

	
		×
		

	

 Log in
 Upload File

 	Most Popular
	Study
	Business
	Design
	Technology
	Travel
	Explore all categories

 introduction to functional programming - userpageslaemmel/plt/slides/haskell.pdf · glassfish...

 	Home
	Documents
	Introduction to Functional Programming - userpageslaemmel/plt/slides/haskell.pdf · GlassFish Neo4jIndexedDB HaskellDB JDOM Xtext XMLStreamWriter Ecore DPH Seaside NetBeans XOM

						1

288

 100%
Actual Size
Fit Width
Fit Height
Fit Page
Automatic

					

 Match case
 Limit results 1 per page

									

 Introduction to Functional Programming in Haskell with the help of Hutton’s textbook and 101companies Ralf Lämmel Software Languages Team Acknowledgment * Thomas Schmorleiz * Andrei Varanovich http://softlang.wikidot.com/haskell1301

				

							Upload: phungminh
 Post on 15-Apr-2018

 219 views

 Category:
 Documents

 2 download

 Report

 	
 Download

Facebook

Twitter

E-Mail

LinkedIn

Pinterest

 Embed Size (px):
 344 x 292
429 x 357
514 x 422
599 x 487

 TRANSCRIPT

 Page 1

Introduction to Functional Programmingin Haskellwith the help of Hutton’s textbook and 101companies
 Ralf LämmelSoftware Languages Team
 Acknowledgment* Thomas Schmorleiz* Andrei Varanovich
 http://softlang.wikidot.com/haskell1301
 http://softlang.wikidot.com/haskell1301
 http://softlang.wikidot.com/haskell1301

Page 2

Format
 • Up to 2 * 4 hours (over 2 days)
 • Lecturer speaks and codes.
 • Audience asks and hacks.
 • Bio breaks every now and then.
 • Short assignments every now and then.
 • Main resources:
 • Hutton’s textbook “Programming in Haskell”
 • http://101companies.org/wiki/Theme:Haskell_introduction
 http://101companies.org/wiki/Theme:Haskell_introduction
 http://101companies.org/wiki/Theme:Haskell_introduction

Page 3

Table of contents
 •Background•Basics•Higher-order functions•Combinator libraries•Type classes•Functors and foldables•Monads•Parsing•Generic programming•Reasoning

Page 4

© Ralf Lämmel, 2009-2011 unless noted otherwise 4
 Programming in HaskellGraham Hutton, University of NottinghamCambridge University Press, 2007
 A weekly series of freely available video lectures on the book is being given by Erik Meijer on Microsoft's Channel 9 starting in October 2009. These lectures are proving amazingly popular. Pick up a copy of the book and join in the fun with Erik's great lectures!
 Acknowledgement: Hutton’s slides for his book are used
 in this lecture on introducing Haskell
 (modulo a few adaptations).
 http://www.cs.nott.ac.uk/~gmh
 http://www.cs.nott.ac.uk/~gmh
 http://channel9.msdn.com/shows/Going+Deep/Lecture-Series-Erik-Meijer-Functional-Programming-Fundamentals-Chapter-1/
 http://channel9.msdn.com/shows/Going+Deep/Lecture-Series-Erik-Meijer-Functional-Programming-Fundamentals-Chapter-1/

Page 5

Background on* Functional programming* Haskell* The 101companies:Project

Page 6

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 6
 What is a Functional Language?

Page 7

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 7
 What is a Functional Language?
 ๏Functional programming is style of programming in which the basic method of computation is the application of functions to arguments;
 ๏A functional language is one that supports and encourages the functional style.
 Opinions differ, and it is difficult to give a precise definition, but generally speaking:

Page 8

\This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 Example
 Summing the integers 1 to 10 in Java:
 total = 0;
 for (i = 1; i ≤ 10; ++i) total = total+i;
 The computation method is variable assignment.
 8

Page 9

\This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 Example
 Summing the integers 1 to 10 in Haskell:
 sum [1..10]
 The computation method is function application.
 9

Page 10

\This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 A Taste of Haskell
 f [] = []
 f (x:xs) = f ys ++ [x] ++ f zs
 where
 ys = [a | a ← xs, a ≤ x]
 zs = [b | b ← xs, b > x]
 ?10

Page 11

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 11
 Historical Backgroundon functional languages

Page 12

\This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 Historical Background
 1930s:
 Alonzo Church develops the lambda calculus, a simple but powerful theory of functions.
 12

Page 13

\This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 Historical Background
 1950s:
 John McCarthy develops Lisp, the first functional language, with some influences from the lambda calculus, but retaining variable assignments.
 13

Page 14

\This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 Historical Background
 1960s:
 Peter Landin develops ISWIM, the first pure functional language, based strongly on the lambda calculus, with no assignments.
 14

Page 15

\This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 Historical Background
 1970s:
 John Backus develops FP, a functional language that emphasizes higher-order functions and reasoning about programs.
 15

Page 16

\This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 Historical Background
 1970s:
 Robin Milner and others develop ML, the first modern functional language, which introduced type inference and polymorphic types.
 16

Page 17

\This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 Historical Background
 1970s - 1980s:
 David Turner develops a number of lazy functional languages, culminating in the Miranda system.
 17

Page 18

\This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 Historical Background
 1987:
 An international committee of researchers initiates the development of Haskell, a standard lazy functional language.
 18

Page 19

\This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 Historical Background
 2003:
 The committee publishes the Haskell 98 report, defining a stable version of the language.
 19

Page 20

What’s the 101companies:Project?

Page 21

© 2012, 101companies
 The Hitchhiker's Guide to the Software Galaxy
 Wannabe Wikipedia for Software Developers. :-)
 What’s 101companies?
 A community project aiming at a
 knowledge base about software
 technologies and languages
 based on implementations of a human-
 resources management system.

Page 22

101companies project =
 101wiki (markup)
 + 101repo (code)
 + 101worker (service)

Page 23

© 2012, 101companies© 2012, 101companies
 101repo
 * Many implementations of the 101companies:System.
 * Complete source code of runnable systems.
 * Rich metadata regarding languages and technologies.

Page 24

© 2012, 101companies© 2012, 101companies
 Company X:Swing + JDBC
 Company Y:SWT + Hibernate
 Company Z:GWT + MongoDB
 ...
 “101 ways of building a HRMS.”
 What’s the 101companies system?
 • Total salaries
 • Increase salaries
 • Cut salaries
 • Edit employee data
 • ...

Page 25

© 2012, 101companies© 2012, 101companies
 101wiki

Page 26

© 2012, 101companies
 What are software technologies and languages?
 GHCi Eclipse NUnit MySQL ANTLR LogicBlox make GHCEMF JAXB xjc JAXP Android Hibernate XMLHttpRequest XAMPP Pharo Saxon WCF JDBC HDBC Swing GWT HSQLDB Struts AntSilverlight ODBC HXT Hadoop QTCreator AWT SAX wxHaskell BaseX Heist MongoDB JUnit jQuery Maven ajc DBDirect GReTL OpenCOBOL Kiama Parsec DOM AJDT Happstack Pyjamas CGI JSF xsltproc Graphviz GlassFish Neo4jIndexedDB HaskellDB JDOM Xtext XMLStreamWriter Ecore DPH Seaside NetBeans XOM Rebar Seam megalib RMI-IIOP csc.exe Microsoft PowerPoint basename MediaWikiRefactorer LINQ Java Servlet API JNDI CSharpValidator WP7 SDK XmlReaderW3CValidator Dropsbox Ruby on Rails XSDValidator Document-oriented database ECS Haskell platform SVN GNU make 101worker Jetty JFactExtractor MSBuild JAF Java Print Service JGroups JGraph LINQ to XML jEdit HTTP JDK Rhino Zend framework Apache HTTP Server Internet Explorer JDT dirname Hamcrest Android Development Tool SQL Server TCP GeSHi JAMA Safari XmlFragmentLocator JMF OSCache JFragmentLocator Java misc Bouncy Castle DLL Lucene Glade Apache Tomcat JTA Javassist Java eventsMercurial MoDisco Entity Framework Java Image I/O iText Erlang/OTP Guava JBoss Application Server MOF HTML Parser javac Visual Studio Google Chrome JValidator wxWidgets Smack ArgoUML Apache Commons ASP .NET MVC JSP BSF HackageDB fcs.exeASM GeFLo JGoodies simplejson ASP .NET Opera XA Sqlite XStream Servlet API Java Media APIs Velocity CSharpFragmentLocator WPF CLR XMLValidator Apache XML-RPC HsImportMatcher Java EE .NET XML Serialization ORO 101explorer Jaxen Tidy .NETJavaMail JFreeChart OGNL Java Bean Jython Java SE dom4j Java Servlet NORMA CUP SLF4J Avalon Nix Web storage Xalan-Java CVS log4j Object Streams Microsoft Excel EJB Java collections XML pickler java.util.Scanner Java platform BCEL HPC POIMozilla Firefox Balsamiq Mockups HsFragmentLocator Cabal LINQ to SQL JPA Spring xsd.exe Facelets Android SDK gzip
 http://101companies.org/index.php/Technology:GHCi
 http://101companies.org/index.php/Technology:GHCi
 http://101companies.org/index.php/Technology:Eclipse
 http://101companies.org/index.php/Technology:Eclipse
 http://101companies.org/index.php/Technology:NUnit
 http://101companies.org/index.php/Technology:NUnit
 http://101companies.org/index.php/Technology:MySQL
 http://101companies.org/index.php/Technology:MySQL
 http://101companies.org/index.php/Technology:ANTLR
 http://101companies.org/index.php/Technology:ANTLR
 http://101companies.org/index.php/Technology:LogicBlox
 http://101companies.org/index.php/Technology:LogicBlox
 http://101companies.org/index.php/Technology:make
 http://101companies.org/index.php/Technology:make
 http://101companies.org/index.php/Technology:GHC
 http://101companies.org/index.php/Technology:GHC
 http://101companies.org/index.php/Technology:EMF
 http://101companies.org/index.php/Technology:EMF
 http://101companies.org/index.php/Technology:JAXB
 http://101companies.org/index.php/Technology:JAXB
 http://101companies.org/index.php/Technology:xjc
 http://101companies.org/index.php/Technology:xjc
 http://101companies.org/index.php/Technology:JAXP
 http://101companies.org/index.php/Technology:JAXP
 http://101companies.org/index.php/Technology:Android
 http://101companies.org/index.php/Technology:Android
 http://101companies.org/index.php/Technology:Hibernate
 http://101companies.org/index.php/Technology:Hibernate
 http://101companies.org/index.php/Technology:XMLHttpRequest
 http://101companies.org/index.php/Technology:XMLHttpRequest
 http://101companies.org/index.php/Technology:XAMPP
 http://101companies.org/index.php/Technology:XAMPP
 http://101companies.org/index.php/Technology:Pharo
 http://101companies.org/index.php/Technology:Pharo
 http://101companies.org/index.php/Technology:Saxon
 http://101companies.org/index.php/Technology:Saxon
 http://101companies.org/index.php/Technology:WCF
 http://101companies.org/index.php/Technology:WCF
 http://101companies.org/index.php/Technology:JDBC
 http://101companies.org/index.php/Technology:JDBC
 http://101companies.org/index.php/Technology:HDBC
 http://101companies.org/index.php/Technology:HDBC
 http://101companies.org/index.php/Technology:Swing
 http://101companies.org/index.php/Technology:Swing
 http://101companies.org/index.php/Technology:GWT
 http://101companies.org/index.php/Technology:GWT
 http://101companies.org/index.php/Technology:HSQLDB
 http://101companies.org/index.php/Technology:HSQLDB
 http://101companies.org/index.php/Technology:Struts
 http://101companies.org/index.php/Technology:Struts
 http://101companies.org/index.php/Technology:Ant
 http://101companies.org/index.php/Technology:Ant
 http://101companies.org/index.php/Technology:Silverlight
 http://101companies.org/index.php/Technology:Silverlight
 http://101companies.org/index.php/Technology:ODBC
 http://101companies.org/index.php/Technology:ODBC
 http://101companies.org/index.php/Technology:HXT
 http://101companies.org/index.php/Technology:HXT
 http://101companies.org/index.php/Technology:Hadoop
 http://101companies.org/index.php/Technology:Hadoop
 http://101companies.org/index.php/Technology:QTCreator
 http://101companies.org/index.php/Technology:QTCreator
 http://101companies.org/index.php/Technology:AWT
 http://101companies.org/index.php/Technology:AWT
 http://101companies.org/index.php/Technology:SAX
 http://101companies.org/index.php/Technology:SAX
 http://101companies.org/index.php/Technology:wxHaskell
 http://101companies.org/index.php/Technology:wxHaskell
 http://101companies.org/index.php/Technology:BaseX
 http://101companies.org/index.php/Technology:BaseX
 http://101companies.org/index.php/Technology:Heist
 http://101companies.org/index.php/Technology:Heist
 http://101companies.org/index.php/Technology:MongoDB
 http://101companies.org/index.php/Technology:MongoDB
 http://101companies.org/index.php/Technology:JUnit
 http://101companies.org/index.php/Technology:JUnit
 http://101companies.org/index.php/Technology:jQuery
 http://101companies.org/index.php/Technology:jQuery
 http://101companies.org/index.php/Technology:Maven
 http://101companies.org/index.php/Technology:Maven
 http://101companies.org/index.php/Technology:ajc
 http://101companies.org/index.php/Technology:ajc
 http://101companies.org/index.php/Technology:DBDirect
 http://101companies.org/index.php/Technology:DBDirect
 http://101companies.org/index.php/Technology:GReTL
 http://101companies.org/index.php/Technology:GReTL
 http://101companies.org/index.php/Technology:OpenCOBOL
 http://101companies.org/index.php/Technology:OpenCOBOL
 http://101companies.org/index.php/Technology:Kiama
 http://101companies.org/index.php/Technology:Kiama
 http://101companies.org/index.php/Technology:Parsec
 http://101companies.org/index.php/Technology:Parsec
 http://101companies.org/index.php/Technology:DOM
 http://101companies.org/index.php/Technology:DOM
 http://101companies.org/index.php/Technology:AJDT
 http://101companies.org/index.php/Technology:AJDT
 http://101companies.org/index.php/Technology:Happstack
 http://101companies.org/index.php/Technology:Happstack
 http://101companies.org/index.php/Technology:Pyjamas
 http://101companies.org/index.php/Technology:Pyjamas
 http://101companies.org/index.php/Technology:CGI
 http://101companies.org/index.php/Technology:CGI
 http://101companies.org/index.php/Technology:JSF
 http://101companies.org/index.php/Technology:JSF
 http://101companies.org/index.php/Technology:xsltproc
 http://101companies.org/index.php/Technology:xsltproc
 http://101companies.org/index.php/Technology:Graphviz
 http://101companies.org/index.php/Technology:Graphviz
 http://101companies.org/index.php/Technology:GlassFish
 http://101companies.org/index.php/Technology:GlassFish
 http://101companies.org/index.php/Technology:Neo4j
 http://101companies.org/index.php/Technology:Neo4j
 http://101companies.org/index.php/Technology:IndexedDB
 http://101companies.org/index.php/Technology:IndexedDB
 http://101companies.org/index.php/Technology:HaskellDB
 http://101companies.org/index.php/Technology:HaskellDB
 http://101companies.org/index.php/Technology:JDOM
 http://101companies.org/index.php/Technology:JDOM
 http://101companies.org/index.php/Technology:Xtext
 http://101companies.org/index.php/Technology:Xtext
 http://101companies.org/index.php/Technology:XMLStreamWriter
 http://101companies.org/index.php/Technology:XMLStreamWriter
 http://101companies.org/index.php/Technology:Ecore
 http://101companies.org/index.php/Technology:Ecore
 http://101companies.org/index.php/Technology:DPH
 http://101companies.org/index.php/Technology:DPH
 http://101companies.org/index.php/Technology:Seaside
 http://101companies.org/index.php/Technology:Seaside
 http://101companies.org/index.php/Technology:NetBeans
 http://101companies.org/index.php/Technology:NetBeans
 http://101companies.org/index.php/Technology:XOM
 http://101companies.org/index.php/Technology:XOM
 http://101companies.org/index.php/Technology:Rebar
 http://101companies.org/index.php/Technology:Rebar
 http://101companies.org/index.php/Technology:Seam
 http://101companies.org/index.php/Technology:Seam
 http://101companies.org/index.php/Technology:megalib
 http://101companies.org/index.php/Technology:megalib
 http://101companies.org/index.php/Technology:RMI-IIOP
 http://101companies.org/index.php/Technology:RMI-IIOP
 http://101companies.org/index.php/Technology:csc.exe
 http://101companies.org/index.php/Technology:csc.exe
 http://101companies.org/index.php/Technology:Microsoft%20PowerPoint
 http://101companies.org/index.php/Technology:Microsoft%20PowerPoint
 http://101companies.org/index.php/Technology:basename
 http://101companies.org/index.php/Technology:basename
 http://101companies.org/index.php/Technology:MediaWikiRefactorer
 http://101companies.org/index.php/Technology:MediaWikiRefactorer
 http://101companies.org/index.php/Technology:LINQ
 http://101companies.org/index.php/Technology:LINQ
 http://101companies.org/index.php/Technology:Java%20Servlet%20API
 http://101companies.org/index.php/Technology:Java%20Servlet%20API
 http://101companies.org/index.php/Technology:JNDI
 http://101companies.org/index.php/Technology:JNDI
 http://101companies.org/index.php/Technology:CSharpValidator
 http://101companies.org/index.php/Technology:CSharpValidator
 http://101companies.org/index.php/Technology:WP7%20SDK
 http://101companies.org/index.php/Technology:WP7%20SDK
 http://101companies.org/index.php/Technology:XmlReader
 http://101companies.org/index.php/Technology:XmlReader
 http://101companies.org/index.php/Technology:W3CValidator
 http://101companies.org/index.php/Technology:W3CValidator
 http://101companies.org/index.php/Technology:Dropsbox
 http://101companies.org/index.php/Technology:Dropsbox
 http://101companies.org/index.php/Technology:Ruby%20on%20Rails
 http://101companies.org/index.php/Technology:Ruby%20on%20Rails
 http://101companies.org/index.php/Technology:XSDValidator
 http://101companies.org/index.php/Technology:XSDValidator
 http://101companies.org/index.php/Technology:Document-oriented%20database
 http://101companies.org/index.php/Technology:Document-oriented%20database
 http://101companies.org/index.php/Technology:ECS
 http://101companies.org/index.php/Technology:ECS
 http://101companies.org/index.php/Technology:Haskell%20platform
 http://101companies.org/index.php/Technology:Haskell%20platform
 http://101companies.org/index.php/Technology:SVN
 http://101companies.org/index.php/Technology:SVN
 http://101companies.org/index.php/Technology:GNU%20make
 http://101companies.org/index.php/Technology:GNU%20make
 http://101companies.org/index.php/Technology:GNU%20make
 http://101companies.org/index.php/Technology:GNU%20make
 http://101companies.org/index.php/Technology:101worker
 http://101companies.org/index.php/Technology:101worker
 http://101companies.org/index.php/Technology:Jetty
 http://101companies.org/index.php/Technology:Jetty
 http://101companies.org/index.php/Technology:JFactExtractor
 http://101companies.org/index.php/Technology:JFactExtractor
 http://101companies.org/index.php/Technology:MSBuild
 http://101companies.org/index.php/Technology:MSBuild
 http://101companies.org/index.php/Technology:JAF
 http://101companies.org/index.php/Technology:JAF
 http://101companies.org/index.php/Technology:Java%20Print%20Service
 http://101companies.org/index.php/Technology:Java%20Print%20Service
 http://101companies.org/index.php/Technology:JGroups
 http://101companies.org/index.php/Technology:JGroups
 http://101companies.org/index.php/Technology:JGraph
 http://101companies.org/index.php/Technology:JGraph
 http://101companies.org/index.php/Technology:LINQ%20to%20XML
 http://101companies.org/index.php/Technology:LINQ%20to%20XML
 http://101companies.org/index.php/Technology:jEdit
 http://101companies.org/index.php/Technology:jEdit
 http://101companies.org/index.php/Technology:HTTP
 http://101companies.org/index.php/Technology:HTTP
 http://101companies.org/index.php/Technology:JDK
 http://101companies.org/index.php/Technology:JDK
 http://101companies.org/index.php/Technology:Rhino
 http://101companies.org/index.php/Technology:Rhino
 http://101companies.org/index.php/Technology:Zend%20framework
 http://101companies.org/index.php/Technology:Zend%20framework
 http://101companies.org/index.php/Technology:Zend%20framework
 http://101companies.org/index.php/Technology:Zend%20framework
 http://101companies.org/index.php/Technology:Apache%20HTTP%20Server
 http://101companies.org/index.php/Technology:Apache%20HTTP%20Server
 http://101companies.org/index.php/Technology:Internet%20Explorer
 http://101companies.org/index.php/Technology:Internet%20Explorer
 http://101companies.org/index.php/Technology:JDT
 http://101companies.org/index.php/Technology:JDT
 http://101companies.org/index.php/Technology:dirname
 http://101companies.org/index.php/Technology:dirname
 http://101companies.org/index.php/Technology:Hamcrest
 http://101companies.org/index.php/Technology:Hamcrest
 http://101companies.org/index.php/Technology:Android%20Development%20Tool
 http://101companies.org/index.php/Technology:Android%20Development%20Tool
 http://101companies.org/index.php/Technology:SQL%20Server
 http://101companies.org/index.php/Technology:SQL%20Server
 http://101companies.org/index.php/Technology:TCP
 http://101companies.org/index.php/Technology:TCP
 http://101companies.org/index.php/Technology:GeSHi
 http://101companies.org/index.php/Technology:GeSHi
 http://101companies.org/index.php/Technology:JAMA
 http://101companies.org/index.php/Technology:JAMA
 http://101companies.org/index.php/Technology:Safari
 http://101companies.org/index.php/Technology:Safari
 http://101companies.org/index.php/Technology:XmlFragmentLocator
 http://101companies.org/index.php/Technology:XmlFragmentLocator
 http://101companies.org/index.php/Technology:JMF
 http://101companies.org/index.php/Technology:JMF
 http://101companies.org/index.php/Technology:OSCache
 http://101companies.org/index.php/Technology:OSCache
 http://101companies.org/index.php/Technology:JFragmentLocator
 http://101companies.org/index.php/Technology:JFragmentLocator
 http://101companies.org/index.php/Technology:Java%20misc
 http://101companies.org/index.php/Technology:Java%20misc
 http://101companies.org/index.php/Technology:Bouncy%20Castle
 http://101companies.org/index.php/Technology:Bouncy%20Castle
 http://101companies.org/index.php/Technology:DLL
 http://101companies.org/index.php/Technology:DLL
 http://101companies.org/index.php/Technology:Lucene
 http://101companies.org/index.php/Technology:Lucene
 http://101companies.org/index.php/Technology:Glade
 http://101companies.org/index.php/Technology:Glade
 http://101companies.org/index.php/Technology:Apache%20Tomcat
 http://101companies.org/index.php/Technology:Apache%20Tomcat
 http://101companies.org/index.php/Technology:JTA
 http://101companies.org/index.php/Technology:JTA
 http://101companies.org/index.php/Technology:Javassist
 http://101companies.org/index.php/Technology:Javassist
 http://101companies.org/index.php/Technology:Java%20events
 http://101companies.org/index.php/Technology:Java%20events
 http://101companies.org/index.php/Technology:Mercurial
 http://101companies.org/index.php/Technology:Mercurial
 http://101companies.org/index.php/Technology:MoDisco
 http://101companies.org/index.php/Technology:MoDisco
 http://101companies.org/index.php/Technology:Entity%20Framework
 http://101companies.org/index.php/Technology:Entity%20Framework
 http://101companies.org/index.php/Technology:Java%20Image%20I/O
 http://101companies.org/index.php/Technology:Java%20Image%20I/O
 http://101companies.org/index.php/Technology:iText
 http://101companies.org/index.php/Technology:iText
 http://101companies.org/index.php/Technology:Erlang/OTP
 http://101companies.org/index.php/Technology:Erlang/OTP
 http://101companies.org/index.php/Technology:Guava
 http://101companies.org/index.php/Technology:Guava
 http://101companies.org/index.php/Technology:JBoss%20Application%20Server
 http://101companies.org/index.php/Technology:JBoss%20Application%20Server
 http://101companies.org/index.php/Technology:MOF
 http://101companies.org/index.php/Technology:MOF
 http://101companies.org/index.php/Technology:HTML%20Parser
 http://101companies.org/index.php/Technology:HTML%20Parser
 http://101companies.org/index.php/Technology:javac
 http://101companies.org/index.php/Technology:javac
 http://101companies.org/index.php/Technology:Visual%20Studio
 http://101companies.org/index.php/Technology:Visual%20Studio
 http://101companies.org/index.php/Technology:Google%20Chrome
 http://101companies.org/index.php/Technology:Google%20Chrome
 http://101companies.org/index.php/Technology:JValidator
 http://101companies.org/index.php/Technology:JValidator
 http://101companies.org/index.php/Technology:wxWidgets
 http://101companies.org/index.php/Technology:wxWidgets
 http://101companies.org/index.php/Technology:Smack
 http://101companies.org/index.php/Technology:Smack
 http://101companies.org/index.php/Technology:ArgoUML
 http://101companies.org/index.php/Technology:ArgoUML
 http://101companies.org/index.php/Technology:Apache%20Commons
 http://101companies.org/index.php/Technology:Apache%20Commons
 http://101companies.org/index.php/Technology:ASP%20.NET%20MVC
 http://101companies.org/index.php/Technology:ASP%20.NET%20MVC
 http://101companies.org/index.php/Technology:JSP
 http://101companies.org/index.php/Technology:JSP
 http://101companies.org/index.php/Technology:BSF
 http://101companies.org/index.php/Technology:BSF
 http://101companies.org/index.php/Technology:HackageDB
 http://101companies.org/index.php/Technology:HackageDB
 http://101companies.org/index.php/Technology:fcs.exe
 http://101companies.org/index.php/Technology:fcs.exe
 http://101companies.org/index.php/Technology:ASM
 http://101companies.org/index.php/Technology:ASM
 http://101companies.org/index.php/Technology:GeFLo
 http://101companies.org/index.php/Technology:GeFLo
 http://101companies.org/index.php/Technology:JGoodies
 http://101companies.org/index.php/Technology:JGoodies
 http://101companies.org/index.php/Technology:simplejson
 http://101companies.org/index.php/Technology:simplejson
 http://101companies.org/index.php/Technology:ASP%20.NET
 http://101companies.org/index.php/Technology:ASP%20.NET
 http://101companies.org/index.php/Technology:Opera
 http://101companies.org/index.php/Technology:Opera
 http://101companies.org/index.php/Technology:XA
 http://101companies.org/index.php/Technology:XA
 http://101companies.org/index.php/Technology:Sqlite
 http://101companies.org/index.php/Technology:Sqlite
 http://101companies.org/index.php/Technology:XStream
 http://101companies.org/index.php/Technology:XStream
 http://101companies.org/index.php/Technology:Servlet%20API
 http://101companies.org/index.php/Technology:Servlet%20API
 http://101companies.org/index.php/Technology:Java%20Media%20APIs
 http://101companies.org/index.php/Technology:Java%20Media%20APIs
 http://101companies.org/index.php/Technology:Velocity
 http://101companies.org/index.php/Technology:Velocity
 http://101companies.org/index.php/Technology:CSharpFragmentLocator
 http://101companies.org/index.php/Technology:CSharpFragmentLocator
 http://101companies.org/index.php/Technology:WPF
 http://101companies.org/index.php/Technology:WPF
 http://101companies.org/index.php/Technology:CLR
 http://101companies.org/index.php/Technology:CLR
 http://101companies.org/index.php/Technology:XMLValidator
 http://101companies.org/index.php/Technology:XMLValidator
 http://101companies.org/index.php/Technology:Apache%20XML-RPC
 http://101companies.org/index.php/Technology:Apache%20XML-RPC
 http://101companies.org/index.php/Technology:HsImportMatcher
 http://101companies.org/index.php/Technology:HsImportMatcher
 http://101companies.org/index.php/Technology:Java%20EE
 http://101companies.org/index.php/Technology:Java%20EE
 http://101companies.org/index.php/Technology:.NET%20XML%20Serialization
 http://101companies.org/index.php/Technology:.NET%20XML%20Serialization
 http://101companies.org/index.php/Technology:ORO
 http://101companies.org/index.php/Technology:ORO
 http://101companies.org/index.php/Technology:101explorer
 http://101companies.org/index.php/Technology:101explorer
 http://101companies.org/index.php/Technology:Jaxen
 http://101companies.org/index.php/Technology:Jaxen
 http://101companies.org/index.php/Technology:Tidy
 http://101companies.org/index.php/Technology:Tidy
 http://101companies.org/index.php/Technology:.NET
 http://101companies.org/index.php/Technology:.NET
 http://101companies.org/index.php/Technology:JavaMail
 http://101companies.org/index.php/Technology:JavaMail
 http://101companies.org/index.php/Technology:JFreeChart
 http://101companies.org/index.php/Technology:JFreeChart
 http://101companies.org/index.php/Technology:OGNL
 http://101companies.org/index.php/Technology:OGNL
 http://101companies.org/index.php/Technology:Java%20Bean
 http://101companies.org/index.php/Technology:Java%20Bean
 http://101companies.org/index.php/Technology:Jython
 http://101companies.org/index.php/Technology:Jython
 http://101companies.org/index.php/Technology:Java%20SE
 http://101companies.org/index.php/Technology:Java%20SE
 http://101companies.org/index.php/Technology:dom4j
 http://101companies.org/index.php/Technology:dom4j
 http://101companies.org/index.php/Technology:Java%20Servlet
 http://101companies.org/index.php/Technology:Java%20Servlet
 http://101companies.org/index.php/Technology:NORMA
 http://101companies.org/index.php/Technology:NORMA
 http://101companies.org/index.php/Technology:CUP
 http://101companies.org/index.php/Technology:CUP
 http://101companies.org/index.php/Technology:SLF4J
 http://101companies.org/index.php/Technology:SLF4J
 http://101companies.org/index.php/Technology:Avalon
 http://101companies.org/index.php/Technology:Avalon
 http://101companies.org/index.php/Technology:Nix
 http://101companies.org/index.php/Technology:Nix
 http://101companies.org/index.php/Technology:Web%20storage
 http://101companies.org/index.php/Technology:Web%20storage
 http://101companies.org/index.php/Technology:Xalan-Java
 http://101companies.org/index.php/Technology:Xalan-Java
 http://101companies.org/index.php/Technology:CVS
 http://101companies.org/index.php/Technology:CVS
 http://101companies.org/index.php/Technology:log4j
 http://101companies.org/index.php/Technology:log4j
 http://101companies.org/index.php/Technology:Object%20Streams
 http://101companies.org/index.php/Technology:Object%20Streams
 http://101companies.org/index.php/Technology:Microsoft%20Excel
 http://101companies.org/index.php/Technology:Microsoft%20Excel
 http://101companies.org/index.php/Technology:EJB
 http://101companies.org/index.php/Technology:EJB
 http://101companies.org/index.php/Technology:Java%20collections
 http://101companies.org/index.php/Technology:Java%20collections
 http://101companies.org/index.php/Technology:XML%20pickler
 http://101companies.org/index.php/Technology:XML%20pickler
 http://101companies.org/index.php/Technology:java.util.Scanner
 http://101companies.org/index.php/Technology:java.util.Scanner
 http://101companies.org/index.php/Technology:Java%20platform
 http://101companies.org/index.php/Technology:Java%20platform
 http://101companies.org/index.php/Technology:BCEL
 http://101companies.org/index.php/Technology:BCEL
 http://101companies.org/index.php/Technology:HPC
 http://101companies.org/index.php/Technology:HPC
 http://101companies.org/index.php/Technology:POI
 http://101companies.org/index.php/Technology:POI
 http://101companies.org/index.php/Technology:Mozilla%20Firefox
 http://101companies.org/index.php/Technology:Mozilla%20Firefox
 http://101companies.org/index.php/Technology:Balsamiq%20Mockups
 http://101companies.org/index.php/Technology:Balsamiq%20Mockups
 http://101companies.org/index.php/Technology:HsFragmentLocator
 http://101companies.org/index.php/Technology:HsFragmentLocator
 http://101companies.org/index.php/Technology:Cabal
 http://101companies.org/index.php/Technology:Cabal
 http://101companies.org/index.php/Technology:LINQ%20to%20SQL
 http://101companies.org/index.php/Technology:LINQ%20to%20SQL
 http://101companies.org/index.php/Technology:JPA
 http://101companies.org/index.php/Technology:JPA
 http://101companies.org/index.php/Technology:Spring
 http://101companies.org/index.php/Technology:Spring
 http://101companies.org/index.php/Technology:xsd.exe
 http://101companies.org/index.php/Technology:xsd.exe
 http://101companies.org/index.php/Technology:Facelets
 http://101companies.org/index.php/Technology:Facelets
 http://101companies.org/index.php/Technology:Android%20SDK
 http://101companies.org/index.php/Technology:Android%20SDK
 http://101companies.org/index.php/Technology:gzip
 http://101companies.org/index.php/Technology:gzip

Page 27

© 2012, 101companies
 What are software technologies and languages?
 Java XML Haskell JavaScript CSharp SQL CSS HTML XSD Ecore HTML5 DatalogLB JSON PHP ATL XMI XHTML Scala Groovy HQL Python Ruby Smalltalk XPath XSLTErlang AspectJ XQuery HSQLDialect EBNF GReTL CPlusPlus Prolog WSDL FSharp Cobol EXE Zip Java manifest file Rascal Launch file MegaL Haskell 98 OGNL UML Config JNLP Plain text SWF tar XLS Shell Script Java bytecode AWK SVG ODF xjc POJOs ICO Sass Settings Datalog BMML JPEG DLL GIF VB.NET Perl 101meta PDF BSON CSV BNF Cobol 85 Markdown protobuf JAXB annotations RAR YAML PNG Unicode gzip JAR ASCII
 This view relies on automated data extraction from 101wiki
 http://101companies.org/index.php/Language:Java
 http://101companies.org/index.php/Language:Java
 http://101companies.org/index.php/Language:XML
 http://101companies.org/index.php/Language:XML
 http://101companies.org/index.php/Language:Haskell
 http://101companies.org/index.php/Language:Haskell
 http://101companies.org/index.php/Language:JavaScript
 http://101companies.org/index.php/Language:JavaScript
 http://101companies.org/index.php/Language:CSharp
 http://101companies.org/index.php/Language:CSharp
 http://101companies.org/index.php/Language:SQL
 http://101companies.org/index.php/Language:SQL
 http://101companies.org/index.php/Language:CSS
 http://101companies.org/index.php/Language:CSS
 http://101companies.org/index.php/Language:HTML
 http://101companies.org/index.php/Language:HTML
 http://101companies.org/index.php/Language:XSD
 http://101companies.org/index.php/Language:XSD
 http://101companies.org/index.php/Language:Ecore
 http://101companies.org/index.php/Language:Ecore
 http://101companies.org/index.php/Language:HTML5
 http://101companies.org/index.php/Language:HTML5
 http://101companies.org/index.php/Language:DatalogLB
 http://101companies.org/index.php/Language:DatalogLB
 http://101companies.org/index.php/Language:JSON
 http://101companies.org/index.php/Language:JSON
 http://101companies.org/index.php/Language:PHP
 http://101companies.org/index.php/Language:PHP
 http://101companies.org/index.php/Language:ATL
 http://101companies.org/index.php/Language:ATL
 http://101companies.org/index.php/Language:XMI
 http://101companies.org/index.php/Language:XMI
 http://101companies.org/index.php/Language:XHTML
 http://101companies.org/index.php/Language:XHTML
 http://101companies.org/index.php/Language:Scala
 http://101companies.org/index.php/Language:Scala
 http://101companies.org/index.php/Language:Groovy
 http://101companies.org/index.php/Language:Groovy
 http://101companies.org/index.php/Language:HQL
 http://101companies.org/index.php/Language:HQL
 http://101companies.org/index.php/Language:Python
 http://101companies.org/index.php/Language:Python
 http://101companies.org/index.php/Language:Ruby
 http://101companies.org/index.php/Language:Ruby
 http://101companies.org/index.php/Language:Smalltalk
 http://101companies.org/index.php/Language:Smalltalk
 http://101companies.org/index.php/Language:Smalltalk
 http://101companies.org/index.php/Language:Smalltalk
 http://101companies.org/index.php/Language:Smalltalk
 http://101companies.org/index.php/Language:Smalltalk
 http://101companies.org/index.php/Language:Smalltalk
 http://101companies.org/index.php/Language:Smalltalk
 http://101companies.org/index.php/Language:Smalltalk
 http://101companies.org/index.php/Language:Smalltalk
 http://101companies.org/index.php/Language:Smalltalk
 http://101companies.org/index.php/Language:Smalltalk
 http://101companies.org/index.php/Language:XPath
 http://101companies.org/index.php/Language:XPath
 http://101companies.org/index.php/Language:XPath
 http://101companies.org/index.php/Language:XPath
 http://101companies.org/index.php/Language:XSLT
 http://101companies.org/index.php/Language:XSLT
 http://101companies.org/index.php/Language:Erlang
 http://101companies.org/index.php/Language:Erlang
 http://101companies.org/index.php/Language:AspectJ
 http://101companies.org/index.php/Language:AspectJ
 http://101companies.org/index.php/Language:XQuery
 http://101companies.org/index.php/Language:XQuery
 http://101companies.org/index.php/Language:HSQLDialect
 http://101companies.org/index.php/Language:HSQLDialect
 http://101companies.org/index.php/Language:EBNF
 http://101companies.org/index.php/Language:EBNF
 http://101companies.org/index.php/Language:GReTL
 http://101companies.org/index.php/Language:GReTL
 http://101companies.org/index.php/Language:CPlusPlus
 http://101companies.org/index.php/Language:CPlusPlus
 http://101companies.org/index.php/Language:CPlusPlus
 http://101companies.org/index.php/Language:CPlusPlus
 http://101companies.org/index.php/Language:CPlusPlus
 http://101companies.org/index.php/Language:CPlusPlus
 http://101companies.org/index.php/Language:CPlusPlus
 http://101companies.org/index.php/Language:CPlusPlus
 http://101companies.org/index.php/Language:CPlusPlus
 http://101companies.org/index.php/Language:CPlusPlus
 http://101companies.org/index.php/Language:WSDL
 http://101companies.org/index.php/Language:WSDL
 http://101companies.org/index.php/Language:WSDL
 http://101companies.org/index.php/Language:WSDL
 http://101companies.org/index.php/Language:FSharp
 http://101companies.org/index.php/Language:FSharp
 http://101companies.org/index.php/Language:FSharp
 http://101companies.org/index.php/Language:FSharp
 http://101companies.org/index.php/Language:Cobol
 http://101companies.org/index.php/Language:Cobol
 http://101companies.org/index.php/Language:EXE
 http://101companies.org/index.php/Language:EXE
 http://101companies.org/index.php/Language:Zip
 http://101companies.org/index.php/Language:Zip
 http://101companies.org/index.php/Language:Java%20manifest%20file
 http://101companies.org/index.php/Language:Java%20manifest%20file
 http://101companies.org/index.php/Language:Rascal
 http://101companies.org/index.php/Language:Rascal
 http://101companies.org/index.php/Language:Launch%20file
 http://101companies.org/index.php/Language:Launch%20file
 http://101companies.org/index.php/Language:Launch%20file
 http://101companies.org/index.php/Language:OGNL
 http://101companies.org/index.php/Language:UML
 http://101companies.org/index.php/Language:UML
 http://101companies.org/index.php/Language:UML
 http://101companies.org/index.php/Language:UML
 http://101companies.org/index.php/Language:UML
 http://101companies.org/index.php/Language:UML
 http://101companies.org/index.php/Language:UML
 http://101companies.org/index.php/Language:UML
 http://101companies.org/index.php/Language:UML
 http://101companies.org/index.php/Language:Config
 http://101companies.org/index.php/Language:Config
 http://101companies.org/index.php/Language:JNLP
 http://101companies.org/index.php/Language:JNLP
 http://101companies.org/index.php/Language:Plain%20text
 http://101companies.org/index.php/Language:Plain%20text
 http://101companies.org/index.php/Language:SWF
 http://101companies.org/index.php/Language:SWF
 http://101companies.org/index.php/Language:SWF
 http://101companies.org/index.php/Language:SWF
 http://101companies.org/index.php/Language:SWF
 http://101companies.org/index.php/Language:SWF
 http://101companies.org/index.php/Language:SWF
 http://101companies.org/index.php/Language:SWF
 http://101companies.org/index.php/Language:SWF
 http://101companies.org/index.php/Language:SWF
 http://101companies.org/index.php/Language:AWK
 http://101companies.org/index.php/Language:AWK
 http://101companies.org/index.php/Language:AWK
 http://101companies.org/index.php/Language:AWK
 http://101companies.org/index.php/Language:AWK
 http://101companies.org/index.php/Language:AWK
 http://101companies.org/index.php/Language:AWK
 http://101companies.org/index.php/Language:AWK
 http://101companies.org/index.php/Language:AWK
 http://101companies.org/index.php/Language:AWK
 http://101companies.org/index.php/Language:SVG
 http://101companies.org/index.php/Language:SVG
 http://101companies.org/index.php/Language:ODF
 http://101companies.org/index.php/Language:ODF
 http://101companies.org/index.php/Language:xjc%20POJOs
 http://101companies.org/index.php/Language:xjc%20POJOs
 http://101companies.org/index.php/Language:ICO
 http://101companies.org/index.php/Language:ICO
 http://101companies.org/index.php/Language:Sass
 http://101companies.org/index.php/Language:Sass
 http://101companies.org/index.php/Language:Sass
 http://101companies.org/index.php/Language:Sass
 http://101companies.org/index.php/Language:Sass
 http://101companies.org/index.php/Language:Sass
 http://101companies.org/index.php/Language:Sass
 http://101companies.org/index.php/Language:Sass
 http://101companies.org/index.php/Language:Sass
 http://101companies.org/index.php/Language:Sass
 http://101companies.org/index.php/Language:DLL
 http://101companies.org/index.php/Language:DLL
 http://101companies.org/index.php/Language:DLL
 http://101companies.org/index.php/Language:DLL
 http://101companies.org/index.php/Language:DLL
 http://101companies.org/index.php/Language:DLL
 http://101companies.org/index.php/Language:DLL
 http://101companies.org/index.php/Language:DLL
 http://101companies.org/index.php/Language:DLL
 http://101companies.org/index.php/Language:DLL
 http://101companies.org/index.php/Language:GIF
 http://101companies.org/index.php/Language:GIF
 http://101companies.org/index.php/Language:VB.NET
 http://101companies.org/index.php/Language:VB.NET
 http://101companies.org/index.php/Language:Perl
 http://101companies.org/index.php/Language:Perl
 http://101companies.org/index.php/Language:101meta
 http://101companies.org/index.php/Language:101meta
 http://101companies.org/index.php/Language:PDF
 http://101companies.org/index.php/Language:PDF
 http://101companies.org/index.php/Language:BSON
 http://101companies.org/index.php/Language:BSON
 http://101companies.org/index.php/Language:BSON
 http://101companies.org/index.php/Language:BSON
 http://101companies.org/index.php/Language:BSON
 http://101companies.org/index.php/Language:BSON
 http://101companies.org/index.php/Language:CSV
 http://101companies.org/index.php/Language:CSV
 http://101companies.org/index.php/Language:CSV
 http://101companies.org/index.php/Language:CSV
 http://101companies.org/index.php/Language:BNF
 http://101companies.org/index.php/Language:BNF
 http://101companies.org/index.php/Language:BNF
 http://101companies.org/index.php/Language:Markdown
 http://101companies.org/index.php/Language:Markdown
 http://101companies.org/index.php/Language:Markdown
 http://101companies.org/index.php/Language:Markdown
 http://101companies.org/index.php/Language:Markdown
 http://101companies.org/index.php/Language:Markdown
 http://101companies.org/index.php/Language:Markdown
 http://101companies.org/index.php/Language:Markdown
 http://101companies.org/index.php/Language:Markdown
 http://101companies.org/index.php/Language:Markdown
 http://101companies.org/index.php/Language:protobuf
 http://101companies.org/index.php/Language:protobuf
 http://101companies.org/index.php/Language:JAXB%20annotations
 http://101companies.org/index.php/Language:JAXB%20annotations
 http://101companies.org/index.php/Language:RAR
 http://101companies.org/index.php/Language:RAR
 http://101companies.org/index.php/Language:YAML
 http://101companies.org/index.php/Language:YAML
 http://101companies.org/index.php/Language:PNG
 http://101companies.org/index.php/Language:PNG
 http://101companies.org/index.php/Language:Unicode
 http://101companies.org/index.php/Language:Unicode
 http://101companies.org/index.php/Language:Unicode
 http://101companies.org/index.php/Language:Unicode
 http://101companies.org/index.php/Language:Unicode
 http://101companies.org/index.php/Language:Unicode
 http://101companies.org/index.php/Language:Unicode
 http://101companies.org/index.php/Language:gzip
 http://101companies.org/index.php/Language:gzip
 http://101companies.org/index.php/Language:gzip
 http://101companies.org/index.php/Language:gzip
 http://101companies.org/index.php/Language:JAR
 http://101companies.org/index.php/Language:JAR
 http://101companies.org/index.php/Language:JAR
 http://101companies.org/index.php/Language:JAR
 http://101companies.org/index.php/Language:JAR
 http://101companies.org/index.php/Language:JAR
 http://101companies.org/index.php/Language:JAR
 http://101companies.org/index.php/Language:ASCII
 http://101companies.org/index.php/Language:ASCII

Page 28

© 2012, 101companies© 2012, 101companies
 101worker101ecosystem
 101web:ApplicationServer
 Examples of external resources
 Examples of fictional contributor machines
 101wikiServer:MediaWikiServergitHub:GitServer
 101worker:BuildServer
 wikipedia:MediaWikiServer
 rosettaCode:MediaWikiServer
 linksTo
 linksTo
 w3c:ServiceProvider
 101repo<<GitRepository>>
 contributions: Directory
 technologies: Directory
 languages: Directory
 contributions: Directory
 technologies: Directory
 languages: Directory
 101worker<<GitRepository>>
 modules: Directorymodules: Directory
 101workerEngine<<Component>>
 pull101repo: Module
 pull101wiki: Module
 pull101worker: Module
 gather101meta: Module
 match101meta: Module
 deployTo101web: Module
 pull101repo: Module
 pull101wiki: Module
 pull101worker: Module
 gather101meta: Module
 match101meta: Module
 deployTo101web: Module
 101wiki<<MediaWikiSystem>>
 termPages: WikiPage[*]
 contributionPages: WikiPage[*]
 featurePages: WikiPage[*]
 languagePages: WikiPage[*]
 technologyPages: WikiPage[*]
 conceptPages: WikiPage[*]
 termPages: WikiPage[*]
 contributionPages: WikiPage[*]
 featurePages: WikiPage[*]
 languagePages: WikiPage[*]
 technologyPages: WikiPage[*]
 conceptPages: WikiPage[*]
 describes
 101endPoint<<SPARQLEndPoint>>
 RDFStoreRDFStore
 callsServices
 vadimLaptop:Labtop
 chanLabtop:Labtop
 101workerSpace<<FileSystem>>
 101repo
 101wikiGraph
 ruleSet
 matches
 101repo
 101wikiGraph
 ruleSet
 matches
 101explorer<<WebApplication>>
 htmlAndJsonFileshtmlAndJsonFiles
 101downloads<<FileServer>>
 dumpsdumps
 output
 output
 output
 input
 output
 pulls
 pulls
 pulls
 output output output
 ... more modules here more results here ...
 output
 input
 browses
 browses chanBrowser<<WebBrowser>>
 vadimLocalRepo<<GitClient>>pulls&pushes
 ahmedDesktop:Desktop
 ahmedLocalRepo<<GitClient>>
 MiningTool<<Component>>
 pulls&pushes
 queriesdownloads
 Ahmed is a researcher in reverse eng.He consumes and provides services.
 Chan is studying software technologies.She browses the 101chrestomathy.
 Vadim contributes 101implementationsvia the git repository.
 https://github.com/101companies/101repohttps://github.com/101companies/101worker
 http://101companies.org Examples of external resources, contributors to the project and consumers
 Examples of interactions
 Deployment view of previous figures.Repository level
 Computation level
 Service level
 Fig. 5. Architecture of the 101ecosystem (on the left) with examples for providers, consumers, resources (on the right).
 methods to files, thereby supporting functionality such asexploration or fact extraction.
 Embedding approaches: Arguably, the link extraction andconsistency problem would not exist, if source code and docu-mentation were embedded into the same artifacts either basedon literate programming [22] (such that source-code fragmentsare embedded into the program documentation, subject toextraction for compilation etc.) or the opposite approach ofdocumentation embedding (such that documentation fragmentsare embedded into the source-code artifacts, subject to extrac-tion for building the documentation). The latter approach is
 used by popular technologies such as Javadoc9 and Doxygen10.These two embedding approaches are essentially program-
 centric in the sense that the integrated artifacts are aligned withprogram structure. A multi-language, multi-technology soft-ware product involves additional abstractions, e.g., ontologiesof software development, domain glossaries, feature models,and functional and non-functional requirements. Embeddingall such information in a single kind of artifact appears to beunpractical in terms of both logistics (as different stakeholdersare involved) and concise representation (as n:m relationshipswould imply duplication during embedding). In fact, some
 9http://java.sun.com/j2se/javadoc/10http://www.doxygen.org/

Page 29

© 2012, 101companies© 2012, 101companies
 101ecosystem
 101web:ApplicationServer
 Examples of external resources
 Examples of fictional contributor machines
 101wikiServer:MediaWikiServergitHub:GitServer
 101worker:BuildServer
 wikipedia:MediaWikiServer
 rosettaCode:MediaWikiServer
 linksTo
 linksTo
 w3c:ServiceProvider
 101repo<<GitRepository>>
 contributions: Directory
 technologies: Directory
 languages: Directory
 contributions: Directory
 technologies: Directory
 languages: Directory
 101worker<<GitRepository>>
 modules: Directorymodules: Directory
 101workerEngine<<Component>>
 pull101repo: Module
 pull101wiki: Module
 pull101worker: Module
 gather101meta: Module
 match101meta: Module
 deployTo101web: Module
 pull101repo: Module
 pull101wiki: Module
 pull101worker: Module
 gather101meta: Module
 match101meta: Module
 deployTo101web: Module
 101wiki<<MediaWikiSystem>>
 termPages: WikiPage[*]
 contributionPages: WikiPage[*]
 featurePages: WikiPage[*]
 languagePages: WikiPage[*]
 technologyPages: WikiPage[*]
 conceptPages: WikiPage[*]
 termPages: WikiPage[*]
 contributionPages: WikiPage[*]
 featurePages: WikiPage[*]
 languagePages: WikiPage[*]
 technologyPages: WikiPage[*]
 conceptPages: WikiPage[*]
 describes
 101endPoint<<SPARQLEndPoint>>
 RDFStoreRDFStore
 callsServices
 vadimLaptop:Labtop
 chanLabtop:Labtop
 101workerSpace<<FileSystem>>
 101repo
 101wikiGraph
 ruleSet
 matches
 101repo
 101wikiGraph
 ruleSet
 matches
 101explorer<<WebApplication>>
 htmlAndJsonFileshtmlAndJsonFiles
 101downloads<<FileServer>>
 dumpsdumps
 output
 output
 output
 input
 output
 pulls
 pulls
 pulls
 output output output
 ... more modules here more results here ...
 output
 input
 browses
 browses chanBrowser<<WebBrowser>>
 vadimLocalRepo<<GitClient>>pulls&pushes
 ahmedDesktop:Desktop
 ahmedLocalRepo<<GitClient>>
 MiningTool<<Component>>
 pulls&pushes
 queriesdownloads
 Ahmed is a researcher in reverse eng.He consumes and provides services.
 Chan is studying software technologies.She browses the 101chrestomathy.
 Vadim contributes 101implementationsvia the git repository.
 https://github.com/101companies/101repohttps://github.com/101companies/101worker
 http://101companies.org Examples of external resources, contributors to the project and consumers
 Examples of interactions
 Deployment view of previous figures.Repository level
 Computation level
 Service level
 Fig. 5. Architecture of the 101ecosystem (on the left) with examples for providers, consumers, resources (on the right).
 methods to files, thereby supporting functionality such asexploration or fact extraction.
 Embedding approaches: Arguably, the link extraction andconsistency problem would not exist, if source code and docu-mentation were embedded into the same artifacts either basedon literate programming [22] (such that source-code fragmentsare embedded into the program documentation, subject toextraction for compilation etc.) or the opposite approach ofdocumentation embedding (such that documentation fragmentsare embedded into the source-code artifacts, subject to extrac-tion for building the documentation). The latter approach is
 used by popular technologies such as Javadoc9 and Doxygen10.These two embedding approaches are essentially program-
 centric in the sense that the integrated artifacts are aligned withprogram structure. A multi-language, multi-technology soft-ware product involves additional abstractions, e.g., ontologiesof software development, domain glossaries, feature models,and functional and non-functional requirements. Embeddingall such information in a single kind of artifact appears to beunpractical in terms of both logistics (as different stakeholdersare involved) and concise representation (as n:m relationshipswould imply duplication during embedding). In fact, some
 9http://java.sun.com/j2se/javadoc/10http://www.doxygen.org/

Page 30

© 2012, 101companies© 2012, 101companies
 101ecosystem
 101web:ApplicationServer
 Examples of external resources
 Examples of fictional contributor machines
 101wikiServer:MediaWikiServergitHub:GitServer
 101worker:BuildServer
 wikipedia:MediaWikiServer
 rosettaCode:MediaWikiServer
 linksTo
 linksTo
 w3c:ServiceProvider
 101repo<<GitRepository>>
 contributions: Directory
 technologies: Directory
 languages: Directory
 contributions: Directory
 technologies: Directory
 languages: Directory
 101worker<<GitRepository>>
 modules: Directorymodules: Directory
 101workerEngine<<Component>>
 pull101repo: Module
 pull101wiki: Module
 pull101worker: Module
 gather101meta: Module
 match101meta: Module
 deployTo101web: Module
 pull101repo: Module
 pull101wiki: Module
 pull101worker: Module
 gather101meta: Module
 match101meta: Module
 deployTo101web: Module
 101wiki<<MediaWikiSystem>>
 termPages: WikiPage[*]
 contributionPages: WikiPage[*]
 featurePages: WikiPage[*]
 languagePages: WikiPage[*]
 technologyPages: WikiPage[*]
 conceptPages: WikiPage[*]
 termPages: WikiPage[*]
 contributionPages: WikiPage[*]
 featurePages: WikiPage[*]
 languagePages: WikiPage[*]
 technologyPages: WikiPage[*]
 conceptPages: WikiPage[*]
 describes
 101endPoint<<SPARQLEndPoint>>
 RDFStoreRDFStore
 callsServices
 vadimLaptop:Labtop
 chanLabtop:Labtop
 101workerSpace<<FileSystem>>
 101repo
 101wikiGraph
 ruleSet
 matches
 101repo
 101wikiGraph
 ruleSet
 matches
 101explorer<<WebApplication>>
 htmlAndJsonFileshtmlAndJsonFiles
 101downloads<<FileServer>>
 dumpsdumps
 output
 output
 output
 input
 output
 pulls
 pulls
 pulls
 output output output
 ... more modules here more results here ...
 output
 input
 browses
 browses chanBrowser<<WebBrowser>>
 vadimLocalRepo<<GitClient>>pulls&pushes
 ahmedDesktop:Desktop
 ahmedLocalRepo<<GitClient>>
 MiningTool<<Component>>
 pulls&pushes
 queriesdownloads
 Ahmed is a researcher in reverse eng.He consumes and provides services.
 Chan is studying software technologies.She browses the 101chrestomathy.
 Vadim contributes 101implementationsvia the git repository.
 https://github.com/101companies/101repohttps://github.com/101companies/101worker
 http://101companies.org Examples of external resources, contributors to the project and consumers
 Examples of interactions
 Deployment view of previous figures.Repository level
 Computation level
 Service level
 Fig. 5. Architecture of the 101ecosystem (on the left) with examples for providers, consumers, resources (on the right).
 methods to files, thereby supporting functionality such asexploration or fact extraction.
 Embedding approaches: Arguably, the link extraction andconsistency problem would not exist, if source code and docu-mentation were embedded into the same artifacts either basedon literate programming [22] (such that source-code fragmentsare embedded into the program documentation, subject toextraction for compilation etc.) or the opposite approach ofdocumentation embedding (such that documentation fragmentsare embedded into the source-code artifacts, subject to extrac-tion for building the documentation). The latter approach is
 used by popular technologies such as Javadoc9 and Doxygen10.These two embedding approaches are essentially program-
 centric in the sense that the integrated artifacts are aligned withprogram structure. A multi-language, multi-technology soft-ware product involves additional abstractions, e.g., ontologiesof software development, domain glossaries, feature models,and functional and non-functional requirements. Embeddingall such information in a single kind of artifact appears to beunpractical in terms of both logistics (as different stakeholdersare involved) and concise representation (as n:m relationshipswould imply duplication during embedding). In fact, some
 9http://java.sun.com/j2se/javadoc/10http://www.doxygen.org/

Page 31

© 2012, 101companies© 2012, 101companies
 101ecosystem
 101web:ApplicationServer
 Examples of external resources
 Examples of fictional contributor machines
 101wikiServer:MediaWikiServergitHub:GitServer
 101worker:BuildServer
 wikipedia:MediaWikiServer
 rosettaCode:MediaWikiServer
 linksTo
 linksTo
 w3c:ServiceProvider
 101repo<<GitRepository>>
 contributions: Directory
 technologies: Directory
 languages: Directory
 contributions: Directory
 technologies: Directory
 languages: Directory
 101worker<<GitRepository>>
 modules: Directorymodules: Directory
 101workerEngine<<Component>>
 pull101repo: Module
 pull101wiki: Module
 pull101worker: Module
 gather101meta: Module
 match101meta: Module
 deployTo101web: Module
 pull101repo: Module
 pull101wiki: Module
 pull101worker: Module
 gather101meta: Module
 match101meta: Module
 deployTo101web: Module
 101wiki<<MediaWikiSystem>>
 termPages: WikiPage[*]
 contributionPages: WikiPage[*]
 featurePages: WikiPage[*]
 languagePages: WikiPage[*]
 technologyPages: WikiPage[*]
 conceptPages: WikiPage[*]
 termPages: WikiPage[*]
 contributionPages: WikiPage[*]
 featurePages: WikiPage[*]
 languagePages: WikiPage[*]
 technologyPages: WikiPage[*]
 conceptPages: WikiPage[*]
 describes
 101endPoint<<SPARQLEndPoint>>
 RDFStoreRDFStore
 callsServices
 vadimLaptop:Labtop
 chanLabtop:Labtop
 101workerSpace<<FileSystem>>
 101repo
 101wikiGraph
 ruleSet
 matches
 101repo
 101wikiGraph
 ruleSet
 matches
 101explorer<<WebApplication>>
 htmlAndJsonFileshtmlAndJsonFiles
 101downloads<<FileServer>>
 dumpsdumps
 output
 output
 output
 input
 output
 pulls
 pulls
 pulls
 output output output
 ... more modules here more results here ...
 output
 input
 browses
 browses chanBrowser<<WebBrowser>>
 vadimLocalRepo<<GitClient>>pulls&pushes
 ahmedDesktop:Desktop
 ahmedLocalRepo<<GitClient>>
 MiningTool<<Component>>
 pulls&pushes
 queriesdownloads
 Ahmed is a researcher in reverse eng.He consumes and provides services.
 Chan is studying software technologies.She browses the 101chrestomathy.
 Vadim contributes 101implementationsvia the git repository.
 https://github.com/101companies/101repohttps://github.com/101companies/101worker
 http://101companies.org Examples of external resources, contributors to the project and consumers
 Examples of interactions
 Deployment view of previous figures.Repository level
 Computation level
 Service level
 Fig. 5. Architecture of the 101ecosystem (on the left) with examples for providers, consumers, resources (on the right).
 methods to files, thereby supporting functionality such asexploration or fact extraction.
 Embedding approaches: Arguably, the link extraction andconsistency problem would not exist, if source code and docu-mentation were embedded into the same artifacts either basedon literate programming [22] (such that source-code fragmentsare embedded into the program documentation, subject toextraction for compilation etc.) or the opposite approach ofdocumentation embedding (such that documentation fragmentsare embedded into the source-code artifacts, subject to extrac-tion for building the documentation). The latter approach is
 used by popular technologies such as Javadoc9 and Doxygen10.These two embedding approaches are essentially program-
 centric in the sense that the integrated artifacts are aligned withprogram structure. A multi-language, multi-technology soft-ware product involves additional abstractions, e.g., ontologiesof software development, domain glossaries, feature models,and functional and non-functional requirements. Embeddingall such information in a single kind of artifact appears to beunpractical in terms of both logistics (as different stakeholdersare involved) and concise representation (as n:m relationshipswould imply duplication during embedding). In fact, some
 9http://java.sun.com/j2se/javadoc/10http://www.doxygen.org/

Page 32

© 2012, 101companies© 2012, 101companies
 101ecosystem
 101web:ApplicationServer
 Examples of external resources
 Examples of fictional contributor machines
 101wikiServer:MediaWikiServergitHub:GitServer
 101worker:BuildServer
 wikipedia:MediaWikiServer
 rosettaCode:MediaWikiServer
 linksTo
 linksTo
 w3c:ServiceProvider
 101repo<<GitRepository>>
 contributions: Directory
 technologies: Directory
 languages: Directory
 contributions: Directory
 technologies: Directory
 languages: Directory
 101worker<<GitRepository>>
 modules: Directorymodules: Directory
 101workerEngine<<Component>>
 pull101repo: Module
 pull101wiki: Module
 pull101worker: Module
 gather101meta: Module
 match101meta: Module
 deployTo101web: Module
 pull101repo: Module
 pull101wiki: Module
 pull101worker: Module
 gather101meta: Module
 match101meta: Module
 deployTo101web: Module
 101wiki<<MediaWikiSystem>>
 termPages: WikiPage[*]
 contributionPages: WikiPage[*]
 featurePages: WikiPage[*]
 languagePages: WikiPage[*]
 technologyPages: WikiPage[*]
 conceptPages: WikiPage[*]
 termPages: WikiPage[*]
 contributionPages: WikiPage[*]
 featurePages: WikiPage[*]
 languagePages: WikiPage[*]
 technologyPages: WikiPage[*]
 conceptPages: WikiPage[*]
 describes
 101endPoint<<SPARQLEndPoint>>
 RDFStoreRDFStore
 callsServices
 vadimLaptop:Labtop
 chanLabtop:Labtop
 101workerSpace<<FileSystem>>
 101repo
 101wikiGraph
 ruleSet
 matches
 101repo
 101wikiGraph
 ruleSet
 matches
 101explorer<<WebApplication>>
 htmlAndJsonFileshtmlAndJsonFiles
 101downloads<<FileServer>>
 dumpsdumps
 output
 output
 output
 input
 output
 pulls
 pulls
 pulls
 output output output
 ... more modules here more results here ...
 output
 input
 browses
 browses chanBrowser<<WebBrowser>>
 vadimLocalRepo<<GitClient>>pulls&pushes
 ahmedDesktop:Desktop
 ahmedLocalRepo<<GitClient>>
 MiningTool<<Component>>
 pulls&pushes
 queriesdownloads
 Ahmed is a researcher in reverse eng.He consumes and provides services.
 Chan is studying software technologies.She browses the 101chrestomathy.
 Vadim contributes 101implementationsvia the git repository.
 https://github.com/101companies/101repohttps://github.com/101companies/101worker
 http://101companies.org Examples of external resources, contributors to the project and consumers
 Examples of interactions
 Deployment view of previous figures.Repository level
 Computation level
 Service level
 Fig. 5. Architecture of the 101ecosystem (on the left) with examples for providers, consumers, resources (on the right).
 methods to files, thereby supporting functionality such asexploration or fact extraction.
 Embedding approaches: Arguably, the link extraction andconsistency problem would not exist, if source code and docu-mentation were embedded into the same artifacts either basedon literate programming [22] (such that source-code fragmentsare embedded into the program documentation, subject toextraction for compilation etc.) or the opposite approach ofdocumentation embedding (such that documentation fragmentsare embedded into the source-code artifacts, subject to extrac-tion for building the documentation). The latter approach is
 used by popular technologies such as Javadoc9 and Doxygen10.These two embedding approaches are essentially program-
 centric in the sense that the integrated artifacts are aligned withprogram structure. A multi-language, multi-technology soft-ware product involves additional abstractions, e.g., ontologiesof software development, domain glossaries, feature models,and functional and non-functional requirements. Embeddingall such information in a single kind of artifact appears to beunpractical in terms of both logistics (as different stakeholdersare involved) and concise representation (as n:m relationshipswould imply duplication during embedding). In fact, some
 9http://java.sun.com/j2se/javadoc/10http://www.doxygen.org/

Page 33

Basics
 http://101companies.org/wiki/Contribution:haskellNovice
 http://101companies.org/wiki/Contribution:haskellComposition
 http://101companies.org/wiki/Contribution:haskellMap
 http://101companies.org/wiki/Contribution:haskellVariation
 http://101companies.org/wiki/Contribution:haskellNovice
 http://101companies.org/wiki/Contribution:haskellNovice
 http://101companies.org/wiki/Contribution:haskellComposition
 http://101companies.org/wiki/Contribution:haskellComposition
 http://101companies.org/wiki/Contribution:haskellMap
 http://101companies.org/wiki/Contribution:haskellMap
 http://101companies.org/wiki/Contribution:haskellVariation
 http://101companies.org/wiki/Contribution:haskellVariation

Page 34

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 34
 First Steps in Haskell

Page 35

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 35
 Haskell systems
 ★http://www.haskell.org/
 ★Major option: GHC
 http://haskell.org/ghc/download.html
 http://www.haskell.org
 http://www.haskell.org
 http://haskell.org/ghc/download.html
 http://haskell.org/ghc/download.html

Page 36

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 36
 Starting Haskell
 Use command line.Start the Haskell shell.
 $ ghciGHCi, version 6.10.4: http://www.haskell.org/ghc/ :? for helpLoading package ghc-prim ... linking ... done.Loading package integer ... linking ... done.Loading package base ... linking ... done.Prelude>
 http://www.haskell.org/ghc/
 http://www.haskell.org/ghc/

Page 37

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 37
 The > prompt means that the Haskell system is ready to evaluate an expression.
 For example:
 > 2+3*414
 > (2+3)*420
 > sqrt (3^2 + 4^2)5.0

Page 38

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 38
 The Standard Prelude
 The library file Prelude.hs provides a large number of standard functions. In addition to the familiar numeric functions such as + and *, the library also provides many useful functions on lists.
 Select the first element of a list:
 > head [1,2,3,4,5]1

Page 39

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 39
 Remove the first element from a list:
 > tail [1,2,3,4,5][2,3,4,5]
 Select the nth element of a list:
 > [1,2,3,4,5] !! 23
 Select the first n elements of a list:
 > take 3 [1,2,3,4,5][1,2,3]

Page 40

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 40
 Remove the first n elements from a list:
 > drop 3 [1,2,3,4,5][4,5]
 Calculate the length of a list:
 > length [1,2,3,4,5]5
 Calculate the sum of a list of numbers:
 > sum [1,2,3,4,5]15

Page 41

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 41
 Calculate the product of a list of numbers:
 > product [1,2,3,4,5]120
 Append two lists:
 > [1,2,3] ++ [4,5][1,2,3,4,5]
 Reverse a list:
 > reverse [1,2,3,4,5][5,4,3,2,1]

Page 42

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 42
 Function Application
 In mathematics, function application is denoted using parentheses, and multiplication is often denoted using juxtaposition or space.
 f(a,b) + c d
 Apply the function f to a and b, and add the result to the product of c and d.

Page 43

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 43
 In Haskell, function application is denoted using space, and multiplication is denoted using *.
 f a b + c*d
 As previously, but in Haskell syntax.

Page 44

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 44
 Moreover, function application is assumed to have higher priority than all other operators.
 f a + b
 Means (f a) + b, rather than f (a + b).

Page 45

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 45
 Examples
 Mathematics Haskell
 f(x)
 f(x,y)
 f(g(x))
 f(x,g(y))
 f(x)g(y)
 f x
 f x y
 f (g x)
 f x (g y)
 f x * g y

Page 46

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 46
 Haskell Scripts
 ★As well as the functions in the standard prelude, you can also define your own functions;
 ★New functions are defined within a script, a text file comprising a sequence of definitions;
 ★By convention, Haskell scripts usually have a .hs suffix on their filename. This is not mandatory, but is useful for identification purposes.

Page 47

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 47
 My First Script
 double x = x + x
 quadruple x = double (double x)
 When developing a Haskell script, it is useful to keep two windows open, one running an editor for the script, and the other running Hugs.
 Start an editor, type in the following two function definitions, and save the script as test.hs:

Page 48

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 48
 % ghci test.hs
 Leaving the editor open, in another window start up the Haskell interpreter with the new script:
 > quadruple 1040
 > take (double 2) [1,2,3,4,5,6][1,2,3,4]
 Now both Prelude.hs and test.hs are loaded, and functions from both scripts can be used:

Page 49

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 49
 factorial n = product [1..n]
 average ns = sum ns `div` length ns
 Leaving the interpreter open, return to the editor, add the following two definitions, and resave:
 z div is enclosed in back quotes, not forward;
 z x `f` y is just syntactic sugar for f x y.
 Note:

Page 50

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 50
 > :reloadReading file "test.hs"
 > factorial 103628800
 > average [1,2,3,4,5]3
 The interpreter does not automatically detect that the script has been changed, so a reload command must be executed before the new definitions can be used:

Page 51

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 51
 Naming Requirements
 ★Function and argument names must begin with a lower-case letter. For example:
 myFun fun1 arg_2 x’
 ★By convention, list arguments usually have an s suffix on their name. For example:
 xs ns nss

Page 52

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 52
 The Layout Rule
 In a sequence of definitions, each definition must begin in precisely the same column:
 a = 10
 b = 20
 c = 30
 a = 10
 b = 20
 c = 30
 a = 10
 b = 20
 c = 30

Page 53

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 53
 means
 The layout rule avoids the need for explicit syntax to indicate the grouping of definitions.
 a = b + c where b = 1 c = 2d = a * 2
 a = b + c where {b = 1; c = 2}d = a * 2
 implicit grouping explicit grouping

Page 54

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 54
 Useful Interpreter Commands
 Command Meaning
 :load name load script name:reload reload current script:edit name edit script name:edit edit current script:type expr show type of expr:? show all commands:quit quit interpreter

Page 55

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 55
 Exercises
 N = a ’div’ length xs where a = 10
 xs = [1,2,3,4,5]
 Try out all previous examples using the Haskell interpreter.
 Fix the syntax errors in the program below, and test your solution using the interpreter.
 (1)
 (2)

Page 56

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 56
 Show how the library function last that selects the last element of a list can be defined using the functions introduced in this lecture.
 (3)
 Similarly, show how the library function init that removes the last element from a list can be defined in two different ways.
 (5)
 Can you think of another possible definition?(4)

Page 57

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 57
 Common Types

Page 58

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 58
 What is a Type?
 A type is a name for a collection of related values. For example, in Haskell the basic type
 TrueFalse
 Bool
 contains the two logical values:

Page 59

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 59
 Type Errors
 Applying a function to one or more arguments of the wrong type is called a type error.
 > 1 + FalseError
 1 is a number and False is a logical value, but + requires two numbers.

Page 60

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 60
 Types in Haskell
 ★If evaluating an expression e would produce a value of type t, then e has type t, written
 e :: t
 ★Every well formed expression has a type, which can be automatically calculated at compile time using a process called type inference.

Page 61

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 61
 ★All type errors are found at compile time, which makes programs safer and faster by removing the need for type checks at run time.
 ★In the Haskell interpreter, the :type command calculates the type of an expression, without evaluating it:
 > not FalseTrue
 > :type not Falsenot False :: Bool

Page 62

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 62
 Basic Types
 Haskell has a number of basic types, including:
 Bool - logical values
 Char - single characters
 Integer - arbitrary-precision integers
 Float - floating-point numbers
 String - strings of characters
 Int - fixed-precision integers

Page 63

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 63
 List Types
 [False,True,False] :: [Bool]
 [’a’,’b’,’c’,’d’] :: [Char]
 In general:
 A list is sequence of values of the same type:
 [t] is the type of lists with elements of type t.

Page 64

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 64
 The type of a list says nothing about its length:
 [False,True] :: [Bool]
 [False,True,False] :: [Bool]
 [[’a’],[’b’,’c’]] :: [[Char]]
 Note:
 The type of the elements is unrestricted. For example, we can have lists of lists:

Page 65

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 65
 Tuple Types
 A tuple is a sequence of values of different types:
 (False,True) :: (Bool,Bool)
 (False,’a’,True) :: (Bool,Char,Bool)
 In general:
 (t1,t2,…,tn) is the type of n-tuples whose ith components have type ti for any i in 1…n.

Page 66

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 66
 The type of a tuple encodes its size:
 (False,True) :: (Bool,Bool)
 (False,True,False) :: (Bool,Bool,Bool)
 (’a’,(False,’b’)) :: (Char,(Bool,Char))
 (True,[’a’,’b’]) :: (Bool,[Char])
 Note:
 The type of the components is unrestricted:

Page 67

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 67
 Hints and Tips
 ★When defining a new function in Haskell, it is useful to begin by writing down its type;
 ★Within a script, it is good practice to state the type of every new function defined;

Page 68

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 68
 Exercises
 [’a’,’b’,’c’]
 (’a’,’b’,’c’)
 [(False,’0’),(True,’1’)]
 ([False,True],[’0’,’1’])
 What are the types of the following values?(1)

Page 69

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 69
 Functions types

Page 70

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 70
 Function Types
 not :: Bool → Bool
 isDigit :: Char → Bool
 In general:
 A function is a mapping from values of one type to values of another type:
 t1 → t2 is the type of functions that map values of type t1 to values to type t2.

Page 71

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 71
 ★The arrow → is typed at the keyboard as ->.
 ★The argument and result types are unrestricted. For example, functions with multiple arguments or results are possible using lists or tuples:
 Note:
 add :: (Int,Int) → Intadd (x,y) = x+y
 zeroto :: Int → [Int]zeroto n = [0..n]

Page 72

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 72
 Functions with multiple arguments are also possible by returning functions as results:
 add’ :: Int → (Int → Int)add’ x y = x+y
 add’ takes an integer x and returns a function add’ x. In turn, this function takes
 an integer y and returns the result x+y.
 Curried Functions

Page 73

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 73
 add and add’ produce the same final result, but add takes its two arguments at the same time, whereas add’ takes them one at a time:
 Note:
 Functions that take their arguments one at a time are called curried functions, celebrating the work of Haskell Curry on such functions.
 add :: (Int,Int) → Int
 add’ :: Int → (Int → Int)

Page 74

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 74
 Functions with more than two arguments can be curried by returning nested functions:
 mult :: Int → (Int → (Int → Int))mult x y z = x*y*z
 mult takes an integer x and returns a function mult x, which in turn takes an integer y and
 returns a function mult x y, which finally takes an integer z and returns the result x*y*z.

Page 75

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 75
 Why is Currying Useful?
 Curried functions are more flexible than functions on tuples, because useful functions can often be made by partially applying a curried function.
 For example:
 add’ 1 :: Int → Int
 take 5 :: [Int] → [Int]
 drop 5 :: [Int] → [Int]

Page 76

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 76
 Currying Conventions
 The arrow → associates to the right.
 Int → Int → Int → Int
 To avoid excess parentheses when using curried functions, two simple conventions are adopted:
 Means Int → (Int → (Int → Int)).

Page 77

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 77
 As a consequence, it is then natural for function application to associate to the left.
 mult x y z
 Means ((mult x) y) z.
 Unless tupling is explicitly required, all functions in Haskell are normally defined in curried form.

Page 78

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 78
 Polymorphic Functions
 A function is called polymorphic (“of many forms”) if its type contains one or more type variables.
 length :: [a] → Int
 for any type a, length takes a list of values of type a and returns an integer.

Page 79

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 79
 Type variables can be instantiated to different types in different circumstances:
 Note:
 Type variables must begin with a lower-case letter, and are usually named a, b, c, etc.
 > length [False,True]2
 > length [1,2,3,4]4
 a = Bool
 a = Int

Page 80

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 80
 Many of the functions defined in the standard prelude are polymorphic. For example:
 fst :: (a,b) → a
 head :: [a] → a
 take :: Int → [a] → [a]
 zip :: [a] → [b] → [(a,b)]
 id :: a → a

Page 81

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 81
 Overloaded Functions
 A polymorphic function is called overloaded if its type contains one or more class constraints.
 sum :: Num a ⇒ [a] → a
 for any numeric type a, sum takes a list of values of type a and returns a value of type a.

Page 82

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 82
 Constrained type variables can be instantiated to any types that satisfy the constraints:
 Note:
 > sum [1,2,3]6
 > sum [1.1,2.2,3.3]6.6
 > sum [’a’,’b’,’c’]ERROR
 Char is not a numeric type
 a = Int
 a = Float

Page 83

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 83
 Num - Numeric types
 Eq - Equality types
 Ord - Ordered types
 Haskell has a number of type classes, including:
 For example:
 (+) :: Num a ⇒ a → a → a (==) :: Eq a ⇒ a → a → Bool
 (<) :: Ord a ⇒ a → a → Bool

Page 84

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 84
 Hints and Tips
 ★When stating the types of polymorphic functions that use numbers, equality or orderings, take care to include the necessary class constraints.

Page 85

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 85
 Exercises
 [tail,init,reverse]
 What is the type of the following value?(1)

Page 86

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 86
 second xs = head (tail xs)
 swap (x,y) = (y,x)
 pair x y = (x,y)
 double x = x*2
 palindrome xs = reverse xs == xs
 twice f x = f (f x)
 What are the types of the following functions?(2)

Page 87

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 87
 Defining Functions

Page 88

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 88
 Conditional Expressions
 As in most programming languages, functions can be defined using conditional expressions.
 abs :: Int → Intabs n = if n ≥ 0 then n else -n
 abs takes an integer n and returns n if it is non-negative and -n otherwise.

Page 89

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 89
 Conditional expressions can be nested:
 signum :: Int → Intsignum n = if n < 0 then -1 else if n == 0 then 0 else 1
 In Haskell, conditional expressions must always have an else branch, which avoids any possible ambiguity problems with nested conditionals.
 Note:

Page 90

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 90
 Guarded Equations
 As an alternative to conditionals, functions can also be defined using guarded equations.
 abs n | n ≥ 0 = n | otherwise = -n
 As previously, but using guarded equations.

Page 91

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 91
 Guarded equations can be used to make definitions involving multiple conditions easier to read:
 The catch all condition otherwise is defined in the prelude by otherwise = True.
 Note:
 signum n | n < 0 = -1 | n == 0 = 0 | otherwise = 1

Page 92

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 92
 Pattern Matching
 Many functions have a particularly clear definition using pattern matching on their arguments.
 not :: Bool → Boolnot False = Truenot True = False
 not maps False to True, and True to False.

Page 93

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 93
 Functions can often be defined in many different ways using pattern matching. For example
 (&&) :: Bool → Bool → BoolTrue && True = TrueTrue && False = FalseFalse && True = False False && False = False
 True && True = True_ && _ = False
 can be defined more compactly by

Page 94

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 94
 True && b = bFalse && _ = False
 However, the following definition is more efficient, because it avoids evaluating the second argument if the first argument is False:
 The underscore symbol _ is a wildcard pattern that matches any argument value.
 Note:

Page 95

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 95
 Patterns may not repeat variables. For example, the following definition gives an error:
 b && b = b_ && _ = False
 Patterns are matched in order. For example, the following definition always returns False:
 _ && _ = FalseTrue && True = True

Page 96

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 96
 List Patterns
 Internally, every non-empty list is constructed by repeated use of an operator (:) called “cons” that adds an element to the start of a list.
 [1,2,3,4]
 Means 1:(2:(3:(4:[]))).

Page 97

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 97
 Functions on lists can be defined using x:xs patterns.
 head :: [a] → ahead (x:_) = x
 tail :: [a] → [a]tail (_:xs) = xs
 head and tail map any non-empty list to its first and remaining elements.

Page 98

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 98
 Note:
 x:xs patterns must be parenthesised, because application has priority over (:). For example, the following definition gives an error:
 x:xs patterns only match non-empty lists:
 > head []Error
 head x:_ = x

Page 99

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 99
 Integer Patterns
 pred :: Int → Intpred (n+1) = n
 As in mathematics, functions on integers can be defined using n+k patterns, where n is an integer variable and k>0 is an integer constant.
 pred maps any positive integer to its predecessor.
 Banned in
 Haskell 2010

Page 100

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 100
 Note:
 n+k patterns must be parenthesised, because application has priority over +. For example, the following definition gives an error:
 n+k patterns only match integers ≥ k.
 > pred 0Error
 pred n+1 = n
 Banned in
 Haskell 2010

Page 101

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 101
 Lambda Expressions
 Functions can be constructed without naming the functions by using lambda expressions.
 λx → x+x
 the nameless function that takes a number x and returns the result x+x.

Page 102

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 102
 ๏The symbol λ is the Greek letter lambda, and is typed at the keyboard as a backslash \.
 ๏In Haskell, the use of the λ symbol for nameless functions comes from the lambda calculus, the theory of functions on which Haskell is based.
 Note:

Page 103

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 103
 Why Are Lambda's Useful?
 Lambda expressions can be used to give a formal meaning to functions defined using currying.
 For example:
 add x y = x+y
 add = λx → (λy → x+y)
 means

Page 104

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 104
 const :: a → b → aconst x _ = x
 is more naturally defined by
 const :: a → (b → a)const x = λ_ → x
 Lambda expressions are also useful when defining functions that return functions as results.
 For example:

Page 105

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 105
 odds n = map f [0..n-1] where f x = x*2 + 1
 can be simplified to
 odds n = map (λx → x*2 + 1) [0..n-1]
 Lambda expressions can be used to avoid naming functions that are only referenced once.
 For example:

Page 106

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 106
 Infix vs. prefix
 An operator written between its two arguments can be converted into a curried function written before its two arguments by using parentheses.
 For example:
 > 1+23
 > (+) 1 23

Page 107

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 107
 We are also allowed to include one of the arguments of the operator in the parentheses.
 For example:
 > (1+) 23
 > (+2) 13
 In general, if ⊕ is an operator then functions of the form (⊕), (x⊕) and (⊕y) are called sections.
 Sections

Page 108

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 108
 Why Are Sections Useful?
 Useful functions can sometimes be constructed in a simple way using sections. For example:
 - successor function
 - reciprocation function
 - doubling function
 - halving function
 (1+)
 (*2)
 (/2)
 (1/)

Page 109

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 109
 Exercises
 Consider a function safetail that behaves in the same way as tail, except that safetail maps the empty list to the empty list, whereas tail gives an error in this case. Define safetail using:
 (a) a conditional expression; (b) guarded equations; (c) pattern matching.
 Hint: the library function null :: [a] → Bool can be used to test if a list is empty.
 (1)

Page 110

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 110
 Give three possible definitions for the logical or operator (||) using pattern matching.
 (2)
 Redefine the following version of (&&) using conditionals rather than patterns:
 (3)
 True && True = True_ && _ = False
 Do the same for the following version:(4)
 True && b = bFalse && _ = False

Page 111

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 111
 List Comprehensions

Page 112

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 112
 Set Comprehensions
 In mathematics, the comprehension notation can be used to construct new sets from old sets.
 {x2 | x ∈ {1...5}}
 The set {1,4,9,16,25} of all numbers x2 such that x is an element of the set {1…5}.

Page 113

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 113
 Lists Comprehensions
 In Haskell, a similar comprehension notation can be used to construct new lists from old lists.
 [x^2 | x ← [1..5]]
 The list [1,4,9,16,25] of all numbers x^2
 such that x is an element of the list [1..5].

Page 114

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 114
 Note:
 ๏The expression x ← [1..5] is called a generator, as it states how to generate values for x.
 ๏Comprehensions can have multiple generators, separated by commas. For example:
 > [(x,y) | x ← [1,2,3], y ← [4,5]]
 [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

Page 115

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 115
 Changing the order of the generators changes the order of the elements in the final list:
 > [(x,y) | y ← [4,5], x ← [1,2,3]]
 [(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]
 Multiple generators are like nested loops, with later generators as more deeply nested loops whose variables change value more frequently.
 > [(x,y) | x ← [1,2,3], y ← [4,5]]
 [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

Page 116

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 116
 Dependant Generators
 Later generators can depend on the variables that are introduced by earlier generators.
 [(x,y) | x ← [1..3], y ← [x..3]]
 The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]of all pairs of numbers (x,y) such that x,y are
 elements of the list [1..3] and y ≥ x.

Page 117

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 117
 Using a dependant generator we can define the library function that concatenates a list of lists:
 concat :: [[a]] → [a]
 concat xss = [x | xs ← xss, x ← xs]
 For example:
 > concat [[1,2,3],[4,5],[6]]
 [1,2,3,4,5,6]
 We iterate over the lists of lists, and then over the elements of each list in turn, and finally we append all those elements.

Page 118

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 118
 Guards
 List comprehensions can use guards to restrict the values produced by earlier generators.
 [x | x ← [1..10], even x]
 The list [2,4,6,8,10] of all numbers x such that x is an element of the list
 [1..10] and x is even.

Page 119

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 119
 factors :: Int → [Int]factors n = [x | x ← [1..n], n `mod` x == 0]
 Using a guard we can define a function that maps a positive integer to its list of factors:
 For example:
 > factors 15
 [1,3,5,15]

Page 120

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 120
 A positive integer is prime if its only factors are 1 and itself. Hence, using factors we can define a function that decides if a number is prime:
 prime :: Int → Boolprime n = factors n == [1,n]
 For example:
 > prime 15False
 > prime 7True

Page 121

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 121
 Using a guard we can now define a function that returns the list of all primes up to a given limit:
 primes :: Int → [Int]primes n = [x | x ← [2..n], prime x]
 For example:
 > primes 40
 [2,3,5,7,11,13,17,19,23,29,31,37]

Page 122

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 122
 The Zip Function
 A useful library function is zip, which maps two lists to a list of pairs of their corresponding elements.
 zip :: [a] → [b] → [(a,b)]
 For example:
 > zip [’a’,’b’,’c’] [1,2,3,4]
 [(’a’,1),(’b’,2),(’c’,3)]
 We do not show the definition of zip at this point.

Page 123

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 123
 Using zip we can define a function returns the list of all pairs of adjacent elements from a list:
 For example:
 pairs :: [a] → [(a,a)]
 pairs xs = zip xs (tail xs)
 > pairs [1,2,3,4]
 [(1,2),(2,3),(3,4)]

Page 124

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 124
 Using pairs we can define a function that decides if the elements in a list are sorted:
 For example:
 sorted :: Ord a ⇒ [a] → Boolsorted xs = and [x ≤ y | (x,y) ← pairs xs]
 > sorted [1,2,3,4]True
 > sorted [1,3,2,4]False

Page 125

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 125
 Using zip we can define a function that returns the list of all positions of a value in a list:
 positions :: Eq a ⇒ a → [a] → [Int]positions x xs =
 [i | (x’,i) ← zip xs [0..n], x == x’] where n = length xs - 1
 For example:
 > positions 0 [1,0,0,1,0,1,1,0][1,2,4,7]

Page 126

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 126
 String Comprehensions
 A string is a sequence of characters enclosed in double quotes. Internally, however, strings are represented as lists of characters.
 "abc" :: String
 Means [’a’,’b’,’c’] :: [Char].

Page 127

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 127
 Because strings are just special kinds of lists, any polymorphic function that operates on lists can also be applied to strings. For example:
 > length "abcde"5
 > take 3 "abcde""abc"
 > zip "abc" [1,2,3,4]
 [(’a’,1),(’b’,2),(’c’,3)]

Page 128

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 128
 Similarly, list comprehensions can also be used to define functions on strings, such as a function that counts the lower-case letters in a string:
 lowers :: String → Intlowers xs =
 length [x | x ← xs, isLower x]
 For example:
 > lowers "Haskell"
 6

Page 129

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 129
 ExercisesA triple (x,y,z) of positive integers is called pythagorean if x2 + y2 = z2. Using a list comprehension, define a function
 (1)
 pyths :: Int → [(Int,Int,Int)]
 that maps an integer n to all such triples with components in [1..n]. For example:
 > pyths 5[(3,4,5),(4,3,5)]

Page 130

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 130
 A positive integer is perfect if it equals the sum of all of its factors, excluding the number itself. Using a list comprehension, define a function
 (2)
 perfects :: Int → [Int]
 that returns the list of all perfect numbers up to a given limit. For example:
 > perfects 500
 [6,28,496]

Page 131

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 131
 (xsi * ysi)∑i = 0
 n-1
 Using a list comprehension, define a function that returns the scalar product of two lists.
 The scalar product of two lists of integers xs and ys of length n is give by the sum of the products of the corresponding integers:
 (3)

Page 132

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 132
 Recursive Functions

Page 133

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 133
 Introduction
 As we have seen, many functions can naturally be defined in terms of other functions.
 factorial :: Int → Intfactorial n = product [1..n]
 factorial maps any integer n to the product of the integers between 1 and n.

Page 134

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 134
 Expressions are evaluated by a stepwise process of applying functions to their arguments.
 For example:
 factorial 4
 product [1..4]=
 product [1,2,3,4]=
 1*2*3*4=
 24=

Page 135

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 135
 Recursive Functions
 In Haskell, functions can also be defined in terms of themselves. Such functions are called recursive.
 factorial 0 = 1
 factorial (n+1) = (n+1) * factorial n
 factorial maps 0 to 1, and any other positive integer to the product of itself
 and the factorial of its predecessor.

Page 136

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 136
 For example:
 factorial 3
 3 * factorial 2=
 3 * (2 * factorial 1)=
 3 * (2 * (1 * factorial 0))=
 3 * (2 * (1 * 1))=
 3 * (2 * 1)=
 =6
 3 * 2=

Page 137

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 137
 Note:
 ๏factorial 0 = 1 is appropriate because 1 is the identity for multiplication: 1*x = x = x*1.
 ๏The recursive definition diverges on integers < 0 because the base case is never reached:
 > factorial (-1)
 Error: Control stack overflow

Page 138

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 138
 Why is Recursion Useful?
 ๏Some functions, such as factorial, are simpler to define in terms of other functions.
 ๏As we shall see, however, many functions can naturally be defined in terms of themselves.
 ๏Properties of functions defined using recursion can be proved using the simple but powerful mathematical technique of induction.

Page 139

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 139
 Recursion on Lists
 Recursion is not restricted to numbers, but can also be used to define functions on lists.
 product :: [Int] → Intproduct [] = 1product (n:ns) = n * product ns
 product maps the empty list to 1, and any non-empty list to its head multiplied by the product of its tail.

Page 140

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 140
 For example:
 product [2,3,4]
 2 * product [3,4]=
 2 * (3 * product [4])=
 2 * (3 * (4 * product []))=
 2 * (3 * (4 * 1))=
 24=

Page 141

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 141
 Using the same pattern of recursion as in product we can define the length function on lists.
 length :: [a] → Intlength [] = 0
 length (_:xs) = 1 + length xs
 length maps the empty list to 0, and any non-empty list to the
 successor of the length of its tail.

Page 142

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 142
 For example:
 length [1,2,3]
 1 + length [2,3]=
 1 + (1 + length [3])=
 1 + (1 + (1 + length []))=
 1 + (1 + (1 + 0))=
 3=

Page 143

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 143
 Using a similar pattern of recursion we can define the reverse function on lists.
 reverse :: [a] → [a]
 reverse [] = []
 reverse (x:xs) = reverse xs ++ [x]
 reverse maps the empty list to the empty list, and any non-empty list to the reverse
 of its tail appended to its head.

Page 144

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 144
 For example:
 reverse [1,2,3]
 reverse [2,3] ++ [1]=
 (reverse [3] ++ [2]) ++ [1]=
 ((reverse [] ++ [3]) ++ [2]) ++ [1]=
 (([] ++ [3]) ++ [2]) ++ [1]=
 [3,2,1]=

Page 145

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 145
 Multiple Arguments
 Functions with more than one argument can also be defined using recursion. For example:
 Zipping the elements of two lists:
 zip :: [a] → [b] → [(a,b)]
 zip [] _ = []
 zip _ [] = []
 zip (x:xs) (y:ys) = (x,y) : zip xs ys

Page 146

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 146
 drop :: Int → [a] → [a]
 drop 0 xs = xsdrop (n+1) [] = []
 drop (n+1) (_:xs) = drop n xs
 Remove the first n elements from a list:
 (++) :: [a] → [a] → [a]
 [] ++ ys = ys(x:xs) ++ ys = x : (xs ++ ys)
 Appending two lists:

Page 147

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 147
 Quicksort
 The quicksort algorithm for sorting a list of integers can be specified by the following two rules:
 The empty list is already sorted;
 Non-empty lists can be sorted by sorting the tail values ≤ the head, sorting the tail values > the head, and then appending the resulting lists on either side of the head value.

Page 148

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 148
 Using recursion, this specification can be translated directly into an implementation:
 qsort :: [Int] → [Int]qsort [] = []qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger where smaller = [a | a ← xs, a ≤ x] larger = [b | b ← xs, b > x]
 This is probably the simplest implementation of quicksort in any programming language!
 Note:

Page 149

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 149
 For example (abbreviating qsort as q):
 q [3,2,4,1,5]
 q [2,1] ++ [3] ++ q [4,5]
 q [1] q []++ [2] ++ q [] q [5]++ [4] ++
 [1] [] [] [5]

Page 150

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 150
 Exercises
 (1) Without looking at the standard prelude, define the following library functions using recursion:
 and :: [Bool] → Bool
 Decide if all logical values in a list are true:
 concat :: [[a]] → [a]
 Concatenate a list of lists:

Page 151

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 151
 (!!) :: [a] → Int → a
 Select the nth element of a list:
 elem :: Eq a ⇒ a → [a] → Bool
 Decide if a value is an element of a list:
 replicate :: Int → a → [a]
 Produce a list with n identical elements:

Page 152

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 152
 (2) Define a recursive function
 merge :: [Int] → [Int] → [Int]
 that merges two sorted lists of integers to give a single sorted list. For example:
 > merge [2,5,6] [1,3,4]
 [1,2,3,4,5,6]

Page 153

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 153
 (3) Define a recursive function
 i) Lists of length ≤ 1 are already sorted;ii) other lists can be sorted by sorting the two halves and merging the resulting lists.
 msort :: [Int] → [Int]
 that implements merge sort, which can be specified by the following two rules:

Page 154

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 154
 Type Declarations

Page 155

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 155
 Type Declarations
 In Haskell, a new name for an existing type can be defined using a type declaration.
 type String = [Char]
 String is a synonym for the type [Char].

Page 156

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 156
 Type declarations can be used to make other types easier to read. For example, given
 origin :: Posorigin = (0,0)
 left :: Pos → Posleft (x,y) = (x-1,y)
 type Pos = (Int,Int)
 we can define:

Page 157

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 157
 Like function definitions, type declarations can also have parameters. For example, given
 type Pair a = (a,a)
 we can define:
 mult :: Pair Int → Intmult (m,n) = m*n
 copy :: a → Pair acopy x = (x,x)

Page 158

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 158
 Type declarations can be nested:
 type Pos = (Int,Int)
 type Trans = Pos → Pos
 However, they cannot be recursive:
 type Tree = (Int,[Tree])

Page 159

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 159
 Data Declarations
 A completely new type can be defined by specifying its values using a data declaration.
 data Bool = False | True
 Bool is a new type, with two new values False and True.

Page 160

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 160
 Note:
 ๏The two values False and True are called the constructors for the type Bool.
 ๏Type and constructor names must begin with an upper-case letter.
 ๏Data declarations are similar to context free grammars. The former specifies the values of a type, the latter the sentences of a language.

Page 161

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 161
 answers :: [Answer]answers = [Yes,No,Unknown]
 flip :: Answer → Answerflip Yes = Noflip No = Yesflip Unknown = Unknown
 data Answer = Yes | No | Unknown
 we can define:
 Values of new types can be used in the same ways as those of built in types. For example, given

Page 162

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 162
 The constructors in a data declaration can also have parameters. For example, given
 data Shape = Circle Float | Rect Float Float
 square :: Float → Shapesquare n = Rect n n
 area :: Shape → Floatarea (Circle r) = pi * r^2
 area (Rect x y) = x * y
 we can define:

Page 163

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 163
 Note:
 ๏Shape has values of the form Circle r where r is a float, and Rect x y where x and y are floats.
 ๏Circle and Rect can be viewed as functions that construct values of type Shape:
 Circle :: Float → Shape
 Rect :: Float → Float → Shape

Page 164

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 164
 Not surprisingly, data declarations themselves can also have parameters. For example, given
 data Maybe a = Nothing | Just a
 safediv :: Int → Int → Maybe Intsafediv _ 0 = Nothingsafediv m n = Just (m `div` n)
 safehead :: [a] → Maybe asafehead [] = Nothingsafehead xs = Just (head xs)
 we can define:

Page 165

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 165
 Recursive Types
 In Haskell, new types can be declared in terms of themselves. That is, types can be recursive.
 data Nat = Zero | Succ Nat
 Nat is a new type, with constructors Zero :: Nat and Succ :: Nat → Nat.

Page 166

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 166
 Note:
 A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is, Nat contains the following infinite sequence of values:
 Zero
 Succ Zero
 Succ (Succ Zero)
 •••

Page 167

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 167
 We can think of values of type Nat as natural numbers, where Zero represents 0, and Succ represents the successor function 1+.
 For example, the value
 Succ (Succ (Succ Zero))
 represents the natural number
 1 + (1 + (1 + 0)) 3=

Page 168

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 168
 Using recursion, it is easy to define functions that convert between values of type Nat and Int:
 nat2int :: Nat → Intnat2int Zero = 0
 nat2int (Succ n) = 1 + nat2int n
 int2nat :: Int → Natint2nat 0 = Zeroint2nat (n+1) = Succ (int2nat n)

Page 169

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 169
 Two naturals can be added by converting them to integers, adding, and then converting back:
 However, using recursion the function add can be defined without the need for conversions:
 add :: Nat → Nat → Natadd m n = int2nat (nat2int m + nat2int n)
 add Zero n = nadd (Succ m) n = Succ (add m n)

Page 170

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 170
 For example:
 add (Succ (Succ Zero)) (Succ Zero)
 Succ (add (Succ Zero) (Succ Zero))=
 Succ (Succ (add Zero (Succ Zero))=
 Succ (Succ (Succ Zero))=
 Note: The recursive definition for add corresponds to the laws 0+n = n and (1+m)+n = 1+(m+n).

Page 171

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 171
 Arithmetic Expressions
 Consider a simple form of expressions built up from integers using addition and multiplication.
 1
 +
 ∗
 32

Page 172

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 172
 Using recursion, a suitable new type to represent such expressions can be declared by:
 For example, the expression on the previous slide would be represented as follows:
 data Expr = Val Int | Add Expr Expr | Mul Expr Expr
 Add (Val 1) (Mul (Val 2) (Val 3))

Page 173

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 173
 Using recursion, it is now easy to define functions that process expressions. For example:
 size :: Expr → Intsize (Val n) = 1
 size (Add x y) = size x + size ysize (Mul x y) = size x + size y
 eval :: Expr → Inteval (Val n) = neval (Add x y) = eval x + eval yeval (Mul x y) = eval x * eval y

Page 174

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 174
 The three constructors have types:
 Val :: Int → ExprAdd :: Expr → Expr → ExprMul :: Expr → Expr → Expr
 On the types of constructors

Page 175

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 175
 Binary Trees
 In computing, it is often useful to store data in a two-way branching structure or binary tree.
 5
 7
 96
 3
 41

Page 176

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 176
 Using recursion, a suitable new type to represent such binary trees can be declared by:
 For example, the tree on the previous slide would be represented as follows:
 data Tree = Leaf Int | Node Tree Int Tree
 Node (Node (Leaf 1) 3 (Leaf 4)) 5 (Node (Leaf 6) 7 (Leaf 9))

Page 177

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 177
 We can now define a function that decides if a given integer occurs in a binary tree:
 occurs :: Int → Tree → Booloccurs m (Leaf n) = m==noccurs m (Node l n r) = m==n || occurs m l || occurs m r
 In the worst case, when the integer does not occur, this function traverses the entire tree.

Page 178

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 178
 Now consider the function flatten that returns the list of all the integers contained in a tree:
 flatten :: Tree → [Int]flatten (Leaf n) = [n]
 flatten (Node l n r) = flatten l ++ [n]
 ++ flatten r
 A tree is a search tree if it flattens to a list that is ordered. Our example tree is a search tree, as it flattens to the ordered list [1,3,4,5,6,7,9].

Page 179

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 179
 Search trees have the important property that when trying to find a value in a tree we can always decide which of the two sub-trees it may occur in:
 This new definition is more efficient, because it only traverses one path down the tree.
 occurs m (Leaf n) = m==n
 occurs m (Node l n r) | m==n = True
 | m<n = occurs m l
 | m>n = occurs m r

Page 180

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 180
 Exercises(1 Using recursion and the function add, define a
 function that multiplies two natural numbers.
 (2 Define a suitable function fold for expressions, and give a few examples of its use.
 (3 A binary tree is complete if the two sub-trees of every node are of equal size. Define a function that decides if a binary tree is complete.

Page 181

Higher-order functions
 http://101companies.org/wiki/Contribution:haskellFlattened
 http://101companies.org/wiki/Contribution:haskellFlattened
 http://101companies.org/wiki/Contribution:haskellFlattened

Page 182

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 182
 Higher-Order Functions

Page 183

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 183
 Introduction
 A function is called higher-order if it takes a function as an argument or returns a function as a result.
 twice :: (a → a) → a → atwice f x = f (f x)
 twice is higher-order because ittakes a function as its first argument.

Page 184

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 184
 Why Are They Useful?
 ๏Common programming idioms can be encoded as functions within the language itself.
 ๏Domain specific languages can be defined as collections of higher-order functions.
 ๏Algebraic properties of higher-order functions can be used to reason about programs.

Page 185

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 185
 The Map Function
 The higher-order library function called map applies a function to every element of a list.
 map :: (a → b) → [a] → [b]
 For example:
 > map (+1) [1,3,5,7]
 [2,4,6,8]

Page 186

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 186
 Alternatively, for the purposes of proofs, the map function can also be defined using recursion:
 The map function can be defined in a particularly simple manner using a list comprehension:
 map f xs = [f x | x ← xs]
 map f [] = []
 map f (x:xs) = f x : map f xs

Page 187

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 187
 The Filter Function
 The higher-order library function filter selects every element from a list that satisfies a predicate.
 filter :: (a → Bool) → [a] → [a]
 For example:
 > filter even [1..10]
 [2,4,6,8,10]

Page 188

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 188
 Alternatively, it can be defined using recursion:
 Filter can be defined using a list comprehension:
 filter p xs = [x | x ← xs, p x]
 filter p [] = []
 filter p (x:xs)
 | p x = x : filter p xs | otherwise = filter p xs

Page 189

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 189
 The Foldr Function
 A number of functions on lists can be defined using the following simple pattern of recursion:
 f [] = vf (x:xs) = x ⊕ f xs
 f maps the empty list to some value v, and any non-empty list to some function ⊕
 applied to its head and f of its tail.

Page 190

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 190
 For example:
 sum [] = 0
 sum (x:xs) = x + sum xs
 and [] = Trueand (x:xs) = x && and xs
 product [] = 1
 product (x:xs) = x * product xs
 v = 0⊕ = +
 v = 1⊕ = *
 v = True⊕ = &&

Page 191

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 191
 The higher-order library function foldr (fold right) encapsulates this simple pattern of recursion, with the function ⊕ and the value v as arguments.
 For example:
 sum = foldr (+) 0
 product = foldr (*) 1
 or = foldr (||) False
 and = foldr (&&) True

Page 192

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 192
 Foldr itself can be defined using recursion:
 foldr :: (a → b → b) → b → [a] → b
 foldr f v [] = v
 foldr f v (x:xs) = f x (foldr f v xs)
 However, it is best to think of foldr non-recursively, as simultaneously replacing each (:) in a list by a given function, and [] by a given value.

Page 193

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 193
 sum [1,2,3]
 foldr (+) 0 [1,2,3]=
 foldr (+) 0 (1:(2:(3:[])))=
 1+(2+(3+0))=
 6=
 For example:
 Replace each (:)by (+) and [] by 0.

Page 194

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 194
 product [1,2,3]
 foldr (*) 1 [1,2,3]=
 foldr (*) 1 (1:(2:(3:[])))=
 1*(2*(3*1))=
 6=
 For example:
 Replace each (:)by (*) and [] by 1.

Page 195

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 195
 Other Foldr Examples
 Even though foldr encapsulates a simple pattern of recursion, it can be used to define many more functions than might first be expected.
 Recall the length function:
 length :: [a] → Intlength [] = 0
 length (_:xs) = 1 + length xs

Page 196

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 196
 length [1,2,3]
 length (1:(2:(3:[])))=
 1+(1+(1+0))=
 3=
 Hence, we have:
 length = foldr (λ_ n → 1+n) 0
 Replace each (:) by λ_ n → 1+n
 and [] by 0.
 For example:

Page 197

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 197
 Now recall the reverse function:
 reverse [] = []
 reverse (x:xs) = reverse xs ++ [x]
 reverse [1,2,3]
 reverse (1:(2:(3:[])))=
 (([] ++ [3]) ++ [2]) ++ [1]=
 [3,2,1]=
 For example:Replace each (:) by λx xs → xs ++ [x]
 and [] by [].

Page 198

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 198
 Hence, we have:
 reverse = foldr (λx xs → xs ++ [x]) []
 Finally, we note that the append function (++) has a particularly compact definition using foldr:
 (++ ys) = foldr (:) ysReplace each (:) by (:) and
 [] by ys.

Page 199

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 199
 Why Is Foldr Useful?
 ๏Some recursive functions on lists, such as sum, are simpler to define using foldr.
 ๏Properties of functions defined using foldr can be proved using algebraic properties of foldr, such as fusion and the banana split rule.
 ๏Advanced program optimisations can be simpler if foldr is used in place of explicit recursion.

Page 200

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 200
 Other Library Functions
 The library function (.) returns the composition of two functions as a single function.
 (.) :: (b → c) → (a → b) → (a → c)
 f . g = λx → f (g x)
 For example:
 odd :: Int → Boolodd = not . even

Page 201

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 201
 The library function all decides if every element of a list satisfies a given predicate.
 all :: (a → Bool) → [a] → Boolall p xs = and [p x | x ← xs]
 For example:
 > all even [2,4,6,8,10]
 True

Page 202

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 202
 Dually, the library function any decides if at leastone element of a list satisfies a predicate.
 any :: (a → Bool) → [a] → Boolany p xs = or [p x | x ← xs]
 For example:
 > any isSpace "abc def"
 True

Page 203

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 203
 The library function takeWhile selects elements from a list while a predicate holds of all the elements.
 takeWhile :: (a → Bool) → [a] → [a]takeWhile p [] = []takeWhile p (x:xs)
 | p x = x : takeWhile p xs | otherwise = []
 For example:
 > takeWhile isAlpha "abc def"
 "abc"

Page 204

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 204
 Dually, the function dropWhile removes elements while a predicate holds of all the elements.
 dropWhile :: (a → Bool) → [a] → [a]dropWhile p [] = []dropWhile p (x:xs)
 | p x = dropWhile p xs | otherwise = x:xs
 For example:
 > dropWhile isSpace " abc"
 "abc"

Page 205

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 205
 Exercises
 (3) Redefine map f and filter p using foldr.
 (2) Express the comprehension [f x | x ← xs, p x] using the functions map and filter.
 (1) What are higher-order functions that return functions as results better known as?

Page 206

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 206
 Many functions on expressions can be defined by replacing the constructors by other functions using a suitable fold function. For example:
 eval = fold id (+) (*)
 A fold for expressions

Page 207

Type classes
 http://101companies.org/wiki/Contribution:haskellTermRep
 http://101companies.org/wiki/Contribution:haskellTermRep
 http://101companies.org/wiki/Contribution:haskellTermRep

Page 208

Combinator libraries
 http://101companies.org/wiki/Contribution:hughesPJ
 http://101companies.org/wiki/Contribution:hughesPJ
 http://101companies.org/wiki/Contribution:hughesPJ

Page 209

Functors and foldables
 http://101companies.org/wiki/Contribution:haskellTree
 http://101companies.org/wiki/Contribution:haskellTree
 http://101companies.org/wiki/Contribution:haskellTree

Page 210

Monads
 http://101companies.org/wiki/Contribution:nonmonadic
 http://101companies.org/wiki/Contribution:writerMonad
 http://101companies.org/wiki/Contribution:nonmonadic
 http://101companies.org/wiki/Contribution:nonmonadic
 http://101companies.org/wiki/Contribution:writerMonad
 http://101companies.org/wiki/Contribution:writerMonad

Page 211

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 211
 Interactive Programs

Page 212

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 212
 Introduction
 To date, we have seen how Haskell can be used to write batch programs that take all their inputs at the start and give all their outputs at the end.
 batchprogram
 inputs outputs

Page 213

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 213
 However, we would also like to use Haskell to write interactive programs that read from the keyboard and write to the screen, as they are running.
 interactiveprogram
 inputs outputs
 keyboard
 screen

Page 214

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 214
 The Problem
 Haskell programs are pure mathematical functions:
 However, reading from the keyboard and writing to the screen are side effects:
 Haskell programs have no side effects.
 Interactive programs have side effects.

Page 215

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 215
 The Solution
 Interactive programs can be written in Haskell by using types to distinguish pure expressions from impure actions that may involve side effects.
 IO a
 The type of actions that return a value of type a.

Page 216

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 216
 For example:
 IO Char
 IO ()
 The type of actions that return a character.
 The type of purely side effecting actions that return no result value.
 () is the type of tuples with no components.
 Note:

Page 217

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 217
 Basic Actions
 The standard library provides a number of actions, including the following three primitives:
 getChar :: IO Char
 The action getChar reads a character from the keyboard, echoes it to the screen, and returns the character as its result value:

Page 218

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 218
 The action putChar c writes the character c to the screen, and returns no result value:
 putChar :: Char → IO ()
 The action return v simply returns the value v, without performing any interaction:
 return :: a → IO a

Page 219

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 219
 A sequence of actions can be combined as a single composite action using the keyword do.
 For example:
 Sequencing
 a :: IO (Char,Char)a = do
 x ← getChar getChar y ← getChar return (x,y)

Page 220

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 220
 Derived Primitives
 getLine :: IO StringgetLine = do
 x ← getChar if x == '\n' then
 return []
 else do xs ← getLine
 return (x:xs)
 Reading a string from the keyboard:

Page 221

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 221
 putStr :: String → IO ()
 putStr [] = return ()
 putStr (x:xs) = do putChar x putStr xs
 Writing a string to the screen:
 Writing a string and moving to a new line:
 putStrLn :: String → IO ()
 putStrLn xs = do putStr xs putChar '\n'

Page 222

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 222
 Example
 We can now define an action that prompts for a string to be entered and displays its length:
 strlen :: IO ()
 strlen = do putStr "Enter a string: " xs ← getLine putStr "The string has " putStr (show (length xs))
 putStrLn " characters"

Page 223

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 223
 For example:
 > strlen
 Enter a string: abcdeThe string has 5 characters
 Evaluating an action executes its side effects, with the final result value being discarded.
 Note:

Page 224

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 224
 Hangman
 Consider the following version of hangman:
 ๏One player secretly types in a word.
 ๏The other player tries to deduce the word, by entering a sequence of guesses.
 ๏For each guess, the computer indicates which letters in the secret word occur in the guess.

Page 225

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 225
 ๏The game ends when the guess is correct.
 hangman :: IO ()
 hangman =
 do putStrLn "Think of a word: " word ← sgetLine putStrLn "Try to guess it:" guess word
 We adopt a top down approach to implementing hangman in Haskell, starting as follows:

Page 226

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 226
 The action sgetLine reads a line of text from the keyboard, echoing each character as a dash:
 sgetLine :: IO StringsgetLine = do
 x ← getCh if x == '\n' then
 do putChar x return []
 else do putChar '-' xs ← sgetLine return (x:xs)

Page 227

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 227
 The function guess is the main loop, which requests and processes guesses until the game ends.
 guess :: String → IO ()
 guess word =
 do putStr "> " xs ← getLine if xs == word then putStrLn "You got it!" else do putStrLn (diff word xs)
 guess word
 The action getCh reads a character from the keyboard, without echoing it to the screen.

Page 228

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 228
 The function diff indicates which characters in one string occur in a second string:
 For example:
 > diff "haskell" "pascal" "-as--ll"
 diff :: String → String → Stringdiff xs ys =
 [if elem x ys then x else '-' | x ← xs]

Page 229

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 229
 Exercise
 Implement the game of nim in Haskell, where the rules of the game are as follows:
 ๏The board comprises five rows of stars:
 1: * * * * *2: * * * *3: * * *4: * *5: *

Page 230

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 230
 ๏Two players take it turn about to remove one or more stars from the end of a single row.
 ๏The winner is the player who removes the last star or stars from the board.
 Hint:
 Represent the board as a list of five integers that give the number of stars remaining on each row. For example, the initial board is [5,4,3,2,1].

Page 231

Parsing
 http://101companies.org/wiki/Contribution:parsec
 http://101companies.org/wiki/Contribution:parsec
 http://101companies.org/wiki/Contribution:parsec

Page 232

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 232
 Functional Parsers

Page 233

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 233
 What is a Parser?
 A parser is a program that analyses a piece of text to determine its syntactic structure.
 2∗3+4 means 4
 +
 2
 ∗
 32

Page 234

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 234
 Where Are They Used?
 Almost every real life program uses some form of parser to pre-process its input.
 Haskell programs
 Shell scripts
 HTML documents
 Hugs
 Unix
 Explorer
 parses

Page 235

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 235
 The Parser Type
 In a functional language such as Haskell, parsers can naturally be viewed as functions.
 type Parser = String → Tree
 A parser is a function that takes a string and returns some form of tree.

Page 236

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 236
 However, a parser might not require all of its input string, so we also return any unused input:
 type Parser = String → (Tree,String)
 A string might be parsable in many ways, including none, so we generalize to a list of results:
 type Parser = String → [(Tree,String)]

Page 237

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 237
 Finally, a parser might not always produce a tree, so we generalize to a value of any type:
 type Parser a = String → [(a,String)]
 Note: For simplicity, we will only consider parsers that either fail and return the empty list of results, or succeed and return a singleton list.

Page 238

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 238
 Basic Parsers
 The parser item fails if the input is empty, and consumes the first character otherwise:
 item :: Parser Char
 item = λinp → case inp of [] → []
 (x:xs) → [(x,xs)]

Page 239

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 239
 z The parser failure always fails:
 failure :: Parser afailure = λinp → []
 z The parser return v always succeeds, returning the value v without consuming any input:
 return :: a → Parser areturn v = λinp → [(v,inp)]

Page 240

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 240
 The parser p +++ q behaves as the parser p if it succeeds, and as the parser q otherwise:
 (+++) :: Parser a → Parser a → Parser ap +++ q = λinp → case p inp of
 [] → q inp [(v,out)] → [(v,out)]

Page 241

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 241
 The function parse applies a parser to a string:
 parse :: Parser a → String → [(a,String)]
 parse p inp = p inp

Page 242

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 242
 Examples
 % ghci Parsing
 > parse item ""[]
 > parse item "abc"[('a',"bc")]
 The behavior of the five parsing primitives can be illustrated with some simple examples:

Page 243

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 243
 > parse failure "abc"[]
 > parse (return 1) "abc"[(1,"abc")]
 > parse (item +++ return 'd') "abc"[('a',"bc")]
 > parse (failure +++ return 'd') "abc"[('d',"abc")]

Page 244

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 244
 Note:
 ๏The library file Parsing is available on the web from the Programming in Haskell home page.
 ๏For technical reasons, the first failure example actually gives an error concerning types, but this does not occur in non-trivial examples.
 ๏The Parser type is a monad, a mathematical structure that has proved useful for modeling many different kinds of computations.

Page 245

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 245
 A sequence of parsers can be combined as a single composite parser using the keyword do.
 For example:
 Sequencing
 p :: Parser (Char,Char)p = do
 x ← item item y ← item return (x,y)

Page 246

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 246
 Note:
 ๏Each parser must begin in precisely the same column. That is, the layout rule applies.
 ๏The values returned by intermediate parsers are discarded by default, but if required can be named using the ← operator.
 ๏The value returned by the last parser is the value returned by the sequence as a whole.

Page 247

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 247
 If any parser in a sequence of parsers fails, then the sequence as a whole fails. For example:
 > parse p "abcdef"[((’a’,’c’),"def")]
 > parse p "ab"[]
 The do notation is not specific to the Parser type, but can be used with any monadic type.

Page 248

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 248
 Derived Primitives
 sat :: (Char → Bool) → Parser Charsat p = do
 x ← item if p x then return x else failure
 Parsing a character that satisfies a predicate:

Page 249

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 249
 digit :: Parser Chardigit = sat isDigit
 char :: Char → Parser Charchar x = sat (x ==)
 Parsing a digit and specific characters:
 Applying a parser zero or more times:
 many :: Parser a → Parser [a]
 many p = many1 p +++ return []

Page 250

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 250
 many1 :: Parser a -> Parser [a]many1 p = do v ← p vs ← many p return (v:vs)
 Applying a parser one or more times:
 Parsing a specific string of characters:
 string :: String → Parser Stringstring [] = return []string (x:xs) = do char x string xs return (x:xs)

Page 251

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 251
 Example
 We can now define a parser that consumes a list of one or more digits from a string:
 p :: Parser Stringp = do char '[' d ← digit ds ← many (do char ',' digit) char ']' return (d:ds)

Page 252

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 252
 For example:
 > parse p "[1,2,3,4]"[("1234","")]
 > parse p "[1,2,3,4"[]
 Note: More sophisticated parsing libraries can indicate and/or recover from errors in the input string.

Page 253

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 253
 Arithmetic Expressions
 Consider a simple form of expressions built up from single digits using the operations of addition + and multiplication *, together with parentheses.
 We also assume that:
 - * and + associate to the right;
 - * has higher priority than +.

Page 254

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 254
 Formally, the syntax of such expressions is defined by the following context free grammar:
 expr → term '+' expr ⏐ term
 term → factor '*' term ⏐ factor
 factor → digit ⏐ '(' expr ')‘
 digit → '0' ⏐ '1' ⏐ … ⏐ '9'

Page 255

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 255
 However, for reasons of efficiency, it is important to factorise the rules for expr and term:
 expr → term ('+' expr ⏐ ε)
 term → factor ('*' term ⏐ ε)
 Note: The symbol ε denotes the empty string.

Page 256

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 256
 It is now easy to translate the grammar into a parser that evaluates expressions, by simply rewriting the grammar rules using the parsing primitives.
 That is, we have:
 expr :: Parser Intexpr = do
 t ← term do char '+' e ← expr return (t + e)
 +++ return t

Page 257

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 257
 term :: Parser Intterm = do f ← factor do char '*' t ← term return (f * t) +++ return f
 etc.

Page 258

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 258
 Finally, if we define
 eval :: String → Inteval xs = fst (head (parse expr xs))
 then we try out some examples:
 > eval "2*3+4"10
 > eval "2*(3+4)"14

Page 259

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 259
 Exercises
 (2) Extend the expression parser to allow the use of subtraction and division, based upon the following extensions to the grammar:
 expr → term ('+' expr ⏐ '-' expr ⏐ ε)
 term → factor ('*' term ⏐ '/' term ⏐ ε)
 (1) Why does factorising the expression grammar make the resulting parser more efficient?

Page 260

Generic programming
 http://101companies.org/wiki/Contribution:syb
 http://101companies.org/wiki/Contribution:syb
 http://101companies.org/wiki/Contribution:syb

Page 261

Reasoning

Page 262

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 262
 The Countdown Problem

Page 263

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 263
 What Is Countdown?
 ๏A popular quiz programme on British television that has been running since 1982.
 ๏Based upon an original French version called "Des Chiffres et Des Lettres".
 ๏Includes a numbers game that we shall refer to as the countdown problem.

Page 264

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 264
 Example
 1 3 7 10 25 50
 Using the numbers
 and the arithmetic operators
 765
 + - ∗ ÷
 construct an expression whose value is

Page 265

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 265
 Rules
 ๏All the numbers, including intermediate results, must be positive naturals (1,2,3,…).
 ๏Each of the source numbers can be used at most once when constructing the expression.
 ๏We abstract from other rules that are adopted on television for pragmatic reasons.

Page 266

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 266
 For our example, one possible solution is
 ๏There are 780 solutions for this example.
 ๏Changing the target number to gives an example that has no solutions.
 Notes:
 831
 (25-10) ∗ (50+1) 765=

Page 267

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 A Prolog-basedreference solution
 267
 % Solutions Ts for countdown problem with numbers Ns, result X
 solve(Ns,X,Ts) :- findall(T,(sublist(L,Ns), permutation(L,P), compute(P,T), X is T),Ts).

Page 268

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 A Prolog-basedreference solution cont’d
 268
 % Generate all sublists of a given list
 sublist([],[]).sublist(Z,[H|T]) :- sublist(Y,T), (Z = Y ; Z = [H|Y]).

Page 269

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 A Prolog-basedreference solution cont’d
 269
 % Generate all permutations of a given list
 permutation([],[]).permutation([H|T1],L) :- permutation(T1,T2), append(T2a,T2b,T2), append(T2a,[H|T2b],L).

Page 270

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 A Prolog-basedreference solution cont’d
 270
 % Complete sequences of numbers into arithmetic expressions
 compute([R],R).compute(As,T) :- append(As1,As2,As), As1 = [_|_], As2 = [_|_], compute(As1,T1), compute(As2,T2), (T = T1 + T2 ; T = T1 - T2 ; T = T1 * T2 ; T = T1 / T2), R is T, R > 0, integer(R).

Page 271

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 271
 Evaluating Expressions
 Operators:
 data Op = Add | Sub | Mul | Div
 Apply an operator:
 apply :: Op → Int → Int → Intapply Add x y = x + yapply Sub x y = x - yapply Mul x y = x * yapply Div x y = x `div` y

Page 272

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 272
 Decide if the result of applying an operator to two positive natural numbers is another such:
 valid :: Op → Int → Int → Boolvalid Add _ _ = Truevalid Sub x y = x > yvalid Mul _ _ = Truevalid Div x y = x `mod` y == 0
 Expressions:
 data Expr = Val Int | App Op Expr Expr

Page 273

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 273
 eval :: Expr → [Int]eval (Val n) = [n | n > 0]eval (App o l r) = [apply o x y | x ← eval l , y ← eval r , valid o x y]
 Return the overall value of an expression, provided that it is a positive natural number:
 Either succeeds and returns a singleton list, or fails and returns the empty list.

Page 274

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 274
 Formalising The Problem
 Return a list of all possible ways of choosing zero or more elements from a list:
 choices :: [a] → [[a]]
 For example:
 > choices [1,2]
 [[],[1],[2],[1,2],[2,1]]

Page 275

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 275
 Return a list of all the values in an expression:
 values :: Expr → [Int]values (Val n) = [n]values (App _ l r) = values l ++ values r
 Decide if an expression is a solution for a given list of source numbers and a target number:
 solution :: Expr → [Int] → Int → Boolsolution e ns n = elem (values e) (choices ns) && eval e == [n]

Page 276

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 276
 Brute Force Solution
 Return a list of all possible ways of splitting a list into two non-empty parts:
 split :: [a] → [([a],[a])]
 For example:
 > split [1,2,3,4]
 [([1],[2,3,4]),([1,2],[3,4]),([1,2,3],[4])]

Page 277

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 277
 Return a list of all possible expressions whose values are precisely a given list of numbers:
 exprs :: [Int] → [Expr]exprs [] = []exprs [n] = [Val n]exprs ns = [e | (ls,rs) ← split ns , l ← exprs ls , r ← exprs rs , e ← combine l r]
 The key function in this lecture.

Page 278

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 278
 combine :: Expr → Expr → [Expr]combine l r = [App o l r | o ← [Add,Sub,Mul,Div]]
 Combine two expressions using each operator:
 solutions :: [Int] → Int → [Expr]solutions ns n = [e | ns' ← choices ns , e ← exprs ns' , eval e == [n]]
 Return a list of all possible expressions that solve an instance of the countdown problem:

Page 279

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 279
 How Fast Is It?
 System:
 Compiler:
 Example:
 One solution:
 All solutions:
 solutions [1,3,7,10,25,50] 765
 1.2GHz Pentium M laptop
 GHC version 6.4.1
 0.36 seconds
 43.98 seconds

Page 280

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 280
 ๏Many of the expressions that are considered will typically be invalid - fail to evaluate.
 ๏For our example, only around 5 million of the 33 million possible expressions are valid.
 ๏Combining generation with evaluation would allow earlier rejection of invalid expressions.
 Can We Do Better?

Page 281

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 281
 results :: [Int] → [Result]results ns = [(e,n) | e ← exprs ns , n ← eval e]
 type Result = (Expr,Int)
 Valid expressions and their values:
 We seek to define a function that fuses together the generation and evaluation of expressions:
 Fusing Two Functions

Page 282

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 282
 results [] = []results [n] = [(Val n,n) | n > 0]results ns = [res | (ls,rs) ← split ns , lx ← results ls , ry ← results rs , res ← combine' lx ry]
 This behaviour is achieved by defining
 combine' :: Result → Result → [Result]
 where

Page 283

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 283
 solutions' :: [Int] → Int → [Expr]solutions' ns n = [e | ns' ← choices ns , (e,m) ← results ns' , m == n]
 New function that solves countdown problems:
 combine’ (l,x) (r,y) = [(App o l r, apply o x y) | o ← [Add,Sub,Mul,Div]
 , valid o x y]
 Combining results:

Page 284

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 284
 How Fast Is It Now?
 Example:
 One solution:
 All solutions:
 solutions' [1,3,7,10,25,50] 765
 0.04 seconds
 3.47 seconds
 Around 10 times faster in
 both cases.

Page 285

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 285
 ๏Many expressions will be essentially the same using simple arithmetic properties, such as:
 ๏Exploiting such properties would considerably reduce the search and solution spaces.
 Can We Do Better?
 x ∗ y y ∗ x
 x ∗ 1 x
 =
 =

Page 286

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 286
 Exploiting Properties
 Strengthening the valid predicate to take account of commutativity and identity properties:
 valid :: Op → Int → Int → Bool
 valid Add x y = True
 valid Sub x y = x > y
 valid Mul x y = True
 valid Div x y = x `mod` y == 0
 x ≤ yx ≤ y && x ≠ 1x ≤ y && x ≠ 1 && y ≠ 1
 x ≤ y
 && y ≠ 1

Page 287

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 287
 How Fast Is It Now?
 Example:
 Valid:
 Solutions:
 solutions'' [1,3,7,10,25,50] 765
 250,000 expressions
 49 expressions
 Around 20 times less.
 Around 16 times less.

Page 288

This slide is adopted from G. Hutton’s deck for his book ”Programming in Haskell”,
 288
 One solution:
 All solutions:
 0.02 seconds
 0.44 seconds
 Around 2 times faster.
 Around 7 times faster.
 More generally, our program usually produces a solution to problems from the television show in an instant, and all solutions in under a second.

						
LOAD MORE

 XOM-2020 Annual Report - ExxonMobil

 Jdom how it works & how it opened the java process

 Porres - XOM Open Gear Inspections

 XOM Strategy for Preventing CUI

 Java + XML = JDOM · What is JDOM? • JDOM is a way to represent an XML document for easy and efficient reading, manipulation, and writing – Straightforward API – Lightweight

 BUTLLETÍ CLIMÀTIC MENSUAL. JULIOL DEL 2017€¦ · Ulldeter (2.410 m) al Ripollès, 40,8 mm a Sant Pau de Segúries (XOM) al Ripollès, 40,5 mm a Batet de la Serra (XOM) a la Garrotxa,

 JDOM Makes XML Easy -

 Tutoriel DOM et JDOM

 XOM MitchMoloney DelayedCokers-LowCokingTemperatures CokingCom April2010

 NY2-#817082-v2-PS RBC WO RDSA XOM 3NC6MExxon Mobil Corporation(“XOM”) $80.15 $56.11, which is 70% of its Initial Stock Price* * Rounded to two decimal places. The Notes

 Chan Dung Nguoi Hang Xom

 Ozone layer depletion xom

 Parsing XML into programming languages JAXP, DOM, SAX, JDOM/DOM4J, Xerces, Xalan, JAXB

 JDOM Notes from Rusty Harold’s Processing XML with JAVA xmljava/chapters/ch14.html

 XOM CEMS and Analyser Shelter ROM Surveys to L3

 XOM Case Study TPS TECHNITUBE goes digital with XOM eShop · 2020. 5. 26. · Page 3 → Fast going live “Setting up the eShop with the XOM staff was an absolutely positive experience

 Estructura CMU en La Rama Ejecutiva 8 28 2015 JDOM

 Bite of Science: Geophysics xom URC Seismic CII06 January 2007

 Exxon Mobil Corp Neutral - Amazon Web Services...Global Equity Research 09 July 2010 Exxon Mobil Corp Neutral XOM, XOM US A future with unconventional gas and XTO; reinstating coverage

 The Joy of SAX (and DOM, and JDOM…) Bill MacCartney 11 October 2004

 Stock Valuation of Exxon Mobil (XOM) Final (0)

 XOM Mobile Application Part (XMAP) Specificationopenss7.org/specs/xmap.pdf · 2014-10-26 · mentation of the XOM Mobile Application Part (XMAP) for OpenSS7. It contains recommendations

 XOM-B by Jeremy Robinson (Chapters 1-3)

 Solstice™ XOM Programming Reference

 Java + XML = · PDF fileWhat is JDOM? • JDOM is the Java Document Object Model • A way to represent an XML document for easy and efficient reading, manipulation, and writing

 Programação Haskell.pdf

 Java + XML = JDOM by Jason Hunter and Brett McLaughlin Enterprise Java O’Reilly Conference March, 2001

 The Joy of SAX (and DOM, and JDOM…)

 Java + XML = JDOM by Jason Hunter and Brett McLaughlin co-creators of JDOM Mountain View Java User's Group April 26, 2000

 La Cruz Y Su Sombra_Stephen Haskell.pdf

 $APC,$BP,$CHK,$CVX,$RIG,$VLO,$XOM Rated Buys

 Java + XML = JDOM by Jason Hunter and Brett McLaughlin XML DevCon November, 2000

 Energy Network Xom Presentation February 2010

 JDOM makes xml easy

 HPE Operations Orchestration…Open Source and Third-Party Software License Agreements Nov 2016 JAR List - Apache License 1.1 jdom-2.0.2.jar xpp3_min-1.1.4c.jar jdom-1.0.jar JAR List

 	About us
	Contact us
	Term
	DMCA
	Privacy Policy

 	English
	Français
	Español
	Deutsch

 Copyright © 2022 VDOCUMENTS

