introduction to gaussian processesdanielpr/files/gptut-penn_0.pdfintroduction to gaussian processes...

366
Introduction to Gaussian Processes Daniel Preot ¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13 October 2014 with slides from Trevor Cohn, Neil Lawrence, Richard Turner

Upload: others

Post on 10-Jun-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Introduction to Gaussian Processes

Daniel Preotiuc-Pietro

Positive Psychology CenterUniversity of Pennsylvania

13 October 2014

with slides from Trevor Cohn, Neil Lawrence, Richard Turner

Page 2: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian Processes

Brings together several key ideas in one framework

� Bayesian� kernelised� non-parametric� non-linear� modelling uncertainty

Elegant and powerful framework, with growing popularity inmachine learning and application domains.

Page 3: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian Processes

State of the art for regression

� exact posterior inference� supports very complex non-linear functions� elegant model selection

Page 4: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian Processes

Now mature enough for use in NLP

� support for classification, ranking, etc� fancy kernels, e.g., text� sparse approximations for large scale inference� probabilistic formulation allows incorporation into larger

graphical models� models the prediction uncertainty so that it’s propagated

through pipelines of probabilistic components

Page 5: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian Processes

Regression and classification are fundamental techniques inNLP

Linear models:

� simple and fast to run� provide straightforward interpretability� but very limited in the type of relations they can model

Non-linear models (e.g. SVM):

� better results because they allow to model otherrelationships

� but high cost of hyperparameter optimisation� lack of interoperability with downstream processing

Page 6: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian Processes

The Gaussian distribution:

� is a distribution over vectors

The Gaussian process:

� is a distribution over functions

Page 7: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian Processes, prior

� the prior represents our prior beliefs over the functions weexpect to learn

� here, standard choices: 0 mean, 1 variance, ‘smooth’functions

Page 8: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian Process, posterior

� after observing data points, adjust the posteriordistribution over functions

� the functions must pass ’close’ to the observations,compute posterior mean and variance

Page 9: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian Processes

GP demo: http://www.tmpl.fi/gp/

Page 10: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Relationship to Linear regression

Linear regression:y = wx + ε (1)

where w are parameters we learn.

Gaussian process regression:

y = f (x) + ε (2)

where f is drawn from a Gaussian process prior.

� the w parameters are gone, hence the term‘non-parametric’ for GP’s

� f is not limited to a parametric form

Page 11: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Graphical model view

f ∼ GP(m, k)

y ∼ N( f (x), σ2)

� f : RD− > R is a latentfunction

� y is a noisy realisationof f (x)

� k is the covariancefunction or kernel

� m and σ2 is a learnedparameter

Page 12: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Formal definition

Definition

A Gaussian process is a collection of random variables, anyfinite number of which have a joint Gaussian distribution.

A GP is fully specified by mean m(x) and covariance k(x, x′)functions:

� m(x) = E[ f (x)]

� k(x, x′) = E[( f (x) −m(x))(( f (x′) −m(x′))]

Without loss of generality we can assume m(x) = 0.

Page 13: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Compared to a Gaussian distribution

Gaussian distribution:

� specified by a mean and covariance matrix: x ∼ N(μ,Σ)� the vector index is the position of the random variables x

Gaussian process:

� specified by a mean and covariance function: f ∼ GP(m, k)� the index is the argument x of f

The Gaussian Process is an infinite extension of multivariateGaussian distributions

Page 14: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y|Σ) ∝ exp(−1

2yTΣ−1y)

Σ =

⎡⎣ 1 .7

.7 1

⎤⎦

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 15: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y|Σ) ∝ exp(−1

2yTΣ−1y)

Σ =

⎡⎣ 1 .7

.7 1

⎤⎦

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 16: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y|Σ) ∝ exp(−1

2yTΣ−1y)

Σ =

⎡⎣ 1 .6

.6 1

⎤⎦

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 17: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y|Σ) ∝ exp(−1

2yTΣ−1y)

Σ =

⎡⎣ 1 .4

.4 1

⎤⎦

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 18: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y|Σ) ∝ exp(−1

2yTΣ−1y)

Σ =

⎡⎣ 1 .1

.1 1

⎤⎦

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 19: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y|Σ) ∝ exp(−1

2yTΣ−1y)

Σ =

⎡⎣ 1 .0

.0 1

⎤⎦

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 20: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y|Σ) ∝ exp(−1

2yTΣ−1y)

Σ =

⎡⎣ 1 .7

.7 1

⎤⎦

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 21: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y|Σ) ∝ exp(−1

2yTΣ−1y)

Σ =

⎡⎣ 1 .7

.7 1

⎤⎦

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 22: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y2|y1,Σ) ∝ exp(−1

2(y2 − μ∗)Σ∗−1(y2 − μ∗)) 1

2

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 23: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y2|y1,Σ) ∝ exp(−1

2(y2 − μ∗)Σ∗−1(y2 − μ∗)) 1

2

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 24: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y2|y1,Σ) ∝ exp(−1

2(y2 − μ∗)Σ∗−1(y2 − μ∗)) 1

2

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 25: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y2|y1,Σ) ∝ exp(−1

2(y2 − μ∗)Σ∗−1(y2 − μ∗)) 1

2

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 26: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y2|y1,Σ) ∝ exp(−1

2(y2 − μ∗)Σ∗−1(y2 − μ∗)) 1

2

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 27: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y2|y1,Σ) ∝ exp(−1

2(y2 − μ∗)Σ∗−1(y2 − μ∗)) 1

2

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 28: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Gaussian distribution

p(y2|y1,Σ) ∝ exp(−1

2(y2 − μ∗)Σ∗−1(y2 − μ∗)) 1

2

y1

y 2

−3 −2 −1 0 1 2 3−3

−2

−1

0

1

2

3

Page 29: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 30: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 31: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 32: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 33: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 34: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 35: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 36: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 37: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 38: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 39: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 40: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 41: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 42: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 43: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 44: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 45: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 46: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 47: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 48: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 49: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 50: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 51: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 52: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 53: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 54: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 55: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 56: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 57: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 58: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 59: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 60: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 61: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 62: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 63: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 64: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 65: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 66: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 67: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 68: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 69: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 70: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 71: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 2

1 2−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎣ 1 .9

.9 1

⎤⎦

Page 72: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 73: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 74: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 75: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 76: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 77: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 78: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 79: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 80: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 81: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 82: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 83: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 84: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 85: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 86: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 87: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 88: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 89: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 90: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 91: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 92: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 93: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 94: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 95: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 96: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 97: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 98: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 99: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 100: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 101: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 102: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 103: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 104: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 105: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 106: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 107: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 108: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 109: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 110: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 111: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 5

1 2 3 4 5−3

−2

−1

0

1

2

3

variable index

y

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .9 .8 .6 .4

.9 1 .9 .8 .6

.8 .9 1 .9 .8

.6 .8 .9 1 .9

.4 .6 .8 .9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Page 112: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 113: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 114: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 115: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 116: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 117: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 118: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 119: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 120: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 121: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 122: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 123: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 124: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 125: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 126: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 127: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 128: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 129: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 130: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 131: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 132: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 133: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 134: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 135: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 136: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 137: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 138: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 139: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 140: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 141: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 142: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 143: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 144: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 145: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 146: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 147: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 148: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 149: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 150: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 151: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

New visualisation

−2 0 2−3

−2

−1

0

1

2

3

y1

y 20

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 152: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Regression using Gaussians

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 153: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Regression using Gaussians

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 154: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Regression using Gaussians

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

1 10 20

1

10

20

Page 155: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Regression using Gaussians

1 2 3 4 5 6 7 8 9 1011121314151617181920−3

−2

−1

0

1

2

3

variable index

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)

1 10 20

1

10

20

Page 156: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Regression: probabilistic inference in function space

−3

−2

−1

0

1

2

3

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)

1 10 20

1

10

20

Page 157: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Regression: probabilistic inference in function space

−3

−2

−1

0

1

2

3

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric)

K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)

1 10 20

1

10

20

Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)

Page 158: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Regression: probabilistic inference in function space

−3

−2

−1

0

1

2

3

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

Non-parametric (∞-parametric)

p(y|θ) = N (0,Σ)

function estimatewith uncertaintyK(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

1 10 20

1

10

20

Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)

Page 159: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Regression: probabilistic inference in function space

−3

−2

−1

0

1

2

3

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric)

noise

K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)

1 10 20

1

10

20

Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)

Page 160: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Regression: probabilistic inference in function space

−3

−2

−1

0

1

2

3

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric)

horizontal-scale

noise

K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)

1 10 20

1

10

20

Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)

Page 161: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Regression: probabilistic inference in function space

−3

−2

−1

0

1

2

3

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric)

noise

Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)

1 10 20

1

10

20

horizontal-scalevertical-scale

Page 162: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Squared Exponential (SE) kernel

Usual choice for covariance is the Squared Exponential (SE)kernel (a.k.a. RBF, exponentiated quadratic, Gaussian):

k(x, x′) = σ2 exp(− (x − x′)2

2l2

)

The kernel’s parameters {l, σ} are called the GP’shyperparameters.

When l is very high, neighbouring points are very correlatedi.e. that feature is less relevant.

Page 163: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 164: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 165: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 166: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 167: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 168: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 169: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 170: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 171: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 172: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 173: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 174: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 175: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 176: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 177: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 178: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 179: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 180: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 181: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 182: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 183: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 184: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

Σ =

short horizontal length-scale

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 185: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

short horizontal length-scale

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 186: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

short horizontal length-scale

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 187: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

short horizontal length-scale

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 188: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

short horizontal length-scale

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 189: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

short horizontal length-scale

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 190: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

short horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 191: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

short horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 192: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

short horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 193: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

short horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 194: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric)

short horizontal length-scale

Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 195: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

short horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 196: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric)

short horizontal length-scale

Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 197: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

short horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 198: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

short horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 199: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

short horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 200: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric)

short horizontal length-scale

Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 201: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric)

short horizontal length-scale

Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 202: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric)

short horizontal length-scale

Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 203: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric)

short horizontal length-scale

Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 204: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric)

short horizontal length-scale

Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 205: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

Σ =

long horizontal length-scale

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 206: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

long horizontal length-scale

Σ(x1, x2) = K(x1, x2) + Iσ2y

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 207: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 208: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 209: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 210: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 211: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 212: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 213: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 214: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 215: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 216: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 217: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 218: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 219: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 220: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 221: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 222: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 223: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 224: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 225: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

long horizontal length-scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 226: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 227: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 228: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 229: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 230: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 231: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 232: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 233: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 234: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 235: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 236: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 237: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 238: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 239: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 240: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 241: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 242: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 243: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 244: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 245: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 246: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect do the hyper-parameters have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Σ(x1, x2) = K(x1, x2) + Iσ2y

small vertical scale

p(y|θ) = N (0,Σ)

Non-parametric (∞-parametric) Parametric model

y(x) = f(x; θ) + σyε

ε ∼ N (0, 1)K(x1, x2) = σ2 exp(− 1

2l2(x1 − x2)2

)K(x1, x2) = σ2 exp

(− 1

2l2(x1 − x2)2

)

Page 247: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Hyperparameters

Training a GP means:

� finding the right kernel� finding values of hyperparameters

The covariance function controls properties of the GP:

� smoothness� stationarity� periodicity� etc.

Page 248: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

Σ =

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 249: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 250: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 251: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 252: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 253: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 254: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 255: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 256: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 257: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 258: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 259: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 260: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 261: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 262: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 263: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 264: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 265: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 266: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 267: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 268: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Laplacian covariance function

Browninan motion

Ornstein-Uhlenbeck

K(x1, x2) = σ2 exp(− 1

2l2|x1 − x2|

)

Page 269: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

Σ =

Rational Quadratic

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Page 270: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 271: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 272: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 273: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 274: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 275: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 276: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 277: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 278: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 279: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 280: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 281: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 282: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 283: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 284: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 285: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Rational Quadratic

Page 286: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Rational Quadratic

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Page 287: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Rational Quadratic

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Page 288: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Rational Quadratic

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Page 289: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

Rational Quadratic

K(x1, x2) = σ2(1 + 1

2αl2|x1 − x2|

)−α

Page 290: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

Σ =

Periodic

sinusoid × squared exponential

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Page 291: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 292: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 293: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 294: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 295: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 296: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 297: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 298: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 299: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 300: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 301: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 302: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 303: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 304: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 305: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 306: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 307: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 308: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 309: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 310: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

What effect does the form of the covariance function have?

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

−3

−2

−1

0

1

2

3

x

y

Σ =

K(x1, x2) = σ2 cos(ω(x1 − x2)) exp(− 1

2l2(x1 − x2)2

)

Periodic

sinusoid × squared exponential

Page 311: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Inference

GP is an infinite dimensional object but we only need to workwith finite dimensional objects.

For prediction (and the Bayesian update) we are interested inthe conditional distribution of ‘new’ points y∗ given observedpoints y:

p(y∗|y) =p(y, y∗)

p(y)

Using the GP definition, we know that:

p(y) = N(m,Σ), p(y, y∗) = N([

mm∗

],

[Σ ΣT∗Σ∗ Σ∗∗

])

where we ignored the white noise for simplification and Σ arecovariance matrices.

Page 312: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Inference

Using the multi-variate Gaussian distribution properties:

p(y∗|y) = N(m∗ + ΣT∗ Σ−1(y −m),Σ∗∗ − ΣT∗ Σ−1Σ∗)

Predictive mean is linear in the data:

μy∗|y = ΣT∗ Σ−1y

Predictive covariance is the prior covariance minus theinformation the observations give about the function:

Σy∗|y = Σ∗∗ − ΣT∗ Σ−1Σ∗

Page 313: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Relationship to Dirichlet Processes

A Gaussian process defines a distribution over functions:

f ∼ GP(m, k)

GPs can be viewed as infinite-dimensional Gaussiandistributions.

A Dirichlet process (DP) defines a distribution overdistributions:

G ∼ DP(G0, α0)

DPs can be viewed as infinite-dimensional Dirichletdistributions.

Both f and G are infinite-dimensional objects and both makeuse of conjugacy (Gaussian-Gaussian andMultinomial-Dirichlet).

Page 314: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1co

effic

ient

s

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.5

1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

x

f(x)

γ ∼ N (0, 1)

g(x) = e− 1

l2(x−μ)2

f(x) = γg(x)

Page 315: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1co

effic

ient

s

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.5

1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

x

f(x)

γ ∼ N (0, 1)

g(x) = e− 1

l2(x−μ)2

f(x) = γg(x)

Page 316: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1co

effic

ient

s

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.5

1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

x

f(x)

γ ∼ N (0, 1)

g(x) = e− 1

l2(x−μ)2

f(x) = γg(x)

Page 317: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1co

effic

ient

s

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.5

1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

x

f(x)

γ ∼ N (0, 1)

g(x) = e− 1

l2(x−μ)2

f(x) = γg(x)

Page 318: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1co

effic

ient

s

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.5

1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

x

f(x)

γ ∼ N (0, 1)

g(x) = e− 1

l2(x−μ)2

f(x) = γg(x)

Page 319: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1co

effic

ient

s

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.5

1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

x

f(x)

γ ∼ N (0, 1)

g(x) = e− 1

l2(x−μ)2

f(x) = γg(x)

Page 320: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1co

effic

ient

s

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.5

1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

x

f(x)

γ ∼ N (0, 1)

g(x) = e− 1

l2(x−μ)2

f(x) = γg(x)

Page 321: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1co

effic

ient

s

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.5

1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

x

f(x)

γ ∼ N (0, 1)

g(x) = e− 1

l2(x−μ)2

f(x) = γg(x)

Page 322: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1co

effic

ient

s

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.5

1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

x

f(x)

γ ∼ N (0, 1)

g(x) = e− 1

l2(x−μ)2

f(x) = γg(x)

Page 323: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1co

effic

ient

s

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.5

1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

x

f(x)

γ ∼ N (0, 1)

g(x) = e− 1

l2(x−μ)2

f(x) = γg(x)

Page 324: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−101

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.2

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 325: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−101

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.2

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 326: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−101

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.2

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 327: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−101

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.2

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 328: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−101

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.2

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 329: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−101

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.2

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 330: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−101

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.2

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 331: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−101

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.2

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 332: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−101

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.2

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 333: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−101

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.2

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 334: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−202

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.05

0.1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 335: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−202

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.05

0.1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 336: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−202

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.05

0.1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 337: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−202

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.05

0.1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 338: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−202

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.05

0.1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 339: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−202

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.05

0.1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 340: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−202

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.05

0.1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 341: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−202

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.05

0.1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 342: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−202

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.05

0.1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 343: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−202

coef

ficie

nts

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.05

0.1

basi

s fu

nctio

ns

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

Page 344: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) = 〈f(x)〉

Page 345: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) = 〈∑k γkgk(x)〉

Page 346: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) =∑

k〈γk〉gk(x)

Page 347: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) = 0

Page 348: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) = 0

K(x, x′) = 〈f(x)f(x′)〉

Page 349: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) = 0

K(x, x′) = 〈∑k γkgk(x)∑

k′ γk′gk′(x′)〉

Page 350: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) = 0

K(x, x′) =∑

k,k′〈γkγk′〉gk(x)gk′(x′)

Page 351: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) = 0

K(x, x′) =∑

k,k′ δk,k′gk(x)gk′(x′)

Page 352: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) = 0

K(x, x′) =∑

k gk(x)gk(x′)

Page 353: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) = 0

K(x, x′) =∑

k gk(x)gk(x′)

K(x, x′) = 1K

∑k e− 1

l2(x−k/K)2− 1

l2(x′−k/K)2

Page 354: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) = 0

K(x, x′) =∑

k gk(x)gk(x′)

K(x, x′) = 1K

∑k e− 1

l2(x−k/K)2− 1

l2(x′−k/K)2

K(x, x′) −→ ∫du e− 1

l2(x−u)2− 1

l2(x′−u)2

K → ∞

Page 355: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) = 0

K(x, x′) =∑

k gk(x)gk(x′)

K(x, x′) = 1K

∑k e− 1

l2(x−k/K)2− 1

l2(x′−k/K)2

K(x, x′) −→ ∫du e− 1

l2(x−u)2− 1

l2(x′−u)2

K → ∞

K(x, x′) ∝ e− 1

2l2(x−x′)2

Page 356: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian processes

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.5

0

0.5

x

f(x)

γk ∼ N (0, 1)

gk(x) = 1√K

e− 1

l2(x−k/K)2

f(x) =∑K

k=1 γkgk(x)

m(x) = 0

K(x, x′) =∑

k gk(x)gk(x′)

K(x, x′) = 1K

∑k e− 1

l2(x−k/K)2− 1

l2(x′−k/K)2

K(x, x′) −→ ∫du e− 1

l2(x−u)2− 1

l2(x′−u)2

K → ∞

K(x, x′) ∝ e− 1

2l2(x−x′)2

Gaussian processes ≡ models with ∞ parameters

Page 357: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian Processes

�����������

� �����

���������

Page 358: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian Processes

�����������

�������

��������

�������

���������

Page 359: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian Processes

�����������

�������

��������

�������

���������

��������������

Page 360: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian Processes

��� ��������

��������

�������

����

���� �����

��������������

���������

����� ��������

����� �������

Page 361: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian Processes

�������������

��������

�������

����

���� �����

��������������

���������

����� ��������

��������� � � ������������������� ��� �� ��

��������������� ����� ���

����� ����� �

Page 362: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Basis function view of Gaussian Processes

�������������

���

��������

�������

����

�����������

���� ���������

����������

���������� � �

�������

����� ���

������������������������������������� ���� �

������� ���������������

�����������!

Page 363: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Beyond GP regression

� Classification: non-Gaussian likelihoods, use EP or Laplace� Ordinal regression� Count data� Model selection: kernel and hyperparameter optimisation� Kernel design� Extrapolation� Multi-output GPs: for multi-task learning� Sparse GPs: scaling to large number of features and inputs� Latent variable models: GP-LVM as non-linear

probabilistic PCA� And many others ...

Page 364: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Resources

Free book:http://www.gaussianprocess.org/gpml/chapters/

Page 365: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Tutorials

� GPs for Natural Language Processing tutorial (ACL 2014)http://goo.gl/18heUk

� GP Schools in Sheffield and roadshows in Kampala,Pereira, and (future) Nyeri, Melbournehttp://ml.dcs.shef.ac.uk/gpss/

� GP Regression demohttp://www.tmpl.fi/gp/

� Annotated bibliography and other materialshttp://www.gaussianprocess.org

Page 366: Introduction to Gaussian Processesdanielpr/files/gptut-penn_0.pdfIntroduction to Gaussian Processes Daniel Preot¸iuc-Pietro Positive Psychology Center University of Pennsylvania 13

Toolkits

� GPML (Matlab)http://www.gaussianprocess.org/gpml/code

� GPy (Python)https://github.com/SheffieldML/GPy

� GPstuff (R, Matlab, Octave)http://becs.aalto.fi/en/research/bayes/gpstuff/