investigating the reactivity of gas-phase species with ... university. the first system my...

Download Investigating the Reactivity of Gas-Phase Species with ... University. The first system my (undergraduate)

Post on 03-Aug-2020




0 download

Embed Size (px)


  • Investigating the Reactivity of Gas-Phase Species with Model Tropospheric Aerosols: Substrate, Bulk, and Interfacial Reactions

    Holly M. Bevsek

    Background Currently one of the most interesting pursuits in atmospheric chemistry is the development of

    an understanding of the reactivity of trace gases with tropospheric aerosols. The importance of these

    heterogeneous reactions first came to light when it was discovered that SO2 is oxidized to sulfate in

    cloud droplets, leading to acid rain. This was an initially surprising find since oxidation of SO2 by a

    trace gas such as O3 was known to be negligible in the gas phase. However in aqueous solution this

    reaction can be rapid1, illustrating the importance of gas-liquid reactions. A different heterogeneous

    system–formation of HCl from HNO3 reacting with solid NaCl (a model of sea-salt aerosol)–was

    studied by Finlayson-Pitts, et al.. They found that in addition to reaction of HNO3 with a bulk aqueous

    solution of Na+ and Cl- a secondary mechanism utilizing surface-adsorbed water also appeared to be

    occurring2. These results provide evidence that reactions of gaseous species within liquid aerosols and

    at aerosol interfaces–like the NaCl-H2O interface–can occur via alternate reactive pathways. Despite

    the potential atmospheric impact of these reactions–including those that may contribute to global

    climate change–very little is known about them and this leads to the failure of models that simulate

    atmospheric chemical processes. My research will fill this gap by determining the kinetics and

    mechanisms of the reactions of tropospheric gas-phase species with aerosols. It is furthermore

    anticipated that the results of this study will lead to improved atmospheric models.

    Tropospheric aerosol is complex, consisting mostly of sea salt, mineral dust, organic aerosols,

    and carbonaceous (soot) aerosols. This study will focus on three of these four types: sea salt, mineral

    dust, and carbonaceous aerosols (organic aerosols are structurally complicated and will be studied at a

    later time). Sea salt and mineral dust are important atmospheric constituents because they are the most

    widespread and concentrated natural aerosols1,3. Chemically, sea salt is a potential source of

  • Holly M. Bevsek


    atmospheric free radical chlorine and/or bromine4. Mineral dust may undergo electron transfer

    reactions with oxidants and also acid-base reactions to form a variety of gas-phase and condensed

    products. Photochemical reactions are also possible if species comprising the mineral dust have band

    gaps that fall within the solar spectrum. Understanding the chemical impact of mineral dust on the

    troposphere is particularly needed since it is expected to become more concentrated due to growing

    land use and erosion5. Carbonaceous aerosol (CA) is a product of incomplete combustion processes

    and can therefore be locally concentrated in the troposphere as the result of fossil fuel and biomass

    combustion as well as in the lower stratosphere as a product of aircraft exhaust. Soot is of

    considerable environmental importance since it can act as a reducing agent in the otherwise oxidizing

    atmosphere6. CA has also been predicted to have a cooling effect on the global climate7.

    In addition to being chemically complex, tropospheric aerosol is also structurally complex.

    Depending on the atmospheric conditions inorganic aerosol can exist as ionic species in bulk liquid

    water (high humidity) or as a solid kernel surrounded by a film of water (low humidity). Based on this

    model, three reactive domains exist. Under high humidity conditions, one expects reaction primarily

    at the air-liquid film interface or possibly within the bulk liquid. Under low humidity conditions,

    reaction at the substrate-film interface should dominate (CA is similar except the condensed species

    would be organic). A full understanding of aerosol reactivity must account for these three domains

    and to do so one must be able to isolate them. This can be accomplished by “tuning” the film

    thickness. That is, reaction at the substrate-film interface can be observed if the film is a few

    nanometers thick while reaction in the bulk film can be observed if the film is several micrometers

    thick. Reaction at the air-film interface can then be determined by comparing the reactivity of the film

    supported by an inactive substrate with the reactivity of the bulk film.

  • Holly M. Bevsek


    The experimental strategy utilized in these studies is to follow the reaction in time using diffuse

    reflectance infrared Fourier transform spectroscopy (DRIFTS)–a technique that is sensitive to surface

    species on powdered samples–for different film thicknesses. Film thickness will be measured using

    optical differential reflection (ODR), an inexpensive technique that allows the determination of the

    thickness of a film on a reflective substrate based on the difference in reflectance of parallel- and

    perpendicular-polarized light from the surface8-12. Both of these techniques are straightforward to

    implement and very suitable for undergraduates.


    Systems Investigated

    Table 1 lists the type of tropospheric aerosols to be investigated, how they will be modeled, and

    what reactant gases will be introduced to the system.

    Aerosol Model Substrate Aerosol Film Reactant Gas

    Sea Salt NaCl and NaBr Powder H2O NO2, SO2, HNO3, N2O5

    Mineral Dust a- and g-Fe2O3, CaCO3, MgCO3, SiO2 Powders

    H2O NO2, SO2, HNO3, NH3

    Carbonaceous n-Hexane and Diesel Soot H2O, adipic acid NO2, O2

    Table 1. Model aerosol systems.


    Reactions will take place inside a stainless steel vacuum chamber that is designed to fit inside

    the sample compartment of a FTIR spectrometer equipped with a diffuse reflectance accessory and

    MCT detector. The chamber will be evacuated by a turbomolecular pump to a base pressure of 10-7

    Torr. Heating/cooling the sample in the chamber will enable a range of environmentally-relevant

    temperatures to be investigated. A typical experiment will consist of:

  • Holly M. Bevsek


    1. Insertion of the sample into the chamber for evacuation and bakeout,

    2. Film deposition to an approximate thickness by backfilling the chamber with vapor

    (required pressure determined from adsorption isotherms),

    3. ODR measurement of film thickness,

    4. Introduction of reactant gas, and

    5. DRIFTS measurement as a function of time.

    As new species are produced, IR absorption will increase at frequencies corresponding to new bonds

    and decrease at frequencies corresponding to broken bonds. Recording DRIFT spectra as a function of

    time will allow reaction rates and ultimately rate laws and mechanisms to be hypothesized (see below).


    Film thickness will be determined by nonlinear least squares fitting of the ODR data, with

    thickness and complex refractive index as variable parameters. Measurements will be made before

    and after reactant gas introduction to determine if reaction changes the thickness and/or refractive

    index. Using the refractive indexes of H2O (1.333 13) and graphite (5.4(real); 8.4(imaginary)14), the

    ODR signal can be estimated to be approximately 1% that of the initial light intensity for a 6.5C-thick

    water layer on graphite (a model for soot) at 70° incident angle and 650 nm incident wavelength,

    which is easily detected by standard Si photodiodes. Feasibility calculations have also been performed

    for water films on Fe2O3 and NaCl with similar results.

    Different mechanisms occurring in the three reactive domains will be discerned by analyzing

    the identity and rates of product formation for the three regimes. Specifically:

  • Holly M. Bevsek


    Reaction at the substrate-film interface

    --investigated by comparing DRIFTS data from a bare substrate to that of a substrate with a

    thin liquid film.

    Reaction in the bulk liquid

    --investigated by comparing data in progressively thicker liquid films.

    Reaction at the liquid-air interface

    --investigated by comparing data from the thickest film to that from a film of similar thickness

    deposited on an unreactive substrate, such as a microscope slide.

    Role of Undergraduate and Graduate Student Researchers

    Undergraduate and graduate student researchers will contribute to all aspects of this project:

    sample preparation, data collection, data fitting, and analysis. Students will also assist in building the

    vacuum system and ODR set-up. Topics students will learn about include:

    · gas-handling, vacuum, laser, and FTIR spectroscopic techniques

    · atmospheric chemistry

    · reaction kinetics and mechanisms at interfaces

    Current Status of Project

    The vacuum and optics systems were designed, assembled, and tested at Susquehanna

    University. The first system my (undergraduate) students and I examined was the reaction kinetics of

    NO2 on vacuum-dried a-Fe2O3 (hematite) and g-Fe2O3 (maghemite) powders, which are components of

    mineral dust. As we did not deposit a film of water on the Fe2O3 powders, this study targets the