jacob cohen 1, ilia shukhman 2 michael karp 1 and jimmy philip 1 1. faculty of aerospace...

31
Significance of Localized Vortical Disturbances in Wall-Bounded and Free Shear Flows Jacob Cohen Jacob Cohen 1 , Ilia Shukhman , Ilia Shukhman 2 Michael Karp Michael Karp 1 and Jimmy Philip and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, 2. Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Siberian Department, Irkutsk 664033, P.O. Box 4026, Russia Siberian Department, Irkutsk 664033, P.O. Box 4026, Russia Technion – Israel Institute of Technology – Faculty of Aerospace Engineering

Upload: milton-henderson

Post on 13-Dec-2015

222 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

Significance of Localized Vortical Disturbances in Wall-Bounded and

Free Shear Flows Jacob CohenJacob Cohen11, Ilia Shukhman, Ilia Shukhman22

Michael KarpMichael Karp11 and Jimmy Philip and Jimmy Philip11

1. Faculty of Aerospace Engineering, Technion, Haifa, Israel1. Faculty of Aerospace Engineering, Technion, Haifa, Israel2. Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, 2. Institute of Solar-Terrestrial Physics, Russian Academy of Sciences,

Siberian Department, Irkutsk 664033, P.O. Box 4026, RussiaSiberian Department, Irkutsk 664033, P.O. Box 4026, Russia

Technion – Israel Institute of Technology – Faculty of Aerospace Engineering

Page 2: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

2

Streaks – Alternating high and low speed fluid in spanwise -direction:

Counter Rotating Vortex Pair (CVP) – Streamwise vortex pair:

Hairpins – Inclined pair of vortices (in streamwise dir.) connected by a short head (in spanwise dir.):

Kim et al. ,1971 Bakewell & Lumley ,1967 Acarlar & Smith ,1987

Coherent Structures in Turbulent Wall Bounded Shear

Flows

Page 3: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

3

y xy

x

Re 1667, 0.29injv

Vertical Plane

z

x

(b1)

(b2)

z

x

Horizontal Plane

CVPs HAIRPINs

Coherent Structures in Sub-Critical Plane Poiseuille flow

Page 4: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

4

Scaling in Sub-Critical Channel Flow

2/3o Re~v

Page 5: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

5

1~ Reov

Scaling in Pipe Flow

Side view Front view

Similar scaling law was also obtainedfor Transition to Turbulence by Hof et. al, (PRL) 2003

Page 6: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

6

Velocity components of the pair of least stable modes

Transient Growth (spatial) : Pipe flow

Spatial Eigenmodesfor n=1, ω=0

Re=3000

Ben-Dov, Levinski & Cohen, (PoF) 2003

Page 7: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

7

Page 8: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

8

Page 9: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

9

Transient Growth (spatial) : plane Poiseuille flow

Temporal Case: - two modes

- many modes

Page 10: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

10

Cross-sectional vector map for temporal case

Pipe: pair of modes

Pipe: many modes

Channel: Pair of modes

Page 11: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

11

Cohen, J. et al. AIAA ,2006

Localized Disturbances + Linear Shear

Mixing Layer / Stagnation Flow

Pure Shear

Page 12: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

12

Comparison with DNS resultsUniform shear flow (T=5)

DNS

p

Plane Poiseuille flow (T=4.8) HPIV

ωy

Optimal hairpin 4545o o inclinationinclination60 < z60 < z++ < 115 < 115

- disturbance length scale

2 2/1/2 3( ) xp e

Page 13: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

13

4545o o inclination inclination

p

Toroidal Disturbance:

Optimal Hairpin

60 < z+ < 60 < z+ < 115115

Page 14: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

Localized Disturbance

Vortical disturbance

Base flow

∆δ

δ∆

1 >>

Page 15: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

15

To predict the interaction between a localized vortical disturbance and various linear shear

flows

0

20

0

( ) ( ) (| | )

( ) 0

ii i j

j x

i

VV x V x x O x

x

V x

Disturbance: 3D, finite-amplitude, localized, viscous.

Base flow:

Objective of the model

Page 16: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

16

1 12 2( , ,0) , 0,0,V y x

Couette, σ=Ω Hyperbolic, σ2 > Ω2

(Stagnation flow Ω=0)Elliptic, σ2 < Ω2

(Solid-body rotationσ=0)

Base Flow – Linear Shear

[1/s]=[1/s]=-80 [1/s]=-80; =0 =0; [1/s]=-80

V1V2

Page 17: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

17

The disturbance vorticity equation:

Theoretical-based model

N Non linear terms

V V v v vt

tottot vVV

vVtottot

Page 18: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

18

Theoretical Model – cont.

31 2 1

1

32 1 2

2

33 3

3

1

2

3

{ }

{ }

{ }

1

2

1

2

v

x

v

x

v

x

N

N

N

M

M

M

where

2 11 2

1 1

2{

2} x x

t x x

M

ii iN v v

Page 19: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

19

1. Fourier transform

Theoretical Model - continuation

k

Following Shukhman, 2006

3 3

31ˆ ˆ;

2ik r ik r

j j j jr e d r k e d k

2 2 21 2 1 3 1 2 3 1 1

2 2 22 1 2 3 1 2 3 2 2

1 1 2 2 3 3

1 ˆˆ ˆˆ ( )21 ˆˆ ˆˆ ( )2

ˆ ˆ ˆ

{

0

ˆ }

ˆ { }

0

ik v k k k N

ik v k k k N

v k k k

M

M

where 1 22 1

ˆ { }1 1

ˆ2 2i k k

t k k

M

Page 20: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

20

Theoretical Model – cont.

2. Lagrangian variables

1 22 1

31 2

1 2 3

1 1ˆ2 2

k kt k k

dkdk dkd

dt t dt k dt k dt k

M

1/21 1 2

1/22 2 1

3 3

( ) cosh( ) sinh( ),

( ) cosh( ) sinh( ),

( ) ,

k t q t q t

k t q t q t

k t q

2 21( ); ;

2( 0)i isign k t q

where

Page 21: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

21

Theoretical Model – cont.

1 1 2 2 11 22 1 12

2 1 2 2 12 21 2 22

3 1 1 2 2 3

1 ˆ2

1 ˆ2

[ ( , ) ( , ) ( , ) ( , )]

k k q k qd qq k q N q

dt k

k k q k qd qq k q N q

dt kk q t q t k q t q t q

ttqktq jj ,,ˆ, 1

2

ˆ[ ]ˆ( ) ;

kv k i

k

2 2 2 21 2 3k k k k 2

' ' 3 '( ) ( ) ( )k

A B A k B k k d k

3

Page 22: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

22

The equations are of the form:

Euler’s method:

Theoretical Model – summary

, ,jj

d qF q q t

dt

1 2

nn n j

j j

d qt O t

dt

Inverse Fourier Transform:

1 1 3, ;n n ik rj j q t e d k

0k r q r

3 3d k d q

Page 23: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

23

The Gaussian disturbance:

Initial Disturbance

22

31

1 2 3

0, , e ,

, ,

r

t r F F

*

*

2T t

representative length

Page 24: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

24

Linear case - the disturbance evolves to CVP

Results – Stagnation flow

T=0 T=2

Page 25: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

25

Linear case – comparison to the analytical solution

Results – Stagnation flow

( Leonard, 2000 )T=1, Ω=0, σ=-80 1/sec

Page 26: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

26

Non-Linear case – Vortex center moves

Results – Stagnation flow

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

3

4

x/

Isosurface of 0.7*wmax at T=2 , nonlinear case (=1)

y/

T=2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10-3

0

5

10

15

20

25

30Vorticity magnitude along X=-Y principal axis, T=1

x=-y [m]

[

1/se

c]

Numerical

Fluent

T=1

x=-y principal axis

Page 27: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

27

Linear case – comparison to the analytical solution

Results – Couette flow

T=1, Ω=σ=-40 1/sec

Page 28: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

28

Non-Linear case – Generation of Hairpins

Results – Couette flow

T=2T=1T=0

Page 29: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

29

Linear case – rotation and splitting

Results – Solid Body Rotation flow

Page 30: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

30

Non-Linear case – two unsymmetrical parts

Results – Solid Body Rotation flow

Page 31: Jacob Cohen 1, Ilia Shukhman 2 Michael Karp 1 and Jimmy Philip 1 1. Faculty of Aerospace Engineering, Technion, Haifa, Israel 2. Institute of Solar-Terrestrial

31

Conclusions

• An analytical based solution method has been

developed

• The method can solve the interaction between a

family of linear shear flows and any localized

disturbance

• The solution is carried out using Lagrangian variables

in Fourier space which is convenient and enables

fast computations

Localized Disturbance

+ Linear Shear Flow

CVPHairpins

=

Thank You