introduction and principle of glc, hplc

82
Introduction and principle of GLC, HPLC Vishnu Vardhan Reddy.P TVM/2015-029 Department of Animal nutrition College of Veterinary Science, Tirupati Sri Venkateswara Veterinary University

Upload: vishnu-reddy

Post on 16-Apr-2017

829 views

Category:

Education


6 download

TRANSCRIPT

Page 1: Introduction and principle of glc, hplc

Introduction and principle of GLC, HPLC

Vishnu Vardhan Reddy.PTVM/2015-029

Department of Animal nutritionCollege of Veterinary Science, TirupatiSri Venkateswara Veterinary University

Page 2: Introduction and principle of glc, hplc

Chromatography• Chromatography is an analytical technique where in a sample mixture 

under test is separated into different components based on difference 

in their affinity for a stationary phase and mobile phase.

Page 3: Introduction and principle of glc, hplc

General classification of chromatographic methods1. Column chromatography

2. Paper chromatography

3. Thin layer chromatography

4. Gas chromatography

5. High pressure liquid chromatography

6. Ion exchange chromatography

7. Gel filtration chromatography

8. Super critical fluid chromatography

Page 4: Introduction and principle of glc, hplc

Gas Chromatography

• It is a technique where by the components of a mixture (sample) in 

the gaseous state are separated as the sample passes over a 

stationary liquid or solid phase and a gaseous mobile phase.

• Based on stationary phase G.C classified into two types.

                                  Gas Solid Chromatography (G.S.C)

                                  Gas Liquid Chromatography (G.L.C)

Page 5: Introduction and principle of glc, hplc

GLCGas Liquid Chromatography

Page 6: Introduction and principle of glc, hplc

In gas-liquid chromatography the 

mobile phase is an unreactive gas, 

such as nitrogen (the carrier gas), and 

the stationary phase comprises of a 

small amount of non volatile liquid

held on a finely-divided inert solid 

support.

 

Gas Liquid Chromatography (G.L.C)

Page 7: Introduction and principle of glc, hplc

Gas liquid Chromatography Principle of Operation

• Gas liquid chromatography runs on the principle of partition.

• In GLC the components of vaporize samples are fractionated due to 

partition between a gaseous mobile phase and a liquid stationary 

phase held in column.

Page 8: Introduction and principle of glc, hplc

Instrumentation

• Tank of carrier gas

• Flow regulator and flow meter

• Injection port

• Column

• Temperature controlled device

• Detector

• Microprocessor/recorder

Page 9: Introduction and principle of glc, hplc
Page 10: Introduction and principle of glc, hplc

The Mobile Phase (Carrier Gas)

• An inert gas such as He or N2

Function is to transport sample vapors through column

No chemical interaction with sample

• Typical parameters

Column inlet pressure:  10-50 psi (above ambient)

Flow rate:  25-50 mL/min (packed column)

• Precise control of carrier gas flow rate is critical to obtaining reproducible retention 

times.

Page 11: Introduction and principle of glc, hplc

Sample Injection Sample is injected using a syringe into a flowing stream of hot

mobile phase High temperature (at least 50 oC above boiling point of

sample) causes vaporization of sample Introduces a narrow plug of sample vapor onto the column

Various designs For packed columns, inject 1 to 5 L of sample For capillary columns, a split valve is used to introduce a

small fraction of sample onto column

Page 12: Introduction and principle of glc, hplc

 

Page 13: Introduction and principle of glc, hplc

Columns

• Column is heart of GC, which decides the separation efficiency.

• It is made up of glass or copper.

• Columns are two types based on it’s use:

         Analytical column:

             Length 1-2 mts, outer diameter 3-6 mm.                      

         Preparative column:

             Length 3-6 mts, outer diameter 6-9 mm.

Page 14: Introduction and principle of glc, hplc

Columns are two types based on nature:

• Packed column:

• Capillary columns:(Golay column)

                 wall coated open tubular (WCOT) column

                 porous layer open tubular (PLOT) column

                 Support coated open tubular (SCOT) columns

Page 15: Introduction and principle of glc, hplc

• Wall Coated Open Tubular (WCOT) column

Internal wall of capillary is coated with a very fine film of liquid stationary phase.

• Surface Coated Open Tubular (SCOT) column

Capillary tube wall is lined with a thin layer of solid support on to which liquid 

phase is adsorbed. The separation efficiency of SCOT columns is more than WCOT 

columns because of increased surface area of the stationary phase coating.

• Fused Silica Open Tubular (FSOT) column

Walls of capillary fused silica tubes are strengthened by a polyimide coating. 

These are flexible and can be wound into coils.

Page 16: Introduction and principle of glc, hplc

Columns for Gas Chromatography

Selection of appropriate column geometry and dimensions may be critical to a successful separation

Page 17: Introduction and principle of glc, hplc

Column Oven

Precise control of column temperature.

Column temperature should be slightly below the boiling points of the 

solutes (but above the dew point; i.e., no condensation)

For complex mixtures with a broad range of boiling points, use 

programmed temperature

Precise control of oven temperature is critical to obtaining reproducible 

retention times.

Page 18: Introduction and principle of glc, hplc

DetectorsGenerate an electrical signal proportional to solute concentration or mass flow rate

Ideal characteristics High sensitivity

Rapid response time

Non destructive technique 

Applicable to wide range of samples 

Easy to use 

Stable ,predictable response

Page 19: Introduction and principle of glc, hplc

Detectors for GC•  

Page 20: Introduction and principle of glc, hplc

May be universal or selective

Universal (responds to wide range of solutes)

Thermal conductivity detector (TCD)

Simple, inexpensive and modest sensitivity.

For greater sensitivity or selectivity

             Flame Ionization detector (FID)

                        Responds to most organic compounds

                        High sensitivity and wide dynamic range (9 orders of magnitude).

Electron capture detector (ECD)

     Selective and very sensitive for halogenated organics.

Page 21: Introduction and principle of glc, hplc

Thermal conductivity detector

• Element is electrically heated at constant 

power.

• Temperature depends on thermal 

conductivity of surrounding gas.

• Measure conductivity with respect to a 

reference.

• When analyte comes off, filament 

temperature goes up, resistance goes down.

 

Thermal Conductivity Detector

Page 22: Introduction and principle of glc, hplc

• Mechanism: A detector cell contains a heated filament with an applied 

current. As carrier gas containing solutes passes  through the cell, change 

in the filament current occurs. The current change is compared against 

current in reference cell. The difference is measured and a signal is 

generated.

• Sensitivity: 5-20 ng.

• Selectivity: All compounds.

• Gases: Hydrogen, Helium.

• Temperature: 150-2500C

Page 23: Introduction and principle of glc, hplc

Flame Ionization Detector

• Column effluent is passed through a H2-air 

flame produces ions and electrons.

• Charged particles are accelerated by voltage 

applied between jet and collector-results in 

current

• Less sensitive to non hydrocarbon groups.

• Insensitive to H2o,Co2,So2

 

Flame Ionization DetectorFor most organic compounds

Page 24: Introduction and principle of glc, hplc

• Mechanism: Compounds are burned in a hydrogen-air flame. carbon 

containing compounds produce ions that are attracted to the collector. The 

number of ions hitting the collector is measured and a signal is generated.

• Sensitivity: 0.1-10 ng.

• Selectivity: compounds with C-H bonds.

• Gases: combustion –hydrogen and air, makeup-He,N2.

• Temperature: 250-3000C.

Page 25: Introduction and principle of glc, hplc

Electron capture detector

• Carrier gas (and analyte) passes over β-

emitter, resulting in ionization and electron 

production.

• Produce current between electrodes.

• Most commonly used for halogenated

organics.

 

Page 26: Introduction and principle of glc, hplc

• Mechanism: Electrons are supplied from a 63Ni foil lining the detector 

cell. A current is generated in the cell. Electronegative compounds 

capture electrons resulting in a reduction in the current. The amount of 

current loss is indirectly measured and a signal is generated.

• Sensitivity: 0.1-10 ng.

• Selectivity: Halogens, nitrates.

• Gases: Nitrogen or argon.

• Temperature: 300-4000C

Page 27: Introduction and principle of glc, hplc

Nitrogen phosphorous detector

• Mechanism: compounds are burned in a plasma surrounding rubidium bead 

supplied with hydrogen and air. Nitrogen and phosphorous containing 

compounds produce ions that are attracted to the collector. The number of 

ions hitting the collector is measured and a signal is generated.

• Sensitivity: 1-10 pg.

• Selectivity: Nitrogen phosphorous containing compounds.

• Gases: combustion- hydrogen ,make up – helium.

• Temperature: 250 -3000C.

Page 28: Introduction and principle of glc, hplc

Recorder

• Recorder is a device that draws the chromatogram that results from a 

chromatographic process onto chart paper.

• The device can have a full scale deflection (FSD) voltage that commonly 

ranges from 1 mv to 10 v.

• The time scale of the chart movement normally ranges from about 1 cm 

per second to 1 cm per hour.

Page 29: Introduction and principle of glc, hplc

Advantages of GLC

• Both qualitative and quantitative analysis are possible.

• Instrument is simple ,time of analysis is short.

• High sensitivity.

• The method is applicable to about 60% of organic compounds.

• Very small samples sizes can be used.

• Analysis can be highly accurate and precise.

Page 30: Introduction and principle of glc, hplc

Factors affecting separation

• Particle size and surface area.

• Carrier gas flow rate.

• Type and amount of stationary phase.

• Column length.

• Column diameter.

• Column temperature.

Page 31: Introduction and principle of glc, hplc

Applications Of GLC In animal feed industry

• Quantitative and/or qualitative analysis of feed composition that is 

estimation of:

Amino acids, hydroxyl (poly)carboxylic acids, fatty acids, phenolic 

compounds, sugars, vitamins, and many veterinary drugs, herbicides, 

and ‘‘natural’’ chemical toxins present in feed.

• Quantitative and/or qualitative analysis of feed additives.

• Estimation of flavor and aroma components in feed.

Page 32: Introduction and principle of glc, hplc

• Estimation of spoilage components, such as histamine and carbonyls, 

that cause rancidity.

• Identification of contaminants, such as pesticides, fumigants, 

environmental pollutants, natural toxins, veterinary drugs, and 

packaging materials in animal feeds.

• Variety of transformation products like polycyclic aromatic 

hydrocarbons, heterocyclic amines, urethane, nitrosamines, 

chloropropanols, cholesterol oxides, irradiation products, microbial 

marker chemicals

Page 33: Introduction and principle of glc, hplc

• Only the non-volatile compounds, such as inorganic salts, proteins, 

polysaccharides, nucleic acids, and other large molecular weight 

organics, are outside the realm of GLC.

Page 34: Introduction and principle of glc, hplc

HPLCHigh Performance Liquid Chromatography

Page 35: Introduction and principle of glc, hplc

High Performance Liquid Chromatography

• HPLC is a form of liquid chromatography used to separate compounds that 

are dissolved in solution.

• HPLC is characterized by the use of high pressure to push a mobile phase 

solution through a column of stationary phase allowing separation of 

complex mixtures with high resolution. 

• Mobile phase is Liquid

• Stationary phase is Solid or Liquid

Page 36: Introduction and principle of glc, hplc

Principle• The process involves the interaction of the compounds in the analyte or sample across an 

immobile surface (stationary phase). 

• The compounds bind at specific regions of stationary phase based on certain physical and 

chemical properties. These bound molecules are  then eluted with a  suitable buffer and 

the same are collected with time.  

              The properties are –

• Polarity

• Charge

• Molecular weight

• Present of functional group

Page 37: Introduction and principle of glc, hplc

Types of HPLC

• There are many ways to classify liquid column chromatography based on 

the nature of the stationary phase and the separation process, three 

modes can be specified.

• Adsorption chromatography

Here stationary phase is an adsorbent (like silica gel) and the separation is 

based on repeated adsorption-desorption steps.

Page 38: Introduction and principle of glc, hplc

• Ion-exchange chromatography

Here the stationary bed has an ionically charged surface of opposite charge 

to the sample ions. This technique is used almost exclusively with ionic or

ionizable samples.

The stronger the charge on the sample, the stronger it will be attracted to 

the ionic surface and thus, the longer it will take to elute. 

The mobile phase is an aqueous buffer, where both pH and ionic strength are 

used to control elution time.

Page 39: Introduction and principle of glc, hplc

• Size exclusion chromatography

Here the column is filled with material having precisely controlled pore sizes, 

and the sample is simply screened or filtered according to its solvated 

molecular size. 

Larger molecules are rapidly washed through the column; smaller molecules 

penetrate inside the porous of the packing particles and elute later.

This technique is also called gel filtration or gel permeation

chromatography.

Page 40: Introduction and principle of glc, hplc

• Concerning the Adsorption chromatography two modes are defined 

depending on the relative polarity of the two phases: 

Normal-phase chromatography

• The stationary bed is strongly polar in nature (e.g., silica gel)

• The mobile phase is nonpolar (such as n-hexane or tetrahydrofuran).

• Polar samples are thus retained on the polar surface of the column packing 

longer than less polar materials.

Page 41: Introduction and principle of glc, hplc

Reversed-phase chromatography

• The stationary bed is nonpolar (hydrophobic) in nature.

• The mobile phase is a polar liquid, such as mixtures of water and 

methanol or acetonitrile. 

• Here the more nonpolar the material is, the longer it will be retained.

Page 42: Introduction and principle of glc, hplc

Flow chart of HPLC mechanism

 

Page 43: Introduction and principle of glc, hplc

Instrumentation of HPLC

• Solvent (mobile phase)

• Solvent Delivery System (Pump)

• Injector

• Sample

• Column (stationary phase)

• Detectors (Diode Array)

• Waste Collector

• Recorder (Data Collection)

Page 44: Introduction and principle of glc, hplc

Solvent (mobile phase)

• In normal phase typically non polar solvents such as hexane, heptane, iso-

octane are used in combination with slightly more polar solvents such as 

isopropanol, ethyl-acetate or chloroform. 

• In reverse phase applications water is usually the base solvent. Other polar 

solvents such as Methanol, Acetonitrile or Tetrahydrofuran are added in 

fixed or varying proportions.

• pH is adjusted by buffers to modify separations of ionizable solutes.

Page 45: Introduction and principle of glc, hplc

Pump•The role of the pump is to force a liquid (called the mobile phase) through the 

liquid chromatograph at a specific flow rate, expressed in milliliters per min 

(mL /min).

•Normal flow rates in HPLC are in the 1-to 2-mL/min range.

•Typical pumps can reach pressures in the range of 6000-9000 psi (400-to 600-

bar).

•During the chromatographic experiment, a pump can deliver a constant mobile 

phase composition (isocratic) or an increasing mobile phase composition 

(gradient).

Page 46: Introduction and principle of glc, hplc

Injector

•The injector serves to introduce the liquid sample into the flow stream of the 

mobile phase.

      •Typical sample volumes are 5-to 20-microliters (μL).

      •The injector must also be able to withstand the high pressures of the 

liquid system.

      •An auto sampler is the automatic version for when the user has many 

samples to analyze or when manual injection is not practical .

Page 47: Introduction and principle of glc, hplc

Column• Considered the “heart of the chromatograph” the column’s stationary phase 

separates the sample components of interest using various physical and 

chemical parameters.

• The small particles inside the column are what cause the high back pressure at 

normal flow rates.

• The pump must push hard to move the mobile phase through the column and   

this resistance causes a high pressure within the chromatograph.

Page 48: Introduction and principle of glc, hplc

Modes of High Performance Liquid Chromatography

 Types of Compounds Mode Stationary

PhaseMobile Phase

NeutralsWeak AcidsWeak Bases

ReversedPhase

C18, C8, C4cyano, amino

Water/Organic Modifiers

Ionics, Bases, Acids Ion Pair

C-18, C-8 Water/Organic Ion-Pair Reagent

Compounds notsoluble in water

NormalPhase

Silica, Amino,Cyano, Diol

Organics

Ionics Inorganic Ions Ion Exchange

Anion or CationExchange Resin

Aqueous/Buffer Counter Ion

High Molecular WeightCompoundsPolymers

Size Exclusion

Polystyrene Silica

Gel Filtration- AqueousGel Permeation-Organic

Page 49: Introduction and principle of glc, hplc

Types of columns in HPLC• Guard Column

• Fast Column

• Preparative (i.d. > 4.6 mm; lengths 50 –250 mm)

• Capillary (i.d. 0.1 -1.0 mm; various lengths)

• Nano (i.d. < 0.1 mm, or sometimes stated as < 100 μm)

• Analytical (internal diameter (i.d.) 1.0 -4.6-mm; lengths 15 –250 mm)

Page 50: Introduction and principle of glc, hplc

Guard Column

These are placed anterior to the separating column. This serves as  protective

factor.

They  are dependable columns designed to filter or remove :

            Particles that clog the separation column

            Compounds and ions that could ultimately cause “ Baseline drift ”, 

           decreased resolution, decreased sensitivity and create false peaks. 

These columns must be changed on a regular basis in order to optimize their 

protective function.

Page 51: Introduction and principle of glc, hplc

Fast Column

• One of the primary reasons for using these column is to obtain improved sample output

( amount of compound per unit time).

• Fast column are designed to decrease the time of chromatographic analysis

• Here internal diameter is same but length is short and packed with smaller particles , that are 3 μm 

diameter.

• Advantages-

               Increased sensitivity

               Decreased analysis time

               Decreased mobile phase usage

               Increase reproducibility

Page 52: Introduction and principle of glc, hplc

Capillary Column

• It is also known as micro columns

• It has a diameter much less than a millimeter and there 3 types:

                                  Open tubular

                                  Partially packed

                                  Tightly packed

              They allow the user to work with nanoliter  sample volume , decreased 

flow rate and decreased solvent usage volume , led to cost effectiveness

Page 53: Introduction and principle of glc, hplc

Preparatory Column

• Used when objective is to prepare bulk ( milligrams) of sample for 

laboratory preparatory application.

• It has usually a large column diameter , which is designed to facilitate large 

volume injections into the HPLC system

Page 54: Introduction and principle of glc, hplc

Detector

The detector can see (detect) the individual molecules that come out (elute) 

from the column.

              •A detector serves to measure the amount of those molecules 

               so that the chemist can quantitatively analyze the sample 

               components.

              •The detector provides an output to a recorder or computer 

               that results in the liquid chromatogram(i.e., the graph of the 

              detector response).

Page 55: Introduction and principle of glc, hplc

HPLC Detectors

 

Page 56: Introduction and principle of glc, hplc

Common HPLC Detectors• UV-VIS

•Diode Array

•Multiple Wavelength

•Variable Wavelength

• Mass Spectrometers

• Refractive Index

• Fluorescence

• Light Scattering

• Electrochemical

• Radioactivity

• Conductivity

Page 57: Introduction and principle of glc, hplc

UV-Vis Detectors

Characteristics: Specific, Concentration Sensitive, good stability, gradient 

capability.

Special: UV-Vis Spectral capability (Diode Array Technology ).

b

c

Detector Flow Cell

I0 I

Log I0 = A = abcI

Page 58: Introduction and principle of glc, hplc

Fluorescence Detection

  Emission Monochromatorsignal & spectra mode

PMT detector

Reference Diode

8 µl Flow Cell, auto-recognition

Trigger pack

Exitation Monochromator,signal & spectra mode

Mirror

Lens(condensor EX)

Lens (condensor EM)

Slit EM Slit PMTSlit EX

Diffuser

Xenonflash Lamp,15 W

Page 59: Introduction and principle of glc, hplc

Electrochemical Detectors

• Gold for carbohydrates.

• Platinum for chlorite, sulfate, hydrazine, etc.

• Carbon for phenols, amines.

• Silver for chloride, bromide, cyanide.

Page 60: Introduction and principle of glc, hplc

Computer

      • Frequently called the data system, 

     The computer not only controls all the modules of the HPLC instrument 

but it takes the signal from the detector and uses it to: 

        1. Determine the time of elution (retention time) of the sample 

components (qualitative analysis)

        2. Determine amount of sample ( quantitative analysis) .

Page 61: Introduction and principle of glc, hplc

61

How can We Analyze the Sample

For example:Carbohydrates1. fructose2. Glucose3. Saccharose4. Palatinose5. Trehalulose6. isomaltose

1

23

4

5

mAU

time

6

Page 62: Introduction and principle of glc, hplc

62

Separations

Separation in based upon differential migration between the stationary and mobile phases.

Injector

Detector

Column

Solvents

Mixer

Pumps

High Performance Liquid Chromatograph

Waste

Page 63: Introduction and principle of glc, hplc

63

Separations Injector

Detector

Column

Solvents

Mixer

Pumps

Chromatogram

Start Injection

mAU

time

High Performance Liquid Chromatograph

Page 64: Introduction and principle of glc, hplc

64

Separations Injector

Detector

Column

Solvents

Mixer

Pumps

Chromatogram

Start Injection

mAU

time

Page 65: Introduction and principle of glc, hplc

65

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 66: Introduction and principle of glc, hplc

66

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 67: Introduction and principle of glc, hplc

67

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 68: Introduction and principle of glc, hplc

68

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 69: Introduction and principle of glc, hplc

69

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 70: Introduction and principle of glc, hplc

70

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 71: Introduction and principle of glc, hplc

71

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 72: Introduction and principle of glc, hplc

72

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 73: Introduction and principle of glc, hplc

73

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 74: Introduction and principle of glc, hplc

74

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 75: Introduction and principle of glc, hplc

75

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 76: Introduction and principle of glc, hplc

76

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 77: Introduction and principle of glc, hplc

77

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 78: Introduction and principle of glc, hplc

78

Separations Injector

Detector

Column

Solvents

Pumps

Mixer

Chromatogram

Start Injection

mAU

time

Page 79: Introduction and principle of glc, hplc

The Chromatogram

 

Injection

to

tR

mAU

time

tR

to - elution time of unretained peak

tR- retention time - determines sample identity

Area or height is proportionalto the quantity of analyte.

Page 80: Introduction and principle of glc, hplc

HPLC uses in Feed industry

• Fat soluble vitamins (A,D,E and K)

• Water soluble vitamins (B-complex vitamins such as B1, B2, B3, B6, Folic 

acid, Pantothenic acid, B12, VitaminC)

• Residual pesticides such as 2, 4-D and Monochrotophos.

• Antioxidants such as TBHQ, BHA and BHT.

• Sugars: Glucose, Fructose, Maltose and other saccharides.

• Cholesterol and sterols

• Dyes and synthetic colours.

Page 81: Introduction and principle of glc, hplc

• Mycotoxins such as Aflatoxins B1,B2,G1,G2,M1,M2and ochratoxin

• Amino acids

• Residual antibiotics

• Steroids and flavonoids

• Aspartame and other artificial sweeteners.

• Active ingredients of farm produce such as allin in garlic and catachin in tea 

extracts.

Page 82: Introduction and principle of glc, hplc

THANK YOU

Vishnu Vardhan Reddy.PTVM/2015-029