iv. upper eocene and lower oligocene diatomaceae ...grunow (1884) from franz joseph land are...

67
IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE IN SOUTHWESTERN PACIFIC SEDIMENTS, DSDP LEG 29 Marta Hajós, Hungarian Geological Survey, Budapest, Hungary 1 INTRODUCTION DSDP Leg 29 began on 2 March 1973 at Lyttleton, New Zealand, and ended on 18 April 1973 at Wellington, New Zealand. During the cruise, 16 holes were drilled in the area south of Australia and New Zealand and in the Tasman Sea (from 40° to 56°S and 143° to 178°E; see Figure 1). The present report is an evaluation of the upper Eocene-lower Oligocene diatom assemblages of 27 samples from 18 cores taken at Sites 280 (in deep water south of the South Tasman Rise), 281 (in shallow water, on the South Tasman Rise), and 283 (Central Tasman Sea). The diatoms, archaeomonads, and silicoflagellates were studied, and photographs taken, using an Amplival binocular light microscope with 40× and 100X objec- tives and lO× and 16× oculars. Diatoms are the prin- cipal biostratigraphic indicators in the siliceous sediments because of their abundance and good preser- vation; foraminifers and nannofossils occur in subor- dinate numbers or are absent. For more precise stratigraphic control and for paleoenvironmental pur- poses, the entire siliceous microfossil assemblage was studied. The distribution of siliceous microfossils in Leg 29 sediments is shown in Table 1, and the frequency dis- tribution of characteristic species is shown in Figure 2. The following section summarizes the occurrence of siliceous microfossils at all sites drilled during Leg 29. SUMMARIES OF LATE EOCENE-EARLY OLIGOCENE SILICEOUS MICROFOSSIL-BEARING SEDIMENTS IN DSDP LEG 29 SITES Site 277 (Latitude 52°13.43'S, Longitude 116°11.48'E, on the southern Campbell Plateau) This hole penetrated a calcareous nanno ooze rich in foraminifers. It contains scarce, poorly preserved, and corroded siliceous microfossils. The tests are covered by a siliceous gel which could not be removed in the labora- tory without damaging or decomposing the siliceous test. Site 278 (Latitude 56°33.42'S, Longitude 160°04.29'E, in the southern Emerald Basin) Miocene, Pliocene, and Pleistocene diatom and nanno ooze and nanno-bearing siliceous ooze layers are alter- nate at this site. Poorly preserved, corroded, frag- mentary diatoms occur only from Core 31, Section 1 (295.5 m) to Sample 33, CC (424 m). The sediment is 'Publication authorized by Dr. J. Konda, Director of the Hungarian Geological Survey, Budapest. tentatively regarded as being of middle to upper Oligo- cene age, but cannot be directly correlated on the basis of the flora with the diatom ooze of Hole 280A and Sites 281 and 283. Site 280, Hole 280A (Latitude 48° 57.44'S, Longitude 147°14.08'E, south of Tasmania and the South Tasman Rise) The stratigraphic sequence in this hole consists of silty and clayey diatom ooze from Core 1, Section 2 (9-11 cm) to Sample 4, CC (38-91.5 m below the sea floor), and up- per Eocene to lower Oligocene greenish-gray diatom ooze and silty clay with diatoms from Core 5, Section 1 (120-122 cm) to Core 8, Section 1 (120-122 cm) (91.5-145 m below the sea floor). Siliceous microfossils in these sediments are well preserved and are very abundant in Cores 1 through 7. In Core 8 they are less abundant and poorly preserved, and lower in the section they are ab- sent; dissolution during deposition or diagenesis is suggested. Dominant in the assemblages are several species and varieties of the genus Stephanopyxis (Asterolampra schmidti, Stictodiscus californicus var. nitida, Cerataulus pacißcus, Hemiaulus incisus, Kisseleviella carina, and Rouxia rouxioides) which are short ranging and appear only at the lower boundary of the Oligocene (Tables 1 and 2). Site 281 (Latitude 47°59.84'S, Longitude 147°45.85'W, in shallow water, on the southern slope of the South Tasman Rise) The sandy and silty clay and diatom ooze of Cores 14, 15, and 16 were analyzed in detail. They contain a well- preserved siliceous microfossil assemblage rich in species and individuals. Dominant in the floras are sub- tropical, neritic-thermophilic planktonic forms with a depth range of 200 to 400 meters (Tables 1 and 2). This assemblage resembles that of the upper Eocene of New Zealand as well as that of the upper Eocene of Site 283 in the Tasman Sea. A significant proportion of the diatoms are through-ranging species, while others dis- appear in the upper Eocene. Some of the latter are endemic planktonic forms. Site 282 (Latitude 42°14.76'S, Longitude 143°29.18'E, west of Tasmania in the magnetic quiet zone) All the cores from this site were studied and found to be barren of diatoms as well as any other siliceous microfossils. Only in the core catchers of Cores 5 through 7 were some undeterminable diatom fragments found. Siliceous sponge spicules are commonly of great diversity in Cores 5 through 17 (upper Eocene to upper Oligocene); they are abundant and large and can probably be compared with those observed at Sites 280, 281, and 283 (Eocene and Oligocene). 817

Upload: others

Post on 06-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE, ARCHAEOMONADACEAE,AND SILICOFLAGELLATAE IN SOUTHWESTERN PACIFIC SEDIMENTS, DSDP LEG 29

Marta Hajós, Hungarian Geological Survey, Budapest, Hungary1

INTRODUCTION

DSDP Leg 29 began on 2 March 1973 at Lyttleton,New Zealand, and ended on 18 April 1973 atWellington, New Zealand. During the cruise, 16 holeswere drilled in the area south of Australia and NewZealand and in the Tasman Sea (from 40° to 56°S and143° to 178°E; see Figure 1). The present report is anevaluation of the upper Eocene-lower Oligocene diatomassemblages of 27 samples from 18 cores taken at Sites280 (in deep water south of the South Tasman Rise), 281(in shallow water, on the South Tasman Rise), and 283(Central Tasman Sea).

The diatoms, archaeomonads, and silicoflagellateswere studied, and photographs taken, using an Amplivalbinocular light microscope with 40× and 100X objec-tives and lO× and 16× oculars. Diatoms are the prin-cipal biostratigraphic indicators in the siliceoussediments because of their abundance and good preser-vation; foraminifers and nannofossils occur in subor-dinate numbers or are absent. For more precisestratigraphic control and for paleoenvironmental pur-poses, the entire siliceous microfossil assemblage wasstudied. The distribution of siliceous microfossils in Leg29 sediments is shown in Table 1, and the frequency dis-tribution of characteristic species is shown in Figure 2.The following section summarizes the occurrence ofsiliceous microfossils at all sites drilled during Leg 29.

SUMMARIES OF LATE EOCENE-EARLYOLIGOCENE SILICEOUSMICROFOSSIL-BEARING

SEDIMENTS IN DSDP LEG 29 SITES

Site 277 (Latitude 52°13.43'S, Longitude 116°11.48'E,on the southern Campbell Plateau)

This hole penetrated a calcareous nanno ooze rich inforaminifers. It contains scarce, poorly preserved, andcorroded siliceous microfossils. The tests are covered bya siliceous gel which could not be removed in the labora-tory without damaging or decomposing the siliceoustest.

Site 278 (Latitude 56°33.42'S, Longitude 160°04.29'E, inthe southern Emerald Basin)

Miocene, Pliocene, and Pleistocene diatom and nannoooze and nanno-bearing siliceous ooze layers are alter-nate at this site. Poorly preserved, corroded, frag-mentary diatoms occur only from Core 31, Section 1(295.5 m) to Sample 33, CC (424 m). The sediment is

'Publication authorized by Dr. J. Konda, Director of the HungarianGeological Survey, Budapest.

tentatively regarded as being of middle to upper Oligo-cene age, but cannot be directly correlated on the basisof the flora with the diatom ooze of Hole 280A and Sites281 and 283.

Site 280, Hole 280A (Latitude 48° 57.44'S,Longitude 147°14.08'E, south of Tasmaniaand the South Tasman Rise)

The stratigraphic sequence in this hole consists of siltyand clayey diatom ooze from Core 1, Section 2 (9-11 cm)to Sample 4, CC (38-91.5 m below the sea floor), and up-per Eocene to lower Oligocene greenish-gray diatomooze and silty clay with diatoms from Core 5, Section 1(120-122 cm) to Core 8, Section 1 (120-122 cm) (91.5-145m below the sea floor). Siliceous microfossils in thesesediments are well preserved and are very abundant inCores 1 through 7. In Core 8 they are less abundant andpoorly preserved, and lower in the section they are ab-sent; dissolution during deposition or diagenesis issuggested.

Dominant in the assemblages are several species andvarieties of the genus Stephanopyxis (Asterolampraschmidti, Stictodiscus californicus var. nitida, Ceratauluspacißcus, Hemiaulus incisus, Kisseleviella carina, andRouxia rouxioides) which are short ranging and appearonly at the lower boundary of the Oligocene (Tables 1and 2).

Site 281 (Latitude 47°59.84'S, Longitude 147°45.85'W,in shallow water, on the southern slope of the SouthTasman Rise)

The sandy and silty clay and diatom ooze of Cores 14,15, and 16 were analyzed in detail. They contain a well-preserved siliceous microfossil assemblage rich inspecies and individuals. Dominant in the floras are sub-tropical, neritic-thermophilic planktonic forms with adepth range of 200 to 400 meters (Tables 1 and 2). Thisassemblage resembles that of the upper Eocene of NewZealand as well as that of the upper Eocene of Site 283in the Tasman Sea. A significant proportion of thediatoms are through-ranging species, while others dis-appear in the upper Eocene. Some of the latter areendemic planktonic forms.

Site 282 (Latitude 42°14.76'S, Longitude 143°29.18'E,west of Tasmania in the magnetic quiet zone)

All the cores from this site were studied and found tobe barren of diatoms as well as any other siliceousmicrofossils. Only in the core catchers of Cores 5through 7 were some undeterminable diatom fragmentsfound. Siliceous sponge spicules are commonly of greatdiversity in Cores 5 through 17 (upper Eocene to upperOligocene); they are abundant and large and canprobably be compared with those observed at Sites 280,281, and 283 (Eocene and Oligocene).

817

Page 2: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

35° S

40'

45'

50'

55'

60c

65'

TASMANSEA

282

280®

SouthTasmanRise

ZEALAND

/

£ *

Southeast

Indian

Ridge

2 - ç Campbell 275 β

• Plateau 2 7 6

277PACIFIC OCEAN

£ 278

Antarctic - Pacific Ridge

130° E 140° 150° 160° 170

Figure 1. Location of sites cored during Deep Sea Drilling Project Leg 29.

180° 170c 160 W

Site 283 (Latitude 43°54.60'S, Longitude 154°16.96'E,located in the Central Tasman Sea)

Upper Eocene detrital silty sediments and diatomooze were recovered in Cores 2 through 7, while siltyclay with diatom detritus was recovered in Core 8. FromCore 9 down, the sediments were barren of siliceousmicrofossils. On the basis of species dominance, twounits can be differentiated: (a) from 283-2, CC to 6, CCthe following species dominate: Melosira archi-tecturalis, Stephanopyxis antiqua, S. grunowii, S. longi-spinosa, S. superba, and Naviculopsis biapiculata var.constricta; (b) from 283-7, CC to 8, CC the number ofspecies is smaller in every sample; the most character-istic species are Xanthiopyxis panduraeformis, Pyrgu-pyxis, and Pterotheca.

DISCUSSION

A number of studies based on diatoms deal with thePliocene through Holocene interval of the Pacific Ocean

(subarctic region, North Pacific, East and CentralPacific, and the equatorial region). These studies in-dicate that the regional distribution of diatoms isaffected mainly by subarctic and North Pacific currents(Kanaya and Koizumi, 1966; Donahue, 1970; Jousé etal., 1969, 1971; in Koizumi, 1973, p. 805, 827-829). Inthe present case, the diatom assemblages consist mainlyof thermophilic, subtropical diatom species. Antarcticor subantarctic species are absent or only doubtfullypresent. According to the literature (Grunow, 1884;Hustedt, 1927-1930), 11 of the species listed in Table 1are Recent. However, I have become convinced duringthe course of my studies that the species described byGrunow (1884) from Franz Joseph Land are extinct,and that their occurrence in Recent sediments must bedue to submarine redeposition of Eocene sediments.This admitted, the actual proportion of Recent species is5%.

The majority of the species studied became extinct atthe end of the Eocene or in the Oligocene. Accordingly,

818

Page 3: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

in

1232 m278

3999 r279

3381 m

(– 300

1S

T.

PL

E0

°-J i

di5

O

HI

tj _

IG.

—• _ J

0M.OL-

?

?

-*-

I*

*

2S

**" ~̂~V °

h

Z

3

Z

1-U

NI

t•

ZD

10

z

PLFISS- 1

g

5

0

ui

""-̂"―~4

T

UN

IT

PAL.

G I GLAUCONITE

SILICEOUS OOZE

CALCAREOUSOOZE

2834766 m

SAND-SANDY SILT

CLAYEY SILT-SILTYCLAY

MANGANESEMICRONODULE

P p i PYRITE

L^- i_ SCHIST

\•?:a•0\ BRECCIA

L-_-_"d CLAY

\L'.:Z I ZEOLITE SILTY CLAY

UJ

zUJ

ooUI

-?-

UJ

zUJOOHI

<0.

-V-z

"V

•O

=!>*

^>

.71.7.

E~

A—

•—A

- A -

—..7.

.. _•

. —..lili

IT*

—A~

A-7T

«-

CN

h

ZD

CO

h

ZD

ZD

IT)

Figure 2. Siliceous micro fossil-bearing sediments of drilling sites in the Southwest Pacific Ocean, Leg 29, Deep Sea DrillingProject.

climatological and ecological inferences can be drawnonly on the few species still living. It should be stressed,however, that even these are not necessarily unchangedas to their ecology.

The upper Eocene-lower Oligocene assemblages arecharacterized by a great variety of forms and species,suggesting rather favorable environmental conditions.All the assemblages comprise autochthonous, well-preserved, oceanic planktonic forms; neritic, littoral,brackish, nor fresh-water species were found. Plank-tonic species of large size indicate the lack of strongcurrents and favorable conditions of oxygenation. Thepresence of Stephanopyxis, Trinacria, Triceratium,Hemiaulus, Coscinodiscus symbolophorus, and C. radi-atus, indicate a subtropical climate and optimal condi-tions.

A substantial climatic or physicochemical change isindicated at the Eocene-Oligocene boundary. A signifi-cant proportion of the late Eocene species becomes ex-tinct, and a number of new species appear. The size ofthe species that cross the boundary generally decreases,

although it is highly variable. This may be due to de-creasing temperature, oxygen supply, or other eco-logical factors.

For paleogeographic comparison purposes, thefollowing works were referred to: Greville (1861-1866),Schmidfs Atlas (1874-1959), Grunow (1884), Grove andSturt (1886-1887), Pantocsek (1886-1905), Reinhold(1937), Jousé (1955), Kanaya (1957), Strelnikova (1960),Paramonova (1964), and Gleser and Posnova (1964). Inquantitative terms, the Leg 29 microflora shows close af-finities with those of the upper Eocene of Oamaru, NewZealand, Barbados, and Mt. Diablo of California.Several identical species have also been recorded fromthe Soviet Union (E. Ukraine, W. Kazakhstan, W.Siberia, the Caucasus, and the Urals); however, thenumber of identical species is lower than in the Eocene.

SYSTEMATIC PALEONTOLOGY,FLORAL REFERENCE

The diatoms, archaeomonads, and silicoflagellates of Sites 280, 281,and 283 were mainly determined and systematized on the basis of the

819

Page 4: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

TABLE 1Distribution of Late Eocene and Early Oligocene Diatomaceae, Archaeomonadaceae, and

Silicoflagellatae in Samples from DSDP Leg 29, Sites 280A, 281, 283

Siliceous Microfossils

BACILLARIOPHYTABacillariophyceae (Diatomaceae)

Melosira architectural BrunM. clavigera Grun.M. oamaruensis Gr. & St.Podosira sp.Pseudopodosira corolla (A. Schm.) n. comb.P. marginata n. sp.Pseudopodosira sp.Hercotheca inermis MannEndictya robusta (Grev.) Hanna & GrantStephanopyxis cf. antiqua Pant.S. barbadensis (Grev.) Grun.S. eocaenicus n. sp.S. cf. ferox (Grev.) RalfsS. grunowii Gr. & St.S. hyalomarginata n. sp.S. inordinata n. sp.S. longispinosa n. sp.S. marginata Grun.S. megapora Grun.S. oamaruensis n. sp.S. oligocaenica n. sp.S. subantarctica n. sp.S. superba (Grev.) Grun.S. turris (Grev. et Am.) Ralfs v. arctica Grun. f. ?Coscinodiscus bulliens A. Schm.C. denarius A. Schm.C. marginatus Ehr.C. cf. moelleri A. Schm. v. macroporus Grun.C. oculusiridis Ehr. v. borealis (Bail.) Cl.C. cf. radiatus Ehr.C radiatus Ehr. v. nodulifer Reinh.C. spiralis n. sp.C. symbolophorus Grun.C. symbolophorus Grun. var. oamaruensis A. Schm.C. tuberculatus Grev.Liradiscus ovalis Grev.Liradiscus sp.Muelleriopsis limbata (Ehr.) HendeyXanthiopyxis acrolopha FortiAT. oblonga Ehr.AT. panduraeformis Pant.Xanthiopyxis sp.Poretzkia ? sp.Stictodiscus californicus Grev. v. nitida Gr. & St.S. grovei A. Schm.Arachnoidiscus indicus Ehr.A russicus Pant.A schmidti n. sp.Asterolampra schmidti n. sp.Actinoptychus splendens (Shadb.) RalfsAulacodiscus rat tray ii Gr. & St.Auliscus gleseri n. sp.A oamaruensis Gr. & St.Actinocyclus octonarius Ehr. var.?Corona magnified Lef. et Chen.Rhizosolenia interposita n. sp.Rhizosolenia sp.Chaetoceros sp.Triceratium arcticum Brightw.7". castellatum West v. ?7". chenevieri Meist.

280A

-1-2

, 9-

11

28O

A-1

.CC

280A

-2-2

, 4547

280A

-2-3

, 20

-22

RC

R

C C C

C

c c c

R

c

R R R

C A C C

C C C

R

C C C

280A

-2, C

C

280A

-34,1

20-1

22

280A

-3,C

C

28

0A

4,

CC

280A

-5.C

C

R

RC C C C C

CC C C C C

c c c cc c

c c cR

R R RC C C C C

R

R R R R

C C C C C

C C C C C

C C C C C

C C C C C

280A

-6-3

, 12

0-12

2

280A

-6, C

C

280A

-7-2

,120

-122

280A

-7,C

C

280A

-8-1

, 12

0-12

2

R

C

R

C RC C C CR RC C C C

C R RC R

C C C

R R R RC C C C RRR R

R R R R

C C C C

C C C C

C C C C

C C C C

ó-1 u u u r_; u u u u^ * m βi-H H ,-« <-H CN

o o o o o o o o o oN D M N (S

R CC CR R R

R CCR

R CR

R RC C R C

C C CR

R RC C CC C C

R

A C C CC C C

R

A

A A CC

c

c cR R R CC C C

R

R

R

C C

283-

3, C

C

28

34

, C

C

283-

5-1,

65-6

7

283-

5, C

C

283-

6, C

C

C R RC C CR R R R

RR R R

R R R RR R R R

R RR

R R R C R

CR R R R

R R

C CC R CR R C R

R R R

C C C C C

R R CR

RR

R

C R C C CR R RC C C C C

C R RR

RR

R R

R

283-

7, C

C

28

3-8

-1,4

44

6

283-

8, C

C

R R R

R

C

C R

C R

CC RR R

C

R

R

C C C

C R R

R

R

820

Page 5: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

TABLE 1 - Continued

Siliceous Microfossils

T. crenulatum Gr. & St.T. morlandiiGx. & St.7". oamaruense Gr. & St.T. oamaruense Gr. & St. v. sparsim punctata Gr.T. pulvinar A. Schm.Biddulphia fimhriata Grev.B. rigida A. Schm.Cerataulus pacificus n. sp.Cerataulina praebergoni n. sp.Hemiaulus caracteristicus n. sp.H. incisus n. sp.H. polymorphus Grun. var. ?H. polymorphus Grun.Trinacria excavata Heib.T. simulacrum Gr. & St.Pterotheca aculeifera Grun.P. danica Grun.Pyrgupyxis eocena HendeyP. gracilis (Temp, et Forti) Hendey v. buccinalis (Forti) HendeyP. gracilis (Temp, et Forti) Hendey v. saratoviana (Pant.) HendeyP. johnsoniana (Forti) HendeyP. johnsoniana (Forti) Hendey v. intermedia (Temp, et Forti) HendeyAcanthodiscus rugosus Pant.Goniothecium odontella Ehr.Stephanogania cf. polyacantha FortiPseudorutilaria monile Gr. & St.Kisseleviella carina Shesh.Rouxia rouxioides (Schrader) n. comb.

CHRYSOPHYTAArchaeomonadaceae

Archaeomonas dubia Defl.A. oamaruensis Defl.A. ovalis Defl.A. reticulosa Defl.Archaeosphaeridium armatum n. sp.Pararchaeomonas decorata n. sp.P. (?) rigaudae Rampi

Silicoflagellatae

Dictyocha deflandrei Freng.D. fibula Ehr.D. hexacantha SchulzHannaites quadria MandraMesocena apiculata (Schulz) HannaM. oamaruensis SchulzM. oamaruensis Schulz v. quadrangula SchulzNaviculopsis biapiculata (Lemm.) Freng.N. biapiculata (Lemm.) Freng. v. constricta (Schulz) GleserN. biapiculata (Lemm.) Freng. v. minor (Schulz) GleserN. trispinosa (Schulz) Gleser

PORIFERA

Spicules (different)

28

0A

-l-2

,9-l

l

28

0A

-l,C

C

28

0A

-2-2

,45

47

280A

-2-3

, 20

-22

280A

-2.C

C

C C R RR R R R

C C C C C

C C C CR C C

c

c c c cC A A A AC C C C C

c c c c

R

R R R R

R R C C C

C

R R R R

28

0A

-34

, 12

0-12

2

280A

-3,C

C

28

0A

4,C

C

280A

-5,C

C

280A

-6-3

, 12

0-12

2

C C R C CR C C C C

C C C C C

C C

c c c c cc c

c c c c cc c

c c c c c

c c c c cc c c c cc c c c cc

R C

c c

R

R R C C C

R

c c c c c

c c c c c

R R R R R

28

0A

-6.C

C

280A

-7-2

, 12

0-12

2

28

0A

-7,C

C

280

A-8

-1,1

20-1

22

281-1

4-1

,140-1

42

CR

CC C C

c cc c c

c

c c c

c cC C C Rc c cc c c

c c c

c c

c c c

R R

c c c

R R R

R R R C

281-

14, C

C

281-

15, C

C

281-

16,

CC

283-

2, C

C

283-

3, C

C

R RR RRRA A C

C C C C

C C C

A R R C CC C

C CC C C C C

CC C C

C C CC

R

c c c c

RC C C

R R

C C

R R R RR R R R

C C

C C C C C

28

34

, C

C

28

3-5

-1,6

5-6

7

283-

5, C

C

283-

6, C

C

283-

7, C

C

C RC C R

R

C C C C C

C C C C

C CR

R

C C C CC C C C CC C C

c c c c c

C A C CC C

cC RC C

C C C

R R R RR

R RC C C CR RR R

RR

C CRR RR R R R RR C C R

R R

C C C C C

28

3-8

-1,4

44

6

283-

8, C

C

c c

c c

R R

C C

RR

C C

Note: A = abundant? C = common? R = rare.

works of Proshkina-Lavrenko (1949), Deflandre (1969), and Gleser(1966). Description is given only for those species which could not bedefined on the basis of the literature. Within the genera, the new andalready known taxa are discussed in alphabetical order. The holo-types of new taxa are in the collection of the author at the HungarianGeological Survey (Budapest, XIV, Nepstadion ut 14). The paratypeswill be deposited in the collection of Dr. Friedrich Hustedt, in the"Institut fur Meeresforschung" Bremenhaven, Germany.

The undetermined but significant species were numbered and il-lustrated and will be published in a following work. From the siliceoussediments of the above-mentioned sites 42 genera, 108 species, andtheir variants were determined. Nineteen new species and two newcombinations are included. The occurrence and frequency of theknown taxa are given in Tables 1, 2, and 3.

Synonyms are given only in cases where the valid name of the taxonis changed or where the cited publication leaves it unmentioned.

821

Page 6: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

TABLE 2Occurrence Ranges of Late Eocene and Early Oligocene Diatomaceae, Archaeomonadaceae,

and Silicoflagellatae in Samples from DSDP Leg 29, Holes 280A and 281

Sample(Intervalin cm)

Hole 280A

1-2,9-11

1,CC

2-2, 15-17

2-3, 20-22

2,CC

3-4, 120-122

3,CC

4,CC

5,CC

6-3, 120-122

6,CC

7-2, 120-122

7,CC

8-1, 120-122

Hole 281

14-1, 140-142

14, CC

15, CC

16, CC

Page 7: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

TABLE 3Occurrence Ranges of Late Eocene and Early Oligocene Diatomaceae, Archaeomonadaceae,

and Silicoflagellatae in Samples from DSDP Leg 29, Holes 280A and 283

Sample(Intervalin cm)

Hole 280A

1-2,9-111,CC2-2,15-172-3, 20-222,CC34, 120-1223,CC4,CC5,CC6-3, 120-1226,CC7-2, 120-1227,CC8-1, 120-122

Hole 283

2,CC3,CC4,CC5-1,65-675,CC6,CC7,CC

» 8-1,4446á 8,CC

Page 8: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

Most of the species are of marine planktonic origin. Fresh-water orbrackish species were not found.

The taxa—and even the longitudinal forms—may be placed in theorders Centrales Schutt and Mediales Jousé et Proshkina-Lavrenko.The order of Pennales is represented only by the species Rouxia roux-ioides with a short, rudimentary raphe.

Age in the description of species means occurrence in the examinedstrata, and not chronostratigraphic range.

The list of microfossils is not complete because of the abundance ofspecies and specimens and the short time available for this study. Onlywell-preserved taxa of characteristic morphology are described.

BACILLARIOPHYCEAE

(Diatomaceae)

Genus MELOSIRA Agardh, 1824

Melosira architecturalis Brun, 1892(Plate 1, Figures 5, 6)

Description: Brun (1892), in Schmidfs Atlas (1874-1959), pi. 177,fig. 49, 50; Gleser (1969), p. 68, pi. 4, fig. 3.

Synonym: Cyclotella hannae Kanaya (1957), p. 82-84, pi. 3, fig. 10-14.

Discussion: Seemingly this species is larger and more common inthe late Eocene as it is in early Oligocene sediments.

Melosira clavigera Grunow, 1882(Plate 1, Figures 3, 4; Plate 2, Figures 3, 4)

Grunow (1882), in Schmidfs Atlas (1874-1959), pi. 74, fig. 13-15, pi.175, fig. 21-24; Pantocsek (1886), v. 1, p. 46; Van Heurck (1880-1885), pi. 91. fig. 1, 2.

Melosira oamaruensis Grove and Sturt, 1887(Plate 1, Figures 1, 2)

Description: Grove and Sturt (1886-1887), p. 145, pi. 13, fig. 48, 49.Occurrence: Only in late Eocene sediments.

Genus PODOSIRA Ehrenberg, 1840

Podosira sp. Hajós

Description: Highly vaulted valves with thick wall, ornate byradiated reticulate pattern.

Dimension: Diameter 60 µm.Occurrence: DSDP Leg 29, Sample 283-3, CC.Age: Late Eocene.Discussion: They look identical to Podosira sp. in Paramonova

(1964), p. 239, pi. 1, fig. 6 a, b, from W. Siberia, early Eocene-lateEocene.

Genus PSEUDOPODOSIRA Jousé, 1949

Pseudopodosira corolla (A. Schmidt) n. comb. Hajós(Plate 1, Figures 9, 10)

Synonym: Podosira corolla A.S. in Schmidfs Atlas (1874-1959), pi.140, fig. 11, 12 from Oamaru. Podosira aff. corolla A.S. inParamonova (1964), p. 239, pi. 1, fig. 5, from W. Siberia.

Discussion: Our specimens look like those described and illustratedby Kanaya (1957), p. 118, pi. 8, fig. 15-17, as Hercotheca sp. a; oc-currences in samples of Mt. Diablo.

Age: Late Eocene

Pseudopodosira marginata n. sp. Hajós(Plate 1, Figures 7, 8; Holotype: Figure 7)

Derivation of name: marginatus (latin) = marginate.Diagnosis and description: The margin of the valve is hyaline and

punctuated in the form of concentric rings with 12-14 small pores per10 µm arranged in quincunx pattern. The surface of the valve is un-dulated and vaulted. On the outer side of the projecting part of thevalve radial ribs, on the inner side dentiform structures occur every 6per 10 µm. The central part of the valve is depressed.

Dimension: Diameter 22-25 µm.Holotype: Prep. 3696/1, HGS.Type locality: DSDP Leg 29, Sample 281-16, CC.Type level: Late Eocene.Occurrence: Identical with the type locality.

Pseudopodosira sp. Hajós(No illustration)

Description: It seems to be identical with Pseudopodosira bellaPosnova and Gleser in Gleser and Posnova (1964), p. 61, pi. 1, fig. 2,text-fig. 1, 2. occurring in late Eocene sediments of W. Kazakhstan,USSR.

Age: Late Eocene.

Genus HERCOTHECA Ehrenberg, 1844 (1845)

Hercotheca inermis Mann, 1925(Plate 25, Figures 3, 4)

Description: Mann (1925), p. 82, 83, pi. 18, fig. 1, 2.Age: Early Oligocene.

Genus ENDICTYA Ehrenberg, 1844 (1845)

Endictya robusta (Greville) Hanna and Grant, 1926(Plate 4, Figures 5-7; Plate 19, Figures 1, 2)

Description: Hanna and Grant (1926), p. 144, pi. 16, fig. 2, 3;Greville (1861-1866), v. 14, p. 3, pi. 1, fig. 8 as Coscinodiscus robustus.

Age: Late Eocene-early Oligocene.

Genus STEPHANOPYXIS Ehrenberg, 1844 (1845)

Stephanopyxis cf. antiqua Pantocsek, 1892, 1905(Plate 5, Figures 1, 2, 6-8)

Description: Pantocsek (1892), pi. 19, fig. 28 (1905), v. 3, p. 96, fromKusnetzk, USSR.

Age: Late Eocene.

Stephanopyxis barbadensis (Greville) Grunow, 1884(No illustration)

Description: Grunow (1884), p. 91; Greville (1861-1866), v. 13, p. 3,4. pi. 1, fig. 11, as Cresswellia barbadensis from Barbados. Illustratedin Schmidfs Atlas, pi. 130, fig. 6-10, from Oamaru.

Age: Late Eocene-early Oligocene.

Stephanopyxis eocaenica n. sp. Hajós(Plate 4, Figures 3, 4; Holotype)

Derivation of name: eocaenicus (latin) = of Eocene age.Diagnosis and description: The valve slightly vaulted with areolae

arranged in irregular tangential rows. Towards their margin theareolae appear to decrease in size, 4-5 areolae for each 10 µm near thecenter. On the surface of the valve, at a distance of about 8-10 µm fromthe margin a crown of long spines is seen. The spines are strong andlong.

Dimension: Diameter 55-66 µm.Holotype: Prep. 3756/1 HGS.Type locality: DSDP Leg 29, Sample 283-6, CC, holotype.Type level: Late Eocene.Occurrences: DSDP Leg 29, Samples 283-3, CC; 283-6, CC; 283-7,

CC.

Stephanopyxis cf. ferox (Greville) Ralfs, 1861(Plate 3, Figure 7)

Description: In Pritchard (1861), Infus, p. 826, pi. 5, fig. 75;Grunow (1884), p. 89, 90; Greville (1861-1866), v. 7, pi. 8, fig. 19 asCresswellia ferox.

Age: Late Eocene.

Stephanopyxis grunowii Grove and Sturt, 1888(Plate 3, Figures 3, 4; Plate 4, Figures 1, 2)

Description: Schmidfs Atlas (1874-1959), pi. 130, fig. 1-5, fromOamaru.

Age: Late Eocene-early Oligocene.

Stephanopyxis hyalomarginata n. sp. Hajós(Plate 19, Figures 11, 12; Holotype)

Derivation of name: hyalomarginatus (latin) = after the largehyaline margin of the valve.

Diagnosis and description: Valve with large hyaline margin of 3 µm.The areolae are arranged in quincunx pattern. The inner wall of thevalve finely punctuated. On the margin stout spines are seen; their

824

Page 9: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

number changes from about 11 to 18. It is similar to S. superba, but itsstructure is finer, the areolae are denser.

Dimension: Diameter 42-45 µm.Holotype: Prep. 3554/1 HGS.Type locality: DSDP Leg 29, Sample 280A-7-1, 120-122 cm.Type level: Early Oligocene.Occurrences: DSDP Leg 29, Samples 280A-1, CC, 280A-7, CC;

280A-6-3, 120-122 cm.

Stephanopyxis inordinata n. sp. Hajós(Plate 20, Figures 4, 5; Holotype)

Derivation of name: inordinatus (latin) = irregular.Diagnosis and description: On the central part of the valve the

areolae are irregularly arranged and of irregular shape, about 2-3 toeach 10 µm. Towards the margin smaller areolae are arranged in quin-cunx pattern, about 4-5 to every 10 µm. The inner part of the wall fine-ly punctuated. The spines are small at the margin, their number ischanging.

Dimension: Diameter 56-60 µm.Holotype: Prep. 3550/1 HGS.Type locality: DSDP Leg 29, Sample 280A-6-3, 120-122 cm.Type level: Early Oligocene.Occurrences: DSDP Leg 29, Samples 280A-4, CC; 280A-7, CC.Discussion: Our species is similar to Schmidfs Atlas, (1874-1959),

pi. 123, "Oran, Figure 22, fraglich, ob sp. n.?" Our specimens arebetter arranged towards the margin.

Stephanopyxis longispinosa n. sp. Hajós(Plate 20, Figures 1-3; Holotype)

Derivation of name: longispinosus (latin) = after the long marginalspines.

Diagnosis and description: The valve is strongly vaulted with amargin of 1-2.5 µm width. The surface of the valve is decorated byareolae arranged in quincunx pattern. The inner part of the wall isfinely punctuated. On the central part of the valve 2-4 areolae are ineach 10 µm, the dimension of the areolae is decreasing toward themargin. The marginal spines are stout, 20-25 µm long, their numbervaries from 7 to 12. In literature such a Stephanopyxis species withlong spines was not mentioned.

Dimension: Diameter 50-55 µm.Holotype: Prep. 3530/1 HGS.Type locality: DSDP Leg 29, Sample 280A-3-4, 120-122 cm.Type level: Early Oligocene.Occurrences: DSDP Leg 29, 280A-2, CC, 280A-7, CC; 280A-6-3,

120-122 cm; 280A-7-2, 120-122 cm.

Stephanopyxis marginata Grunow, 1884(Plate 2, Figures 5, 6; Plate 3, Figures 5, 6)

Description: Grunow (1884), p. 90, pi. 5, fig. 17.Synonym: Stephanopyxis grossecellulata Pantocsek, 1886, v. 1,

p. 44, pi. 20, fig. 180, from Hungary, St. Peter.Age: Late Eocene.

Stephanopyxis megapora Grunow, 1884(Plate 3, Figures 1, 2)

Description: Grunow (1884), p. 89, pi. 5, fig. 24 a, b.Age: Late Eocene.

Stephanopyxis oamaruensis n. sp. Hajós(Plate 19, Figures 5-8; Holotype, Figures 7, 8)

Derivation of name: After the locality of Oamaru, New Zealand.Diagnosis and description: The valve is strongly vaulted, decorated

with stout spines. The areolae are arranged in quincunx pattern, theirnumber varies between 6 to 7 in each 10 µm. It is identical withSchmidfs Atlas (1874-1959). Plate 130, Figure 29, "Oamaru," NewZealand.

Dimension: Diameter 28-35 µm, the wall is 10-15 µm high.Holotype: Prep. 3530/1 HGS.Type locality: DSDP Leg 29, Sample 280A-3-4, 120-122 cm.Type level: Early Oligocene.Occurrences: DSDP Leg 29, Samples 280A-6-3, 120-122 cm; 280A-

7-2, 120-122 cm; 280A-3, CC; 280A-4, CC, 28OA-5, CC; 280A-6, CC.

Stephanopyxis oligocaenica n. sp. Hajós(Plate 19, Figures 3, 4; Holotype)

Derivation of name: (latin) = of Oligocene age.Diagnosis and description: The form is relatively small, the upper

and lower valve are differently vaulted. On the surface of the valve theareolae are arranged in quincunx pattern, 4 in each 10 µm. The spineson the surface of the valves are irregularly arranged and of differentlength. In literature no similar form was mentioned. For the longspines it is a very characteristic form.

Dimension: Diameter 25-30 µm.Holotype: Prep. 3554/1 HGS.Type locality: DSDP Leg 29, Sample 280A-7-2, 120-122 cm.Type level: Early Oligocene.Occurrences: DSDP Leg 29, Samples 280A-2, CC; 280A-4, CC;

280A-7, CC.

Stephanopyxis subantarctica n. sp. Hajós(Plate 5, Figures 6-8; Holotype)

Derivation of name: subantarcticus (latin) = after the type locality.Diagnosis and description: The cells are large, slightly vaulted, the

margin of the valve is 4 µm wide surrounded by a hyalomargin and aring of 4 to 5 unequal areolae. The areolae of the valve are arranged inquincunx pattern, 2.5-3 in each 10 µm, decreasing toward the margin.The inner part of the wall is finely punctuated.

Dimension: Diameter 132-140 µm.Holotype: 3677/1 HGS.Type locality: DSDP Leg 29, Sample 281-15, CC.Type level: Late Eocene.Occurrence: DSDP Leg 29, Sample 281-16, CC.Discussion: This species, showing a close affinity with Stephanopyx-

is turris var. antarctica Grunow, has a flat, slightly constricted valve.The marginal areolae are irregular, constricted, and without strongspines. The cells are, however, larger, more flattened with irregular,constricted marginal areolae.

Stephanopyxis superba (Greville) Grunow, 1884(Plate 1, Figures 11-13)

Synonym: Cresswellia superba Greville (1865), v. 9, pi. 8, fig. 3-5.Description: Grunow (1884), p. 91.Age: Late Eocene.

Stephanopyxis turris (Greville and Arnott) Ralfsvar. arctica Grunow, forma?

(Plate 3, Figures 8, 9)

Description: Grunow (1884), p. 89, pi. 5, fig. 21, as Stephanopyxisturris var. arctica "anlich der var. intermedia, aber mit noch grösserenMaschen, und meist nur wenigen Stacheln."

Age: Late Eocene.

Stephanopyxis sp. Hajós(Plate 19, Figures 9, 10)

Description: Similar to Stephanopyxis megapora except for thehyaline margin and the much smaller areolae around the margin.

Age: Early Oligocene.

Genus COSCINODISCUS Ehrenberg, 1838

Coscinodiscus bulliens A. Schmidt, 1878(Plate 6, Figures 5, 6)

In Schmidfs Atlas (1874-1959), pi. 61, fig. 11, 12.Age: Late Eocene.

Coscinodiscus denarius A. Schmidt, 1878(Plate 7, Figures 4, 5)

In Schmidfs Atlas (1874-1959), pi. 57, figs. 20-21, from Barbados,Springfield. Similar to I.e. pi. 138, fig. 6, Oamaru, sp. n.?

Description: Hustedt (1927-1930), v. 1, p. 399-400, fig. 210.Age: Late Eocene.

Coscinodiscus marginatus Ehrenberg, 1843(Plate 20, Figures 9, 10)

Description: Hustedt (1927-1930), v. 1, p. 416, fig. 223.Age: Early Oligocene.

825

Page 10: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

Coscinodiscus cf. moelleri A. Schmidt var. macroporus Grunow, 1884(Plate 20, Figures 13, 14)

Description: Hustedt (1927-1930), v. 1, p. 395, fig. 206, Grunow(1884), p. 84, pi. 4, fig. 25.

Discussion: Specimens are much smaller as by Paramonova (1964),p. 239, pi. 5, fig. 4a, b, published from NW Siberia. Early Oligocene.

Age: Early Oligocene.

Coscinodiscus oculusiridis Ehrenberg var. borealis (Bailey) Cleve, 1883(Plate 4, Figures 10, 11)

Description: Hustedt (1927-1930), v. 1, p. 456, fig. 253.Age: Late Eocene.

Coscinodiscus cf. radiatus Ehrenberg, 1839(Plate 4, Figures 12-14; Plate 5, Figures 3-5)

Description: Hustedt (1927-1930), v. 1, p. 420-421, fig. 225.Discussion: It is similar to the form published by Kanaya from

California (1957), p. 91-93, pi. 5, fig. 4a, b.Age: Late Eocene.

Coscinodiscus radiatus Ehrenberg var. nodulifer Reinhold, 1937(Plate 4, Figures 8, 9; Plate 6, Figures 3, 4)

Description: Reinhold (1937), p. 100-101, pi. 8, fig. 6, from E. Java.Age: Late Eocene.

Coscinodiscus spiralis n. sp. Hajós(Plate 7, Figures 1-3; Holotype: Figures 1, 2)

Derivation of name: spiralis (latin) = spiral.Diagnosis and description: The disc is flat, the margin is 1.5 µm

wide, bending downward, finely striated, 16 striae in each 10 µm. Thecentral area is small, often asymmetrical, not in the midst of the disc.The surface of the disc is finely areolated with 12-13 areolae in each 10µm. The areolae are arranged in quincunx pattern, in radial and spiralrows. The species is similar to C. debilis Grove from Oamaru inSchmidfs Atlas, pi. 163, fig. 4. However in the latter species the radialrows are not spiral.

Dimension: Diameter 42-90 µm.Holotype: Prep. 3748/1 HGS.Type locality: DSDP Leg 29, Sample 283-4, CC.Type level: Late Eocene.Age: Late Eocene-early Oligocene.Occurrences: DSDP Leg 29, Samples 283-5, CC; 280A-6-3, 120-122

cm; 280A-3, CC; 280A-7, CC.Discussion: In the Oligocene sediments the forms are much smaller.

Coscinodiscus symbolophorus Grunow, 1884(Plate 20, Figures 11, 12)

Description: Grunow (1884), p. 82, pi. 4, fig. 3-6.Age: Early Oligocene.Discussion: Common, but only small specimens with a diameter of

30-50 µm.

Coscinodiscus symbolophorus Grunowvar. oamaruensis A. Schmidt, 1888

(Plate 6, Figures 1, 2; Plate 10, Figure 1; Plate 20, Figure 15)

In Schmidfs Atlas (1874-1959), pi. 138, fig. 4, 5.Age: Late Eocene-early Oligocene.

Coscinodiscus tuberculatus Greville, 1861(Plate 20, Figures 6-8)

Description: Greville (1861-1866), n. ser., v. 9, p. 42; pi. 4, fig. 6.Type locality: "Barbados"-Oceanic formation; Kanaya (1957), p.

94, pi. 6, fig. 6-8.Age: Early Oligocene.

Genus LIRADISCUS Greville, 1865

Liradiscus ovalis Greville, 1865(Plate 17, Figures 1, 2)

Description: Greville (1861-1866), v. 13, p. 5, pi. 1, fig. 15, 16.Age: Late Eocene.

Liradiscus sp. Hajós(Plate 21, Figures 3, 4)

Description: Valve convex ellipsoidal with remarkable reticulationirregular in shape, and with some short spines. Found only in one sam-ple.

Age: Early Oligocene.

Genus MUELLERIOPSIS Hendey, 1972

Muelleriopsis limbata (Ehrenberg) Hendey, 1972(Plate 11, Figures 1-4)

Description: Hendey (1972), p. 87, pi. 1, 2.Synonym: Pyxidicula limbata Ehrenberg (1844), p. 86; Pyxidicula,

Stephanopyxis? limbata Ehrenberg, Muelleriella limbata Ehrenberg(1854), pi. 18, fig. 7, Van Heurck (1896), p. 435, fig. 160.

Age: Late Eocene-early Oligocene.

Genus XANTHIOPYXIS Ehrenberg, 1844

Xanthiopyxis cf. acrolopha Forti, 1912(Plate 11, Figure 6; Plate 17, Figures 4, 10, 12; Plate 21, Figure 5)

Description: Forti (1912), v. 23, p. 84; Hanna (1927), p. 124, pi. 21,fig. 10, 11.

Age: Late Eocene-early Oligocene.

Xanthiopyxis oblonga Ehrenberg, 1844 (1845)(Plate 17, Figure 11)

Description: Kanaya (1957), p. 116, pi. 8, fig. 12 a, b.Age: Late Eocene

Xanthiopyxis panduraeformis Pantocsek, 1886(Plate 11, Figure 5; Plate 17, Figure 9)

Description: Pantocsek (1886), v. 1, p. 43, pi. 29, fig. 297, fromSzakal, Hungary.

Age: Late Eocene.

Xanthiopyxis sp. Hajós(No illustration)

Description: Oval valve, with stout long spines.Age: Late Eocene.

Genus PORETZKIA Jousé, 1949

Poretzkia? sp.(Plate 17, Figure 3)

Description: The valve of this remarkable species is convex, flat,finely punctuated, with a central area; the ornamentation on itsmargin consists of prominent spines in coronal grouping. Occurrencein one sample only. The genus is doubtful, eventually a new one.

Age: Late Eocene.

Genus STICTODISCUS Greville, 1861

Stictodiscus californicus Greville var. nitida Grove and Sturt, 1887(Plate 21, Figures 1, 2)

Description: Grove and Sturt (1886-1887), v. 3, p. 66, pi. 5, fig. 7.Synonym: Stictodiscus nitidus Grove and Sturt (1888) in Schmidfs

Atlas (1874-1959), pi. 131, fig. 7, 8; pi. 202, fig. 4, 5; pi. 451, figs. 5-7.Age: Early Oligocene.Discussion: All the I.e. figures are from Oamaru.

Stictodiscus grovei A. Schmidt, 1890(Plate 10, Figures 4-6)

In Schmidfs Atlas (1874-1959), pi. 147, fig. 5-7, from Oamaru.Age: Late Eocene.Discussion: This is a transitional species between the genera Stic-

todiscus and Arachnoidiscus.

826

Page 11: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

Genus ARACHNOIDISCUS Bailey, in Ehrenberg, 1849 (1850)

Arachnoidiscus indicus Ehrenberg, 1854(Plate 9, Figures 1,2)

Description: Ehrenberg (1854), p. 165 (non vidi); Grove and Sturt(1887), p. 66, from Oamaru.

Age: Late Eocene.

Genus AULACODISCUS Ehrenberg, 1844 (1845)

Aulacodiscus rattrayii Grove and Sturt, 1887(Plate 9, Figure 3)

Description: Grove and Sturt (1886-1887), ser. 2, v. 3, p. 139-140,pi. 11, fig. 29, from Oamaru.

Age: Late Eocene.

Arachnoidiscus russicus Pantocsek, 1892(Plate 10, Figures 2, 3)

Description: Pantocsek (1892), v. 3, pi. 15, fig. 226; (1905), p. 14.Age: Late Eocene.Discussion: Its ornamentation is coarser, the areolae rare, larger,

thus it cannot be ranged to the Arachnoidiscus indicus species. Identicalwith the form in Schmidfs Atlas (1874-1959), pi. 147, fig. 9 fromOamaru, "vielleicht zu Arachnoidiscus indicus zu rechnen."

Arachnoidiscus schmidti n. sp. Hajós(Plate 8, Figures 1, 2; Holotype)

Derivation of name: Named in honor of A. Schmidt.Diagnosis and description: The disc is flat, its surface is decorated by

concentrically arranged dots, while divided by radial lines. These linesdo not reach the central part of the disc, and between two long linesone longer and two shorter lines are seen. The radial lines are zig-zagged. The center area is decorated by short ridges. The number oflines and ridges is variable.

Dimension: Diameter 110-115 µm.Holotype: Prep. 3748/1 HGS.Type locality: DSDP Leg 29, Sample 283-4, CC.Type level: Late Eocene.Occurrences: DSDP Leg 29, Samples 283-5-1, 65-67 cm; 283-5, CC;

283-6, CC.Discussion: The species is identical to Schmidfs Atlas pi. 147, fig. 1,

originating from Oamaru, named Arachnoidiscus ehrenbergii Bail. var.oamaruensis, determined as "uncertain" by Schmidt. Regarding its or-namentation it shows closer affinity with A. russicus.

Genus ASTEROLAMPRA Ehrenberg, 1844 (1845)

Asterolampra schmidti n. sp. Hajós(Plate 21, Figure 6; Holotype)

Derivation of name: Named in honor of A. Schmidt.Diagnosis and description: The disc is flat, heavily decorated. The

areolated surface is divided by radial, hyaline areas in several sectionswhose number varies between 6 and 9. The areas are separated byradial ridges which are terminated in the center part of the disc form-ing a star-like pattern. The number of the sections is equal to thenumber of individual parts of the star, i.e., 6 to 9, however, thisnumber may reach 21 by further division. On the areolated part of thesections the areolae are arranged in quincunx pattern with 6-7 areolaein each 10 µm.

Dimension: Diameter 65-85 µm.Holotype: Prep. 3550/1 HGS.Type locality: DSDP Leg 29, Sample 280A-6-3, 120-122 cm.Type level: Early Oligocene.Occurrences: DSDP Leg 29, Samples 280A-1-2, 9-11 cm; 280A-1-7,

CC.Discussion: This form is extraordinarily variable. It is similar to

Schmidfs Atlas, pi. 137, fig. 6, "Oamaru, n. sp.?" and fig. 7, "Bar-bados, fraglich."

Genus ACTINOPTYCHUS Ehrenberg, 1839

Actinoptychus splendens (Schadbolt) Ralfs, 1861(Plate 9, Figure 6)

Description: In Pritchard (1861), Infus, p. 840. (non vidi); Hustedt(1927-1930), v. 1, p. 478-79, fig. 265.

Age: Late Eocene.

Genus AULISCUS Ehrenberg, 1843 (1844)

Auliscus gleser n. sp. Hajós(Plate 8, Figures 3-5; Holotype)

Derivation of name: Named in honor of S.I. Gleser, USSR.Diagnosis and description: The disc is elliptic, flat. The ornamenta-

tion is a fine punctuation, arranged nearly cross-shaped, with a lightbend at the center. Two protruding round pores are seen near themargin, at the two ends of the longitudinal axis.

Dimensions: Length 40 µm, width 32 µm.Holotype: Prep. 3756/1 HGS.Type locality: DSDP Leg 29, Sample 283-6, CC.Type level: Late Eocene.Discussion: Nearest from A. actinoptychoides Gleser, in Gleser and

Posnova (1964), p. 54-56, pi. 3, fig. 1, 2. Gleser described this speciesfrom late Eocene and early Oligocene of Ukraine and Kazakhstan,USSR.

Auliscus oamaruensis Grove and Sturt, 1887(Plate 10, Figure 7)

Description: Grove and Sturt (1886-1887), ser. 2, v. 2, p. 10, 11, pi.3., fig. 13, from Oamaru.

Age: Late Eocene.

Genus ACTINOCYCLUS Ehrenberg 1837 (1838)

Actinocyclus octonarius Ehrenberg, 1838 var. ?(Plate 9, Figure 4)

Description: Hustedt (1927-1930), v. 1, p. 525-533, fig. 298.Age: Late Eocene.Discussion: It is not the typical form.

Genus CORONA Lefébure et Chenevière, 1938

Corona magnifica Lefébure et Chenevière, 1938(Plate 8, Figures 6, 7)

Description: Lefébure et Chenevière (1938), p. 10, pi. 1, fig. 1, fromKamischev, USSR.

Age: Late Eocene.

Genus RHIZOSOLENIA Ehrenberg, 1841 (1843)

Rhizosolenia interposita n. sp. Hajós(Plate 21, Figure 8; Holotype)

Derivation of name: Interpositus (latin) = intermediate.Diagnosis and description: Only apical extensions are found but

they are common in all samples of the Oligocene sediments. Thisspecies shows close affinity with the Rhizosolenia curvirostris Jousé(1968), p. 19, pi. 3, fig. 1-3. The wall of the extension is 3 µm thick, itsdiameter 11-12 µm. To the end it becomes thinner and at last forms abeak. This beak is asymmetrical, bifurcate, separated in two parts. AtJousé's species the extension does not attenuate to the end and thebeak is larger, greater. It is an intermediate form between R. cretacean. sp. Hajós and R. curvirostris.

Dimension: Diameter 11-12 µm, the process is 100-110 µm long.Holotype: Prep. 3550/1 HGS.Type locality: DSDP Leg 29, 280A-6-3, 120-122 cm.Type level: Early Oligocene.Occurrences: DSDP Leg 29, Sample 280A-2-3, 20-22 cm; 280A-1,

CC; 2, CC; 3, CC; 4, CC; 5, CC; 6, CC; 7, CC.

827

Page 12: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

Rhizosolenia sp. Hajós(Plate 12, Figure 1)

Description: Long, small, apical extension at the base with a largevalve, and very short spines. No complete valve has been observed.

Age: Late Eocene.

Genus CHAETOCEROS Ehrenberg, 1844 (1845)

Chaetoceros sp. Hajós(Plate 9, Figure 5)

Description: The cells form a chain. The surface of the valve is flat.From the valve's margin are rising several setae proceeding outwardsat right angles to the axis of the chain. Two of the four strong setaestart from the lower valve of a cell and intersect two rising ones fromthe upper valve of another cell.

Age: Late Eocene.

Genus TRICERATIUM Ehrenberg, 1839 (1841)

Triceratium arcticum Brightwell, 1853

Description: Proshkina-Lavrenko (1949-1950), v. 2, p. 168, pi. 94,fig. 5a, b.

Age: Early Oligocene

Triceratium castellatum West var.?, 1885(Plate 12, Figures 4, 5)

In Schmidfs Atlas (1874-1959), pi. 88, fig. 16, from Barbados.Synonym: Triceratium fractum Walker and Chase (1888) in

Schmidfs Atlas, pi. 128, fig. 9, 10, Oamaru; T. castellatum West var.fracta Grunow in Schmidfs Atlas, pi. 167, fig. 7, 8, Oamaru; T. frac-tum Walker and Chase in Schmidfs Atlas, pi. 167, fig. 9, 10, Oamaru.

Age: Late Eocene.

Triceratium chenevieri Meister(Plate 21, Figures 9, 10)

In Strelnikova (1960), pi. 9, fig. 3, from USSR, late Eocene-earlyOligocene.

Age: Early Oligocene.

Triceratium crenulatum Grove and Sturt, 1887(Plate 13, Figures 1, 2)

Description: Grove and Sturt (1886-1887), ser. 2, v. 3, p. 7, pi. 2, fig.3, 4, Oamaru, in Schmidfs Atlas (1874-1959), pi. 128, fig. 20, 21,Oamaru.

Age: Late Eocene.

Triceratium morlandii Grove and Sturt, 1887(Plate 13, Figures 7, 8)

Description: Grove and Sturt (1886-1887), ser. 2, v. 3, p. 7, 8, pi. 2,fig. 5, Oamaru, in Schmidfs Atlas (1874-1959), pi. 128, fig. 5, 6,Oamaru, pi. 150, fig. 22, Oamaru.

Age: Late Eocene.

Triceratium oamaruense Grove and Sturt, 1887(Plate 12, Figures 2, 3)

Description: Grove and Sturt (1886-1887), ser. 2, v. 3, p. 135, pi. 10,fig. 18, from Oamaru, in Schmidfs Atlas (1874-1959), pi. 128, fig. 2,from Oamaru.

Age: Late Eocene.

Triceratium oamaruense Grove and Sturtvar. sparsimpunctata Grove, 1890

(Plate 12, Figures 6, 7)

In Schmidfs Atlas (1874-1959), pi. 159, fig. 4.Age: Late Eocene.

Triceratium pulvinar A. Schmidt, 1888(Plate 12, Figures 8, 9; Plate 13, Figures 3, 4; Plate 14,

Figures 1-8; Plate 21, Figures 11, 12)

In Schmidfs Atlas (1874-1957), pi. 126, fig. 8, pi. 168, fig. 7, fromOamaru.

Age: Late Eocene-early Oligocene.Discussion: Remarkable and common form of all the samples of

late Eocene and early Oligocene.

Genus BIDDULPHIA Gray, 1821

Biddulphia fimbriata Greville, 1865(Plate 22, Figures 7, 8)

Description: Greville (1861-1866), ser. 14, p. 6, pi. 1, fig. 4, fromBarbados.

Age: Early Oligocene.

Biddulphia rigida A. Schmidt, 1888(Plate 13, Figures 5, 6)

In Schmidfs Atlas (1874-1957), pi. 120, fig. 1, 2, from Oamaru.Synonym: Biddulphia fistulosa Pantocsek (1892), v. 3, pi. 18, fig.

273; (1905), p. 21, from Kusnetzk, USSR.Age: Late Eocene.

Genus CERATAULUS Ehrenberg, 1843 (1844)

Cerataulus pacificus n. sp. Hajós(Plate 22, Figures 1-6; Holotype 1, 2)

Derivation of name: After the type locality.Diagnosis and description: The cell is rounded with thick walls and

variable ornamentation. The surface of the disc is decorated by areolaeof different size and approximately radial arrangement and irregularform. The outward margin of the disc is bent downward, this part is 6-8 µm high. At the two ends of a diagonal line two protruding pores areseen. At the center of the valve are two strong spines. The pores of theareolae show a fine, complex inner structure.

Dimension: Diameter 36-85 µm.Holotype: Prep. 3503/1 HGS.Type locality: DSDP Leg 29, 280A-1-1, 9-11 cm.Type level: Early Oligocene.Occurrences: DSDP Leg 29, Samples 280A-2-3, 20-22 cm; 280A-3-

4, 120-122 cm; 280A-6-3, 120-122 cm—28OA-7-2, 120-122 cm; 280A-1,CC—280A-7, CC.

Discussion: Similar to Cerataulus marginatus Grove and Sturt(1886-1887), ser. 2, v. 3, p. 135, pi. 11, fig. 21. This species shows twoprotruding pores as well, however its ornamentation consists of finerareolae.

Genus CERATAULINA Peragallo, 1892

Cerataulina praebergonii n. sp. Hajós(Plate 14, Figure 13; Plate 15, Figures 5-7; Holotype: Figure 5)

Derivation of name: Conform to its similarity with the species C.bergonii Peragallo.

Diagnosis and description: The cylindric valve with an inner rod-shaped statospore. The surface of the statospore is finely punctuatedwith scattered spicules. The wall of the valve is terminated in severalhyaline filaments.

Dimension: Diameter 18 µm, length 55-65 µm, length of filaments36-60 µm, fragmented.

Holotype: Prep. 3756/1 HGS.Type locality: DSDP Leg 29, Sample 283-6, CC.Type level: Late Eocene.Occurrences: Leg 29, 281-14, CC; 281-15, CC.Discussion: Very similar to C. bergonii Peragallo (1892), v. 1, p. 103,

pi. 13, fig. 15, 16, /nHustedt (1927-1930), v. 1, p. 869-871, fig. 517, it isa species of the neritic plankton.

Genus HEMIAULUS Ehrenberg, 1844 (1845)

Hemiaulus caracteristicus n. sp. Hajós(Plate 15, Figure 10; Holotype)

Derivation of name: caracteristicus (latin) = characteristic.Diagnosis and description: Found only as a side view. The valve has

a relatively long and narrow base of 8 µm width, at both ends extreme-ly long horns with long interior spine. The valve is roughly areolatedbecoming finer towards the end of the horns.

Dimensions: Diameter 85 µm, height of the horns 45 µm, height ofthe spines 10 µm.

828

Page 13: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

Holotype: Prep. 3748/1 HGS.Type locality: DSDP Leg 29, Sample 283-4, CC.Type level: Late Eocene.Discussion: Illustrated in Schmidfs Atlas (1874-1959), pi. 142, fig.

12, Mors (Denmark)—"scheint Witt und mir eine neue Spezies zusein."

Hemiaulus incisus n. sp. Hajós(Plate 23, Figures 4-9; Holotype: Figures 6, 7)

Derivation of name: incisus (latin) = incision.Diagnosis and description: Valve lanceolated in outline, in the mid-

dle part flatly vaulted, with two long horns at both ends of the valve.At the base of the horns, on the valve incisions are seen. Areolae arecoarse and scattered, becoming finer and parallel up to the end of thehorns and spines.

Dimension: Diameter 22-45 µm, height 17-20 µm, length of thehorns from the incision 50 µm, length of the spines 10-15 µm.

Holotype: Prep. 3550/1 HGS.Type locality: DSDP Leg 29, Sample 280A-6-3, 120-122 cm.Type level: Early Oligocene.Occurrences: DSDP Leg 29, 280A-7-2, 120-122 cm; 280A-5, CC.Discussion: Similar to Hemiaulus kittonii Grunow (1884), p. 61,

Schmidfs Atlas, pi. 142, fig. 2-8, 11. Mors.

Hemiaulus polymorphus Grunow, 1884, var.?(Plate 15, Figures 11, 12)

Synonym: Hemiaulus polycystinorum var. mesolepta Grunow(1884).

Description: Grunow (1884), p. 65, pi. 2, fig. 43, from Barbados.Age: Late Eocene.Discussion: It differs from the characteristic forms, probably H.

polymorphus n. var. with long horns.

Hemiaulus polymorphus Grunow, 1884(Plate 23, Figures 2, 3)

Description: Grunow (1884), p. 66, pi. 2, fig. 43; Proshkina-Lavrenko (1949-1950), v. 2, p. 185, pi. 71, fig. 2, 3.

Age: Early Oligocene.

Genus TRINACRIA Heiberg, 1863

Trinacria excavata Heiberg, 1863(Plate 14, Figure 9; Plate 15, Figures 8, 9; Plate 23, Figure 1)

Description: Grunow (1884), p. 67. Franz Joseph Land, inSchmidfs Atlas (1874-1959), pi. 96, fig. 6-8; pi. 97, fig. 6-10, fromMors, Denmark.

Age: Late Eocene-early Oligocene.

Trinacria simulacrum Grove and Sturt, 1887(Plate 15, Figures 1-4)

Description: Grove and Sturt (1886-1887), ser. 2, v. 3, p. 144; pi. 13,fig. 46, from Oamaru. Similar to Schmidfs Atlas (1874-1959), pi. 127,fig. 14.

Age: Late Eocene.

Genus PTEROTHECA Grunow, 1881

Pterotheca aculeifera Grunow in Van Heurck, 1881(Plate 16, Figures 6-8)

Description: Grunow in Van Heurck (1880-1885), pi. 83, bis. fig. 5,from Mors, Denmark, in Van Heurck (1896), p. 430, fig. 151.

Age: Late Eocene.

Pterotheca danica Grunow in Van Heurck, 1881(Plate 16, Figures 12-15)

Description: Grunow in Van Heurck (1880-1885), pi. 83, bis. fig. 7,8, as Stephanogonia/Pterothecal/danica from Mors, Denmark.

Age: Late Eocene.

Genus PYRGUPYXIS Hendey, 1969

Pyrgupyxis eocena Hendey, 1969(Plate 24, Figures 3-5, 8, 9)

Description: Hendey (1969), p. 3-5. fig. 1-4, from cores of SouthAtlantic Eocene.

Age: Early Oligocene.

Pyrgupyxis gracilis/Tempère and Forti/Hendey var. buccinalis/Forti/Hendey, 1969

(No illustration)

Description: Hendey (1969), p. 5, Forti (1909), p. 26, pi. 2, fig. 6,Oamaru.

Age: Late Eocene.

Pyrgupyxis gracilis/Tempère and Forti/Hendey var. saratoviana/Pantocsek/ Hendey, 1969(Plate 16, Figures 1-5)

Description: Hendey (1969), p. 5, from South Atlantic Eocene core.Synonym: Hemiaulusi saratovianus Pantocsek (1889), v. 2, p. 83, pi.

13, fig. 235, from Kusnetzk, USSR.Age: Late Eocene-early Oligocene.

Pyrgupyxis johnsoniana (Forti) Hendey, 1969(Plate 16, Figures 9-11, 16; Plate 24, Figures 6, 7, 10-12)

Description: Hendey (1969), p. 5.Synonym: Pyxilla johnsoniana Greville in Forti (1909), p. 26, pi. 2,

fig. 2, from Oamaru, non Pyxilla johnsoniana Greville (1865), v. 13, n.ser., p. 2, pi. 1, fig. 6.

Age: Late Eocene-early Oligocene.

Pyrgupyxis johnsoniana (Forti) Hendeyvar. intermedia/Tempère and Forti/Hendey, 1969

(Plate 24, Figures 1, 2)

Description: Hendey (1969), p. 5, from South Atlantic core; Forti(1909), p. 26, pi. 2, fig. 3, 4, Barbados.

Age: Late Eocene-early Oligocene.

Genus ACANTHODISCUS Pantocsek, 1892

Acanthodiscus rugosus Pantocsek, 1892(Plate 17, Figures 5, 6)

Description: Pantocsek (1892), v. 3, pi. 11, fig. 180; (1905), p. 3, 4,from Kusnetzk, USSR.

Age: Late Eocene.Discussion: This form is more plicate and vaulted than the species

of Pantocsek. Possibly it is Xanthiopyxis.

Genus GONIOTHECIUM Ehrenberg, 1844 (1845)

Goniothecium odontella Ehrenberg, 1844(Plate 17, Figure 13; Plate 25, Figures 1, 2)

Description: Jousé (1951), p. 60, pi. 5, fig. 1-7.Age: Late Eocene-early Oligocene.

Genus STEPHANOGONIA Ehrenberg, 1844 (1845)

Stephanogonia cf. polyacantha Forti, 1913(Plate 17, Figures 7, 8)

Description: in Hanna (1932), p. 218, pi. 16, fig. 8.Age: Late Eocene.

Genus PSEUDORUTILARIA Grove and Sturt, 1886

Pseudorutilaria moπile Grove and Sturt, 1886(Plate 14, Figures 10-12)

Description: Grove and Sturt (1886), p. 324, pi. 18, fig. 7, 8, fromOamaru.

Age: Late Eocene.

829

Page 14: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

Genus KISSELEVIELLA Sheshukova, 1962

Kisseleviella carina Sheshukova, 1962(Plate 25, Figures 5-9, 14)

Description: Sheshukova-Poretzkaya (1962), fig. 2a-g; p. 236-237,pi. 40, fig. 6a, b, v; pi. 41, fig. 5a, b, v.

Age: Early Oligocene.

Genus ROUXIA Brun and Héribaud, 1893

Rouxia rouxioides (Schrader) n. comb. Hajós(Plate 25, Figures 10-13)

Description: Schrader (1969), p. 67-68, pi. 15, fig. 11 as Diploneisrouxioides, from Oamaru.

Age: Early Oligocene.

ARCHAEOMONADACEAE

Genus ARCHAEOMONAS Deflandre, 1932a

Archaeomonas dubia Deflandre, 1933, p. 84, fig. 10(Plate 18, Figures 4, 5)

Age: Late Eocene.

Archaeomonas oamaruensis Deflandre, 1933, p. 85, fig. 15(Plate 18, Figures 1-3)

Age: Late Eocene.

Archaeomonas ovalis Deflandre, 1933, p. 86, fig. 27(Plate 25, Figures 15-16)

Age: Early Oligocene

Archaeomonas reticulosa Deflandre 1932b, p. 350, fig. 20-21(Plate 18, Figures 13, 14)

Age: Late Eocene.

Genus ARCHAEOSPHAERIDIUM Deflandre 1932a

Archaeosphaeridium armatum n. sp. Hajós(Plate 18, Figures 6-8; Holotype: 6, 7)

Derivation of name: armatus (latin) — armed.Diagnosis and description: Globular cyst with large, rounded pore.

Round the pore 2.5 µm high thick wall. On the opposite side of thepores of the cyst 1-4 heavy, long spines are present. The surface of thecyst is simple, smooth, hyaline. It is similar to Archaeosphaeridiumpachyceros Deflandre (1933), p. 88, 89, fig. 40, 41. The difference isthat the number of spines, on the species under discussion, is lower;the spines are longer and occur on the opposite side of the cysfs pore.

Dimension: Diameter 20-24 µm. Length of the spine = 30-60 µm.Holotype: 3756/1 HGS.Type locality: DSDP Leg 29, Sample 283-6, CC.Type level: Late Eocene.Occurrence: DSDP Leg 29, Sample 280A-2-3, 20-22 cm.Age: Late Eocene-early Oligocene.

Genus PAR ARCHAEOMONAS Deflandre, 1932a

Pararchaeomonas decorata n. sp. Hajós(Plate 18, Figures 9, 10; Holotype)

Derivation of name: decoratus (latin) decorated.Diagnosis and description: Globular cyst with large, rounded, pro-

jecting pore. The surface of the cyst is plicated. At the contact of theplicae are spines, similar to Pararchaeomonasi rigaudae Rampi 1969,in Deflandre (1969), fig. 4400, from Eocene. Kreyenhagen, California,USA, but our forms are ornamented.

Dimension: Diameter 25 µm.Holotype: Prep. 3748/1. HGS.Type locality: DSDP Leg 29, Sample 283-4, CC.Age: Late Eocene.

Pararchaeomonas (?) rigaudae Rampi, 1969,in Deflandre 1969, fig. 4400

(Plate 18, Figures 11, 12)

Age: Late Eocene.

SILICOFLAGELLATAE

Genus DICTYOCHA Ehrenberg, 1839

Dictyocha deflandrei Frenguelli, 1940, p. 65, fig. 14a, d.(non vidi)

In Gleser (1966), p. 244, pi. 12, fig. 13, 16; pi. 32, fig. 4.(Plate 25, Figure 18)

Age: Early Oligocene.

Dictyocha fibula Ehrenberg, 1839, p. 129 (non vidi)(Plate 18, Figures 15, 16)

In Gleser (1966), p. 24, pi. 13, fig. 6-9; pi. 14, fig. 1-9.Age: Late Eocene.

Dictyocha hexacantha Schulz, 1928(No illustration)

Age: Late Eocene.

Genus HANNAITES Mandra, 1969

Hannaites quadria Mandra, 1969(No illustration)

Age: Late Eocene.

Genus MESOCENA Ehrenberg, 1843

Mesocena apiculata (Schulz) Hanna, 1931(Plate 18, Figure 18; Plate 25, Figure 17)

Age: Late Eocene-early Oligocene.

Mesocena oamaruensis Schulz, 1928(No illustration)

Age: Late Eocene.

Mesocena oamaruensis Schulz var. quadrangula Schulz, 1928(No illustration)

Age: Late Eocene.

Genus NAVICULOPSIS Frenguelli, 1940

Naviculopsis biapiculata (Lemmermann) Frenguelli, 1940(Plate 18, Figure 20)

In Gleser (1966), p. 256, pi. 16, fig. 2-5.Age: Late Eocene.

Naviculopsis biapiculata (Lemmermann) Frenguellivar. constricta (Schulz) Gleser (1966)

(Plate 18, Figure 21)

Age: Late Eocene.

Naviculopsis biapiculata (Lemmermann) Frenguellivar. minor (Schulz) Gleser, 1966

(No illustration)

Age: Late Eocene.

Naviculopsis trispinosa (Schulz) Gleser 1966(Plate 25, Figure 19)

Age: Early Oligocene.

PORIFERA

Age: Late Eocene.

Age: Late Eocene.

Spicule I(Plate 18, Figure 17)

Spicule II(Plate 18, Figure 19)

830

Page 15: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

STRATIGRAPHICAL OBSERVATIONS

Paleontological determinations made possible thestratigraphical dating of late Eocene-early Oligocenesediments found in Hole 280A, Site 281, and 283, as wellas the correlation of late Eocene sediments found atSites 281 and 283. To this end, a diagram was con-structed (Figure 3). On this curve a marks the com-parison of the number of species occurring in late Eo-cene samples of both Sites 281 and 283, and curve bdesignates the percentage of species occurring in late Eo-cene samples of both Sites 281 and 283, related to thetotal species numbers, respectively.

Thus it became possible to correlate the diatomsediments of Site 281 of about 30 meters thickness withthe diatom sediments of Site 283 of about 200 metersthickness. It may be stated from the diagram that a cor-relation of samples 281-14, CC with those of 283-3, CCand 4, CC, as well as those of Samples 281-15, CC and16, CC with Samples 283-5, CC and 6, CC is possible.

The microflora studies have not permitted the deter-mination of standard or local biozones. In this region ofthe SW Pacific the lack of Oligocene sedimentationmakes it impossible to determine the top of early Oligo-cene species ranges. On the other hand, the determina-tion of the bottom of species ranges in the middleEocene-early Eocene-Paleocene sediments was impossi-ble because of the complete lack of siliceous microfloras.This disappearance downwards is rather sudden, al-though the sediment was unchanged clayey silt and siltyclay; e.g., 283-8, CC yielded an invaluable amount ofdiatoms and Silicoflagellata, while 283-9-1 turned out tobe barren. This absence of siliceous microfossils is eitheroriginal, or brought about by dissolution during thesedimentation or during diagenesis.

The distribution of short-range and remarkably domi-nant species has been compared to that of the Califor-nian diatom assemblage described by Kanaya (1957)which is characteristic of the late Eocene, as well as withthe Silicoflagellata (Bukry and Foster, 1974), nanno-fossil (Edwards 1973), and planktonic foraminiferazones of paleogeographically related areas.

Number ofspecimens

20 T

SITE

281

14 CC

15 CC

16 CC

2 CC 3 CC

^

4 CC

- -―.. —

51

65-67cm

- — • .

ITE 283

5 CC

-^×*

- ^

6 CC

- - " ^

7 CC

81

44-46cm

*•»

8 CC

- •

The species represented in Tables 1 and 3 as well asthe occurrence in our samples of the zone marker speciesof the authors quoted above have been compared to thestandard calcareous nannoplankton zones by Martini(1971, p. 741, 747). It could be stated that samples ofSites 281 and 283 may be correlated with Zones NP-18and NP-19, while the samples of Hole 280A with ZoneNP-22 of Martini (1971) (Figure 4).

ACKNOWLEDGMENTSThe author thanks the Deep Sea Drilling Project and in par-

ticular Dr. Terence Edgar, Chief Scientist, for having given herthe opportunity of participating in Leg 29 of the D/V GlomarChallenger cruises, from Christchurch to Wellington, NewZealand. The writer thanks for the opportunity President Dr.J. Fülöp, Central Office of Geology, Budapest, Hungary andDirector Dr. J. Konda, Hungarian Geological Survey,Budapest, Hungary. Many thanks are due to Professor Dr. M.Kretzoi, Hungarian Geological Survey, Budapest, for his help-ful advice in problems of biostratigraphy.

The author thanks Dr. E. Dudich, chief scientist, HungarianGeological Survey, for the critical review and translation ofthe manuscript and helpful suggestions.

Thanks are due to Dr. Katharina Perch-Nielsen, Geo-logisches Institut E.T.H. Sonnegg Str., Zurich, Switzerland,who took and sent me the scanning electron micrography fromSample 29-280A-5-1, 110-112 cm.

Thanks are due to Mrs. Ildikó Mihály, my technician, whoprepared most of the microscope slides, assisted in drawingand photographic work, and mounted the plates. Finally, mysincere thanks to G. Chikán, geologist, and also to all othercolleagues in the Hungarian Geological Survey, who con-tributed and helped in this work too.

REFERENCESBukry, D. and Foster, J.H., 1974. Silicoflagellate zonation of

Upper Cretaceous to lower Miocene deep-sea sediment: J.Res. U.S. Geol. Surv., v. 2, p. 303-310.

Brun, J., 1893-1896. Notes sur quelques Diatomées miocénes:Le diatomiste, v. 2, p. 209-247.

Deflandre, G., 1932a. Archaeomonadaceae, une famillenouvelle de Protistes fossiles marins a loge siliceuse: C. R.Acad. Sci., v. 194, p. 1859-1861.

, 1932b. Note sur les Archaeomonadacées: Soc. Bot.France Bull., v. 79, p. 346-355.

, 1933. Seconde note sur les Archaeomonadacées:

Figure 3. (a) Comparison of the number of species occurringin late Eocene samples of both Sites 281 and 283. (b) Dia-gram of the percentage of species occurring in late Eocenesamples of both Sites 281 and 283, related to the totalspecies numbers, respectively.

Soc. Bot. France Bull., v. 80, p. 79-90.Deflandre, G., 1969. Nannofossiles siliceux I. Archaeo-

monadaceae: Fichier Micropaleontol. Gen. Ser. 19, CentreNatl. Rech. Sci., p. 1-9.

Edwards, A.R., 1973. Southwest Pacific regional unconform-ities encountered during Leg 21. In Burns, R.E., Andrews,J.E., et al., Initial Reports of the Deep Sea Drilling Proj-ect, Volume 21: Washington (U.S. Government PrintingOffice), p. 701-720.

Ehrenberg, C.G., 1837. Eine briefliche Nachricht des Hrn.Agassiz in Neuchatel über den ebenfalls aus mikro-skopischen Kiesel-Organismen gebildeten Polirschiefer vonOran in Afrika: Ber. Verh. K. Preuss. Akad. Wiss. Berlin,p. 59-61.

, 1839. Uber die Bildung der Kreidefelsen und desKreidemergels durch unsichtbare Organismen: K. Abh.Akad. Wiss. Berlin., 1838 (1840, separate 1839), p. 59-148.

, 1841. Uber noch jetzt zahlreich lebende Thierartender Kreidebildung und den Organismus der Polythalmien:Abh. Akad. Wiss. Berlin (1839), p. 81-174.

831

Page 16: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

Age European

Stages

New Zealand

Stages

Based on

Edwards, 1973

Characteristic species

of the DSDP Leg 29

Sites 280A, 281, 283

Characteristic Diatoms

of the Mt. Diabolo,

Calif, of Kanaya, 1957

Silicoflagellate

Zones, of Bukry

and Foster, 1974

Calcareous Nannofossil

Zones of Edwards, 1971

Planktonic Foraminiferal

Zones of Jenkins, 1966

Waitakian

ChattianOuntroonian

Rupelian

Whaingaroan

Lattorfian

Runangan

Priabonian

Kaiatan

Cerataulus paoifiβus

Rhizosolenia interposita

Triaeratium ahenevieri

Kisseleviella carina

Diotyoaha deflandrei

Navioulopsis trispinosa

Stephanopyxis marginata

Trinacria simulacrum

Xanthiopyxis panduraeformis

Cerataulina praebergonii

Aulisaus oamaruensis

Melosira oamaruensis

Triaeratium morlandii

Dictyoaha hexancantha

Rocetta gemma DisaoasteT deflandrei

Globoquadrina

dehisaens (part)

Syraaosphaera alathrata Globigerina euapertura

Cyclocooaolithus

neogaπvnation

Diotyoaha deflandrei

Reticulofenestra

p laoomorpha

Globigerina angiporoides

angiporoides

Blaakites reatus

Globigerina brevis

Cyclotella hannae

Syn. of Melosira

architecturalis

Hemiaulus polymorphus

Liradisaus ovalis

Pyxilla (Pterotheaa)

aauleifera

Pyxilla (Pterotheaa)

daniσa

Pyxilla intermedia

Syn. of Pyrgupyxis

johnsoniana var.

intermedia

Retiaulofenestra

oamaruensis

Disaoaεter saipanensisGlobigerina linaperta

Diatyooha hexaaantha

Isthmolithus reeurvu

Chiasmolithus

oamaruensisGlohorotalia inaonspicua

inaonspioua (part)

Retiaulofenestra

biseota

Figure 4. Correlation of different microfossil datum levels of the late Eocene to Oligocene interval. Correlation is based onthe distribution of characteristic species or zones as listed by the different authors.

, 1843. V e r b r e i t u n g und Einfluss desmikroskopischen Lebens in Süd-und Nord-Amerika: Abh.Akad. Wiss. Berlin, (1841), p. 291-446.

., 1844. Uber 2 neue Lager von Gebirgsmassen aus In-fusorien als Meeres-Absatz in Nord-Amerika und elneVergleichung Derselben mit den organischen Kreide-Gebilden in Europa und Afrika: Ber. Akad. Wiss. Berlin,(1844), p. 57-97.

., 1854-1856. Mikrogeologie: v. 1, p. 1-374; v. 2, p. 1-88; Atlas: p. 1-31.

Forti, A., 1909. Studi per una Monografia del genere Pyxilla(Diatomee) e dei generi affini: La nouva Notarisia, v. 20,P 19-38.

, 1912. Primo elenco delle Diatomee fossili contenutenei calcari marnosi biancastri di Monte Gibbio (Sassuolo =Emilia): La nouva Notarisia, v. 23, p. 79-84.

Frenguelli, J., 1940. Consideraciones sobre los silicoflageladosfósiles: Rev. Mos. La Plata, ser. 2, v. 2, p. 37-112.

Gleser, S.I., 1966. Silicoflagellatophyceae. In Flora plantarumcryptagamarum USSR: Acad. Sci. USSR, InstitutumBotanicum, v. 7, p. 1-330.

, 1969. Pozdneehotsenovye kompleksy diatomovyh,kremnevyh zhgutikovyh vodoroslej i ebriidej jugo-zapadnoj chasti turgajskogo progiba: Trudy VSEGEI,v. 130, p. 67-84.

Gleser, S.I. and Posnova, A.N., 1964. Diatomeae novaemarinae ex Eoceno Kazachstaniae occidentalis: Novitatessystematicae plantarum non vascularium, p. 59-66.

Gleser, S.I. and Sheshukova-Poretskaya, V.S., 1969. K istoriiformirovanija pozdneehotsenovoj morskoj diatomovoj

flory Ukrainy: Vestnik Leningradskogo Universiteta, v. 9,p. 60-73.

Greville, R.K., 1861-1866. Descriptions of new and rarediatoms: Trans. Micr. Soc, Ser., p. 1-20.

Grove, E. and Sturt, G., 1886-1887. On fossil marinediatomaceous deposit from Oamaru, Otago, New Zealand:J. Q. M. C, ser. 2, v. 2, 3.

Grunow, A., 1884. Diatomeen von Franz Josefs-Land: Akad.Wiss., v. 48, p. 53-112.

Hanna, G.D., 1927. The lowest known Tertiary diatoms inCalifornia: J. Paleontol., v. 1, p. 103-127.

, 1931. Diatoms and silicoflagellates of theKreyenhagen Shale: Mining in Calif., p. 197-201.

., 1932. The diatoms of Sharktooth Hill, Kern Coun-ty, California: Prof. Calif. Acad. Sci., ser. 4, v. 20, p. 161-229.

Hendey, I.N., 1969. Pyrgupyxis, a New genus of diatoms froma South Atlantic Eocene core: Occas. Papers Calif. Acad.Sci., p. 1-6.

, 1972. Muelleriella limbata (Ehrenberg) Van Heurckin Eocene South Atlantic Cores: Nova Hedwig., v. 39,p. 79-94.

Hustedt, F., 1927-1930. Die Kieselalgen Deutschlands,Osterreichs und der Schweiz: In Rabenhorst, L. (Ed.),Kryptogamen-FLora: Bd. 7, v. 1, p. 1-920.

Jousé, A.P., 1955. Species novae diatomacearum aetatisPaleogenae: Bot. Materiali otdela sporovyh rastenij, v. 10,p. 81-103.

Kanaya, T., 1957. Eocene diatom assemblages from theKellogg and "Sidney" Shales, Mt. Diablo Area, California:

832

Page 17: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADAECAE, AND SILICOFLAGELLATAE

Sci. Rept. Tohoku Univ. Sendai, Japan, ser. 2, v. 28, p. 27-124.

1959. Miocene diatom assemblages from the On-nagawa Formation and their distribution in the correlativeformations in Northeast Japan: Sci. Rept. Tohoku Univ.Sendai, Japan, ser. 2, v. 30, p. 1-130.

Koizumi, I., 1973. The Late Cenozoic diatoms of Sites 183-193, Leg 19 Deep Sea Drilling Project. In Creager, J.S.,Scholl, D.W., et al., Initial Reports of the Deep Sea Drill-ing Project, Volume 19: Washington (U.S. GovernmentPrinting Office), p. 805-855.

Lefébure, P. and Chenevière, E., 1938. Description etIconographie de Diatomées rares ou nouvelles: Soc. FranceMicr. Bull., v. 7, p. 8-12.

Lemmermann, E., 1901. Silicoflagellatae: Deutsche Bot. Ges.,v. 19, p. 247-271.

Mandra, Y.T., 1968. Silicoflagellates from the Cretaceous,Eocene, and Miocene of California, U.S.A.: Calif. Acad.Sci. Proc, v. 36. p. 231-277.

„ 1969. A new genus of silicoflagellata from anEocene South Atlantic Deep-Sea Core (Protozoa:Mastigophora): Calif. Acad. Sci. Occas. Papers, no. 77,p. 1-7.

, 1971. Upper Eocene silicoflagellates from NewZealand: Antarctic J. United States, v. 6, p. 177-178.

Mann, A., 1925. Marine diatoms of the Philippine Islands:U.S. Natl. Mus., Bull. 100, v. 6, p. 1-182.

Martini, E., 1971. Standard Tertiary and Quaternarycalcareous nannoplankton zonation: In Farinacci, A. (Ed.),Roma (Tecnoscienza), p. 739-785, Plankt. Conf. Second,Rome 1970 Proc.

Pantocsek, J., 1886-1905. Beitrage zur Kenntnis der fossilenBacillarien Ungarns: 1886, v. 1, p. 1-74; 1889, v. 2, p. 1-23;1892, v. 3; 1905, p. 1-118.

Paramonova, N.V., 1964. Materialy po Diatomovymvodoroslyam iz Paleogenovyh otlozhenij Severa-ZapadnojSibiri: Trudy VNIGRI, Paleofitologicheskij Sbornik:v. 239, p. 232-246.

Proshkina-Lavrenko, A.I., 1949. Diatomovyj Analiz, Cen-trales, Mediales: Bot. Inst. Akad. Nauk. SSSR., v. 2, p. 1-238.

Reinhold, T., 1937. Fossil diatoms of the Neogene of Java andtheir zonal distribution: Verhandl Geol. Mijnbouwk. Gen.von Nederland en Kol. Geol., ser. 12, p. 43-133.

Sheshukova-Poretskaya, V.S., 1962. Neogenovye morskiediatomovye vodorosli Sakhalina i Kamchatki: p. 1-432.

Sheshukova-Poretskaya, V.S. and Gleser, S.I., 1964.Diatomeae marinae novae e Paleogeno Ucrainiae: Nov.systematicae plantarum non vascularium, p. 78-92.

Schmidt, A., 1874-1959. Atlas der Diatomaceen-Kunde: v. 1-120.

Schrader, H.-J., 1969. Die Pennaten Diatomeen aus demObereozSn von Oamaru, Neuseeland: Nova Hedwig., v. 28,p. 1-124.

Schulz, P., 1928. Beitrage zur Kenntnis fossiler und recenterSilicoflagellaten: Bot. Arch., v. 21, p. 225-292.

Strelnikova, N.I., 1960. Diatomovye vodorosli i kremnevyezhgutikovye iz paleogenovyh otlozhenij Obsko-purskogomezhdyrechya: Trudy VNIGRI, v. 158, p. 33-45.

Van Heurck, H., 1880-1885. Synopsis des diatomées de Bel-gique: Atlas, v. 1-2, p. 1-235.

Van Heurck, H., 1896. A treatise on the Diatomaceae: p. 1-558.

833

Page 18: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 1Magnifications Figures 3-4, X500; Figures 1, 2, 5-13 ×IOOO

Figures 1,2 Melosira oamaruensis Gr. et St.Sample 281-14, CC.

Figures 3,4 Melosira clavigera Grun.Sample 281-15, CC.

Figures 5, 6 Melosira architecturalis Brun.Sample 281-14-1, 140-142 cm.

Figures 7,8 Pseudopodosira marginata n. sp. (Figure 7,Holotype).Sample 281-16, CC

Figures 9, 10 Pseudopodosira corolla (A. Schm.) n. comb.Sample 281-14-1, 140-142 cm.

Figures 11-13 Stephanopyxis superba (Grev.) Grun.Sample 281-16, CC.

834

Page 19: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 1

835

Page 20: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 2Magnifications Figures 1-4, 7, 8 X1000; Figures 5, 6 ×500

Figures 1,2 Melosira oamaruensis Gr. et St.Sample 283-4, CC.

Figures 3,4 Melosira clavigera Grun.Sample 283-6, CC.

Figures 5, 6 Stephanopyxis marginata Grun.Sample 283-2, CC.

Figures 7, 8 Podosira sp.Sample 283-3, CC.

836

Page 21: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 2

837

Page 22: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 3Magnifications Figures 1-2, 7-9 ×IOOO; Figures 3-6 ×500

Figures 1,2 Stephanopyxis megapora Grun.Sample 281-16, CC.

Figures 3,4 Stephanopyxis grunowii Gr. et St.Sample 281-15, CC.

Figures 5, 6 Stephanopyxis marginata Grun.Sample 281-16, CC.

Figure 7 Stephanopyxis cf. ferox (Grev.) Ralfs.Sample 281-16, CC.

Figures 8, 9 Stephanopyxis turris (Grev. et Arn.) Ralfs var. arc-tica Grun. f. ?.Sample 281-15, CC.

838

Page 23: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 3

839

Page 24: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE4Magnifications ×500

Figures 1, 2 Stephanopyxis grunowii Gr. et St.Sample 283-6, CC.

Figures 3,4 Stephanopyxis eocaenicus n. sp. Holotype.Sample 283-6, CC.

Figures 5-7 Endictya robusta (Grev.) Hanna et Grant.Sample 283-6, CC.

Figures 8, 9 Coscinodiscus radiatus Ehr. var. nodulifer Rein-hard.Sample 283-6, CC.

Figures 10, 11 Coscinodiscus oculusiridis Ehr. var. borealis (Bail.)Cl.Sample 283-2, CC.

Figures 12-14 Coscinodiscus cf. radiatus Ehr.Sample 283-6, CC.

840

Page 25: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 4

841

Page 26: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 5

Magnifications Figures 1, 2 ×IOOO; Figures 3-8 ×500

Figures 1,2 Stephanopyxis cf. antiqua Pant.Sample 281-14, CC.

Figures 3-5 Coscinodiscus cf. radiatus Ehr.Sample 281-15, CC.

Figures 6-8 Stephanopyxis cf. antiqua Pant.Sample 281-15, CC.

842

Page 27: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 5

843

Page 28: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 6Magnifications ×IOOO

Figures 1,2 Coscinodiscus symbolophorus Grun. var.oamaruensis A. Scnm.Sample 283-4, CC.

Figures 3,4 Coscinodiscus radiatus Ehr. var. noduliferReinhard.Sample 283-4, CC.

Figures 5, 6 Coscinodiscus bulliens A. Schm.Sample 283-3, CC.

844

Page 29: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 6

845

Page 30: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 7

Magnifications ×IOOO

Figures 1-3 Coscinodiscus spiralis n. sp.Sample 283-4, CC.1, 2. Holotype.

Figures 4, 5 Coscinodiscus denarius A. Schm.Sample 283-4, CC.

846

Page 31: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 7

847

Page 32: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 8Magnifications Figures 1, 2, 6, 7 ×IOOO; Figures 3-5 ×500

Figures 1,2 Arachnoidiscus schmidti n. sp. Holotype.Sample 283-4, CC.

Figures 3-5 Auliscus gleseri n. sp. Holotype.Sample 283-6, CC.

Figures 6, 7 Corona magnißca Lef. et Chen.Sample 283-3, CC.

848

Page 33: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 8

849

Page 34: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 9Magnifications Figures 1-3 ×IOOO; Figures 4-6 ×500

Figures 1,2 Arachnoidiscus indicus Ehr.Sample 283-4, CC.

Figure 3 Aulacodiscus rattrayii Gr. et St.Sample 283-3, CC.

Figure4 Actinocyclus octonarius Ehr. var.?.Sample 283-3, CC.

Figure 5 Chaetoceros sp.Sample 283-6, CC.

Figure 6 Actinoptychus splendens (Shadb.) Ralfs.Sample 283-3, CC.

850

Page 35: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 9

851

Page 36: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 10

Magnifications Figures 1-3, 7 ×IOOO; Figures 4-6, X500

Figure 1 Coscinodiscus symbolophorus Grun. var. oamaru-ensis A. Schm.Sample 281-14, CC.

Figures 2, 3 Arachnoidiscus russicus Pant.Sample 281-16, CC.

Figures 4-6 Stictodiscus grovei A. Schm.Sample 281-15, CC.

Figure 7 Auliscus oamaruensis Gr. et St.Sample 281-15, CC.

852

Page 37: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 10

853

Page 38: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 11Magnifications ×IOOO

Figures 1-3 Muelleriopsis limbata (Ehr.) Hendey.Sample 281-15, CC.

Figure 4 Muelleriopsis limbata (Ehr.) Hendey.Sample 281-14, CC.

Figure 5 Xanthiopyxis panduraeformis Pant.Sample 281-16, CC.

Figure 6 Xanthiopyxis cf. acrolopha Forti.Sample 281-16, CC.

854

Page 39: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 11

855

Page 40: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 12

Magnifications ×500

Figure 1 Rhizosolenia sp.Sample 281-15, CC.

Figures 2, 3 Triceratium oamaruense Gr. et St.Sample 281-14, CC.

Figures 4, 5 Triceratium castellatum West var.?.Sample 281-15, CC.

Figures 6, 7 Triceratium oamaruense Gr. et St. var. sparsimpunctata Gr.Sample 281-14, CC.

Figures 8, 9 Triceratium pulvinar A. Schm.Sample 281-14, CC.

856

Page 41: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 12

857

Page 42: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 13

Magnifications Figures 1, 2 ×IOOO; Figures 3-8 ×500

Figures 1, 2 Triceratium crenulatum Gr. et St.Sample 283-4, CC.

Figures 3,4 Triceratium pulvinar A. Schm.Sample 283-6, CC.

Figures 5, 6 Biddulphia rigida A. Schm.Sample 283-3, CC.

Figures 7, 8 Triceratium morlandii Gr. et St.Sample 283-6, CC.

858

Page 43: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 13

859

Page 44: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 14

Magnifications Figures 1-3, 7-13 ×500; Figures 4-6 ×IOOO

Figures 1-3 Triceratium pulvinar A. Schm.Sample 281-15, CC.

Figures 4-6 Triceratium pulvinar A. Schm. Detail of the struc-ture of the valve mantle. Sample 281-15, CC.

Figures 7, 8 Triceratium pulvinar A. Schm.Sample 281-14, CC.

Figure 9 Trinacria excavata Heib.Sample 281-15, CC.

Figures 10-12 Pseudorutilaria monile Gr. et St.Sample 281-16, CC.

Figure 13 Cerataulina praebergoni n. sp.Sample 281-15, CC.

860

Page 45: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 14

1

7

13

861

Page 46: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 15Magnifications Figures 1-9 X500; Figures 10, 11 X1000

Figures 1,2 Trinacria simulacrum Gr. et St.Sample 283-6, CC.

Figures 3,4 Trinacria simulacrum Gr. et St.Sample 283-6, CC.

Figures 5-7 Cerataulina praebergoni n. sp.Sample 283-6, CC.

5. Holotype.Figures 8, 9 Trinacria excavata Heib.

Sample 283-6, CC.

Figure 10 Hemiaulus caracteristicus n. sp. Holotype.Sample 283-4, CC.

Figure 11 Hemiaulus polymorphus Grun. var.?Sample 283-5, CC.

Figure 12 Hemiaulus polymorphus Grun. var.?Stereoscan micrograph X2200. Sample 283-5, CC.

862

Page 47: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 15

863

Page 48: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 16Magnifications Figures 1-3, 12-15 ×500; Figures 4-7, 9-11 ×IOOO

Figures 1-5 Pyrgupyxis gracilis (Temp, et Forti) Hendey var.saratoviana (Pant.) HendeySample 283-4, CC.

Figures 6, 7 Pterotheca aculeifera Grun.Sample 283-5-1, 65-67 cm.

Figure 8 Pterotheca aculeifera Grun.Stereoscan micrograph X2860. Sample 283-5, CC.

Figures 9-11 Pyrgupyxis johnsoniana (Forti) Hendey.Sample 283-5, CC.

Figures 12, 13 Pterotheca danica Grun.Sample 283-6, CC.

Figures 14, 15 Pterotheca danica Grun.Sample 283-6, CC.

Figure 16 Pyrgupyxis johnsoniana (Forti) Hendey.Stereoscan micrograph X2200. Sample 283-5, CC.

864

Page 49: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 16

13

865

Page 50: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 17

Magnifications Figures 1, 2, 4, 7-13 ×IOOO; Figures 3, 5-6 X500

Figures 1, 2 Liradiscus ovalis Grev.Sample 283-8, CC.

Figure 3 Poretzkia? sp.Sample 283-3, CC.

Figure 4 Xanthiopyxis acrolopha Forti.Sample 283-4, CC.

Figures 5, 6 Acanthodiscus rugosus Pant.Sample 283-3, CC.

Figures 7, 8 Stephanogonia cf. polyacantha Forti.Sample 283-2, CC.

Figure 9 Xanthiopyxis panduraeformis Pant.Sample 283-8, CC.

Figures 10, 12 Xanthiopyxis cf. acrolopha Forti.Sample 283-5-1, 65-67 cm.

Figure 11 Xanthiopyxis oblonga Ehr.Sample 283-4, CC.

Figure 13 Goniothecium odontella Ehr.Sample 283-4, CC.

866

Page 51: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 17

867

Page 52: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 18

Magnifications Figures 1-16, 18, 20-21 ×IOOO; Figures 17, 19 X500

Figures 1-3 Archaeomonas oamaruensis Defl.Sample 283-6, CC.

Figures 4, 5 Archaeomonas dubia Defl.Sample 283-6, CC.

Figures 6-8 Archaeosphaeridium armatum n. sp.Sample 283-6, CC.6-7. Holotype

Figures 9, 10 Par archaeomonas decorata n. sp. Holotype.Sample 283-4, CC.

Figures 11, 12 Pararchaeomonasl rigaudae Rampi.Sample 283-4, CC.

Figures 13, 14 Archaeomonas reticulosa Defl.Sample 283-4, CC.

Figure 15 Dictyocha fibula Ehr.Sample 283-2, CC.

Figure 16 Dictyocha fibula Ehr'.Sample 283-3, CC.

Figures 17, 19 Porifera spiculesSample 283-6, CC.

Figure 18 Mesocena apiculata (Schulz) Hanna.Sample 283-6, CC.

Figure 20 Naviculopsis biapiculata (Lemm.) Freng. Sample283-2, CC.

Figure 21 Naviculopsis biapiculata (Lemm.) Freng. var. con-stricta (Schulz) Glezer.Sample 283-4, CC.

868

Page 53: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 18

869

Page 54: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 19Magnifications ×IOOO

Figures 1,2 Endictya robusta (Grev.) Hanna et Grant.Sample 280A-6-3, 120-122 cm.

Figures 3,4 Stephanopyxis oligocaenica n. sp. Holotype.Sample 280A-7-2, 120-122 cm.

Figures 5, 6 Stephanopyxis oamaruensis n. sp.Sample 280A-7-2, 120-122 cm.

Figures 7, 8 Stephanopyxis oamaruensis n. sp. Holotype.Sample 280A-3-4, 120-122 cm.

Figures 9, 10 Stephanopyxis sp.Sample 280A-3-4, 120-122 cm.

Figures 11, 12 Stephanopyxis hyalomarginata n. sp. Holotype.Sample 280A-7-2, 120-122 cm.

870

Page 55: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 19

871

Page 56: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 20

Magnifications ×IOOO

Figures 1-3 Stephanopyxis longispinosa n. sp. Holotype.Sample 280A-3-4, 120-122 cm.

Figures 4, 5 Stephanopyxis inordinata n. sp. Holotype.Sample 280A-3-4, 120-122 cm.

Figures 6-8 Coscinodiscus tuberculatus Grev.Sample 280A-6-3, 120-122 cm.

Figures 9, 10 Coscinodiscus marginatus Ehr.Sample 280A-6-3, 120-122 cm.

Figures 11, 12 Coscinodiscus symbolophorus Grun.Sample 280A-8-1, 120-122 cm.

Figures 13, 14 Coscinodiscus cf. moelleri A. Schm. var. macro-porus Grun.Sample 280A-3-4, 120-122 cm.

Figure 15 Coscinodiscus symbolophorus Grun. var. oamaru-ensis A. Schm.Sample 280A-6-3, 120-122 cm.

872

Page 57: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 20

• : • : • :

. - . - - "

11 14 15

873

Page 58: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 21

Magnifications ×IOOO

Figures 1,2 Stictodiscus nitidus Gr. et St.Sample 280A-3-4, 120-122 cm.

Figures 3,4 Liradiscus sp.Sample 280A-3-4, 120-122 cm.

Figure 5 Xanthiopyxis cf. acrolopha Forti.Sample 280A-6-3, 120-122 cm.

Figure 6 Asterolampra schmidti n. sp. Holotype.Sample 280A-6-3, 120-122 cm.

Figure 7 Triceratium arcticum Brightw.Sample 280A-2-3, 20-22 cm.

Figure 8 Rhizosolenia interposita n. sp. Holotype.Sample 280A-6-3, 120-122 cm.

Figures 9, 10 Triceratium chenevieri Meist.Sample 280A-6-3, 120-122 cm.

Figures 11, 12 Triceratium pulvinar A. Schm.Sample 280A-6-3, 120-122 cm.

874

Page 59: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 21

875

Page 60: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 22

Magnifications ×IOOO

Figures 1,2 Cerataulus pacificus n. sp. Holotype.Sample 280A-1-2, 9-11 cm.

Figures 3, 4 Cerataulus pacificus n. sp.Sample 280A-6-3, 120-122 cm.

Figure 5 Cerataulus pacificus n. sp.Sample 280A-2-2, 20-22 cm.

Figure 6 Cerataulus pacificus n. sp.Sample 280A-1-2, 9-11 cm.

Figure 7 Biddulphia fimbriata Grev.Sample 280A-6-3, 120-122 cm.

Figure 8 Biddulphia fimbriata Grev.Sample 280A-7-2, 120-122 cm.

876

Page 61: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 22

877

Page 62: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 23Magnifications ×IOOO

Figure 1 Trinacria excavata Heib.Sample 280A-6-3, 120-122 cm.

Figures 2, 3 Hemiaulus polymorphus Grun.Sample 280A-6-3, 120-122 cm.

Figures 4, 5 Hemiaulus incisus n. sp.Sample 280A-6-3, 120-122 cm.

Figures 6, 7 Hemiaulus incisus n. sp. Holotype.Sample 280A-6-3, 120-122 cm.

Figure 8 Hemiaulus incisus n. sp.Stereoscan micrograph X1600.Sample 280A-5-1, 110-112 cm.

Figure 9 Hemiaulus incisus n. sp.Stereoscan micrograph X8000.Detail of the structure of the valve mantle. Sample280A-5-1, 110-112 cm.

878

Page 63: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 23

879

Page 64: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 24Magnifications ×IOOO

Figures 1, 2 Pyrgupyxis johnsoniana (Forti) Hendey var. inter-media (Temp, et Forti) Hendey. Sample 280A-6-3,120-122 cm.

Figures 3-5 Pyrgupyxis eocena Hendey.Sample 280A-6-3, 120-122 cm.

Figures 6, 7 Pyrgupyxis johnsoniana (Forti) Hendey.Sample 280A-6-3, 120-122 cm.

Figures 8, 9 Pyrgupyxis eocena Hendey.Sample 280A-6-3, 120-122 cm.

Figures 10, 11 Pyrgupyxis johnsoniana (Forti) Hendey.Sample 280A-6-3, 120-122 cm.

Figure 12 Pyrgupyxis johnsoniana (Forti) Hendey.Stereoscan micrograph X1600.Sample 280A-5-1, 110-112 cm.

880

Page 65: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 24

12

881

Page 66: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

M. HAJOS

PLATE 25

Magnifications ×IOOO

Figures 1,2 Goniothecium odontella Ehr.Sample 280A-3-4, 120-122 cm.

Figures 3, 4 IHercotheca inermis Mann.Sample 280A-2-2, 15-17 cm.

Figures 5, 6 Kisseleviella carina Shesh.Sample 280A-2-3, 20-22 cm.

Figures 7-9 Kisseleviella carina Shesh.Sample 280A-7-2, 120-122 cm.

Figures 10, 11 Rouxia rouxioides (Schrader) n. comb.Sample 280A-6-3, 120-122 cm.

Figures 12, 13 Rouxia rouxioides (Schrader) n. comb.Sample 280A-6-3, 120-122 cm.

Figure 14 Kisseleviella carina Shesh.Stereoscan micrograph X3200. Sample 280A-5-1,110-112 cm.

Figures 15, 16 Archaeomonas ovalis Defl.Sample 280A-6-3, 120-122 cm.

Figure 17 Mesocena apiculata (Schulz) Hanna.Sample 280A-1-2, 9-11 cm.

Figure 18 Dictyocha deflandrei Freng.Sample 280A-3-4, 120-122 cm.

Figure 19 Naviculopsis trispinosa (Schulz) Gleser.Sample 280A-3-4, 120-122 cm.

882

Page 67: IV. UPPER EOCENE AND LOWER OLIGOCENE DIATOMACEAE ...Grunow (1884) from Franz Joseph Land are extinct, and that their occurrence in Recent sediments must be due to submarine redeposition

DIATOMACEAE, ARCHAEOMONADACEAE, AND SILICOFLAGELLATAE

PLATE 25

14

883