introduction to dynamics analysis of robots (part 5)

27
INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Upload: loreen-stewart

Post on 24-Dec-2015

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

INTRODUCTION TO

DYNAMICS ANALYSIS

OF ROBOTS(Part 5)

Page 2: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

This lecture continues the discussion on the analysis of the instantaneous motion of a rigid body, i.e. the velocities and accelerations associated with a rigid body as it moves from one configuration to another.

After this lecture, the student should be able to:•Solve problems of robot instantaneous motion using joint variable interpolation•Calculate the Jacobian of a given robot•Investigate robot singularity and its relation to Jacobian

Introduction to Dynamics Analysis of Robots (5)

Page 3: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Summary of previous lecture

n

T

n

n

n

n

z

y

x

P J

vvv

vvv

vvv

v

v

v

v

2

1

)(2

1

34

2

34

1

34

24

2

24

1

24

14

2

14

1

14

0/

Jacobian for translational velocities

n

T

n

T

z

y

x

P

n

T

z

y

x

P JJ

a

a

a

aJ

v

v

v

v

2

1

)(2

1

)(0/

2

1

)(0/

Page 4: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Instantaneous motion of robots

So far, we have gone through the following exercises:

Given the robot parameters, the joint angles and their rates of rotation, we can find the following:

1. The linear (translation) velocities w.r.t. base frame of a point located at the end of the robot arm

2. The angular velocities w.r.t. base frame of a point located at the end of the robot arm

3. The linear (translation) acceleration w.r.t. base frame of a point located at the end of the robot arm

4. The angular acceleration w.r.t. base frame of a point located at the end of the robot arm

We will now use another approach to solve the angular velocities problem.

Page 5: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Jacobian for Angular Velocities

100034333231

24232221

14131211

112

01

0

vvvv

vvvv

vvvv

TTTTT nP

nnP

In general, the position and orientation of a point at the end of the arm can be specified using

333231

232221

131211

332313

322212

312111

333231

232221

131211

)()(,)(

vvv

vvv

vvv

tR

vvv

vvv

vvv

tR

vvv

vvv

vvv

tR T

3

133

3

123

3

113

3

132

3

122

3

112

3

131

3

121

3

111

333231

232221

131211

332313

322212

312111

333231

232221

131211

333231

232221

131211

)()(

iii

iii

iii

iii

iii

iii

iii

iii

iii

T

vvvvvv

vvvvvv

vvvvvv

vvv

vvv

vvv

vvv

vvv

vvv

tRRt

Page 6: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

132312221121

331332123111

233322322131

3

112

3

131

3

123

21

13

32

3

2

1

)(

vvvvvv

vvvvvv

vvvvvv

vv

vv

vv

t

iii

iii

iii

3

133

3

123

3

113

3

132

3

122

3

112

3

131

3

121

3

111

333231

232221

131211

iii

iii

iii

iii

iii

iii

iii

iii

iii

vvvvvv

vvvvvv

vvvvvv

Jacobian for Angular Velocities

nn

ijijijijij

n

n

ijijijijijnij

vvv

dt

dvv

dt

dv

dt

dv

dt

dv

dt

dvvfv

22

11

2

2

1

121 ),,,(

Page 7: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Jacobian for Angular Velocities

nnnn

nn

nn

nn

vv

vv

vv

vv

vv

vv

vv

vv

vv

vvvv

vvvv

vvvv

vvvvvv

2333

2232

2131

2232

3322

2

3221

2

31123

1

3322

1

3221

1

311

2333

22

331

1

33

2232

22

321

1

3221

312

2

311

1

311

2333223221311

nnnn

vv

vv

vv

vv

vv

vv

vv

vv

vv

vvvvvv

3313

3212

3111

2332

1332

2

1231

2

11133

1

1332

1

1231

1

112

3313321231112

Similarly:

Page 8: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Jacobian for Angular Velocities

nnnn

vv

vv

vv

vv

vv

vv

vv

vv

vv

vvvvvv

1323

1222

1121

2132

2312

2

2211

2

21113

1

2312

1

2211

1

213

1323122211213Similarly:

n

nnn

nnn

nnn

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

t

2

1

1323

1222

1121

13

2

2312

2

2211

2

2113

1

2312

1

2211

1

21

3313

3212

3111

33

2

1332

2

1231

2

1133

1

1332

1

1231

1

11

2333

2232

2131

23

2

3322

2

3221

2

3123

1

3322

1

3221

1

31

3

2

1

)(

Jacobian for angular velocities

)(0/

AP J

Page 9: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Y0, Y1

X0, X1

Z0, Z1

Z2

X2

Y2

Z3

X3

Y3

A=3 B=2 C=1

P

What is the Jacobian for angular velocities of point “P”?

Example: Jacobian for Angular Velocities

Given:

1000

)sin()sin(1)cos()sin(

)sin())cos()cos(()cos()sin()sin()cos()sin(

)cos())cos()cos(()sin()sin()cos()cos()cos(

3223232

13221321321

13221321321

CB

CBA

CBA

TnP

Page 10: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

133

2312

3

2211

3

2113

2

2312

2

2211

2

2113

1

2312

1

2211

1

21

333

1332

3

1231

3

1133

2

1332

2

1231

2

1133

1

1332

1

1231

1

11

233

3322

3

3221

3

3123

2

3322

2

3221

2

3123

1

3322

1

3221

1

31

)(

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

J A

Example: Jacobian for Angular Velocities

3

3132

2

31

1

31

3231

)cos(

0

)sin(

vv

v

v

3

3232

2

32

1

32

3232

)sin(

0

)cos(

vv

v

v

0

1

3

33

2

33

1

33

33

vvv

v

Page 11: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Example: Jacobian for Angular Velocities

3

11321

2

11

3211

11

32111

)sin()cos(

)cos()sin(

)cos()cos(

vv

v

v

3

12321

2

12

3211

12

32112

)cos()cos(

)sin()sin(

)sin()cos(

vv

v

v

3

13

2

13

11

13

113

0

)cos(

)sin(

vv

v

v

3

21321

2

21

3211

21

32121

)sin()sin(

)cos()cos(

)cos()sin(

vv

v

v

3

22321

2

22

3211

22

32122

)cos()sin(

)sin()cos(

)sin()sin(

vv

v

v

3

23

2

23

11

23

123

0

)sin(

)cos(

vv

v

v

Page 12: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Example: Jacobian for Angular Velocities

0)1,1( 231

3322

1

3221

1

31)(

vv

vv

vv

J A

)sin()2,1(

0)sin()sin()sin()cos()sin()cos(

)2,1(

1)(

3213232132

232

3322

2

3221

2

31)(

A

A

J

vv

vv

vv

J

)sin()3,1(

0)sin()sin()sin()cos()sin()cos(

)3,1(

1)(

3213232132

233

3322

3

3221

3

31)(

A

A

J

vv

vv

vv

J

Page 13: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

00)cos()sin()sin()sin()cos()sin(

)1,2(

3232132321

331

1332

1

1231

1

11)(

v

vv

vv

vJ A

)cos(0)cos()cos()cos()sin()sin()cos(

)2,2(

13232132321

332

1332

2

1231

2

11)(

vv

vv

vv

J A

)cos(0)cos()cos()cos()sin()sin()cos(

)3,2(

13232132321

333

1332

3

1231

3

11)(

vv

vv

vv

J A

Example: Jacobian for Angular Velocities

Page 14: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

1)1,3(

)sin()sin()sin()cos()sin()cos()cos()cos()cos()cos(

)1,3(

)(

11321321321321

131

2312

1

2211

1

21)(

A

A

J

vv

vv

vv

J

00)sin()cos()cos()sin()cos()cos()sin()sin(

)2,3(

321321321321

132

2312

2

2211

2

21)(

v

vv

vv

vJ A

00)sin()cos()cos()sin()cos()cos()sin()sin(

)3,3(

321321321321

133

2312

3

2211

3

21)(

v

vv

vv

vJ A

Example: Jacobian for Angular Velocities

Page 15: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Example: Jacobian for Angular Velocities

001

)cos()cos(0

)sin()sin(0

11

11)(

AJ

What is after 1 second if all the joints are rotating at

3,2,1,6

it

i

0/3

5236.0

9069.0

5236.0

5236.0

5236.0

5236.0

001

866.0866.00

5.05.00

001

866.0866.00

5.05.00

001

)cos()cos(0

)sin()sin(0

)(0/0/3

11

11)(

A

P

A

J

J

The answer is similar to that obtained previously using another approach! (refer to the example on relative angular velocity)

Page 16: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Clarification

Why 0/0/3 P

Note: every point on the link will rotate at the same angular velocity! However, the linear velocities at different points on the link are not the same!

11 rv

r121 rv

r2

Page 17: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Getting the Angular Acceleration

n

A

n

A

z

y

x

P

n

AP JJJ

2

1

)(2

1

)(0/

2

1

)(

3

2

1

0/

If the joint angular acceleration for 1, 2, …, n are 0s then

n

A

z

y

x

P J

2

1

)(0/

Page 18: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Example: Getting the Angular Acceleration

Example: The 3 DOF RRR Robot:

Y0, Y1

X0, X1

Z0, Z1

Z2

X2

Y2

Z3

X3

Y3

A=3 B=2 C=1

P

What is after 1 second if all the joints are rotating at

3,2,1,6

it

i

0/3

Page 19: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Getting the Angular Acceleration

001

)cos()cos(0

)sin()sin(0

11

11)(

AJ

000

)sin()sin(0

)cos()cos(0

1111

1111)(

AJ

All the joints angular acceleration for 1, 2, …, n are 0s:

0

2742.0

4749.0

5236.0

5236.0

5236.0

000

2618.02618.00

4534.04534.00

0/

z

y

x

P

The answer is similar to that obtained previously using another approach! (refer to the example on relative angular acceleration)

Page 20: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Transformation between Joint variables and the general motion of the last link

We can combine the Jacobians for the linear and angular velocities to get:

n

A

T

n

z

y

x

P

P

A

T

J

JJ

v

v

v

v

J

JJ

2

1

)(

)(2

1

3

2

10/

0/

)(

)(

Page 21: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Example: Transformation between Joint variables and the general motion of the last link

Example: The 3 DOF RRR Robot:

Y0, Y1

X0, X1

Z0, Z1

Z2

X2

Y2

Z3

X3

Y3

A=3 B=2 C=1

P

What is the Jacobian for the 3 DOF RRR robot?

Page 22: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Example: Transformation between Joint variables and the general motion of the last link

001

)cos()cos(0

)sin()sin(0

11

11)(

AJ

)cos()cos()cos(0

)sin()sin()sin())sin()sin(()cos())cos()cos((

)sin()cos()cos())sin()sin(()sin())cos()cos((

32322

32113221322

32113221322)(

CCB

CCBCBA

CCBCBA

J T

001

)cos()cos(0

)sin()sin(0

)cos()cos()cos(0

)sin()sin()sin())sin()sin(()cos())cos()cos((

)sin()cos()cos())sin()sin(()sin())cos()cos((

11

11

32322

32113221322

32113221322

)(

)(

CCB

CCBCBA

CCBCBA

J

JJ

A

T

Page 23: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Jacobian and Singularities

n

T

n

n

n

n

z

y

x

P J

vvv

vvv

vvv

v

v

v

v

2

1

)(2

1

34

2

34

1

34

24

2

24

1

24

14

2

14

1

14

0/

We know that

z

y

x

n

n

n

PT

n

v

v

v

vvv

vvv

vvv

vJ

1

34

2

34

1

34

24

2

24

1

24

14

2

14

1

14

0/

1)(2

1

The above is true only if the Jacobian is invertible. From algebra, we now that a matrix cannot be inverted if its determinant is zero (i.e. the matrix is singular)

Page 24: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Example: Jacobian and Singularities

Example: The 3 DOF RRR Robot:

Y0, Y1

X0, X1

Z0, Z1

Z2

X2

Y2

Z3

X3

Y3

A=3 B=2 C=1

P

Investigate the singularities of the 3 DOF RRR robot

Page 25: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Example: Jacobian and Singularities

)cos()cos()cos(0

)sin()sin()sin())sin()sin(()cos())cos()cos((

)sin()cos()cos())sin()sin(()sin())cos()cos((

32322

32113221322

32113221322)(

CCB

CCBCBA

CCBCBA

J T

23232

231231211232

23232

231231211232

)(

)()(

)()()det(

CcCcBc

sCcsCcsBccCcBcA

CcCcBc

sCssCssBssCcBcAJ T

}{)(

}{)()det(

232312

2321232312

23211232

232312

2321232312

23211232)(

cscCscBCccscCcsBCccCcBcA

cssCscBCscssCCcsBssCcBcAJ T

}{)(

}{)()det(

232123211232

232123211232)(

scBCccsBCccCcBcA

scBCsCcsBssCcBcAJ T

Page 26: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

Example: Jacobian and Singularities

}{)(

}{)()det(

232123211232

232123211232)(

scBCccsBCccCcBcA

scBCsCcsBssCcBcAJ T

}){()det( 23221232

21232

21232

21232

)( scBCccsBCcscBCsCcsBsCcBcAJ T

)()()det(

}){()det(

3232)(

232232232)(

sBCCcBcAJ

cBCssBCcCcBcAJT

T

0)det(0

0)det(0)()(

3

)(232

T

T

Js

JCcBcA

Under these two conditions, we cannot determine the joint angular velocities using the Jacobian

Page 27: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)

This lecture continues the discussion on the analysis of the instantaneous motion of a rigid body, i.e. the velocities and accelerations associated with a rigid body as it moves from one configuration to another.

The following were covered:•Robot instantaneous motion using joint variable interpolation•The Jacobian of a given robot•Robot singularity and its relation to Jacobian

Summary