invertible harmonic mappings in the plane - purdue …arshak/4thsym/program_files/slides... ·...

66
Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher Dimensions Elliptic Operators Elliptic Systems Non-convex Target The counter- example Open issues End Invertible Harmonic Mappings in the Plane Giovanni Alessandrini 1 Vincenzo Nesi 2 1 Università di Trieste 2 Università La Sapienza di Roma The 4th Symposium on Analysis & PDEs, Purdue 2009

Upload: tranduong

Post on 30-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Invertible Harmonic Mappings in the Plane

Giovanni Alessandrini1 Vincenzo Nesi2

1 Università di Trieste

2Università La Sapienza di Roma

The 4th Symposium on Analysis & PDEs, Purdue 2009

Page 2: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

The Basic Question

Let B ⊂ R2 be the unit disk. Let D ⊂ R2 be a Jordandomain.Given a homeomorphism Φ : ∂B 7→ ∂D , consider thesolution U = (u1,u2) : B 7→ R2 to the following Dirichletproblem {

∆U = 0, in B,U = Φ, on ∂B.

Under which conditions on Φ do we have thatU is a homeomorphism of B 7→ D?

Page 3: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

The Classical Results

Φ : ∂B 7→ ∂D,{∆U = 0, in B,U = Φ, on ∂B.

Theorem ( H. Kneser ’26)If D is convex, then U is a homeomorphism of B onto D.Posed as a problem by Radó (’26), rediscovered byChoquet (’45).

Theorem (H. Lewy ’36)If U : B 7→ R2 is a harmonic homeomorphism, then it is adiffeomorphism.

Page 4: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

The Classical Results

Φ : ∂B 7→ ∂D,{∆U = 0, in B,U = Φ, on ∂B.

Theorem ( H. Kneser ’26)If D is convex, then U is a homeomorphism of B onto D.Posed as a problem by Radó (’26), rediscovered byChoquet (’45).

Theorem (H. Lewy ’36)If U : B 7→ R2 is a harmonic homeomorphism, then it is adiffeomorphism.

Page 5: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

The Classical Results

Φ : ∂B 7→ ∂D,{∆U = 0, in B,U = Φ, on ∂B.

Theorem ( H. Kneser ’26)If D is convex, then U is a homeomorphism of B onto D.Posed as a problem by Radó (’26), rediscovered byChoquet (’45).

Theorem (H. Lewy ’36)If U : B 7→ R2 is a harmonic homeomorphism, then it is adiffeomorphism.

Page 6: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Natural questions.

• What happens in higher dimensions?• Can we replace ∆ with other elliptic operators?• Can we replace the diagonal ∆ system with other

elliptic systems?• Can we dispense with the convexity of the target D?

Motivations• Minimal surfaces.• Inverse problems.• Homogenization.• Variational grid generation.

Page 7: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Natural questions.

• What happens in higher dimensions?• Can we replace ∆ with other elliptic operators?• Can we replace the diagonal ∆ system with other

elliptic systems?• Can we dispense with the convexity of the target D?

Motivations• Minimal surfaces.• Inverse problems.• Homogenization.• Variational grid generation.

Page 8: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Natural questions.

• What happens in higher dimensions?• Can we replace ∆ with other elliptic operators?• Can we replace the diagonal ∆ system with other

elliptic systems?• Can we dispense with the convexity of the target D?

Motivations• Minimal surfaces.• Inverse problems.• Homogenization.• Variational grid generation.

Page 9: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Natural questions.

• What happens in higher dimensions?• Can we replace ∆ with other elliptic operators?• Can we replace the diagonal ∆ system with other

elliptic systems?• Can we dispense with the convexity of the target D?

Motivations• Minimal surfaces.• Inverse problems.• Homogenization.• Variational grid generation.

Page 10: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Natural questions.

• What happens in higher dimensions?• Can we replace ∆ with other elliptic operators?• Can we replace the diagonal ∆ system with other

elliptic systems?• Can we dispense with the convexity of the target D?

Motivations• Minimal surfaces.• Inverse problems.• Homogenization.• Variational grid generation.

Page 11: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Natural questions.

• What happens in higher dimensions?• Can we replace ∆ with other elliptic operators?• Can we replace the diagonal ∆ system with other

elliptic systems?• Can we dispense with the convexity of the target D?

Motivations• Minimal surfaces.• Inverse problems.• Homogenization.• Variational grid generation.

Page 12: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Natural questions.

• What happens in higher dimensions?• Can we replace ∆ with other elliptic operators?• Can we replace the diagonal ∆ system with other

elliptic systems?• Can we dispense with the convexity of the target D?

Motivations• Minimal surfaces.• Inverse problems.• Homogenization.• Variational grid generation.

Page 13: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Natural questions.

• What happens in higher dimensions?• Can we replace ∆ with other elliptic operators?• Can we replace the diagonal ∆ system with other

elliptic systems?• Can we dispense with the convexity of the target D?

Motivations• Minimal surfaces.• Inverse problems.• Homogenization.• Variational grid generation.

Page 14: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Natural questions.

• What happens in higher dimensions?• Can we replace ∆ with other elliptic operators?• Can we replace the diagonal ∆ system with other

elliptic systems?• Can we dispense with the convexity of the target D?

Motivations• Minimal surfaces.• Inverse problems.• Homogenization.• Variational grid generation.

Page 15: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Higher Dimensions.

• Wood (’74): There exists a harmonic homeomorphismU : R3 7→ R3 such that det DU(0) = 0.

• Melas (’93): There exists a harmonic homeomorphismU : B 7→ B, B ⊂ R3 unit ball, such that det DU(0) = 0.

• Laugesen (’96): ∀ε > 0 ∃Φ : ∂B 7→ ∂Bhomeomorphism, such that |Φ(x)− x | < ε,∀x ∈ ∂Band the solution U to{

∆U = 0, in B,U = Φ, on ∂B.

is not one-to-one.

Page 16: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Higher Dimensions.

• Wood (’74): There exists a harmonic homeomorphismU : R3 7→ R3 such that det DU(0) = 0.

• Melas (’93): There exists a harmonic homeomorphismU : B 7→ B, B ⊂ R3 unit ball, such that det DU(0) = 0.

• Laugesen (’96): ∀ε > 0 ∃Φ : ∂B 7→ ∂Bhomeomorphism, such that |Φ(x)− x | < ε,∀x ∈ ∂Band the solution U to{

∆U = 0, in B,U = Φ, on ∂B.

is not one-to-one.

Page 17: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Higher Dimensions.

• Wood (’74): There exists a harmonic homeomorphismU : R3 7→ R3 such that det DU(0) = 0.

• Melas (’93): There exists a harmonic homeomorphismU : B 7→ B, B ⊂ R3 unit ball, such that det DU(0) = 0.

• Laugesen (’96): ∀ε > 0 ∃Φ : ∂B 7→ ∂Bhomeomorphism, such that |Φ(x)− x | < ε,∀x ∈ ∂Band the solution U to{

∆U = 0, in B,U = Φ, on ∂B.

is not one-to-one.

Page 18: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Operators.• Bauman-Marini-Nesi (’01):

div(σ∇ui) = 0, i = 1,2,

σ = {σij} , K−1I ≤ σ ≤ KI , σ ∈ Cα .

the Kneser and the Lewy theorems continue to hold.• A.-Nesi (’01):

σ = {σij} , K−1I ≤ σ ≤ KI , σ ∈ L∞ .

the Kneser theorem holds truethe Lewy theorem is replaced with

TheoremIf U : B 7→ R2 is a σ−harmonic homeomorphism, then

log |det DU| ∈ BMO .

Page 19: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Operators.• Bauman-Marini-Nesi (’01):

div(σ∇ui) = 0, i = 1,2,

σ = {σij} , K−1I ≤ σ ≤ KI , σ ∈ Cα .

the Kneser and the Lewy theorems continue to hold.• A.-Nesi (’01):

σ = {σij} , K−1I ≤ σ ≤ KI , σ ∈ L∞ .

the Kneser theorem holds truethe Lewy theorem is replaced with

TheoremIf U : B 7→ R2 is a σ−harmonic homeomorphism, then

log |det DU| ∈ BMO .

Page 20: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Operators.• Bauman-Marini-Nesi (’01):

div(σ∇ui) = 0, i = 1,2,

σ = {σij} , K−1I ≤ σ ≤ KI , σ ∈ Cα .

the Kneser and the Lewy theorems continue to hold.• A.-Nesi (’01):

σ = {σij} , K−1I ≤ σ ≤ KI , σ ∈ L∞ .

the Kneser theorem holds truethe Lewy theorem is replaced with

TheoremIf U : B 7→ R2 is a σ−harmonic homeomorphism, then

log |det DU| ∈ BMO .

Page 21: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Operators.

A.-Sigalotti(’01):

div(|σ∇ui · ∇ui |p−2

2 σ∇ui) = 0, i = 1,2,p > 1,

σ = {σij} , K−1I ≤ σ ≤ KI , σ ∈ C0,1 .

the Kneser and the Lewy theorems continue to hold.

Page 22: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.

• Harmonic mappings between Riemann surfaces,Shoen and Yau (’78), Jost (’81).

• {div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0.

M,N,P,Q are 2× 2 real constant symmetric matrices.Legendre–Hadamard condition

η21Mξ ·ξ+η1η2(N+P)ξ ·ξ+η2

2Qξ ·ξ > 0, ∀ξ, η ∈ R2\{0}.

Page 23: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.

• Harmonic mappings between Riemann surfaces,Shoen and Yau (’78), Jost (’81).

• {div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0.

M,N,P,Q are 2× 2 real constant symmetric matrices.Legendre–Hadamard condition

η21Mξ ·ξ+η1η2(N+P)ξ ·ξ+η2

2Qξ ·ξ > 0, ∀ξ, η ∈ R2\{0}.

Page 24: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.Equivalence.

We say{div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

∼{

div(M ′∇u1 + N ′∇u2) = 0,div(P ′∇u1 + Q′∇u2) = 0,

if there exists a non-singular 2× 2 matrix(α βγ δ

)such

that (M NP Q

)=

(αId βIdγId δId

) (M ′ N ′

P ′ Q′

).

Page 25: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.Equivalence.

We say{div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

∼{

div(M ′∇u1 + N ′∇u2) = 0,div(P ′∇u1 + Q′∇u2) = 0,

if there exists a non-singular 2× 2 matrix(α βγ δ

)such

that (M NP Q

)=

(αId βIdγId δId

) (M ′ N ′

P ′ Q′

).

Page 26: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.The Kneser theorem fails.

A.-Nesi (’09). Either{div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

∼{

div(M∇u1) = 0,div(M∇u2) = 0,

(pure diag.)

orthere exists a polynomial solution U to{

div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

and a convex set D such that Φ = U|∂B is ahomeomorphism onto ∂D but U : B 7→ R2 is not one-to-one.

Page 27: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.The Kneser theorem fails.

A.-Nesi (’09). Either{div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

∼{

div(M∇u1) = 0,div(M∇u2) = 0,

(pure diag.)

orthere exists a polynomial solution U to{

div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

and a convex set D such that Φ = U|∂B is ahomeomorphism onto ∂D but U : B 7→ R2 is not one-to-one.

Page 28: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.The Kneser theorem fails.

A.-Nesi (’09). Either{div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

∼{

div(M∇u1) = 0,div(M∇u2) = 0,

(pure diag.)

orthere exists a polynomial solution U to{

div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

and a convex set D such that Φ = U|∂B is ahomeomorphism onto ∂D but U : B 7→ R2 is not one-to-one.

Page 29: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.The Kneser theorem fails.

A.-Nesi (’09). Either{div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

∼{

div(M∇u1) = 0,div(M∇u2) = 0,

(pure diag.)

orthere exists a polynomial solution U to{

div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

and a convex set D such that Φ = U|∂B is ahomeomorphism onto ∂D but U : B 7→ R2 is not one-to-one.

Page 30: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.The Lewy theorem fails.

A.-Nesi (’09). Either{div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

∼{

div(M∇u1) = 0,div(M∇u2) = 0,

(pure diag.)

orthere exists a polynomial solution U to{

div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

which is a homeomorphism of B onto U(B) butdet DU(0) = 0.

Page 31: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.The Lewy theorem fails.

A.-Nesi (’09). Either{div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

∼{

div(M∇u1) = 0,div(M∇u2) = 0,

(pure diag.)

orthere exists a polynomial solution U to{

div(M∇u1 + N∇u2) = 0,div(P∇u1 + Q∇u2) = 0,

which is a homeomorphism of B onto U(B) butdet DU(0) = 0.

Page 32: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.Examples.

• For any ε > 0 the system{u1,xx + u1,yy = 0,

(1 + ε)u2,xx + u2,yy = 0,

is not equivalent to a pure diagonal system.• The Lamé system

µ div((DU)T + DU) + λ ∇(div U) = 0.

µ, λ ∈ R with µ > 0 and µ+ λ > 0 is not equivalent to apure diagonal system.

Page 33: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.Examples.

• For any ε > 0 the system{u1,xx + u1,yy = 0,

(1 + ε)u2,xx + u2,yy = 0,

is not equivalent to a pure diagonal system.• The Lamé system

µ div((DU)T + DU) + λ ∇(div U) = 0.

µ, λ ∈ R with µ > 0 and µ+ λ > 0 is not equivalent to apure diagonal system.

Page 34: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.The Kneser theorem fails for Lamé, µ = λ = 1

-0.5 0.5 1 1.5

-1

-0.5

0.5

1

-0.5 0.5 1 1.5

-7.5-5

-2.5

2.55

7.5

Figure: ∂B and its image Φ(∂B).

Page 35: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Elliptic Systems.The Kneser theorem fails for Lamé, µ = λ = 1

Figure: Left: circles Cr of varying radii and the nodal line of theJacobian (an hyperbola) drawn within B. Right: the images U(Cr ).

Page 36: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.

Φ : ∂B 7→ ∂D,{∆U = 0, in B,U = Φ, on ∂B.

• Choquet (’45): If D is not convex, then there exists ahomeomorphism Φ : ∂B 7→ ∂D such that U is notone-to-one.

• A:-Nesi (’09): another example.

Page 37: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.

Φ : ∂B 7→ ∂D,{∆U = 0, in B,U = Φ, on ∂B.

• Choquet (’45): If D is not convex, then there exists ahomeomorphism Φ : ∂B 7→ ∂D such that U is notone-to-one.

• A:-Nesi (’09): another example.

Page 38: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.

Φ : ∂B 7→ ∂D,{∆U = 0, in B,U = Φ, on ∂B.

• Choquet (’45): If D is not convex, then there exists ahomeomorphism Φ : ∂B 7→ ∂D such that U is notone-to-one.

• A:-Nesi (’09): another example.

Page 39: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.

Given D, possibly non–convex,• what are the additional conditions on the

homeomorphism

Φ : ∂B 7→ ∂D,

such that the solution U to{∆U = 0, in B,U = Φ, on ∂B.

is a homeomorphism of B 7→ D?• assume in addition U ∈ C1(B; R2),

under which conditions on Φ do we have thatU is a diffeomorphism of B 7→ D?

Page 40: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.

Given D, possibly non–convex,• what are the additional conditions on the

homeomorphism

Φ : ∂B 7→ ∂D,

such that the solution U to{∆U = 0, in B,U = Φ, on ∂B.

is a homeomorphism of B 7→ D?• assume in addition U ∈ C1(B; R2),

under which conditions on Φ do we have thatU is a diffeomorphism of B 7→ D?

Page 41: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.

Given D, possibly non–convex,• what are the additional conditions on the

homeomorphism

Φ : ∂B 7→ ∂D,

such that the solution U to{∆U = 0, in B,U = Φ, on ∂B.

is a homeomorphism of B 7→ D?• assume in addition U ∈ C1(B; R2),

under which conditions on Φ do we have thatU is a diffeomorphism of B 7→ D?

Page 42: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The necessary condition.

If U is an orientation preserving diffeomorphism then, inparticular,

det DU > 0 everywhere on ∂B. (1)

Set Φ = (ϕ,ψ), and denote

Hg(θ) =1

2πP.V.

∫ 2π

0

g(τ)

tan(

θ−τ2

)dτ, θ ∈ [0,2π],

(1) is equivalent to

∂φ

∂θH

(∂ψ

∂θ

)− ∂ψ

∂θH

(∂φ

∂θ

)> 0 everywhere on ∂B. (2)

Page 43: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The necessary condition.

If U is an orientation preserving diffeomorphism then, inparticular,

det DU > 0 everywhere on ∂B. (1)

Set Φ = (ϕ,ψ), and denote

Hg(θ) =1

2πP.V.

∫ 2π

0

g(τ)

tan(

θ−τ2

)dτ, θ ∈ [0,2π],

(1) is equivalent to

∂φ

∂θH

(∂ψ

∂θ

)− ∂ψ

∂θH

(∂φ

∂θ

)> 0 everywhere on ∂B. (2)

Page 44: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The necessary condition.

If U is an orientation preserving diffeomorphism then, inparticular,

det DU > 0 everywhere on ∂B. (1)

Set Φ = (ϕ,ψ), and denote

Hg(θ) =1

2πP.V.

∫ 2π

0

g(τ)

tan(

θ−τ2

)dτ, θ ∈ [0,2π],

(1) is equivalent to

∂φ

∂θH

(∂ψ

∂θ

)− ∂ψ

∂θH

(∂φ

∂θ

)> 0 everywhere on ∂B. (2)

Page 45: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem.

Theorem (A.- Nesi ’09)Let Φ : ∂B 7→ ∂D be an orientation preservingdiffeomorphism of class C1. Let U be the solution to{

∆U = 0, in B,U = Φ, on ∂B.

and assume, in addition, that U ∈ C1(B; R2).The mapping U is a diffeomorphism of B onto D if and only if

det DU > 0 everywhere on ∂B.

Page 46: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem, remark.

Let co(D) be the convex hull of D.We define the convex part of ∂D as the closed set

γc = ∂D ∩ ∂(co(D)).

We define the non–convex part of ∂D as the open set

γnc = ∂D \ ∂(co(D)).

LemmaLet Φ : ∂B 7→ ∂D be an orientation preservingdiffeomorphism of class C1, and assume thatU ∈ C1(B; R2). We always have

det DU > 0 everywhere on Φ−1(γc).

Proof: Hopf lemma

Page 47: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem, remark.

Let co(D) be the convex hull of D.We define the convex part of ∂D as the closed set

γc = ∂D ∩ ∂(co(D)).

We define the non–convex part of ∂D as the open set

γnc = ∂D \ ∂(co(D)).

LemmaLet Φ : ∂B 7→ ∂D be an orientation preservingdiffeomorphism of class C1, and assume thatU ∈ C1(B; R2). We always have

det DU > 0 everywhere on Φ−1(γc).

Proof: Hopf lemma

Page 48: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem, remark.

Let co(D) be the convex hull of D.We define the convex part of ∂D as the closed set

γc = ∂D ∩ ∂(co(D)).

We define the non–convex part of ∂D as the open set

γnc = ∂D \ ∂(co(D)).

LemmaLet Φ : ∂B 7→ ∂D be an orientation preservingdiffeomorphism of class C1, and assume thatU ∈ C1(B; R2). We always have

det DU > 0 everywhere on Φ−1(γc).

Proof: Hopf lemma

Page 49: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem, improved.

Theorem (A.- Nesi ’09)Let Φ : ∂B 7→ ∂D be an orientation preservingdiffeomorphism of class C1. Let U be the solution to{

∆U = 0, in B,U = Φ, on ∂B.

and assume, in addition, that U ∈ C1(B; R2).The mapping U is a diffeomorphism of B onto D if and only if

det DU > 0 everywhere on Φ−1(γnc).

Page 50: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem, improved.

Theorem (A.- Nesi ’09)Let Φ : ∂B 7→ ∂D be an orientation preservingdiffeomorphism of class C1. Let U be the solution to{

∆U = 0, in B,U = Φ, on ∂B.

and assume, in addition, that U ∈ C1(B; R2).The mapping U is a diffeomorphism of B onto D if and only if

det DU > 0 everywhere on Φ−1(γnc).

Page 51: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem, proof (i).

We assume

det DU > 0 everywhere on ∂B.

The crucial point is to prove that

det DU > 0 everywhere in B.

Page 52: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem, proof (i).

We assume

det DU > 0 everywhere on ∂B.

The crucial point is to prove that

det DU > 0 everywhere in B.

Page 53: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

The Jacobian may change sign.a polynomial example (i)

Figure: u1 = <{ (z+1)2−12 },u2 = ={ 1−(z−1)2

2 }

Page 54: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

The Jacobian may change sign.a polynomial example (ii)

Figure: u1 = <{(z + 1)3},u2 = ={(z − 1)3}

Page 55: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem, proof (ii).

The condition

det DU > 0 everywhere in B,

is equivalent to

∇(au1 + bu2) 6= 0 everywhere in B.

for every (a,b) 6= (0,0).

Page 56: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem, proof (iii).

• Fix (a,b) and denote u = au1 + bu2, u its harmonicconjugate and

f = u + i u

• Denote

WN(f (∂B)) =1

∫∂B

d arg(∂f∂θ

).

• The argument principle says

WN(f (∂B)) = ] critical points of u + 1.

• We prove

WN(f (∂B)) = WN(Φ(∂B)) = 1.

Page 57: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem, proof (iii).

• Fix (a,b) and denote u = au1 + bu2, u its harmonicconjugate and

f = u + i u

• Denote

WN(f (∂B)) =1

∫∂B

d arg(∂f∂θ

).

• The argument principle says

WN(f (∂B)) = ] critical points of u + 1.

• We prove

WN(f (∂B)) = WN(Φ(∂B)) = 1.

Page 58: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem, proof (iii).

• Fix (a,b) and denote u = au1 + bu2, u its harmonicconjugate and

f = u + i u

• Denote

WN(f (∂B)) =1

∫∂B

d arg(∂f∂θ

).

• The argument principle says

WN(f (∂B)) = ] critical points of u + 1.

• We prove

WN(f (∂B)) = WN(Φ(∂B)) = 1.

Page 59: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The main theorem, proof (iii).

• Fix (a,b) and denote u = au1 + bu2, u its harmonicconjugate and

f = u + i u

• Denote

WN(f (∂B)) =1

∫∂B

d arg(∂f∂θ

).

• The argument principle says

WN(f (∂B)) = ] critical points of u + 1.

• We prove

WN(f (∂B)) = WN(Φ(∂B)) = 1.

Page 60: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The Counterexample. U(x , y) = (x , x2 − y2).

Page 61: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Non–convex Target.The Counterexample, continued.

2

A B

E

α

B’A’

β

γ 1

γ

Page 62: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Open issues.

• What if Φ : ∂B 7→ ∂D is only a homeomorphism?• Can we replace ∆ with div(σ∇·)?• Higher dimensions?

Page 63: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Open issues.

• What if Φ : ∂B 7→ ∂D is only a homeomorphism?• Can we replace ∆ with div(σ∇·)?• Higher dimensions?

Page 64: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Open issues.

• What if Φ : ∂B 7→ ∂D is only a homeomorphism?• Can we replace ∆ with div(σ∇·)?• Higher dimensions?

Page 65: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Open issues.

• What if Φ : ∂B 7→ ∂D is only a homeomorphism?• Can we replace ∆ with div(σ∇·)?• Higher dimensions?

Page 66: Invertible Harmonic Mappings in the Plane - Purdue …arshak/4thSym/Program_files/slides... · Invertible Harmonic Mappings Giovanni Alessandrini, Vincenzo Nesi Introduction Higher

InvertibleHarmonicMappings

GiovanniAlessandrini,

Vincenzo Nesi

Introduction

HigherDimensions

EllipticOperators

EllipticSystems

Non-convexTarget

The counter-example

Open issues

End

Thanks!

Auguri Nico !!