itrs erd july 20081 hybrid cmos / nanoelectronic circuits (cmol, fpni, 3d cmol, etc.) hybrid cmos /...

36
1 ITRS ERD July 2008 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Konstantin K. Likharev Stony Brook University Acknowledgments: - useful discussions : P. Adams, P. Allen, J. Barhen, S. Das, A. DeHon, P. Franzon, D. Hammerstrom, R. Karri, R. Kiehl, P. Kuekes, J. H. Lee, J. Li, X. Liu, J. Lukens, X. Ma, A. Mayr, C. A. Moritz, V. Patel, D. Resnick, N. Simonian, G. Snider, S. V. Sreenivasan, M. Stan, D. Stewart, D. Strukov, Z. Tan, W. Wang, R. Waser, R. S. Williams, T. Zhang - financial support : AFOSR, DOD, FCRP (via FENA Center), NSF

Upload: victoria-harrison

Post on 20-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

1ITRS ERD July 2008

Hybrid CMOS / Nanoelectronic Circuits(CMOL, FPNI, 3D CMOL, etc.)

Hybrid CMOS / Nanoelectronic Circuits(CMOL, FPNI, 3D CMOL, etc.)

Konstantin K. LikharevStony Brook University

Acknowledgments:

- useful discussions:

P. Adams, P. Allen, J. Barhen, S. Das, A. DeHon, P. Franzon, D. Hammerstrom, R. Karri, R. Kiehl, P. Kuekes, J. H. Lee, J. Li, X. Liu, J. Lukens, X. Ma, A. Mayr, C. A. Moritz, V. Patel, D. Resnick, N. Simonian, G. Snider, S. V. Sreenivasan, M. Stan, D. Stewart, D. Strukov, Z. Tan, W. Wang, R. Waser, R. S. Williams, T. Zhang

- financial support:

AFOSR, DOD, FCRP (via FENA Center), NSF Literature: see the White Paper;

more online: rsfq1.physics.sunysb.edu/~likharev/nano/

Page 2: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 2

CMOS/NANO HYBRIDS: THE IDEA

bottom nanowire level

top nanowire

level

similar two-terminalnanodevices

at each crosspoint

Historic (first?) version:

(J. Heath, P. Kuekes, G. Snider, R. S. Williams 1998)

add-on

CMOSstack

Basic current version:

V

I ON state

ON state

0

+Vt

OFF state

V+V-

-Vt

Page 3: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 3

RELATION TO DEVICE TECHNOLOGIES DISCUSSED TODAY

Nanoscale Devices Applicability to CMOL/FPNI

NEMS switches 2-terminal switches OK

Spin torque transfer devices STT junctions may be OK

Carbon-based devices n/a

Atomic / electrochemical metal switches OK

Collective spin devices n/a

Single electron devices latching switch OK

___________________________________________________________

+ Phase-change cells

+ Organic layers (with and w/o embedded clusters)

Page 4: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 4

BISTABLE TWO-TERMINAL DEVICES(a.k.a. latching switches, a.k.a. programmable diodes)

DC I-V curve (schematically): Several material options demonstrated:- polymers (with or w/o clusters)- metal oxides (or sulfides)- solid electrolytes- amorphous silicon- chalcogenides

- molecular SAMsV

I state 1

state 1

0 1

1 00

+Vt

state 0

V+V-

-Vt

A few examples:

Y.-S. Lai et al. (2005)Poly(N-vinylcarbazole)

L. Bolzano et al. (2004)Aluminum tris(8-hydroquinoline)

R. T. Weitz et al. (2006)Copper-2,3-dichloro-5,6-dicyano-p-benzoquinone

Page 5: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 5

METAL-OXIDE LATCHING SWITCHES

“Memory effects” in oxideshave been known for a while:

G. Dearnaley et al., Rev. Prog. Phys. (1970):a review with 150+ references

Just a few recent references: metal:

S. Seo et al., APL (2003) NiB. J. Choi et al., JAP (2005) TiH. Sim et al., Microel. Eng. (2005) NbD. Lee et al., EDL (2005) ZrA. Chen et al., IEDM’05 CuM. Kund et al., IEDM’05 AgD. C. Kim et al., APL (2006) NbN. Banno et al., IEICE TE (2006) Cu(S)T.-N. Fang et al., ICMTD’07 CuL. Courtade et al., ICMTD’07 NiW. Guan et al., APL (2007) ZrS.-W. Kim & Y. Nishi, NVMTS’07 Cu(S)D. Stewart, NVMTS’07 TiK.-C. Liu et al., NVMTS’07 HfD. Lee et al., APL (2007) Mo

Percentage

2.28%

Current (uA)0.005 0.01 0.05 0.1 0.5 1 5 10

-2

-1

0

1

2

15.9%

50.0%

84.1%

97.7%

Percentage

2.28%

Current (uA)0.005 0.01 0.05 0.1 0.5 1 5 10

-2

-1

0

1

2

15.9%

50.0%

84.1%

97.7%

ONOFF

With time, data are becoming more reproducible:

A. Chen et al. (IEDM’05)

Just a few examples:

B. J. Choi et al. (2005) D. Lee et al. (2007)

-2 0 2 4-20.0µ

-10.0µ

0.0

10.0µ

20.0µ

30.0µ

40.0µ

50.0µ

Cur

rent

(A)

Voltage (V)

I l im set by transistor Vg

OFF-stateVTFL

2

2LeNV t

TFL

ON-state: SCLC with shallow traps

-2 0 2 4-20.0µ

-10.0µ

0.0

10.0µ

20.0µ

30.0µ

40.0µ

50.0µ

Cur

rent

(A)

Voltage (V)

I l im set by transistor Vg

OFF-stateVTFL

2

2LeNV t

TFL

ON-state: SCLC with shallow traps

A. Chen et al. (2005)

Cu

Cu2O

TE

Page 6: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 6

RECENT RESULTS:Si /α-Si / M JUNCTIONS

Y. Dong et al., 2008 S. H. Jo and W. Lu, 2008

Page 7: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 7

NANOWIRE CROSSBARS

crossbar with Fnano = 15 nm

J. Green et al. (2007)[Caltech + UCLA]

G.-Y. Jung et al. (2006)[HPL + Caltech]

W. Wu et al. (2005)[HPL]

Page 8: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 8

ADVANCED LITHORGAPHIES

crossbar with Fnano = 15 nm

J. Green et al. (2007)

www.zeiss.com IMPRIO 1100 from Molecular Imprints,

Inc. (“sub-50nm”)

Nanoimprint EUV IL Block-copolymer

B. Wua and A. Kumar (2007)

www.almaden.ibm.com

Page 9: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 9

“CMOL” INTERFACE CONCEPT (I)

CMOSstack(just a

cartoon)

interfacepins

goldnanowire

levels(nanoimprint)

MOSFET

nanodevices(latching switches)

interfacevia (“pin”)

Si wafer

K. L. (2004)

Page 10: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 10

Tip radii 2-10 nm

http://www.oxfordplasma.de/ process/sibo_wtc.htm

http://my.ece.ucsb.edu/mishra/vacuummicroelec/progressb.0157.htm

SILICON PIN ARRAYS(developed mostly for field emission)

Main challenge:

Move to the back end of the CMOS process flow (metals?)

Page 11: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 11

(a)

(b)

(c)

(d)

(e)

(f)

POSSIBLE CMOL FABRICATION FLOW

K. L. (2007a)

Page 12: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 12

CMOL INTERFACE CONCEPT (II)

Most important feature: pin array tilt by angle = arcsin(Fnano/FCMOS) = arctan(1/r)

Every nanowire (and hence every

crosspoint) may be addressed

from CMOS!

2FCMOS

pin 2A

2Fnano

pin 1

pin 2B

2rFnano

K. L. (2004, 2005); D. Strukov and K. L. (2006)

A B

Page 13: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 13

CMOL: YIELD WITHOUT ALIGNMENT

Shift along the top level:

fine fine bad? bad! fine fine

Shift along the bottom level:

fine fine bad! fine fine fine

Theoretical yield maximum: 100%

K. L. (2007)

Page 14: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 14

data Acol1

select

select

Arow1

Arow2a

select

Arow2b

data (r2 lines)

barrel shifterAcol2

RESISTIVE MEMORIES:ARCHITECTURE

D. Strukov and K. L. (2007a)

cell addressesblock rowaddress

dataI/O

block address decoder

ECC unit

block block block

block

block

block block

block block

select decoder

data I/O

external address

memory cell array

selectdecoder

address control

mapping table

data decoder

data decoder

Acol1

Acol2

Arow2

Arow1

data

Arow2

select

Arow1

select

data Acol1

Rpd

CMOL array data lines

barrel shifter

data in/out

Acol2

Top-level structure:

Limited data granularity:

CMOS cell:CMOL block:

Barrel shift decoder:

Page 15: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 15

10-5 10-4 10-3 10-2 10-1 10010-2

10-1

100

101

FCMOS

/Fnano

=10

Ideal CMOS

Are

a p

er

use

ful b

it, a

= A

/N(F

CM

OS)2

Fraction of bad nanodevices, q

Access time (ns) 3 10 30 100

Ideal CMOL

RESISTIVE MEMORIES:EVALUATION RESULTS

D. Strukov and K. L. (2007a)

Bottom line: - density up to 1 Tb/cm2 feasible (see below) - speed, power OK - defect tolerance acceptable (~10%)

Final results example: density and defect tolerance

10

25 27 29 211 213 21510-5

10-4

10-3

10-2

10-1

100

CMOL array linear size, W

Are

a p

er

use

ful b

it, a

= A

/N(F

CM

OS)2

Total Mapping table Cell decoder Control circuitry Redundant memory cells Useful memory cells

n = 255, k = 147, FCMOS

/Fnano

=10,

g = 8, q = 0.01, Y = 0.9

buffer

sense amplifier

senseROFF

wire

RR

D

ONR

D

3wirer R

Equivalent circuit for readout delay calculation:

Total chip area optimization:

Page 16: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

16ITRS ERD July 2008

RECONFIGURABLE LOGIC CIRCUITS

(a) 2βFCMOS 2βFCMOS2(r - 1) α

Generic CMOL fabric

D. Strukov and K.L. (2005)

nano nano( 1)cos , sin ,

CMOS CMOS

rF r F

F F

(b)

output nanowire

inputnanowire

CMOS column 2

CMOSrow 1

CMOSinverter

CMOSrow 2

VDD

B

A

FF

A B

CMOS inverter

nanodevices

passtransistor

AB

F

(c)

RON

RpassCwire

CMOScolumn 1

Page 17: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

17ITRS ERD July 2008

CMOL FPGA CIRCUIT: EXAMPLE

D. Strukov and K.L. (2005)

0

ai bi

(gi0, pi

0)

(gil, pi

l) (gjl, pj

l)

(gil+1, pi

l+1)

(gil, pi

l) pi0 ci

si

gil

ci=gil+1

31 INPUT

OUTPUT

32-bit Kogge-Stone adder…

(a)

(b)

a0b0a1

b1a30b30a31

b31

s0s1s30s31

…mapped on the CMOL fabric…

…before…

…and after reconfiguration(@ 50% of bad devices)

Page 18: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

18ITRS ERD July 2008

CMOL FPGA: RESULTS (I)defect tolerance.. ..and performance

D. Strukov and K.L. (2005)

Bottom line:yield >99% for 22-25% (!)

of bad devices

FCMOS = 45 nm32 nm22 nm

FCMOS= 32 nm, Fnano= 9 nm: A 110 m2, 0.9 ns

CMOS FPGA with the same FCMOS: A 70,000 m2, 1.7 ns

0.01 0.1 10

20

40

60

80

100

1E-5 1E-4 1E-3 0.01 0.1 190

99

1E-3

99.99

0.01 0.1 10

20

40

60

80

100

Bad Nanodevice Fraction q

r'=17, r = 17

r'=10, r = 10 11 12 13

Circ

uit Y

ield

Y (%

)

Bad Nanodevice Fraction q

r'=10 r=12

r'=10, r=10

crossbar adder

99.9

Circ

uit Y

ield

Y (%

)

r'=17, r= 17 18 19

r'=10, r= 10 11 12

Circ

uit Y

ield

Y (%

)

Bad Nanodevice Fraction q

Page 19: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

19ITRS ERD July 2008

CMOL FPGA CAD 1.0

D. Strukov and K.L. (2006a)

Design flow:

First goal: Toronto 20 benchmark circuit set

Latched CMOL fabric: tile boundarylatch cellbasic cell

2Fnano

2aFnano

SIS: Technology (NOR gate and latch) mapping

Input circuit blif format

Initial value of N

Heuristic placement

Global router

Exit with success

Increase N

countmax < T-N -∆countmax > T-N

N = 0

Circuit pre-processing

Defective cells

Decrease N

otherwise

Exit without success

in outCMOS latch

4FCMOS

Latchcell:

Page 20: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 20

Circuit CMOS FPGA (FCMOS = 45 nm) CMOL FPGA (FCMOS= 45 nm, Fnano= 4.5 nm, max fan-in = 7) Comparison

Depth LUTs Array size (clusters)

Area (μm2)

Delay (ns)

Depth CMOS cells

Array size (clusters)

N Nano-devices

Area (μm2)

Delay (ns)

ACMOS

/ACMOL

AnanoPLA

/ACMOL

alu4 7 1274 19×19 137700 5.1 23 1854 22×22 5 9788 1004 4.0 137 0.28

apex2 8 1602 21×21 166050 6.0 26 1928 21×21 6 11365 914 4.6 182 3.09

apex4 6 1147 34×34 414619 5.5 19 1176 18×18 6 7781 672 3.6 617 0.58

bigkey 3 1810 22×22 193388 3.1 20 2065 20×20 6 10207 829 2.7 233 1.82

clma 16 6779 42×42 623194 13.1 75 7585 67×67 2 48746 9308 10.2 67 1.74

des 6 1263 19×19 148331 4.2 28 2321 23×23 6 12610 1097 4.5 135 3.21

diffeq 14 987 16×16 100238 6.0 73 2004 24×24 6 10799 1194 10.4 84 2.27

dsip 3 1362 19×19 148331 3.2 26 1615 20×20 7 9905 829 3.4 179 1.63

elliptic 18 2142 24×24 213638 8.6 81 4799 47×47 4 25415 4581 12.7 47 1.63

ex1010 8 4050 33×33 391331 9.0 43 2986 41×41 3 28746 3486 5.7 112 0.28

ex5p 7 950 16×16 100238 5.1 27 902 20×20 4 6875 829 4.3 121 0.19

frisc 23 2320 25×25 230850 11.3 114 4715 45×45 4 25869 4199 17.6 55 2.64

misex3 7 1178 18×18 124538 5.3 24 1397 22×22 4 9211 1004 3.6 124 0.56

pdc 9 3901 32×32 369056 9.6 54 4752 49×49 2 14841 4979 6.8 74 0.15

s298 15 1682 21×21 166050 10.7 45 1030 20×20 4 10161 829 8.1 200 1.33

s38417 11 4773 36×36 462713 7.3 52 8289 67×67 3 53156 9308 7.2 50 1.24

s38584 9 4422 35×35 438413 4.8 64 6502 69×69 3 50275 9872 8.8 44 -

seq 7 1427 20×20 151369 5.4 23 1832 25×25 4 11027 1296 4.0 117 1.15

spla 8 3331 30×30 326025 7.3 40 4240 38×38 3 24808 2994 5.8 109 0.12

tseng 13 781 14×14 78469 6.3 75 1866 24×24 6 4918 1194 11.5 66 2.48

CMOL FPGA: RESULTS (II)Toronto 20 benchmark circuit set

D. Strukov and K.L. (2006a)

Page 21: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 21

2009 2010 2011 2012 2013 Comments

Half-pitch FCMOS (nm) 50 45 40 36 32 Follows ITRS until 2013

Half-pitch Fnano (nm) 20 18 16 14 12 Mostly nanoimprint

Device density n (Giga/cm2) 63 77 98 128 174 Grows fast

Parameter r 10 10 10 11 11

Connectivity N 100 100 100 121 121 Barely change

Interface rotation angle () 5.7 5.7 5.7 5.2 5.2

Nanowire segment L (μm) 4.0 3.6 3.2 2.8 3.0 Decreases slowly

Defect fraction q (%) 20 15 10 7 5 Improves fast

DIGITAL CMOL: PROSPECTS (I)

2016 2019 2022 2025 2028 Comments

Half-pitch FCMOS (nm) 30 28 26 24 22 Decreases very slowly

Half-pitch Fnano (nm) 10 6 4 3.5 3 EUV? Block-copolymers?

Device density n (Tera/cm2) 0.25 0.70 1.0 2.0 2.8 Unprecedented density reached

Parameter r 12 19 26 28 30 Increases substantially

Connectivity N 144 361 676 784 900 Increases fast

Interface rotation angle () 4.8 3.0 2.2 2.0 1.9 Decreases

Nanowire segment L (μm) 2.8 4.3 5.4 5.4 5.4 Increases slowly

Defect fraction q (%) 3 1 0.3 0.1 0.03 Improves slower

K. L. and D. Strukov (2007)

Page 22: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 22

DIGITAL CMOL: PROSPECTS (II)

Metrics (units) 2009 2010 2011 2012 2013 Comments

Half-pitch FCMOS (nm) 50 45 40 36 32 In accordance with ITRS

Half-pitch Fnano (nm) 20 18 16 14 12 -

CMOS memories (Gbits/cm2) 6.7 8.2 10.5 13 16 Follows ITRS (with A = 6F2CMOS)

CMOL memories (Gbits/cm2) 4 10 23 36 67 Initial progress impacted by q

CMOS FPGA (Mgates/cm2) 0.4 0.5 0.6 0.8 1.0 Rescaled from 0.18 μm rules

CMOL FPGA (Mgates/cm2) 625 775 1,000 1,200 1,500 -

Metrics (units) 2016 2019 2022 2025 2028 Comments

Half-pitch FCMOS (nm) 30 28 26 24 22 Grows slower than in ITRS

Half-pitch Fnano (nm) 10 6 4 3.5 3 -

CMOS memories (Gbits/cm2) 18 21 25 29 35 Follows A = 6F2CMOS

CMOL memories (Gbits/cm2) 100 350 900 1,200 1,700 Spectacular progress at lower q

CMOS FPGA (Mgates/cm2) 1.1 1.3 1.5 1.7 2.1 Rescaled from 0.18 μm rules

CMOL FPGA (Mgates/cm2) 1,700 2,000 2,300 2,700 3,200 -

K. L. and D. Strukov (2007)

Page 23: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 23

SAMPLE DSP TASK: CONVOLUTION(e.g., for FPA image processing)

Parameters selected for our estimates:N = 1,024F = 32 (i. e. << N)Accuracy: nS = n = 12

Demands to hardware:Add-multiplies: F2N2 109 per frameCMOS μ-processor: ~ 100 ms per frame

1,0,,

1

0

1

0,,

FNyxST ji

F

i

F

jjyixyx

N

N

F

F

Splane(input)

Tpixel

(output)

-window

D. Strukov and K. L. (2007b)

Page 24: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 24

TWO NEW CELLS:

Control cell: New (programmable) latch:

in out

clk

IW

IN

IE

IS

OE

OW

OS

ONclk

CW

~CW

~CE

CE

CS~CS

CN~CN

added CMOS line for

control logic

output pin

input pin(not used)

gnd

Vdd

8 FCMOS

Footprint: (3×8 FCMOS)2

Page 25: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 25

S 12 bits outoutout

out out outinininT

32 bits

ininin

φ (12 bits)

32-bit Kogge Stone Adder

1

0cT

12-bit Wallace Tree Multiplier (Partial Product Generation and Reduction)

out out outininin

M24 bits

1 20cM

32 bits

24 bits

12 bits

cA cB0 1

1 0

0

multiplieraddermultiplexerother

Control cell Programmable latch cell

used

not used

usednot used

Basic cell

not used

ARCHITECTURE AND PERFORMANCE

Calculated performance for N = 1,024, F = 32, n = 12 bits: ~ 25 μs, vs. ~3,500 μs for CMOS(per frame)

D. Strukov and K. L. (2007b)

Page 26: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

26ITRS ERD July 2008

NEUROMORPHIC NETWORKS (“CROSSNETS”)

wjk = {-1, 0, +1}

Generic structure of a feedforward CrossNetS. Fölling et al. (2001)O. Turel et al. (2004)

Basic idea: CMOS “somas” + nanowire “axons” and “dendrites” + nanodevice “synapses”

somaj

somak

jk+

jk-

+

+-

-

j iwij

j

jiji ywx

Page 27: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

27ITRS ERD July 2008

(@ 33 nanodevices per synapse, Fnano = 3 nm, connectivity 104):

Synapse footprint: ~ 500 nm2

Synapse density: ~ 21011 cm-2 (> 1012 cm-2 bits/cm2)

Neural cell density: ~ 5107 cm-2

(cf. 1.5107 cm-2 in bio)

Intercell latency: ~ 20 ns @ 100 W/cm2 (R ~ 1010 )

or: ~ 2,000 ns @ 1 W/cm2 (R ~ 1012 )

(cf. ~10 ms in bio)

CMOL is the first hardware capable of challenging human’s cerebral cortex

CROSSNETS: PERFORMANCE ESTIMATES

Ö. Türel et al. (2004)

Page 28: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 28

From: T. Hynton (DARPA), March 2008

Page 29: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 29

ANOTHER CMOL SPECIES: HPL’s FPNI

G. Snider and R. S. Williams (2007)

Page 30: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 30

WEI WANG’s “3D CMOL”

D. Tu et al. (2007)

Features:- simpler interface pins- twice smaller area

Page 31: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 31

SINGLE-ELECTRON LATCHING SWITCH:

POSSIBLE MOLECULAR IMPLEMENTATION

N

O

O

N

O

O

R

NN

O

O

O

O

R

R

N

R

C

R

R

N

R

R

C

O

R

N

R

C

R

R

O O

O

R = hexyl

naphthalenediimide group as a single-electron transistor island

perylenediimide group as a single-electron trap island

Andreas Mayr (SBU) in:

K. Likharev et al. (2003)

(C6H13-)

OPE bridges as tunnel junctions

non-conducting support group

isocyanide attachment

group

Page 32: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 32

theoretical result… …and experiment

NDR IN MOLECULAR-SCALE SETs

N. Simonian, J. Li, and K. L. (2007) S. Khondaker et al. (2004)

NDR effect: unexpected, but in the hindsight, natural:

)]})([2{

2exp(, 2/1

)()(

)()(

dxxUmeIds

ds

Vsd = 0: eVsd ~ U:

i.e. current is determined by the highest barrier (giving the lowest tunneling rate)

one barrier suppressed, another enhanced current drops!

NDR!

Page 33: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 33

NDR CMOL CONCEPT

Goto pair

clock

t0

t0

t0

t0

phase 1

phase 2

phase 3

phase 4

REF

EVAL

OFF

OFF

Four-phase clocking

Logic gates

V

I

0 VDDVt

VCLK

VGND

upper layer nanowire

lower layernanowire

VCLK2

Vgnd

VBIASVOUTVCLK1

Vgnd

VCLK1

Vgnd

VIN2

VIN1 3

1

2

REF EVAL

3

1

2

0 0.2 0.4 0.6 0.8 1-1.5

-1

-0.5

0

0.5

1

1.5x 10

-5

0 0.1

0.2

0.3

0.4

0.5

0.6 0.7

0.8

0.9

1

Vout

I

Latching to Boolean “1”

D. Strukov and K.L. (2007c)

Page 34: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 34

NDR CMOL (preliminary results)

ProsDifferent logic gates Small cell area (×3↑) Nanoscale latch (×1.5↑)

ConsLow fan-in Dual rail logic (×2↓)Low fan-out (×1.15↓) Pipeline buffers (×1.25↓)

Circuit

CMOL FPGA CMOL NDR

Cells Area

(μm2) Cells

Area (μm2)

alu4 3902 749 9384 389

apex2 4447 830 11516 478

apex4 3027 531 7525 312

bigkey 4725 672 14334 594

clma 26859 6272 86292 3579

des 5422 1004 12872 534

diffeq 5540 830 12524 519

dsip 3975 600 13174 546

elliptic 17443 2399 29958 1242

ex1010 9862 1745 32080 1330

ex5p 3036 531 7128 296

frisc 17646 2542 28758 1193

misex3 3283 600 9192 381

pdc 19260 3488 50532 2096

s298 2552 467 14633 607

s38417 41576 6277 80862 3354

s38584 29009 4202 59222 2456

seq 4902 915 11832 491

spla 16764 2996 44622 1851

tseng 5911 830 10164 422

Toronto 20 benchmark set

Early summary (compared to CMOL

FPGA)

Area Comparable

Delay Comparable

Defect tolerance Comparable

Data throughput Much better

Better architecture possible?

D. Strukov and K.L. (2007c)

Page 35: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

ITRS ERD July 2008 35

CONCLUSIONS

CMOS/Nano Hybrids:- possibly, the only way to go beyond the conventional

lithography limits- realistic components, demos above ~15 nm

Possible Impact: - extending Moore’s Law for 10 to 15 years beyond ITRS 32 nm point- eventually, first challenge to the cerebral cortex

Hardware Issues: - Fnano > 10 nm: integration / reproducibility- Fnano < 10 nm: everything:

- devices (SAM?)- patterning EUV IL? block-copolymer?- back-end-compatible pins

Software Issues: - ASIC performance (vs CMOS)- tolerance to various defects- advanced information processing tasks and methods

need better CAD tools

Page 36: ITRS ERD July 20081 Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.) Hybrid CMOS / Nanoelectronic Circuits (CMOL, FPNI, 3D CMOL, etc.)

36ITRS ERD July 2008

THANK YOU!THANK YOU!

comments/suggestions to:

[email protected]