intuitionistic fuzzy stability of a quadratic and...

25
Int. J. Nonlinear Anal. Appl. 1 (2010) No.2 , 100–124 ISSN: 2008-6822 (electronic) http://www.ijnaa.com INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND QUARTIC FUNCTIONAL EQUATION S. ABBASZADEH Dedicated to the 70th Anniversary of S.M.Ulam’s Problem for Approximate Homomorphisms Abstract. In this paper, we prove the generalized Hyers–Ulam stability of a quadratic and quartic functional equation in intuitionistic fuzzy Banach spaces. 1. Introduction In recent years, the fuzzy theory has emerged as the most active area of research in many branches of mathematics and engineering. This new theory was introduced by Zadeh [1], in 1965 and since then a large number of research papers have appeared by using the concept of fuzzy set/numbers and fuzzification of many classical the- ories has also been made. It has also very useful application in various fields, e.g. population dynamics [2], chaos control [3], computer programming [4], nonlinear dynamical systems [5], fuzzy physics [6], fuzzy topology [7], fuzzy stability [8]-[12], nonlinear operators [13], statistical convergence [14, 15], etc. The concept of intuitionistic fuzzy normed spaces, initially has been introduced by Saadati and Park [16]. In [17], by modifying the separation condition and strength- ening some conditions in the definition of Saadati and Park, Saadati et al. have obtained a modified case of intuitionistic fuzzy normed spaces. Many authors have considered the intuitionistic fuzzy normed linear spaces, and intuitionistic fuzzy 2–normed spaces(see [18]–[21]). The concept of stability of a functional equation arises when one replaces a func- tional equation by an inequality which acts as a perturbation of the equation. The first stability problem concerning group homomorphisms was raised by Ulam [22] in 1940 and affirmatively solved by Hyers [23]. The result of Hyers was generalized by Aoki [24] for approximate additive function and by Rassias [25] for approximate lin- ear functions by allowing the difference Cauchy equation f (x 1 + x 2 ) -f (x 1 ) -f (x 2 ) to be controlled by ε( x 1 p + x 2 p ). Taking into consideration a lot of influence of Ulam, Hyers and Rassias on the development of stability problems of functional equations, the stability phenomenon that was proved by Rassias is called the gen- eralized Ulam-Rassias stability or Hyers-Ulam-Rassias stability (see [26, 27, 28]). In 1994, a generalization of Rassias [29] theorem was obtained by Gˇ avruta , who Date : Received: January 2010; Revised: Jun 2010. 2000 Mathematics Subject Classification. Primary 39B82, 39B52. Key words and phrases. Intuitionistic fuzzy normed space; Mixed functional equation; Intu- itionistic fuzzy stability. 100

Upload: others

Post on 25-Oct-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

Int. J. Nonlinear Anal. Appl. 1 (2010) No.2 , 100–124

ISSN: 2008-6822 (electronic)

http://www.ijnaa.com

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC ANDQUARTIC FUNCTIONAL EQUATION

S. ABBASZADEH

Dedicated to the 70th Anniversary of S.M.Ulam’s Problem for Approximate Homomorphisms

Abstract. In this paper, we prove the generalized Hyers–Ulam stability of aquadratic and quartic functional equation in intuitionistic fuzzy Banach spaces.

1. Introduction

In recent years, the fuzzy theory has emerged as the most active area of research inmany branches of mathematics and engineering. This new theory was introduced byZadeh [1], in 1965 and since then a large number of research papers have appearedby using the concept of fuzzy set/numbers and fuzzification of many classical the-ories has also been made. It has also very useful application in various fields, e.g.population dynamics [2], chaos control [3], computer programming [4], nonlineardynamical systems [5], fuzzy physics [6], fuzzy topology [7], fuzzy stability [8]-[12],nonlinear operators [13], statistical convergence [14, 15], etc.

The concept of intuitionistic fuzzy normed spaces, initially has been introduced bySaadati and Park [16]. In [17], by modifying the separation condition and strength-ening some conditions in the definition of Saadati and Park, Saadati et al. haveobtained a modified case of intuitionistic fuzzy normed spaces. Many authors haveconsidered the intuitionistic fuzzy normed linear spaces, and intuitionistic fuzzy2–normed spaces(see [18]–[21]).

The concept of stability of a functional equation arises when one replaces a func-tional equation by an inequality which acts as a perturbation of the equation. Thefirst stability problem concerning group homomorphisms was raised by Ulam [22] in1940 and affirmatively solved by Hyers [23]. The result of Hyers was generalized byAoki [24] for approximate additive function and by Rassias [25] for approximate lin-ear functions by allowing the difference Cauchy equation ‖f(x1+x2)−f(x1)−f(x2)‖to be controlled by ε(‖ x1 ‖p + ‖ x2 ‖p). Taking into consideration a lot of influenceof Ulam, Hyers and Rassias on the development of stability problems of functionalequations, the stability phenomenon that was proved by Rassias is called the gen-eralized Ulam-Rassias stability or Hyers-Ulam-Rassias stability (see [26, 27, 28]).In 1994, a generalization of Rassias [29] theorem was obtained by Gavruta , who

Date: Received: January 2010; Revised: Jun 2010.2000 Mathematics Subject Classification. Primary 39B82, 39B52.Key words and phrases. Intuitionistic fuzzy normed space; Mixed functional equation; Intu-

itionistic fuzzy stability.100

Page 2: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ... 101

replaced ε(‖ x1 ‖p + ‖ x2 ‖p) by a general control function ϕ(x1, x2). The functionalequation

f(x + y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is related to a symmetric bi-additive function [30, 31]. It is natural that this equa-tion is called a quadratic functional equation. In particular, every solution of thequadratic equation (1.1) is said to be a quadratic function. It is well known thata function f between real vector spaces is quadratic if and only if there exists aunique symmetric bi-additive function B1 such that f(x) = B1(x, x) for all x. Thebi-additive function B1 is given by

B1(x, y) =1

4(f(x + y)− f(x− y)).

In the paper [32], Czerwik proved the Hyers–Ulam–Rassias stability of the equation(1.1).

Lee et. al. [33] considered the following functional equation

f(2x + y) + f(2x− y) = 4f(x + y) + 4f(x− y) + 24f(x)− 6f(y). (1.2)

In fact, they proved that a function f between two real vector spaces X and Y is asolution of (1.2) if and only if there exists a unique symmetric bi–quadratic functionB2 : X ×X −→ Y such that f(x) = B2(x, x) for all x. The bi–quadratic functionB2 is given by

B2(x, y) =1

12(f(x + y) + f(x− y)− 2f(x)− 2f(y)).

Obviously, the function f(x) = cx4 satisfies the functional equation (1.2) which iscalled the quartic functional equation.

Eshaghi and Khodaei [34] have established the general solution and investigatedthe Hyers-Ulam-Rassias stability for a mixed type of cubic, quadratic and additivefunctional equation with f(0) = 0,

f(x + ky) + f(x− ky) = k2f(x + y) + k2f(x− y) + 2(1− k2)f(x) (1.3)

in quasi–Banach spaces, which k is nonzero integer number with k 6= ±1. Interestingnew results concerning mixed functional equations have recently been obtained byNajati et. al. [35, 36, 37] as well as for the fuzzy stability of a mixed type of additiveand quadratic functional equation by Park [12].

The functional equation

f(nx+y)+f(nx−y) = n2f(x+y)+n2f(x−y)+2(f(nx)−n2f(x))−2(n2−1)f(y)(1.4)

(n ∈ N, n ≥ 2) is called the mixed quadratic and quartic functional equation, sincethe function f(x) = ax4 + bx2 is its solution. The stability problem for the mixedquadratic and quartic functional equation was proved by Eshaghi et. al. [38] for afunction f : X → Y , where X and Y are quasi–Banach spaces.

2. Preliminaries

We use the definition of intuitionistic fuzzy normed spaces given in [16, 39, 40] toinvestigate some stability results for the functional equation (1.4) in the intuitionisticfuzzy normed vector space setting.

Page 3: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

102 S. ABBASZADEH

Definition 2.1. ([41]). A binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is said to bea continuous t-norm if it satisfies the following conditions:

(a) ∗ is commutative and associative;(b) ∗ is continuous;(c) a ∗ 1 = a for all a ∈ [0, 1];(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2.2. ([41]). A binary operation ? : [0, 1]× [0, 1] −→ [0, 1] is said to bea continuous t-conorm if it satisfies the following conditions:

(a) ? is commutative and associative;(b) ? is continuous;(c) a ? 0 = a for all a ∈ [0, 1];(d) a ? b ≤ c ? d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Using the continuous t-norm and t-conorm, Saadati and Park [16], have introducedthe concept of intuitionistic fuzzy normed space.

Definition 2.3. (Saadati and Park [16], Mursaleen and Mohiuddine [39]). Thefive–tuple (X, µ, ν, ∗, ?) is said to be an intuitionistic fuzzy normed space (for short,IFNS) if X is a vector space, ∗ is a continuous t-norm, ? is a continuous t-conorm,and µ, ν fuzzy sets on X × (0,∞) satisfying the following conditions: For everyx, y ∈ X and s, t > 0,

(IF1) µ(x, t) + ν(x, t) ≤ 1;(IF2) µ(x, t) > 0;(IF3) µ(x, t) = 1 if and only if x = 0;(IF4) µ(αx, t) = µ(x, t

|α|) for each α 6= 0;

(IF5) µ(x, t) ∗ µ(y, s) ≤ µ(x + y, t + s);(IF6) µ(x, .) : (0,∞) −→ [0, 1] is continuous;(IF7) limt→∞ µ(x, t) = 1 and limt→0 µ(x, t) = 0;(IF8) ν(x, t) = 0 if and only if x = 0;(IF9) ν(αx, t) = ν(x, t

|α|) for each α 6= 0;

(IF10) ν(x, t) ? ν(y, s) ≥ ν(x + y, t + s);(IF11) ν(x, .) : (0,∞) −→ [0, 1] is continuous;(IF12) limt→∞ ν(x, t) = 0 and limt→0 ν(x, t) = 1.

The properties of IFNS, examples of intuitionistic fuzzy norms and the conceptsof convergence and Cauchy sequences in an IFNS are given in [16].

Definition 2.4. Let (X, µ, ν, ∗, ?) be an IFNS. Then, a sequence {xn} is said to beconvergent to x ∈ X with respect to the intuitionistic fuzzy norm (µ, ν) if, for everyε > 0 and t > 0, there exists k ∈ N such that µ(xn−x, t) > 1−ε and ν(xn−x, t) < εfor all n ≥ k. In this case we write (µ, ν)–lim xn = x.

Definition 2.5. Let (X,µ, ν, ∗, ?) be an IFNS. Then, {xn} is said to be Cauchysequence with respect to the intuitionistic fuzzy norm (µ, ν) if, for every ε > 0 andt > 0, there exists k ∈ N such that µ(xn − xm, t) > 1− ε and ν(xn − xm, t) < ε forall n, m ≥ k.

Definition 2.6. Let (X, µ, ν, ∗, ?) be an IFNS. Then (X, µ, ν, ∗, ?) is said to be com-plete if every intuitionistic fuzzy Cauchy sequence in (X, µ, ν, ∗, ?) is intuitionisticfuzzy convergent in (X, µ, ν, ∗, ?).

Page 4: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ... 103

Definition 2.7. We say that a function f : X → Y between IFNS, X and Y iscontinuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X, thenthe sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X,then f : X → Y is said to be continuous on X (see [13, 39]).

In the rest of this paper, unless otherwise explicitly stated, we will assume that Xis a linear space, (Z, µ

′, ν

′) is an intuitionistic fuzzy normed space and (Y, µ, ν) is an

intuitionistic fuzzy Banach space. For convenience, we use the following abbreviationfor a given function f : X → Y,

Df(x, y) = f(nx + y) + f(nx− y)− n2f(x + y)− n2f(x− y)− 2f(nx)

+ 2n2f(x) + 2(n2 − 1)f(y)

for all x, y ∈ X.

3. Intuitionistic fuzzy stability of (1.4): for quadratic functions

Lemma 3.1. ([38]). Let V1 and V2 be real vector spaces. If a function f : V1 → V2

satisfies (1.4), then the function g : V1 → V2 defined by g(x) = f(2x) − 16f(x) isquadratic.

Theorem 3.2. Let ` ∈ {−1, 1} be fixed and let ϕq : X × X −→ Z be a functionsuch that

ϕq(2x, 2y) = αϕq(x, y) (3.1)

for all x, y ∈ X and for some positive real number α with α` < 4`. Suppose that aneven function f : X → Y with f(0) = 0 satisfies

µ (Df(x, y), t) ≥ µ′(ϕq(x, y), t) & ν (Df(x, y), t) ≤ ν

′(ϕq(x, y), t) (3.2)

for all x, y ∈ X and t > 0. Then the limit

Q(x) = (µ, ν)− limn→∞

1

4`n

(f(2`n+1x)− 16f(2`nx)

)exists for all x ∈ X and Q : X → Y is a unique quadratic function such that

µ (f(2x)− 16f(x)−Q(x), t) ≥ Mq

(x,

`(4− α)

2t

)&

ν (f(2x)− 16f(x)−Q(x), t) ≤ Nq

(x,

`(4− α)

2t

) (3.3)

Page 5: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

104 S. ABBASZADEH

for all x ∈ X and t > 0, where

Mq(x, t) = µ′(ϕq(x, (n + 2)x),

n2(n2 − 1)t

17)

∗ µ′(ϕq(x, (n− 2)x),

n2(n2 − 1)t

17) ∗ µ

′(ϕq(x, (n + 1)x),

n2(n2 − 1)t

68)

∗ µ′(ϕq(x, (n− 1)x),

n2(n2 − 1)t

68) ∗ µ

′(ϕq(x, nx),

n2(n2 − 1)t

170)

∗ µ′(ϕq(2x, 2x),

n2(n2 − 1)t

17) ∗ µ

′(ϕq(2x, x),

n2(n2 − 1)t

68)

∗ µ′(ϕq(x, 3x),

(n2 − 1)t

17) ∗ µ

′(ϕq(x, 2x),

n2(n2 − 1)t

28(3n2 − 1))

∗ µ′(ϕq(x, x),

n2(n2 − 1)t

17(17n2 − 8)) ∗ µ

′(ϕq(0, (n + 1)x),

(n2 − 1)2t

17)

∗ µ′(ϕq(0, (n− 3)x),

(n2 − 1)2t

17) ∗ µ

′(ϕq(0, (n− 1)x),

(n2 − 1)2t

170)

∗ µ′(ϕq(0, nx),

(n2 − 1)2t

68) ∗ µ

′(ϕq(0, (n− 2)x),

(n2 − 1)2t

68)

∗ µ′(ϕq(0, 2x),

n2(n2 − 1)2t

17(n4 + 1)) ∗ µ

′(ϕq(0, x),

n2(n2 − 1)2t

28(3n4 − n2 + 2)) &

Nq(x, t) = ν′(ϕq(x, (n + 2)x),

n2(n2 − 1)t

17)

? ν′(ϕq(x, (n− 2)x),

n2(n2 − 1)t

17) ? ν

′(ϕq(x, (n + 1)x),

n2(n2 − 1)t

68)

? ν′(ϕq(x, (n− 1)x),

n2(n2 − 1)t

68) ? ν

′(ϕq(x, nx),

n2(n2 − 1)t

170)

? ν′(ϕq(2x, 2x),

n2(n2 − 1)t

17) ? ν

′(ϕq(2x, x),

n2(n2 − 1)t

68)

? ν′(ϕq(x, 3x),

(n2 − 1)t

17) ? ν

′(ϕq(x, 2x),

n2(n2 − 1)t

28(3n2 − 1))

? ν′(ϕq(x, x),

n2(n2 − 1)t

17(17n2 − 8)) ? ν

′(ϕq(0, (n + 1)x),

(n2 − 1)2t

17)

? ν′(ϕq(0, (n− 3)x),

(n2 − 1)2t

17) ? ν

′(ϕq(0, (n− 1)x),

(n2 − 1)2t

170)

? ν′(ϕq(0, nx),

(n2 − 1)2t

68) ? ν

′(ϕq(0, (n− 2)x),

(n2 − 1)2t

68)

? ν′(ϕq(0, 2x),

n2(n2 − 1)2t

17(n4 + 1)) ? ν

′(ϕq(0, x),

n2(n2 − 1)2t

28(3n4 − n2 + 2)).

Proof. Case (1): ` = 1. Set x = 0 in (3.2) and then interchange x with y to get

µ((n2 − 1)f(x)− (n2 − 1)f(−x), t) ≥ µ′(ϕq(0, x), t) &

ν((n2 − 1)f(x)− (n2 − 1)f(−x), t) ≤ ν′(ϕq(0, x), t)

(3.4)

Page 6: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ... 105

for all x ∈ X and t > 0. Replacing y by x, 2x, nx, (n + 1)x, (n − 1)x, (n + 2)x,(n− 2)x and 3x in (3.2), respectively, we get

µ(f((n + 1)x) + f((n− 1)x)− n2f(2x)− 2f(nx) + (4n2 − 2)f(x), t)

≥ µ′(ϕq(x, x), t) &

ν(f((n + 1)x) + f((n− 1)x)− n2f(2x)− 2f(nx) + (4n2 − 2)f(x), t)

≤ ν′(ϕq(x, x), t),

(3.5)

µ(f((n + 2)x) + f((n− 2)x)− n2f(3x)− n2f(−x)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f(2x), t) ≥ µ′(ϕq(x, 2x), t) &

ν(f((n + 2)x) + f((n− 2)x)− n2f(3x)− n2f(−x)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f(2x), t) ≤ ν′(ϕq(x, 2x), t),

(3.6)

µ(f(2nx)− n2f((n + 1)x)− n2f((1− n)x) + 2(n2 − 2)f(nx) + 2n2f(x), t)

≥ µ′(ϕq(x, nx), t) &

ν(f(2nx)− n2f((n + 1)x)− n2f((1− n)x) + 2(n2 − 2)f(nx) + 2n2f(x), t)

≤ ν′(ϕq(x, nx), t),

(3.7)

µ(f((2n + 1)x) + f(−x)− n2f((n + 2)x)− n2f(−nx)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f((n + 1)x), t) ≥ µ′(ϕq(x, (n + 1)x), t) &

ν(f((2n + 1)x) + f(−x)− n2f((n + 2)x)− n2f(−nx)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f((n + 1)x), t) ≤ ν′(ϕq(x, (n + 1)x), t),

(3.8)

µ(f((2n− 1)x) + f(x)− n2f((2− n)x)− (n2 + 2)f(nx) + 2n2f(x)

+ 2(n2 − 1)f((n− 1)x), t) ≥ µ′(ϕq(x, (n− 1)x), t) &

ν(f((2n− 1)x) + f(x)− n2f((2− n)x)− (n2 + 2)f(nx) + 2n2f(x)

+ 2(n2 − 1)f((n− 1)x), t) ≤ ν′(ϕq(x, (n− 1)x), t),

(3.9)

µ(f(2(n + 1)x) + f(−2x)− n2f((n + 3)x)− n2f(−(n + 1)x)− 2f(nx)

+ 2n2f(x) + 2(n2 − 1)f((n + 2)x), t) ≥ µ′(ϕq(x, (n + 2)x), t) &

ν(f(2(n + 1)x) + f(−2x)− n2f((n + 3)x)− n2f(−(n + 1)x)− 2f(nx)

+ 2n2f(x) + 2(n2 − 1)f((n + 2)x), t) ≤ ν′(ϕq(x, (n + 2)x), t),

(3.10)

µ(f((2(n− 1)x) + f(2x)− n2f((n− 1)x)− n2f(−(n− 3)x)− 2f(nx)

+ 2n2f(x) + 2(n2 − 1)f((n− 2)x), t) ≥ µ′(ϕq(x, (n− 2)x), t) &

ν(f((2(n− 1)x) + f(2x)− n2f((n− 1)x)− n2f(−(n− 3)x)− 2f(nx)

+ 2n2f(x) + 2(n2 − 1)f((n− 2)x), t) ≤ ν′(ϕq(x, (n− 2)x), t)

(3.11)

Page 7: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

106 S. ABBASZADEH

and

µ(f((n + 3)x) + f((n− 3)x)− n2f(4x)− n2f(−2x)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f(3x), t) ≥ µ′(ϕq(x, 3x), t) &

ν(f((n + 3)x) + f((n− 3)x)− n2f(4x)− n2f(−2x)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f(3x), t) ≤ ν′(ϕq(x, 3x), t)

(3.12)

for all x ∈ X and t > 0. Combining (3.4) with (3.5)–(3.12), respectively, yields thefollowing inequalities:

µ(f((n + 2)x) + f((n− 2)x)− n2f(3x)− n2f(x)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f(2x), t) ≥ µ′(ϕq(x, 2x),

t

2) ∗ µ

′(

n2

n2 − 1ϕq(0, x),

t

2) &

ν(f((n + 2)x) + f((n− 2)x)− n2f(3x)− n2f(x)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f(2x), t) ≤ ν′(ϕq(x, 2x),

t

2) ? ν

′(

n2

n2 − 1ϕq(0, x),

t

2),

(3.13)

µ(f(2nx)− n2f((n + 1)x)− n2f((n− 1)x) + 2(n2 − 2)f(nx) + 2n2f(x), t)

≥ µ′(ϕq(x, nx),

t

2) ∗ µ

′(

n2

n2 − 1ϕq(0, (n− 1)x),

t

2) &

ν(f(2nx)− n2f((n + 1)x)− n2f((n− 1)x) + 2(n2 − 2)f(nx) + 2n2f(x), t)

≤ ν′(ϕq(x, nx),

t

2) ? ν

′(

n2

n2 − 1ϕq(0, (n− 1)x),

t

2),

(3.14)

µ(f((2n + 1)x) + f(x)− n2f((n + 2)x)− n2f(nx)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f((n + 1)x), t) ≥ µ′(ϕq(x, (n + 1)x),

t

3)

∗ µ′(

n2

n2 − 1ϕq(0, nx),

t

3) ∗ µ

′(

1

n2 − 1ϕq(0, x),

t

3) &

ν(f((2n + 1)x) + f(x)− n2f((n + 2)x)− n2f(nx)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f((n + 1)x), t) ≤ ν′(ϕq(x, (n + 1)x),

t

3)

? ν′(

n2

n2 − 1ϕq(0, nx),

t

3) ? ν

′(

1

n2 − 1ϕq(0, x),

t

3),

(3.15)

Page 8: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ... 107

µ(f((2n− 1)x) + f(x)− n2f((n− 2)x)− (n2 + 2)f(nx) + 2n2f(x)

+ 2(n2 − 1)f((n− 1)x), t) ≥ µ′(ϕq(x, (n− 1)x),

t

2)

∗ µ′(

n2

n2 − 1ϕq(0, (n− 2)x),

t

2) &

ν(f((2n− 1)x) + f(x)− n2f((n− 2)x)− (n2 + 2)f(nx) + 2n2f(x)

+ 2(n2 − 1)f((n− 1)x), t) ≤ ν′(ϕq(x, (n− 1)x),

t

2)

? ν′(

n2

n2 − 1ϕq(0, (n− 2)x),

t

2),

(3.16)

µ(f(2(n + 1)x) + f(2x)− n2f((n + 3)x)− n2f((n + 1)x)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f((n + 2)x), t) ≥ µ′(ϕq(x, (n + 2)x),

t

3)

∗ µ′(

n2

n2 − 1ϕq(0, (n + 1)x),

t

3) ∗ µ

′(ϕq(0, 2x),

t

3) &

ν(f(2(n + 1)x) + f(2x)− n2f((n + 3)x)− n2f((n + 1)x)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f((n + 2)x), t) ≤ ν′(ϕq(x, (n + 2)x),

t

3)

? ν′(

n2

n2 − 1ϕq(0, (n + 1)x),

t

3) ? ν

′(ϕq(0, 2x),

t

3),

(3.17)

µ(f(2(n− 1)x) + f(2x)− n2f((n− 1)x)− n2f((n− 3)x)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f((n− 2)x), t) ≥ µ′(ϕq(x, (n− 2)x),

t

2)

∗ µ′(

n2

n2 − 1ϕq(0, (n− 3)x),

t

2) &

ν(f(2(n− 1)x) + f(2x)− n2f((n− 1)x)− n2f((n− 3)x)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f((n− 2)x), t) ≤ ν′(ϕq(x, (n− 2)x),

t

2)

? ν′(

n2

n2 − 1ϕq(0, (n− 3)x),

t

2),

(3.18)

and

µ(f((n + 3)x) + f((n− 3)x)− n2f(4x)− n2f(2x)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f(3x), t) ≥ µ′(ϕq(x, 3x),

t

2) ∗ µ

′(

n2

n2 − 1ϕq(0, 2x),

t

2) &

ν(f((n + 3)x) + f((n− 3)x)− n2f(4x)− n2f(2x)− 2f(nx) + 2n2f(x)

+ 2(n2 − 1)f(3x), t) ≤ ν′(ϕq(x, 3x),

t

2) ? ν

′(

n2

n2 − 1ϕq(0, 2x),

t

2)

(3.19)

Page 9: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

108 S. ABBASZADEH

for all x ∈ X and t > 0. Replacing x and y by 2x and x in (3.2), respectively, weobtain

µ(f((2n + 1)x) + f((2n− 1)x)− n2f(3x)− 2f(2nx) + 2n2f(2x)

+ (n2 − 2)f(x), t) ≥ µ′(ϕq(2x, x), t) &

ν(f((2n + 1)x) + f((2n− 1)x)− n2f(3x)− 2f(2nx) + 2n2f(2x)

+ (n2 − 2)f(x), t) ≤ ν′(ϕq(2x, x), t)

(3.20)

for all x ∈ X and t > 0. Putting 2x instead of x and y in (3.2), we obtain

µ(f(2(n + 1)x) + f(2(n− 1)x)− n2f(4x)− 2f(2nx) + 2(2n2 − 1)f(2x), t)

≥ µ′(ϕq(2x, 2x), t) &

ν(f(2(n + 1)x) + f(2(n− 1)x)− n2f(4x)− 2f(2nx) + 2(2n2 − 1)f(2x), t)

≤ ν′(ϕq(2x, 2x), t)

(3.21)

for all x ∈ X and t > 0. It follows from (3.5), (3.13), (3.14), (3.15), (3.16) and(3.20) that

µ(f(3x)− 6f(2x) + 15f(x), t) ≥ µ′(ϕq(x, (n + 1)x),

n2(n2 − 1)t

30)

∗ µ′(ϕq(2x, x),

n2(n2 − 1)t

10) ∗ µ

′(ϕq(x, nx),

n2(n2 − 1)t

40)

∗ µ′(ϕq(x, 2x),

(n2 − 1)t

20) ∗ µ

′(ϕq(x, x),

n2(n2 − 1)t

20(2n2 − 1))

∗ µ′(ϕq(0, (n− 1)x),

(n2 − 1)2t

40) ∗ µ

′(ϕq(0, nx),

n2(n2 − 1)t

30)

∗ µ′(ϕq(0, (n− 2)x)),

n2(n2 − 1)t

20) ∗ µ

′(ϕq(0, x),

n2(n2 − 1)2t

30(n4 + 1))

∗ µ′(ϕq(x, (n− 1)x),

n2(n2 − 1)t

20) &

ν(f(3x)− 6f(2x) + 15f(x), t) ≤ ν′(ϕq(x, (n + 1)x),

n2(n2 − 1)t

30)

? ν′(ϕq(2x, x),

n2(n2 − 1)t

10) ? ν

′(ϕq(x, nx),

n2(n2 − 1)t

40)

? ν′(ϕq(x, 2x),

(n2 − 1)t

20) ? ν

′(ϕq(x, x),

n2(n2 − 1)t

20(2n2 − 1))

? ν′(ϕq(0, (n− 1)x),

(n2 − 1)2t

40) ? ν

′(ϕq(0, nx),

n2(n2 − 1)t

30)

? ν′(ϕq(0, (n− 2)x)),

n2(n2 − 1)t

20) ? ν

′(ϕq(0, x),

n2(n2 − 1)2t

30(n4 + 1))

? ν′(ϕq(x, (n− 1)x),

n2(n2 − 1)t

20)

(3.22)

Page 10: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ... 109

for all x ∈ X and t > 0. Also, from (3.5), (3.13), (3.14), (3.17), (3.18), (3.19) and(3.21), we conclude

µ(f(4x)− 4f(3x) + 4f(2x) + 4f(x), t)

≥ µ′(ϕq(2x, 2x),

n2(n2 − 1)t

12) ∗ µ

′(ϕq(0, x),

(n2 − 1)t

48)

∗ µ′(ϕq(x, 3x),

(n2 − 1)t

24) ∗ µ

′(ϕq(x, x),

n2(n2 − 1)t

12)

∗ µ′(ϕq(x, nx),

n2(n2 − 1)t

48) ∗ µ

′(ϕq(x, 2x),

n2t

48)

∗ µ′(ϕq(0, (n + 1)x),

(n2 − 1)2t

36)

∗ µ′(ϕq(x, (n− 2)x),

n2(n2 − 1)t

24)

∗ µ′(ϕq(x, (n + 2)x),

n2(n2 − 1)t

36)

∗ µ′(ϕq(0, (n− 1)x),

(n2 − 1)2t

48)

∗ µ′(ϕq(0, (n− 3)x),

(n2 − 1)2t

48)

∗ µ′(ϕq(0, 2x),

n2(n2 − 1)2t

36(n4 + 1)) &

ν(f(4x)− 4f(3x) + 4f(2x) + 4f(x), t)

≤ ν′(ϕq(2x, 2x),

n2(n2 − 1)t

12) ? ν

′(ϕq(0, x),

(n2 − 1)t

48)

? ν′(ϕq(x, 3x),

(n2 − 1)t

24) ? ν

′(ϕq(x, x),

n2(n2 − 1)t

12)

? ν′(ϕq(x, nx),

n2(n2 − 1)t

48) ? ν

′(ϕq(x, 2x),

n2t

48)

? ν′(ϕq(0, (n + 1)x),

(n2 − 1)2t

36)

? ν′(ϕq(x, (n− 2)x),

n2(n2 − 1)t

24)

? ν′(ϕq(x, (n + 2)x),

n2(n2 − 1)t

36)

? ν′(ϕq(0, (n− 1)x),

(n2 − 1)2t

48)

? ν′(ϕq(0, (n− 3)x),

(n2 − 1)2t

48)

? ν′(ϕq(0, 2x),

n2(n2 − 1)2t

36(n4 + 1))

(3.23)

Page 11: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

110 S. ABBASZADEH

for all x ∈ X and t > 0. Finally, combining (3.20) and (3.21) yields

µ(f(4x)− 24f(2x) + 64f(x), t) ≥ µ′(ϕq(x, (n + 2)x),

n2(n2 − 1)t

17)

∗ µ′(ϕq(x, (n− 1)x),

n2(n2 − 1)t

68) ∗ µ

′(ϕq(x, nx),

n2(n2 − 1)t

170)

∗ µ′(ϕq(2x, 2x),

n2(n2 − 1)t

17) ∗ µ

′(ϕq(2x, x),

n2(n2 − 1)t

68)

∗ µ′(ϕq(x, 3x),

(n2 − 1)t

17) ∗ µ

′(ϕq(x, 2x),

n2(n2 − 1)t

28(3n2 − 1))

∗ µ′(ϕq(x, x),

n2(n2 − 1)t

17(17n2 − 8)) ∗ µ

′(ϕq(0, (n + 1)x),

(n2 − 1)2t

17)

∗ µ′(ϕq(0, (n− 3)x),

(n2 − 1)2t

17) ∗ µ

′(ϕq(0, (n− 1)x),

(n2 − 1)2t

170)

∗ µ′(ϕq(0, nx),

(n2 − 1)2t

68) ∗ µ

′(ϕq(0, (n− 2)x),

(n2 − 1)2t

68)

∗ µ′(ϕq(0, 2x),

n2(n2 − 1)2t

17(n4 + 1)) ∗ µ

′(ϕq(0, x),

n2(n2 − 1)2t

28(3n4 − n2 + 2))

∗ µ′(ϕq(x, (n− 2)x),

n2(n2 − 1)t

17)

∗ µ′(ϕq(x, (n + 1)x),

n2(n2 − 1)t

68) &

ν(f(4x)− 24f(2x) + 64f(x), t) ≤ ν′(ϕq(x, (n + 2)x),

n2(n2 − 1)t

17)

? ν′(ϕq(x, (n− 1)x),

n2(n2 − 1)t

68) ? ν

′(ϕq(x, nx),

n2(n2 − 1)t

170)

? ν′(ϕq(2x, 2x),

n2(n2 − 1)t

17) ? ν

′(ϕq(2x, x),

n2(n2 − 1)t

68)

? ν′(ϕq(x, 3x),

(n2 − 1)t

17) ? ν

′(ϕq(x, 2x),

n2(n2 − 1)t

28(3n2 − 1))

? ν′(ϕq(x, x),

n2(n2 − 1)t

17(17n2 − 8)) ? ν

′(ϕq(0, (n + 1)x),

(n2 − 1)2t

17)

? ν′(ϕq(0, (n− 3)x),

(n2 − 1)2t

17) ? ν

′(ϕq(0, (n− 1)x),

(n2 − 1)2t

170)

? ν′(ϕq(0, nx),

(n2 − 1)2t

68) ? ν

′(ϕq(0, (n− 2)x),

(n2 − 1)2t

68)

? ν′(ϕq(0, 2x),

n2(n2 − 1)2t

17(n4 + 1)) ? ν

′(ϕq(0, x),

n2(n2 − 1)2t

28(3n4 − n2 + 2))

? ν′(ϕq(x, (n− 2)x),

n2(n2 − 1)t

17)

? ν′(ϕq(x, (n + 1)x),

n2(n2 − 1)t

68)

(3.24)

Page 12: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ... 111

for all x ∈ X and t > 0. Let

Mq(x, t) = µ′(ϕq(x, (n + 2)x),

n2(n2 − 1)t

17)

∗ µ′(ϕq(x, (n− 2)x),

n2(n2 − 1)t

17) ∗ µ

′(ϕq(x, (n + 1)x),

n2(n2 − 1)t

68)

∗ µ′(ϕq(x, (n− 1)x),

n2(n2 − 1)t

68) ∗ µ

′(ϕq(x, nx),

n2(n2 − 1)t

170)

∗ µ′(ϕq(2x, 2x),

n2(n2 − 1)t

17) ∗ µ

′(ϕq(2x, x),

n2(n2 − 1)t

68)

∗ µ′(ϕq(x, 3x),

(n2 − 1)t

17) ∗ µ

′(ϕq(x, 2x),

n2(n2 − 1)t

28(3n2 − 1))

∗ µ′(ϕq(x, x),

n2(n2 − 1)t

17(17n2 − 8)) ∗ µ

′(ϕq(0, (n + 1)x),

(n2 − 1)2t

17)

∗ µ′(ϕq(0, (n− 3)x),

(n2 − 1)2t

17) ∗ µ

′(ϕq(0, (n− 1)x),

(n2 − 1)2t

170)

∗ µ′(ϕq(0, nx),

(n2 − 1)2t

68) ∗ µ

′(ϕq(0, (n− 2)x),

(n2 − 1)2t

68)

∗ µ′(ϕq(0, 2x),

n2(n2 − 1)2t

17(n4 + 1)) ∗ µ

′(ϕq(0, x),

n2(n2 − 1)2t

28(3n4 − n2 + 2)) &

Nq(x, t) = ν′(ϕq(x, (n + 2)x),

n2(n2 − 1)t

17)

? ν′(ϕq(x, (n− 2)x),

n2(n2 − 1)t

17) ? ν

′(ϕq(x, (n + 1)x),

n2(n2 − 1)t

68)

? ν′(ϕq(x, (n− 1)x),

n2(n2 − 1)t

68) ? ν

′(ϕq(x, nx),

n2(n2 − 1)t

170)

? ν′(ϕq(2x, 2x),

n2(n2 − 1)t

17) ? ν

′(ϕq(2x, x),

n2(n2 − 1)t

68)

? ν′(ϕq(x, 3x),

(n2 − 1)t

17) ? ν

′(ϕq(x, 2x),

n2(n2 − 1)t

28(3n2 − 1))

? ν′(ϕq(x, x),

n2(n2 − 1)t

17(17n2 − 8)) ? ν

′(ϕq(0, (n + 1)x),

(n2 − 1)2t

17)

? ν′(ϕq(0, (n− 3)x),

(n2 − 1)2t

17) ? ν

′(ϕq(0, (n− 1)x),

(n2 − 1)2t

170)

? ν′(ϕq(0, nx),

(n2 − 1)2t

68) ? ν

′(ϕq(0, (n− 2)x),

(n2 − 1)2t

68)

? ν′(ϕq(0, 2x),

n2(n2 − 1)2t

17(n4 + 1)) ? ν

′(ϕq(0, x),

n2(n2 − 1)2t

28(3n4 − n2 + 2)).

Then in (3.24) we will have

µ(f(4x)− 20f(2x) + 64f(x), t) ≥ Mq(x, t) &

ν(f(4x)− 20f(2x) + 64f(x), t) ≤ Nq(x, t)(3.25)

Page 13: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

112 S. ABBASZADEH

for all x ∈ X and t > 0. Let g : X → Y be a function defined by g(x) := f(2x) −16f(x) for all x ∈ X. So, from (3.25), we conclude that

µ(g(2x)− 4g(x), t) ≥ Mq(x, t) & ν(g(2x)− 4g(x), t) ≤ Nq(x, t) (3.26)

for all x ∈ X and t > 0. So

µ(g(2x)

4− g(x),

t

4) ≥ Mq(x, t) & ν(

g(2x)

4− g(x),

t

4) ≤ Nq(x, t) (3.27)

for all x ∈ X and t > 0. Then by our assumption

Mq(2x, t) = Mq(x,t

α) & Nq(2x, t) = Nq(x,

t

α) (3.28)

for all x ∈ X and t > 0. Replacing x by 2kx in (3.27) and using (3.28), we obtain

µ(g(2k+1x)

4k+1− g(2kx)

4k,

t

4(4k)) ≥ Mq(2

kx, t) = Mq(x,t

αk) &

ν(g(2k+1x)

4k+1− g(2kx)

4k,

t

4(4k)) ≤ Nq(2

kx, t) = Nq(x,t

αk)

(3.29)

for all x ∈ X, t > 0 and k ≥ 0. Replacing t by αkt in (3.29), we see that

µ(g(2k+1x)

4k+1− g(2kx)

4k,

αkt

4(4k)) ≥ Mq(x, t) &

ν(g(2k+1x)

4k+1− g(2kx)

4k,

αkt

4(4k)) ≤ Nq(x, t)

(3.30)

for all x ∈ X, t > 0 and k > 0. It follows from g(2kx)4k − g(x) =

∑k−1j=0(

g(2j+1x)4j+1 − g(2jx)

4j )

and (3.30) that

µ(g(2kx)

4k− g(x),

k−1∑j=0

αjt

4(4)j) ≥

k−1∏j=0

µ(g(2j+1x)

4j+1− g(2jx)

4j,

αjt

4(4)j) ≥ Mq(x, t) &

ν(g(2kx)

4k− g(x),

k−1∑j=0

αjt

4(4)j) ≤

k−1∐j=0

ν(g(2j+1x)

4j+1− g(2jx)

4j,

αjt

4(4)j) ≤ Nq(x, t)

(3.31)

for all x ∈ X, t > 0 and k > 0, where∏n

k=1 ak = a1 ∗ a2 ∗ ... ∗ an and∐n

k=1 ak =a1 ? a2 ? ... ? an. Replacing x by 2mx in (3.31), we observe that

µ(g(2k+mx)

4k+m− g(2mx)

4m,

k−1∑j=0

αjt

4(4)j+m) ≥ Mq(2

mx, t) = Mq(x,t

αm) &

ν(g(2k+mx)

4k+m− g(2mx)

4m,

k−1∑j=0

αjt

4(4)j+m) ≤ Nq(2

mx, t) = Nq(x,t

αm)

Page 14: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ... 113

for all x ∈ X, t > 0 and all m ≥ 0, k > 0. Hence

µ(g(2k+mx)

4k+m− g(2mx)

4m,k+m−1∑

j=m

αjt

4(4)j) ≥ Mq(x, t) &

ν(g(2k+mx)

4k+m− g(2mx)

4m,

k+m−1∑j=m

αjt

4(4)j) ≤ Nq(x, t)

for all x ∈ X, t > 0 and all m ≥ 0, k > 0. By last inequality, we obtain

µ(g(2k+mx)

4k+m− g(2mx)

4m, t) ≥ Mq(x,

t∑k+m−1j=m

αj

4(4)j )) &

ν(g(2k+mx)

4k+m− g(2mx)

4m, t) ≤ Nq(x,

t∑k+m−1j=m

αj

4(4)j ))

(3.32)

for all x ∈ X, t > 0 and all m ≥ 0, k > 0. Since 0 < α < 4 and∑∞

j=0(α4)j < ∞, the

Cauchy criterion for convergence in IFNS shows that {g(2kx)4k } is a Cauchy sequence

in Y. Since Y is complete, this sequence converges to some point Q(x) ∈ Y . So onecan define the function Q : X → Y by

Q(x) = (µ, ν)− limk→∞

1

4kg(2kx) = (µ, ν)− lim

k→∞

1

4k(f(2k+1x)− 16f(2kx)) (3.33)

for all x ∈ X. Fix x ∈ X and put m=0 in (3.33) to obtain

µ(g(2kx)

4k−g(x), t) ≥ Mq(x,

t∑k−1j=0

αj

4(4)j )) & ν(

g(2kx)

4k−g(x), t) ≤ Nq(x,

t∑k−1j=0

αj

4(4)j ))

for all x ∈ X, t > 0 and all k > 0. From which we obtain

µ(Q(x)− g(x), t) ≥ µ(Q(x)− g(2kx)

4k,t

2) ∗ µ(

g(2kx)

4k− g(x),

t

2)

≥ Mq(x,t∑k−1

j=0αj

2(4)j )) &

ν(Q(x)− g(x), t) ≤ ν(Q(x)− g(2kx)

4k,t

2) ? ν(

g(2kx)

4k− g(x),

t

2)

≤ Nq(x,t∑k−1

j=0αj

2(4)j ))

(3.34)

for k large enough. Taking the limit as k →∞ in (3.35) and using the definition ofIFNS, we obtain

µ(Q(x)−g(x), t) ≥ Mq(x,(4− α)t

2) & ν(Q(x)−g(x), t) ≤ Nq(x,

(4− α)t

2) (3.35)

Page 15: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

114 S. ABBASZADEH

for all x ∈ X and t > 0. On the other hand, we have

µ(Q(2x)

4−Q(x), t) ≥ µ(

Q(2x)

4− g(2k+1x)

4k+1,t

3) ∗ µ(

g(2kx)

4k−Q(x),

t

3)

∗ µ(g(2k+1x)

4k+1− g(2kx)

4k,t

3) &

ν(Q(2x)

4−Q(x), t) ≤ ν(

Q(2x)

4− g(2k+1x)

4k+1,t

3) ? ν(

g(2kx)

4k−Q(x),

t

3)

? ν(g(2k+1x)

4k+1− g(2kx)

4k,t

3)

for all x ∈ X and t > 0. So it follows from (3.29) and (3.34) that

Q(2x) = 4Q(x) (3.36)

for all x ∈ X. By (3.1) and (3.2), we obtain

µ(1

4kDg(2kx, 2ky), t) = µ(

1

4kDf(2k+1x, 2k+1y)− 16

4kDf(2kx, 2ky), t)

≥ µ(Df(2k+1x, 2k+1y),4kt

2) ∗ µ(Df(2kx, 2ky),

4kt

32)

≥ µ′(ϕq(2

k+1x, 2k+1y),4kt

2) ∗ µ

′(ϕq(2

kx, 2ky),4kt

32)

= µ′(ϕq(x, y),

4kt

2αk+1) ∗ µ

′(ϕq(x, y),

4kt

32αk)

(3.37)

for all x, y ∈ X and t > 0. Letting k →∞ in (3.37), we obtain

µ(DQ(x, y), t) = 1

for all x, y ∈ X and t > 0. Similarly, we obtain

ν(DQ(x, y), t) = 0.

This means that Q satisfies (1.4). Thus by Lemma 3.1, the function x Q(2x) −16Q(x) is quadratic. Therefore (3.36) implies that the function Q is quadratic.

Now, to prove the uniqueness property of Q, let Q′: X → Y be another quadratic

function satisfying (3.3). It follows from (3.3), (3.28) and (3.36) that

µ(Q(x)−Q′(x), t) = µ(

Q(2kx)

4k− Q

′(2kx)

4k, t)

≥ µ(Q(2kx)

4k− g(2kx)

4k,t

2) ∗ µ(

g(2kx)

4k− Q

′(2kx)

4k,t

2)

≥ Mq(2kx,

4k(4− α)t

4) ∗Mq(2

kx,4k(4− α)t

4)

= Mq(x,4k(4− α)t

4αk) ∗Mq(x,

4k(4− α)t

4αk) &

ν(Q(x)−Q′(x), t) ≤ Nq(2

kx,4k(4− α)t

4) ? Nq(2

kx,4k(4− α)t

4)

= Nq(x,4k(4− α)t

4αk) ? Nq(x,

4k(4− α)t

4αk)

Page 16: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ... 115

for all x ∈ X and t > 0. Since α < 4, gives limk→∞ Mq(x, 4k(4−α)t4αk ) = 1 and

limk→∞ Nq(x, 4k(4−α)t4αk ) = 0. Thus, µ(Q(x)−Q

′(x), t) = 1 and ν(Q(x)−Q

′(x), t) = 0,

therefore Q(x) = Q′(x).

Case (2): ` = −1. We can state the proof in the same pattern as we did in thefirst case.Replacing x by x

2in (3.26), we obtain

µ(g(x)− 4g(x

2), t) ≥ Mq(

x

2, t) & ν(g(x)− 4g(

x

2), t) ≤ Nq(

x

2, t) (3.38)

for all x ∈ X and t > 0. Replacing x and t by x2k and t

4k in (3.38), respectively, weobtain

µ(4kg(x

2k)− 4k+1g(

x

2k+1), t) ≥ Mq(

x

2k+1,

t

4k) = Mq(x, (

α

4)kαt) &

ν(4kg(x

2k)− 4k+1g(

x

2k+1), t) ≤ Nq(

x

2k+1,

t

4k) = Nq(x, (

α

4)kαt)

for all x ∈ X, t > 0 and all k > 0. One can deduce

µ(4k+mg(x

2k+m)− 4mg(

x

2m), t) ≥ Mq(x,

t∑k+mj=m+1

4j

4αj )) &

ν(4k+mg(x

2k+m)− 4mg(

x

2m), t) ≤ Nq(x,

t∑k+mj=m+1

4j

4αj ))

(3.39)

for all x ∈ X, t > 0 and all m, k ≥ 0. From which we conclude that {4kg( x2k )} is a

Cauchy sequence in the intuitionistic fuzzy Banach space (Y, µ, ν). Therefore, thereis a function Q : X −→ Y defined by Q(x) := (µ, ν) − limk→∞ 4kg( x

2k ). Employing(3.39) with m = 0, we obtain

µ(Q(x)− g(x), t) ≥ Mq(x,(α− 4)t

2) & ν(Q(x)− g(x), t) ≤ Nq(x,

(α− 4)t

2)

for all x ∈ X and t > 0. The proof for uniqueness of Q for this case proceedssimilarly to that in the previous case, hence it is omitted. �

4. Intuitionistic fuzzy stability of (1.4): for quartic functions

In this section, we prove the generalized Hyers–Ulam stability of the functionalequation (1.4) in intuitionistic fuzzy Banach space for quartic functions.

Lemma 4.1. ([38]). Let V1 and V2 be real vector spaces. If a function f : V1 → V2

satisfies (1.4), then the function h : V1 → V2 defined by h(x) = f(2x) − 4f(x) isquartic.

Theorem 4.2. Let ` ∈ {−1, 1} be fixed and let ϕv : X × X −→ Z be a functionsuch that

ϕv(2x, 2y) = αϕv(x, y) (4.1)

for all x, y ∈ X and for some positive real number α with α` < 16`. Suppose thatan even function f : X → Y with f(0) = 0 satisfies

µ (Df(x, y), t) ≥ µ′(ϕv(x, y), t) & ν (Df(x, y), t) ≤ ν

′(ϕv(x, y), t) (4.2)

Page 17: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

116 S. ABBASZADEH

for all x, y ∈ X and t > 0. Then the limit

V (x) = (µ, ν)− limk→∞

1

16`k

(f(2`k+1x)− 4f(2`kx)

)

exists for all x ∈ X and V : X → Y is a unique quartic function such that

µ (f(2x)− 4f(x)− V (x), t) ≥ Mv

(x,

`(16− α)

2t

)&

ν (f(2x)− 4f(x)− V (x), t) ≤ Nv

(x,

`(16− α)

2t

) (4.3)

for all x ∈ X and t > 0, where

Mv(x, t) = µ′(ϕv(x, (n + 2)x),

n2(n2 − 1)t

17)

∗ µ′(ϕv(x, (n− 2)x),

n2(n2 − 1)t

17) ∗ µ

′(ϕv(x, (n + 1)x),

n2(n2 − 1)t

68)

∗ µ′(ϕv(x, (n− 1)x),

n2(n2 − 1)t

68) ∗ µ

′(ϕv(x, nx),

n2(n2 − 1)t

170)

∗ µ′(ϕv(2x, 2x),

n2(n2 − 1)t

17) ∗ µ

′(ϕv(2x, x),

n2(n2 − 1)t

68)

∗ µ′(ϕv(x, 3x),

(n2 − 1)t

17) ∗ µ

′(ϕv(x, 2x),

n2(n2 − 1)t

28(3n2 − 1))

∗ µ′(ϕv(x, x),

n2(n2 − 1)t

17(17n2 − 8)) ∗ µ

′(ϕv(0, (n + 1)x),

(n2 − 1)2t

17)

∗ µ′(ϕv(0, (n− 3)x),

(n2 − 1)2t

17) ∗ µ

′(ϕv(0, (n− 1)x),

(n2 − 1)2t

170)

∗ µ′(ϕv(0, nx),

(n2 − 1)2t

68) ∗ µ

′(ϕv(0, (n− 2)x),

(n2 − 1)2t

68)

∗ µ′(ϕv(0, 2x),

n2(n2 − 1)2t

17(n4 + 1)) ∗ µ

′(ϕv(0, x),

n2(n2 − 1)2t

28(3n4 − n2 + 2)) &

Page 18: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ... 117

Nv(x, t) = ν′(ϕv(x, (n + 2)x),

n2(n2 − 1)t

17)

? ν′(ϕv(x, (n− 2)x),

n2(n2 − 1)t

17) ? ν

′(ϕv(x, (n + 1)x),

n2(n2 − 1)t

68)

? ν′(ϕv(x, (n− 1)x),

n2(n2 − 1)t

68) ? ν

′(ϕv(x, nx),

n2(n2 − 1)t

170)

? ν′(ϕv(2x, 2x),

n2(n2 − 1)t

17) ? ν

′(ϕv(2x, x),

n2(n2 − 1)t

68)

? ν′(ϕv(x, 3x),

(n2 − 1)t

17) ? ν

′(ϕv(x, 2x),

n2(n2 − 1)t

28(3n2 − 1))

? ν′(ϕv(x, x),

n2(n2 − 1)t

17(17n2 − 8)) ? ν

′(ϕv(0, (n + 1)x),

(n2 − 1)2t

17)

? ν′(ϕv(0, (n− 3)x),

(n2 − 1)2t

17) ? ν

′(ϕv(0, (n− 1)x),

(n2 − 1)2t

170)

? ν′(ϕv(0, nx),

(n2 − 1)2t

68) ? ν

′(ϕv(0, (n− 2)x),

(n2 − 1)2t

68)

? ν′(ϕv(0, 2x),

n2(n2 − 1)2t

17(n4 + 1)) ? ν

′(ϕv(0, x),

n2(n2 − 1)2t

28(3n4 − n2 + 2)).

Proof. Case (1): ` = 1. Similar to the proof Theorem 3.2, we have

µ(f(4x)− 20f(2x) + 64f(x), t) ≥ Mv(x, t) &

ν(f(4x)− 20f(2x) + 64f(x), t) ≤ Nv(x, t)(4.4)

for all x ∈ X and t > 0. Let h : X → Y be a function defined by h(x) :=f(2x)− 4f(x) for all x ∈ X. From (4.4), we conclude that

µ(h(2x)− 16h(x), t) ≥ Mv(x, t) & ν(h(2x)− 16h(x), t) ≤ Nv(x, t) (4.5)

for all x ∈ X and t > 0. So

µ(h(2x)

16− h(x),

t

16) ≥ Mv(x, t) & ν(

h(2x)

16− h(x),

t

16) ≤ Nv(x, t) (4.6)

for all x ∈ X and t > 0. Then by our assumption

Mv(2x, t) = Mv(x,t

α) & Nv(2x, t) = Nv(x,

t

α) (4.7)

for all x ∈ X and t > 0. Replacing x by 2kx in (4.6) and using (4.7), we obtain

µ(h(2k+1x)

16k+1− h(2kx)

16k,

t

16(16k)) ≥ Mv(2

kx, t) = Mv(x,t

αk) &

ν(h(2k+1x)

16k+1− h(2kx)

16k,

t

16(16k)) ≤ Nv(2

kx, t) = Nv(x,t

αk)

(4.8)

for all x ∈ X, t > 0 and k ≥ 0. Replacing t by αkt in (4.8), we see that

µ(h(2k+1x)

16k+1− h(2kx)

16k,

αkt

16(16k)) ≥ Mv(x, t) &

ν(h(2k+1x)

16k+1− h(2kx)

16k,

αkt

16(16k)) ≤ Nv(x, t)

(4.9)

Page 19: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

118 S. ABBASZADEH

for all x ∈ X, t > 0 and k > 0. It follows from h(2kx)16k −h(x) =

∑k−1j=0(

h(2j+1x)16j+1 − h(2jx)

16j )

and (4.9) that

µ(h(2kx)

16k− h(x),

k−1∑j=0

αjt

16(16)j) ≥

k−1∏j=0

µ(h(2j+1x)

16j+1− h(2jx)

16j,

αjt

16(16)j)

≥ Mv(x, t) &

ν(h(2kx)

16k− h(x),

k−1∑j=0

αjt

16(16)j) ≤

k−1∐j=0

ν(h(2j+1x)

16j+1− h(2jx)

16j,

αjt

16(16)j)

≤ Nv(x, t)

(4.10)

for all x ∈ X, t > 0 and k > 0. Replacing x by 2mx in (4.10), we observe that

µ(h(2k+mx)

16k+m− h(2mx)

16m,

k−1∑j=0

αjt

16(16)j+m) ≥ Mv(2

mx, t) = Mv(x,t

αm) &

ν(h(2k+mx)

16k+m− h(2mx)

16m,

k−1∑j=0

αjt

16(16)j+m) ≤ Nv(2

mx, t) = Nv(x,t

αm)

for all x ∈ X, t > 0 and all m ≥ 0, k > 0. Hence

µ(h(2k+mx)

16k+m− h(2mx)

16m,k+m−1∑

j=m

αjt

16(16)j) ≥ Mv(x, t) &

ν(h(2k+mx)

16k+m− h(2mx)

16m,k+m−1∑

j=m

αjt

16(16)j) ≤ Nv(x, t)

for all x ∈ X, t > 0 and all m ≥ 0, k > 0. By last inequality, we obtain

µ(h(2k+mx)

16k+m− h(2mx)

16m, t) ≥ Mv(x,

t∑k+m−1j=m

αj

16(16)j )) &

ν(h(2k+mx)

16k+m− h(2mx)

16m, t) ≤ Nv(x,

t∑k+m−1j=m

αj

16(16)j ))

(4.11)

for all x ∈ X, t > 0 and all m ≥ 0, k > 0. Since 0 < α < 16 and∑∞

j=0(α16

)j < ∞, the

Cauchy criterion for convergence in IFNS shows that {h(2kx)16k } is a Cauchy sequence

in Y. Since Y is complete, this sequence converges to some point V (x) ∈ Y . So onecan define the function V : X → Y by

V (x) = (µ, ν)− limk→∞

1

16kh(2kx) = (µ, ν)− lim

k→∞

1

16k(f(2k+1x)− 4f(2kx)) (4.12)

for all x ∈ X. Fix x ∈ X and put m=0 in (4.11) to obtain

µ(h(2kx)

16k− h(x), t) ≥ Mv(x,

t∑k−1j=0

αj

16(16)j )) &

ν(h(2kx)

16k− h(x), t) ≤ Nv(x,

t∑k−1j=0

αj

16(16)j ))

Page 20: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ... 119

for all x ∈ X, t > 0 and all k > 0. From which we obtain

µ(V (x)− h(x), t) ≥ µ(V (x)− h(2kx)

16k,t

2) ∗ µ(

h(2kx)

16k− h(x),

t

2)

≥ Mv(x,t∑k−1

j=0αj

8(16)j )) &

ν(V (x)− h(x), t) ≤ ν(V (x)− h(2kx)

16k,t

2) ? ν(

h(2kx)

16k− h(x),

t

2)

≤ Nv(x,t∑k−1

j=0αj

8(16)j ))

(4.13)

for k large enough. Taking the limit as k →∞ in (4.13) and using the definition ofIFNS, we obtain

µ(V (x)− h(x), t) ≥ Mv(x,(16− α)t

2) &

ν(V (x)− h(x), t) ≤ Nv(x,(16− α)t

2)

(4.14)

for all x ∈ X and t > 0. On the other hand, we have

µ(V (2x)

16− V (x), t) ≥ µ(

V (2x)

16− h(2k+1x)

16k+1,t

3) ∗ µ(

h(2kx)

16k− V (x),

t

3)

∗ µ(h(2k+1x)

16k+1− h(2kx)

16k,t

3) &

ν(V (2x)

16− V (x), t) ≤ ν(

V (2x)

16− h(2k+1x)

16k+1,t

3) ? ν(

h(2kx)

16k− V (x),

t

3)

? ν(h(2k+1x)

16k+1− h(2kx)

16k,t

3)

for all x ∈ X and t > 0. So it follows from (4.8) and (4.12) that

V (2x) = 16V (x) (4.15)

for all x ∈ X. By (4.1) and (4.2), we obtain

µ(1

16kDh(2kx, 2ky), t) = µ(

1

16kDf(2k+1x, 2k+1y)− 4

16kDf(2kx, 2ky), t)

≥ µ(Df(2k+1x, 2k+1y),16kt

2) ∗ µ(Df(2kx, 2ky),

16kt

8)

≥ µ′(ϕv(2

k+1x, 2k+1y),16kt

2) ∗ µ

′(ϕv(2

kx, 2ky),16kt

8)

= µ′(ϕv(x, y),

16kt

2αk+1) ∗ µ

′(ϕv(x, y),

16kt

8αk)

(4.16)

for all x, y ∈ X and t > 0. Letting k →∞ in (4.16), we obtain

µ(DV (x, y), t) = 1

for all x, y ∈ X and t > 0. Similarly, we obtain

ν(DV (x, y), t) = 0.

Page 21: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

120 S. ABBASZADEH

This means that V satisfies (1.4). Thus by Lemma 4.1, the function x V (2x) −4V (x) is quartic. Therefore (4.15) implies that the function V is quartic.

The rest of the proof is similar to the proof of Theorem 3.2 and we omit thedetails. �

5. Intuitionistic fuzzy stability of (1.4)

In this section, we prove the main results concerning the generalized Hyers–Ulamstability of a mixed quadratic and quartic functional equation (1.4) in IFNS.

Lemma 5.1. ([38]). A function f : V1 → V1 satisfies (1.4) for all x, y ∈ V1 if andonly if there exist a unique symmetric bi–additive function B1 : V1 × V1 −→ V2 anda unique symmetric bi–quadratic function B2 : V1 × V1 −→ V2 such that f(x) =B1(x, x) + B2(x, x) for all x ∈ V1.

Theorem 5.2. Let ϕ : X ×X −→ Z be a function such that

ϕ(2x, y) = αϕ(x, y) (5.1)

for all x, y ∈ X and for some positive real number α. Suppose that an even functionf : X → Y with f(0) = 0 satisfies the inequality

µ (Df(x, y), t) ≥ µ′(ϕ(x, y), t) & ν (Df(x, y), t) ≤ ν

′(ϕ(x, y), t) (5.2)

for all x, y ∈ X and t > 0. Then there exists a unique quadratic function Q : X → Yand a unique quartic function V : X → Y such that satisfying

µ(f(x)−Q(x)− V (x), t) ≥

M(x, 3t(4− α)) ∗M(x, 3t(16− α)), 0 < α < 4

M(x, 3t(α− 4)) ∗M(x, 3t(16− α)), 4 < α < 16

M(x, 3t(α− 4)) ∗M(x, 3t(α− 16)), α > 16

&

ν(f(x)−Q(x)− V (x), t) ≤

N(x, 3t(4− α)) ? N(x, 3t(16− α)), 0 < α < 4

N(x, 3t(α− 4)) ? N(x, 3t(16− α)), 4 < α < 16

N(x, 3t(α− 4)) ? N(x, 3t(α− 16)), α > 16

(5.3)

Page 22: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ... 121

for all x ∈ X and t > 0, where

M(x, t) = µ′(ϕ(x, (n + 2)x),

n2(n2 − 1)t

17)

∗ µ′(ϕ(x, (n− 2)x),

n2(n2 − 1)t

17) ∗ µ

′(ϕ(x, (n + 1)x),

n2(n2 − 1)t

68)

∗ µ′(ϕ(x, (n− 1)x),

n2(n2 − 1)t

68) ∗ µ

′(ϕ(x, nx),

n2(n2 − 1)t

170)

∗ µ′(ϕ(2x, 2x),

n2(n2 − 1)t

17) ∗ µ

′(ϕ(2x, x),

n2(n2 − 1)t

68)

∗ µ′(ϕ(x, 3x),

(n2 − 1)t

17) ∗ µ

′(ϕ(x, 2x),

n2(n2 − 1)t

28(3n2 − 1))

∗ µ′(ϕ(x, x),

n2(n2 − 1)t

17(17n2 − 8)) ∗ µ

′(ϕ(0, (n + 1)x),

(n2 − 1)2t

17)

∗ µ′(ϕ(0, (n− 3)x),

(n2 − 1)2t

17) ∗ µ

′(ϕ(0, (n− 1)x),

(n2 − 1)2t

170)

∗ µ′(ϕ(0, nx),

(n2 − 1)2t

68) ∗ µ

′(ϕ(0, (n− 2)x),

(n2 − 1)2t

68)

∗ µ′(ϕ(0, 2x),

n2(n2 − 1)2t

17(n4 + 1)) ∗ µ

′(ϕ(0, x),

n2(n2 − 1)2t

28(3n4 − n2 + 2)) &

N(x, t) = ν′(ϕ(x, (n + 2)x),

n2(n2 − 1)t

17)

? ν′(ϕ(x, (n− 2)x),

n2(n2 − 1)t

17) ? ν

′(ϕ(x, (n + 1)x),

n2(n2 − 1)t

68)

? ν′(ϕ(x, (n− 1)x),

n2(n2 − 1)t

68) ? ν

′(ϕ(x, nx),

n2(n2 − 1)t

170)

? ν′(ϕ(2x, 2x),

n2(n2 − 1)t

17) ? ν

′(ϕ(2x, x),

n2(n2 − 1)t

68)

? ν′(ϕ(x, 3x),

(n2 − 1)t

17) ? ν

′(ϕ(x, 2x),

n2(n2 − 1)t

28(3n2 − 1))

? ν′(ϕ(x, x),

n2(n2 − 1)t

17(17n2 − 8)) ? ν

′(ϕ(0, (n + 1)x),

(n2 − 1)2t

17)

? ν′(ϕ(0, (n− 3)x),

(n2 − 1)2t

17) ? ν

′(ϕ(0, (n− 1)x),

(n2 − 1)2t

170)

? ν′(ϕ(0, nx),

(n2 − 1)2t

68) ? ν

′(ϕ(0, (n− 2)x),

(n2 − 1)2t

68)

? ν′(ϕ(0, 2x),

n2(n2 − 1)2t

17(n4 + 1)) ? ν

′(ϕ(0, x),

n2(n2 − 1)2t

28(3n4 − n2 + 2)).

Page 23: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

122 S. ABBASZADEH

Proof. Case (1): 0 < α < 4. By Theorems 3.2 and 4.2, there exists a quadraticfunction Q0 : X → Y and a quartic function V0 : X → Y such that

µ(f(2x)− 16f(x)−Q0(x), t) ≥ M(x,t(4− α)

2) &

ν(f(2x)− 16f(x)−Q0(x), t) ≤ N(x,t(4− α)

2)

(5.4)

and

µ(f(2x)− 4f(x)− V0(x), t) ≥ M(x,t(16− α)

2) &

ν(f(2x)− 4f(x)− V0(x), t) ≤ N(x,t(16− α)

2)

(5.5)

for all x ∈ X and t > 0. It follows from (5.4) and (5.5) that

µ(f(x) +1

12Q0(x)− 1

12V0(x), t) ≥ M(x, 3t(4− α)) ∗M(x, 3t(16− α)) &

ν(f(x) +1

12Q0(x)− 1

12V0(x), t) ≤ N(x, 3t(4− α)) ? N(x, 3t(16− α))

(5.6)

for all x ∈ X and t > 0. Letting Q(x) = − 112

Q0(x) and V (x) = 112

V0(x) in (5.6), weobtain

µ(f(x)−Q(x)− V (x), t) ≥ M(x, 3t(4− α)) ∗M(x, 3t(16− α)) &

ν(f(x)−Q(x)− V (x), t) ≤ N(x, 3t(4− α)) ? N(x, 3t(16− α))(5.7)

for all x ∈ X and t > 0.To prove the uniqueness of Q and V, let Q′, V ′ : X → Y be another quadratic

and quartic functions satisfying (5.7). Let Q = Q−Q′ and V = V − V ′. So

µ(Q(x) + V (x), t) ≥ µ(f(x)−Q(x)− V (x),t

2) ∗ µ(f(x)−Q′(x)− V ′(x),

t

2))

≥ M(x,3t(4− α)

2) ∗M(x,

3t(16− α)

2) ∗M(x,

3t(4− α)

2)

∗M(x,3t(16− α)

2)

for all x ∈ X and t > 0. Therefore it follows from the last inequalities that

µ(Q(2kx) + V (2kx), 16kt)

≥ M(2kx,3(4− α)16kt

2) ∗M(2kx,

3(16− α)16kt

2)

∗M(2kx,3(4− α)16kt

2) ∗M(2kx,

3(16− α)16kt

2)

= M(x,3(4− α)16kt

αk) ∗M(x,

3(16− α)16kt

αk)

∗M(x,3(4− α)16kt

αk) ∗M(x,

3(16− α)16kt

αk)

for all x ∈ X and t > 0. So

limk→∞

µ(1

16k(Q(2kx) + V (2kx)), t) = 1

Page 24: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ... 123

for all x ∈ X and t > 0. Similarly, we obtain

limk→∞

ν(1

16k(Q(2kx) + V (2kx)), t) = 0.

Hence V = 0 and then Q = 0.The proof for Case (2): 4 < α < 16 and Case (3): α > 16 proceeds similarly to

that in the Case (1). �

References

1. L.A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965) 338–353.2. L.C. Barros, R.C. Bassanezi and P.A. Tonelli, Fuzzy modelling in population dynamics, Ecol.

Model, 128 (2000) 27–33.3. A.L. Fradkov and R.J. Evans, Control of chaos: Methods and applications in engineering, Chaos

Solitons Fractals, 29 (2005) 33–56.4. R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets Syst, 4 (1980) 221–234.5. L. Hong, J.Q. Sun, Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci.

Numer. Simul, 1 (2006) 1–12.6. J. Madore, Fuzzy physics, Ann. Phys, 219 (1992) 187–198.7. R. Saadati, S.M. Vaezpour and Y.J. Cho, Quicksort algorithm: Application of a fixed point

theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words, J. Comput. Appl. Math.228 (1) (2009) 219–225.

8. M. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functionalequation, Fuzzy Sets Syst, 159 (2008) 730–738.

9. A.K. Mirmostafaee and M.S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci. 178(2008) 3791–3798.

10. A.K. Mirmostafaee, A fixed point approach to almost quartic mappings in quasi fuzzy normedspaces, Fuzzy Sets Syst. 160 (2009) 1653–1662.

11. D. Mihet, The fixed point method for fuzzy stability of the Jensen functional equation, FuzzySets Syst, 160 (2009) 1663-1667.

12. C. Park, Fuzzy stability of a functional equation associated with inner product spaces, FuzzySets Syst. 160 (2009) 1632–1642.

13. M. Mursaleen and S.A. Mohiuddine, Nonlinear operators between intuitionistic fuzzy normedspaces and Frchet differentiation, Chaos, Solitons and Fractals, 42 (2009) 1010-1015.

14. M. Mursaleen and S.A. Mohiuddine, Statistical convergence of double sequences in intuitionisticfuzzy normed spaces, Chaos, Solitons Fractals, 41 (2009) 2414-2421.

15. M. Mursaleen, S.A. Mohiuddine and O.H.H. Edely, On the ideal convergence of double se-quences in intuitionistic fuzzy normed spaces, Comp. Math. Appl, 59 (2010) 603–611.

16. R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons Frac-tals, 27 (2006) 331-44.

17. R. Saadati, S. Sedghi and N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixedpoint theorems, Chaos, Solitons Fractals, doi:10.1016/ j.chaos.2006.11.008.

18. T. Bag and S.K. Samanta, Some fixed point theorems on fuzzy normed linear spaces, Info Sci,177 (2007) 3271-3289.

19. T. Bag and S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst, 151 (2005) 513–547.

20. J.X. Fang, On I-topology generated by fuzzy norm, Fuzzy Sets Syst, 157 (2006) 2739-2750.21. M. Mursaleen and Q.M.D. Lohani, Intuitionistic fuzzy 2–normed space and some related con-

cepts, Chaos, Solitons Fractals, 42 (2009) 224–234.

Page 25: INTUITIONISTIC FUZZY STABILITY OF A QUADRATIC AND ...ijnaa.semnan.ac.ir/article_79_0f500f465e1383e760d...considered the intuitionistic fuzzy normed linear spaces, and intuitionistic

124 S. ABBASZADEH

22. S. M. Ulam, Problems in Modern Mathematics, Chapter VI, science Editions, Wiley, New York,1964.

23. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941)222–224.

24. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan,2 (1950) 64–66.

25. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math.Soc, 72 (1978) 297–300.

26. D.H. Hyers and G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables,Birkhuser, Basel, 1998.

27. Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl.Math, 62 (2000), 23–130.

28. H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several vari-ables, Int. J. Nonlinear Anal. Appl, 1 (2010) 22–41.

29. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additivemappings, J. Math. Anal. Appl, 184 (1994) 431-436.

30. J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge UniversityPress, 1989.

31. Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math, 27(1995) 368–372.

32. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem.Univ. Hamburg, 62 (1992) 59–64.

33. S.H. Lee, S.M. Im and I.S. Hawng, Quartic functional equation, J. Math. Anal. Appl, 307(2005) 387–394.

34. M. Eshaghi Gordji and H. Khodaei, Solution and stability of generalized mixed type cubic,quadratic and additive functional equation in quasi–Banach spaces, Nonlinear Analysis.-TMA,71 (2009) 5629–5643.

35. A. Najati and M. B. Moghimi, Stability of a functional equation deriving from quadratic andadditive function in quasi-Banach spaces, J. Math. Anal. Appl, 337 (2008) 399-415.

36. A. Najati and G. Zamani Eskandani, Stability of a mixed additive and cubic functional equationin quasi-Banach spaces, J. Math. Anal. Appl, 342 (2008) 1318-1331.

37. A. Najati and Th.M. Rassias, Stability of a mixed functional equation in several variables onBanach modules, Nonlinear Analysis.-TMA, in press.

38. M. Eshaghi Gordji, S. Abbaszadeh and C. Park, On the Stability of a Generalized Quadraticand Quartic Type Functional Equation in Quasi–Banach Spaces, J. In. .Appl, Vol 2009, ArticleID 153084, 26 pages, doi:10.1155/2009/153084.

39. M. Mursaleen and S.A. Mohiuddine, On stability of a cubic functional equation in intuitionisticfuzzy normed spaces, Chaos, Solitons Fractals, 42 (2009) 2997-3005.

40. S.A. Mohiuddine, Stability of Jensen functional equation in intuitionistic fuzzy normed space,Chaos, Solitons Fractals, 42 (2009) 2989–2996.

41. B. Schweize and A. Sklar, Satistical metric spaces, Pacific J Math, 10 (1960) 314-334.42. S. Vijayabalaji, N. Thillaigovindan and Y. Bae Jun, Intuitionistic Fuzzy n-normed linear space,

Bull. Korean Math. Soc, 44 (2007) 291–308.

Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan,Iran.

E-mail address: [email protected]