interstellar chemical models with molecular anions eric herbst, osu t. millar, m. cordiner, c. walsh...

16
Interstellar Chemical Molecular Anio Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

Upload: walter-reynolds

Post on 21-Jan-2016

220 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

Interstellar Chemical Models with

Molecular Anions

Eric Herbst, OSU

T. Millar, M. Cordiner, C. Walsh

Queen’s Univ. Belfast

R. Ni Chiumin,

U. Manchester

Page 2: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

Reported Interstellar and Circumstellar Molecules N=2 N=2 N=3 N=3 N=4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

H2 AlCl H3+ C2S NH3 CH4 CH3OH CH3NH2 HCOOCH3 (CH3)2O (CH3)2CO

CH PN CH2 OCS H3O+ SiH4 CH3SH CH3CCH CH3C2CN C2H5OH CH3C4CN

CH+ SiN NH2 MgCN H2CO CH2NH C2H4 CH3CHO C6H2 C2H5CN ?glycine?

NH SiO H2O MgNC H2CS H2C3 CH3CNc-

CH2OCH2

C7H CH3C4H CH3CH2CHO

OH SiS H2S NaCN l-C3H l-C3H2 CH3NC CH2CHCN HOCH2CHO C8H (CH2OH)2

HF CO+ C2H SO2 c-C3H c-C3H2 H2CCHO HC4CN CH3COOH HC6CN

C2 SO+ HCN N2O HCCH H2CCN NH2CHO C6H H2CCCHCN CH3CONH2

CN PO HNC SiCN HCNH+ H2NCN HC3NH+ H2CCHOH H2C6

CO SH HCO CO2 H2CN CH2CO H2C4 CH2CHCHO N = 11

CS AlF HCO+ c-SiC2 c-C3H HCOOH C5H C6H- C8H- HC8CN

CP  FeO HOC+ SiNC HCCN C4H C5N CH3C6H

NO SiC  HN2+ AlNC  HNCO HC2CN C5O N = 12

NS CF+  HNO  HCP HOCO+ HC2NC C5S C6H6

SO ? N2 ?  HCS+   HNCS C4Si c-C3H2O

HCl   C3   C2CN C5 CH2CNH N = 13

NaCl   C2O C3O C4N HC10CN

KCl   C3S H2COH+

    SiC3 C4H-

Page 3: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

ANIONS AT LAST

• All in family CnH-

• TMC-1, a cold interstellar core: n=6, 8 (McCarthy et al.; Bruenken et al.)

• L1527, a protostar: n=6 (Sakai et al.)

• IRC+10216, an extended circumstellar envelope: CnH-; n = 4,6,8 (McCarthy et al.; Cernicharo et al.; Remijan et al.; Kasai et al.)

Page 4: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

10 K

10(4) cm-3

H2 dominant

sites of star formation

Dense Interstellar Cloud CoresGas + dust

Ion-molecule chemistry leads to many positive ions and other exotic species.

Page 5: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

L1527: continuum map from protostar

Page 6: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

IRC+10216

• >50 molecules detected: CO, C2H2, HC9N ...

• Newly discovered anions C6H-, C4H-, C8H-

Figures from Mauron & Huggins (2000) and Guelin et al. (1999)

Page 7: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

The Horsehead Nebula, a PDR

Page 8: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

Negative Ion Production

• Herbst (1981) considered the possible abundance of anions in cold regions of the ISM based on radiative attachment:

• A + e → A- + h• and estimated their maximum abundance

to be app.1% of the neutral counterparts. See Petrie (1996) for other mechanisms such as dissociative attachment:

• e + BC B- + C (normally endoergic)

Page 9: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

Theory of Radiative Attachment

• Cn H + e ↔ CnH-* → CnH- + h• (originally done for carbon clusters by Terzieva

& Herbst 2000)• Competition occurs between the re-emission of

the electron and stabilization of the complex.• Phase-space theory shows that the efficiency is

much enhanced by large binding energies (electron affinities) of 3-4 eV and large sizes if phase space approach used. Other possibility: resonance into dipole-bound excited state.

Page 10: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

Results for CnH-

• No. of C atoms

• 1-3

• 4

• 5

• 6

• 7

• katt (cm3 s-1)(300 K)

• tiny

• 2 10(-9)

• 9 10(-10)

• 6 10(-8)

• 2 10(-7)

High electron affinities near 4 eV!!!

Estimated rates; better ones in progress

Page 11: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

Destruction of Anions

• 1) photodetachment: large cross section starting at relatively low energies in the visible. (E (photon) > E.A.)

• 2) reactions with atoms (associative detachment); e.g.,

• CnH- + H → CnH2 + e

• 3) normal ion-molecule reactions

• 4) ion-ion recombination (A+ - A-)

Page 12: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

Millar et al. (2007)

C6H- observation

C6H observation

Page 13: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

TMC-1 Abundance Ratios

Anion/Neutral Observed*

• C4H <0.00014

• C6H 0.016(3)

• C8H 0.05(1)

• C10H

Anion/Neutral Calculated#

• 0.0013• 0.052• 0.042• 0.041

* Bruenken et al. (2007); # Millar et al. (2007); calculations at early-time.

Page 14: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

C4H-:C6H-:C8H- ratio:

Model: 1:17:6

Observation: 1:12:3

IRC+10216 results• Model:

– N(C4H-) = 1.0x1013 cm-2

– N(C4H) = 1.3x1015 cm-2

– Ratio = 0.008

– N(C6H-) = 1.7x1014 cm-2

– N(C6H) = 5.7x1014 cm-2

– Ratio = 0.30

– N(C8H-) = 5.8x1013 cm-2

– N(C8H) = 2.1x1014 cm-2

– Ratio = 0.28

• Observation:– N(C4H-) = 5.8x1011 cm-2

– N(C4H) = 2.4x1015 cm-2

– Ratio = 0.00025

– N(C6H-) = 6.9x1012 cm-2

– N(C6H) = 8.0x1013 cm-2

– Ratio = 0.09

– N(C8H-) = 2x1012 cm-2

– N(C8H) = 8x1012 cm-2

– Ratio = 0.25

• Prediction:– N(C10H-) = 2.3x1013 cm-2

Page 15: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

Horsehead PDR results

• Model:– n(C4H-) = 8.4x10-11 n(H2)– n(C4H) = 2.4x10-9 n(H2)– Ratio = 0.035

– n(C6H-) = 4.5x10-11 n(H2)– n(C6H) = 9.6x10-12 n(H2)– Ratio = 4.7

• Observation:– n(C4H) = 3x10-9 n(H2)– n(C6H) = 10-10 n(H2)

• Prediction:– n(C8H-) = 9.3x10-11 n(H2)– n(C10H-) = 5.5x10-11 n(H2)

Page 16: Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester

Summary

• High observed anion abundances are reproduced by our models– Modelled interstellar anion-to neutral ratios are ~ 0.01 to 5– Dependent primarily upon electron density, radiation field

strength, gas-phase H, H+, C+ abundances• TMC-1 model fits observations reasonably well• IRC+10216 model over-predicts abundances• Observed relative anion abundances support electron

attachment theory (phase space)• We predict observable abundances of C4H-, C6H-, C8H- in

CSEs, PDRs and dense clouds. C10H- at the limit of detectability

• Some anion reaction rates are currently uncertain:– Radiative electron attachment (resonances?)– Photodetachment (resonances?)