ion mobility petroleomics: towards isomeric compositional space elucidation via new software and...

39
©2015 Waters Corporation 1 Ion Mobility Petroleomics: Towards Isomeric Compositional Space Elucidation via New Software and Methods Eleanor Riches 1 ; Priscila Lalli 2 ; Ryan P. Rodgers 2, 3 ; Yuri Corilo 2, 3 1 Waters Corporation, Wilmslow, UK; 2 National High Magnetic Field Laboratory, Tallahassee, FL; 3 Future Fuels Institute, Tallahassee, FL 62 nd ASMS Conference Baltimore, 18 th June 2014

Upload: waters-corporation-chemical-materials

Post on 06-Aug-2015

165 views

Category:

Science


4 download

TRANSCRIPT

©2015 Waters Corporation 1

Ion Mobility Petroleomics: Towards Isomeric Compositional Space

Elucidation via New Software and Methods

Eleanor Riches1; Priscila Lalli2; Ryan P. Rodgers2, 3; Yuri Corilo2, 3 1Waters Corporation, Wilmslow, UK;

2National High Magnetic Field Laboratory, Tallahassee, FL; 3Future Fuels Institute, Tallahassee, FL

62nd ASMS Conference

Baltimore, 18th June 2014

©2015 Waters Corporation 2

Presentation Overview

Data Handling & Discussion

Conclusions

Acknowledgements

Background & Introduction

Instrumentation & Methods

Spectra & Results

©2015 Waters Corporation 3

Background & Introduction: State of the Art

Petroleum samples provide one of the biggest challenges for scientists in the field of analytical chemistry

5 3 8 18 10 75 12 355 15 8347 20 36.6 x 104

25 36.7 x 106

30 41.1 x 108

35 49.3 x 1010

40 62.4 x 1012

45 82.2 x 1014

60 221.5 x 1020

80 1056 x 1028

100 5920 x 1038

Carbon Number

Number of Isomers

Fractions

Gasoline

Diesel

VGO

VR

©2015 Waters Corporation 4

Background & Introduction : State of the Art

The incumbent mass spectrometric technology for petroleomics analyses is FTICR-MS – Resulting in some of the most information-rich data sets

ASAP-S-50-60-1006_3 #1-15 RT: 0.01-6.81 AV: 15 NL: 1.32E5T: FTMS + p APCI corona Full ms [100.00-1000.00]

100 200 300 400 500 600 700 800 900 1000m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

458.37805C33 H48 N1

-0.17799 ppm

126.30179

581.51239C40 H69 32S1

1.61369 ppm

539.46518C37 H63 32S1

1.26341 ppm

428.33117C31 H42 N1

-0.01740 ppm

230.66370

400.29995C29 H38 N1

0.17619 ppm

609.54385C42 H73 32S1

1.79589 ppm

169.10114C13 H13

-0.20911 ppm

370.25316C27 H32 N1

0.63714 ppm

316.20606C23 H26 N1

0.25327 ppm

653.60615C45 H81 32S1

1.21870 ppm

697.66703C48 H89 32S1

-1.31986 ppm

981.64640C72 H85 32S1

9.92988 ppm

756.61156

854.00453C67 H4 N1 32S1

-1.59983 ppm886.69177

918.74726

©2015 Waters Corporation 5

Background & Introduction : Ion Mobility in Petroleum Analysis

Use of ion mobility-mass spectrometry is relatively recent in petroleomics

– Drift tube ion mobility:

– TWIM:

©2015 Waters Corporation 6

Background & Introduction : The Focus of the Study

The questions we asked: – What complementary information can ion mobility – mass spectrometry offer

to petroleum analysis?

– How do we unlock the multidimensional petroleomics data acquired using SYNAPT ion mobility mass spectrometry?

©2015 Waters Corporation 7

Instrumentation & Methods: Mass Spectrometer

SYNAPT G2-S HDMS instrument

©2015 Waters Corporation 8

ElectroSpray Ionization (ESI+) – Vacuum gas oil (VGO) hydrotreatment feed and effluent

samples provided by collaborators from IFP Energies nouvelle (Solaize, France)

– Solutions were prepared as 5 mg/mL in 1:1 (v/v) toluene:methanol with 0.1% formic acid

– Sample solutions were infused using a Harvard syringe pump at a flow rate of 10 µL/min

Atmospheric Pressure Photoionization (APPI+)

– Vacuum residue samples with different geographical origins were provided by collaborators from IFP Energies nouvelle (Solaize, France)

– Solutions were prepared as 2 mg/mL in 1:1 (v/v) toluene:methanol with 0.1% formic acid

– Sample solutions were infused using a Harvard syringe pump at a flow rate of 10 µL/min

Instrumentation & Methods: ESI & APPI Analyses

©2015 Waters Corporation 9

Atmospheric Solids Analysis Probe (ASAP+) ionization – Atmospheric Solids Analysis Probe: thermal desorption followed by classical APCI – Boscan vacuum residue (≥350 oC) was provided by a collaborator from IFP Energies nouvelle (Solaize, France)

Samples were analysed by ASAP using a stepwise temperature ramp – T0 min = 50 oC Start acquisition – T0.5 min = 50 oC Insert probe – T1.0 min = 250 oC – T2.0 min = 350 oC – T3.0 min = 450 oC – T4.0 min = 550 oC – T5.0 min = 650 oC – T6.0 min = 650 oC Stop acquisition

Instrumentation & Methods: ASAP Analyses

©2015 Waters Corporation 10

Spectra & Results: Electrospray - VGO Hydrotreatment Effluent

Mobilogram

©2015 Waters Corporation 11

Spectra & Results: Electrospray - VGO Hydrotreatment Effluent

©2015 Waters Corporation 12

Spectra & Results: APPI – Safaniya Vacuum Residue

ML and DS spectra

©2015 Waters Corporation 13

Spectra & Results: ASAP – Boscan Vacuum Residue

50 oC

250 oC

350 oC

450 oC

550 oC 650 oC

©2015 Waters Corporation 14

Spectra & Results: ASAP – Boscan Vacuum Residue

50 oC

©2015 Waters Corporation 15

Spectra & Results: ASAP – Boscan Vacuum Residue

250 oC

©2015 Waters Corporation 16

Spectra & Results: ASAP – Boscan Vacuum Residue

350 oC

©2015 Waters Corporation 17

Spectra & Results: ASAP – Boscan Vacuum Residue

450 oC

©2015 Waters Corporation 18

Spectra & Results: ASAP – Boscan Vacuum Residue

550 oC

©2015 Waters Corporation 19

Spectra & Results: ASAP – Boscan Vacuum Residue

650 oC

©2015 Waters Corporation 20

Data Handling & Discussion: Ion Mobility Data in PetroOrg

©2015 Waters Corporation 21

Data Handling & Discussion: Ion Mobility Data in PetroOrg

©2015 Waters Corporation 22

Data Handling & Discussion: Ion Mobility Data in PetroOrg

©2015 Waters Corporation 23

Data Handling & Discussion: ESI(+) - VGO Hydrotreatment Effluent

40

20

10

0

30

DB

E

10 20 30 40 50 60

N1

Carbon Number

Relative Abundance (% Total)

20

10

5

0

15

Drif

t Tim

e (m

s)

10 20 30 40 50 60

N1

Carbon Number

DBE

©2015 Waters Corporation 24

Data Handling & Discussion: APPI(+) – Safaniya Vacuum Residue

160

80

40

0

120

Drif

t Tim

e

10 20 30 40 50 60

Carbon Number

S1

DBE

©2015 Waters Corporation 25

Data Handling & Discussion: APPI(+) – Safaniya Vacuum Residue

40

20

10

0

30

DB

E

10 20 30 40 50 60

Carbon Number

S1

Relative Abundance (% Total)

S

S

S

©2015 Waters Corporation 26

Data Handling & Discussion: ASAP(+) – Boscan Vacuum Residue

250 oC

10 20 30 50 60

HC

Drif

t Tim

e

160

80

40

0

120

DBE

40

Carbon Number

©2015 Waters Corporation 27

Data Handling & Discussion: ASAP(+) – Boscan Vacuum Residue

10 20 30 40 50 60

HC

Carbon Number

Drif

t Tim

e

160

80

40

0

120

DBE

350 oC

©2015 Waters Corporation 28

Data Handling & Discussion: ASAP(+) – Boscan Vacuum Residue

10 20 30 40 50 60

HC

Carbon Number

Drif

t Tim

e

160

80

40

0

120

DBE

450 oC

©2015 Waters Corporation 29

Data Handling & Discussion: ASAP(+) – Boscan Vacuum Residue

10 20 30 40 50 60

HC

Carbon Number

Drif

t Tim

e

160

80

40

0

120

DBE

550 oC

©2015 Waters Corporation 30

Data Handling & Discussion: ASAP(+) – Boscan Vacuum Residue

160

80

40

0

120

Drif

t Tim

e

10 20 30 40 50 60

HC

Carbon Number DBE

650 oC

©2015 Waters Corporation 31

Data Handling & Discussion: ASAP(+) – Boscan Vacuum Residue

40

20

10

0

30

DB

E

10 20 30 40 50 60

HC

Carbon Number Relative Abundance (% Total)

Possible result of fragmentation

Alkylated parent ions

250 oC

©2015 Waters Corporation 32

Relative Abundance (% Total)

Data Handling & Discussion: ASAP(+) – Boscan Vacuum Residue

350 oC

Possible result of fragmentation

Alkylated parent ions

40

20

10

0

30

DB

E

10 20 30 40 50 60

Carbon Number

HC

©2015 Waters Corporation 33

Data Handling & Discussion: ASAP(+) – Boscan Vacuum Residue

Relative Abundance (% Total)

450 oC

Possible result of fragmentation

Alkylated parent ions

40

20

10

0

30

DB

E

10 20 30 40 50 60

HC

Carbon Number

©2015 Waters Corporation 34

Data Handling & Discussion: ASAP(+) – Boscan Vacuum Residue

Relative Abundance (% Total)

550 oC

Possible result of fragmentation

Alkylated parent ions

40

20

10

0

30

DB

E

10 20 30 40 50 60

HC

Carbon Number

©2015 Waters Corporation 35

Data Handling & Discussion: ASAP(+) – Boscan Vacuum Residue

Relative Abundance (% Total)

650 oC

Possible result of fragmentation

Alkylated parent ions

40

20

10

0

30

DB

E

10 20 30 40 50 60

HC

Carbon Number

©2015 Waters Corporation 36

Data Handling & Discussion: ASAP: In Agreement with the Literature

15 25 35 45 5

DBE 10

DBE 17

DBE 23

DBE 26

DBE 9

DBE 15

DBE 21

DBE 25

DBE 12

DBE 18

Carbon Number 15 25 35 45 5

HC Class

Double Bond Equivalents vs. C# IRMPD APPI(+) FT-ICR MS.

Total de-alkylation revealing the core structures

DBE 20

DBE 7

DBE 14

Ref: Podgorski, D. C., et al., Energy & Fuels, 2013, 27, pp 1268 - 1276

©2015 Waters Corporation 37

Conclusions

Novel software tools help to visualize, interact with, and process ion mobility-mass spectrometry data for comprehensive, petroleomics-specific data analysis

On the road towards isomeric compositional space elucidation, ion mobility-mass spectrometry can help to…

— Offer an additional orthogonal dimension of separation

— Deconvolute isomeric species in the ion mobility dimension

— Simplify the analysis of very complex samples

— Map the compositional space of petroleum samples

— Characterise the shapes and/or sizes of materials

©2015 Waters Corporation 38

Acknowledgements

Waters colleagues: Kirsten Craven, Adam Parkinson, Neil Gardner

Collaborators: Jérémie Ponthus, Jérémie Barbier and Laure Boursier, IFP Energies nouvelles, France

Yuri E. Corilo: PetroOrg development and collaboration

©2015 Waters Corporation 39

Acknowledgements

Thank you for your attention!