ionic radius

11
By: Rachel Smith, Lauren Pyfer, Peter Xu IONIC RADIUS

Upload: huy

Post on 23-Feb-2016

181 views

Category:

Documents


4 download

DESCRIPTION

IONIC RADIUS. By: Rachel Smith, Lauren Pyfer , Peter Xu. IONIC RADIUS. The ionic radius is the measure of an atom's ion in a crystal lattice Values for ionic radius are difficult to obtain and tend to depend on the method used to measure the size of the ion - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: IONIC RADIUS

By:

Rachel Smith, Lauren Pyfer, Peter Xu

IONIC RADIUS

Page 2: IONIC RADIUS

IONIC RADIUS• The ionic radius is the measure of an atom's ion in a crystal

lattice• Values for ionic radius are difficult to obtain and tend to

depend on the method used to measure the size of the ion• A typical value for an ionic radius would be from 30 pm (0.3

Å) to 200 pm (2 Å)• Ionic radius may be measured using x-ray crystallography or

similar techniques.

Page 3: IONIC RADIUS

IONIC RADIUS TREND

• Ionic radii are difficult to measure with certainty

• In order to make reliable comparisons using ionic radii, they must must be from the same source.

• Details are difficult to determine due to many uncertainties in the use of atomic radii.

Page 4: IONIC RADIUS

TREND DOWN A GROUP

• Adding extra layers of electrons when moving down a group, the ions get larger.

Page 5: IONIC RADIUS

TREND ACROSS A PERIOD

• Cations and anions must be looked at separately.

• Within the group of positive and negative ions, the ionic radii falls as you go across a period.

• Since an additional layer of electrons is added in the anions, there is a large jump in radii immediately starting in the group of anions.

Page 6: IONIC RADIUS
Page 7: IONIC RADIUS

IONIC RADIUS-REASONS FOR TRENDANIONS

• Anions are larger than their non-charged versions because:

• Electrons repel each other, forcing them to be farther apart.

• There are more electrons than protons. Thus, the strength of the protons pulling on each electron is no as great as if the numbers of protons and electrons were the same.

Page 8: IONIC RADIUS

IONIC RADIUS-REASONS FOR TREND: CATION

• Cations are smaller than their non-charged versions because:

• There is less repulsion between electrons.

• There are more protons than electrons. Thus, the strength of the protons pulling on each electron is greater than if the numbers of protons and electrons were the same.

• If there is at least one electron in a shell, the shell exists. This means that the only time a shell does not exist is when there are absolutely no electrons on the shell anywhere.

Page 9: IONIC RADIUS
Page 10: IONIC RADIUS

IONIC RADIUS-EXCEPTIONS TO TREND

• The only ions follow the trends of ionic radii.

• An abnormal ionic radius often means that the ionic bond is significantly covalent in part.

• The reason is that, actually, no bond is completely ionic.

• Transition metals in particular are partially covalent. Sometimes, they do not completely lose their electrons.

Page 11: IONIC RADIUS

IONIC RADIUS-EXCEPTIONS TO TREND