ßêùî ïñåâäîðiìàíiâ ïðîñòið Vn äîïóñê๠íåòðèâiàëüíi ãåîäåçè÷íi âiäîáðàæåííÿ, òîäëÿ òåíçîðà aij òà âåêòîðà λi âèêîíóþòüñÿ óìîâè λiαa

αj − λjαaαi = 0, äå λij = λi,j.

Òåîðåìà 2. Ïðè íåòðèâiàëüíîìó ãåîäåçè÷íîìó âiäîáðàæåííi ïñåâäîðiìàíîâèõ ïðîñòîðiâ, ùîäîïóñêàþòü ϕ(Ric)-ïîëÿ, âåêòîð λi ¹ âëàñíèì âåêòîðîì òåíçîðà aij:

λαaαi = uλi.

Òåîðåìà 3. ßêùî ïñåâäîðiìàíiâ ïðîñòið Vn, ùî äîïóñê๠ϕ(Ric) âåêòîðíi ïîëÿ, äîïóñê๠íå-òðèâiàëüíi ãåîäåçè÷íi âiäîáðàæåííÿ, òî âåêòîðè ϕi òà λi êîëiíåàðíi, òîáòî ϕi = ρλi, äå ρ äåÿêèé iíâàðiàíò.

Òåîðåìà 4. ßêùî ïñåâäîðiìàíiâ ïðîñòið, ùî äîïóñê๠ϕ(Ric)-ïîëÿ, äîïóñê๠i íåòðèâiàëüíi ãåî-äåçè÷íi âiäîáðàæåííÿ, òî â íüîìó çà íåîáõiäíiñòþ ì๠ðîçâ'ÿçîê ñèñòåìà ðiâíÿíü (1) òà

λi,j = Agij +Baij ,

äå B =1

nvαξ

α;A =1

n(µλα − avα)ξα.

Ëiòåðàòóðà

[1] I. Hinterleitner, V. Kiosak, ϕ(Ric)-Vector Fields on Conformally Flat Spaces, volume 1191 of Proceedings of AmericanInstitute of Physics, 98103, 2009, https://doi.org/10.1063/1.3275604.

[2] I. Hinterleitner, V. A. Kiosak, ϕ(Ric)Vector Fields in Riemannian Spaces, volume 44 of Archivum-mathematicum,Brno, 385390, 2008.

[3] Ð. Ñ. Ñèíþêîâ. Ãåîäåçè÷åñêèå îòîáðàæåíèÿ ðèìàíîâûõ ïðîñòðàíñòâ. Íàóêà, 1979.

Page 91: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

90

Äåÿêi ïèòàííÿ òåîði¨ 2F -ïëàíàðíèõ âiäîáðàæåíü ïñåâäîðiìàíîâèõïðîñòîðiâ ç àáñîëþòíî ïàðàëåëüíîþ f-ñòðóêòóðîþ

Í. Ã. Kîíîâåíêî(ÎÍÀÕÒ, Îäåñà, Óêðà¨íà)

E-mail: [email protected]

I. Ì. Êóðáàòîâà(ÎÍÓ, Îäåñà, Óêðà¨íà)

E-mail: [email protected]

Ìè ïðîäîâæó¹ìî âèâ÷åííÿ áàçîâèõ ïèòàíü òåîði¨ 2F -ïëàíàðíèõ âiäîáðàæåíü ìíîãîâèäiâ, ÿêiíàäiëåíi àôiíîðíîþ ñòðóêòóðîþ ïåâíîãî òèïó [1], [2], [3].Ðàíiøå ìè äîâåëè, ùî êëàñ ïñåâäîðiìàíîâèõ ïðîñòîðiâ ç àáñîëþòíî ïàðàëåëüíîþ f -ñòðóêòóðîþ

çàìêíóòèé ùîäî ðîçãëÿíóòèõ âiäîáðàæåíü, à òàêîæ ùî çà óìîâîþ êîâàðiàíòíî¨ ñòàëîñòi àôiíîðàf -còðóêòóðè ó âiäîáðàæóâàíèõ ïðîñòîðàõ íåòðèâiàëüíi 2F -ïëàíàðíi âiäîáðàæåííÿ ìîæóòü áóòèòðüîõ òèïiâ: ïîâíi i êàíîíi÷íi I, II òèïiâ. Çàðàç ìè äîñëiäæó¹ìî òiëüêè ïîâíå 2F -ïëàíàðíå âiä-

îáðàæåííÿ ïðîñòîðiâ ç àáñîëþòíî ïàðàëåëüíîþ f -ñòðóêòóðîþ (Vn, gij , Fhi ) i (V n, gij , F

hi ), ÿêå â

çàãàëüíié çà âiäîáðàæåííÿì ñèñòåìi êîîðäèíàò (xi) õàðàêòåðèçó¹òüñÿ îñíîâíèìè ðiâíÿííÿìè:

Γhij(x) = Γhij(x) + ψ(iδ

hj) + φ(i

1

F hj) + σ(i

2

F hj),

F hi (x) = Fhi (x),

F hαFαβ F

βi + F hi = 0,

1Fij +

1Fji = 0,

1

F ij +1

F ji = 0,1Fij = giα

1

Fαj ,1

F ij = giα1

Fαj ,

1

F hi,j = 0, i, h, α, β, . . . = 1, 2, . . . , n,

äå Γhij ,Γhij - êîìïîíåíòè îá'¹êòiâ çâ'ÿçíîñòi Vn, V n; ψi(x), φi(x), σi(x) - äåÿêi êîâåêòîðè, à äóæêàìè

ïîçíà÷åíà îïåðàöiÿ ñèìåòðóâàííÿ, ”,” - çíàê êîâàðiàíòíî¨ ïîõiäíî¨ â Vn.Òóò ïîçíà÷åíî

1

F hi = F hi ,2

F hi = F hαFαi .

2FÏ ââàæà¹òüñÿ òðèâiàëüíèì, êîëè ψi = φi = σi = 0. [3] áóëî âèäiëåíî êëàñè ïðîñòîðiâ ç àáñîëþòíî ïàðàëåëüíîþ f -ñòðóêòóðîþ, ùî äîïóñêàþòü

2F -ïëàíàðíå âiäîáðàæåííÿ íà ïëîñêèé ïðîñòið, i çíàéäåíî ¨õ ìåòðèêè â ñïåöiàëüíié ñèñòåìi êî-îðäèíàò.Äàëi âèíèê๠çàêîíîìiðíå ïèòàííÿ ïðî òå, ÷è iñíóþòü iíøi êëàñè òàêèõ ïðîñòîðiâ, ÿêi äîïóñ-

êàþòü 2F -ïëàíàðíi âiäîáðàæåííÿ, i ÿê ¨õ çíàéòè. Âèêîðèñòîâóþ÷è ìåòîäè, ðîçðîáëåíi â òåîði¨ãåîäåçè÷íèõ âiäîáðàæåíü [4], ìè çâîäèìî îñíîâíi ðiâíÿííÿ 2F -ïëàíàðíèõ âiäîáðàæåíü îñíîâíîãîòèïó äî âèäó, ÿêèé äîïóñê๠åôåêòèâíå äîñëiäæåííÿ - öå òàê çâàíà íîâà ôîðìà îñíîâíèõ ðiâíÿíü.Âèêîðèñòîâóþ÷è öþ íîâó ôîðìó, ìè, çîêðåìà, ïîêàçàëè, ùî ïñåâäîðiìàíîâèé ïðîñòið ç àáñîëþòíîïàðàëåëüíîþ f -ñòðóêòóðîþ, â ÿêîìó iñíó¹ êîíöiðêóëÿðíå [4] àáî êâàçiêîíöiðêóëÿðíå [1] âåêòîðíåïîëå, äîïóñê๠íåòðèâiàëüíå 2F -ïëàíàðíå âiäîáðàæåííÿ îñíîâíîãî òèïó. Äîâåäåíî òåîðåìè, ÿêiäàþòü ðåãóëÿðíèé ìåòîä, ùî äîçâîëÿ¹ äëÿ áóäü-ÿêîãî ïñåâäîðiìàíîâîãî ïðîñòîðó ç àáñîëþòíî

ïàðàëåëüíîþ f -ñòðóêòóðîþ (Vn, gij , Fhi ) àáî çíàéòè âñi ïðîñòîðè (V n, gij , F

hi ), íà ÿêi Vn äîïóñêà¹

2F -ïëàíàðíå âiäîáðàæåííÿ îñíîâíîãî òèïó, àáî äîâåñòè, ùî òàêèõ ïðîñòîðiâ íåìà¹.

Page 92: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

91

Ëiòåðàòóðà

[1] Í. Ã. Êîíîâåíêî, È. Í. Êóðáàòîâà. Îñíîâíi òåîðåìè òåîði¨ 2F -ïëàíàðíèõ âiäîáðàæåíü ïñåâäîðiìàíîâèõ ïðîñòî-ðiâ ç f -ñòðóêòóðîþ // Proc. Intern. Geom. Center, 13(1), 9-22, (2020).

[2] Í. Ã. Êîíîâåíêî, È. Í. Êóðáàòîâà, Å. Öâåíòóõ. 2F -ïëàíàðíûå îòîáðàæåíèÿ ïñåâäîðèìàíîâûõ ïðîñòðàíñòâ ñf -ñòðóêòóðîé // Proc. Intern. Geom. Center, 11(1), 39-51, (2018).

[3] Í. Ã. Êîíîâåíêî, È. Í. Êóðáàòîâà. Ñïåöèàëüíûå êëàññû ïñåâäîðèìàíîâûõ ïðîñòðàíñòâ ñ f -ñòðóêòóðîé, äîïó-ñêàþùèõ 2F -ïëàíàðíûå îòîáðàæåíèÿ // Proc. Intern. Geom. Center, 11(4), 18-33, (2018).

[4] Í. Ñ. Ñèíþêîâ. Ãåîäåçè÷åñêèå îòîáðàæåíèÿ ðèìàíîâûõ ïðîñòðàíñòâ // Ì.:Íàóêà: Ìîñêâà, (1979), 487489.

Page 93: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

92

Ôðàêòàëüíi âëàñòèâîñòi íåïåðåðâíèõ ïåðåòâîðåíü êâàäðàòà,ïîâ'ÿçàíi ç äâîñèìâîëüíèìè çîáðàæåííÿìè äiéñíèõ ÷èñåë

I. Ì. Ëèñåíêî(ÍÏÓ iìåíi Ì.Ï. Äðàãîìàíîâà)

E-mail: [email protected]

Ì. Â. Ïðàöüîâèòèé(ÍÏÓ iìåíi Ì.Ï. Äðàãîìàíîâà, IÌ ÍÀÍ Óêðà¨íè)

E-mail: [email protected]

Íàãàäà¹ìî, ùî ïåðåòâîðåííÿì ìíîæèíè íàçèâà¹òüñÿ ái¹êòèâíå (îäíî÷àñíå ií'¹êòèâíå i ñþð'¹ê-òèâíå, òîáòî âçà¹ìíî îäíîçíà÷íå) âiäîáðàæåííÿ öi¹¨ ìíîæèíè íà ñåáå. Ç ãðóïîâî¨ òî÷êè çîðóîêðåìà ãåîìåòðè÷íà òåîðiÿ âèâ÷๠iíâàðiàíòè ïåâíî¨ ãðóïè ïåðåòâîðåíü ïðîñòîðó. Ç öi¹¨ òî÷êèçîðó ôðàêòàëüíà ãåîìåòðiÿ[1] âèâ÷๠iíâàðiàíòè ãðóïè ïåðåòâîðåíü ïðîñòîðó, ÿêi çáåðiãàþòüôðàêòàëüíó ðîçìiðíiñòü Ãàóñäîðôà-Áåçèêîâè÷à ìíîæèí (ìà¹òüñÿ íà óâàçi, ùî îáðàç i ïðîîáðàçìàþòü îäíàêîâó ðîçìiðíiñòü).Âèêîðèñòîâóþ÷è ðiçíi çîáðàæåííÿ (êîäóâàííÿ) äiéñíèõ ÷èñåë, ó ðÿäi ðîáiò âèâ÷àëèñü ïåðå-

òâîðåííÿ âiäðiçêà, ÿêi ìàþòü ôðàêòàëüíi âëàñòèâîñòi, ñàìîïîäiáíîñòi, àâòîìîäåëüíîñòi, çáåðiãà-þòü ÷è òðàíñôîðìóþòü ìiðó, ðîçìiðíiñòü àáî iíøi ÷èñëîâi õàðàêòåðèñòèêè áîðåëiâñüêèõ ìíîæèíàáî ïåâíi âëàñòèâîñòi çîáðàæåííÿ ÷èñåë. Êîìáiíàöi¨ òàêèõ ïåðåòâîðåíü (ïðÿìèé äîáóòîê àáî ií-øi ¾îïåðàöi¨¿) ïðèâîäÿòü äî öiêàâèõ ïåðåòâîðåíü êâàäðàòiâ òà ïðÿìîêóòíèêiâ ç ôðàêòàëüíèìèâëàñòèâîñòÿìè. ×àñòî â ÿêîñòi iíâàðiàíòíèõ ìíîæèí òàêèõ ïåðåòâîðåíü âèíèêàþòü ãðàôiêè íå-ïåðåðâíèõ ëîêàëüíî ñêëàäíèõ ôóíêöié (ñèíãóëÿðíèõ, íiäå íå ìîíîòîííèõ, íåäèôåðåíöiéîâíèõ).Ó äîïîâiäi ïðîïîíóþòüñÿ ðåçóëüòàòè äîñëiäæåííÿ ôðàêòàëüíèõ âëàñòèâîñòåé ïåðåòâîðåíü êâà-

äðàòà: K = [0; 1]× [0; 1] òà C = [0; g0]× [0; g0], äå ïàðàìåòð g0 ∈ (12 ; 1) ÿêi âèçíà÷àþòüñÿ ó òåðìiíàõ

äâîñèìâîëüíèõ êîäóâàíü (çîáðàæåíü) äiéñíèõ ÷èñåë: Q2-çîáðàæåííÿ i G2-çîáðàæåííÿ. Íàãàäà¹ìî¨õ çìiñò

[0; 1] 3 x = α1q1−α1 +∞∑k=2

αkq1−αk

k−1∏j=1

qαj

≡ ∆Q2α1α2...αk...

,

[0; g0] 3 x = α1g1−α1 +∞∑k=2

αkg1−αk

k−1∏j=1

gαj

≡ ∆G2α1α2...αk...

,

äå αk ∈ A = 0, 1, q0 ôiêñîâàíå ÷èñëî ç iíòåðâàëó (0; 1), q1 ≡ 1− q0, g1 ≡ g0 − 1.

Ëåìà 1. ßêùî ϕ1 i ϕ2 íåïåðåðâíi ïåðåòâîðåííÿ îäèíè÷íîãî âiäðiçêà, òî ôîðìóëèx′ = ϕ1(x),

y′ = ϕ2(y)àáî

x′ = ϕ1(y),

y′ = ϕ2(x)

çàäàþòü ïåðåòâîðåííÿ îäèíè÷íîãî êâàäðàòà.

Áiëüøiñòü (ó ïåâíîìó ñåíñi) íåïåðåðâíèõ ïåðåòâîðåíü îäèíè÷íîãî âiäðiçêà ìàþòü ñêëàäíó ëî-êàëüíó ñòðóêòóðó, áàãàòi ìíîæèíè ðiçíèõ îñîáëèâîñòåé, çîêðåìà, äèôåðåíöiàëüíîãî õàðàêòåðó.

Íàïðèêëàä, ïåðåòâîðåííÿ çàäàíå ôîðìóëîþ I(∆Q2α1α2...αk...) = ∆Q2

[1−α1][1−α2]...[1−αk]..., ÿêå íàçèâà-

¹òüñÿ iíâåðñîðîì Q2-çîáðàæåííÿ. Âîíî ¹ íåïåðåðâíîþ ñòðîãî ñïàäíîþ ñèíãóëÿðíîþ ôóíêöi¹þ(ì๠ïîõiäíó ðiâíó 0 ìàéæå ñêðiçü ó ðîçóìiíi ìiðè Ëåáåãà).Äî iíøîãî êëàñó íåïåðåðâíèõ ïåðåòâîðåíü êâàäðàòà ïðèâîäÿòü ïåðåòâîðåííÿ, ùî çáåðiãàþòü

õâîñòè çîáðàæåíü äiéñíèõ ÷èñåë ó ðiçíèõ ñèñòåìàõ êîäóâàííÿ.

Page 94: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

93

Ïðèêëàä 2. Àíàëîã ¾ñèìåòðiÿ¿ âiäíîñíî âiäðiçêà:

x′ = I(x),

y′ = y.

Iíâàðiàíòíi òî÷êè öüîãî ïåðåòâîðåííÿ óòâîðþþòü âiäðiçîê, ÿêèé çàäà¹òüñÿ ðiâíÿííÿì

x = ∆Q2

0(1) = ∆Q2

1(0)

Ïðèêëàä 3. Àíàëîã ¾ñèìåòði¨¿ âiäíîñíî òî÷êè γ1 :

x′ = I(x),

y′ = I(y);γ2 :

x′ = I(y),

y′ = I(x).

Iíâàðiàíòíîþ òî÷êîþ öüîãî ïåðåòâîðåííÿ ¹ òî÷êà ç êîîðäèíàòàìè (∆Q2

1(0); ∆Q2

1(0)).

Áiëüø öiêàâèìè ¹ íåïåðåðâíi ïåðåòâîðåííÿ çàäàíi ôîðìóëàìè

x′ = f1(x, y)

y′ = f2(x, y),äå fi(x, y) íå-

ïåðåðâíà ôóíêöiÿ ç ôðàêòàëüíèìè âëàñòèâîñòÿìè, âèçíà÷åíà â òåðìiíàõ âèùå çàçíà÷åíèõ äâî-ñèìâîëüíèõ çîáðàæåíü ÷èñåë. Ó äîïîâiäi íàâîäÿòüñÿ ïðèêëàäè òàêèõ ôóíêöié i âèñâiòëþþòüñÿäåÿêi ¨õ âëàñòèâîñòi.Ñóòò¹âî ñêëàäíiøèìè ¹ àíàëîãi÷íi îá'¹êòè îçíà÷åííi â òåðìiíàõ G2-çîáðàæåííÿ ÷èñåë, ÿêå

âèêîðèñòîâó¹ äâi ðiçíîçíàêîâi îñíîâè g0 i g1 ≡ g0−1. Iíâåðñîð äëÿ òàêîãî çîáðàæåííÿ ¹ ôóíêöi¹þíiäå íå ìîíîòîííîþ i ðîçðèâíîþ âG2-áiíàðíèõ òî÷êàõ. Äëÿ ìîäåëþâàííÿ ïåðåòâîðåíü, ïîâ'ÿçàíèõç öèì çîáðàæåííÿì âèêîðèñòîâóþòüñÿ îïåðàòîðè ëiâîñòîðîííüîãî òà ïðàâîñòîðîííüîãî çñóâiâ iñïåöèôi÷íi ôóíêöi¨.

Ëiòåðàòóðà

[1] Albeverio S., Pratsiovytyi M., Torbin G. Fractal probability distributions and transformations preserving theHausdor-Besicovitch dimension // Ergod.Th. & Dynam. Sys. 2004, 24. P. 116.

[2] Isaieva T. M., Pratsiovytyi M. V. Transformations of (0, 1] preserving tails ∆µ-representation of numbers // Algebraand Discrete Mathematics, Volume 22 (2016). Number 1, pp. 102115.

[3] Pratsiovytyi M. V., Lysenko I. M., Maslova Yu. P. Group of continuous preserving tails of G2-representation ofnumbers Algebra and Discrete Math., 29 (2020). no 1, pp. 99108.

[4] Pratsiovytyi M., Chuikov A. Continuous distributions whose functions preserve tails of an A2-continued fractionrepresentation of numbers // Random Operators and Stochastic Equations, 2019. Vol. 27(3), pp. 199206.

[5] Ëèñåíêî I.Ì., Ìàñëîâà Þ.Ï., Ïðàöüîâèòèé Ì.Â. Äâîîñíîâíà ñèñòåìà ÷èñëåííÿ ç ðiçíîçíàêîâèìè îñíîâàìè iñïåöiàëüíi ôóíêöi¨, ç íåþ ïîâ'ÿçàíi // Çáiðíèê ïðàöü Iíñòèòóòó ìàòåìàòèêè ÍÀÍ Óêðà¨íè 2019, ò. 16, 2, Ñ. 5062.

[6] Îñàóëåíêà Ð.Þ. Ãðóïà ïåðåòâîðåíü âiäðiçêà [0; 1], ÿêi çáåðiãàþòü ÷àñòîòè öèôð Qs-çîáðàæåííÿ ÷èñåë// Çáiðíèêïðàöü Iíñòèòóòó ìàòåìàòèêè ÍÀÍ Óêðà¨íè. 2016. Òîì 3. Ñ. 191204.

[7] Ïðàöüîâèòèé Ì.Â., Êëèì÷óê Ñ.Î. Ñåðåäí¹ çíà÷åííÿ ñèìâîëiâ Qs-çîáðàæåííÿ äðîáîâî¨ ÷àñòèíè äiéñíîãî ÷èñëài ïîâ'ÿçàíi ç íèì çàäà÷i // Íàóêîâèé ÷àñîïèñ ÍÏÓ iìåíi Ì.Ï.Äðàãîìàíîâà. Ñåðiÿ 1. Ôiç.-ìàò. íàóêè, 2011.12. Ñ. 186-195.

[8] Ïðàöüîâèòèé Ì.Â., Êëèì÷óê Ñ.Î., Ìàêàð÷óê Î.Ï. ×àñòîòà öèôðè ó çîáðàæåííi ÷èñëà i éîãî àñèìïòîòè÷íåñåðåäí¹ çíà÷åííÿ öèôðè // Óêð.ìàò.æóðí. 2014., Òîì 66, 3. Ñ. 302310.

Page 95: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

94

Ïðî ãåîìåòðè÷íó õàðàêòåðèñòèêó ñïåöiàëüíèõ ìàéæå ãåîäåçè÷íèõâiäîáðàæåíü ïðîñòîðiâ àôiííîãî çâ'ÿçêó çi ñêðóòîì

Ëàäà Ïàâëiâíà Ëàäèíåíêî(ÄÇ ¾ÏÍÏÓ iìåíi Ê.Ä. Óøèíñüêîãî¿, Îäåñà, Óêðà¨íà)

E-mail: [email protected]

Ó ðîáîòi ðîçãëÿäàþòüñÿ ïðîñòîðè àôiííîãî çâ'ÿçêó An (n ∈ N , n > 2) êëàñó Cr (r > 1) çiñêðóòîì. ßê âiäîìî [1], êðèâó γ íàçèâàþòü ìàéæå ãåîäåçè÷íîþ ëiíi¹þ ïðîñòîðó An, ÿêùî ó An

iñíó¹ òàêèé êîìïëàíàðíèé âçäîâæ γ äâîâèìiðíèé ðîçïîäië, ÿêîìó ó êîæíié éîãî òî÷öi íàëåæèòüâåêòîð, äîòè÷íèé äî äàíî¨ êðèâî¨. Ç òî÷êè çîðó òåîði¨ êðèâèíè êðèâèõ ó ïðîñòîðàõ àôiííîãîçâ'ÿçêó ìàéæå ãåîäåçè÷íi ëiíi¨ ¹ êðèâèìè, ïåðøà êðèâèíà ÿêèõ ¹ äîâiëüíîþ. à âñi íàñòóïíi êðè-âèíè òîòîæíüî äîðiâíþþòü íóëþ.Äëÿ ïðîñòîðiâ àôiííîãî çâ'ÿçêó An òà A

nðîçãëÿäàþòü âiäîáðàæåííÿ f : An → A

n, çãiäíî

ÿêèõ îáðàçîì êîæíî¨ ãåîäåçè÷íî¨ ëiíi¨ ïðîñòîðó An ¹ ìàéæå ãåîäåçè÷íà ëiíiÿ ïðîñòîðó An. Òàêi

âiäîáðàæåííÿ äëÿ ïðîñòîðiâ An i Aníàçèâàþòü ìàéæå ãåîäåçè÷íèìè [1].

Âèîêðåìëþþòü òðè òèïè ìàéæå ãåîäåçè÷íèõ âiäîáðàæåíü ïðîñòîðiâ àôiííîãî çâ'ÿçêó çi ñêðó-òîì [2]. Ìàáóòü, íàéáiëüø öiêàâèìè ñåðåä íèõ ïðåäñòàâëÿþòüñÿ âiäîáðàæåííÿ Π2 äðóãîãî òèïó,ÿêi õàðàêòåðèçóþòüñÿ òèì, ùî, çãiäíî íèõ, êîæíà ãåîäåçè÷íà ëiíiÿ ïðîñòîðó An ïåðåõîäèòü ó òà-êó ìàéæå ãåîäåçè÷íó ëiíiþ ïðîñòîðó A

n, äëÿ ÿêî¨ âiäïîâiäíå ïîëå êîìïëàíàðíîãî äâîâèìiðíîãî

ðîçïîäiëó âèçíà÷à¹òüñÿ äîòè÷íèì âåêòîðîì λn i âåêòîðîì F hαλα, äå F hα êîìïîíåíòè ïåâíîãî

àôiíîðà F , ó òàê çâàíó F -êðèâó [2, 3]. Π2-âiäîáðàæåííÿ f íàçèâàþòü òàêèì, ùî çàäîâîëüíÿ¹óìîâó âçà¹ìíîñòi, ÿêùî âiäîáðàæåííÿ, îáåðíåíå äî íüîãî, òàêîæ ¹ âiäîáðàæåííÿì òèïó Π2, ùîâiäïîâiä๠òîìó æ ñàìîìó àôiíîðó. Iç ñóêóïíîñòi òèõ âiäîáðàæåíü òèïó Π2, ùî çàäîâîëüíÿþòüóìîâó âçà¹ìíîñòi, âèäiëÿþòü âiäîáðàæåííÿ òèïó Πn

2 (e), n ∈ N , n > 1, ùî õàðàêòåðèçóþòüñÿñïiââiäíîøåííÿìè

Fn hi = eδhi , äå F

n hi = F hα1

· Fα1α2· ... · Fαn−1

i , e = ±1.

Íà âiäìiíó âiä ïîïåðåäíiõ äîñëiäæåíü [2, 3], ó äàíié ðîáîòi âäàëîñÿ äëÿ äîâiëüíîãî ÷èñëà n ∈ N ,n > 1 ó ÿâíîìó âèãëÿäi îòðèìàòè òàêi äèôåðåíöiàëüíî-àëãåáðà¨÷íîãî õàðàêòåðó îáìåæåííÿ íààôiíîð F , ùî äîçâîëÿþòü îõàðàêòåðèçóâàòè âiäîáðàæåííÿ òèïó Πn

2 (e), n ∈ N , n > 1 ãåîìåòðè-÷íî, ÿê âiäîáðàæåííÿ, çà äîïîìîãîþ ÿêèõ F -êðèâi ïðîñòîðó An ïåðåõîäÿòü ó F -êðèâi ïðîñòîðóAn.

Ëiòåðàòóðà

[1] Í. Ñ. Ñèíþêîâ. Ãåîäåçè÷åñêèå îòîáðàæåíèÿ ðèìàíîâûõ ïðîñòðàíñòâ. Ì.: Íàóêà, 256 ñ.,1979.[2] Í. Ñ. Ñèíþêîâ. Ïî÷òè ãåîäåçè÷åñêèå îòîáðàæåíèÿ àôôôèííî-ñâÿçíûõ è ðèìàíîâûõ ïðîñòðàíñòâ. Ïðîáëåìû

ãåîìåòðèè. (Èòîãè íàóêè è òåõíèêè). M.:ÂÈÍÈÒÈ ÀÍ ÑÑÑÐ Ò. 13. C. 326. 1982.[3] Í.Â.ßáëîíñêàÿ. Èíâàðèàíòíûå ãåîìåòðè÷åñêèå îáúåêòû ïî÷òè ãåîäåçè÷åñêèõ îòîáðàæåíèé π2(e) îáùèõ ïðî-

ñòðàíñòâ àôôèííîé ñâÿçíîñòè. Îäåññà: Îäåññê. óí-ò. 24 c. 1980.(Ðóêîïèñü äåï. â ÂÈÍÈÒÈ 12 ôåâð. 1980 ã. 543-80 Äåï.)

Page 96: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

95

Ïðî êâàçi-ãåîäåçè÷íi âiäîáðàæåííÿ óçàãàëüíåíî-ðåêóðåíòíèõïðîñòîðiâ

Ì. I. Ïiñòðóië(ÎÍÓ, Îäåñà, Óêðà¨íà)

E-mail: [email protected]

I. Ì. Êóðáàòîâà(ÎÍÓ, Îäåñà, Óêðà¨íà)

E-mail: [email protected]

Ðîçãëÿíåìî (ïñåâäî-)ðiìàíîâèé ïðîñòið (Vn, gij , Fhi ), â ÿêîìó iñíó¹ àôiíîð F hi , ùî çàäîâîëüíÿ¹

óìîâàì

F h(i,j) + F hαFα(iφj) = p(iδ

hj) + q(iF

hj),

i

F hαFαi = eδhi ,

äå e = −1,+1 àáî 0; pi, qi - äåÿêi êîâåêòîðè, à ”,” - çíàê êîâàðiàíòíî¨ ïîõiäíî¨ âiäíîñíî çâ'ÿçíîñòiΓ â Vn.Áóäåìî íàçèâàòè òàêó àôiíîðíó ñòðóêòóðó óçàãàëüíåíî-ðåêóðåíòíîþ (åëiïòè÷íîãî, ãiïåðáî-

ëi÷íîãî àáî ïàðàáîëi÷íîãî òèïó çàëåæíî âiä çíà÷åííÿ e = −1,+1 àáî 0.), à ñàì ïðîñòið Vn -óçàãàëüíåíî-ðåêóðåíòíèì âiäïîâiäíîãî òèïó. Àôiíîðíi ñòðóêòóðè ç òàêèìè óìîâàìè âèíèêëè â[2] ïðè äîñëiäæåííi ïåâíîãî òèïó âiäîáðàæåíü àôiííîçâ'ÿçíèõ ïðîñòîðiâ.Ðîçãëÿíóòî âëàñòèâîñòi óçàãàëüíåíî-ðåêóðåíòíî¨ ñòðóêòóðè ïàðàáîëi÷íîãî òèïó. Çîêðåìà, äî-

âåäåíî, ùî êîëè àôiíîðíà ñòðóêòóðà F hi óçàãàëüíåíî-ðåêóðåíòíîãî ïðîñòîðó ïàðàáîëi÷íîãî òèïó(Vn, gij , F

hj ) óçãîäæåíà ç ìåòðè÷íèì òåíçîðîì gij íàñòóïíèì ÷èíîì:

giαFαj = −gjαFαi ,

òî ¨¨ äèôåðåíöiàëüíi ðiâíÿííÿ íàáóâàþòü âèãëÿäó

F h(i,j) = F h(iqj).

Ìè íàçèâà¹ìî âåêòîð qi â öiõ ðiâíÿííÿõ âåêòîðîì óçàãàëüíåíî¨ ðåêóðåíòíîñòi ñòðóêòóðèF hi . Äàëi, äîâåäåíî, ùî òåíçîð Ðiìàíà óçàãàëüíåíî-ðåêóðåíòíîãî ïðîñòîðó ïàðàáîëi÷íîãî òèïó(Vn, gij , F

hi ) çàäîâîëüíÿ¹ ñïiââiäíîøåííÿì

3(Rhjki +Rhjki +Rhjki +Rhjki) = 2Qjhki +Qjkhi −Qhkji,

äå

Qhjki = q[h,j]Fki + q[k,i]Fhj .

Íåõàé óçàãàëüíåíî-ðåêóðåíòíèé ïðîñòið ïàðàáîëi÷íîãî òèïó (Vn, gij , Fhi ) äîïóñê๠íåòðèâiàëüíå

êâàçi-ãåîäåçè÷íå âiäîáðàæåííÿ [1] íà ïðîñòið (V n, gij). Òîäi â ñóìiñíié çà âiäîáðàæåííÿì ñèñòåìi

êîîðäèíàò (xi) âèêîíóþòüñÿ îñíîâíi ðiâíÿííÿ

Γhij(x) = Γhij(x) + ψ(i(x)δhj) + φ(i(x)F hj)(x),

Fij = −Fji, Fij = giαFαj , F ij = −F ji, F ij = giαF

αj ,

F hαFαi = 0

F h(i,j) = F h(iqj).

Page 97: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

96

Ðîçãëÿíóòî âèïàäîê, êîëè óçàãàëüíåíî-ðåêóðåíòíèé ïðîñòið ïàðàáîëi÷íîãî òèïó ç iíòåãðîâíîþàôiíîðíîþ ñòðóêòóðîþ (Vn, gij , F

hi ) äîïóñê๠êâàçi-ãåîäåçè÷íå âiäîáðàæåííÿ çi çáåðåæåííÿì âåê-

òîðà óçàãàëüíåíî¨ ðåêóðåíòíîñòi íà ïëîñêèé ïðîñòið V n = En, òîáòî Rhijk = 0. Äîâåäåíî, ùî òîäi

Vn áóäå Ði÷÷i-ïëîñêèì:Rij = 0,

âåêòîð qi - ãðàäi¹íòíèì

qi =∂q(x)

∂xi,

à òåíçîð Ðiìàíà ïðîñòîðó Vn íåîáõiäíî ì๠âèãëÿä

Rhijk = Ce−2q(x)

(FhkFij − FhjFik + 2FhiFkj

)ïðè äåÿêié ñòàëié C.Äëÿ ðåêóðåíòíî-ïàðàáîëi÷íîãî ïðîñòîðó, òåíçîð Ðiìàíà ÿêîãî ì๠îçíà÷åíó ñòðóêòóðó, îòðè-

ìàíî êîìïîíåíòè ìåòðè÷íîãî òåíçîðà â îêîëi äåÿêî¨ òî÷êè M ïðîñòîðó Vn â ñïåöiàëüíié ñèñòåìiêîîðäèíàò.

Ëiòåðàòóðà

[1] À. Ç. Ïåòðîâ. Ìîäåëèðîâàíèå ôèçè÷åñêèõ ïîëåé. Ãðàâèòàöèÿ è òåîðèÿ îòíîñèòåëüíîñòè, No. 4-5 : 721, 1968.[2] Í. Ñ. Ñèíþêîâ. Ãåîäåçè÷åñêèå îòîáðàæåíèÿ ðèìàíîâûiõ ïðîñòðàíñòâ. Ìîñêâà:Íàóêà, 1979.

Page 98: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

97

Ìiíiìàëüíi ïîâåðõíi òà ¨õ äåôîðìàöi¨

Ò. Þ. Ïîäîóñîâà(ÎÄÀÁÀ, Îäåñà, Óêðà¨íà)

E-mail: [email protected]

Í. Â. Âàøïàíîâà(ÎÍÀÕÒ, Îäåñà, Óêðà¨íà)E-mail: [email protected]

Âèâ÷åííÿ íåñêií÷åííî ìàëèõ (í.ì.) äåôîðìàöié ïîâåðõîíü çàêëþ÷à¹òüñÿ ó âèÿâëåííi íåòðè-âiàëüíèõ í.ì. äåôîðìàöié (âåêòîð çìiùåííÿ y 6= const íà âñié S). ßêùî æ ïîâåðõíÿ äîïóñêà¹òiëüêè òðèâiàëüíi í.ì. äåôîðìàöi¨ (y = const), òî âîíà çâåòüñÿ æîðñòêîþ ïî âiäíîøåííþ äî öèõäåôîðìàöié.Ó E3-ïðîñòîði áóäåìî ðîçãëÿäàòè í.ì. äåôîðìàöiþ ïåðøîãî ïîðÿäêó îäíîçâ'ÿçíî¨ ïîâåðõíi

êëàñó C3, íà ÿêó íàêëàäåíi ïåâíi îáìåæåííÿ:1) ëiíi¨ ãåîäåçè÷íîãî ñêðóòó (LGT-ëiíi¨) ñòàöiîíàðíi (â ãîëîâíîìó) [1];2) ïîâíà êðèâèíà S (K 6= 0) çìiíþ¹òüñÿ çà óìîâè

δK = 2Kµ (1)

äå δK-âàðiàöiÿ ïîâíî¨ êðèâèíè S,µ(x1, x2) - äåÿêà íåâiäîìà ôóíêöiÿ êëàñó C3.Äëÿ ìiíiìàëüíèõ ïîâåðõîíü (H = 0, H-ñåðåäíÿ êðèâèíà S) ìàòåìàòè÷íîþ ìîäåëëþ ïîñòàâëåíî¨çàäà÷i áóäå íàñòóïíà ñèñòåìà äèôåðåíöiàëüíèõ ðiâíÿíü ç ÷àñòèííèìè ïîõiäíèìè âiäíîñíî ôóíêöiéuα(x1, x2) i µ(x1, x2):

gij (uα),ji −Ks

Kgβsuα,β −Kuα = µiρ

iα. (2)

Òóò êîìîþ ïîçíà÷åíî êîâàðiàíòíå äèôåðåíöiþâàííÿ íà áàçi ìåòðè÷íîãî òåíçîðà gij , µα = ∂µ∂xα ,

ρiα = cijbαj −Hciα, cij = giαgjβcαβ, cαβ - äèñêðèìiíàíòíèé òåíçîð S.Iíäåêñè íàáóâàþòü çíà÷åíü 1,2.×åðåç êîæíèé ðîçâ'ÿçîê ñèñòåìè ðiâíÿíü (2) ÷àñòèííi ïîõiäíi âåêòîðà çìiùåííÿ äàíî¨ äåôîðìàöi¨ìàòèìóòü íàñòóïíå ïðåäñòàâëåííÿ

yi = µri + ciαuαn, (3)

äå rα,n (îðò íîðìàëi S) - áàçèñíi âåêòîðè.Î÷åâèäíî, ùî òiëüêè ó âèïàäêó µ = 0, uα = 0 äàíà äåôîðìàöiÿ áóäå òðèâiàëüíîþ, à ïîâåðõíÿ

S-æîðñòêîþ. Çîêðåìà, ÿêùî µ = 0, uα 6= 0, òî ìàòèìåìî À-äåôîðìàöi¨ çi ñòàöiîíàðíèìè LGT-ëiíiÿìè ìiíiìàëüíèõ ïîâåðõîíü, ÿêi âèâ÷àëèñÿ â ðîáîòi [2].Îòæå, ñïðàâåäëèâà

Òåîðåìà 1. Êîæíà ìiíiìàëüíà ïîâåðõíÿ äîïóñê๠íåòðèâiàëüíó í.ì. äåôîðìàöiþ ïåðøîãî ïî-ðÿäêó çi ñòàöiîíàðíèìè LGT-ëiíiÿìè òà ïîâíîþ êðèâèíîþ, ùî çìiíþ¹òüñÿ çà óìîâîþ (1),÷àñòèííi ïîõiäíi âåêòîðà çìiùåííÿ ÿêî¨ ïðè öüîìó ìàþòü âèãëÿä (3), äå ôóíêöi¨ uα i µ ¹ðîçâ'ÿçêîì ñèñòåìè ðiâíÿíü (2).

Ïðèïóñòèìî, ùî µ(x1, x2) çàçäàëåãiäü çàäàíà ôóíêöiÿ òî÷êè ïîâåðõíi êëàñó C3. Òîäi êîæíå

ðiâíÿííÿ iç (2) â çàìêíåíié îáëàñòi G çàäîâîëüíÿ¹ ðiâíîìiðíié åëiïòè÷íîñòi(

1g ≥ ∆0 > 0, ∆0 =

const). Öå îçíà÷à¹, ùî (2) ìîæíà ïðèâåñòè äî íàñòóïíîãî êàíîíi÷íîãî âèãëÿäó âiäíîñíî uα:

uα11 + uα22 + e1uα1 + e2uα2 −Kuα = Fα(µ), (4)

äå uαβ = ∂2u∂xα∂xβ

, e1, e2- âiäîìi ôóíêöi¨ òî÷îê S.

Page 99: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

98

Ì๠ìiñöå

Òåîðåìà 2. Áóäü-ÿêà ìiíiìàëüíà ïîâåðõíÿ äîïóñê๠íåòðèâiàëüíó í.ì. äåôîðìàöiþ ïåðøîãî ïî-ðÿäêó çi ñòàöiîíàðíèìè ëiíiÿìè ãåîäåçè÷íîãî ñêðóòó òà ïîâíîþ êðèâèíîþ, ùî çàäîâîëüíÿ¹ óìîâi(1), âåêòîð çìiùåííÿ ÿêî¨ âèðàæà¹òüñÿ ÷åðåç çàçäàëåãiäü çàäàíó ôóíêöiþ µ ∈ C3(G), äîâiëüíóôóíêöiþ ω(x1, x2) ∈ C3(G) òà ôóíêöi¨ uα(x1, x2) ∈ C3(G), ÿêi ¹ ðîçâ'ÿçêîì ñèñòåìè ðiâíÿíü (4).

Ïðèïóñòèìî òåïåð, ùî â ñèñòåìi ðiâíÿíü (2) çàçäàëåãiäü çàäàíi ôóíêöi¨ uα. Òîäi îòðèìà¹ìîíåîäíîðiäíå äèôåðåíöiàëüíå ðiâíÿííÿ äðóãîãî ïîðÿäêó ç ÷àñòèííèìè ïîõiäíèìè ãiïåðáîëi÷íîãîòèïó âiäíîñíî µ, ÿêå íàáóâ๠êàíîíi÷íîãî âèãëÿäó:

µ11 − µ22 + dµ1 + eµ2 = Φ(u1, u2), (5)

äå d, e - âiäîìi ôóíêöi¨ òî÷îê ïîâåðõíi S.Äîâåäåíà íàñòóïíà

Òåîðåìà 3. Áóäü-ÿêà ìiíiìàëüíà ïîâåðõíÿ äîïóñê๠íåòðèâiàëüíó í.ì. äåôîðìàöiþ ïåðøîãî ïî-ðÿäêó çi ñòàöiîíàðíèìè ëiíiÿìè ãåîäåçè÷íîãî ñêðóòó i ïîâíà êðèâèíà ÿêî¨ çìiíþ¹òüñÿ çà óìî-âè (1). Âåêòîð çìiùåííÿ ïðè öüîìó ìàòèìå ïðåäñòàâëåííÿ ÷åðåç çàçäàëåãiäü çàäàíi ôóíêöi¨uα ∈ C3, äâi äîâiëüíi ôóíêöi¨ êëàñó C2, êîæíà âiä îäíi¹¨ çìiííî¨ òà ôóíêöiþ µ ∈ C3, ÿêà ¹ðîçâ'ÿçêîì ðiâíÿííÿ (5).

Íåõàé íà ïëîùèíi x1Ox2 çàäàíà äóãà êðèâî¨ l, ÿêà ïåðåòèíà¹òüñÿ íå áiëüøå íiæ â îäíié òî÷öi çïðÿìèìè, ïàðàëåëüíèìè âiñÿì êîîðäèíàò i ðiâíÿííÿ ÿêî¨ ìîæå áóòè çàïèñàíî ó âèãëÿäi x2 = g(x1).

Çàäàìî âçäîâæ êðèâî¨ l çíà÷åííÿ µ òà ∂µ∂x2 :

µ|x2=g(x1)=ω0(x1),∂µ

∂x2|x2=g(x1)=ω1(x1) (6)

òà ðîçãëÿíåìî çàäà÷ó Êîøi (5), (6), ðîçâ'ÿçîê ÿêî¨ çàâæäè iñíó¹ i ¹äèíèé [3].Îòæå, ñïðàâåäëèâà

Òåîðåìà 4. Áóäü-ÿêà ìiíiìàëüíà ïîâåðõíÿ ïðè ãðàíè÷íié óìîâi (6) äîïóñê๠íåòðèâiàëüíó í.ì.äåôîðìàöiþ ïåðøîãî ïîðÿäêó çi ñòàöiîíàðíèìè LGT-ëiíiÿìè òà ïîâíîþ êðèâèíîþ, ùî çìiíþ¹-òüñÿ çà óìîâè (1), âåêòîð çìiùåííÿ ÿêî¨ âèðàæà¹òüñÿ ÷åðåç äâi äîâiëüíi ôóíêöi¨, êîæíà âiäîäíi¹¨ çìiííî¨ òà çàçäàëåãiäü çàäàíèõ uα ∈ C3.

Ñëiä âiäçíà÷èòè, ùî í.ì. äåôîðìàöi¨ ïåðøîãî ïîðÿäêó çi ñòàöiîíàðíèìè LGT-ëiíiÿìè i ïîâíîþêðèâèíîþ ìiíiìàëüíèõ ïîâåðõîíü áóëè ðîçãëÿíóòi â ðîáîòi [4].

Ëiòåðàòóðà

[1] Ò. Þ. Âàøïàíîâà, Ë. Ë. Áåçêîðîâàéíà. LGT-ñiòêà ïîâåðõíi òà ¨¨ âëàñòèâîñòi. Âiñíèê ÊÍÓ iìåíi Ò.Ã. Øåâ÷åíêà,ñåðiÿ ôiç.-ìàò. íàóêè, âèï.2, ñ. 712, 2010.

[2] Ò. Þ. Ïîäîóñîâà. À-äåôîðìàöèè ìèíèìàëüíîé ïîâåðõíîñòè ñî ñòàöèîíàðíîé LGT-ñåòüþ. Ìàòåðèàëû êîíô."Ìàòåìàòèêà, èíôîðìàòèêà, èõ ïðèëîæåíèÿ è ðîëü â îáðàçîâàíèè", Òâåðü, ñ. 60, 2013.

[3] Í. Ñ. Êîøëÿêîâ è äð. Óðàâíåíèÿ â ÷àñòíûõ ïðîèçâîäíûõ ìàòåìàòè÷åñêîé ôèçèêè. Ó÷åáíîå ïîñîáèå äëÿ ìåõ.-ìàò.óí-òîâ, Ì., "Âûñøàÿ øêîëà 712 ñ., 1970.

[4] Ò. Þ. Ïîäîóñîâà, Í. Â. Âàøïàíîâà. Ïðî äåÿêi íåñêií÷åííî ìàëi äåôîðìàöi¨ ìiíiìàëüíèõ ïîâåðõîíü. Òåçè äîïî-âiäåé ìiæ.êîíô. "Àëãåáðà¨÷íi òà ãåîìåòðè÷íi ìåòîäè àíàëiçó", Îäåñà, ñ. 81, 2018.

Page 100: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

99

Ïðî íåñêií÷åííîâèìiðíi ìíîãîâèäè, ìîäåëüîâàíi íà äåÿêèõkω-ïðîñòîðàõ

Îðèñëàâà Ïîëèâîäà(Óêðà¨íñüêà àêàäåìiÿ äðóêàðñòâà, ôàêóëüòåò Êîìï'þòåðíî¨ ïîëiãðàôi÷íî¨ iíæåíåði¨, 79000, âóë.

Ïiä Ãîëîñêîì 19, Ëüâiâ)E-mail: [email protected]

 îñòàííi äåñÿòèëiòòÿ iíòåíñèâíî ðîçâèâà¹òüñÿ òîïîëîãiÿ ìíîãîâèäiâ, ìîäåëüîâàíèõ íà äåÿêèõkω-ïðîñòîðàõ, òîáòî ïðîñòîðàõ, ÿêi ¹ ïðÿìèìè (ií'¹êòèâíèìè) ãðàíèöÿìè êîìïàêòíèõ ïðîñòîðiâ.Ïðèêëàäàìè òàêèõ ìíîãîâèäiâ ¹ R∞-ìíîãîâèäè òà Q∞-ìíîãîâèäè (R∞ = lim

−→Rn, Q∞ = lim

−→Qn, äå

Q îçíà÷๠ãiëüáåðòiâ êóá). Îäåðæàíi â öüîìó íàïðÿìêó ðåçóëüòàòè âèêîðèñòîâóþòüñÿ äëÿ îïèñóòîïîëîãi¨ äåÿêèõ ïðîñòîðiâ, ùî âèíèêàþòü ó òîïîëîãi÷íié àëãåáði òà ôóíêöiîíàëüíîìó àíàëiçi.Õàðàêòåðèçàöiéíi òåîðåìè äëÿ R∞- òà Q∞-ìíîãîâèäiâ äîâiâ Ê. Ñàêਠ[1]. Çãîäîì Ò. Áàíàõ òàÊ. Ñàêਠ[2] äîâåëè õàðàêòåðèçàöiéíó òåîðåìó äëÿ áiòîïîëîãi÷íèõ ìíîãîâèäiâ, ìîäåëüîâàíèõ íàïàðàõ (R∞, σ) òà (Q∞,Σ), äå σ ìíîæèíà ôiíiòíèõ ïîñëiäîâíîñòåé, à Σ ëiíiéíà îáîëîíêàñòàíäàðòíîãî ãiëüáåðòîâîãî êóáà ó ñåïàðàáåëüíîìó ãiëüáåðòîâîìó ïðîñòîði.Ó çâ'ÿçêó ç ðåçóëüòàòàìè Ò. Ðàäóëà [3], ùî ñòîñóþòüñÿ ïîãëèíàþ÷èõ ïðîñòîðiâ äëÿ C-êîìïàêòiâ,

ìè ðîçãëÿäà¹ìî ìíîãîâèäè, ìîäåëüîâàíi íà äåÿêèõ kω-ïðîñòîðàõ, ùî ¹ kω-àíàëîãàìè äëÿ ïðîñòî-ðiâ, ÿêi îçíà÷èâ Ðàäóë.Áiëüø äåòàëüíî, íåõàé dimC îçíà÷๠òðàíñôiíiòíå ðîçøèðåííÿ âèìiðó Ëåáåãà dim, ÿêå çà-

ïðîâàäèâ Ï. Áîðñò i ÿêå õàðàêòåðèçó¹ âëàñòèâiñòü C ó ñåíñi [4]. (Íàãàäà¹ìî, ùî ïðîñòið X ìà¹âëàñòèâiñòü C, ÿêùî äëÿ äëÿ êîæíî¨ ïîñëiäîâíîñòi (Un)∞n=1 éîãî âiäêðèòèõ ïîêðèòü iñíó¹ âiäêðèòåïîêðèòòÿ âèãëÿäó V = ∪∞n=1Vn, äå êîæíà ñiì'ÿ Vn ñêëàäà¹òüñÿ ç ïîïàðíî äèç'þíêòíèõ ìíîæèí,ùî ìiñòÿòüñÿ â åëåìåíòàõ ñiì'¨ Un; äèâ. [5].) Ò. Ðàäóë äîâiâ, ùî äëÿ íåçëi÷åííî¨ ìíîæèíè çëi÷åí-íèõ îðäèíàëiâ β iñíó¹ ïåðåäãiëüáåðòîâèé ïðîñòið Dβ , ÿêèé ¹ ïîãëèíàþ÷èì ïðîñòîðîì äëÿ êëàñóêîìïàêòiâ X ç dimC X < β. Ìè ïîêàçó¹ìî, ùî iñíó¹ àíàëîã öüîãî ïðîñòîðó (ïîçíà÷à¹òüñÿ D′β)äëÿ êëàñó kω-ïðîñòîðiâ.Äëÿ D′β-ìíîãîâèäiâ äîâåäåíî õàðàêòåðèçàöiéíi òåîðåìè, à òàêîæ òåîðåìè ïðî âiäêðèòå i çàìê-

íåíå âêëàäåííÿ ó ìîäåëüíèé ïðîñòið D′β .Ðîçãëÿäàþòüñÿ òàêîæ çàäà÷i õàðàêòåðèçàöi¨ áiòîïîëîãi÷íèõ

(D′β,Dβ

)-ìíîãîâèäiâ òà çàäà÷i çáå-

ðåæåííÿ D′β-ìíîãîâèäiâ äåÿêèìè ôóíêòîðàìè ñêií÷åííîãî ñòåïåíÿ.

Ëiòåðàòóðà

[1] K. Sakai, On R∞-manifolds and Q∞-manifolds, Topology Appl. 18 (1984) 69-79.[2] Taras Banakh, Katsuro Sakai, Characterizations of (R∞, σ) -or (Q∞,Σ)-manifolds and their applications, Topology

and its Applications, 106 (2000), 115134.[3] T. Radul, Absorbing spaces for C-compacta, Topol. Appl. 83(1998), 127133.[4] P. Borst, Some remarks concerning C-spaces. Topology Appl. 154 (2007), no. 3, 665674.[5] D. F. Addis and J. H. Gresham, A class of innite-dimensional spaces. Part 1: Dimension theory and Alexandro's

problem, Fund. Math.,101, 195205 (1978).

Page 101: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

100

Êàíòîðâàë ÿê ìíîæèíà íååëåìåíòàðíèõ ëàíöþãîâèõ äðîáiâ

Ì. Â. Ïðàöüîâèòèé(ÍÏÓ iìåíi Ì.Ï. Äðàãîìàíîâà, IÌ ÍÀÍ Óêðà¨íè)

E-mail: [email protected]

ß. Â. Ãîí÷àðåíêî(ÍÏÓ iìåíi Ì.Ï. Äðàãîìàíîâà)

E-mail: [email protected]

Â. Î. Äðîçäåíêî(Áiëîöåðêiâñüêèé íàöiîíàëüíèé àãðàðíèé óíiâåðñèòåò)

E-mail: [email protected]

Ó ãåîìåòði¨ ÷èñëîâèõ ðÿäiâ, ÿêà áåðå ñâié ïî÷àòîê ç ðîáîòè Êàêåÿ [?], îäíi¹þ ç îñíîâíèõ ¹çàäà÷à ïðî òîïîëîãî-ìåòðè÷íi âëàñòèâîñòi ìíîæèíè íåïîâíèõ ñóì (ïiäñóì) àáñîëþòíî çáiæíîãîðÿäó a1 + a2 + ..., à ñàìå ìíîæèíè

E(an) = x : x =∑

n∈M⊂Nan,M ∈ 2N,

ÿêà, ÿê âiäîìî, ¹ îáìåæåíîþ, êîíòèíóàëüíîþ, äîñêîíàëîþ (çàìêíåíà i íå ì๠içîëüîâàíèõ òî÷îê).Âiäíîñíî íåäàâíî âñòàíîâëåíî, ùî iñíó¹ ëèøå òðè òîïîëîãi÷íi òèïè ìíîæèí íåïîâíèõ ñóì:

1) âiäðiçîê àáî ñêií÷åííå îá'¹äíàííÿ âiäðiçêiâ; 2) íiäå íå ùiëüíà ìíîæèíà; 3) êàíòîðâàë.Îñòàííié òèï ¹ ñâî¹ðiäíîþ ¾ñóìiøøþ¿ äâîõ ïîïåðåäíiõ òèïiâ. Ïåðøi ïðèêëàäiâ ðÿäiâ ç òàêèìè

ìíîæèíàìè íåïîâíèõ ñóì ïîáóäîâàíî íå òàê äàâíî (ïðî öå äèâèñü â [?]). Îäíèì ç íàéïðîñòiøèõç íèõ ¹ ðÿä

3

4+

2

4+

3

42+

2

42+ ...+

3

4n+

2

4n+ ....

Ñüîãîäíi â îñíîâíîìó êîðèñòóþòüñÿ íàñòóïíèì îçíà÷åííÿì êàíòîðâàëà. Êàíòîðâàëîì íàçèâà-

¹òüñÿ ìíîæèíà ãîìåîìîðôíà ìíîæèíi T ≡ C ∪∞⋃n=1

G2n−1 = [0; 1] \∞⋃n=1

G2n,

äå C = x : x =∑∞

k=12αk3k

= ∆3α1α2...αk...

, αk ∈ 0, 1 ìíîæèíà Êàíòîðà,

Gk =⋃

α1∈0,2...

⋃αk−1∈0,2

(∆3α1...αk−11(0); ∆3

α1...αk−11(2)).

Ìè ïðîïîíó¹ìî àëüòåðíàòèâíå (åêâiâàëåíòíå) îçíà÷åííÿ êàíòîðâàëà, íàâåäåíå íèæ÷å.

Îçíà÷åííÿ 1. Âàëîì íà ÷èñëîâié ïðÿìié íàçèâàòèìåìî ìíîæèíó W , ÿêà ¹ òàêèì îá'¹äíàííÿìíåñêií÷åííîãî ÷èñëà iíòåðâàëiâ, ùî1) iíòåðâàëè ïîïàðíî íå ïåðåòèíàþòüñÿ;2) ìiæ êîæíèìè äâîìà iíòåðâàëàìè îá'¹äíàííÿ ëåæèòü ïðèíàéìíi îäèí iíòåðâàë öüîãî îá'¹äíàííÿ.

Ïðèêëàäîì âàëó íà ÷èñëîâié ïðÿìié ¹ îá'¹äíàííÿ öèëiíäðè÷íèõ iíòåðâàëiâ òðiéêîâîãî çîáðà-æåííÿ ÷èñåë âiäðiçêà [0; 1] âèäó ∇3

1,∇3c1c2...c2k−1c2k1, äå ci ∈ 0, 2, k ∈ N .

Ìíîæèíîþ êàíòîðiâñüêîãî òèïó íàçèâà¹òüñÿ îáìåæåíà íiäå íå ùiëüíà, äîñêîíàëà ìíîæèíà.

Îçíà÷åííÿ 2. Êàíòîðâàëîì íàçèâà¹òüñÿ îáìåæåíà äîñêîíàëà ìíîæèíà K ÷èñëîâî¨ ïðÿìî¨, ÿê๠îá'¹äíàííÿì ìíîæèíè êàíòîðiâñüêîãî òèïó C i âàëó W , êîæåí iíòåðâàë ÿêîãî ¹ ñóìiæíèì çìíîæèíîþ C i ïðè öüîìó äîïîâíåííÿ K äî K ¹ âàëîì. Ñòðóêòóðîþ êàíòîðâàëó K íàçèâà¹òüñÿïðåäñòàâëåííÿ (ðîçêëàä): K = C ∪W .

Êàíòîðâàëè ¹ ïîïóëÿðíèì îá'¹êòîì ñó÷àñíèõ ìàòåìàòè÷íèõ äîñëiäæåíü, àëå äî öèõ ïið êðèòå-ðiÿ êàíòîðâàëüíîñòi ìíîæèíè ïiäñóì ðÿäó íå çíàéäåíî.

Page 102: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

101

Êàíòîðâàëè âèíèêàþòü i ó òåîði¨ ëàíöþãîâèõ äðîáiâ, äå ñïîñòåðiãàþòüñÿ àíàëîãi÷íà êàðòèíà çãåîìåòði¨ ÷èñëîâèõ ðÿäiâ.Íàãàäà¹ìî, ùî íåñêií÷åííèì ëàíöþãîâèì äðîáîì íàçèâà¹òüñÿ âèðàç âèäó

a0 +1

a1 + 1a2+...

≡ [a0; a1, a2, ...]. (1)

Íåõàé 1 < s ôiêñîâàíå íàòóðàëüíå ÷èñëî, A = c0, c1, . . . , cs−1 ìíîæèíà äiéñíèõ ÷èñåëòàêèõ, ùî 0 < c0 < c1 < . . . < cs−1, ÿêà íàçèâà¹òüñÿ àëôàâiòîì; LA = A × A × A × . . . × A × . . .ïðîñòið ïîñëiäîâíîñòåé åëåìåíòiâ àëôàâiòó A. Íàñ öiêàâëÿòü òîïîëîãî-ìåòðè÷íi âëàñòèâîñòiìíîæèíè GA çíà÷åíü íåñêií÷åííèõ ëàíöþãîâèõ äðîáiâ âèäó [0; a1, a2, . . . , an, . . .], äå (an) ∈ LA.Âèïàäîê s = 2 çàñëóãîâó¹ íà îêðåìó óâàãó, ÿêà ïðèäiëåíà éîìó ó ðîáîòàõ [?, ?, ?, ?].

Òåîðåìà 3 ([?]). ßêùî s = 2, òî GA ¹ âiäðiçêîì [a; b], äå a = [0; (c1, c0)], b = [0; (c0, c1)], êîëèc0c1 ≤ 1

2 ; íiäå íå ùiëüíîþ ìíîæèíîþ, êîëè c0c1 >12 . Ïðè óìîâi c0c1 >

12 êîæíå ÷èñëî x ∈ GA

ì๠¹äèíå çîáðàæåííÿ íåñêií÷åííèì ëàíöþãîâèì äðîáîì, ïðè c0c1 = 12 ÷èñëà çëi÷åííî¨ ùiëüíî¨ ó

âiäðiçêó [β0;β1], äå β0 = [0; (c1, c0)], β1 = [0; (c0, c1)], ìíîæèíè ìàþòü äâà çîáðàæåííÿ, à ðåøòà ìàþòü ¹äèíå çîáðàæåííÿ.

Òåîðåìà 4. Ìíîæèíà GA çíà÷åíü íåñêií÷åííèõ ëàíöþãîâèõ äðîáiâ âèäó [0; a1, a2, . . . , an, . . .], äå(an) ∈ LA, ¹ êîíòèíóàëüíîþ, äîñêîíàëîþ i îáìåæåíîþ, ïðè÷îìó

minGA = [0; (cs−1, c0)] =

√c0cs−1(c0cs−1 + 4)− c0cs−1

2cs−1≡ d0, (2)

maxGA = [0; (c0, cs−1)] =

√c0cs−1(c0cs−1 + 4)− c0cs−1

2c0≡ d1. (3)

Íàñëiäîê 5. ßêùî A = 1

2, 1, 8, òî minGA =

√2− 1

4, maxGA = 4

√2− 4 = 4(

√2− 1).

Òåîðåìà 6. Ìíîæèíà âñiõ ëàíöþãîâèõ äðîáiâ ç îáìåæåíèì àëôàâiòîì A ìiñòèòü âiäðiçîêòîäi i òiëüêè òîäi, êîëè iñíóþòü òàêi åëåìåíòè àëôàâiòó cn i cn+1, ùî cn · cn+1 ≤ 1

2 .

Òåîðåìà 7 (Îñíîâíèé ðåçóëüòàò). Ìíîæèíà GA çíà÷åíü ëàíöþãîâèõ äðîáiâ ç îáìåæåíèì àëôà-âiòîì A ¹ îáìåæåíîþ, êîíòèíóàëüíîþ, äîñêîíîëàþ i íàëåæèòü îäíîìó ç òèõ òðüîõ òîïîëîãi-÷íèõ òèïiâ, ùî é ìíîæèíà íåïîâíèõ ñóì àáñîëþòíî çáiæíîãî ðÿäó (¹ âiäðiçêîì àáî ñêií÷åííèìîá'¹äíàííÿì âiäðiçêiâ, ìíîæèíîþ êàíòîðiâñüêîãî òèïó, êàíòîðâàëîì).

Ëiòåðàòóðà

[1] Âèííèøèí ß.Ô., Ìàðêiòàí Â.Ï., Ïðàöüîâèòèé Ì.Â., Ñàâ÷åíêî I.Î. Äîäàòíi ðÿäè, ìíîæèíè ïiäñóì ÿêèõ ¹êàíòîðâàëàìè. // Proceedings of the International Geometry Center. 2019. Vol.12, no. 2. P. 2642.

[2] Äìèòðåíêî Ñ.Î., Êþð÷åâ Ä.Â., Ïðàöüîâèòèé Ì.Â. Ëàíöþãîâå A2çîáðàæåííÿ äiéñíèõ ÷èñåë // Óêðà¨íñüêèéìàòåìàòè÷íèé æóðíàë. 2009, òîì 61, 4. Ñ.452463.

[3] Pratsiovytyi M., Chuikov A. Continuous distributions whose functions preserve tails of an A2-continued fractionrepresentation of numbers // Random Operators and Stochastic Equations, 2019. Vol. 27(3), pp. 199-206.

[4] Kakey S. On the set of partial sums of aninnite series. Tohoku Sci Rep., (4): 159163, 1914.[5] Ïðàöüîâèòèé Ì.Â., Êþð÷åâ Ä.Â. Ñèíãóëÿðíiñòü ðîçïîäiëó âèïàäêîâî¨ âåëè÷èíè, çîáðàæåíî¨ ëàíöþãîâèì A2-

äðîáîì ç íåçàëåæíèìè åëåìåíòàìè // Òåîð. éìîâ. òà ìàò. ñòàò. 2009. 81. Ñ. 139-154.[6] Pratsiovytyi M., Kyurchev D. Properties of the distribution of the random variable dened by A2-continued fraction

with independent elements // Random Oper. Stochastic Equations, 2009, Vol. 17., no. 1. P.91-101.

Page 103: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

102

Êîíóñ, íàäáóäîâà òà äæîéí â àñèìïòîòè÷íèõ êàòåãîðiÿõ.Ëiïøèöåâà òà ãðóáà åêâiâàëåíòíîñòi äåÿêèõ ôóíêòîðiàëüíèõ

êîíñòðóêöié

Ìèõàéëî Ðîìàíñüêèé(ÄÄÏÓ iìåíi Iâàíà Ôðàíêà)

E-mail: [email protected]

Îñíîâè àñèìïòîòè÷íî¨ òîïîëîãi¨ âèêëàäåíî â ñòàòòi [2] Äðàíiøíiêîâà. Äðàíiøíèêîâ òàêîæ ðîç-ãëÿä๠ðiçíîìàíiòíi êîíñòðóêöi¨ ó àñèìïòîòè÷íié êàòåãîði¨ A (òîáòî êàòåãîði¨ âëàñíèõ ìåòðè÷íèõïðîñòîðiâ i àñèìïòîòè÷íî ëiïøèöåâèõ âiäîáðàæåíü), çîêðåìà ïðîïîíó¹ íîâèé ïiäõiä äî ïîíÿòòÿäîáóòêó. Âií òàêîæ îçíà÷ó¹ êîíóñ, íàäáóäîâó i äæîéí.Äåêàðòiâ äîáóòîê (X × Y, dX + dY ) íå ¹ êàòåãîðíèì â àñèìïòîòè÷íié êàòåãîði¨ A, îñêiëüêè

ïðîåêöi¨ íà ìíîæíèêè íå ¹ ìîðôiçìàìè.  ðîáîòi [2] À. Äðàíiøíiêîâ îçíà÷èâ àñèìïòîòè÷íèéäîáóòîê

X×Y (x0, y0) = (x, y)|dX(x0, x) = dY (y0, y), x ∈ X, y ∈ Y ,äå x0, y0 ôiêñîâàíi òî÷êè â ìåòðè÷íèõ ïðîñòîðàõ X òà Y âiäïîâiäíî. Ìåòðèêà íà X×Y iíäó-êîâàíà âêëàäåííÿì X×Y ⊂ X × Y .Ó ñòàòòi [2] îçíà÷åíî êîíóñ CX i íàäáóäîâó

∑X â àñèìïòîòè÷íèõ êàòåãîðiÿõ äëÿ êîæíîãî

ìåòðè÷íîãî ïðîñòîðó çà àíàëîãi¹þ: CX = X×R2+/i+(X) i

∑X = X×R2

+/i±(X) = CX/i−X äå

i± : X → X×R2+ âêëàäåííÿ, îçíà÷åíi ôîðìóëàìè i±(x) = (x,±‖x‖, 0).  öié æå ñòàòòi ñòâåðäæó¹-

òüñÿ, ùî äëÿ ãåîäåçiéíèõ ïðîñòîðiâ X êîíóñ ìîæíà çàäàâàòè ïðîñòîþ ôîðìóëîþ CX = X ×R+,àëå ó ñòàòòi [5] â ëåìi 1 äîâåäåíî, ùî êîíóñ CR íå içîìîðôíèé ïiâïðîñòîðó R2

+ â àñèìïòîòè-÷íié êàòåãîði¨ A. Àíàëîãi÷íî ìîæíà äîâåñòè, ùî íàäáóäîâà

∑R íå içîìîðôíà ïðîñòîðó R2 â

àñèìïòîòè÷íié êàòåãîði¨ A.

Ëåìà 1. Êîíóñ CR íå içîìîðôíèé ïiâïðîñòîðó R2+ â àñèìïòîòè÷íié êàòåãîði¨ A.

Òåîðåìà 2. Ïðîñòîðè C(R+) i∑

(R+) íå ¹ ãðóáî åêâiâàëåíòíi.

Äëÿ áóäü-ÿêèõ äâîõ ìåòðè÷íèõ ïðîñòîðiâ X i Y ç ôiêñîâàíèìè òî÷êàìè ìîæíà îçíà÷èòè áóêåòX ∨ Y . Äæîéí X ∗ R+ öå ïiäïðîñòið ïðîñòîðó P2(X ∨ R+) éìîâiðíiñíèõ ìið, íîñiÿìè ÿêèõ ¹äâîòî÷êîâi ìíîæèíè. Ôîðìóëà äëÿ ìåòðèêè Êàíòîðîâè÷à-Ðóáiíøòåéíà íà äæîéíi X ∗ R+ ìiæäâîìà äîâiëüíèìè éìîâiðíiñíèìè ìiðàìè µ = αδx + (1−α)δy i ν = βδx′ + (1−β)δy′ ì๠íàñòóïíèéâèãëÿä

dKP (µ, ν) =| α− β | (y + y′) + minα, βd(x, x′) + (1−maxα, β) | y − y′ | .

Ëåìà 3. Äæîéí Rn ∗ R+ içîìîðôíèé ïiâïðîñòîðó Rn+1+ â àñèìïòîòè÷íié êàòåãîði¨ A.

Ó ñòàòòi [5] àíàëîãi÷íèé ðåçóëüòàò äîâåäåíî äëÿ γ-ñëàáî îïóêëèõ òà δ-ñëàáî âãíóòèõ ãåîäåçiéíèõïðîñòîðiâ.Ç ëåì 1 i 3 îòðèìó¹ìî íàñòóïíèé íàñëiäîê.

Íàñëiäîê 4. Äæîéí R ∗ R+ íå içîìîðôíèé êîíóñó CR â àñèìïòîòè÷íié êàòåãîði¨ A.

Ëåìà 5. Íåõàé X = n2 | n ∈ N ⊂ R. Äæîéí X ∗ R+ íå içîìîðôíèé êîíóñó CX â àñèìïòî-òè÷íié êàòåãîði¨ A.

Äëÿ ìåòðè÷íîãî ïðîñòîðó (X, ρ) ÷åðåç expX ïîçíà÷àþòü ãiïåðïðîñòið ïðîñòîðó X, òîáòî ìíî-æèíó íåïîðîæíiõ êîìïàêòíèõ ïiäìíîæèí â X, íàäiëåíó ìåòðèêîþ Ãàóñäîðôà ρH :

ρH(A,B) = infε > 0|A ⊂ Oε(B), B ⊂ Oε(A).

Page 104: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

103

Äëÿ êîæíîãî n ∈ N ÷åðåç expnX ïîçíà÷èìî ïiäïðîñòið expX, ùî ñêëàäà¹òüñÿ ç óñiõ ìíîæèíïîòóæíîñòi ≤ n.Íåõàé ∼ âiäíîøåííÿ åêâiâàëåíòíîñòi íà ñòåïåíi Xn, ùî çàäà¹òüñÿ óìîâîþ (x1, ..., xn) ∼

(y1, ..., yn) òîäi é òiëüêè òîäi, êîëè iñíó¹ ïåðåñòàíîâêà σ ìíîæèíè 1, ..., n òàêà, ùî xi = yσ(i)

äëÿ êîæíîãî i = 1, ..., n. Ôàêòîðïðîñòið ïðîñòîðó Xn çà òàêèì âiäíîøåííÿì åêâiâàëåíòíîñòiíàçèâàþòü ñèìåòðè÷íèì ñòåïåíåì ïðîñòîðó X i ïîçíà÷àþòü SPn(X).

Òåîðåìà 6. Ãiïåðïðîñòið exp3 R+ , ñèìåòðè÷íèé ñòåïiíü SP 3 R+ òà ïðîñòið R3+ ëiïøèöåâî

åêâiâàëåíòíi.

Òåîðåìà 7. Ãiïåðïðîñòið exp3 R , ñèìåòðè÷íèé ñòåïiíü SP 3 R òà R3+ ëiïøèöåâî åêâiâàëåíòíi.

Ç òåîðåì 6 i 7 îòðèìó¹ìî òàêèé íàñëiäîê.

Íàñëiäîê 8. Ãiïåðïðîñòîðè exp3 R+, exp3 R, ñèìåòðè÷íi ñòåïåíi SP 3 R+, SP3 R òà R3

+ ëiï-øèöåâî åêâiâàëåíòíi.

Êîíóñ Cone(X) íàä êîìïàêòíèì ìåòðè÷íèì ïðîñòîðîì (X, d) öå ôàêòîðïðîñòið äîáóòêó(X × R+)/ ∼, äå âiäíîøåííÿ åêâiâàëåíòíîñòi ∼ çàäà¹òüñÿ óìîâîþ (x, 0) ∼ (y, 0), x, y ∈ X. ßêùî

(X, d) ìåòðè÷íèé ïðîñòið i diam(X) ≤ 2, òî ìåòðèêà d íà Cone(X) çàäà¹òüñÿ ôîðìóëîþ:

d((x, t), (y, s)) = mint, sd(x, y) + |t− s|.

Ëåìà 9. ßêùî êîìïàêòíi ìåòðè÷íi ïðîñòîðè (X, d) i (Y, ρ) ëiïøèöåâî åêâiâàëåíòíi, òî ìå-òðè÷íi ïðîñòîðè Cone(X) i Cone(Y ) òàêîæ ëiïøèöåâî åêâiâàëåíòíi.

Ëåìà 10. Ïiâñôåðà Sn+ òà êóá In ëiïøèöåâî åêâiâàëåíòíi.

Ç ëåì 9 òà 10, âðàõóâàâøè, ùî Cone(Sn+) ' Rn+1+ , îòðèìó¹ìî òàêèé íàñëiäîê.

Íàñëiäîê 11. Êîíóñ Cone(In) òà Rn+1+ ëiïøèöåâî åêâiâàëåíòíi.

Íàñòóïíó òåîðåìó ìîæíà ââàæàòè ãðóáèì àíàëîãîì îäíîãî ðåçóëüòàòó Øîði [4].

Òåîðåìà 12. Ãiïåðïðîñòið exp2 Rm ëiïøèöåâî åêâiâàëåíòíèé Rm × Cone (RPm−1), äå RPm−1

ïðî¹êòèâíèé ïðîñòið.

Òåîðåìà 13. Ïðîñòîðè R3+ òà P2(R) íå ¹ ãðóáî åêâiâàëåíòíi.

Çàóâàæåííÿ 14. Àíàëîãi÷íèé ðåçóëüòàò ìîæíà äîâåñòè äëÿ ñóïåððîçøèðåííÿ λ3(R). Íàãàäà¹-ìî, ùî λ3(R) ìîæíà âèçíà÷èòè ÿê ôàêòîðïðîñòið SP 3(X) çà íàñòóïíèì âiäíîøåííÿì åêâiâàëåí-òíîñòi [x, x, y] ∼ [x, x, z]. Çàóâàæèìî, ùî ïðîñòið λ3(S1) ãîìåîìîðôíèé S3 (äèâ. [1]).

Çàóâàæèìî òàêîæ, ùî ïðîñòîðè R3+ òà P2(R) íå ãîìåîìîðôíi.

Ëiòåðàòóðà

[1] Çàðè÷íûé Ì.Ì. Ôóíäàìåíòàëüíàÿ ãðóïà ñóïåððàñøèðåíèÿ λn(X).  êí.: Îòîáðàæåíèÿ è ôóíêòîðû. Ïîä ðåä.Ï.Ñ. Àëåêñàíäðîâà. Ìîñêâà: ÌÃÓ,1984 - Ñ. 24-31.

[2] Dranishnikov A. Asymptotic topology. Russian Math. Surveys., Vol. 55, 6 (2000), P. 71-116.[3] Romanskyi M. Coarse equivalences of functorial constructions.Proceedings of the International Geometry Center Vol.

12, no. 3 (2019) pp. 6977[4] Scori R.M. Hyperspaces and symmetric products of topological spaces. Fund. Math. 63 (1968).[5] Zarichnyi M., Romanskyi M. Cone and join in the asymptotic categories. Visnyk of the Lviv Univ. Series Mech. Math.

2017. Issue 83. P. 34-41.

Page 105: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

104

Àñèìïòîòèêà íàéêðàùèõ ðiâíîìiðíèõ íàáëèæåíü êëàñiâ çãîðòîêïåðiîäè÷íèõ ôóíêöié âèñîêî¨ ãëàäêîñòi

À. Ñ. Ñåðäþê, I. Â. Ñîêîëåíêî(Iíñòèòóò ìàòåìàòèêè ÍÀÍ Óêðà¨íè, Êè¨â, Óêðà¨íà)

E-mail: [email protected], [email protected]

Íåõàé C i Lp, 1 ≤ p ≤ ∞, ïðîñòîðè 2π-ïåðiîäè÷íèõ ôóíêöié çi ñòàíäàðòíèìè íîðìàìè ‖ · ‖Còà ‖ · ‖p, âiäïîâiäíî.Ïîçíà÷èìî ÷åðåç Cψ

β,p, 1 ≤ p ≤ ∞, ìíîæèíó âñiõ 2π-ïåðiîäè÷íèõ ôóíêöié f , ÿêi çîáðàæóþòüñÿ

çà äîïîìîãîþ çãîðòêè

f(x) =a0

2+

1

π

π∫−π

ϕ(x− t)Ψβ(t)dt, a0 ∈ R, ϕ ∈ B0p = ϕ ∈ Lp : ‖ϕ‖p ≤ 1, ϕ ⊥ 1,

iç ôiêñîâàíèì òâiðíèì ÿäðîì Ψβ ∈ Lp′ ,1

p+

1

p′= 1, ðÿä Ôóð'¹ ÿêîãî ì๠âèãëÿä

S[Ψβ](t) =∞∑k=1

ψ(k) cos

(kt− βkπ

2

), βk ∈ R, ψ(k) > 0. (1)

Îñêiëüêè ϕ ∈ Lp, a Ψβ ∈ Lp′ , òî ôóíêöiÿ f ¹ íåïåðåðâíîþ ôóíêöi¹þ, òîáòî Cψβ,p⊂ C.

ßêùî f ∈ C, ÷åðåç En(f)C ïîçíà÷èìî íàéêðàùå ðiâíîìiðíå íàáäèæåííÿ ôóíêöi¨ f ïiäïðîñòî-ðîì T2n−1 òðèãîíîìåòðè÷íèõ ïîëiíîìiâ Tn−1 ïîðÿäêó íå âèùîãî íiæ n− 1

Tn−1(x) =

n−1∑k=0

(αk cos kx+ βk sin kx), αk, βk ∈ R.

ßêùî N äåÿêèé ôóíêöiîíàëüíèé êëàñ ç ïðîñòîðó C (N ⊂ C), òî âåëè÷èíó

En(N)C = supf∈N

En(f)C (2)

íàçèâàþòü íàéêðàùèì ðiâíîìiðíèì íàáëèæåííÿì êëàñóN ïiäïðîñòîðîì T2n−1 òðèãîíîìåòðè÷íèõïîëiíîìiâ Tn−1 ïîðÿäêó íå âèùîãî íiæ n− 1.Ðîçãëÿäà¹òüñÿ çàäà÷à ïðî çíàõîäæåííÿ àñèìïòîòè÷íèõ ðiâíîñòåé âåëè÷èí (2) ïðè n → ∞ ó

âèïàäêó, êîëè ó ðîëi N âèñòóïàþòü êëàñè Cψβ,p, 1 ≤ p ≤ ∞, à ïîñëiäîâíîñòi ψ(k) ñïàäàþòü äî

íóëÿ äóæå øâèäêî, çîêðåìà êîëè∞∑

k=n+1

ψ(k) = o(1)ψ(n). (3)

Çàçíà÷èìî, ùî ó âèïàäêó p = ∞ àñèìïòîòè÷íi ðiâíîñòi i, íàâiòü, òî÷íi çíà÷åííÿ âåëè÷èí

En(Cψβ,p

)C ïðè îêðåñëåíèõ îáìåæåííÿõ íà ψ(k) âiäîìi (äèâ., íàïðèêëàä, [2, 3]).

Ïîçíà÷èìî ÷åðåç En(N)C âåëè÷èíè

En(N)C = supf∈N‖f(·)− Sn−1(f ; ·)‖C , (4)

äå Sn−1(f ; ·) ÷àñòèííà ñóìà Ôóð'¹ ïîðÿäêó n− 1 ôóíêöi¨ f .Îñêiëüêè

En(N)C ≤ En(N)C , N ⊂ C, (5)

òî âåëè÷èíè (4) ïðèðîäíüî âèêîðèñòîâóâàòè äëÿ îöiíîê çâåðõó íàéêðàùèõ íàáëèæåíü êëàñiâ N.

Page 106: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

105

Çàäà÷à ïðî çíàõîäæåííÿ ñèëüíî¨ àñèìïòîòèêè âåëè÷èí (4) ïðè n → ∞ íîñèòü íàçâó çàäà÷iÊîëìîãîðîâàÍiêîëüñüêîãî äëÿ ñóì Ôóð'¹. Âîíà ì๠âåëèêó iñòîðiþ, ïîçíàéîìèòèñü ç ÿêîþ ìî-

æíà, íàïðèêëàä, ïî ìîíîãðàôi¨ [1]. Äëÿ øâèäêî ñïàäíèõ ψ(k) àñèìïòîòèêà âåëè÷èí En(Cψβ,p

)C

âiäîìà ïðè óñiõ 1 ≤ p ≤ ∞ i βk ∈ R (äèâ. [4]).Íåõàé n ∈ N. Íàäàëi áóäåìî âèìàãàòè, ùîá ïîñëiäîâíiñòü ìîäóëiâ êîåôiöi¹íòiâ Ôóð'¹ òâiðíîãî

ÿäðà Ψβ(t) çàäîâîëüíÿëà óìîâó∞∑

k=n+1

ψ(k) < ψ(n). (6)

Òåîðåìà 1. Äëÿ äîâiëüíèõ βk∞k=1, βk ∈ R, 1 ≤ p ≤ ∞, n ∈ N i ψ(k), ùî çàäîâîëüíÿþòü óìîâó(2), âèêîíóþòüñÿ íàñòóïíi ñïiââiäíîøåííÿ

‖ cos t‖p′π

(ψ(n)−

∞∑k=n+1

ψ(k))≤ En(Cψ

β,p)C ≤ En(Cψ

β,p)C ≤

‖ cos t‖p′π

(ψ(n) +

∞∑k=n+1

ψ(k)). (7)

ßêùî æ ψ(k) çàäîâîëüíÿ¹ óìîâó (3), òî ìàþòü ìiñöå àñèìïòîòè÷íi ðiâíîñòi

En(Cψβ,p

)C

En(Cψβ,p

)C

=‖ cos t‖p′

πψ(n) +O(1)

∞∑k=n+1

ψ(k),(8)

(9)

â ÿêèõ O(1) ¹ ðiâíîìiðíî îáìåæåíèìè âiäíîñíî óñiõ ðîçãëÿäóâàíèõ ïàðàìåòðiâ.

Çàçíà÷èìî, ùî àñèìïòîòè÷íi ðiâíîñòi (8) i (9) ïðè äåÿêèõ ñïiââiäíîøåííÿõ ìiæ ïàðàìåòðàìèâèïëèâàþòü ç ðîáiò [1]-[6].

Ëiòåðàòóðà

[1] Ñòåïàíåö À.È. Êëàññèôèêàöèÿ è ïðèáëèæåíèå ïåðèîäè÷åñêèõ ôóíêöèé. Ê.: Íàóê. äóìêà, 1987. 268 c.[2] Ñòåïàíåö À.È., Ñåðäþê À.Ñ. Ïðèáëèæåíèå ñóììàìè Ôóðüå è íàèëó÷øèå ïðèáëèæåíèÿ íà êëàññàõ àíàëèòè÷å-

ñêèõ ôóíêöèé // Óêð. ìàò. æóðí. 2000. Ò.52, 3. C.375395.[3] Ñåðäþê À.Ñ. Íàéêðàùi íàáëèæåííÿ i ïîïåðå÷íèêè êëàñiâ çãîðòîê ïåðiîäè÷íèõ ôóíêöié âèñîêî¨ ãëàäêîñòi //

Óêð. ìàò. æóðí. - 2005. - 57, 7. - Ñ. 946971.[4] Ñåðäþê À. Ñ. Íàáëèæåííÿ êëàñiâ àíàëiòè÷íèõ ôóíêöié ñóìàìè Ôóð'¹ â ðiâíîìiðíié ìåòðèöi // Óêð. ìàò.

æóðí. - 2005. - 57, 8. - Ñ. 1079 1096.[5] Ñòå÷êèí Ñ.Á. Îöåíêà îñòàòêà ðÿäà Ôóðüå äëÿ äèôôåðåíöèðóåìûõ ôóíêöèé // Ïðèáëèæåíèå ôóíêöèé ïîëè-

íîìàìè è ñïëàéíàìè, Ñáîðíèê ñòàòåé, Òð. ÌÈÀÍ ÑÑÑÐ. - 1980. - 145. - C. 126151.[6] Serdyuk, A. S., Sokolenko, I. V. Approximation by Fourier sums in classes of dierentiable functions with high

exponents of smoothness // Methods of Functional Analysis and Topology. Vol. 25 (2019), 4, pp. 381-387.

Page 107: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

106

Ïåâíi õàðàêòåðèñòèêè ñïåöiàëüíî¨ ãåîìåòði¨ äîòè÷íîãîðîçøàðóâàííÿ ïðîñòîðó àôiííî¨ çâ'ÿçíîñòi, ïîðîäæåíî¨iíâàðiàíòíîþ òåîði¹þ íàáëèæåíü áàçîâîãî ïðîñòîðó

Ñèíþêîâà Îëåíà Ìèêîëà¨âíà(ÄÇ ¾ÏÍÏÓ iìåíi Ê.Ä. Óøèíñüêîãî¿, Îäåñà, Óêðà¨íà)

E-mail: [email protected]

Ðîçãëÿäàííÿ ó äîâiëüíié òî÷öi M(xi), i = 1, n, ïðîñòîðó àôiííî¨ çâ'ÿçíîñòi An, n ∈ N ,n > 2, ðiìàíîâî¨ ñèñòåìè êîîðäèíàò äîçâîëÿ¹ äëÿ êîìïîíåíò Γhij(x

1, ..., xn) àôiííî¨ çâ'ÿçíîñòi öüî-ãî ïðîñòîðó îòðèìàòè iíâàðiàíòíi âiäíîñíî âèáîðó ñèñòåìè êîîðäèíàò ðÿäè òèïó ðÿäiâ Òåéëîðà,÷ëåíè ÿêèõ çàëåæàòü íå ëèøå âiä êîîðäèíàò ïîòî÷íî¨ òî÷êè, à é âiä êîìïîíåíò yi, i = 1, n, äîòè-÷íîãî åëåìåíòà ó íié. ßê ðåçóëüòàò íåõòóâàííÿ ó öèõ ðÿäàõ äîäàíêàìè òðåòüîãî i áiëüø âèñîêèõïîðÿäêiâ ìàëîñòi âiäíîñíî êîìïîíåíò yi, óòâîðþþòüñÿ êîìïîíåíòè àôiííî¨ çâ'ÿçíîñòi

Γhij(x1, ..., xn; y1, ..., yn) = Γhij(x

1, ..., xn; y1, ..., yn)− 1

3Rh(ij)α(x1, ..., xn)yα,

äå h, i, j, α = 1, n, Rh(ij)α(x1, ..., xn) êîìïîíåíòè òåíçîðà êðèâèíè ïðîñòîðó An, êðóãëi äóæêè

ïîçíà÷àþòü ñèìåòðóâàííÿ áåç äiëåííÿ çà âìiùåíèìè ó íèõ iíäåêñàìè. Âèõîäÿ÷è çi ñòðóêòóðè

êîìïîíåíò Γhij , ìîæíà ñòâåðäæóâàòè, ùî âîíè õàðàêòåðèçóþòü ïåâíèé ãåîìåòðè÷íèé îá'¹êò ïðî-

ñòîðó äîòè÷íîãî ðîçøàðóâàííÿ T (An), âèçíà÷àþòü íà An äåÿêó ¾ïîøèðåíó¿ àôiííó çâ'ÿçíiñòü Γ,ó ïåâíîìó ñåíñi ïîäiáíó äî çâ'ÿçíîñòåé Êàðòàíà i Áåðâàëüäà ôiíñëåðîâî¨ ãåîìåòði¨.

Çà äîïîìîãîþ ¾ïîøèðåí àôiííî¨ çâ'ÿçíîñòi Γ äëÿ òåíçîðíèõ ïîëiâ ïðîñòîðó T (An), ââîäè-òüñÿ [1] êîâàðiàíòíå äèôåðåíöiþâàííÿ ¾;¿ çà ïðàâèëîì

T hi (x; y);j =∂T hi∂xj

− yαΓβαj∂T hi∂yβ

+ ΓhjαTαi − ΓαjiT

Íà ïiäñòàâi êîìïîíåíò Γhijy ó ïðîñòîði äîòè÷íîãî ðîçøàðóâàííÿ T (An), çà äîïîìîãîþ îïåðàöi¨

òèïó ïîâíîãî ëiôòó [2] ïîáóäîâàíî çâ'ÿçíiñòü Γ, êîìïîíåíòè Γhij , h, i, j = 1, 2n ÿêî¨ çíàõäÿòüñÿçãiäíî ôîðìóë

Γhij(x1, ..., xn; y1, ..., yn) = Γhij(x

1, ..., xn; y1, ..., yn); h, i, j = 1, n;

Γhij(x1, ..., xn; y1, ..., yn) =

∂Γh−nij

∂xα(x1, ..., xn; y1, ..., yn)yα; h = n+ 1, 2n; j, k, α = 1, n;

Γhij(x1, ..., xn; y1, ..., yn) = −Γh−ni j−n(x1, ..., xn; y1, ..., yn); h, j = n+ 1, 2n; i = 1, n;

Γhij(x1, ..., xn; y1, ..., yn) = −Γh−ni−n j(x

1, ..., xn; y1, ..., yn); h, i = n+ 1, 2n; j = 1, n;

Γhij(x1, ..., xn; y1, ..., yn) = −Γhi−n j−n(x1, ..., xn; y1, ..., yn); i, j = n+ 1, 2n; h = 1, n;

Γhij(x1, ..., xn; y1, ..., yn) = 0, i = n+ 1, 2n;h, j = 1, n;

Γhij(x1, ..., xn; y1, ..., yn) = 0, j = n+ 1, 2n;h, i = 1, n;

Page 108: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

107

Γhij(x1, ..., xn; y1, ..., yn) = −Γn−hn−in−j(x

1, ..., xn; y1, ..., yn), h, i, j = n+ 1, 2n.

Çà äîïîìîãîþ çâ'ÿçíîñòi Γ ó ïðîñòîði T (An) ïðèðîäíèì ÷èíîì ââåäåíî êîâàðiàíòíå äèôåðåöi-þâàííÿ ¾ | ¿.Äîñëiäæåíî âçà¹ìîçâÿçêè ìiæ ñòàíäàðòíèì êîâàðiàíòíèì äèôåðåíöiþâàííÿì ¾,¿ ó ïðîñòîði

An, êîâàðiàíòíèìè äèôåðåíöiþâàííÿìè ¾;¿ i ¾ | ¿ ó T (An). Ïðè öüîìó ìà¹òüñÿ íà óâàçi, ùîïðîñòið An ïðèðîäíèì ÷èíîì âêëàäåíî ó ïðîñòið T (An).

Ëiòåðàòóðà

[1] Í. Ñ. Ñèíþêîâ, Å. Í. Ñèíþêîâà, Þ. À. Ìîâ÷àí. Íåêîòîðûå àêòóàëüíûå àñïåêòû ðàçâèòèÿ òåîðèè ãåîäåçè÷åñêèõîòîáðàæåíèé ðèìàíîâûõ ïðîñòðàíñòâ è å¼ îáîùåíèé Èçâ.âóçîâ. Ìàòåìàòèêà, 3(382) : 7680, 1994.

[2] K. Yano, Sh. Ishihara. Tangent and cotangent bundles: dierential geometry Pure and applied mathematics, NewYork : Dekker, 1973.

Page 109: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

108

Äîñëiäæåííÿ T0-òîïîëîãié íà n-åëåìåíòíié ìíîæèíi ç âàãîþk ∈ (2n−2, 2n−1]

Ñò¹ãàíöåâà Ïîëiíà Ãåîðãi¨âíà(Çàïîðiçüêèé íàöiîíàëüíèé óíiâåðñèòåò, Çàïîðiææÿ, Óêðà¨íà)

E-mail: [email protected]

Ñêðÿáiíà Àííà Âiêòîðiâíà(Çàïîðiçüêèé íàöiîíàëüíèé óíiâåðñèòåò, Çàïîðiææÿ, Óêðà¨íà)

E-mail: [email protected]

Äëÿ äîñëiäæåííÿ T0-òîïîëîãié âèêîðèñòîâó¹òüñÿ ¨õ îïèñàííÿ âåêòîðîì òîïîëîãi¨ íåñïàäíîþïîñëiäîâíiñòþ (α1, α2, ..., αn) íåâiä'¹ìíèõ öiëèõ ÷èñåë, ÿêå áóëî çàïðîïîíîâàíå â ðîáîòi [4]. Âàãîþòîïîëîãi¨ ïðèéíÿòî íàçèâàòè êiëüêiñòü âiäêðèòèõ ìíîæèí â íié. Âñi òîïîëîãi¨ îäíàêîâî¨ âàãè kóòâîðþþòü k-êëàñ òîïîëîãié. Âåêòîðè âñiõ òîïîëîãié ç âàãîþ k ∈ (2n−1, 2n] çíàéäåíî â ðîáîòi [4]. ðîáîòàõ [1]-[3] îïèñàíi T0-òîïîëîãi¨ ç âàãîþ k ≥ 5 · 2n−4. öié ðîáîòi ïîêàçàíî, ùî âñi k-êëàñè òîïîëîãié íà n-åëåìåíòíié ìíîæèíi ç âàãîþ k ∈ [5 ·

2n−4, 2n−1], ìiñòÿòü ïðèíàéìíi îäíó T0-òîïîëîãiþ ç íàñòóïíîþ âëàñòèâiñòþ: iñíó¹ (n−1)-åëåìåíòíàïiäìíîæèíà, íà ÿêié öÿ òîïîëîãiÿ iíäóêó¹ áëèçüêó äî äèñêðåòíî¨ òîïîëîãiþ (â öüîìó âèïàäêó ãî-âîðÿòü, ùî òîïîëîãiÿ óçãîäæåíà ç áëèçüêîþ äî äèñêðåòíî¨). Öÿ âëàñòèâiñòü äîçâîëÿ¹ âêàçàòèâåêòîðè òàêèõ òîïîëîãié. Çíàéäåíî êëàñè, â ÿêèõ âñi òîïîëîãi¨ ìàþòü âêàçàíó âëàñòèâiñòü. Êðiìöüîãî, ìè äîñëiäæóâàëè ïîìi÷åíi T0-òîïîëîãi¨ ç âàãîþ k ∈ (2n−2, 13 · 2n−5). Òåðìií äâî¨ñòà âèêî-ðèñòîâó¹òüñÿ äëÿ òîïîëîãi¨, îòðèìàíî¨ ç çàäàíî¨ øëÿõîì ïåðåõîäó äî äîïîâíåíü ¨¨ åëåìåíòiâ.Òåîðåìà. Ó êëàñàõ òîïîëîãié ç âàãîþ k ∈ [13 · 2n−5, 2n−1], çà âèêëþ÷åííÿì T0-òîïîëîãié, óçãî-

äæåíèõ ç áëèçüêèìè äî äèñêðåòíèõ òà äâî¨ñòèõ äî íèõ, iíøèõ òîïîëîãié íåìà¹. Iñíóþòü êëàñèòîïîëîãié ç âàãîþ k ∈ [5 · 2n−4, 13 · 2n−5), ÿêi íå âè÷åðïóþòüñÿ T0-òîïîëîãiÿìè, óçãîäæåíèìè çáëèçüêèìè äî äèñêðåòíèõ òà äâî¨ñòèìè äî íèõ. Iñíóþòü êëàñè òîïîëîãié ç âàãîþ k ∈ (2n−2, 5·2n−4),â ÿêèõ íåì๠æîäíî¨ òîïîëîãi¨, óçãîäæåíî¨ ç áëèçüêèìè äî äèñêðåòíî¨ òîïîëîãiÿìè.

Ëiòåðàòóðà

[1] R.P. Stanley. On the number of open sets of nite topologies. Journal of combinatorial theory, 1971. Vol. 10. P. 7479.[2] Kolli M. Direct and elementary approach to enumerate topologies on a nite set. Journal of Integer Sequences, 2007.

Vol. 10. Article 07.3.1.[3] Kolli M. On the Cardinality of the T0-Topologies on a Finite Set. International Journal of Combinatorics, 2014.

Article ID 798074, 7 pages.[4] Âåëè÷êî È. Ã., Ñòåãàíöåâà Ï. Ã., Áàøîâà Í. Ï. Ïåðå÷èñëåíèå òîïîëîãèé áëèçêèõ ê äèñêðåòíîé íà êîíå÷íûõ

ìíîæåñòâàõ. Èçâåñòèÿ âóçîâ. Ìàòåìàòèêà, 2015. 11. Ñ. 2331.

Page 110: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

109

Ïðî ðîçùåïëåííÿ ïàðíèõ ôóíêöié

Æóê Îêñàíà(ì. Äðîãîáè÷, â. Ñòðèéñüêà, 3, 82100)E-mail: [email protected]

Âîéòîâè÷ Õðèñòèíà(ì. Äðîãîáè÷, â. Ñòðèéñüêà, 3, 82100)E-mail: [email protected]

Ãàëü Þðié(ì. Äðîãîáè÷, â. Ñòðèéñüêà, 3, 82100)

E-mail: [email protected]

Íåõàé W pσ , σ > 0, ïðîñòið Ïåëi-Âiíåðà öiëèõ ôóíêöié f åêñïîíåíöiàëüíîãî òèïó ≤ σ, ùî íà-

ëåæàòü äî Lp(R). Âií ìîæå áóòè âèçíà÷åíèé i ÿê ïðîñòið öiëèõ ôóíêöié, äëÿ ÿêèõ âèêîíó¹òüñÿóìîâà

supϕ∈(0;2π)

+∞∫0

|(freiϕ)|pe−pσr| sinϕ|dr

1/p

< +∞.

Íåõàé Ep[C(α;β)], 0 < β − α < 2π, 1 ≤ p < +∞, ¹ ïðîñòîðîì àíàëiòè÷íèõ ôóíêöié f â C(α;β) =z : α < arg z < β äëÿ ÿêèõ

supα<ϕ<β

+∞∫0

|f(reiϕ)|dr

< +∞.

Âèííèöüêèé Á., Äiëüíèé Â. òà Ãiùàê Ò. ðîçãëÿäàëè íàñòóïíó çàäà÷ó ðîçùåïëåííÿ.

Çàäà÷à 1. ×è êîæíà ôóíêöiÿ f ∈ W 1σ äîïóñê๠ðîçùåïëåííÿ f = χ + µ, äå ôóíêöi¨ χ òà µ ¹

àíàëiòè÷íèìè â C+ = z : Rez > 0 i χ ∈ E1[C(0; π2 )], µ ∈ E1[C(−π2 ; 0)]?

Ò. Ãiùàê çàïðîïîíóâàëà øóêàòè ôóíêöiþ χ ó âèãëÿäi

χ(z) = χ1(z) + iχ2(−iz), (1)

äå

χ1(z) =1√2π

σ∫0

ϕ(it)eitzdt, χ2(z) = − 1√2π

0∫−σ

ϕ(it)eitzdt.

Ïîçíà÷èìî ÷åðåç W 1σ,+ ïiäïðîñòið f ∈W 1

σ , ùî ñêëàäà¹òüñÿ ç ïàðíèõ ôóíêöié.

Òåîðåìà 2. Íåõàé f ∈W 1σ,+. Òîäi ôóíêöiÿ χ, âèçíà÷åíà ðiâíiñòþ (1), ¹ ðîçâ'ÿçêîì âèùåíàâåäåî¨

ïðîáëåìè.

Äîâåäåííÿ áàçó¹òüñÿ íà íàñòóïíîìó òâåðäæåííi.

Ëåìà 3. Íåõàé (ck) ∈ l2 i σ ≥ 0. Òîäi íàñòóïíi óìîâè ¹ åêâiâàëåíòíèìè:

1) ïîñëiäîâíiñòü (ck) ¹ ïàðíîþ;

2) ôóíêöiÿ ϕ(t) =∑+∞

k=−∞ cke− ikπt

σ ¹ ïàðíîþ;

3) ôóíêöiÿ f(z) =∑+∞

k=−∞(−1)kckπsinσzσz−πk ¹ ïàðíîþ.

Page 111: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

110

Ëiòåðàòóðà

[1] Dilnyi V. M. Splitting of some spaces of analytic functions, volume 6 of Ufa Mathematical Journal. Ufa, 2014.

Page 112: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

111

Ãðóïïû Ëè èíôèíèòåçèìàëüíûõ êîíôîðìíûõ ïðåîáðàçîâàíèéâòîðîé ñòåïåíè â ñèììåòðè÷åñêîì ðèìàíîâîì ïðîñòðàíñòâå

ïåðâîãî êëàññà

È. È. Áåëîêîáûëüñêèé(Îäåññêèé íàöèîíàëüíûé óíèâåðñèòåò èìåíè È.È. Ìå÷íèêîâà, Îäåññà, Óêðàèíà)

E-mail: [email protected]

Ñ. Ì. Ïîêàñü(Îäåññêèé íàöèîíàëüíûé óíèâåðñèòåò èìåíè È.È. Ìå÷íèêîâà, Îäåññà, Óêðàèíà)

E-mail: [email protected]

Ï. À. Øèðîêîâûì â [1] áûëè íàéäåíû âñå íåïðèâîäèìûå ñèììåòðè÷åñêèå ðèìàíîâû ïðîñòðàí-ñòâà Vn(x; g(x)) ïåðâîãî êëàññà. Ìåòðè÷åñêèé òåíçîð gij(x) òàêèõ ïðîñòðàíñòâ â ðèìàíîâîé ñè-

ñòåìå êîîðäèíàò ñ íà÷àëîì â òî÷êå M0(xh = 0) èìååò ñëåäóþùèé âèä:

gij(x) = gijo

+1

3(hiαohjβo− hij

ohαβo

)xαxβ, (1)

(gij)o

=

(0 EE 0

), (hij)

o=

e1

en0

0 0

,

ãäå E åäèíè÷íàÿ ìàòðèöà à, ei = ±1, i = 1, ..., nÄëÿ ïðîèçâîëüíîãî ðèìàíîâà ïðîñòðàíñòâà Vn(x; g(x)) Ñ. Ì. Ïîêàñü [2] ââåë ïîíÿòèå ïðîñòðàí-

ñòâà âòîðîãî ïðèáëèæåíèÿ V 2n (y; g(y)):

gij(y) = gijo

+1

3Roiαβjy

αyβ, (2)

gijo

= gij(M0), Roiαβj = Riαβj(M0),M0 ∈ Vn.

Ñðàâíåíèå (1) è (2) ïîêàçûâàåò, ÷òî ðèìàíîâî ïðîñòðàíñòâî âòîðîãî ïðèáëèæåíèÿ V 2n äëÿ ñèì-

ìåòðè÷åñêîãî ðèìàíîâà ïðîñòðàíñòâà ïåðâîãî êëàññà èçîìåòðè÷íî èñõîäíîìó ïðîñòðàíñòâó Vn.Ïîýòîìó ãðóïïà Ëè èíôèíèòåçèìàëüíûõ ïðåîáðàçîâàíèé Gr ïðîñòðàíñòâà V

2n èçîìîðôíà ãðóï-

ïå Ëè èíôèíèòåçèìàëüíûõ ïðåîáðàçîâàíèé Gr ñèììåòðè÷åñêîãî ðèìàíîâà ïðîñòðàíñòâà ïåðâîãîêëàññà Vn.Èçó÷åíèå èíôèíèòåçèìàëüíûõ êîíôîðìíûõ ïðåîáðàçîâàíèé â ïðîñòðàíñòâå V 2

n ñâîäèòñÿ ê èñ-ñëåäîâàíèþ îáîáùåííûõ óðàâíåíèé Êèëëèíãà [4]

ξ(i,j) = ψ(y)gij

Çäåñü áûë ïîëó÷åíè ñëåäóþùèé ðåçóëüòàò [3].

Òåîðåìà 1. Â ïðîñòðàíñòâå âòîðîãî ïðèáëèæåíèÿ V 2n äëÿ ðèìàíîâà ïðîñòðàíñòâà Vn íåíóëå-

âîé ñêàëÿðíîé êðèâèçíû â òî÷êå M0 ñóùåñòâóþò èíôèíèòåçèìàëüíûå êîíôîðìíûå ïðåîáðàçî-âàíèÿ ñ âåêòîðîì ñìåùåíèÿ âèäà

ξh = ah + ah.lyl + ah.l1l2y

l1yl2 , (3)

(ah, ah.l, ah.l1l2 − const)

Page 113: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

112

îòëè÷íûå îò äâèæåíèé, òîãäà è òîëüêî òîãäà, êîãäà êîíñòàíòû ah. è ah.l óäîâëåòâîðÿþò àë-ãåáðàè÷åñêèì óðàâíåíèÿì

aα.igojα = 0 (4)

aα.(iRo j)(l1l2)α + aα.(l1Ro l2)(ij)α = 0 (5)

Cl1l2l3

[aα. Ro α(l1l2)βR

o.(ij)l3 −

3

2

(bαR

o

α.(ij)l1

gol2l3 − bl1Ro i(l2l3)j

)]= 0 (6)

ãäå Cl1l2l3

- îçíà÷àåò öèêëèðîâàíèå ïî èíäåêñàì l1l2l3,

ahl1l2yl1yl2 = aα.

1

3Ro

h.l1l2αy

l1yl2 +1

2

(b1yh − 1

2bhgol1l2y

l1yl2)

(7)

ψ(y) = blyl (8)

Òàê êàê ñêàëÿðíàÿ êðèâèçíà ñèììåòðè÷åñêîãî ðèìàíîâà ïðîñòðàíñòâà ðàâíà íóëþ, òî àíàëî-ãè÷íî Òåîðåìå 1 äîêàçàíî óòâåðæäåíèå.

Òåîðåìà 2.  ñèììåòðè÷åñêîì ðèìàíîâîì ïðîñòðàíñòâå ïåðâîãî êëàññà Vn ñóùåñòâóþò èí-ôèíèòåçèìàëüíûå êîíôîðìíûå ïðåîáðàçîâàíèÿ ñ âåêòîðîì ñìåùåíèÿ âèäà (3) òîãäà è òîëüêîòîãäà, êîãäà êîíñòàíòû ah. è a

h.l óäîâëåòâîðÿþò àëãåáðàè÷åñêèì óðàâíåíèÿì

aα.igojα = bg

oij (9)

aαβRo

α β

.(ij).= 0 (10)

aα.(iRo j)(l1l2)α + aα.(l1Ro l2)(ij)α = 0 (11)

ψ(y) = b+ blyl (12)

Èññëåäóÿ óðàâíåíèÿ (9)-(11) ïðè óñëîâèè (1) ïðèõîäèì ê òàêîé òåîðåìå:

Òåîðåìà 3. Èíôèíèòåçèìàëüíûå êîíôîðìíûå ïðåîáðàçîâàíèÿ ñ âåêòîðîì ñìåùåíèÿ âèäà (3) âñèììåòðè÷åñêîì ðèìàíîâîì ïðîñòðàíñòâå ïåðâîãî êëàññà ïî íåîáõîäèìîñòè ÿâëÿþòñÿ èíôè-íèòåçèìàëüíûìè ãîìîòåòè÷åñêèìè ïðåîáðàçîâàíèÿìè.

Äëÿ n = 4 äîêàçàíà

Òåîðåìà 4. Ñèììåòðè÷åñêîå ðèìàíîâîå ïðîñòðàíñòâî V4 1-ãî êëàññà äîïóñêàåò ãðóïïó Ëè ãî-ìîòåòè÷åñêèõ èíôèíèòåçèìàëüíûõ ïðåîáðàçîâàíèé G12.

Íàéäåí áàçèñ ýòîé ãðóïïû è å¼ ñòðóêòóðà.

Ëèòåðàòóðà

[1] Ï. À. Øèðîêîâ. Èçáðàííûå ðàáîòû ïî ãåîìåòðèè. Êàçàíü, 1966.[2] Ñ. Ì. Ïîêàñü. Ãðóïïû Ëè äâèæåíèé â ðèìàíîâîì ïðîñòðàíñòâå âòîðîãî ïðèáëèæåíèÿ, Èçâåñòèÿ Ïåíçåíñêîãî-

ãîñóäàðñòâåííîãî ïåäàãîãè÷åñêîãî óíèâåðñèòåòà èì. Áåëèíñêîãî 26, 2011, 173-183 ñ 1978.[3] Ñ. Ì. Ïîêàñü. Áåñêîíå÷íî ìàëûå êîíôîðìíûå ïðåîáðàçîâàíèÿ â ðèìàíîâîì ïðîñòðàíñòâå âòîðîãî ïðèáëèæå-

íèÿ, Vol. 7 of Proc. of the Intern. Geom. Center, 2, 2014, 36-50 p.[4] Ë. Ï. Ýéçåíõàðò. Íåïðåðûâíûå ãðóïïû ïðåîáðàçîâàíèé. Ì, ÈË, 1947.

Page 114: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

113

Êîíå÷íîìåðíûå äèíàìèêè è òî÷íûå ðåøåíèÿ óðàâíåíèÿâîçíèêíîâåíèÿ ìîëíèé

È.Â. Æåðåáÿòíèêîâ(Ìîñêîâñêèé Ãîñóäàðñòâåííûé Óíèâåðñèòåò Ì.Â. Ëîìîíîñîâà, Ìîñêâà, Ðîññèÿ)

E-mail: [email protected]

 ðàáîòå [1] áûëà ïðåäëîæåíà ìàòåìàòè÷åñêàÿ ìîäåëü äëÿ îáúÿñíåíèÿ âîçíèêàþùèõ â îá-ëàêàõ ñêà÷êîâ íàïðÿæ¼ííîñòè ýëåêòðè÷åñêîãî ïîëÿ, ïðèâîäÿùèõ ê âîçíèêíîâåíèþ ìîëíèé. Âîñíîâå ýòîãî ïîäõîäà ëåæèò ïðåäïîëîæåíèå î òîì, ÷òî çàðÿæåííóþ ÷àñòü îáëàêà ìîæíî îïèñàòüñ ïîìîùüþ îñíîâíûõ óðàâíåíèé ãèäðîäèíàìèêè çàðÿæåííîé ñðåäû, äâèæóùåéñÿ ïîä äåéñòâèåìâíåøíèõ ñèë (ïîòîêè âåòðà, êîíâåêöèÿ è ò. ä.). Òàì æå ïðèâåäåíî íåëèíåéíîå äèôôåðåíöèàëüíîåóðàâíåíèå äëÿ îïèñàíèÿ ðàñïðåäåëåíèÿ ýëåêòðè÷åñêîãî ïîëÿ äëÿ îäíîìåðíîãî äâèæåíèÿ çàðÿ-æåííîãî ãàçà:

∂u(ξ, τ)

∂τ=∂2u(ξ, τ)

∂ξ2− (u(ξ, τ)− α)

∂u(ξ, τ)

∂ξ, (1)

ãäå u(ξ, τ) áåçðàçìåðíàÿ íàïðÿæ¼ííîñòü ýëåêòðè÷åñêîãî ïîëÿ, ξ, τ áåçðàçìåðíûå ïðîñòðàí-ñòâåííàÿ è âðåìåííàÿ êîîðäèíàòû, α ïîñòîÿííàÿ. äîêëàäå ïðåäñòàâëåí ìåòîä ïîñòðîåíèÿ òî÷íûõ ðåøåíèé óðàâíåíèÿ (1) ñ èñïîëüçîâàíèåì

òåîðèè êîíå÷íîìåðíûõ äèíàìèê [2]. Ïðàâàÿ ÷àñòü ýòîãî óðàâíåíèÿ ïîðîæäàåò ôóíêöèþ

ϕ (y0, y1, y2) = y2 − (y0 − α) y1 (2)

íà ïðîñòðàíñòâå äæåòîâ J2(R) ñ êàíîíè÷åñêèìè êîîðäèíàòàìè x, y0, y1, y2. Ýòó ôóíêöèþ ìû ðàñ-ñìàòðèâàåì êàê ïðîèçâîäÿùóþ ôóíêöèþ ñèììåòðèé äëÿ íåêîòîðîãî îáûêíîâåííîãî äèôôåðåí-öèàëüíîãî óðàâíåíèÿ ïåðâîãî ïîðÿäêà (òàê íàçûâàåìîé äèíàìèêè) [2]. Áóäåì èñêàòü òàêîå ÎÄÓâ âèäå:

F := y1 − h(y0) = 0. (3)

Ïðèìåíÿÿ ñòàíäàðòíóþ òåõíèêó (ñì. [2, 3]), íàõîäèì, ÷òî ôóíêöèÿ h èìååò âèä êâàäðàòè÷íîéôóíêöèè

h(y0) =1

2y2

0 + ay0 + b,

ãäå a, b ïðîèçâîëüíûå ïîñòîÿííûå. Ðåøàÿ óðàâíåíèå (3), íàõîäèì

y(ξ) = −a− th

(ξ + c

2

√a2 − 2b

)√a2 − 2b, (4)

ãäå a, b, c ïðîèçâîëüíûå ïîñòîÿííûå. Ñîîòâåòñòâóþùåå ýâîëþöèîííîå âåêòîðíîå ïîëå, êîòîðîåÿâëÿåòñÿ èíôèòåçèìàëüíîé ñèììåòðèåé äëÿ óðàâíåíèÿ (1), èìååò âèä

S = (a+ α)

(1

2y2

0 + ay0 + b

)∂

∂y0. (5)

Ïðåîáðàçîâàíèå ñäâèãà Φτ , îòâå÷àþùåå ýòîìó ïîëþ, èìååò âèä

ξ 7−→ ξ,

y0 7−→ −a− th

[a+ α

2τ√a2 − 2b+

1

2ln

√a2 − 2b− a− y0√a2 − 2b+ a+ y0

]√a2 − 2b,

Page 115: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

114

ãäå τ ïàðàìåòð ñäâèãà âäîëü òðàåêòîðèè. Ïðèìåíÿÿ îáðàòíîå ïðåîáðàçîâàíèå Φ−1τ ê ðåøåíèþ

óðàâíåíèÿ (3), ïðèõîäèì ê òî÷íîìó ðåøåíèþ óðàâíåíèÿ (1):

u(ξ, τ) = (Φ−1τ )∗(y(ξ)) =

(a+ d)[1 + th

(ξ+c

2 d)]

eτ(a+α)d + (a− d)[1− th

(ξ+c

2 d)]

[1 + th

(ξ+c

2 d)]

eτ(a+α)d +[1− th

(ξ+c

2 d)] , (6)

ãäå d =√a2 − 2b. Çäåñü ïðîèçâîëüíûå ïîñòîÿííûå âûáðàíû òàê, ÷òîáû âûïîëíÿëîñü íåðàâåíñòâî

a2 − 2b > 0. Íà ðèñ. 0.1 ïðåäñòàâëåí ãðàôèê ðåøåíèÿ óðàâíåíèÿ (1). Íà íåì âûäåëåíà îáëàñòü,

Ðèñ. 0.1. Ãðàôèê íàïðÿæ¼ííîñòè ýëåêòðè÷åñêîãî ïîëÿ u(ξ, τ) ïðè a = 22, b = 42,c = 0, α = 1.

â êîòîðîé íàáëþäàþòñÿ ðåçêèå ñêà÷êè íàïðÿæ¼ííîñòè ýëåêòðè÷åñêîãî ïîëÿ â îáëàêå, ÷òî ìîæåòïðèâåñòè ê âîçíèêíîâåíèþ ðàçðÿäà.

Ëèòåðàòóðà

[1] V.I. Pustovojt. About the mechanism of lightning. Radio engineering and electronics, 2006. Vol. 51(8). P. 996-1002.[2] Kruglikov B. S., Lychagina O. V. Finite dimensional dynamics for Kolmogorov Petrovsky Piskunov equation.

Lobachevskii Journal of Mathematics, 19: 1328, 2005.[3] Kushner A. G., Matviichuk R.I. Exact solutions of the Burgers Huxley equation via dynamics. Journal of Geometry

and Physics 151, 2020.[4] Kushner A. G., Lychagin V. V., Rubtsov V. N., Contact geometry and nonlinear dierential equations, Encyclopedia

of Mathematics and Its Applications. 101. Cambridge: Cambridge University Press, xxii+496 pp., 2007.

Page 116: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

115

Ïîèñê òî÷íûõ ðåøåíèé óðàâíåíèé ãèäðîäèíàìè÷åñêîé ìîäåëèçàðÿæåííîãî ãàçà ñ ïîìîøüþ òåîðèè ñèììåòðèé

Ñ. Ì. Êëÿõàíäëåð(Ìîñêîâñêèé Ãîñóäàðñòâåííûé Óíèâåðñèòåò èì. Ì.Â. Ëîìîíîñîâà)

E-mail: [email protected]

Îïèñàíèå ìåõàíèçìà âîçíèêíîâåíèÿ ðàçíîñòè ýëåêòðè÷åñêèõ ïîòåíöèàëîâ, îñíîâàííîå íà ãèä-ðîäèíàìè÷åñêîé ìîäåëè çàðÿæåííîãî ãàçà, áûëî ïðåäëîæåíî Â.È. Ïóñòîâîéòîì â ðàáîòå [1]. Èìáûëî ïîëó÷åíî ñëåäóþùåå íåëèíåéíîå äèôôåðåíöèàëüíîå óðàâíåíèå äëÿ îïèñàíèÿ ðàñïðåäåëå-íèÿ ýëåêòðè÷åñêîãî ïîëÿ ïðè îäíîìåðíîì äâèæåíèè çàðÿæåííîãî ãàçà:

∂2y(ξ, τ)

∂ξ∂τ=

∂ξ

(∂2y(ξ, τ)

∂ξ2− (y(ξ, τ)− y0)

∂y(ξ, τ)

∂ξ

), (1)

ãäå y(ξ, τ) áåçðàçìåðíàÿ íàïðÿæåííîñòü ýëåêòðè÷åñêîãî ïîëÿ, ξ, τ ïðîñòðàíñòâåííàÿ è âðå-ìåííàÿ êîîðäèíàòû, y0 ïîñòîÿííàÿ. äîêëàäå ïðåäñòàâëåí ìåòîä ïîñòðîåíèÿ òî÷íûõ ðåøåíèé óðàâíåíèÿ (1), îñíîâàííûé íà òåîðèè

ñèììåòðèé [2].

Òåîðåìà. Àëåãáðà Ëè òî÷å÷íûõ ñèììåòðèé óðàâíåíèÿ (1) áåñêîíå÷íîìåðíà è ïîðîæäåíà âåê-òîðíûìè ïîëÿìè

X1 =

(F1(τ) +

τξ

2

)∂

∂ξ+τ2

2

∂τ+

(F1(τ) +

τu0

2− τy

2+ξ

2

)∂

∂y,

X2 =

(F2(τ) +

ξ

2

)∂

∂ξ+ τ

∂τ+(F2(τ) +

u0

2− y

2

) ∂

∂y,

X3 = F3(τ)∂

∂ξ+

∂τ+ F3(τ)

∂y,

(2)

ãäå F1(τ), F2(τ), F3(τ) ïðîèçâîëüíûå ôóíêöèè, à òî÷êà ïðîèçâîäíàÿ ïî τ .Ýòà àëãåáðà ñèììåòðèé ïðèìåíÿåòñÿ äëÿ ïîñòðîåíèÿ òî÷íûõ ðåøåíèé óðàâíåíèÿ (1). Íàïðè-

ìåð, ðàññìàòðèâàÿ ñèììåòðèþ X2 è ïîëàãàÿ F2(τ) ≡ 1, ïîëó÷èì ïîòîê ϕt, ïîðîæäàåìûé ýòèìâåêòîðíûì ïîëåì. Îí èìååò ñëåäóþùèé âèä

ϕt = x −→ (x+ 2)ep2 − 2, τ −→ τep, y −→ (y − u0)e−

p2 + u0, (3)

ãäå p ïàðàìåòð ñäâèãà âäîëü òðàåêòîðèé. Òîãäà èíâàðèàíòíîå ðåøåíèå èìååò âèä

y(τ, ξ) =1√tJ(z) + u0, z =

x+ 2√t, (4)

ãäå J(z) ïðîèçâîëüíàÿ ôóíêöèÿ.

Ïîëó÷èì ðåäóöèðîâàííîå îáûêíîâåííîå äèôôåðåíöèàëüíîå óðàâíåíèå, êîòîðîå èíòåãðèðóåòñÿâ êâàäðàòóðàõ, îäíàêî ââèäó ãðîìîçäêîñòè îáùåå ðåøåíèå çàïèñûâàòü íå áóäåì. Îäíî èç ÷àñòíûõðåøåíèé èìååò âèä

U(z) =−2(z + 2) exp

(− (z+4)2

4

)− 6KummerM

(52 ,

32 ,−

(z+4)2

4

)(z + 4) exp

(− (z+4)2

4 ,) , (5)

Page 117: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

116

ãäå KummerM(µ, ν, z) ôóíêöèÿ Êóììåðà, ðåøåíèå âûðîæäåííîãî ãèïåðãåîìåòðè÷åñêîãî óðàâ-íåíèÿ

zd2y

dz2+ (ν − z)dy

dz− µy = 0. (6)

Ðåøåíèå èñõîäíîãî óðàâíåíèÿ ïîëó÷èì, ïîäñòàâèâ âûðàæåíèå z ÷åðåç èñõîäíûå ïåðåìåííûåñèñòåìû τ, ξ

y(τ, ξ) =4√τ + 4ξ

√τ + ξ2√τ + 6τ3/2 + 12τ + 6ξτ + 4u0τ

2 + 2u0τ3/2 + u0ξτ

3/2

τ3/2(4√τ + ξ + 2)

. (7)

Ðèñ. 0.1. Ãðàôèê íàïðÿæåííîñòè ýëåêòðè÷åñêîãî ïîëÿ

Ìîæíî óâèäåòü, ÷òî íà ãðàôèêå ïðèñóòñòâóåò îñîáåííîñòü â âèäå êðèâîé, îïðåäåëÿåìîé íóëåìçíàìåíàòåëÿ 4

√τ + ξ+ 2 = 0. Èìåííî íà ýòîé êðèâîé íàïðÿæåííîñòü ïîëÿ ñòðåìèòñÿ ê áåñêîíå÷-

íîñòè ñêàïëèâàþòñÿ çàðÿäû è âîçìîæíî ïîÿâëåíèå ìîëíèè.

Ëèòåðàòóðà

[1] Ïóñòîâîéò Â.È. Î ìåõàíèçìå âîçíèêíîâåíèÿ ìîëíèè // Ðàäèîòåõíèêà è ýëåêòðîíèêà. 2006. Ò. 51, 8. Ñ. 996-1002.

[2] Kushner A. G., Lychagin V. V., Rubtsov V. N., Contact geometry and nonlinear dierential equations, Encyclopediaof Mathematics and Its Applications, 101. Cambridge: Cambridge University Press, xxii+496 pp., 2007.

Page 118: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

117

Îá îäíîé àëãåáðå îïåðàòîðîâ Áåðãìàíà ñ ãèïåðáîëè÷åñêîéãðóïïîé ñäâèãîâ

Ìîçåëü Â. À.(Îäåññà, óë. Ñðåäíåôîíòàíñêàÿ, 19-Á, êâ. 270, 65039, Îäåññà, Óêðàèíà)

E-mail: [email protected]

Ïóñòü D îòêðûòûé åäèíè÷íûé êðóã êîìïëåêñíîé ïëîñêîñòè.  ãèëüáåðòîâîì ïðîñòðàíñòâåL2(D) ââåäåì ñëåäóþùèå îïåðàòîðû:K õîðîøî èçâåñòíûé îïåðàòîð Áåðãìàíà;W = Wg óíèòàðíûé (èçîìåòðè÷åñêèé) îïåðàòîð âçâåøåííîãî ñäâèãà, îáðàçîâàííûé ãèïåðáî-

ëè÷åñêèì äðîáíî-ëèíåéíûì ïðåîáðàçîâàíèåì g ∈ G êðóãà D â ñåáÿ, ãäå G áåñêîíå÷íàÿ öèêëè-÷åñêàÿ êîììóòàòèâíàÿ ãðóïïà, ïîðîæä¼ííàÿ îòîáðàæåíèåì g, ñ äâóìÿ íåïîäâèæíûìè è ïðåäåëü-íûìè òî÷êàìè âñåõ ñäâèãîâ, ëåæàùèìè íà àáñîëþòå. ðàáîòå èçó÷àåòñÿ êîììóòàòèâíàÿ C∗-àëãåáðà, êîòîðàÿ ïîðîæäåíà âñåìè îïåðàòîðàìè âèäà

B =

+∞∑j=−∞

AjWj

ãäå Aj îïåðàòîðû êîììóòàòèâíîé C∗-àëãåáðû îïåðàòîðîâ áåç ñäâèãà:

Aj = aj(z)I + bj(z)K + Lj

I åäèíè÷íûé, Lj êîìïàêòíûé, êîýôôèöèåíòû aj , bj ÿâëÿþòñÿ àâòîìîðôíûìè (ò.å. óäîâëåòâî-ðÿþùèìè óñëîâèÿì aj(g(z)) = aj(z), bj(g(z)) = bj(z)) ôóíêöèÿìè, ïîñòîÿííûìè íà ãèïåðöèêëàõ ëó÷àõ, âûõîäÿùèõ èç îäíîé íåïîäâèæíîé òî÷êè (îòòàëêèâàþùåé) è ïðèõîäÿùèõ â äðóãóþ(ïðèòÿãèâàþùóþ), è íåïðåðûâíûìè íà äóãå îêðóæíîñòè, ëåæàùåé âíóòðè åäèíè÷íîãî êðóãà èîðòîãîíàëüíîé ê àáñîëþòó. ðàáîòå ñòðîèòñÿ àëãåáðà ñèìâîëîâ è óñòàíàâëèâàåòñÿ êðèòåðèé ôðåäãîëüìîâîñòè äëÿ îïåðà-

òîðîâ óêàçàííîé C∗-àëãåáðû.

Page 119: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

118

Îá èíâàðèàíòíûõ ðåøåíèé äâóìåðíîãî óðàâíåíèÿòåïëîïðîâîäíîñòè

Íàðìàíîâ Îòàáåê Àáäèãàïïàðîâè÷(Òàøêåíòñêèé óíèâåðñèòåò èíôîðìàöèîííûõ òåõíîëîãèé, Òàøêåíò, 100174, Óçáåêèñòàí)

E-mail: [email protected]

Ïóñòü íàì äàíî äèôôåðåíöèàëüíîå óðàâíåíèå ïîðÿäêà

∆(x, u(m)) = 0 (1)

îò n íåçàâèñèìûõ x = (x1, x2, ..., xn) è q çàâèñèìûõ ïåðåìåííûõ u = (u1, u2, ..., uq) , ñîäåðæàùååïðîèçâîäíûå îò u ïî x äî ïîðÿäêà m.Îïðåäåëåíèå-1 Ãðóïïà G ïðåîáðàçîâàíèé, äåéñòâóþùàÿ íà ìíîæåñòâåM ïðîñòðàíñòâà íåçà-

âèñèìûõ è çàâèñèìûõ ïåðåìåííûõ äèôôåðåíöèàëüíîãî óðàâíåíèÿ íàçûâàåòñÿ ãðóïïîé ñèììåò-ðèé óðàâíåíèÿ (0.1) , åñëè äëÿ êàæäîãî ðåøåíèÿ u = f(x) óðàâíåíèÿ (0.1) è äëÿ g ∈ G òàêîãî,÷òî îïðåäåëåíî g f, òî ôóíêöèÿ u = g f, òàêæå ÿâëÿåòñÿ ðåøåíèåì óðàâíåíèÿ.Íàõîæäåíèþ ãðóïï ñèììåòðèé äèôôåðåíöèàëüíûõ óðàâíåíèé è èõ ïðèìåíåíèÿì äëÿ èññëå-

äîâàíèé ïîñâÿùåíû ìíîãî÷èñëåííûå èññëåäîâàíèÿ [1],[3],[2].  ðàáîòå [1] íàéäåíà àëãåáðà Ëèèíôèíèòåçèìàëüíûõ îáðàçóþùèõ ãðóïïû ñèììåòðèé äëÿ äâóìåðíîãî è òðåõìåðíîãî óðàâíåíèÿòåïëîïðîâîäíîñòè. Íåêîòîðûå èíâàðèàíòíûå ðåøåíèÿ äâóìåðíîãî óðàâíåíèÿ òåïëîïðîâîäíîñòèíàéäåíû â ðàáîòå [2].Ðàññìîòðèì äâóìåðíîå óðàâíåíèå òåïëîïðîâîäíîñòè

ut =

2∑i=1

∂xi(ki(u)

∂u

∂xi) +Q(u) (2)

ãäå u = u(x1, x2, t) ≥ 0 òåìïåðàòóðíàÿ ôóíêöèÿ, ki(u) ≥ 0, Q(u) ôóíêöèè îò òåìïåðàòóðûu. Ôóíêöèÿ Q(u) îïèñûâàåò ïðîöåññ òåïëîâûäåëåíèÿ, åñëè Q(u) > 0 è ïðîöåññ òåïëîïîãëîùåíèÿ,åñëè Q(u) < 0.Ðàññìîòðèì ñëó÷àé êîãäà êîýôôèöèåíòû òåïëîïðîâîäíîñòè k1(u), k2(u) â óðàâíåíèè (1) ÿâëÿ-

þòñÿ ýêñïîíåíöèàëüíûìè ôóíêöèÿìè òåìïåðàòóðû ò.å. îíè èìåþò âèä k1(u) = k2(u) = exp(u).Ïðåäïîëîæèì, ÷òî Q(u) = −exp(αu), ãäå α− äåéñòâèòåëüíîå ÷èñëî.  ýòîì ñëó÷àå óðàâíåíèå

(1) èìååò ñëåäóþùèé âèä:

ut = exp(u)∆u+ exp(u)(∇u)2 − exp(αu) (3)

ãäå ∆u = ∂2u∂x2

1+ ∂2u

∂x22

îïåðàòîð Ëàïëàñà,∇u = ∂u∂x1, ∂u∂x2 ãðàäèåíò ôóíêöèè u.

Ïðåäïîëîæèì, ÷òî α 6= 0. Â ðàáîòå [1] ïîêàçàíî, ÷òî ñëåäóþùåå âåêòîðíîå ïîëå ÿâëÿåòñÿèíôèíèòåçèìàëüíåé îáðàçóþùåé ãðóïïû ñèììåòðèè óðàâíåíèÿ (2):

X = 2αt∂

∂t− (α− 1)

∂x1− (α− 1)

∂x2− 2

∂u.

Ýòî îçíà÷àåò, ÷òî ïîòîê ýòîãî âåêòîðíîãî ïîëÿ X ïîðîæäàåò ãðóïïó ïðåîáðàçîâàíèé ïðîñòðàí-ñòâà ïåðåìåííûõ (t, x1, x2, u), ýëåìåíòû êîòîðîãî ïåðåâîäèò ðåøåíèÿ óðàâíåíèÿ (4) â åãî ðåøåíèÿ.Ïîòîê âåêòîðíîãî ïîëÿ X ïîðîæäàþò ñëåäóþùóþ ãðóïïó ïðåîáðàçîâàíèé

(t, xi, u)→ (te2αs, xie(α−1)s, u− 2s), s ∈ R (4)

Ìû íàéäåì ðåøåíèÿ óðàâíåíèÿ (2), èíâàðèàíòíûå îòíîñèòåëüíî ãðóïï ïðåîáðàçîâàíèé (4).Äëÿ ýòîãî ñíà÷àëà íàõîäèì èíâàðèàíòûå ôóíêöèè ýòèõ ïðåîáðàçîâàíèé.

Page 120: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

119

Èçâåñòíî, ÷òî [3] ãëàäêàÿ ôóíêöèÿ f : M → R ÿâëÿåòñÿ èíâàðèàíòíîé ôóíêöèåé ãðóïïûïðåîáðàçîâàíèé G, äåéñòâóþùåé íà ìíîãîîáðàçèè M òîãäà è òîëüêî òîãäà, êîãäà Xf = 0 äëÿêàæäîé èíôèíèòåçèìàëüíîé îáðàçóþùåé X ãðóïïû G.Èñïîëüçóÿ ýòîò êðèòåðèé ìû íàõîäèì, ÷òî ôóíêöèè

I = eu2 t

12α , ξ =

x1 − x2

tβ,

ãäå β = α−12α , ÿâëÿþòñÿ èíâàðèàíòíûìè ôóíöèÿìè ãðóïïû ïðåîáðàçîâàíèé (3), ÷òî âûòåêàåò èç

ñëåäóùèõ ðàâåíñòâ X1(I) = 0, X1(ξ) = 0. Ðåøåíèå óðàâíåíèÿ (3) èùåì â âèäå

u = lnV (ξ)

t1α

(5)

Ïîäñòàâëÿÿ ôóíêöèþ (5) â óðàâíåíèå (3) ïîëó÷èì ñëåäóþùåå îáûêíîâåííîå äèôôåðåíöèàëü-íîå óðàâíåíèå îòíîñèòåëüíî ôóíêöèè V :

2V ′′ + βξV ′

V− V α +

1

α= 0 (6)

 ñëó÷àå, êîãäà α = 1 óðàâíåíèå (6) èìååò ñëóäþùèé âèä

2d2V

dξ2− V + 1 = 0. (7)

Äåëàÿ çàìåíó p(V ) = dVdξ ïîëó÷èì ëèíåéíî óðàâíåíèå ïåðâîãî ïîðÿäêà

2pdp

dV+ V + 1 = 0.

Ðåøàÿ ýòî óðàâíåíèå íàõîäèì, ÷òî

p =1√2

√V 2 − 2V + C1.

Òåïåðü èç óðàâíåíèÿ

dV

dξ=

1√2

√V 2 − 2V + C1

íàõîäèì, ÷òî

V − 1 +√V 2 − 2V + C1 = C2e

ξ√2 ,

ãäå C1, C2 ïðîèçâîëüíûå ïîñòîÿííûå. Åñëè C1 = 1, òî ôóíêöèþ ìîæíî íàïèñàòü â ÿâíîé ôîðìå:

V = C2eξ√2 + 1. Òàêèì îáðàçîì â îáùåì ñëó÷àå, êîãäà α 6= 0, ìû èìååì ñëåäóþùóþ òåîðåìó

Òåîðåìà 1. Èíâàðèàíòíûå ðåøåíèÿ óðàâíåíèÿ (3) îòíîñèòåëüíî ãðóïïû ïðåîáðàçîâàíèé (4)èìåþò ñëåäóþùèé âèä

u = lnV (ξ)

t1α

(8)

ãäå V (ξ)− îáùåå ðåøåíèå óðàâíåíèÿ (6).

 ñëó÷àå α = 1 ïîñêîëüêó â óðàâíåíèè åñòü èñòî÷íèê ïîãëîùåíèÿ òåïëà, èç âèäà ðåøåíèÿ (8)âûòåêàåò, ÷òî ïðè 0 < t ≤ 1 òåìïåðàòóðà â êàæäîé òî÷êè ïëîñêîñòè óâåëè÷èâàåòñÿ. Íà÷èíàÿ ñt ≥ 1 òåìïåðàòóðà óìåíøàåòñÿ è ñòðåìèòñÿ ê u = lnV (ξ) ïðè t→∞.

Page 121: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

120

Ëèòåðàòóðà

[1] Dorodnitsyn V.A.,Knyazeva I.V.,Svirshchevskii S. R. Group properties of the heat equation with source in the two-dimensional and three-dimensional cases,Dierential equations,1983,vol. 19,issue 7, 1215-1223.

[2] Narmanov O.A. Invariant solutions of the two-dimensional heat equation.Bulletin of Udmurt University. Mathematics,Mechanics, Computer Science, 2019, vol. 29, issue 1, pp. 52-60

[3] Olver P. Applications of Lie Groups to Dierential Equations. Springer 1986, P. 513 p. Translated under the titlePrilojeyniya grupp Li k diiferentsialnim uravneniyam, Moscow: Mir, 1989, 639 p.

Page 122: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

121

Òîæäåñòâà êðèâèçíû îáîáùåííûõ ìíîãîîáðàçèé Êåíìîöó

Âàäèì Ôåäîðîâè÷ Êèðè÷åíêî(ÌÏÃÓ, Ìîñêâà, Ðîññèÿ)

E-mail: [email protected]

Àëèãàäæè Ðàáàäàíîâè÷ Ðóñòàíîâ(ÈÔÎ, ÍÈÓ ÌÃÑÓ, Ìîñêâà, Ðîññèÿ)

E-mail: [email protected]

Ñâåòëàíà Âëàäèìèðîâíà Õàðèòîíîâà(ÎÃÓ, Îðåíáóðã, Ðîññèÿ)E-mail: [email protected]

Ïóñòü (M2n+1,Φ, ξ, η, g = 〈·, ·〉) ïî÷òè êîíòàêòíîå ìåòðè÷åñêîå ìíîãîîáðàçèå.

Îïðåäåëåíèå 1. ([1], [2]). Êëàññ ïî÷òè êîíòàêòíûõ ìåòðè÷åñêèõ ìíîãîîáðàçèé, õàðàêòåðèçóå-ìûõ òîæäåñòâîì ∇X(Φ)Y +∇Y (Φ)X = −η(Y )ΦX− η(X)ΦY ; X,Y ∈ X(M), íàçûâàåòñÿ îáîáùåí-íûìè ìíîãîîáðàçèÿìè Êåíìîöó (êîðî÷å, GK-ìíîãîîáðàçèÿìè).

Îïðåäåëåíèå 2. Íàçîâåì ïî÷òè êîíòàêòíîå ìåòðè÷åñêîå ìíîãîîáðàçèå ìíîãîîáðàçèåì êëàññàR1, åñëè åãî òåíçîð êðèâèçíû óäîâëåòâîðÿåò ðàâåíñòâó R(ξ,X)ξ = 0; ∀X ∈ X(M).

Òåîðåìà 3. GK-ìíîãîîáðàçèå êëàññà R1 ÿâëÿåòñÿ ïÿòèìåðíûì ïî÷òè êîíòàêòíûì ìåòðè÷åñ-êèì ìíîãîîáðàçèåì, ïîëó÷àåìûì èç òî÷íåéøå êîñèìïëåêòè÷åñêîãî ìíîãîîáðàçèÿ êàíîíè÷åñêèìêîíöèðêóëÿðíûì ïðåîáðàçîâàíèåì òî÷íåéøå êîñèìïëåêòè÷åñêîé ñòðóêòóðû ðàçìåðíîñòè 5.

Òåîðåìà 4. Òåíçîð ðèìàíîâîé êðèâèçíû GK-ìíîãîîáðàçèÿ óäîâëåòâîðÿåò ñëåäóþùèì òîæ-äåñòâàì:

1) R(Φ2X,Φ2Y )ξ = R(ΦX,ΦY )ξ = 0;2) R(X,Y )ξ = η(X)F 2(Y )− η(Y )F 2(X) + η(Y )X − η(X)Y ;3) R(ξ,Φ2X)Φ2Y −R(ξ,ΦX)ΦY = 0;4) R(ξ,X)Y −R(ξ,ΦX)ΦY = η(Y )F 2(X)− η(Y )X + η(X)η(Y )ξ;∀X,Y ∈ X(M).

Íàçîâåì òîæäåñòâî R(ξ,Φ2X)ξ = F 2(Φ2X) + Φ2X; ∀X ∈ X(M) ïåðâûì äîïîëíèòåëüíûì

òîæäåñòâîì êðèâèçíû GK-ìíîãîîáðàçèÿ . À òîæäåñòâî

R(ξ,Φ2X)(Φ2Y ) +R(ξ,ΦX)ΦY = 2〈F (X), F (Y )〉 − 〈X,Y 〉+ η(X)η(Y )ξ ;

∀X,Y ∈ X(M), íàçîâåì âòîðûì äîïîëíèòåëüíûì òîæäåñòâîì êðèâèçíû GK-ìíîãî-

îáðàçèÿ .

Îïðåäåëåíèå 5. Íàçîâåì ïî÷òè êîíòàêòíîå ìåòðè÷åñêîå ìíîãîîáðàçèå ìíîãîîáðàçèåì êëàññàR2, åñëè åãî òåíçîð êðèâèçíû óäîâëåòâîðÿåò ðàâåíñòâó:

R(ξ,Φ2X)(Ψ2Y ) +R(ξ,ΦX)ΦY = 0 ;

∀X,Y ∈ X(M).

Òåîðåìà 6. GK-ìíîãîîáðàçèå ÿâëÿåòñÿ ìíîãîîáðàçèåì êëàññà R2 òîãäà è òîëüêî òîãäà, êîãäàîíî ÿâëÿåòñÿ ìíîãîîáðàçèåì êëàññà R1.

Îïðåäåëåíèå 7. Íàçîâåì ïî÷òè êîíòàêòíîå ìåòðè÷åñêîå ìíîãîîáðàçèå ìíîãîîáðàçèåì êëàññàR3, åñëè åãî òåíçîð êðèâèçíû óäîâëåòâîðÿåò ðàâåíñòâó:

R(Φ2X,Φ2Y )Φ2Z −R(Φ2X,ΦY )ΦZ −R(ΦX,Φ2Y )ΦZ −R(ΦX,ΦY )Φ2Z = 0 ;

Page 123: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

122

∀X,Y ∈ X(M).

Òåîðåìà 8. GK-ìíîãîîáðàçèå ÿâëÿåòñÿ ìíîãîîáðàçèåì êëàññà R3 òîãäà è òîëüêî òîãäà, êîãäàîíî ÿâëÿåòñÿ ñïåöèàëüíûì îáîáùåííûì ìíîãîîáðàçèåì Êåíìîöó II ðîäà, äëÿ êîòîðîãî Cabcd = 0.

Íàçîâåì òîæäåñòâî

R(Φ2X,Φ2Y )Φ2Z +R(Φ2X,ΦY )ΦZ −R(ΦX,Φ2Y )ΦZ +R(ΦX,ΦY )Φ2Z =

= −4A(Z,X, Y ) +∇Φ2Y (C)(Φ2Z,Φ2X)−∇Φ2Y (C)(ΦZ,ΦX) +∇ΦY (C)(Φ2Z,ΦX)+

+∇ΦY (C)(ΦZ,Φ2X)− 2Φ2X〈ΦY,ΦZ〉 − 2ΦX〈Y,ΦZ〉; ∀X,Y, Z ∈ X(M)

÷åòâåðòûì äîïîëíèòåëüíûì òîæäåñòâîì êðèâèçíû GK-ìíîãîîáðàçèÿ .

Îïðåäåëåíèå 9. Íàçîâåì ïî÷òè êîíòàêòíîå ìåòðè÷åñêîå ìíîãîîáðàçèå ìíîãîîáðàçèåì êëàññàR4, åñëè åãî òåíçîð êðèâèçíû óäîâëåòâîðÿåò ðàâåíñòâó:

R(Φ2X,Φ2Y )Φ2Z +R(Φ2X,ΦY )ΦZ −R(ΦX,Φ2Y )ΦZ +R(ΦX,ΦY )Φ2Z = 0 ;

∀X,Y ∈ X(M).

Òåîðåìà 10. GK-ìíîãîîáðàçèå ÿâëÿåòñÿ ìíîãîîáðàçèåì êëàññà R4 òîãäà è òîëüêî òîãäà, êîãäà

A(Z,X, Y ) =1

4∇Φ2Y (C)(Φ2Z,Φ2X)−∇Φ2Y (C)(ΦZ,ΦX)+

+∇ΦY (C)(Φ2Z,ΦX) +∇ΦY (C)(ΦZ,Φ2X)− 2Φ2X〈ΦY,ΦZ〉 − 2ΦX〈Y,ΦZ〉∀X,Y, Z ∈ X(M).

Òåîðåìà 11. GK-ìíîãîîáðàçèå êëàññà R4 ÿâëÿåòñÿ SGK-ìíîãîîáðàçèåì II ðîäà.

Ëèòåðàòóðà

[1] Ñ. Â. Óìíîâà. Ãåîìåòðèÿ ìíîãîîáðàçèé Êåíìîöó è èõ îáîáùåíèé: Äèñ. . . . êàíä. ôèç.-ìàò. íàóê. Ì.: ÌÏÃÓ,2002. 88 ñ.

[2] B. Naja, N. H. Kashani On nearly Kenmotsu manifolds, volume 37 of Turkish Journal of Mathematics, 2013. p.1040 1047, http://journals.tubitak.gov.tr/ma th/.

Page 124: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

123

Î ãåîìåòðèè îðáèò âåêòîðíûõ ïîëåé

Øàìñèåâ Æàõîíãèð(Íàöèîíàëüíûé óíèâåðñèòåò Óçáåêèñòàíà, Òàøêåíò, 100174, Óçáåêèñòàí)

E-mail: [email protected]

Ïóñòü M ãëàäêîå ìíîãîîáðàçèå ðàçìåðíîñòè n, V (M) ìíîæåñòâî âñåõ ãëàäêèõ âåêòîðíûõïîëåé, îïðåäåëåííûõ íà M . Îáîçíà÷èì ÷åðåç [X,Y ] ñêîáêó Ëè âåêòîðíûõ ïîëåé X,Y ∈ V (M).Îòíîñèòåëüíî ñêîáêè Ëè ìíîæåñòâî V (M) ÿâëÿåòñÿ àëãåáðîé Ëè.Ãëàäêîñòü â äàííîé ðàáîòå îçíà÷àåò ãëàäêîñòü êëàññà C∞.Ðàññìîòðèì ìíîæåñòâî D ⊂ V (M), ÷åðåç A(D) îáîçíà÷èì íàèìåíüøóþ ïîäàëãåáðó Ëè, ñî-

äåðæàùóþ ìíîæåñòâî D. Ñåìåéñòâî D ìîæåò ñîäåðæàòü êîíå÷íîå è áåñêîíå÷íîå ÷èñëî ãëàäêèõâåêòîðíûõ ïîëåé.Äëÿ òî÷êè x ∈ M ÷åðåç t → Xt(x) îáîçíà÷èì èíòåãðàëüíóþ êðèâóþ âåêòîðíîãî ïîëÿ X,

ïðîõîäÿùóþ ÷åðåç òî÷êó x ïðè t = 0. Îòîáðàæåíèå t → Xt(x) îïðåäåëåíî â íåêîòîðîé îáëàñòèI(x) ⊂ R, êîòîðàÿ â îáùåì ñëó÷àå çàâèñèò îò ïîëÿ X, è îò íà÷àëüíîé òî÷êè x. äàëüíåéøåì, âñþäó â ôîðìóëàõ âèäà Xt(x) áóäåì ñ÷èòàòü, ÷òî t ∈ I(x).

Îïðåäåëåíèå 1. Îðáèòà L(x) ñåìåéñòâà D âåêòîðíûõ ïîëåé, ïðîõîäÿùàÿ ÷åðåç òî÷êó x, îïðå-äåëÿåòñÿ êàê ìíîæåñòâî òàêèõ òî÷åê y èç M, äëÿ êîòîðûõ ñóùåñòâóþò äåéñòâèòåëüíûå ÷èñëàt1, t2, . . . , tk è âåêòîðíûå ïîëÿ X1X2, . . . , Xk èç D (ãäå k− ïðîèçâîëüíîå íàòóðàëüíîå ÷èñëî) òà-êèå, ÷òî

y = Xtkk (X

tk−1

k−1 (...(Xt11 (x))...)).

Èçó÷åíèþ ñòðóêòóðû ìíîæåñòâà äîñòèæèìîñòè è îðáèòû ñèñòåì ãëàäêèõ âåêòîðíûõ ïîëåéïîñâÿùåíû èññëåäîâàíèÿ ìíîãèõ ìàòåìàòèêîâ â ñâÿçè ñ åå âàæíîñòüþ â òåîðèè îïòèìàëüíîãîóïðàâëåíèÿ, äèíàìè÷åñêèõ ñèñòåìàõ, â ãåîìåòðèè è â òåîðèè ñëîåíèé( [1]-[3]). ðàáîòàõ [2], [3] äîêàçàíî, ÷òî êàæäàÿ îðáèòà ñåìåéñòâà âåêòîðíûõ ïîëåé (êëàññà Cr, r ≥ 1)

ñ òîïîëîãèåé Ñóññìàíà îáëàäàåò äèôôåðåíöèàëüíîé ñòðóêòóðîé, ïî îòíîøåíèþ êîòîðûì îíàÿâëÿåòñÿ ãëàäêèì ìíîãîîáðàçèåì êëàññà Cr, ãëàäêî ïîãðóæåííûì â M.Èçâåñòíî, ÷òî ðàçáèåíèå ìíîãîîáðàçèÿ M íà îðáèòû ñåìåéñòâà D ÿâëÿåòñÿ ñèíãóëÿðíûì ñëî-

åíèåì [2].Åñëè ðàçìåðíîñòè âñåõ îðáèò îäèíàêîâû, òî ðàçáèåíèå M íà îðáèòû D ÿâëÿåòñÿ ðåãóëÿðíûì

ñëîåíèåì. Èçâåñòíî, ÷òî äëÿ ðàçìåðíîñòè îðáèòû èìååò ìåñòî dimAx(D) ≤ dimL(x), ãäå Ax(D) =X(x) : X ∈ A(D) ïîäïðîñòðàíñòâî êàñàòåëüíîãî ïðîñòðàíñòâà TxM [3].Ïóñòü M = R3(x1, x2, x3), ãäå (x1, x2, x3) äåêàðòîâû êîîðäèíàòû. Ðàññìîòðèì ñåìåéñòâî D,

ñîñòîÿùåå èç ñëåäóþùèõ âåêòîðíûõ ïîëåé

X1 = −x2∂

∂x1+ x1

∂x2, X2 =

∂x1+ 2x1

∂x3(1)

Òåîðåìà 2. Îðáèòû ñåìåéñòâà D, ïîðîæäàþò äâóìåðíîå ñëîåíèå, ñëîÿìè êîòîðîãî ÿâëÿþòñÿïîâåðõíîñòè íåîòðèöàòåëüíîé êðèâûçíè.

Ëèòåðàòóðà

[1] Àçàìîâ À.À.,Íàðìàíîâ À. ß. Î ïðåäåëüíûõ ìíîæåñòâàõ îðáèò ñèñòåì âåêòîðíûõ ïîëåé. Äèôôåðåíöèàëüíûåóðàâíåíèÿ. 2004. Ò. 40, 2, Ñ. 257-260.

[2] Stefan P. Accessible sets, orbits, and foliations with singularities. Proc. London Mathematical Society. 1974, v. 29, p.694-713.

[3] Sussmann. H. Orbits of family of vector elds and integrability of systems with singularities. Bull. Amer. Math. Soc.,1973, 79, p. 197-199.

Page 125: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

124

Àíàëîã ïðåîáðàçîâàíèÿ Ëåæàíäðà â èäåìïîòåíòíîé ìàòåìàòèêå

Ì. Â. Êóðêèíà, Â. Â. Ñëàâñêèé(Þãîðñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, óë. ×åõîâà 16, Õàíòû-Ìàíñèéñê, 628012, Ðîññèÿ)

E-mail: [email protected], [email protected]

Èçâåñòíà êëàññè÷åñêàÿ ôîðìóëà äëÿ ïðåîáðàçîâàíèÿ Ëåæàíäðà [1]:

f∗(p) = maxx∈Rn

[(p, x)− f(x)] , (1)

ãäå Rn åâêëèäîâî n-ìåðíîå àðèôìåòè÷åñêîå ïðîñòðàíñòâî, (p, x) ñêàëÿðíîå ïðîèçâåäåíèåx, p ∈ Rn, f(x) âûïóêëàÿ ôóíêöèÿ, f∗(p) äâîéñòâåííàÿ ê f(x) èëè ïðåîáðàçîâàíèå Ëåæàíäðàôóíêöèÿ f(x).  ðàáîòå [2] áûëî ââåäåíî àíàëîãè÷íîå ïîíÿòèå äëÿ êîíôîðìíî-ïëîñêèõ ìåòðèêíà åäèíè÷íîé n-ìåðíîé ñôåðå Sn ⊂ Rn+1;

f∗(y) = maxx∈Sn

‖y − x‖2

2f(x), (2)

çäåñü f(x) êîíôîðìíî-âûïóêëàÿ ôóíêöèÿ íà ñôåðå [3], òî åñòü ôóíêöèÿ äëÿ êîòîðîé êîíôîðìíî-

ïëîñêàÿ ìåòðèêà ds2 = dx2

f2(x)èìååò íåîòðèöàòåëüíóþ îäíîìåðíóþ ñåêöèîííóþ êðèâèçíó, ‖y − x‖

õîðäîâîå ðàññòîÿíèå ìåæäó òî÷êàìè íà ñôåðå, f∗(y) y ∈ Sn ôóíêöèÿ çàäàþùàÿ äâîéñòâåííóþ èëè

ïîëÿðíóþ ìåòðèêó ds∗2 = dy2

f∗2(y). Â ðàáîòå [5] áûëî ïðåäëîæåíî íàçâàòü ýòî ïðåîáðàçîâàíèå òàêæå

ïðåîáðàçîâàíèåì Ëåæàíäðà ôóíêöèè f(x) x ∈ Sn. Ñ âû÷èñëèòåëüíîé òî÷êè çðåíèÿ ôîðìóëà (2)èìååò äèñêðåòíûé âèä;

f∗(yj) = maxxi∈Sn

‖yj − xi‖2

2f(xi), (3)

ãäå xi êîíå÷íàÿ ñåòêà òî÷åê íà ñôåðå.  äàííîé ðàáîòå ïðåäëàãàåòñÿ àáñòðàêòíîå îáîáùåíèåôîðìóëû (3) äëÿ èäåìïîòåíòíîé ìàòåìàòèêè.

Îïðåäåëåíèå 1. Ïóñòü n > 1, R+n ìíîæåñòâî íàáîðîâ f = fi, i = 1, . . . , n ïîëîæèòåëüíûõ

÷èñåë, A = ‖Aji‖ i, j = 1, . . . , n ñèììåòðè÷íàÿ êâàäðàòíàÿ ìàòðèöà íåîòðèöàòåëüíûõ ÷èñåë ñíóëåâîé äèàãîíàëüþ. Îáîçíà÷èì ÷åðåç LA îòîáðàæåíèå ìíîæåñòâà R+

n â ñåáÿ LA : R+n → R+

n

îïðåäåëÿåìîå ôîðìóëîé LA [fi] = f∗j , ãäå

f∗j = maxi

Ajifi. (4)

Çàìå÷àíèå 2.  ôîðìóëå (4) ó÷àñòâóþò òîëüêî äâå îïåðàöèè íàä íåîòðèöàòåëüíûìè ÷èñëàìèóìíîæåíèå (äåëåíèå) è max (min), ñ ïîìîùüþ ôóíêöèè log ýòî ìíîæåñòâî ÷èñåë ìîæíî îòîæ-äåñòâèòü ñ èäåìïîòåíòíûì ïîëóêîëüöîì Rmax = R ∪ −∞ ñì.[6], [4].

Òåîðåìà 3. Ïðåîáðàçîâàíèå (4) ïîëóêîëüöà Rmax = R ∪ −∞ îáëàäàåò ñâîéñòâàìè:

f∗∗i ≤ fi, f∗∗∗i = f∗i i = 1, . . . , n, (5)

ãäå f∗i = LA [fi], f∗∗i = LA [f∗i ], f∗∗∗i = LA [f∗∗i ].

Ñëåäñòâèå 4. Â óñëîâèÿõ òåîðåìû 3 ñïðàâåäëèâî íåðàâåíñòâî: f∗j ·fi ≥ Aji àíàëîã íåðàâåíñòâàÞíãàÔåíõåëÿ.

Ïðèìåð 5. Ðàññìîòðèì êàê âûãëÿäèò LA ïðè n = 3, ïóñòü ìàòðèöà A èìååò âèä:

A =

0 a ba 0 cb c 0

Page 126: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

125

Òîãäà f∗i = LA [fi], f∗∗i = LA [f∗i ] èìåþò âèä:

f∗1 = max

(a

f2,b

f3

), f∗2 = max

(a

f1,c

f3

), f∗2 = max

(b

f1,c

f2

);

f∗∗1 = max

(amin

(f1

a,f3

c

), bmin

(f1

b,f2

c

)),

f∗∗2 = max

(cmin

(f1

b,f2

c

), amin

(f2

a,f3

b

)),

f∗∗3 = max

(cmin

(f1

a,f3

c

), bmin

(f2

a,f3

b

)).

Çàìå÷àíèå 6. Êàê ïîêàçàëè ÷èñëåííûå ýêñïåðèìåíòû åñëè ìàòðèöà A â òåîðåìå 3 íå îáëàäàåòòðåáóåìûìè ñâîéñòâàìè, òî òåîðåìà íå âåðíà.

Ãèïîòåçà 7. Òåîðåìà 3 ñïðàâåäëèâà â ñëó÷àå àáñòðàêòíîãî ïîëóêîëüöà.

Ðàáîòà âûïîëíåíà ïðè ôèíàíñîâîé ïîääåðæêå Ðîññèéñêîãî ôîíäà ôóíäàìåíòàëüíûõ èññëåäîâàíèé (êîä

ïðîåêòîâ 18-47-860016, 18-01-00620), ïðè ïîääåðæêå Íàó÷íîãî Ôîíäà ÞÃÓ 13-01-20/10.

Ëèòåðàòóðà

[1] Â. Ñ. Âëàäèìèðîâ. Ïðåîáðàçîâàíèå Ëåæàíäðà âûïóêëûõ ôóíêöèé. Ìàòåì. çàìåòêè, 1:6 (1967), 675682; Math.Notes, 1(6), : 448-452, 1967.

[2] Å. Ä. Ðîäèîíîâ, Â. Â. Ñëàâñêèé. Ïîëÿðíîå ïðåîáðàçîâàíèå êîíôîðìíî-ïëîñêèõ ìåòðèê. Ìàòåì. òð., 20:2 (2017),120138; Siberian Adv. Math., 28(2), : 101114, 2018.

[3] M. V. Kurkina, V. V. Slavsky, E. D. Rodionov. Conformally convex functions and conformally at metrics ofnonnegative curvature. Äîêë. ÀÍ ÑÑÑÐ, 91(3), : 287289, 2015.

[4] Ã. Ë. Ëèòâèíîâ, Â. Ï. Ìàñëîâ, À. Í. Ñîáîëåâñêèé. Èäåìïîòåíòíàÿ ìàòåìàòèêà è èíòåðâàëüíûé àíàëèç. Âû-÷èñëèòåëüíûå òåõíîëîãèè, 6(6), : 4770, 2001.

[5] Ì. Â. Êóðêèíà. Îá èçìåíåíèè êðèâèçíû êîíôîðìíî-ïëîñêîé ìåòðèêè ïðè ïðåîáðàçîâàíèè Ëåæàíäðà. Èçâåñòèÿàëòàéñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà, 4(102), : 8892, 2018.

[6] Serge Sergeev and Hans Schneider. CSR expansions of matrix powers in max algebra. Transactions of the AmericanMathematical Society, 364(11) : 59695994, 2012.

Page 127: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

126

QA-äåôîðìàöiÿ åëiïòè÷íîãî ïàðàáîëî¨äà

Õîìè÷ Þëiÿ(Îäåñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi I. I. Ìå÷íèêîâà)

E-mail: [email protected]

 ðîáîòi äîñëiäæó¹òüñÿ íåñêií÷åííî ìàëà äåôîðìàöiÿ ïîâåðõíi âèãëÿäó

r∗(u, v, t) = r(u, v) + tU(u, v),

äå r(u, v) ¨¨ âåêòîðíî-ïàðàìåòðè÷íå ðiâíÿííÿ, à U(u, v) ïîëå çìiùåííÿ, t −→ 0, ïðè ÿêiéâàðiàöiÿ åëåìåíòà ïëîùi δdσ ¹ çàäàíîþ ôóíêöi¹þ. Òàêi äåôîðìàöi¨ íàçèâàþòüñÿ êâàçiàðåàëüíèìèàáî êîðîòêî QA-äåôîðìàöiÿìè [1].Âàðiàöiÿ ïëîùi δdσ ïðè íåñêií÷åííî ìàëié äåôîðìàöi¨ âèðàæà¹òüñÿ ÷åðåç âàðiàöiþ ìåòðè÷íîãî

òåíçîðà 2εij ≡ δgij çà ôîðìóëîþ δdσ = εijgijdσ. Çà äîïîìîãîþ ðiâíîñòåé δdσ

dσ = εijgij = −2µ(u, v)

ââîäèìî ôóíêöiþ µ(u, v). Î÷åâèäíî, çàäàííÿ ôóíêöi¨ δdσ ðiâíîñèëüíî çàäàííþ ôóíêöi¨ µ. Íàäàëiáóäåìî ãîâîðèòè, ùî ôóíêöiÿ µ âèðàæ๠çàêîí çìiíþâàííÿ åëåìåíòà ïëîùi ïðè QA-äåôîðìàöi¨ïîâåðõíi. Ïðè µ = 0 òàêà äåôîðìàöiÿ ¹ àðåàëüíîþ.Çàäà÷à ïðî iñíóâàííÿ çàçíà÷åíî¨ äåôîðìàöi¨ ïîâåðõíi S(K 6= 0) â E3−ïðîñòîði çâîäèòüñÿ äî

ðîçâ'ÿçóâàííÿ íàñòóïíî¨ ñèñòåìè ðiâíÿíü [1]Tαβ,α − Tαbβα + µαc

αβ = 0,

Tαβbαβ + Tα,α = 0,

cαβTαβ = 0

(1)

âiäíîñíî ôóíêöi¨ µ = µ(u, v) òà òåíçîðíèõ ïîëiâ Tαβ, Tα(α, β = 1, 2), ÷åðåç ÿêi âèðàæàþòüñÿ÷àñòèííi ïîõiäíi âåêòîðà çìiùåííÿ U :

Ui =(ciαT

αβ − µδβi)rβ + ciαT

αn.

Ñèñòåìà ðiâíÿíü (1) ïðåäñòàâëÿ¹ ñîáîþ ñèñòåìó òðüîõ äèôåðåíöiàëüíèõ ðiâíÿíü âiäíîñíî 6 íåâi-äîìèõ ôóíêöié: T 11, T 12 = T 21, T 22, T 1, T 2, µ.Íåõàé Tαβ = 0, òîäi ñèñòåìà ðiâíÿíü (1) ¹ ñèñòåìîþ òðüîõ ðiâíÿíü âiäíîñíî òðüîõ íåâiäîìèõ

ôóíêöié − Tαbβα + µαc

αβ = 0,

Tα,α = 0.(2)

Ïåðøèé òåíçîð äåôîðìàöi¨ 2εij ≡ δgij ÷åðåç Tαβ òà µ âèðàæà¹òüñÿ ó âèãëÿäi [1]

2εij = Tαβ (ciαgjβ + cjαgiβ)− 2µgij .

Óìîâà Tαβ = 0 ðiâíîñèëüíà òîìó, ùî εij = −µgij . Ôóíêöiþ µ, ùî çóñòði÷à¹òüñÿ â òàêèõ ðiâíÿ-

ííÿõ, íàçèâàþòü ôóíêöi¹þ êîíôîðìíîñòi [2]. Îòæå, ïðè Tαβ = 0 ôóíêöiÿ µ, ùî âèðàæ๠çàêîíçìiíþâàííÿ åëåìåíòà ïëîùi ïðè QA-äåôîðìàöi¨ ïîâåðõíi ¹ ôóíêöi¹þ êîíôîðìíîñòi.Íåõàé âåêòîðíî-ïàðàìåòðè÷íå ðiâíÿííÿ åëiïòè÷íîãî ïàðàáîëî¨äà çàäàíî ó âèãëÿäi

r(u, v) = u cos v, u sin v,u2

2.

 ðîáîòi îòðèìàíî ðîçâ'ÿçîê ñèñòåìè ðiâíÿíü (2) äëÿ åëiïòè÷íîãî ïàðàáîëî¨äà

T 1 = 0, T 2 =−c

u√

1 + u2, µ = −c ln |u+

√1 + u2|+ c0,

äå c 6= 0, c0 äåÿêi êîíñòàíòè.

Page 128: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

127

Ì๠ìiñöå òåîðåìà.

Òåîðåìà 1. Ïîâåðõíÿ åëiïòè÷íîãî ïàðàáîëî¨äà äîïóñê๠QA-äåôîðìàöiþ, ïðè ÿêié êîîðäèíàòèïîëÿ çìiùåííÿ ìàþòü âèãëÿä

U(u, v) = ucosv(c ln |u+

√1 + u2|+ c0

)+ c1, usinv

(c ln |u+

√1 + u2|+ c0

)+ c2,

u2

2

(c ln |u+

√1 + u2|+ c0

)− c

4

(u√

1 + u2 + ln |u+√

1 + u2|)

+ c3,

äå c 6= 0, c1, c2, c3 äåÿêi ñòàëi. Ïðè öüîìó ôóíêöiÿ µ = −c ln |u+√

1 + u2|+c0, ùî âèðàæ๠çàêîíçìiíþâàííÿ åëåìåíòà ïëîùi, ¹ ôóíêöi¹þ êîíôîðìíîñòi.

Ëiòåðàòóðà

[1] Áåçêîðîâàéíà Ë.Ë., Õîìè÷ Þ.Ñ. Êâàçiàðåàëüíà íåñêií÷åííî ìàëà äåôîðìàöiÿ ïîâåðõíi â E3. Proc. Intern.Geom. Center, 2014, 7(2), Ñ. 6 19.

[2] Ôåä÷åíêî Þ.Ñ. Íåñêií÷åííî ìàëi êîíôîðìíi äåôîðìàöi¨ äåÿêèõ êëàñiâ ïîâåðõîíü. Proc. Intern. Geom. Center,2014, 7(2), Ñ. 20 25.

Page 129: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

128

Çìiñò

G. M. Abdishukurova, A. Ya. Narmanov On the geometry of submersions 3

B. N. Apanasov Hyperbolic 4-cobordisms, Teichmuller spaces and quasiregularmappings in space 5

Aymaz I., Kansu M. Representation of gravi-electromagnetism using matrix algebra 7

V. Bilet, O. Dovgoshey Uniqueness of pretangent spaces at innity 8

Bolotov D. Foliations of 3-manifolds with small module of mean curvature 10

Bolsinov A. V. On integrability of geodesic ows on 3-dimensional manifolds 11

E. Bonacci Algebraic and geometric questions about the EM helix 12

Borisenko A. A., Sukhorebska D. D. Geodesics on regular tetrahedra in sphericalspace 13

F. Bulnes Motivic hypercohomology solutions in eld theory II 14

I. Denega Estimate of maximum of the products of inner radii of mutuallynon-overlapping domains 15

A. Dudko, V. Pivovarchik Inverse problem for tree of Stietjes strings 17

N. Glazunov Formal groups and algebraic cobordism 19

O. Gok A note on tensor product of Archimedean vector lattices 21

E. Gul. Trace Regularization Problem On a Banach Space 23

O. Ye. Hentosh Centrally extended generalization of the superconformal loop Liealgebra and integrable heavenly type systems on supermanifolds 25

B. Hladysh, A. Prishlyak Structure of functions on an oriented 2-manifold withthe boundary 27

D. A. Juraev The Cauchy problem for matrix factorizations of the Helmholtzequation in a multidimensional bounded domain 29

A. Kachurovskii Fejer Sums and the von Neumann Ergodic Theorem 31

B. N. Khabibullin, R. R. Muryasov Mixed volumes/areas and distribution ofzeros of holomorphic functions 32

B. Klishchuk, R. Salimov On the behavior at innity of one class ofhomeomorphisms 34

A. Kravchenko, S. Maksymenko Automorphisms of cellular divisions of 2-sphereinduced by functions with isolated critical points 36

A. Kushner, E. Kushner, R. Matviichuk Dynamics and exact solutions of linearPDEs 38

Page 130: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

129

I. Kuznietsova, S, Maksymenko On the squares of dieomorphisms of surfaces 40

K. Matsumoto A recurrent (CHR)-curvature tensor eld in a trans-Sasakianmanifold 41

N. Mazurenko, M. Zarichnyi Spaces of probability measures and box dimension 42

L. Michalak Framed cobordism of systems of submanifolds in the classication of freequotients 44

F. G. Mukhamadiev The density and the τ−placed of the Nϕτ −nucleus of a space X 45

I. V. Mykytyuk Ricci-at Kahler metrics on tangent bundles of rank-one symmetricspaces of compact type 46

A. Y. Narmanov, A. N. Zoyidov On the group of isometries of foliated manifolds 48

I. Petkov, V. Ryazanov On boundary behavior by prime ends of solutions toBeltrami equations 50

L. Plachta Some topological obstructions for strong coloring of uniform hypergraphs 51

S. Maksymenko, E. Polulyakh On quotient spaces and their spaces of continuousmaps 52

A. Prishlyak, A. Prus Topology of ows with collective dynamics on surfaces 54

V.M. Prokip On similarity of two families of matrices over a eld 55

A. M. Romaniv, N. S. Dzhaliuk Some connections between invariant factors ofmatrix and its submatrix 57

Y. Sachkov Conjugate time in sub-Riemannian problem on Cartan group 58

A. Sadullaev, F. Mukhamadiev The density and the local density of the space ofpermutation degree 59

U. Samanta A short note on Hurewicz and I-Hurewicz properties in topologicalspaces 60

O. Sazonova About one class of Continual distributions with screw modes 61

A. Serdyuk, T. Stepanyuk Asymptotically best possible Lebesgue inequalities on theclasses of generalized Poisson integrals 63

A. Ya. Narmanov, X. F. Sharipov Dierential invariants of transformations group 65

S. Som, A. Bera, L. K. Dey Some remarks on the Metrizability of F-metric spaces 67

V. Starodub, R. Skuratovskii Triangle Cubics and Conics 68

T. P. Mokritskaya, A. V. Tushev On some fractal-based estimations of subsidencevolume for various types of soils 70

Jun Ueki Non-acyclic SL2-representations of twist knots and non-trivial L-invariants 72

Page 131: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

130

S. Volkov, V. Ryazanov Mappings with nite length distortion and prime ends onRiemann surfaces 74

R. Skuratovskii, A. Williams Minimal generating set and structure of a wreathproduct of groups and the fundamental group of an orbit of Morse function 75

A. Savchenko, M. Zarichnyi Functors and fuzzy metric spaces 77

Î. ×åïîê Àñèìïòîòè÷íi çîáðàæåííÿ Pω(Y0, Y1, 0)-ðîçâ'ÿçêiâ äèôåðåíöiàëüíèõðiâíÿíü äðóãîãî ïîðÿäêó, ùî ìiñòÿòü äîáóòîê ðiçíîãî òèïó íåëiíiéíîñòåé óïðàâié ÷àñòèíi 79

. Â. ×åðåâêî, Â. Å. Áåðåçîâñüêèé, É. Ìèêåø Ãîëîìîðôíî-ïðîåêòèâíiïåðåòâîðåííÿ ëîêàëüíî êîíôîðìíî-êåëåðîâèõ ìíîãîâèäiâ ó ñèìåòðè÷íiéF -çâ'ÿçíîñòi. 81

Á. Ôåùåíêî Ãðàôè ÊðîíðîäàÐiáà ôóíêöié Ìîðñà íà 2-òîði òà ¨õàâòîìîðôiçìè 83

Ì. Ãðå÷í¹âà, Ï. Ñò¹ãàíöåâà Ïðèêëàäè ïîâåðõîíü ç ïëîñêîþ íîðìàëüíîþçâ'ÿçíiñòþ òà ñòàëîþ êðèâèíîþ ãðàññìàíîâîãî îáðàçó â ïðîñòîði Ìiíêîâñüêîãî 85

Î. À. Êàäóáîâñüêèé Ïðî ÷èñëî òîïîëîãi÷íî íååêâiâàëåíòíèõíàïiâìiíiìàëüíèõ ãëàäêèõ ôóíêöié íà äâîâèìiðíîìó êðåíäåëi 87

Â. Êiîñàê, Î. Ëåñå÷êî Ãåîäåçè÷íi âiäîáðàæåííÿ ïðîñòîðiâ çϕ(Ric)-âåêòîðíèìè ïîëÿìè 89

Í. Ã. Kîíîâåíêî, I. Ì. Êóðáàòîâà Äåÿêi ïèòàííÿ òåîði¨ 2F -ïëàíàðíèõâiäîáðàæåíü ïñåâäîðiìàíîâèõ ïðîñòîðiâ ç àáñîëþòíî ïàðàëåëüíîþ f -ñòðóêòóðîþ 90

I. Ì. Ëèñåíêî, Ì. Â. Ïðàöüîâèòèé Ôðàêòàëüíi âëàñòèâîñòi íåïåðåðâíèõïåðåòâîðåíü êâàäðàòà, ïîâ'ÿçàíi ç äâîñèìâîëüíèìè çîáðàæåííÿìè äiéñíèõ ÷èñåë 92

Ë. Ëàäèíåíêî Ïðî ãåîìåòðè÷íó õàðàêòåðèñòèêó ñïåöiàëüíèõ ìàéæåãåîäåçè÷íèõ âiäîáðàæåíü ïðîñòîðiâ àôiííîãî çâ'ÿçêó çi ñêðóòîì 94

Ì. I. Ïiñòðóië, I. Ì. Êóðáàòîâà Ïðî êâàçi-ãåîäåçè÷íi âiäîáðàæåííÿóçàãàëüíåíî-ðåêóðåíòíèõ ïðîñòîðiâ 95

Ò. Þ. Ïîäîóñîâà, Í. Â. Âàøïàíîâà Ìiíiìàëüíi ïîâåðõíi òà ¨õ äåôîðìàöi¨ 97

Î. Ïîëèâîäà Ïðî íåñêií÷åííîâèìiðíi ìíîãîâèäè, ìîäåëüîâàíi íà äåÿêèõkω-ïðîñòîðàõ 99

Ì. Â. Ïðàöüîâèòèé, ß. Â. Ãîí÷àðåíêî, Â. Î. Äðîçäåíêî Êàíòîðâàë ÿêìíîæèíà íååëåìåíòàðíèõ ëàíöþãîâèõ äðîáiâ 100

Ì. Ì. Ðîìàíñüêèé Êîíóñ, íàäáóäîâà òà äæîéí â àñèìïòîòè÷íèõ êàòåãîðiÿõ.Ëiïøèöåâà òà ãðóáà åêâiâàëåíòíîñòi äåÿêèõ ôóíêòîðiàëüíèõ êîíñòðóêöié 102

À. Ñ. Ñåðäþê, I. Â. Ñîêîëåíêî Àñèìïòîòèêà íàéêðàùèõ ðiâíîìiðíèõíàáëèæåíü êëàñiâ çãîðòîê ïåðiîäè÷íèõ ôóíêöié âèñîêî¨ ãëàäêîñòi 104

Page 132: International Scientific Conference · Let Mbe a smooth connected Riemannian manifold of dimension nwith Riemannian metric g: De nition 1. Di erentiable mapping ˇ: M!Bof maximal

131

Î. Ñèíþêîâà Ïåâíi õàðàêòåðèñòèêè ñïåöiàëüíî¨ ãåîìåòði¨ äîòè÷íîãîðîçøàðóâàííÿ ïðîñòîðó àôiííî¨ çâ'ÿçíîñòi, ïîðîäæåíî¨ iíâàðiàíòíîþ òåîði¹þíàáëèæåíü áàçîâîãî ïðîñòîðó 106

Ï. Ã. Ñò¹ãàíöåâà, À. Â. Ñêðÿáiíà Äîñëiäæåííÿ T0-òîïîëîãié íàn-åëåìåíòíié ìíîæèíi ç âàãîþ k ∈ (2n−2, 2n−1] 107

Î. Æóê, Õ. Âîéòîâè÷, Þ. Ãàëü Ïðî ðîçùåïëåííÿ ïàðíèõ ôóíêöié 109

È. È. Áåëîêîáûëüñêèé, Ñ. Ì. Ïîêàñü Ãðóïïû Ëè èíôèíèòåçèìàëüíûõêîíôîðìíûõ ïðåîáðàçîâàíèé âòîðîé ñòåïåíè â ñèììåòðè÷åñêîì ðèìàíîâîìïðîñòðàíñòâå ïåðâîãî êëàññà 111

È. Â. Æåðåáÿòíèêîâ Êîíå÷íîìåðíûå äèíàìèêè è òî÷íûå ðåøåíèÿ óðàâíåíèÿâîçíèêíîâåíèÿ ìîëíèé 113

Ñ. Ì. Êëÿõàíäëåð Ïîèñê òî÷íûõ ðåøåíèé óðàâíåíèé ãèäðîäèíàìè÷åñêîéìîäåëè çàðÿæåííîãî ãàçà ñ ïîìîøüþ òåîðèè ñèììåòðèé 115

Â. À. Ìîçåëü Îá îäíîé àëãåáðå îïåðàòîðîâ Áåðãìàíà ñ ãèïåðáîëè÷åñêîéãðóïïîé ñäâèãîâ 116

Î. Íàðìàíîâ Îá èíâàðèàíòíûõ ðåøåíèé äâóìåðíîãî óðàâíåíèÿòåïëîïðîâîäíîñòè 119

Â. Ô. Êèðè÷åíêî, À. Ð. Ðóñòàíîâ, Ñ. Â. Õàðèòîíîâà Òîæäåñòâà êðèâèçíûîáîáùåííûõ ìíîãîîáðàçèé Êåíìîöó 121

Æ. Øàìñèåâ Î ãåîìåòðèè îðáèò âåêòîðíûõ ïîëåé 122

Ì. Â. Êóðêèíà, Â. Â. Ñëàâñêèé Àíàëîã ïðåîáðàçîâàíèÿ Ëåæàíäðà âèäåìïîòåíòíîé ìàòåìàòèêå 124

Þ. Õîìè÷ QA-äåôîðìàöiÿ åëiïòè÷íîãî ïàðàáîëî¨äà ??