introduction to estimation theory part

23
Copyright 2011 Aaron Lanterman Introduction to Estimation Theory Part I Prof. Aaron D. Lanterman School of Electrical & Computer Engineering Georgia Institute of Technology AL: 404-385-2548 <[email protected]> ECE 6279: Spatial Array Processing Spring 2011 Lecture 24

Upload: others

Post on 25-May-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Introduction to Estimation Theory Part I

Prof. Aaron D. Lanterman School of Electrical & Computer Engineering

Georgia Institute of Technology AL: 404-385-2548

<[email protected]>

ECE 6279: Spatial Array Processing Spring 2011 Lecture 24

Page 2: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

References

•  J&D: Section 6.2.4 •  Van Trees – “Detection Estimation, and

Modulation Theory: Part I” (many parts out of date, but still the best)

•  Vince Poor – “An Introduction to Signal Detection and Estimation” (insanely mathematical)

•  Stephen Kay – “Fundamentals of Statistical Signal Processing” – two volumes (a bit sprawling)

Page 3: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Setup

•  Model measured data as a realization of a random variable

•  Assume has a density that is a function of desired parameter(s)

y

y

y

pξ (y)

ξ

p(y |ξ)

p(y;ξ)

Vince Poor: J&D, Van Trees: Aaron’s ECE7251:

(misleading)

Page 4: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Canonical Example: Simple Gaussian

•  Example: i.i.d. samples of a real scalar Gaussian

p(y;ξ) =12πσ 2

l=0

L−1

∏ exp −[y(l) − µ]2

2σ 2

⎧ ⎨ ⎩

⎫ ⎬ ⎭

ξ = (µ,σ 2)

y = {y(0),...,y(L −1)}

Page 5: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Big Picture

ξ

p(y;ξ)

y

•  Estimator is a function of the data

ˆ ξ (y)estimate

ˆ ξ estimator

ˆ ξ

y

ˆ ξ (y)

ˆ ξ

Page 6: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Maximum Likelihood Estimators

•  Makes intuitive sense, but not necessarily magical:

ˆ ξ ML (y) = argmaxξ

p(y;ξ)

= argmaxξ

ln p(y;ξ)

= argmaxξ(ξ)

(ξ) (up to an additive constant)

Page 7: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Loglikelihood for Gaussian Example

(ξ) = −L2ln2π −

L2lnσ 2 −

[y(l) − µ]2

2σ 2l=0

L−1

∑�

p(y;ξ) =12πσ 2

l=0

L−1

∏ exp −[y(l) − µ]2

2σ 2

⎧ ⎨ ⎩

⎫ ⎬ ⎭

Customary to omit terms that do not contain parameters

Page 8: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

ML Estimator for Mean

(ξ) = −L2lnσ 2 −

[y(l) − µ]2

2σ 2l=0

L−1

∑•  “Usual” trick “usually” works:

∂∂µ(ξ) =

y(l) − µσ 2

l=0

L−1

= 0

y(l)l=0

L−1

∑ = Lµ

ˆ µ ML (y) =1L

y(l)l= 0

L−1

∑⎡ ⎣ ⎢

⎤ ⎦ ⎥

Page 9: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

ML Estimator for Variance (1)

(ξ) = −L2lnσ 2 −

[y(l) − µ]2

2σ 2l=0

L−1

∑•  “Usual” trick “usually” works:

∂∂σ 2 (ξ) = −

L2σ 2 +

[y(l) − µ]2

2(σ 2)2l=0

L−1

= 0

Lσ 2 = [y(l) − µ]2l=0

L−1

Page 10: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

ML Estimator for Variance (2)

σ 2 =1L

[y(l) − µ]2l=0

L−1

∑•  Here we lucked out:

ˆ σ ML2 (y) =

1L

[y(l) − ˆ µ ML (y)]2

l= 0

L−1

ˆ µ ML (y) =1L

y(l)l= 0

L−1

∑⎡ ⎣ ⎢

⎤ ⎦ ⎥

Page 11: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Bias

b(ξ) = Eξ [ ˆ ξ (y)]− ξ

b(ξ) = 0•  If , i.e. , we

Eξ [ ˆ ξ (y)] = ξ say estimator is unbiased

Page 12: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Bias of ML Estimate of the Mean

b(µ) = Eξ [ ˆ µ (y)]− µ

= Eξ1L

y(l)l=0

L−1

∑⎡ ⎣ ⎢

⎤ ⎦ ⎥ − µ

=1L

Eξ [y(l)]l=0

L−1

∑ − µ

=1LLµ − µ

= 0

Page 13: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Bias of ML Estimate of the Variance (1)

b(σ 2) = Eξ [ ˆ σ 2(y)]−σ 2

Eξ [ ˆ σ 2(y)] = Eξ1L

[y(l) − ˆ µ ML (y)]2

l= 0

L−1

∑⎧ ⎨ ⎩

⎫ ⎬ ⎭

= Eξ1L

y(l) − 1L

y(k)k=0

L−1

∑⎡ ⎣ ⎢

⎤ ⎦ ⎥

2

l=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

Page 14: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Bias of ML Estimate of the Variance (2)

Eξ [ ˆ σ 2(y)] = Eξ1L

y(l) − 1L

y(k)k= 0

L−1

∑⎡

⎣ ⎢

⎦ ⎥

2

l= 0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

= 1LEξ y 2(l) − 2y(l) 1

Ly(k)

k= 0

L−1

∑⎛

⎝ ⎜

⎠ ⎟ +

1L

y(k)k= 0

L−1

∑⎛

⎝ ⎜

⎠ ⎟ 2⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ l= 0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

Page 15: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

First Term

Eξ y 2(l)l=0

L−1

∑⎧ ⎨ ⎩

⎫ ⎬ ⎭

= Eξ y 2(l){ }l=0

L−1

= L(σ 2 + µ 2)

Page 16: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Second Term (1)

−2Eξ y(l) 1L

y(k)k=0

L−1

∑⎛ ⎝ ⎜

⎞ ⎠ ⎟

l=0

L−1

∑⎧ ⎨ ⎩

⎫ ⎬ ⎭

= −2L

Eξ{y(l)y(k)k=0

L−1

∑l=0

L−1

∑ }

= −2L

Eξ{y2(l)} + Eξ{y(l)y(k)}

k≠ l∑⎛

⎝ ⎜ ⎞ ⎠ ⎟

l=0

L−1

Page 17: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Second Term (2)

−2L

Eξ{y2(l)} + Eξ{y(l)y(k)}

k≠ l∑⎛

⎝ ⎜ ⎞ ⎠ ⎟

l=0

L−1

= −2 [σ 2 + µ 2] + [L −1]µ 2( )

= −2(σ 2 + Lµ2)

Page 18: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Third Term (1)

Eξ1L

y(k)k=0

L−1

∑⎛ ⎝ ⎜

⎞ ⎠ ⎟ 2

l=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

= Eξ1L

y(k)k=0

L−1

∑⎛ ⎝ ⎜

⎞ ⎠ ⎟ 1L

y( j)j=0

L−1

∑⎛

⎝ ⎜ ⎞

⎠ ⎟ l=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

Page 19: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Third Term (2)

Eξ1L

y(k)k=0

L−1

∑⎛ ⎝ ⎜

⎞ ⎠ ⎟ 1L

y( j)j=0

L−1

∑⎛

⎝ ⎜ ⎞

⎠ ⎟ l=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

=1LEξ y(k)y( j)

j=0

L−1

∑k=0

L−1

∑⎧ ⎨ ⎩

⎫ ⎬ ⎭

=1L

Eξ [y2(k)] + Eξ [y(k)y( j)]

j≠k∑

⎝ ⎜ ⎞

⎠ ⎟ k=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

Page 20: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Third Term (3)

1L

Eξ [y2(k)] + Eξ [y(k)y( j)]

j≠k∑

⎝ ⎜ ⎞

⎠ ⎟ k=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

= (σ 2 + µ 2) + (L −1)µ 2

= σ 2 + Lµ2

Page 21: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Putting it Back Together

1LEξ y 2(l) − 2y(l) 1

Ly(k)

k=0

L−1

∑⎛ ⎝ ⎜

⎞ ⎠ ⎟ +

1L

y(k)k=0

L−1

∑⎛ ⎝ ⎜

⎞ ⎠ ⎟ 2⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ l=0

L−1

∑⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

=1LL(σ 2 + µ 2) − 2(σ 2 + Lµ2) + (σ 2 + Lµ2){ }

=L −1L

σ 2

Eξ [ ˆ σ 2(y)] =

Page 22: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Almost Forgot What We Were Computing

=L −1L

σ 2 −σ 2

= −σ 2

L

b(σ 2)→ 0•  Notice as ;

L→∞we say estimator is asymptotically unbiased

b(σ 2) = Eξ [ ˆ σ 2(y)]−σ 2

Page 23: Introduction to Estimation Theory Part

Copyright 2011 Aaron Lanterman

Tweaking the Estimator

•  Previous computations suggest an unbiased estimator:

ˆ σ UB2 (y) =

1L −1

[y(l) − ˆ µ ML (y)]2

l= 0

L−1