ion beam analysis in materials science

78
1 Ion Beam Analysis in Materials Ion Beam Analysis in Materials Science Science (Rutherford backscattering and (Rutherford backscattering and related techniques) related techniques) Kin Man Yu Electronic Materials Program, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (510) 486 (510) 486 - - 6656 6656 [email protected] [email protected]

Upload: others

Post on 25-May-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ion Beam Analysis in Materials Science

1

Ion Beam Analysis in Materials Ion Beam Analysis in Materials ScienceScience

(Rutherford backscattering and (Rutherford backscattering and related techniques)related techniques)

Kin Man YuElectronic Materials Program, Materials Sciences Division,

Lawrence Berkeley National Laboratory, Berkeley, CA 94720

(510) 486(510) [email protected]@lbl.gov

Page 2: Ion Beam Analysis in Materials Science

2 K. M. Yu November 2008

OutlineIntroduction:

General aspects of ion beam analysisEquipment

Rutherford backscattering spectrometry (RBS)Introduction-historyBasic concepts of RBS

Kinematic factor (K)Scattering cross-sectionDepth scale

Quantitative thin film analysisPitfalls

Particle induced x-ray emission (PIXE)Hydrogen Forward ScatteringNon-Rutherford scattering and nuclear reaction analysisIon channeling

Minimum yield and critical angleDechanneling by defectsImpurity location

Page 3: Ion Beam Analysis in Materials Science

3 K. M. Yu November 2008

ReferencesBooks:

Backscattering Spectrometry, Wei-Kan Chu, James W. Mayer and Marc-A. Nicolet, (Academic Press, New York 1978).Handbook of modern ion beam materials analysis, edited by J.R. Tesmer and M. Nastasi (MRS, pittsburgh, 1995).Materials Analysis by Ion Channeling, L. C. Feldman, J. W. Mayer and S. T. Picraux, (Academic Press, New York 1982).Ion Beam Materials Analysis, edited by J. R. Bird and J. S. Williams, (Academic Press, Australia 1989).Fundamentals of Surface and Thin Film Analysis, L. C. Feldman and J. W. Mayer (Elsevier Science, New York 1986).Encyclopedia of Materials Characterization, edited by C. R. Brundle, C. A. Evans, Jr., S. Wilson, (Butterworth-Heinemann, Stoneham, MA 1992).

Review Articles:W-K. Chu, J. W. Mayer, M-A. Nicolet, G. Amsel, T. Buck, and F. H. Eisen, “Principles and applications of ion beam techniques for the analysis of solids and thin films,” Thin Solid Films 17, 1 (1973).L. C. Feldman, “ MeV ion scattering for surface structure determination,” C. R. C. Crit. Rev. Solid State and Mater. Sci. 10, 143 (1981).D. David, “New trends in ion-beam analysis,” Surf. Sci. Rep. 16, 333 (1992).W. K. Chu and J. R. Liu, “Rutherford backscattering spectrometry: reminiscences and progresses,” Mater. Chem. Phys. 46, 183 (1996).

http://www.eaglabs.com/en-US/references/tutorial/rbstheo/cairtheo.html

Page 4: Ion Beam Analysis in Materials Science

4 K. M. Yu November 2008

Ion Beam Analysis: General

CH -ChannelingERA -Elastic Recoil AnalysisRBS -Rutherford BackscatteringNRA -Nuclear Reaction AnalysisPIXE -Particle Induced X-ray Emission

1 10 102 103 104

Energy (keV)

1

10

102Io

n M

ass

(am

u)

H

He

Low energy Medium energy High energy regime

Ar

LEIS

SIMS

RBS, CH, HFSPIXEMEIS

PIGE, PIXE, NRA

NRAPIGEPIXE

ERA

PIGME -Particle Induced Gamma-ray EmissionSIMS -Secondary Ion Mass SpectrometryMEIS -Medium Energy Ion ScatteringLEIS -low energy ion scatteringHFS -hydrogen forward scattering

Page 5: Ion Beam Analysis in Materials Science

5 K. M. Yu November 2008

MeV Ion Beam Techniques

M1M2M3

M1>M2>m>M3

Elastic recoil detection(ERA)

Hydrogen forward scattering (HFS)

m, Eo

θ

MeV H+, 4He+

m, E1

Rutherford backscattering spectrometry(RBS)

E1=k(m,M,θ)E0

Particle induced x-ray emission(PIXE)

Particle induced γ-ray emission(PIGE)

Page 6: Ion Beam Analysis in Materials Science

6 K. M. Yu November 2008

Ion Beam techniques

YesYes0.0001 at.%0.5-1mm20-200Å1-2μmB-U•crystalline quality of thin films

•lattice location of impurity in single crystal

•strains in pseudomorphicthin films

•implantation damage analysis

Channeling

YesYes0.001-1 at.%0.5-1mm500-1000Å

up to a few μm

H, B, C, N, O, F

•profiling of light elements in heavy matrix

NRA

YesYes0.1 at.%0.5-1 mm200Åup to 10μm

B, C, N, O, Si

•Composition of thin oxide, nitride, carbide films

non-RBS

YesYes0.01 at.%2-3 mm500Å1μmH, d•hydrogen or deuterium in thin films

HFS

NoYes0.001 at.%0.5-1mmpoorup to 10μm

Al-U•element identification•impurity analysis

PIXE

YesYes1-10 at.% Z<200.01-1 at.%0.01-0.001at.% Z>70

0.5-1mm20-200Å1-2μmB-U•thin film composition and thickness

•impurity profiles•thin film interactions and interdiffusions

RBS

Depth profiling

Quanti-tative

Detection limit

lateral resolution

Depth resolution

Depth probed

Elements detected

Typical ApplicationsTechnique

Page 7: Ion Beam Analysis in Materials Science

7 K. M. Yu November 2008

Experimental Setup

Page 8: Ion Beam Analysis in Materials Science

8 K. M. Yu November 2008

An Ideal IBA Laboratory

Arizona State University

Page 9: Ion Beam Analysis in Materials Science

9 K. M. Yu November 2008

A compact RBS System

NEC MAS1000

Page 10: Ion Beam Analysis in Materials Science

10

Rutherford Backscattering Spectrometry (RBS)

Page 11: Ion Beam Analysis in Materials Science

11 K. M. Yu November 2008

Rutherford Backscattering Spectrometry (RBS)– a brief history

Alpha particles at a thin gold foil experiment by Hans Geiger and Ernest Marsden in 1909.

1) Almost all of the alpha particles went through the gold foil2) Some of the alpha particles were deflected only slightly, usually 2° or less. 3) A very, very few (1 in 8000 for platinum foil) alpha particles were turned

through an angle of 90° or more. "We shall suppose that for distances less that 10-12 cm the central charge and also the charge on the alpha particle may be supposed to be concentrated at a point." (1911)

The original experiment

Page 12: Ion Beam Analysis in Materials Science

12 K. M. Yu November 2008

RBS: The Surveyor V experiment

"Surveyor V carried an instrument to determine the principal chemical elements of the lunar-surface material," explained ANTHONY TURKEVICH, Enrico Fermi institute and Chemistry Department, University of Chicago. "After landing, upon command from Earth, the instrument was lowered by a nylon cord to the surface of the Moon …”

Surveyor V, first of its spacecraft family to obtain information about the chemical nature of the Moon's surface, landed in Mare Tranquillitatis on September 11, 1967.

Page 13: Ion Beam Analysis in Materials Science

13 K. M. Yu November 2008

General applications of RBS

Quantitative analysis of thin filmsthickness, composition, uniformity in depthSolid state reactionsinterdiffusion

Crystalline perfection of homo- and heteroepitaxialthin filmsQuantitative measurements of impurities in substratesDefect distribution in single-crystal samplesSurface atom relaxation in single crystals Lattice location of impurities in single crystals

Page 14: Ion Beam Analysis in Materials Science

14 K. M. Yu November 2008

Strengths of RBS

Simple in principleFast and directQuantitative without standardDepth profiling without chemical or physical sectioningNon-destructiveWide range of elemental coverageNo special specimen preparation requiredCan be applied to crystalline or amorphous materialsSimultaneous analysis with various ion beam techniques (PIXE, PIGE, channeling, etc.)

Page 15: Ion Beam Analysis in Materials Science

15 K. M. Yu November 2008

Radiation Damage of RBS

2 MeV 4He+ in Si

Page 16: Ion Beam Analysis in Materials Science

16 K. M. Yu November 2008

Basic concepts of RBS

Kinematic factor: elastic energy transfer from a projectile to a target atom can be calculated from collision kinematics

mass determinationScattering cross-section: the probability of the elastic collision between the projectile and target atoms can be calculated

quantitative analysis of atomic compositionEnergy Loss: inelastic energy loss of the projectile ions through the target

perception of depth

These allow RBS analysis to give quantitative depth distributionof targets with different masses

Page 17: Ion Beam Analysis in Materials Science

17 K. M. Yu November 2008

Kinematic factor: K

Conservation of energy :2 22

1 1 1 2 21 1 12 2 2

m v m v m v= +

Conservation of momentum:1 1 1 2 2cos cosm v m v m vθ φ= +

1 1 2 2sin sinm v m vθ φ=

( )2 1, ,K m mθ=

2

12

122

1221

)(cos)sin(

2 ⎥⎥

⎢⎢

+

+−==

mmmmm

EEK

om

θθ

Page 18: Ion Beam Analysis in Materials Science

18 K. M. Yu November 2008

Kinematic Factor

2

12

122

1221

)(cos)sin(

2 ⎥⎥

⎢⎢

+

+−==

mmmmm

EEK

om

θθ

2

12

12

)()(

)180(2 ⎥

⎥⎦

⎢⎢⎣

+−

==mmmm

K om θ

)()(

)90(12

122 mm

mmK o

m +−

==θ

1~)180(2

omK =θ

When m2>>m1:

Page 19: Ion Beam Analysis in Materials Science

19 K. M. Yu November 2008

Element identification

2.5 MeV He ion with θ=170o

K(197Au) = 0.923 K(109Ag) = 0.864

K(107Ag) = 0.862 K(65Cu) = 0.783

K(63Cu) = 0.777

Page 20: Ion Beam Analysis in Materials Science

20 K. M. Yu November 2008

Mass Resolution, δm2

( )( )

22 11

20 1 2

m mEE m mδ δ

−=

+

( )( )

32 1 1

201 2 14

m m EmEm m mδδ

+∴ =

For 180o scattering:2

12

12

0

1

)()(

2 ⎥⎦

⎤⎢⎣

⎡+−

==mmmm

EEKm

For a fixed δE1/E0 (~0.01), heavier projectiles result in better mass resolution

However, δE1 for heavier projectiles is higher

Page 21: Ion Beam Analysis in Materials Science

21 K. M. Yu November 2008

Mass Resolution: Examples

...48.12000

20)440(44

)440( 3

2 umam =•−×

+=δ

With system energy resolution δE = 20keV and E0=2MeV

For m2 = 70

Isotopes of Ga (68.9 and 70.9 a.m.u.) cannot be resolved

For m2=40

...84.3200020

)470(44)470( 3

2 umam =•−×

+=δ

4 MeV 3 MeV 2 MeV 1 MeV

Page 22: Ion Beam Analysis in Materials Science

22 K. M. Yu November 2008

RBS Quantification

Backscattering YieldFor a given incident number of particles Q, a greater amount of an element present (Ns) should result in a greater number of particles scattered. Thus we need to know how often scattering events should be detected (A) at a characteristic energy (E = KE0) and angle θ, within our detector’s window of solid angle Ω.

Page 23: Ion Beam Analysis in Materials Science

23 K. M. Yu November 2008

Scattering cross-section

1

2

mAm

=

Rutherford cross-section:

[ ]2/1224

22/1222221

)sin1(2

sin

)sin1(cos2 θθ

θθσ

A

AE

eZZdd

o −⎟⎠⎞

⎜⎝⎛

−+⎟⎟⎠

⎞⎜⎜⎝

⎛=

Ω

Page 24: Ion Beam Analysis in Materials Science

24 K. M. Yu November 2008

( )( )( )

21/ 22 2221 2

1/ 24 2 20

cos 1 sin

2 sin 1 sin2

AZ Z eE A

θ θσ θ θ θ

⎡ ⎤+ −⎛ ⎞ ⎢ ⎥⎣ ⎦∴ = ⎜ ⎟⎝ ⎠ −

∝YYield,

2

0

11 )(E

ZZ∝

Scattering Yield

][10~ 224 barncm−

Example:

Mixed Si and W target analzed by a 2MeV He ion beam at 165o scattering angle.σ(Si)=2.5x10-25cm2/strσ(W)=7.4x10-24cm2/strTotal incident ions Q=1.5x1014 ions Ω=1.8mstrArea under Si, A(Si)=200 countsArea under W, A(W)=6000 counts(Nt)Si=3x1015atoms/cm2

(Nt)W=3x1015atoms/cm2

Example:

Mixed Si and W target analzed by a 2MeV He ion beam at 165o scattering angle.σ(Si)=2.5x10-25cm2/strσ(W)=7.4x10-24cm2/strTotal incident ions Q=1.5x1014 ions Ω=1.8mstrArea under Si, A(Si)=200 countsArea under W, A(W)=6000 counts(Nt)Si=3x1015atoms/cm2

(Nt)W=3x1015atoms/cm2

Page 25: Ion Beam Analysis in Materials Science

25 K. M. Yu November 2008

Correction factor F, which describes the deviation from pure Rutherford scattering due to electron screening for He+ scattering from atoms, Z2, at variety of incident kinetic energies.

At very high energy and very low energy, scattering will deviate from the Rutherford type.

At low energy : screening of e- must be considered

At high energy : nuclear short range force will enhance the cross-section, the so-called “resonance scattering.”

Deviation from Rutherford scattering

Page 26: Ion Beam Analysis in Materials Science

26 K. M. Yu November 2008

Electronic stopping

Nuclear Stopping

Energy Loss

eledxdE

nucldxdE

When an He or H ion moves through matter, it loses energy throughinteractions with e- by raising them to excited states or even ionizing them.Direct ion-nuclei scattering

Since the radii of atomic nuclei are so small, interactions with nuclei may be neglected

elenucleletotal dxdE

dxdE

dxdE

dxdE

≈+=

Page 27: Ion Beam Analysis in Materials Science

27 K. M. Yu November 2008

How to read a typical RBS spectrum

Most projectile ions experience electronic stopping that results in a gradual reduction of the particle’s kinetic energy (dE/dx).At the same time a small fraction of projectile ions come close enough to the nucleus for large-angle scattering (KE).A detected backscattered particle has lost some energy during initial penetration, then lost a large fraction of its remaining energy during the large-angle scattering event, then lost more energy in leaving the solid.

A thin film on a light substrate

Page 28: Ion Beam Analysis in Materials Science

28 K. M. Yu November 2008

Depth Scale

outin EEEKE Δ−Δ−= )( 01

)cos

()(00

01 θt

dxdEt

dxdEEKE

KEE•−•−=

Stopping cross-section

atomeVcm

atomcm

cmeV:1 23

==dxdE

KEo

E

KE0E1

Total energy loss ΔE=KE0-E1

tStdxdE

dxdEKE o

KEE

•=••+•=Δ ][)cos

1cos

(00 21 θθ

ΔE [So] is the effective stopping power

tNtNNKE ooutin •=•⎟⎟⎠

⎞⎜⎜⎝

⎛•+•=Δ ][

cos1

cos 21

εεθ

εθ

Page 29: Ion Beam Analysis in Materials Science

29 K. M. Yu November 2008

Depth scale: thin film

[ ] ][ oo NE

SEt

εΔ

=

t

Eo

E1

180o-θ

KEo

E

ΔE

KEoE1

Thickness of film:

tStdxdE

dxdEKE o

KE

E•=•+=Δ ][)

cos( 0

ε obtained from TRIM code or empirical energy loss data fitting

Page 30: Ion Beam Analysis in Materials Science

30 K. M. Yu November 2008

Example: layer thickness

consider the Au markersΔEAu=EAuF - EAuB

= [KAu dE/dx⎮Eo + 1 / (cos10º) • dE/dx⎮ EAuB ] • t

dE/dx⎮ 3MeV = NAl εAl⎮ 3MeV

= 6.02x1022 • 36.56x10-15

= 2.2x109eVcm-1

dE/dx⎮ EAuB = NAl εAl⎮ 2.57MeV

= 6.02x1022 x 39.34x10-15

= 2.37x109 eVcm-1

t = 3945Å

ΔEAl = 165keV

ΔΕAu = 175keV

KAu = 0.9225KAl = 0.5525

consider the Al signalsΔEAl = [KAl dE/dx⎮Eo + 1 / (cos10º) • dE/dx⎮ KEo ] • t

t = 3937Å

Page 31: Ion Beam Analysis in Materials Science

31 K. M. Yu November 2008

Energy Loss: Bragg’s rule

For a target AmBn, the stopping cross-section is the sum of those of the constituent elements weighted by the abundance of the elements.

εAmBn = m εA + n εB

Example:the stopping cross-section εAl2O3 of Al2O3.Given: εAl = 44 x 10-15eVcm2

εO = 35 x 10-15eVcm2

εAl2O3 = 2/5 x εAl +3/5 x εO

= (2/5 x 44 + 3/5 x 35) x 10-15

= 38.6 x 10 -15 eV-cm2/atomdE/dx(Al2O3)=NεAl2O3=(1.15x1022)(38.6x10-15)eV/cm

=44.4 eV/Å

Page 32: Ion Beam Analysis in Materials Science

32 K. M. Yu November 2008

Quantitative analysis: composition and thickness

AA=σA•Ω•Q•(Nt)A

AB=σB•Ω•Q•(Nt)B

nm

ZZ

NtNt

AA

B

A

B

A

B

A

B

A •=•= 2)())()(()(

σσ

2)()(A

B

B

AZZ

AA

nm

•=

nmnm BABo

BBA

Ao

A

SE

SEt

][)(

][)( Δ

=

nmnm BABo

BBA

Ao

A

NE

NEt

][)(

][)(

εεΔ

=

Page 33: Ion Beam Analysis in Materials Science

33 K. M. Yu November 2008

Example: As implanted Si

KAs=0.809; KSi=0.566

atomcmeVx

atomcmeVxSiAso

SiSio

/103.95][

/106.92][215

215

−=

−=−

ε

ε

Å540][355.2

)(

Å1420][

60)(68

=•

=

==Δ

SiAso

Asp

SiAso

SiAs

p

As

SiAs

NFWHM

R

NER

keVFWHMkeVE

ε

ε

)()(

QANt

As

AsAs •Ω•

Total As dose:

Page 34: Ion Beam Analysis in Materials Science

34 K. M. Yu November 2008

Quantitative Analysis

tδt

KEoY(t)

δE

When Y(t) corresponds to the yield for one energy division in the RBS spectrum:Y(t)=H(E)H(E)=σ•Ω•Q•Ν•δt

=σ•Ω•Q•Ν•δE/[So]=σ•Ω•Q•Ν•δE/N[εo]

where δE is the energy/channel in the RBS spectrum

Consider the As implanted Si example:AAs=σAs•Ω•Q•(Νt)As

SiSio

As

Si

As

Si

As

SiSio

SiSi

ENt

ZZ

HAs

NENQH

]/[)()(

][

2

εδ

εδσ

•=

••Ω•=

Independent of Q and Ω

Page 35: Ion Beam Analysis in Materials Science

35 K. M. Yu November 2008

Thin film analysis

YxBayCuzO

2)(Y

Ba

Ba

YZZ

AA

xy

•=

2

2

)(

][][)(

Y

Ba

Ba

Y

YBCOBao

YBCOYo

Y

Ba

Ba

Y

ZZ

HHZZ

HH

xy

•≈

••=εε

Page 36: Ion Beam Analysis in Materials Science

36 K. M. Yu November 2008

RBS simulation

Page 37: Ion Beam Analysis in Materials Science

37 K. M. Yu November 2008

Example: silicide formation

Before reaction

After reaction

2MeV 4He+

Si Pd

Page 38: Ion Beam Analysis in Materials Science

38 K. M. Yu November 2008

RBS application: silicide formation

K. N. Tu et al. Thin Solid film 25, 403 (1975).

K. N. Tu et al. Japn, J. Appl. Phys. Suppl. 2 Pt 1 669 (1974).

Reaction kinetics:

J. O. Olowolafe et al. Thin Solid film 38, 143 (1976).

Page 39: Ion Beam Analysis in Materials Science

39 K. M. Yu November 2008

RBS Application: impurity profile

1.95 MeV 4He+

SiO2Si

Ge inplanted region

I. Sharp et al., LBNL (2004)

Page 40: Ion Beam Analysis in Materials Science

40 K. M. Yu November 2008

Pitfalls in IBA

Charge IntegrationAccurate charge integration is important for absolute quantitative measurements

Good faraday cup design

Page 41: Ion Beam Analysis in Materials Science

41 K. M. Yu November 2008

Pitfalls in IBA (cont.)

Deviation from Rutherford cross-section:

b=distance of closest approach=Z1Z2e2/Ern= nuclear radius=1.4Z2

1/3x10-5

rK=atomic K-shell radius=0.5/Z2

In order to miminize electron screening and maintain a point charge approximation:

0.5rK>b>3rn

For typical RBS: Rutherford cross section is valid (~4%)

Page 42: Ion Beam Analysis in Materials Science

42 K. M. Yu November 2008

Pitfalls in IBA (cont.)

Insulating samples: charging effect

Severely distort the RBS spectrum

• Provide a supply of low-E electrons from a small, hot filament located nearby

• Coating the surface with a very thin layer of conducting material

Page 43: Ion Beam Analysis in Materials Science

43 K. M. Yu November 2008

Pitfalls in IBA (cont.)

Target non-uniformitySurface roughness and interface roughness cannot be distingusihedTarget non-uniformity will resemble diffusion

Campisano et al., 1978

Page 44: Ion Beam Analysis in Materials Science

44 K. M. Yu November 2008

Weaknesses of RBS

Poor lateral resolution (~1mm)Moderate depth resolution (~100Å)No microstructural informationNo phase identificationPoor mass resolution for target mass heavier than 70amuDetection of light impurities in a heavy matrix difficult (e.g. C, O, B in Si)

Page 45: Ion Beam Analysis in Materials Science

45

Particle Induced X-ray Emission (PIXE)

Page 46: Ion Beam Analysis in Materials Science

46 K. M. Yu November 2008

Paricle Induced X-ray Emission (PIXE)

Page 47: Ion Beam Analysis in Materials Science

47 K. M. Yu November 2008

PIXE: Light impurity in heavy matrix

RBS PIXE

GaAs

Ga1-xMnxAs

2 MeV 4He+

K. M. Yu et al. 2002.

Page 48: Ion Beam Analysis in Materials Science

48 K. M. Yu November 2008

PIXE Application: Geology, Art, Archeology, Biology

External Beam

Page 49: Ion Beam Analysis in Materials Science

49

Hydrogen Forward Scattering (HFS)(Elastic Recoil Detection Analsyis ERDA)

Page 50: Ion Beam Analysis in Materials Science

50 K. M. Yu November 2008

Hydrogen Forward Scattering (HFS)

Charles Evans and Assoc., RBS APPLICATION SERIES NO. 3

• Quantitative hydrogen and deuterium profiling• Good sensitivity (~0.01at% of H)• Can be perform simultaneously with RBS and PIXE• Profiling with any light element in solid (using heavy ion beam, ERD)

Generally known as Elastic Recoil Detection (ERD)

Page 51: Ion Beam Analysis in Materials Science

51 K. M. Yu November 2008

HFS: H implanted Si

300 500 700 900 1100 1300 1500Energy (keV)

0

200

400

600

Cou

nts

Si

Reference

105°C

200°C

400°C

random

0100200300

depth (nm)

Channeling-RBS

[Nt]H=2.1x1017/cm2

Rp=280 nmΔR=140 nm

HFS

Rp

Page 52: Ion Beam Analysis in Materials Science

52 K. M. Yu November 2008

HFS: a-Si:H film

RBS

HFS

Page 53: Ion Beam Analysis in Materials Science

53 K. M. Yu November 2008

HFS: a-SiN:H film

100 200 300 400 500 600 700Channel

0

5

10

15

20

25

Nor

mal

ized

Yie

ld

0.4 0.6 0.8 1.0 1.2Energy (MeV)

200 250 300 350 400 450 500Channel

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nor

mal

ized

Yie

ld

0.5 0.6 0.7 0.8 0.9Energy (MeV)

RBS

HFS

177 nm SiN1.15H0.013

Si

Courtesy: F. Hellman group, 2008

Page 54: Ion Beam Analysis in Materials Science

54

Non-Rutherford Scattering and Nuclear Reaction Analysis

Page 55: Ion Beam Analysis in Materials Science

55 K. M. Yu November 2008

Non-Rutherford Scattering

For MeV ion beams, this phenomenon can be observed in low Z projectile/target system where the Coulomb barrier is small. The cross-section for such nuclear resonance scattering can be many times greater than the Rutherford values. Such non-Rutherford scattering has been used to some extent for the detection of light elements (C, N, O, Si) in heavy matrixes

Non-Rutherford elastic scattering cross sections appear when the ionenergy is so high that the ion starts penetrate the Coulomb barrier of the target atom. When the ion penetrates the Coulomb barrier of the target atom, the scattering is from the target atom’s nuclear potential and the effect of the nuclear forces for the scattering then become significant.

Page 56: Ion Beam Analysis in Materials Science

56 K. M. Yu November 2008

Non-Rutherford Cross-Sections

Page 57: Ion Beam Analysis in Materials Science

57 K. M. Yu November 2008

Non-Rutherford Cross-Sections (cont.)

Page 58: Ion Beam Analysis in Materials Science

58 K. M. Yu November 2008

Non-Rutherford Cross-Sections (cont.)

Page 59: Ion Beam Analysis in Materials Science

59 K. M. Yu November 2008

Non-Rutherford cross sections

Page 60: Ion Beam Analysis in Materials Science

60 K. M. Yu November 2008

Non-Rutherford scattering:Example 1: SiO2

K. M

. Yu et al., N

ucl. Instrum. M

eth. B30

(1988) 551-556

GaAs

SiO2

Page 61: Ion Beam Analysis in Materials Science

61 K. M. Yu November 2008

Non-Rutherford scattering:Example 1: SiC

K. M

. Yu et al., N

ucl. Instrum. M

eth. B30

(1988) 551-556

Si

SiC

Page 62: Ion Beam Analysis in Materials Science

62 K. M. Yu November 2008

Nuclear Reaction Analysis (NRA)

When the incident beam energy exceeds a certain threshold value, other energetic particles appear in the spectrum. The detection of these particles usually provide information which is not obtainable from RBS. The NRA technique is very useful as a tool for the detection and profiling of light elements in heavy matrix. In many cases such particle-particle NRA can be carried out in a RBS setup with only minor modifications.

14N (d,p) 15N

Page 63: Ion Beam Analysis in Materials Science

63 K. M. Yu November 2008

Some useful particle-particle reactions

162.7341.51431P (p,α) 28Si31P

42.2380.59223Na (p,α) 20Ne23Na

0.56.91.2519F (p,α) 16O19F

153.40.7318O (p,α) 15N18O

153.90.815N (p,α) 12C15N

353.11.212C (d,p) 13C12C

5503.70 (α1)0.65

0.75.57 (αo)0.6511B (p,α) 8Be11B

97.71.57Li (p,α) 4He7Li

359.70.76Li (d,α) 4He6Li

6113.00.72H (3He,p) 4He2H

5.22.31.02H (d,p) 3H2H

Approx. cross section (mb/sr)

Emitted Energy (MeV)

Incident Energy (MeV)

ReactionNucleus

Page 64: Ion Beam Analysis in Materials Science

64 K. M. Yu November 2008

NRA Example: GaNAs dilute nitride

T. Ahlgrena et al., Appl. Phys. Lett. 80, 2314 (2002).

14N(d,p)15N and 14N(d,α)12C reactions

1.3 MeV deuterium ions

GaNAs film with ~4% N

Page 65: Ion Beam Analysis in Materials Science

65

Ion Channeling

Page 66: Ion Beam Analysis in Materials Science

66 K. M. Yu November 2008

Ion channeling

Page 67: Ion Beam Analysis in Materials Science

67 K. M. Yu November 2008

Ion Channeling

random Planar channel Axial channel

Page 68: Ion Beam Analysis in Materials Science

68 K. M. Yu November 2008

Ion Channeling

Kobelco Steel Group

Page 69: Ion Beam Analysis in Materials Science

69 K. M. Yu November 2008

Two important parameters to characterize channeling results:

1. Minimum yield:

Ion Channeling:minimum yield and critical angle

~0.02-0.06

random

channeled

YY

=minχ

2. Critical half-angle, ψ1/2

indicates presence of defects responsible for beam dechanneling

Page 70: Ion Beam Analysis in Materials Science

70 K. M. Yu November 2008

Ion Channeling:minimum yield and critical angle

21

2212

21 ]1)ln[()2(2

1

⎭⎬⎫

⎩⎨⎧

+=Ψρ

CaEd

eZZc

Minimum Yield, χmin

05.002.0~2

2min

min

min

−≈

=

o

random

channeled

rr

YY

ππ

χ

χ

Critical half-angle, ψ1/2

where d is the distance of atoms in a row, a is the Thomas-Fermi screeing distance, r is rms thermal vibration

oc E

ZZ 15.0~)2(~~ 2212/1 −ΨΨ

Page 71: Ion Beam Analysis in Materials Science

71 K. M. Yu November 2008

Dechanneling by defects

Direct scattering-point defects

Perfect crystal channeling

Small angle dechanneling-line defects

Page 72: Ion Beam Analysis in Materials Science

72 K. M. Yu November 2008

Homo- and Heteroepitaxy

Page 73: Ion Beam Analysis in Materials Science

73 K. M. Yu November 2008

Channeling: Heteroepitaxy

~530nm InN on 210 nm GaN

500 nm

Z. Liliental-Weber

K. M. Yu et al., LBNL 2004.

Page 74: Ion Beam Analysis in Materials Science

74 K. M. Yu November 2008

Amorphous layer analysis

Page 75: Ion Beam Analysis in Materials Science

75 K. M. Yu November 2008

Channeling: Impurity Lattice Location

0 0.2 0.6 1.0Distance from atom row, r/ro

3

2

1

Flux

0.2

0.4

0.6

0.8ψ/ψ1=1.0

0.0

Channel center

ro

r

Atomic row

Page 76: Ion Beam Analysis in Materials Science

76 K. M. Yu November 2008

Experimental techniques : combined channeling RBS/PIXE

cc--RBS:RBS: crystalline quality of film (from GaAs backscattering yields)

cc--PIXE:PIXE: substitutionality of Mnatoms w.r.t. host GaAs

Rutherford backscattering (RBS)

Particle-induced x-ray emission (PIXE)

Mn

Page 77: Ion Beam Analysis in Materials Science

77 K. M. Yu November 2008

Channeling: Ga1-x-yBeyMnxAs

<100>

<110>

<111>

Channeling RBS/PIXE: -presence of interstitial Mn in GaAs-[MnI] increases with Be doping-MnI reduces TC

K. M. Yu et al. 2003.

Page 78: Ion Beam Analysis in Materials Science

78 K. M. Yu November 2008

Examples of applications for IBA

Thin film analysis: composition and thicknessMultilayer analysis: identification of reaction products; obtaining reaction kinetics, activation energy, and moving species Composition analysis of bulk garnets Depth distribution of heavy ion implantation and/or diffusion in a light substrate Surface damage and contaminationProviding calibration samples for other instrumentation such as secondary ion mass spectroscopy and Auger electron spectroscopy Defect depth distribution due to ion implantation damage or residue damage from improper annealing Lattice location of impurities in single crystal Surface atom relaxation of single crystal Lattice strain measurement of heteroepitaxy layers or superlattices