intze++water+tank++based+on+k.+raju

Upload: civilsalman

Post on 15-Jul-2015

127 views

Category:

Documents


0 download

TRANSCRIPT

1 Tank capacity Ltr. 1000m3100 mm thick2 Height of tower from G.L. 16.00 1.00 mtr3 Live load on Dome 1.50 kN/m20.1 kN/m2300 x 3003 Intencity of wind1.50 kN/m210 kN/m34 Noumber of columns 8 No.Bearing capcity of earth250 kN/m2B14 Conrete M 20 24 kN/m312.00 mWcc 5N/mm2m 13Wcb7N/mm2Q0.8978.00 m5 Steel HYSD fy 415 150 N/mm2Resistance to cracking Wct 1.2N/mm2Wcb 1.7N/mm2Bottom Ring Beam Conocal Dom6 NominalCover25 mm 40 mm 1200 x 600 mm 600 mm thick7 Depth / diameter Ratio 1: 0.75 Spacing of Bracing 4.00 mtr B28 ReinforcementBorrom sperical Dom 300 mmTop Dome (main / distri. ) 8 mm* 160 mm c/c both way 2.00 mTop Ring Beam(B1) 12 mm* 8 Nos. Bottom two ledge srirrups 8 mm* 300 mm c/c 8.00 M B3Vertical wall600 x 1200 B3 0.00 m2m from tophoop ring 10 mm* 190 mm c/c both side4m from tophoop ring 16 mm* 250 mm c/c both side8m from tophoop ring 20 mm* 190 mm c/c both side2m from topDistri. Steel 10 mm* 260 mm c/c both sideGroup of columns4m from topDistri. Steel 10 mm* 170 mm c/c both side 650 0.00 m8m from topDistri. Steel 10 mm* 130 mm c/c both sideBottom Ring Beam (B2)Main 20 mm* 18 Nos. 0.00 mDistri. Steel 10 mm* 150 mm c/cConical wallMain 25 mm* 190 mm c/cDistri. Steel 10 mm* 130 mm c/c 0.00 mBottom sperical Dome 10 mm* 120 mm c/cboth side Circular Bottom circular girder(B3) Main top 25 mm* 6 Nos. Girder for Raft B4Vertical strirrups 12 mm* 110 mm c/c 4 Ledge750 X 1000 1.00 mMain bottom 25 mm* 5 Nos.mmVertical strirrups 10 mm* 300 mm c/c2 Ledge1000Column supprting tower Main 32 mm* 8 Nos. 5.00 m250Latral 10 mm* 300 mm c/cmBracingmain 25 mm* 4 Nos. at top and bottomstrirrups 10 mm* 300 mm c/c 2 Ledge strirrup Circular girder for Raft(B4) bottom 25 mm* 6 Nos. top 25 mm* 3 Nos. strirrups 12 mm* 130 mm c/c 4 Ledge strirrup Raft Foundation slab main 25 mm* 200 mm c/cDistribution 12 mm* 180 mm c/c [email protected] mm J@8 mm J@ 160 mm c/c Both side 6 Nos. top10 mm J @150 mm c/c strirrup300 2.00 mB1 6.00 m12 mm J@ 8 Nos.300 8 mm J@ 300 mm c/c0 m200 10 mm J@ 190 mm c/cmm10 mm J@ 260 mm c/c 200 x 200300 10 mm J@ 170 mm c/c Fillet 10 mm Jstrirrupmm16 mm J@ 250 mm c/c Braces 300 mm c/cReiforcement in circular girdercolumnsName of work:- pkn1200600Finishes load mtrFoudation from G.L.1000000DESIGNOF INTZE WATER TANK Top Domemm diaCircular GirderTop Ring Beam2.00Circularm11.00BracesO.K.m100Bottom circular girderEffective Cover Tensile stress (Tank)unit weight wt of water 1.605003.00N.S.L.2.0016 mm J@ 250 mm c/c Braces 300 mm c/c2 m 25 mm J20 mm J@ 190 mm c/c 4 nos.top5005004 m 25 mm J10 mm J@ 130 mm c/c 4 nos.Bottom400mm20 mm J@ 18 Nos. 25 mm J mm Jmm J@ 150 mm c/c 10 mmJ 3 nos.top nos.top600 mm 300 mm c/c 12 mm J 25 mm J32 mmJ 130 mm c/c 6 nos.top8 mm c/c 25 mm J 12 mm J200 mm c/c 6 nos.top25 mm J@6 Nos. top 32 mm J 10 mm J12 mm J@ 8 nos. 300 mm c/c110mmc/c.strirrup120012 mm [email protected] side25 mm J@5 [email protected] Detail in circular girder and Raft foundation slabReinfocement in BraceCross -section of Bottom Ring girder500Reinforcement Detail in r columnsReinforcement detail in Intze Tank.30010Tank capacity ltr or = 1000 m3Height of tower from G.L. 16.0 = 1.00 mtrLive load on Dome 1.50 kN/m2Finishes load= 0.10 kN/m2Intencity of windkN/m2= kN/mm3Noumber of columns 8 No.Bearing capcity of ea = kN/m2Conrete M- 20 = kN/mm3Wcb7N/mm2= 13Wct5N/mm2Q =Steel HYSD fy 415 N/mm2= 150 N/mm2Resistance to crackingWcb1.2N/mm2Wcb= 1.7N/mm2Nominal cover25 mm = 35 mm2 Design Constants:- For HYSD BarsCocrete M= 20 wt. of concrete= 24 kN/mm3for water TankWst! 150N/mm2Wst= 230N/mm2Wcb ! 7N/mm2m! 13k = 0.378 k = 0.283J = 0.874 J = 0.906R = 1.156 R = 1.6693 Dimention of tank:-D ! Inside diameter of tank = 0.75 DWe have,T x D24@ Height of cylindrical portion of tank = 0.75 x 11.93 = mDepth of conical Dome D/5 or D/6 = 12.00 / 6 = mDiameter of supporting tower = 8 mSpacing of bracing= 4 m4 Design of top dome :-Thickness of dome slab = 100 = 0.10 mSelf load of dome = 0.10 x 1 x 1 x 24 =kN/m2Live load=kN/m2finishes =kN/m2=kN/m2If R =radious of dome D = diameter of Tank = m r = central rise = D/6= 2.00 mD/22+r26.002+ 2.0022r 2 x 2.00cos J = 8 / 10.00 = 0.80 orJ = degree4.00 x 10.00 =1 + 0.801.00 1.00cos f 1.8022.20 x 1000100 x 10009.78 x 10001000 x 100The stress are with in safe limit. However provide minimum reinforcement @ 0.3 % of area in each direction.0.31003.14xdia23.14 x 8 x 84 x100 4 xSpacing of hoopBars = 1000 x 50.2 / 300 = 167 say= 160 mm8 mm *bar, @ 160 mm c/c in both circumferenially and [email protected] Design of top ring Beam :-T1 cos J- D x 0.800 x 12.002Permissible stress in high yield strenth deformed bars = 150N/mm2,106.60 x 10003.14xdia23.14 x 12 x 124 x100 4 xNo.of hoopBars = 711 / 113 = 7 No. say 8.0 No. Hence Provided8 No. 12 mm *Ring bar, for symetry.Actual , Ast= 8 x 113 =mm2If Ac = cross section of ring beamEquivelent area of composite section of beam106.60 x 1000Ac + m x 904300 x 300 = 90000mm2Provide8 300 mm c/c to tie the 8 x 12mm J ring beam.6 Design of Cylendrical Tank wall :-wHD 10 x 8.00 x 12.002Area of ring Req. = 480000 / 150 = 3200 mm2per meter height or 1600mm2 both side 2.00 x 3200= =Astmm2=Amm2 100Hence Provided 2using Hoop tension'=F1=8 mm barsAusing12N/mm2N/m2Safe < 5N/mm25.00N/mm2safekN/mheight= 113 mm2mm250.2kNthe radiusrtopis given by, R = === Since dome roof has been design on membrane the analysis, the tank wall may be assumed to be free on top and bottom, Maximum hoop tension occurs at the base of wall, = 77077x 0.75 D 1000m3=mm or==1.2mm bars Maximum hoop tension at base=10030022.208800.0106.60 =711Ac=mm2m foundation from G.L.wt of water 240.897=mm2x=m 11.930 "=Effective cover D Say 12.00Assuming the average depth 0.100.2210.00Totalload or =4.004.00 0.75d or300 mm whichever is less = 0.75 x 1150 = 863 mm10 mm *, 2 legged strirrups@ 300 mm c/c .Design of section subject to maximum torsion:-T = 33.00 kN D = 1200 mm d = 1150 mmV = 373 kN b = 600 mm M = 01 + D / b 1+ 1200 / 6001.7 1.7@Me1 =(M+M1) = 0 + 59.00 = kN.mMcxWst. j.d 150 x 0.874 x 11500.301003.14xdia23.14 x 25 x 254 x100 4 xNo.ofBars = 2160 / 491 = 5 No.Actual , Ast= 5 x 491 = 2453mm233.000.6Ve 461 x 1000bd 600 x 1150100 Ast100x 2453b x d600x 1150Since tc< Tv0.25 < 0.67 Shear reinforcement required Using12 mm J 4legged strirups,with side cover of 25mm and top and bottom cover of 50mmAsv . Asv4x 113.04 x 150Tv-Tc)b 0.668 - 0.25 ) x 60012 mm *, 4 legged strirrups@ 270 mm c/c .11 Design ofcolumns of supporting tower :-The tank is supported on8 8 mmean diameter . Height of staging above ground level is16.0 m. Letus assume the height of bracing is4.00 mt . Hence3 Panels of4.00 m height each and1 4.00 m height.Let the columns is connected to raft foundation by means of a ring beam.The top of which is provided at 1.00 meter below the ground level, so that the actual height of bottom pannel is 5.00 m heightload on columnsVertical load on each column = 13741 / 8 = kNSelf weight of column diameter mm650 =0.785 x 0.652x16x 24.0= kN16500 x 500 ) = 3 x 0.5 x 0.5 x 3.14 x 24.0 = 57 kNTotal vertical load on each column = kNWind force on columnIntensity of wind pressure = 1.50kN/m2Reduction coffiecent of circular shape = 0.70(a) wind force on top of dome and culendrical wall.= 9.00 x 12.00 x 0.70 x 1.50 x=114 kN(b) Wind force on conical dome= 2.00 x 10.00 x 0.70 x 1.50 x=21 kN(c ) Wind force on bottom ring beam 1.2 x 8.00 x 0.70 x 1.50 x=11 kNsay 500 mmHence Provided = 270 mm Spacing sv= == 0.25 N/mm2 0.356 % @tc% of steel used = = =461 kNTve = = = 0.668N/mm2Equivalent shear = Ve = V+1.6T/b== 491 using25 mm barsA mm2100= =x 1200 =mm22160 But minimum area of steel is= x 600mm2 Ast= =59T = 33.00Balance shear = 54Hence Provided Mt=sv= =54 1000kN1000Shear taken by concrete = = 173tv = =0.25 % of steel used = = = % @=491 mm2100= N/mm2=kN.m59.003910.33N/mm20.3561000000373 + x 1.6 == 2160mm2 =tc506 mm= 59.00=But minimum area of steel isx =using25 mm barsAHence Provided Ast= =mm *bar, @226116 mm1000000= 1499mm2= 0.27 % of steel used = = =186 kN0.427 @tcsv=673 1000=tv = = 1.24mm2100= 491Balance shear = 673= =N/mm2%Shear taken by concrete =1000=using25 mm barsAN/mm2x 1200 600columns,symemetricallyplacedonacircleofpanel ofheight meterweight of bracing (19031718128(c ) Wind force on bottom ring beam 1.2 x 8.00 x 0.70 x 1.50 x=11 kN(d) wind force on 5 no. column= 5 x 0.65 x 0.70 x 1.50 x 16.0=55 kN(e) wind force in bracing= 0.5 x 8.00 x 3 x 1.50 =18 kNTotal Horizontal force = 219kNM= 219 x 4.00 / 2 = kN.mIf M1 =Moment at the base of columns due to wind load =( 114 x 0 + 21 x 0 + 11 x 0.00 + 6 x -4+ 6 x -8.00 + 6 x ##### ) = kN.mIf V= Reaction devloped at the base of exterior columnsV V 42r1 4 2= -144 + V x 16@ V = -144 / 16 = -9@ = 1903 + -9 = kNMoment in each column in the base = 438 / 8 = kN.mReinforcement in column ;-Axial load= P =kNkN.m55.0 x1000xSince eccentricity is small, direct stress are predominent.Using8 bars of32 mm J and latral tis of 10 300 mm c/cAst = 8 x 0.785 x 32 x 32.00 = 6431mm2AC= 0.785 x 6502+(1.50 x 13 x 6431 ) = mm30.785 x 3254+(1.50 x 13 )x 4 x 804 x 2752+4 x 804 x ( 275 / 1.414)2= +( 19.5 )x( + 3216 x= + +=mm41894 x 100055.0 x 1000 x 1000x 325Permissible stress in concrete is increased by 33.33% while considering wind effect.o'cco'cbocc ocb5 x 1.33 7 x 1.33= 0o21l1 +0l4l= 0.76= 0.76 < 1 O.K.12 Design of Bracing :-Moment In Brace =2 x Moment in column x (2)0.5 =2 x 55.0 x 2.00(1/2)= kN.mSection of braces= 500 x 500 mm@ b = 500 mm and d = 450 mmMoment of resistance of section isM1=0.897x 500 x 4502=or 91.00 kN.mBalance moment = M1 - M2= 156.00 - 91.00 = kN.mMcxost. j.d 230 x 0.906 x 450Mcxost. j.d 230 x 0.906 x 400@ Ast = Ast1+ Ast2= 971 + 781 =mm23.14xdia23.14 x 25 x 254 x100 4 xNo.ofBars = 1752 / 491 = 4 No. bars at top and bottomActual , Ast=4x 491 = 1963mm2Length of barces L = 2 x 4.00 x sin = 2 x 4.00 x 0.38 = 3.06 mMoment in brace1/2 x bracelength 0.5x 3.06102.00 x 1000500 450100 Ast100x 1963b x d500x 450Since tc0.75d or300 mm whichever is less = 0.75 x 450 =338 or 330mm10 mm * , 2 legged strirrups@ 300 mm c/c .13 Design of foundation:-A circular girder with raft slab is provided for tower foundations.Total load on foundation= 1903 x 8 = kN=0.872Hence Provided 505 mm21 1000sv= Say 500 mmN/mm2102.00 kNN/mm2mm15224.0= 0.36= 81.00 kN21.0029.04% @tcmm J at= 971.0mm217521000000= 0.46% of steel used = = ==8757962891 4742595000t v=eccentricity = (M/P) =10000001894=or457067=1216050009082125037812.54.14N/mm2mm265.00189455.0 Bending moment = M =+Total load on leeward column at base x 2 = -14455.01894x 42+4 x M1 = 7 M +-1447 r2moment at the base columns is computed as 438 Assuming contraflexure point at mid height of columns and fixidity at base due to raft foundation, the +1.3113622162891+4.1411.31N/mm2Bending stress = o'cb13622162891= =457067= = Direct compressve stress = o'ccmoment of ineria, le=91 Tv0.310 > 0.304 O.K.Reinforcement shown in drawing [email protected] m =2=mm *Maximum Bending moment == Siol pressure =15224=2= = 129@d =1000000= 380 mmA500Ast= =129 1000000= 1376= 600mm2Hence Providedmm *bar, @= = using25 mm bars Distribution steel=using12 mm barsA100@t cHence Providedmm *bar, @Shear force at a section =tv==% of steel used = = =2454N/mm2= 0.3040.55 %491mm2= 0.31N/mm2= 113 mm2100mm2100mm2kN 203kN.msay = 2064=M-15 M-20 M-25 M-30 M-35 M-40 Grade of concre M-10 M-15 M-20 M-2518.67 13.33 10.98 9.33 8.11 7.18Xbd (N / mm2)-- 0.6 0.8 0.95 7 8.5 10 11.5 1393.33 93.33 93.33 93.33 93.33 93.33kc0.4 0.4 0.4 0.4 0.4 0.4jc0.867 0.867 0.867 0.867 0.867 0.867Rc0.867 1.214 1.474 1.734 1.994 2.254Pc (%) 0.714 1 1.214 1.429 1.643 1.857kc 0.329 0.329 0.329 0.329 0.329 0.329 M 15jc 0.89 0.89 0.89 0.89 0.89 0.89 M 20Rc0.732 1.025 1.244 1.464 1.684 1.903 M 25Pc (%) 0.433 0.606 0.736 0.866 0.997 1.127 M 30kc0.289 0.289 0.289 0.289 0.289 0.289M 35jc0.904 0.904 0.904 0.904 0.904 0.904 M 40Rc0.653 0.914 1.11 1.306 1.502 1.698 M 45Pc (%) 0.314 0.44 0.534 0.628 0.722 0.816 M 50kc0.253 0.253 0.253 0.253 0.253 0.253jc0.916 0.916 0.916 0.914 0.916 0.916Rc0.579 0.811 0.985 1.159 1.332 1.506Pc (%) 0.23 0.322 0.391 0.46 0.53 0.599M-15 M-20 M-25 M-30 M-35 M-400.18 0.18 0.19 0.2 0.2 0.20.22 0.22 0.23 0.23 0.23 0.23 (N/mm2) Kg/m2(N/mm2) Kg/m20.29 0.30 0.31 0.31 0.31 0.32 M10 3.0 300 2.5 2500.34 0.35 0.36 0.37 0.37 0.38 M15 5.0 500 4.0 4000.37 0.39 0.40 0.41 0.42 0.42 M20 7.0 700 5.0 5000.40 0.42 0.44 0.45 0.45 0.46 M25 8.5 850 6.0 6000.42 0.45 0.46 0.48 0.49 0.49 M30 10.0 1000 8.0 8000.44 0.47 0.49 0.50 0.52 0.52 M35 11.5 1150 9.0 9000.44 0.49 0.51 0.53 0.54 0.55 M40 13.0 1300 10.0 10000.44 0.51 0.53 0.55 0.56 0.57 M45 14.5 1450 11.0 11000.44 0.51 0.55 0.57 0.58 0.60 M50 16.0 1600 12.0 12000.44 0.51 0.56 0.58 0.60 0.620.44 0.51 0.57 0.6 0.62 0.6315 20 25 30 35 40 M-15 M-20 M-251.6 1.8 1.9 2.2 2.3 2.5 1.6 1.8 1.9100As100As% fy 200 250 328 415 500bd bd 0.0 2.000.14 0.17 0.17 0.14 0.05 1.800.15 0.18 0.18 0.15 0.10 1.650.16 0.18 0.19 0.18 0.15 1.90 1.500.17 0.18 0.2 0.21 0.20 1.80 1.400.18 0.19 0.21 0.24 0.25 2 1.70 1.350.19 0.19 0.22 0.27 0.30 1.85 1.60 1.300.2 0.19 0.23 0.3 0.35 1.75 1.50 1.200.21 0.2 0.24 0.32 0.4 1.65 1.40 1.160.22 0.2 0.25 0.35 0.5 2.0 1.5 1.30 1.080.23 0.2 0.26 0.38 0.6 1.75 1.4 1.20 1.000.24 0.21 0.27 0.41 0.7 1.90 1.65 1.35 1.15 0.950.25 0.21 0.28 0.44 0.8 1.80 1.55 1.30 1.05 0.900.26 0.21 0.29 0.47 0.9 1.70 1.5 1.25 1.02 0.860.27 0.22 0.30 0.5 1.0 1.60 1.45 1.2 1.20 0.840.28 0.22 0.31 0.55 1.1 1.55 1.4 1.16 0.98 0.820.29 0.22 0.32 0.6 1.2 1.50 1.35 1.13 0.96 0.810.3 0.23 0.33 0.65 1.3 1.50 1.3 1.1 0.94 0.800.31 0.23 0.34 0.7 1.4 1.45 1.3 1.1 0.92 0.790.32 0.24 0.35 0.75 1.5 1.40 1.25 1.07 0.91 0.780.33 0.24 0.36 0.82 1.6 1.35 1.2 1.05 0.90 0.770.34 0.24 0.37 0.88 1.7 1.35 1.2 1.03 0.89 0.760.35 0.25 0.38 0.94 1.8 1.30 1.18 1.01 0.86 0.750.36 0.25 0.39 1.00 1.9 1.30 1.16 1.0 0.86 0.740.37 0.25 0.4 1.08 2.0 1.25 1.14 0.99 0.85 0.730.38 0.26 0.41 1.16 2.1 1.25 1.13 0.97 0.84 0.720.39 0.26 0.42 1.25 2.2 1.20 1.12 0.96 0.83 0.720.4 0.26 0.43 1.33 2.3 1.18 1.1 0.95 0.83 0.720.41 0.27 0.44 1.41 2.4 1.17 1.1 0.94 0.82 0.710.42 0.27 0.45 1.50 2.5 1.16 1.08 0.93 0.82 0.710.43 0.27 0.46 1.63 2.6 1.15 1.06 0.92 0.81 0.71Reiforcement %M-20 M-20modification factore Table2.753.00 and aboveMaximum shear stressXc.max in concrete (IS : 456-2000)Grade of concreteMMaximum shear stressXc.max in concreGrade of concreteXc.max Xc.max Shear stresstc2.252.501.752.001.251.500.751.000.50