irc-15-86 ircobi conference 2015 a computational … · fig. 2. a comparison of the force‐time...

2
* N. Newell is a Postdoctoral Researcher, A. M. J. Bull is Professor of Musculoskeletal Mechanics and S. D. Masouros is a Lecturer in Trauma Biomechanics at Imperial College London (tel: +44 (0)20 7594 2645; email: [email protected]). I. INTRODUCTION The single most prevalent threat to Coalition Troops in recent conflicts has been the improvised explosive device (IED) [1]. The IED is capable of causing multiple casualties in a single incident. The occupant’s lower extremities have been shown to be particularly susceptible to injury [2], and therefore a number of mitigation systems have been developed in attempts to reduce the severity of these injuries. Experimentally, these systems have been shown to reduce the force transmitted to the lower extremity [3], but experimental analysis is often expensive and timeconsuming. The MILLx anthropometric test device was developed in 2009 to mimic, to some extent, the behaviour of the human leg during an undervehicle explosion and it presents the most biofidelic surrogate for undervehicle explosion research to date [4]. The aim of this study is to develop a validated finite element (FE) model of the MILLx fitted with a combat boot, which can be used as a tool to assess and develop new mitigation systems quickly and inexpensively. II. METHODS Axisymmetric, finite element models of the MILLx and combat boot (Meindl Desert Fox Combat Boot) were developed using MSC Marc (MSC Software, USA) and validated separately against experimental data obtained from two different traumatic injury simulators. Combat boot geometry was obtained through analysis of the dimensions of the individual layers, as captured on microscopic computed tomography (microCT) scans (HMX ST 225, Nikon Metrology Ltd, Tring, UK); the MILLx geometry was reverse engineered. The properties of the materials of both combat boot and MILLx were obtained experimentally by harvesting material samples, which were then tested in compression both quasistatically and dynamically. III. INITIAL FINDINGS The model of the combat boot was validated against droptower tests [5] and then combined with the MILLx model, which was then compared with traces of upper tibia axial force and compliant element compression obtained through experiments conducted on AnUBIS (a traumatic injury simulator housed at Imperial College London) at a range of severities [6] (Fig. 1). (a) (b) Fig. 1. A comparison of (a) the forcetime traces and (b) the compliant element compression traces obtained numerically and experimentally at the upper tibia load cell during a simulated undervehicle explosion using a traumatic injury simulator (Imperial College London’s AnUBIS rig). The grey shading represents ±1 S.D. for the experimental results. Further details of the experimental setup can be found in Newell et al. [6]. To gain further confidence in the numerical model, five MILLx experiments, conducted independently on University of Virginia’s ODYSSEY rig [7], were simulated. The difference in peak axial force in lower and upper tibia load cells of the MILLx were 9% (range 1–17%) and 13% (range 9–19%), respectively (Fig. 2). 0 5 10 0 5 10 15 20 25 Force (kN) Time (ms) Numerical Experimental 0 10 20 30 40 0 5 10 15 20 25 Comp. element compression (%) Time (ms) Nicolas Newell, Anthony M. J. Bull and Spyros D. Masouros* A Computational Model for Prediction of LowerLimb Injury in UnderVehicle Explosions - 748 - IRC-15-86 IRCOBI Conference 2015

Upload: voliem

Post on 19-Aug-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

* N. Newell is a Postdoctoral Researcher, A. M. J. Bull is Professor of Musculoskeletal Mechanics and S. D. Masouros is a Lecturer in Trauma Biomechanics at Imperial College London (tel: +44 (0)20 7594 2645; e‐mail: [email protected]).

I. INTRODUCTION 

The single most prevalent threat  to Coalition Troops  in recent conflicts has been the  improvised explosive 

device  (IED)  [1].  The  IED  is  capable of  causing multiple  casualties  in  a  single  incident.  The occupant’s  lower 

extremities have been shown to be particularly susceptible to injury [2], and therefore a number of mitigation 

systems  have  been  developed  in  attempts  to  reduce  the  severity  of  these  injuries.  Experimentally,  these 

systems have been shown to reduce the force transmitted to the lower extremity [3], but experimental analysis 

is  often  expensive  and  time‐consuming.  The MIL‐Lx  anthropometric  test  device was  developed  in  2009  to 

mimic, to some extent, the behaviour of the human  leg during an under‐vehicle explosion and  it presents the 

most biofidelic surrogate for under‐vehicle explosion research to date [4]. The aim of this study is to develop a 

validated  finite element  (FE) model of  the MIL‐Lx  fitted with a combat boot, which can be used as a  tool  to 

assess and develop new mitigation systems quickly and inexpensively. 

II. METHODS 

Axisymmetric, finite element models of the MIL‐Lx and combat boot (Meindl Desert Fox Combat Boot) were 

developed using MSC Marc (MSC Software, USA) and validated separately against experimental data obtained 

from two different traumatic injury simulators.  

Combat boot geometry was obtained through analysis of the dimensions of the individual layers, as captured 

on microscopic computed tomography (micro‐CT) scans (HMX ST 225, Nikon Metrology Ltd, Tring, UK); the MIL‐

Lx geometry was  reverse engineered. The properties of  the materials of both combat boot and MIL‐Lx were 

obtained experimentally by harvesting material  samples, which were  then  tested  in compression both quasi‐

statically and dynamically. 

III. INITIAL FINDINGS 

The model of the combat boot was validated against drop‐tower tests [5] and then combined with the MIL‐

Lx model, which was then compared with traces of upper tibia axial force and compliant element compression 

obtained  through experiments conducted on AnUBIS  (a traumatic  injury simulator housed at  Imperial College 

London) at a range of severities [6] (Fig. 1).  

(a) (b) 

Fig. 1. A comparison of  (a)  the  force‐time  traces and  (b)  the compliant element compression  traces obtained 

numerically and experimentally at the upper tibia  load cell during a simulated under‐vehicle explosion using a 

traumatic  injury simulator (Imperial College London’s AnUBIS rig). The grey shading represents ±1 S.D. for the 

experimental results. Further details of the experimental set‐up can be found in Newell et al. [6]. 

 

 

To gain  further confidence  in  the numerical model,  five MIL‐Lx experiments, conducted  independently on 

University of Virginia’s ODYSSEY rig [7], were simulated. The difference  in peak axial force  in  lower and upper 

tibia load cells of the MIL‐Lx were 9% (range 1–17%) and 13% (range 9–19%), respectively (Fig. 2). 

0

5

10

0 5 10 15 20 25

Force (kN)

Time (ms)

NumericalExperimental

0

10

20

30

40

0 5 10 15 20 25

Comp. elemen

t compression (%)

Time (ms)

Nicolas Newell, Anthony M. J. Bull and Spyros D. Masouros*

A Computational Model for Prediction of Lower‐Limb Injury in Under‐Vehicle Explosions

- 748 -

IRC-15-86 IRCOBI Conference 2015

Fig. 2. A comparison of the force‐time traces obtained numerically and experimentally at the upper (left column) and lower 

(right column) tibia  load cell using the University of Virginia’s ODYSSEY rig. Each row represents tests  labelled 2.1–2.5  in 

Bailey et al. [7]. 

 

IV. DISCUSSION 

A validated numerical model of the MIL‐Lx with combat boot has been developed and can now be used to 

examine the effect of protective systems on injury severity to the lower extremity in underbody blast. 

V. REFERENCES 

[1]  Ramasamy, A., et al. J. Trauma, 2008. 

[2]  Ramasamy, A., et al. J. R. Soc. Interface, 2011. 

[3]  Quenneville, C. E., Dunning, C. E. J. Battlefield Tech., 2011. [4]  McKay, B. J. Ph.D. Thesis, Wayne State University, Detroit, MI, USA, 2010. 

[5]  Newell, N., et al. Inj. Prev., 2012. [6]  Newell, N., et al. Proc. IRCOBI, 2012. [7]  Bailey, A., et al. Proc. IRCOBI, 2013. 

0

2

4

6

8

10

0 5 10 15

Fo

rce

(kN

)

Time (ms)

0

2

4

6

8

10

0 5 10 15

For

ce (

kN)

Time (ms)

Numerical

Experimental

0

2

4

6

8

10

0 5 10 15

Fo

rce

(kN

)

Time (ms)

0

2

4

6

8

10

0 5 10 15

Fo

rce

(kN

)

Time (ms)

0

2

4

6

8

10

0 5 10 15

For

ce (

kN)

Time (ms)

0

2

4

6

8

10

0 5 10 15F

orc

e (

kN)

Time (ms)

0

2

4

6

8

10

0 5 10 15

For

ce (

kN)

Time (ms)

0

2

4

6

8

10

0 5 10 15

For

ce (

kN)

Time (ms)

0

2

4

6

8

10

0 5 10 15

For

ce (

kN)

Time (ms)

0

2

4

6

8

10

0 5 10 15

For

ce (

kN)

Time (ms)

- 749 -

IRC-15-86 IRCOBI Conference 2015