ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา...

53
SKEW POLYNOMIALS AND SOME GENERALIZATIONS OF CIRCULANT MATRICES By Mr. Prarinya Morrakutjinda A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master of Science Program in Mathematics Department of Mathematics Graduate School, Silpakorn University Academic Year 2016 Copyright of Graduate School, Silpakorn University

Upload: others

Post on 13-Apr-2020

25 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

SKEW POLYNOMIALS AND SOME GENERALIZATIONS OF CIRCULANT

MATRICES

By

Mr. Prarinya Morrakutjinda

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree

Master of Science Program in Mathematics Department of Mathematics

Graduate School, Silpakorn University Academic Year 2016

Copyright of Graduate School, Silpakorn University

Page 2: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

SKEW POLYNOMIALS AND SOME GENERALIZATIONS OF CIRCULANT

MATRICES

By

Mr. Prarinya Morrakutjinda

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master of Science Program in Mathematics

Department of Mathematics Graduate School, Silpakorn University

Academic Year 2016

Copyright of Graduate School, Silpakorn University

Page 3: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

พหนามเสมอนและนยทวไปบางประการของเมทรกซวฏจกร

โดย นายปรญญา มรกฎจนดา

วทยานพนธนเปนสวนหนงของการศกษาตามหลกสตรปรญญาวทยาศาสตรมหาบณฑต สาขาวชาคณตศาสตร ภาควชาคณตศาสตร

บณฑตวทยาลย มหาวทยาลยศลปากร ปการศกษา 2559

ลขสทธของบณฑตวทยาลย มหาวทยาลยศลปากร

Page 4: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

The Graduate School, Silpakorn University has approved and accredited the

Thesis title of “Skew Polynomials and Some Generalizations of Circulant Matrices”

submitted by Mr. Prarinya Morrakutjinda as a partial fulfillment of the requirements

for the degree of Master of Science in Mathematics

…...............................................................................

(Associate Professor Panjai Tantatsanawong, Ph.D.)

Dean of Graduate School

........../..................../..........

The Thesis Advisor

Somphong Jitman, Ph.D.

The Thesis Examination Committee

.................................................... Chairman

(Ratana Srithus, Dr. rer. nat.)

............/......................../..............

.................................................... Member

(Assistant Professor Sajee Pianskool, Ph.D.)

............/......................../..............

.................................................... Member

(Somphong Jitman, Ph.D.)

............/......................../..............

Page 5: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

d

57305205 : MAJOR : MATHEMATICS

KEY WORDS: SKEW POLYNOMIALS / CONJUGATE-CIRCULANT

MATRICES / CONJUGATE-NEGACIRCULANT MATRICES

PRARINYA MORRAKUTJINDA : SKEW POLYNOMIALS AND SOME

GENERALIZATIONS OF CIRCULANT MATRICES. THESIS ADVISOR :

SOMPHONG JITMAN, Ph.D. 45 pp.

In this thesis, four generalizations of classical circulant matrices over the

complex field ℂ are introduced, namely, right conjugate-circulant, left conjugate-

circulant, right conjugate-negacirculant and left conjugate-negacirculant matrices.

Group structures of some subsets of such matrices are studied. Subsequently, some

properties of skew polynomials over ℂ are determined. The characterization of the

set of all 𝑛 × 𝑛 right conjugate-circulant matrices over ℂ (resp., the set of all 𝑛 × 𝑛

right conjugate-negacirculant matrices over ℂ ) is given in terms of skew polynomials

over ℂ.

Department of Mathematics Graduate School, Silpakorn University

Student's signature ............................................. Academic Year 2016

Thesis Advisor's signature .............................................

Page 6: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

e

57305205: สาขาวชาคณตศาสตร ค าส าคญ: พหนามเสมอน / เมทรกซวฏจกรสงยค / เมทรกซวฏจกรเชงลบสงยค ปรญญา มรกฎจนดา : พหนามเสมอนและนยทวไปบางประการของเมทรกซวฏจกร. อาจารยทปรกษาวทยานพนธ : ดร. สมพงค จตตมน. 45 หนา.

วทยานพนธนน าเสนอนยทวไปของเมทรกซวฏจกร 4 แบบ บนฟลด ℂ คอ เมทรกซวฏจกรสงยคขวา เมทรกซวฏจกรสงยคซาย เมทรกซวฏจกรเชงลบสงยคขวา และเมทรกซวฏจกรเชงลบสงยคซาย เราศกษาโครงสรางการเปนกรปของเซตยอยบางเซตของเมทรกซเหลานน พรอมกนนไดศกษาสมบตบางประการของพหนามเสมอนบนฟลด ℂ และใชจ าแนกโครงสรางของเซตของเมทรกซวฏจกรสงยคขวาและเมทรกซวฏจกรเชงลบสงยคขวามต 𝑛 × 𝑛 บนฟลด ℂ ในเทอมของพหนามเสมอนบนฟลด ℂ ตามล าดบ

ภาควชาคณตศาสตร บณฑตวทยาลย มหาวทยาลยศลปากร ลายมอชอนกศกษา........................................ ปการศกษา 2559 ลายมอชออาจารยทปรกษาวทยานพนธ ........................................

Page 7: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

f

Acknowledgements

First of all, I would like to express my gratitude to Dr. Somphong Jitman, my

thesis advisor, for his help and support in all stages of my thesis studies.

In addition, I would like to thank Dr. Ratana Srithus and Asst. Prof. Dr. Sajee

Pianskool, the chairman and a member of the thesis committee, for their comments and

suggestions.

I would like to thank the Department of Mathematics, Faculty of Science

Silpakorn University for the facility support.

I would like to thank the Science Achievement Scholarship of Thailand

(SAST) for the financial support throughout my undergraduate and graduate studies.

Finally, special thanks to my beloved parents for understanding and support.

Page 8: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

g

Table of Contents

Page

Abstract in English .................................................................................................. d

Abstract in Thai ....................................................................................................... e

Acknowledgments................................................................................................... f

Chapter

1 Introduction ............................................................................................... 1

2 Preliminaries ............................................................................................. 3

2.1 Generalizations of Circulant Matrices ................................................ 3

2.2 Skew Polynomials .............................................................................. 10

3 Group structures of Some Generalizations of Circulant Matrices ............ 12

3.1 Conjugate-Circulant Matrices ............................................................. 12

3.2 Conjugate-Negacirculant Matrices ..................................................... 22

4 Characterizations ....................................................................................... 35

4.1 Characterization of Right Conjugate-Circulant Matrices ................... 35

4.2 Characterization of Right Conjugate-Negacirculant Matrices ............ 38

4.3 Isomorphisms ...................................................................................... 41

References ............................................................................................................... 43

Presentations and Publications ................................................................................ 44

Biography ................................................................................................................ 45

Page 9: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

Chapter 1

Introduction

The theory of circulant matrices over the complex field C has widely been stud-

ied and applied in many branches of Mathematics and Engineering. A circulant

matrix is a matrix where each row is rotated one element to the right relative to

the preceding row [4]. Precisely, an n× n circulant matrix is of the form

z0 z1 . . . zn−2 zn−1

zn−1 z0 . . . zn−3 zn−2

zn−2 zn−1 . . . zn−4 zn−3

... ... . . . ... ...

z1 z2 . . . zn−1 z0

for some (z0, z1, . . . , zn−1) ∈ Cn.

In applications, circulant matrices can be applied in solving linear systems

using discrete Fourier tranform and they can be used in the MixColumns step

of the Advanced Encryption Standard in cryptography. In [2], the eigenvalues

of a circulant matrix have been studied. Determinants, norms, and the spread

of circulant matrices with Tribohacci and generalized Lucas numbers have been

studied in [6] and references therein. The probability that the determinant of an

integer circulant n×n matrix is divisible by a prime p (where p does not divide n)

have been studied in [9]. In [4] and [5], the inverse of a circulant matrix is studied.

1

Page 10: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

2

It is well known [4] that the set of all circulant matrices is isomorphic to the ring

C[x]/ ⟨xn − 1⟩ . In [8], some groups of circulant matrices have been studied.

Skew polynomials over the complex numbers have been studied in [3]. They

have interesting properties and the set of all skew polynomials over C forms a

non-commutative ring under the addition and multiplication defined in Chapter

2. In [1], some properties of skew polynomials have been studied and applied in

coding theory.

In this thesis, four generalizations of circulant matrices are introduced, namely,

right conjugate-circulant, left conjugate-circulant, right conjugate-negacirculant

and left conjugate-negacirculant matrices. The algebraic characterizations and

some properties of such matrices are studied in terms of skew polynomials over

C. These might motivate further study of properties of such matrices such as de-

terminants, norms, diagonalizability etc. Moreover, applications of such matrices

would be interesting for further studies.

The thesis is organized as follows. The formal definitions of right conjugate-

circulant matrices, left conjugate-circulant matrices, right conjugate-negacirculant

matrices, left conjugate-negacirculant matrices and skew polynomials over C are

given in Chapter 2 as well as their basic properties. In Chapter 3, group struc-

tures of some subsets of such matrices are established. In Chapter 4 Section 4.1,

the characterization of right conjugate-circulant matrices and their properties are

established. The characterization of right conjugate-negacirculant matrices and

their properties are given in Section 4.2. In Section 4.3, some relations among

right conjugate-circulant matrices and right conjugate-negacirculant matrices are

discussed.

Page 11: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

Chapter 2

Preliminaries

In this chapter, some properties of skew polynomials over the complex field

are discussed. The notions of complex right conjugate-circulant, left conjugate-

circulant, right conjugate-negacirculant matrices and left conjugate-negacirculant

matrices are mentioned.

2.1 Generalization of Circulant Matrices

For each n ∈ N, let Mn(C) denote the set of all n × n complex matrices and

let GLn(C) = {A ∈Mn (C) | det(A) = 0} . Let ξ : C → C denote the complex

conjugate, i.e., ξ(z) = z. An n× n matrix A over C is said to be right conjugate-

circulant (resp., left conjugate-circulant) if

A =

z0 z1 . . . zn−2 zn−1

ξ(zn−1) ξ(z0) . . . ξ(zn−3) ξ(zn−2)

ξ2(zn−2) ξ2(zn−1) . . . ξ2(zn−4) ξ2(zn−3)

... ... . . . ... ...

ξn−1(z1) ξn−1(z2) . . . ξn−1(zn−1) ξn−1(z0)

3

Page 12: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

4

(resp., A =

z0 z1 . . . zn−2 zn−1

ξ(z1) ξ(z2) . . . ξ(zn−1) ξ(z0)

ξ2(z2) ξ2(z3) . . . ξ2(z0) ξ2(z1)

... ... . . . ... ...

ξn−1(zn−1) ξn−1(z0) . . . ξn−1(zn−3) ξn−1(zn−2)

)

for some (z0, z1, . . . , zn−1) ∈ Cn. A right (resp., left) conjugate-circulant matrix of

this form is denoted by rcirconj((z0, z1, . . . , zn−1)) (resp., lcirconj((z0, z1, . . . , zn−1))).

In similar fashion, an n × n matrix A over C is said to be right conjugate-

negacirculant (resp., left conjugate-negacirculant) if

A =

z0 z1 . . . zn−2 zn−1

ξ(−zn−1) ξ(z0) . . . ξ(zn−3) ξ(zn−2)

ξ2(−zn−2) ξ2(−zn−1) . . . ξ2(zn−4) ξ2(zn−3)

... ... . . . ... ...

ξn−1(−z1) ξn−1(−z2) . . . ξn−1(−zn−1) ξn−1(z0)

(resp., A =

z0 z1 . . . zn−2 zn−1

ξ(z1) ξ(z2) . . . ξ(zn−1) ξ(−z0)

ξ2(z2) ξ2(z3) . . . ξ2(−z0) ξ2(−z1)

... ... . . . ... ...

ξn−1(zn−1) ξn−1(−z0) . . . ξn−1(−zn−3) ξn−1(−zn−2)

)

Page 13: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

5

for some (z0, z1, . . . , zn−1) ∈ Cn. It is denoted by rncirconj((z0, z1, . . . , zn−1)) (resp.,

lncirconj((z0, z1, . . . , zn−1))).

Such matrices become the classical circulant and negacirculant matrices if ξ is

replaced by the identity map.

Since ξ2 is the identity map, we have

rcirconj((z0, z1, . . . , zn−1)) =

z0 z1 . . . zn−2 zn−1

zn−1 z0 . . . zn−3 zn−2

zn−2 zn−1 . . . zn−4 zn−3

... ... . . . ... ...

z2 z3 . . . z0 z1

z1 z2 . . . zn−1 z0

if n is odd,

z0 z1 . . . zn−2 zn−1

zn−1 z0 . . . zn−3 zn−2

zn−2 zn−1 . . . zn−4 zn−3

... ... . . . ... ...

z2 z3 . . . z0 z1

z1 z2 . . . zn−1 z0

if n is even,

Page 14: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

6

lcir c

onj((z

0,z

1,...,z

n−1))

=

z 0z 1

...z n

−2z n

−1

z 1z 2

...z n

−1

z 0

z 2z 3

...

z 0z 1

. . .. . .

. ..

. . .. . .

z n−2z n

−1...z n

−4z n

−3

z n−1

z 0...z n

−3z n

−2

ifn

isod

d,

z 0z 1

...z n

−2z n

−1

z 1z 2

...z n

−1

z 0

z 2z 3

...

z 0z 1

. . .. . .

. ..

. . .. . .

z n−2z n

−1...z n

−4z n

−3

z n−1

z 0...z n

−3z n

−2

ifn

isev

en,

Page 15: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

7

and

rnci

r conj((z 0,z

1,...,z

n−1))

=

z 0z 1

...

z n−2

z n−1

−z n

−1

z 0...

z n−3

z n−2

−z n

−2

−z n

−1...

z n−4

z n−3

. . .. . .

. ..

. . .. . .

−z 2

−z 3

...

z 0z 1

−z 1

−z 2

...

−z n

−1

z 0

ifn

isod

d,

z 0z 1

...

z n−2

z n−1

−z n

−1

z 0...

z n−3

z n−2

−z n

−2

−z n

−1...

z n−4

z n−3

. . .. . .

. ..

. . .. . .

−z 2

−z 3

...

z 0z 1

−z 1

−z 2

...

−z n

−1

z 0

ifn

isev

en,

Page 16: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

8

lncirconj((z0, z1, . . . , zn−1)) =

z0 z1 . . . zn−2 zn−1

z1 z2 . . . zn−1 −z0

z2 z3 . . . −z0 −z1... ... . . . ... ...

zn−2 zn−1 . . . −zn−4 −zn−3

zn−1 −z0 . . . −zn−3 −zn−2

if n is odd,

z0 z1 . . . zn−2 zn−1

z1 z2 . . . zn−1 −z0

z2 z3 . . . −z0 −z1... ... . . . ... ...

zn−2 zn−1 . . . −zn−4 −zn−3

zn−1 −z0 . . . −zn−3 −zn−2

if n is even.

Example 2.1. The matrices

rcirconj((1, 1− i, 2, 2 + i)) =

1 1− i 2 2 + i

2− i 1 1 + i 2

2 2 + i 1 1− i

1 + i 2 2− i 1

Page 17: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

9

and

rncirconj((1, 1− i, 2, 2 + i)) =

1 1− i 2 2 + i

−2 + i 1 1 + i 2

−2 −2− i 1 1− i

−1− i −2 −2 + i 1

are right conjugate-circulant and right conjugate-negacirculant, respectively. Clearly,

they are neither right circulant nor right negacirculant.

Denote by RCirn,rconj(C) := {rcirconj(z) | z ∈ Cn} and RNCirn,rconj(C) :=

{rncirconj(z) | z ∈ Cn} the set of complex n×n right conjugate-circulant matrices

and the set of complex n× n right conjugate-negacirculant matrices, respectively.

Example 2.2. The matrices

lcirconj((1, 1− i, 2, 2 + i)) =

1 1− i 2 2 + i

1 + i 2 2− i 1

2 2 + i 1 1− i

2− i 1 1 + i 2

and

lncirconj((1, 1− i, 2, 2 + i)) =

1 1− i 2 2 + i

1 + i 2 2− i −1

2 2 + i −1 −1 + i

2− i −1 −1− i −2

are left conjugate-circulant and left conjugate-negacirculant, respectively.

Denote by LCirn,rconj(C) := {lcirrconj(z) | z ∈ Cn} and LNCirn,rconj(C) :=

{lncirconj(z) | z ∈ Cn} the set of complex n × n left conjugate-circulant matrices

and the set of complex n× n left conjugate-negacirculant matrices, respectively.

Page 18: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

10

The set Cirn,rconj(C) := RCirn,rconj(C) ∪ LCirn,rconj(C) is called the set of com-

plex n × n conjugate-circulant matrices and an element in Cirn,rconj(C) is called

a conjugate-circulant matrix over C. The set NCirn,rconj(C) := RNCirn,rconj(C) ∪

LNCirn,rconj(C) is called the set of complex n×n conjugate-negacirculant matrices

and an element in NCirn,rconj(C) is called a conjugate-negacirculant matrix over

C. For convenience, the indices of a matrix [cij]n×n ∈ Mn(C) will be written as

0, 1, 2, . . . , n− 1 and the computations will be done under modulo n.

2.2 Skew Polynomials

Skew polynomials over the complex field are recalled. Proofs of necessary

properties are given. The readers may refer to [2, Chapter 2] for more details.

The set C [x : conj] = {z0 + z1x+ · · ·+ znxn|zi ∈ C and n ∈ N0} of formal poly-

nomials forms a ring under the usual addition of polynomials and where the mul-

tiplication is defined using the rule xz = zx. The multiplication is extended to all

elements in C [x : conj] by associativity and distributivity. The ring C [x : conj] is

called the skew polynomial ring over C and an element in C [x : conj] is called a

skew polynomial. Clearly, the ring C [x : conj] is non-commutative.

Given a ring R , an additive subgroup I ⊆ R is called a left (resp., right) ideal

of R if ra ∈ I (resp., ar ∈ I) for all r ∈ R and a ∈ I. It is said to be two-sided

ideal if I is both a left ideal and a right ideal.

For each skew polynomial f(x) in C[x : conj], let ⟨f(x)⟩ := {g(x)f(x) | g(x) ∈

C[x : conj]} be the left ideal of C[x : conj] generated by f(x). Note that ⟨f(x)⟩ does

not need to be two-sided. A polynomial f(x) is said to be central if f(x)g(x) =

g(x)f(x) for all g(x) ∈ C[x : conj].

Necessary and sufficient conditions for a left ideal ⟨xn ± 1⟩ to be two-sided are

given as follows.

Proposition 2.3. Let n be a positive integer. Then the following statements are

equivalent:

i) xn ± 1 is central in C[x : conj]

Page 19: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

11

ii) ⟨xn ± 1⟩ is two-sided.

iii) n is even.

Proof. The statement i) implies ii) is clear.

To prove the statement ii) implies iii), assume that ⟨xn ± 1⟩ is two-sided.

Suppose that n is odd. Let z ∈ C \ R. Then zxn ± z = z (xn ± 1) = (xn ± 1)w =

wxn ± w for some w ∈ C. Comparing the coefficients, we have w = z = w, a

contradiction.

Finally, we prove that the statement iii) implies i). Assume that n is even.

Then

x(xn ± 1) = xn+1 ± x = (xn ± 1)x and (xn ± 1)z = zxn ± z = z(xn ± 1)

for all z ∈ C. Consequently, xn ± 1 commutes with every skew polynomial in

C[x : conj]. �

From Proposition 2.3, it follows that C[x : conj]/ ⟨xn ± 1⟩ is well defined as a

quotient ring if and only if n is even. In this case, the ring C[x : conj]/ ⟨xn ± 1⟩

plays an important role in characterizing the right conjugate-circulant and right

conjugate-negacirculant matrices.

Page 20: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

Chapter 3

Group structures of Some

Generalizations of Circulant

Matrices

In this chapter, some properties of right conjugate-circulant matrices, left

conjugate-circulant matrices, righ conjugate-negacirculant matrices and left conju-

gate-negacirculant matrices are discussed. The group structures of some subsets

of such matrices are mentioned.

3.1 Conjugate-Circulant Matrices

In this section, we focus on the group structures of some subsets of conjugate-

circulant matrices.

It is easy to see that (RCirn,conj(C),+) and (LCirn,conj(C),+) are groups for

all n ∈ N. Since Cir1,conj (C) ∼= C, the structure (Cir1,conj(C),+) is a group.

Since Cir2,conj(C) = LCir2,conj(C) and (LCir2,conj(C),+) is a group, the structure

(Cir2,conj(C),+) is a group. If n ≥ 3, then

rcirconj((1, 0, . . . , 0)) + lcirconj((0, . . . , 0, 1)) /∈ RCirn,conj(C)

and

rcirconj((1, 0, . . . , 0)) + lcirconj((0, . . . , 0, 1)) /∈ LCirn,conj(C).

12

Page 21: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

13

It follows that (Cirn,conj(C),+) is not a group under the usual addition with

n ≥ 3. Next, we focus on invertible matrices in RCirn,rconj(C),LCirn,rconj(C) and

Cirn,rconj(C).

The set RCirn,conj(C) := {A ∈ RCirn,conj(C) | det(A) = 0} is the set of invert-

ible complex n × n right conjugate-circulant matrices. The set LCirn,conj(C) :=

{A ∈ LCirn,conj(C) | det(A) = 0} is the set of invertible complex n×n left conjugate-

circulant matrices. The set Cirn,conj(C) := {A ∈ Cirn,conj(C) | det(A) = 0} is the

set of invertible complex n× n conjugate-circulant matrices.

The following relations between left and right conjugate-circulant matrices can

be obtained by the direct calculation.

Lemma 3.1. Let n be an even positive integer. Let z = (z0, z1, z2, . . . , zn−1) ∈ Cn.

Then Hrcirconj(z) = lcirconj(z), where H =

1 O1

OT1 In−1

,In−1 = adiag (1, 1, . . . , 1)(n−1)×(n−1) is an antidiagonal matrix andO1 = (0, 0, . . . , 0)︸ ︷︷ ︸

n−1 copies

.

Proof. We observe that

Hrcirconj(z) =

1 0 . . . 0 0

0 0 . . . 0 1

0 0 . . . 1 0

... ... . . . ... ...

0 0 . . . 0 0

0 1 . . . 0 0

z0 z1 . . . zn−2 zn−1

zn−1 z0 . . . zn−3 zn−2

zn−2 zn−1 . . . zn−4 zn−3

... ... . . . ... ...

z2 z3 . . . z0 z1

z1 z2 . . . zn−1 z0

Page 22: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

14

=

z0 z1 . . . zn−2 zn−1

z1 z2 . . . zn−1 z0

z2 z3 . . . z0 z1

... ... . . . ... ...

zn−2 zn−1 . . . zn−4 zn−3

zn−1 z0 . . . zn−3 zn−2

= lcirconj(z).

Hence, Hrcirconj(z) = lcirconj(z). �

Lemma 3.2. Let n be an even positive integer. Let z = (z0, z1, z2, . . . , zn−1) ∈ Cn.

Then rcirconj(z)H = lcirconj(γ) where γ = (z0, zn−1, zn−2, . . . , z2, z1) and

H =

1 O1

OT1 In−1

.Proof. We observe that

rcirconj(z)H =

z0 z1 . . . zn−2 zn−1

zn−1 z0 . . . zn−3 zn−2

zn−2 zn−1 . . . zn−4 zn−3

... ... . . . ... ...

z2 z3 . . . z0 z1

z1 z2 . . . zn−1 z0

1 0 . . . 0 0

0 0 . . . 0 1

0 0 . . . 1 0

... ... . . . ... ...

0 0 . . . 0 0

0 1 . . . 0 0

Page 23: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

15

=

z0 zn−1 . . . z2 z1

zn−1 zn−2 . . . z1 z0

zn−2 zn−3 . . . z0 zn−1

... ... . . . ... ...

z2 z1 . . . z4 z3

z1 z0 . . . z3 z2

= lcirconj(γ).

Hence, rcirconj(z)H = lcirconj(γ). �

Next, we focus on the multiplicative group structures of RCirn,conj(C), LCirn,conj(C)

and Cirn,conj(C).

A necessary and sufficient condition for the set RCirn,conj(C) of n×n invertible

complex right conjugate-circulant matrices to be a group under the usual matrix

multiplication is given in the next theorem.

Theorem 3.3. Let n be a positive integer. Then RCirn,conj(C) forms a group

under the usual matrix multiplication if and only if n = 1 or n is even.

Proof. Suppose n = 1 and n is odd. Let a = (2i, i, 1, 0, . . . , 0). Then rcirconj(a)

is invertible since det(rcirconj(a)) = (2n + 1)i = 0. Let

[cij]n×n := (rcirconj(a))2 .

Then

cn−2,n−1 = 0 + · · ·+ 0 + (−2) + 2

= 0

= 0

= −4

= −2 + 0 + · · ·+ 0 + (−2)

= cn−1,0.

Page 24: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

16

Hence, (rcirconj(a))2 /∈ RCirn,conj(C). Therefore, RCirn,conj(C) is not a subgroup of

GLn(C). It follows that RCirn,conj(C) is not a group under the usual multiplication

of matrices.

Conversely, assume that n = 1 or n is even. If n = 1, then RCirn,conj (C) ∼=

C \ {0} ∼= GLn(C) is a group. Next, we consider the case where n is even.

Let rcirconj((a0, a1, . . . , an−1)) and rcirconj((b0, b1, . . . , bn−1)) be elements in

RCirn,conj (C) . Let [cij]n×n := rcirconj((a0, a1, . . . , an−1))rcirconj((b0, b1, . . . , bn−1)).

Then, for each 0 ≤ i, j ≤ n− 1, we have

cij =

[an−i an−i+1 . . . an−i−1][bj bj−1 bj − 2 . . . bj+1

]T if i is even,

[an−i an−i+1 . . . an−i−1][bj bj−1 bj − 2 . . . bj+1

]T if i is odd.

Precisely, for each 0 ≤ i, j ≤ n− 1, cij is of the form

cij =

n−22∑

k=0

an−i+2kbj−2k +

n−22∑

k=0

an−i+(2k+1)bj−(2k+1)

=

n−22∑

k=0

an−i+2kbj−2k +

n−22∑

k=0

an−i+(2k+1)bj−(2k+1)

=

n−22∑

k=0

an−i+(2k+1)bj−(2k+1) +

n−22∑

k=0

an−i+2kbj−2k

= ci+1,j+1

if i is even, and

cij =

n−22∑

k=0

an−i+2kbj−2k +

n−22∑

k=0

an−i+(2k+1)bj−(2k+1)

=

n−22∑

k=0

an−i+2kbj−2k +

n−22∑

k=0

an−i+(2k+1)bj−(2k+1)

=

n−22∑

k=0

an−i+(2k+1)bj−(2k+1) +

n−22∑

k=0

an−i+2kbj−2k

= ci+1,j+1

if i is odd. It follows that

rcirconj((a0, a1, . . . , an−1))rcirconj((b0, b1, . . . , bn−1)) ∈ RCirn,conj (C) .

Page 25: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

17

Let a = (a0, a1, . . . , an−1) be an element in Cn such that

A := (rcirconj(a)) ∈ RCirn,conj (C) .

Then there exists a unique B = [bij]n×n in GLn(C) such that AB = In. We will

show that B ∈ RCirn,conj (C) . Note that

A [b0,0 b1,0 . . . bn−1,0]T = [1 0 . . . 0]T .

From the equation above, we have the following system of equations.

a0b0,0 + a1b1,0 + a2b2,0 + · · ·+ an−1bn−1,0 = 1,

an−1b0,0 + a0b1,0 + a1b2,0 + · · ·+ an−2bn−1,0 = 0,

an−2b0,0 + an−1b1,0 + a0b2,0 + · · ·+ an−3bn−1,0 = 0,

...

a1b0,0 + a2b1,0 + a3b2,0 + · · ·+ a0bn−1,0 = 0.

Move the last equation to the top and apply the conjugation to all equations, we

conclude that

a0bn−1,0 + a1b0,0 + a2b1,0 + · · ·+ an−1bn−2,0 = 0,

an−1bn−1,0 + a0b0,0 + a1b1,0 + · · ·+ an−2bn−2,0 = 1,

an−2bn−1,0 + an−1b0,0 + a0b1,0 + · · ·+ an−3bn−2,0 = 0,

...

a1bn−1,0 + a2b0,0 + a3b1,0 + · · ·+ a0bn−2,0 = 0.

Hence,

A[bn−1,0 b0,0 . . . bn−2,0

]T= [0 1 0 . . . 0]T .

Continue this process, we have

A−1 = B = rcirconj((b0,0, bn−1,0, . . . , b2,0, b1,0)) ∈ RCirn,conj (C) .

Therefore, RCirn,conj (C) is a subgroup of GLn(C) as desired. �

A necessary and sufficient condition for the set LCirn,conj(C) of n×n invertible

complex left conjugate-circulant matrices to be a group under the usual matrix

multiplication is given in the next theorem.

Page 26: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

18

Theorem 3.4. Let n be a positive integer. Then LCirn,conj(C) forms a group

under the usual matrix multiplication if and only if n = 1 or n = 2.

Proof. Assume that n = 1 and n = 2. If n is odd, we consider the following

2 cases.

Case 1: n = 3. Let a = (i, i, 1). Then lcirconj(a) ∈ LCirn,conj(C) since det(lcirconj(a))

= −2i = 0. It follows that

(lcirconj(a))2 =

1 −1 + 2i 1 + 2i

1− 2i 3 1− 2i

1 + 2i −1 + 2i 1

/∈ LCirn,conj(C).

Case 2 : n ≥ 5. Let a = (0, . . . , 0, i, 2i). Then lcirconj(a) ∈ LCirn,conj(C) since

det(lcirconj(a)) = (2n + 1)i = 0. Let

[cij]n×n := (lcirconj(a))2 .

Then

cn−2,0 = 0 + · · ·+ 0

= 0

= 0

= −5

= (−4) + 0 + · · ·+ 0 + (−1)

= cn−1,n−1.

Hence, (lcirconj(a))2 /∈ LCirn,conj(C). Therefore, LCirn,conj(C) is not a subgroup of

GLn(C). It follows that LCirn,conj(C) is not a group under the usual multiplication

of matrices.

Next, we consider the case when n is even. Let a = (0, . . . , 0, i, 2i). Then

lcirconj(a) ∈ LCirn,conj(C) because det(lcirconj(a)) = −2n+1 + 1 = 0. Let

[cij]n×n := (lcirconj(a))2 .

Page 27: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

19

Then

cn−2,0 = 0 + · · ·+ 0

= 0

= 0

= 3

= 4 + 0 + · · ·+ 0 + (−1)

= cn−1,n−1.

Hence, (lcirconj(a))2 /∈ LCirn,conj(C). Therefore, LCirn,conj(C) is not a subgroup of

GLn(C). It follows that LCirn,conj(C) is not a group under the usual multiplication

of matrices.

Conversely, assume that n = 1 or n = 2. We consider 2 cases the following.

Case 1 : n = 1. Then LCirn,conj(C) ∼= C \ {0} ∼= GLn(C) is a group.

Case 2 : n = 2. Then LCirn,conj (C) = RCirn,conj (C) is a group by Theorem 3.3.

From Cases 1 and 2, the set LCirn,conj(C) forms a group under the usual matrix

multiplication. �

A necessary and sufficient condition for the set Cirn,conj(C) of n × n invert-

ible complex conjugate-circulant matrices to be a group under the usual matrix

multiplication is given in the next theorem.

Theorem 3.5. Let n be a positive integer. Then the set Cirn,conj(C) forms a group

under the usual matrix multiplication if and only if n = 1 or n is even.

Proof. Suppose n = 1 and n is odd. Then we consider the following 2 cases.

Case 1 : n = 3. Let a = (i, i, 1). Then lcirconj(a) ∈ LCirn,conj(C) ⊆ Cirn,conj(C)

because det(lcirconj(a)) = −2i = 0. It follows that

(lcirconj(a))2 =

1 −1 + 2i 1 + 2i

1− 2i 3 1− 2i

1 + 2i −1 + 2i 1

/∈ LCirn,conj(C).

Page 28: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

20

and

(lcirconj(a))2 =

1 −1 + 2i 1 + 2i

1− 2i 3 1− 2i

1 + 2i −1 + 2i 1

/∈ RCirn,conj(C).

Hence, (lcirconj(a))2 /∈ RCirn,conj(C) ∪ LCirn,conj(C) = Cirn,conj(C).

Case 2 : n ≥ 5. Let a = (0, . . . , 0, i, 2i). Then lcirconj(a) ∈ LCirn,conj(C) ⊆

Cirn,conj(C) because det(lcirconj(a)) = (2n + 1)i = 0. Let

[cij]n×n := (lcirconj(a))2 .

Since

cn−2,0 = 0 + · · ·+ 0

= 0

= 0

= −5

= (−4) + 0 + · · ·+ 0 + (−1)

= cn−1,n−1,

(lcirconj(a))2 /∈ LCirn,conj(C).

Since

cn−2,n−1 = 2 + 0 + · · ·+ 0

= 2

= 2

= −2

= 0 + · · ·+ 0 + (−2)

= cn−1,0,

(lcirconj(a))2 /∈ RCirn,conj(C). Therefore, (lcirconj(a))

2 /∈ Cirn,conj(C).

From Cases 1 and 2, Cirn,conj(C) is not a subgroup of GLn(C). It follows that

Cirn,conj(C) is not a group under the usual multiplication of matrices.

Page 29: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

21

Conversely, assume that n = 1 or n is even. If n = 1, then Cirn,conj(C) ∼=

C \ {0} ∼= GLn(C) is a group. Next, we consider the case where n is even.

Let a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1) be elements in Cn. Then

we consider the following 4 cases.

Case 1: rcirconj(a) and rcirconj(b) are elements in RCirn,conj(C).

By Theorem 3.3, rcirconj(a)rcirconj(b) ∈ RCirn,conj(C) ⊆ Cirn,conj(C).

Case 2: rcirconj(a) ∈ RCirn,conj(C) and lcirconj(b) ∈ LCirn,conj(C).

By Lemma 3.2, lcirconj(b) = rcirconj(c)H for some c ∈ Cn. We have that

rcirconj(a)lcirconj(b) = (rcirconj(a))(rcirconj(c)H)

= (rcirconj(a)rcirconj(c))H ∈ LCirn,conj(C) ⊆ Cirn,conj(C).

Case 3: lcirconj(a) ∈ LCirn,conj(C) and rcirconj(b) ∈ RCirn,conj(C).

By Lemma 3.1, lcirconj(a) = Hrcirconj(a). We have that

lcirconj(a)rcirconj(b) = (Hrcirconj(a))(rcirconj(b))

= H(rcirconj(a)rcirconj(b)) ∈ LCirn,conj(C) ⊆ Cirn,conj(C).

Case 4: lcirconj(a) and lcirconj(b) be elements in LCirn,conj(C).

By Lemmas 3.2 and 3.1, lcirconj(a) = rcirconj(c)H for some c ∈ Cn and

lcirconj(b) = Hrcirconj(b). It follows that

lcirconj(a)lcirconj(b) = (rcirconj(c)H)(Hrcirconj(b))

= rcirconj(c)H2rcirconj(b)

= rcirconj(c)Inrcirconj(b)

= rcirconj(c)rcirconj(b).

By Theorem 3.3, lcirconj(a)lcirconj(b) ∈ RCirn,conj(C) ⊆ Cirn,conj(C).

From Cases 1–4, Cirn,conj(C) is closed under multiplication.

Next, let A be an element in Cirn,conj(C). Then we consider the following 2

cases.

Case 1: A ∈ RCirn,conj(C). Then by Theorem 3.3, A−1 ∈ RCirn,conj(C) ⊆ Cirn,conj(C).

Case 2: A ∈ LCirn,conj(C). Then by Lemma 3.1, A = Hrcirconj(c) for some c ∈ Cn.

Page 30: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

22

We have that

A−1 = (Hrcirconj(c))−1

= (rcirconj(c))−1H−1

= (rcirconj(c))−1H ( since H2 = In)

∈ LCirn,conj(C) ( since (rcirconj(c))−1 ∈ RCirn,conj(C)).

Hence, A−1 ∈ LCirn,conj(C) ⊆ Cirn,conj(C).

From Cases 1 and 2, A−1 is an element in Cirn,conj(C). It follows that the set

Cirn,conj(C) forms a group under the usual matrix multiplication. �

3.2 Conjugate-Negacirculant Matrices

In this section, we focus on the group structures of some subsets of conjugate-

negacirculant matrices.

It is easy to see that (RNCirn,rconj(C),+) and (LNCirn,rconj(C),+) are groups

for all n ∈ N. Since NCir1,conj (C) ∼= C, the structure (NCir1,conj(C),+) is a group.

Since

rncirconj((1, 0)) + lncirconj((0, 1)) /∈ RNCir2,conj(C)

and

rncirconj((1, 0)) + lncirconj((0, 1)) /∈ LNCir2,conj(C),

we have that (NCir2,conj(C),+) is not a group under the usual addition. If n ≥ 3,

then

rncirconj((1, 0, . . . , 0)) + lncirconj((0, . . . , 0, 1)) /∈ RNCirn,conj(C)

and

rncirconj((1, 0, . . . , 0)) + lncirconj((0, . . . , 0, 1)) /∈ LNCirn,conj(C)

It follows that (NCirn,conj(C),+) is not a group under the usual addition with

n ≥ 2. Next, we focus on invertible matrices in RNCirn,rconj(C),LNCirn,rconj(C)

and NCirn,rconj(C).

The set RNCirn,conj(C) := {A ∈ RNCirn,conj(C) | det(A) = 0} is the set of in-

vertible complex n×n right conjugate-negacirculant matrices. The set LNCirn,conj(C)

Page 31: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

23

= {A ∈ LNCirn,conj(C) | det(A) = 0} is the set of invertible complex n × n left

conjugate-negacirculant matrices. The set NCirn,conj(C) = {A ∈ NCirn,conj(C) |

det(A) = 0} is the set of invertible complex n×n conjugate-negacirculant matrices.

The following relations between left and right conjugate-negacirculant matrices

can be obtained by the direct calculation.

Lemma 3.6. Let n be an even positive integer. Let z = (z0, z1, z2, . . . , zn−1) ∈ Cn.

Then Hrncirconj(z) = lncirconj(z) where H =

1 O1

OT1 −In−1

.Proof. We observe that

Hrncirconj(z) =

1 0 . . . 0 0

0 0 . . . 0 −1

0 0 . . . −1 0

... ... . . . ... ...

0 0 . . . 0 0

0 −1 . . . 0 0

z0 z1 . . . zn−2 zn−1

−zn−1 z0 . . . zn−3 zn−2

−zn−2 −zn−1 . . . zn−4 zn−3

... ... . . . ... ...

−z2 −z3 . . . z0 z1

−z1 −z2 . . . −zn−1 z0

=

z0 z1 . . . zn−2 zn−1

z1 z2 . . . zn−1 −z0

z2 z3 . . . −z0 −z1

... ... . . . ... ...

zn−2 zn−1 . . . −zn−4 −zn−3

zn−1 −z0 . . . −zn−3 −zn−2

= lncirconj(z).

Hence, Hrncirconj(z) = lncirconj(z). �

Page 32: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

24

Lemma 3.7. Let n be an even positive integer. Let z = (z0, z1, z2, . . . , zn−1) ∈ Cn.

Then rncirconj(z)H = lncirconj(γ) where γ = (z0,−zn−1,−zn−2, . . . ,−z2,−z1) and

H =

1 O1

OT1 −In−1

.Proof. It can be seen that

rncirconj(z)H =

z0 z1 . . . zn−2 zn−1

−zn−1 z0 . . . zn−3 zn−2

−zn−2 −zn−1 . . . zn−4 zn−3

... ... . . . ... ...

−z2 −z3 . . . z0 z1

−z1 −z2 . . . −zn−1 z0

1 0 . . . 0 0

0 0 . . . 0 −1

0 0 . . . −1 0

... ... . . . ... ...

0 0 . . . 0 0

0 −1 . . . 0 0

=

z0 −zn−1 . . . −z2 −z1

−zn−1 −zn−2 . . . −z1 −z0

−zn−2 −zn−3 . . . −z0 zn−1

... ... . . . ... ...

−z2 −z1 . . . z4 z3

−z1 −z0 . . . z3 z2

= lncirconj(γ).

Hence, rncirconj(z)H = lncirconj(γ). �

Next, we focus on the multiplicative group structures of RNCirn,conj(C),

LNCirn,conj(C) and NCirn,conj(C)

A necessary and sufficient condition for the set RNCirn,conj(C) of n×n invertible

complex right conjugate-negacirculant matrices to be a group under the usual

matrix multiplication is given in the next theorem.

Page 33: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

25

Theorem 3.8. Let n be a positive integer. Then RNCirn,conj(C) forms a group

under the usual matrix multiplication if and only if n = 1 or n is even.

Proof. Suppose n = 1 and n is odd. Let a = (2i, i, 0, . . . , 0). Then rncirconj(a)

is invertible since det(rncirconj(a)) = (2n − 1)i = 0. Let

[cij]n×n := (rncirconj(a))2 .

Then

−cn−2,n−1 = −(0 + · · ·+ 0 + (−2) + 2)

= −0

= 0

= 4

= 2 + 0 + · · ·+ 0 + 2

= cn−1,0.

Hence, (rncirconj(a))2 /∈ RNCirn,conj(C). Therefore, RNCirn,conj(C) is not a sub-

group of GLn(C). It follows that RNCirn,conj(C) is not a group under the usual

multiplication of matrices.

Conversely, assume that n = 1 or n is even. If n = 1, then RNCirn,conj (C) ∼=

C \ {0} ∼= GLn(C) is a group. Next, we consider the case where n is even.

Let a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1) ∈ Cn be such that rncirconj(a)

and rncirconj(b) are in RNCirn,conj(C). Let [cij]n×n := rncirconj(a)rncir(b). There-

fore, we need to show that

i) cij = ci+1,j+1 for all 0 ≤ i ≤ n− 3 and i ≤ j ≤ n− 3,

ii) −ci,n−1 = ci+1,0 0 ≤ i ≤ n− 2,

iii) cij = ci+1,j+1 for all 1 ≤ i ≤ n− 2 and 0 ≤ j ≤ i− 1.

Page 34: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

26

Cas

e1

0≤i≤n−

3an

di≤j≤n−

3.

Cas

e1.

1i

isev

en.

We

have

c ij=

j−i ∑

k=0,k

isod

dakb j

−i−

k+

j−i ∑

k=0,k

isev

enakb j

−i−

k−

n−1 ∑

k=j−

i+1,k

isod

dakb j

−i−

k−

n−1 ∑

k=j−

i+1,k

isev

enakb j

−i−

k

=

j−i ∑

k=0,k

isod

dakb j

−i−

k+

j−i ∑

k=0,k

isev

enakb j

−i−

k−

n−1 ∑

k=j−

i+1,k

isod

dakb j

−i−

k−

n−1 ∑

k=j−

i+1,k

isev

enakb j

−i−

k

=c i+1,j+1.

Cas

e1.

2i

isod

d.W

eha

ve

c ij=

j−i ∑

k=0,k

isod

dakb j

−i−

k+

j−i ∑

k=0,k

isev

enakb j

−i−

k−

n−1 ∑

k=j−

i+1,k

isod

dakb j

−i−

k−

n−1 ∑

k=j−

i+1,k

isev

enakb j

−i−

k

=

j−i ∑

k=0,k

isod

dakb j

−i−

k+

j−i ∑

k=0,k

isev

enakb j

−i−

k−

n−1 ∑

k=j−

i+1,k

isod

dakb j

−i−

k−

n−1 ∑

k=j−

i+1,k

isev

enakb j

−i−

k

=c i+1,j+1.

Page 35: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

27

Cas

e2

0≤i≤n−

2an

dj=n−1.

Cas

e2.

1i

isev

en.

Itfo

llow

sth

at

−c i,n−1=

n−(i+1) ∑

k=0,k

isod

dakb n

−(i+1)−

k+

n−(i+1) ∑

k=0,k

isev

enakb n

−(i+1)−

k−

n−1 ∑

k=n−i,k

isod

dakb n

−(i+1)−

k−

n−1 ∑

k=n−i,k

isev

enakb n

−(i+1)−

k

=

−n−(i+1) ∑

k=0,k

isod

dakb n

−(i+1)−

k−

n−(i+1) ∑

k=0,k

isev

enakb n

−(i+1)−

k+

n−1 ∑

k=n−i,k

isod

dakb n

−(i+1)−

k+

n−1 ∑

k=n−i,k

isev

enakb n

−(i+1)−

k

=c i+1,0.

Cas

e2.

1i

isod

d.T

hen

−c i,n−1=

n−(i+1) ∑

k=0,k

isod

dakb n

−(i+1)−

k+

n−(i+1) ∑

k=0,k

isev

enakb n

−(i+1)−

k−

n−1 ∑

k=n−i,k

isod

dakb n

−(i+1)−

k−

n−1 ∑

k=n−i,k

isev

enakb n

−(i+1)−

k

=

−n−(i+1) ∑

k=0,k

isod

dakb n

−(i+1)−

k−

n−(i+1) ∑

k=0,k

isev

enakb n

−(i+1)−

k+

n−1 ∑

k=n−i,k

isod

dakb n

−(i+1)−

k+

n−1 ∑

k=n−i,k

isev

enakb n

−(i+1)−

k

=c i+1,0.

Page 36: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

28

Cas

e3

1≤i≤n−

2an

d0≤j≤i−1.

Cas

e3.

1i

isev

en.

weha

ve

c ij=

−n+j−

i ∑k=0,k

isod

dakb n

+j−

i−k−

n+j−

i ∑k=0,k

isev

enakb n

+j−

i−k+

n−1 ∑

k=n+j−

i+1,k

isod

dakb n

+j−

i−k+

n−1 ∑

k=n+j−

i+1,k

isev

enakb n

+j−

i−k

=−

n+j−

i ∑k=0,k

isod

dakb n

+j−

i−k−

n+j−

i ∑k=0,k

isev

enakb n

+j−

i−k+

n−1 ∑

k=n+j−

i+1,k

isod

dakb n

+j−

i−k+

n−1 ∑

k=n+j−

i+1,k

isev

enakb n

+j−

i−k

=c i+1,j+1.

Cas

e3.

2i

isod

d.we

have

c ij=

−n+j−

i ∑k=0,k

isod

dakb n

+j−

i−k−

n+j−

i ∑k=0,k

isev

enakb n

+j−

i−k+

n−1 ∑

k=n+j−

i+1,k

isod

dakb n

+j−

i−k+

n−1 ∑

k=n+j−

i+1,k

isev

enakb n

+j−

i−k

=−

n+j−

i ∑k=0,k

isod

dakb n

+j−

i−k−

n+j−

i ∑k=0,k

isev

enakb n

+j−

i−k+

n−1 ∑

k=n+j−

i+1,k

isod

dakb n

+j−

i−k+

n−1 ∑

k=n+j−

i+1,k

isev

enakb n

+j−

i−k

=c i+1,j+1.

Page 37: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

29

From Cases 1 and 2, rncirconj(a)rncirconj(b) ∈ RNCirn,conj (C) .

Let a = (a0, a1, . . . , an−1) be an element in Cn be such that

A := (rncirconj(a)) ∈ RNCirn,conj (C) .

Then there exists a unique B = [bij]n×n in GLn(C) such that AB = In. We will

show that B ∈ RNCirn,conj (C) . Note that

A [b0,0 b1,0 . . . bn−1,0]T = [1 0 . . . 0]T .

From the equation above, we have the following system of equations.

a0b0,0 + a1b1,0 + a2b2,0 + · · ·+ an−1bn−1,0 = 1,

−an−1b0,0 + a0b1,0 + a1b2,0 + · · ·+ an−2bn−1,0 = 0,

−an−2b0,0 − an−1b1,0 + a0b2,0 + · · ·+ an−3bn−1,0 = 0,

...

−a1b0,0 − a2b1,0 − a3b2,0 − · · ·+ a0bn−1,0 = 0.

Multiply the last eqution with −1 and move it to the top and take the conjugate

to every equation, we have

−a0bn−1,0 + a1b0,0 + a2b1,0 + · · ·+ an−1bn−2,0 = 0,

an−1bn−1,0 + a0b0,0 + a1b1,0 + · · ·+ an−2bn−2,0 = 1,

an−2bn−1,0 − an−1b0,0 + a0b1,0 + · · ·+ an−3bn−2,0 = 0,

...

a1bn−1,0 − a2b0,0 − a3b1,0 − · · ·+ a0bn−2,0 = 0.

Hence,

A[−bn−1,0 b0,0 . . . bn−2,0

]T= [0 1 0 . . . 0]T .

Continue this process, we have

A−1 = B = rncirconj((b0,0,−bn−1,0,−bn−2,0, . . . ,−b2,0,−b1,0)) ∈ RNCirn,conj (C) .

Therefore, RNCirn,conj (C) is a subgroup of GLn(C) as desired. �

Page 38: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

30

A necessary and sufficient condition for the set LNCirn,conj (C) of n×n invertible

complex left conjugate-negacirculant matrices to be a group under the usual matrix

multiplication is given in the next theorem.

Theorem 3.9. Let n be a positive integer. Then LNCirn,conj (C) forms a group

under the usual matrix multiplication if and only if n = 1.

Proof. Assume that n = 1. If n is odd, we consider 2 cases.

Case 1: n = 3. Let a = (i, i, 1). Then lncirconj(a) ∈ LNCirn,conj (C) since

det(lncirconj(a)) = −2 = 0. It follows that

(lncirconj(a))2 =

1 −1 −1

1 3 1

−1 −1 1

/∈ LNCirn,conj(C).

Case 2 : n ≥ 5. Let a = (0, . . . , 0, i, 2i). Then lncirconj(a) ∈ LNCirn,conj (C) since

det(lncirconj(a)) = (2n − 1)i = 0. Let

[cij]n×n := (lncirconj(a))2 .

Then

−cn−2,0 = −(0 + · · ·+ 0)

= −0

= 0

= −5

= (−4) + 0 + · · ·+ (−1)

= cn−1,n−1.

Hence, (lncirconj(a))2 /∈ LNCirn,conj(C). Therefore, LNCirn,conj(C) is not a sub-

group of GLn(C). It follows that LNCirn,conj(C) is not a group under the usual

multiplication of matrices.

Page 39: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

31

Next, we consider the case when n is even. Then we have 2 cases to consider.

Case 1: n = 2. Let a = (1 − i, 1). Then lncirconj(a) ∈ LNCirn,conj (C) because

det(lncirconj(a)) = −3 = 0. It follows that

(lncirconj(a))2 =

−2i −2i

−2i 2i

/∈ LNCirn,conj (C) .

Case 2: n ≥ 4. Let a = (0, . . . , 0, i, 2i). Then lncirconj(a) ∈ LNCirn,conj (C) because

det(lncirconj(a)) = −(2n + 1)i = 0. Let

[cij]n×n := (lncirconj(a))2 .

Then

−cn−2,0 = −(0 + · · ·+ 0)

= −0

= 0

= 3

= 4 + 0 + · · ·+ 0 + (−1)

= cn−1,n−1.

Hence, (lncirconj(a))2 /∈ LNCirn,conj(C). Therefore, LNCirn,conj(C) is not a sub-

group of GLn(C). It follows that LNCirn,conj(C) is not a group under the usual

multiplication of matrices.

Conversely, assume that n = 1. Then

LNCirn,conj(C) ∼= C \ {0} ∼= GLn(C)

is a group under the usual matrix multiplication. �

A necessary and sufficient condition for the set NCirn,conj(C) of n×n invertible

complex conjugate-negacirculant matrices to be a group under the usual matrix

multiplication is given in the next theorem.

Page 40: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

32

Theorem 3.10. Let n be a positive integer. Then the set NCirn,conj(C) forms a

group under the usual matrix multiplication if and only if n = 1 or n is even.

Proof. Suppose n = 1 and n is odd. Then we consider the following 2 cases.

Case 1 : n = 3. Let a = (i, i, 1). Then lncirconj(a) ∈ LNCirn,conj(C) ⊆ NCirn,conj(C)

because det(lncirconj(a)) = −2 = 0. It follows that

(lncirconj(a))2 =

1 −1 −1

1 3 1

−1 −1 1

/∈ LNCirn,conj(C).

and

(lncirconj(a))2 =

1 −1 −1

1 3 1

−1 −1 1

/∈ RNCirn,conj(C).

Hence, (lncirconj(a))2 /∈ RNCirn,conj(C) ∪ LNCirn,conj(C) = NCirn,conj(C).

Case 2 : n ≥ 5. Let a = (0, . . . , 0, i, 2i). Then lncirconj(a) ∈ LNCirn,conj(C) ⊆

NCirn,conj(C) because det(lncirconj(a)) = (2n − 1)i = 0. Let

[cij]n×n := (lncirconj(a))2 .

Since

−cn−2,0 = −(0 + · · ·+ 0)

= −0

= 0

= −5

= (−4) + 0 + · · ·+ 0 + (−1)

= cn−1,n−1,

Page 41: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

33

(lncirconj(a))2 /∈ LNCirn,conj(C).

Since

−cn−2,n−1 = −(2 + 0 + · · ·+ 0)

= −2

= −2

= 2

= 0 + · · ·+ 0 + 2

= cn−1,0,

(lncirconj(a))2 /∈ RNCirn,conj(C). Therefore, (lncirconj(a))

2 /∈ NCirn,conj(C).

From Cases 1 and 2, NCirn,conj(C) is not a subgroup of GLn(C). It follows that

NCirn,conj(C) is not a group under the usual multiplication of matrices.

Conversely, assume that n = 1 or n is even. If n = 1, then NCirn,conj (C) ∼=

C \ {0} ∼= GLn(C) is a group. Next, we consider the case where n is even.

Let a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1) be elements in Cn. Then we

consider the following 4 cases.

Case 1: rncirconj(a) and rncirconj(b) are elements in RNCirn,conj(C).

By Theorem 3.8, rncirconj(a)rncirconj(b) ∈ RNCirn,conj(C) ⊆ NCirn,conj(C).

Case 2: rncirconj(a) ∈ RNCirn,conj(C) and lncirconj(b) ∈ LNCirn,conj(C).

By Lemma 3.7, lncirconj(b) = rncirconj(c)H for some c ∈ Cn. We have that

rncirconj(a)lncirconj(b) = (rncirconj(a))(rncirconj(c)H)

= (rncirconj(a)rncirconj(c))H ∈ LNCirn,conj(C) ⊆ NCirn,conj(C).

Case 3: lncirconj(a) ∈ LNCirn,conj(C) and rncirconj(b) ∈ RNCirn,conj(C).

By Lemma 3.6, lncirconj(a) = Hrncirconj(a). We have that

lncirconj(a)rncirconj(b) = (Hrncirconj(a))(rncirconj(b))

= H(rncirconj(a)rncirconj(b)) ∈ LNCirn,conj(C) ⊆ NCirn,conj(C).

Case 4: lncirconj(a) and lncirconj(b) be elements in LNCirn,conj(C).

By Lemmas 3.7 and 3.6, lncirconj(a) = rncirconj(c)H for some c ∈ Cn and

Page 42: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

34

lncirconj(b) = Hrncirconj(b). It follows that

lncirconj(a)lncirconj(b) = (rncirconj(c)H)(Hrncirconj(b))

= rncirconj(c)H2rncirconj(b)

= rncirconj(c)Inrncirconj(b)

= rncirconj(c)rncirconj(b).

By Theorem 3.8, lncirconj(a)lncirconj(b) ∈ RNCirn,conj(C) ⊆ NCirn,conj(C).

From Cases 1–4, NCirn,conj(C) is closed under multiplication.

Next, let A be an element in NCirn,conj(C). Then we consider the following 2

cases.

Case 1: A ∈ RNCirn,conj(C). Then by Theorem 3.8, A−1 ∈ RNCirn,conj(C) ⊆

NCirn,conj(C).

Case 2: A ∈ LNCirn,conj(C). Then by Lemma 3.6, A = Hrncirconj(c) for some

c ∈ Cn. We have that

A−1 = (Hrncirconj(c))−1

= (rncirconj(c))−1H−1

= (rncirconj(c))−1H ( since H2 = In)

∈ LNCirn,conj(C) ( since (rncirconj(c))−1 ∈ RNCirn,conj(C)).

Hence, A−1 ∈ LNCirn,conj(C) ⊆ NCirn,conj(C).

From Cases 1 and 2, A−1 is an element in NCirn,conj(C). It follows that the set

NCirn,conj(C) forms a group under the usual matrix multiplication. �

Page 43: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

Chapter 4

Characterizations

4.1 Characterization of Right Conjugate-Circulant

Matrices

From Section 3.1, LCirn,conj(C) is not a group under the usual multiplication of

matrices and Cirn,conj(C) is not a group under the usual addition of matrices with

n ≥ 3. It follows that LCirn,conj(C) and Cirn,conj(C) can not be rings. To study the

ring structures of such matrices, it is therefore sufficient to consider RCirn,conj (C).

In this section, the algebraic structure of RCirn,conj (C) is studied. The char-

acterization of RCirn,conj (C) is given in terms of skew polynomials.

Proposition 4.1. Let n be a positive integer. Then RCirn,conj (C) is a vector space

over C under the usual addition and the scalar multiplication defined by

a · rcirconj ((z0, z1, . . . , zn−1)) := rcirconj ((a, 0, . . . , 0)) rcirconj ((z0, z1, . . . , zn−1))

for all a ∈ C and (z0, z1, . . . , zn−1) ∈ Cn.

Proof. Clearly, the sum of two right conjugate-circulant matrices is a right

conjugate-circulant. Since

rcirconj ((a, 0, . . . , 0)) rcirconj ((z0, z1, . . . , zn−1)) = rcirconj((az0, az1, . . . , azn−1))

for all a ∈ C and (z0, z1, . . . , zn−1) ∈ Cn, the proposition follows. �

35

Page 44: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

36

Corollary 4.2. Let n be a positive integer. Then RCirn,conj (C) is a vector space

over R under the usual addition and the scalar multiplication.

Proof. Note that rcirconj ((a, 0, . . . , 0)) = aIn for all a ∈ R. By Proposition

4.1, the result follows. �

A necessary and sufficient condition for RCirn,conj (C) to be a ring is given in

the next theorem.

Theorem 4.3. Let n be a positive integer. Then RCirn,conj (C) is a subring of

Mn(C) if and only if n = 1 or n is even.

Proof. Suppose n = 1 and n is odd. Let a ∈ C be such that a = a and let

[cij]n×n := rcirconj ((a, a, . . . , a)) rcirconj ((a, a, . . . , a)) .

Then

c0,0 =

n+12∑

i=1

a2 +

n−12∑

i=1

a · a

=

(n+ 1

2

)a2 +

(n− 1

2

)a · a

=(n+ 1

2

)a · a+

(n− 1

2

)a2

=

n+12∑

i=1

a · a+n−12∑

i=1

a2

= c1,1.

Hence, rcirconj((a, a, . . . , a))rcirconj((a, a, . . . , a)) /∈ RCirn,conj (C) . Therefore,

RCirn,conj (C) is not a subring of Mn (C) .

Conversely, assume that n = 1 or n is even. If n = 1, then RCirn,conj (C) =

C =Mn (C) is a ring. Next, we consider the case where n is even. Let

rcirconj((a0, a1, . . . , an−1)) and rcirconj((b0, b1, . . . , bn−1)) be elements in RCirn,conj (C) .

Then

rcirconj((a0, a1, . . . , an−1))− rcirconj((b0, b1, . . . , bn−1))

Page 45: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

37

= rcirconj((a0− b0, a1− b1, . . . , an−1− bn−1)) ∈ RCirn,conj(C).

Using the arguments similar to those in the proof of Theorem 3.3,

rcirconj((a0, a1, . . . , an−1))rcirconj((b0, b1, . . . , bn−1)) ∈ RCirn,conj (C) .

Therefore, RCirn,conj (C) is a subring of Mn (C) as desired. �

In the case where n is even, there is a direct link between the ring RCirn,conj (C)

and the quotient ring of skew polynomials C[x, conj]/ ⟨xn − 1⟩ .

Theorem 4.4. Let n be an even positive integer. Then RCirn,conj (C) is isomorphic

to C[x, conj]/ ⟨xn − 1⟩ as rings.

Proof. Let T : RCirn,conj (C) → C[x, conj]/ ⟨xn − 1⟩ be defined by

T (rcirconj((z0, z1, . . . , zn−1))) =n−1∑i=0

zixi + ⟨xn − 1⟩ .

Let z = (z0, z1, . . . , zn−1) and w = (w0, w1, . . . , wn−1) be vectors in Cn . Then

T (rcirconj(z) + rcirconj(w)) = T (rcirconj((z0 + w0, z1 + w1, . . . , zn−1 + wn−1)))

=n−1∑i=0

(zi + wi)xi + ⟨xn − 1⟩

=n−1∑i=0

(zixi + wix

i) + ⟨xn − 1⟩

=

(n−1∑i=0

zixi + ⟨xn − 1⟩

)+

(n−1∑i=0

wixi + ⟨xn − 1⟩

)= T (rcirconj(z)) + T (rcirconj(w)) .

Let [cij]n×n = rcirconj(z)rcirconj(w). By Theorem 4.3, we have [cij]n×n ∈ RCirn,conj (C)

and hence,

T (rcirconj(z)rcirconj(w)) = T([cij]n×n

)= T (rcirconj(c0,0, c0,1, . . . , c0,n−1))

=n−1∑i=0

c0,ixi + ⟨xn − 1⟩

Page 46: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

38

=n−1∑i=0

n−22∑

i=0

z2kwi−2k +

n−22∑

i=0

z2k+1wi−(2k+1)

xi + ⟨xn − 1⟩

=n−1∑i=0

∑i=2j+k

z2jwk +∑

i=(2j+1)+k

z2j+1wk

xi + ⟨xn − 1⟩

=n−1∑i=0

∑i=j+k(mod n)

(zjx

jwkxk)+ ⟨xn − 1⟩

=

(n−1∑k=0

zkxk + ⟨xn − 1⟩

)(n−1∑k=0

wkxk + ⟨xn − 1⟩

)= T (rcirconj(z))T (rcirconj(w)) .

Then T is a ring homomorphism.

To show that T is injective, let rcirconj((z0, z1, . . . , zn−1)) ∈ ker(T ). Thenn−1∑i=0

zixi + ⟨xn − 1⟩ = T (rcirconj((z0, z1, . . . , zn−1))) = ⟨xn − 1⟩ .

It follows thatn−1∑i=0

zixi ∈ ⟨xn − 1⟩ . Since deg

(n−1∑i=0

zixi

)≤ n− 1, we have zi = 0

for all i = 0, 1, . . . , n− 1. Hence, ker(T ) = ⟨xn − 1⟩ and T is injective.

For each f(x)+⟨xn − 1⟩ ∈ C[x, conj]/ ⟨xn − 1⟩, there existsn−1∑i=0

zixi ∈ C[x, conj]

such that

f(x) + ⟨xn − 1⟩ =n−1∑i=0

zixi + ⟨xn − 1⟩

by the division algorithm. Then

T (rcirconj((z0, z1, . . . , zn−1))) =n−1∑i=0

zixi + ⟨xn − 1⟩ = f(x) + ⟨xn − 1⟩ .

Hence, T is surjective. Therefore, T is a ring isomorphism and RCirn,conj(C) is

isomorphic to C[x, conj]/ ⟨xn − 1⟩ as rings. �

4.2 Characterization of Right Conjugate-

Negacirculant Matrices

From Section 3.2, LNCirn,conj(C) is not a group under the usual multiplication

of matrices and NCirn,conj(C) is not a group under the usual addition of matrices

Page 47: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

39

with n ≥ 2. It follows that LNCirn,conj(C) and NCirn,conj(C) can not be rings.

To study the ring structures of such matrices, it is therefore sufficient to consider

RNCirn,conj (C).

In this section, the algebraic structure of RNCirn,conj (C) is studied. The char-

acterization of RNCirn,conj (C) is given in terms of skew polynomials.

Proposition 4.5. Let n be a positive integer. Then RNCirn,conj (C) is a vector

space over C under the usual addition and the scalar multiplication defined by

a · rncirconj ((z0, z1, . . . , zn−1)) := rncirconj ((a, 0, . . . , 0)) rncirconj ((z0, z1, . . . , zn−1))

for all a ∈ C and (z0, z1, . . . , zn−1) ∈ Cn.

Proof. Clearly, the sum of two right conjugate-negacirculant matrices is a right

conjugate-negacirculant. Since rncirconj ((a, 0, . . . , 0)) rncirconj ((z0, z1, . . . , zn−1)) =

rncirconj ((az0, az1, . . . , azn−1)) for all a ∈ C and (z0, z1, . . . , zn−1) ∈ Cn, the propo-

sition follows. �

Corollary 4.6. Let n be a positive integer. Then RNCirn,conj (C) is a real vector

space under the usual addition and the scalar multiplication.

Proof. Note that rncirconj ((a, 0, . . . , 0)) = aIn for all a ∈ R. By Proposition

4.5, the result follows. �

A necessary and sufficient condition for RNCirn,conj (C) to be a ring is given in

the next theorem.

Theorem 4.7. Let n be a positive integer. Then RNCirn,conj (C) is a subring of

Mn(C) if and only if n = 1 or n is even.

Proof. Suppose n = 1 and n is odd. Let a ∈ C be such that a = a and let

[cij]n×n := rncirconj ((a, a, . . . , a)) rncirconj ((a, a, . . . , a)) .

Page 48: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

40

Then

c0,0 = a2 −n−12∑

i=1

a · a−n−12∑

i=1

a2

= a2 −n−12∑

i=1

a · a−n−12∑

i=1

a2

= a2 −n+12∑

i=1

a · a−n−32∑

i=1

a2

= c1,1.

Hence, rncirconj((a, a, . . . , a))rncirconj((a, a, . . . , a)) /∈ RNCirn,conj (C) . Therefore,

RNCirn,conj (C) is not a subring of Mn (C) .

Conversely, assume that n = 1 or n is even. If n = 1 , then RNCirn,conj (C) ∼=

C ∼= Mn (C) is a ring. Next, we focus on the case where n is even. Let a =

(a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1) ∈ Cn. It is not difficult to see that

rncirconj(a)− rncirconj(b) = rncirconj(a− b) ∈ RNCirn,conj(C)

Using the arguments similar to those in the proof of Theorem 3.8,

rncirconj(a)rncirconj(b) ∈ RNCirn,conj (C) .

Therefore, RNCirn,conj (C) is a subring of Mn(C) . �

In the case where n is even, the ring RNCirn,conj (C) can be characterized using

the quotient skew polynomial ring C[x, conj]/ ⟨xn + 1⟩ .

Theorem 4.8. Let n be an even positive integer. Then RNCirn,conj (C) is isomor-

phic to C[x, conj]/ ⟨xn + 1⟩ as rings.

Proof. Let S : RNCirn,conj (C) → C[x, conj]/ ⟨xn + 1⟩ be defined by

S (rncirconj((z0, z1, . . . , zn−1))) =n−1∑i=0

zixi + ⟨xn + 1⟩ .

Let z = (z0, z1, . . . , zn−1) and w = (w0, w1, . . . , wn−1) be vectors in Cn . Similar

to Theorem 4.4, S is an additive group isomorphism. Let

[cij]n×n := rncirconj(z)rncirconj(w).

Page 49: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

41

S (rncirconj(z)ncirconj(w)) = S ([cij ]n×n)

= S (rncirconj(c0,0, c0,1, . . . , c0,n−1))

=n−1∑i=0

c0,ixi + ⟨xn + 1⟩

=n−1∑i=0

∑i=2j+k

z2jwk

xi +n−1∑i=0

∑i=(2j+1)+k

z2jwk

xi

−n−1∑i=0

∑i=2j+k(mod n)

z2jwk

xi −n−1∑i=0

∑i=(2j+1)+k(mod n)

z2j+1wk

xi

+ ⟨xn + 1⟩

=n−1∑i=0

∑i=2j+k

z2jwk

xi +n−1∑i=0

∑i=(2j+1)+k

z2j+1wk

xi

+2n−2∑i=n

∑i=2j+k(mod n)

z2jwk

xi +2n−2∑i=n

∑i=(2j+1)+k(mod n)

z2j+1wk

xi

+ ⟨xn + 1⟩

=n−1∑k=0

∑i=j+k

(zjx

jwkxk)+

2n−2∑k=0

∑i=j+k

(zjx

jwkxk)+ ⟨xn + 1⟩

=

(n−1∑k=0

zkxk + ⟨xn + 1⟩

)(n−1∑k=0

wkxk + ⟨xn + 1⟩

)

= S (rncirconj(z))S (rncirconj(w)) .

Using the statement similar to those in the proof of Theorem 4.4, S is a

bijection. Hence, S is a ring isomorphism. Therefore, RNCirn,conj (C) is isomorphic

to C[x, conj]/ ⟨xn + 1⟩ ⟩ as rings. �

4.3 Isomorphisms

From the previous two sections, the algebraic structures of RCirn,conj (C) and

RNCirn,conj (C) are studied. They are complex vector spaces. In addition, if n is

even, they are also rings. In this section, some relations among them are discussed.

The vector spaces RCirn,conj (C) and RNCirn,conj (C) are isomorphic.

Theorem 4.9. Let n be a positive integer. Then RCirn,conj (C) and RNCirn,conj (C)

Page 50: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

42

are isomorphic as complex vector spaces, where the scalar multiplication defined

in Propositions 4.1 and 4.5.

Proof It is not difficult to verify that a map ψ : RCirn,conj (C) → RNCirn,conj (C)

defined by

ψ (rcirconj((z0, z1, . . . , zn−1))) = rncirconj((z0, z1, . . . , zn−1)).

is a linear isomorphism. �

From [7, Theorem 3.6], the set Cirn (C) of n×n complex circulant matrices and

the set NCirn (C) of n×n complex negacirculant matrices are isomorphic as rings.

Hence, it would be possible that RCirn,conj (C) and RNCirn,conj (C) are isomorphic.

However, the idea proof of [7, Theorem 3.6] can not be applied. Therefore, we

propose this problem as a conjecture.

Conjecture 4.10. Let n be an even positive integer. Then the rings RCirn,conj (C)

and RNCirn,conj (C) are isomorphic.

Page 51: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

References

[1] D. Boucher and F. Ulmer, Coding with skew polynomial rings, Symbolic Com-

putation, 44:1644-1656, 2009.

[2] M. T. Chu, Q. Guo, On the inverse eigenvalue problem for real circulant

matrices, preprint, 1992.

[3] P. M. Cohn, Skew Fields: Theory of General Division Rings, Cambridge

University Press, 1995.

[4] P. J. Davis, Circulant Matrices, Chelesa publishing, New York, second edition,

1994.

[5] L. Fuyong, The inverse of circulant matrix, Applied Mathematics and Com-

putation, 217:8495-8503, 2011.

[6] J. Li, Z. Jiang, F. Lu, Determinants, norms, and the spread of circulant ma-

trices with Tribonacci and generalized Lucas numbers, Abstract and Applied

Analysis, 2014:Article ID 381829(9 pages), 2014.

[7] S. Kittiwut, Algebraic Structures of Complex Twistulant Matrices and Real-

Valued Fibonacci Circulant Matrices, M.Sc. dissertation, Silpakorn University,

2015.

[8] S. Jitman, S. Ruangpum and T. Ruangtrakul, Group structures of complex

twistulant matrices AIP Publishing, 1775:030016-1–030016-9, 2016.

[9] G. Sburlati, On prime factors of determinants of circulant matrices, Applied

Mathematics and Computation, 432:100-106, 2010.

43

Page 52: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

44

Presentations and Publications

Presentations

• P. Morrakutjinda and S. Jitman, Skew Polynomials and Some Generaliza-

tions of Circulant Matrices, The 11th IMT–GT International Conference

on Mathematics, Statistics and Its Applications, Ambassador City Jomtien

Hotel, Pattaya, Thailand, 24 November, 2015.

Publications

• P. Morrakutjinda and S. Jitman, Skew Polynomials and Some Generaliza-

tions of Circulant Matrices, Proceedings of the 11th IMT–GT International

Conference on Mathematics, Statistics and Its Applications, Department

of Mathematics Faculty of Science King Mongkut’s Institute of Technology

Ladkrabang, Thailand, 2015, pp. 14-24.

Page 53: ithesis-ir.su.ac.thithesis-ir.su.ac.th/dspace/bitstream/123456789/961/1/57305205 ปริญญา มร... · พหุนามเสมือนและนัยทั่วไปบางประการของเมทริกซ์วัฏจักร

45

Biography

Name Mr. Prarinya Morrakutjinda

Address 56 Village No.6, Khlong Mai Sub-district,

Sam phran District, Nakhon Pathom,

73110.

Date of Birth 27 August 1991

Education

2013 Bachelor of Science in Mathematics,

(First Class Honors), Silpakorn University.

2016 Master of Science in Mathematics,

Silpakorn University.

Scholarship Science Achievement Scholarship of Thailand (SAST).