jairo sinova ( tamu )

31
Jairo Sinova (TAMU) NRI e-Workshop Making semiconductors magnetic: A new approach to engineering quantum materials Tomas Jungwirth (TAMU, Institute of Physics, Czech Republic, U. of Nottingham) NERC SWAN

Upload: sileas

Post on 21-Jan-2016

82 views

Category:

Documents


0 download

DESCRIPTION

NERC SWAN. NRI e-Workshop Making semiconductors magnetic: A new approach to engineering quantum materials. Jairo Sinova ( TAMU ). Tomas Jungwirth ( TAMU, Institute of Physics, Czech Republic, U. of Nottingham ). OUTLINE. Motivation Ferromagnetic semiconductor materials: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Jairo Sinova  ( TAMU )

Jairo Sinova (TAMU)

NRI e-WorkshopMaking semiconductors magnetic:

A new approach to engineering quantum materials

Tomas Jungwirth (TAMU, Institute of Physics, Czech Republic, U. of

Nottingham)

NERCSWAN

Page 2: Jairo Sinova  ( TAMU )

OUTLINE

• Motivation• Ferromagnetic semiconductor materials:

– (Ga,Mn)As - general picture– Growth and physical limits on Tc

– Related FS materials• Ferromagnetic semiconductors & spintronics

– Tunneling anisotropic magnetoresistive device– Transistors

Page 3: Jairo Sinova  ( TAMU )

Ferromagnetic semiconductor research for spintronics:

Motivations and strategies

1.Find new effects in this new material and utilize in conventional metal-based spintronics

2. Develop a three-terminal gatable spintronic device to progress from sensors & memories to transistors & logic

In the 2nd part of the talk we show examples of 1. & 2. and a combination of both principles

Page 4: Jairo Sinova  ( TAMU )

Ferromagnetic semiconductors

GaAs - GaAs - standard III-V semiconductorstandard III-V semiconductor

Group-II Group-II Mn - Mn - dilute dilute magneticmagnetic moments moments & holes& holes

(Ga,Mn)As - fe(Ga,Mn)As - ferrromagneticromagnetic semiconductorsemiconductor

Need true FSs not FM inclusions in SCs

Mn

Ga

AsMn

Page 5: Jairo Sinova  ( TAMU )

Mn

Ga

AsMn

What happens when a Mn is placed in Ga sites:Mn–hole spin-spin interaction

hybridization

Hybridization like-spin level repulsion Jpd SMn shole interaction

Mn-d

As-p

In addition to the Kinetic-exchange coupling, for a single Mn ion, the coulomb interaction gives a trapped hole (polaron) which resides just above the valence band

5 d-electrons with L=0 S=5/2 local moment

intermediate acceptor (110 meV) hole

Page 6: Jairo Sinova  ( TAMU )

Mn

Ga

AsMn

EF

DO

S

Energy

spin

spin

Transition to a ferromagnet when Mn concentration increasesGaAs:Mn – extrinsic p-type semiconductor

FM due to p-d hybridization (Zener local-itinerant kinetic-exchange)

valence band As-p-like holes

As-p-like holes localized on Mn acceptors

<< 1% Mn ~1% Mn >2% Mn

onset of ferromagnetism near MIT

Mn

Ga

As

Mn

Ga

AsMn

Page 7: Jairo Sinova  ( TAMU )

(Ga,Mn)As synthesis

•Low-T MBE to avoid precipitation

•High enough T to maintain 2D growth

need to optimize T & stoichiometry for each Mn-doping

•Inevitable formation of interstitial Mn-double-donors compensating holes and moments need to anneal out but without loosing MnGa

high-T growth

optimal-T growth

Page 8: Jairo Sinova  ( TAMU )

Interstitial Mn out-diffusion limited by surface-oxide

GaMnAs

GaMnAs-oxide

Polyscrystalline20% shorter bonds

MnI++

O

Optimizing annealing-T another key factorRushforth et al, ‘08

x-ray photoemission

Olejnik et al, ‘08

10x shorther annealing with etch

Page 9: Jairo Sinova  ( TAMU )

OUTLINE

• Motivation• Ferromagnetic semiconductor materials:

– (Ga,Mn)As - general picture– Growth and physical limits on Tc

– Related FS materials• Ferromagnetic semiconductors & spintronics

– Tunneling anisotropic magnetoresistive device– Transistors

Page 10: Jairo Sinova  ( TAMU )

0 1 2 3 4 5 6 7 8 9 100

20

40

60

80

100

120

140

160

180

TC(K

)

Mntotal

(%)

“... Ohno’s ‘98 Tc=110 K is the fundamental upper limit ..” Yu et al. ‘03

“…Tc =150-165 K independent of xMn>10% contradicting Zener kinetic exchange ...” Mack et al. ‘08

“Combinatorial” approach to growthwith fixed growth and annealing T’s

Tc limit in (Ga,Mn)As remains open

2008Olejnik et al

185K!!

Page 11: Jairo Sinova  ( TAMU )

Can we have high Tc in Diluted Magnetic Semicondcutors?

Tc linear in MnGa local (uncompensated) moment concentration; falls rapidly with decreasing hole density in heavily compensated samples.

Define Mneff = Mnsub-MnInt

NO IDENTIFICATION OF AN INTRINSIC LIMIT NO EXTRINSIC LIMIT

(lines – theory, Masek et al 05)

Relative Mn concentrations obtained through hole density measurements and saturation moment densities measurements.

Qualitative consistent picture within LDA, TB, and k.p

Page 12: Jairo Sinova  ( TAMU )

0 1 2 3 4 5 6 7 8 9 100

20

40

60

80

100

120

140

160

180

TC(K

)

Mntotal

(%)

8% Mn

Open symbols as grown. Closed symbols annealed

0 1 2 3 4 5 6 70

20

40

60

80

100

120

140

160

180

TC(K

)

Mneff

(%)

Tc as grown and annealed samples

● Concentration of uncompensated MnGa moments has to reach ~10%. Only 6.2% in the current record Tc=173K sample

● Charge compensation not so important unless > 40%

● No indication from theory or experiment that the problem is other than technological - better control of growth-T, stoichiometry

Page 13: Jairo Sinova  ( TAMU )

Weak hybrid.Delocalized holeslong-range coupl.

Strong hybrid.Impurity-band holesshort-range coupl.

InSb

GaP

d5

(Al,Ga,In)(As,P) good candidates, GaAs seems close to the optimal III-V host

Other (III,Mn)V’s DMSs

Mean-field butlow Tc

MF

Large TcMF but

low stiffness

Kudrnovsky et al. PRB 07

Page 14: Jairo Sinova  ( TAMU )

III = I + II Ga = Li + Zn

GaAs and LiZnAs are twin SC

Masek, et al. PRB (2006)

LDA+U says that Mn-doped are also twin DMSs

n and p type doping through Li/Zn stoichiometry

No solubility limit for group-II Mn

substituting for group-II Zn !!!!

Page 15: Jairo Sinova  ( TAMU )

OUTLINE

• Motivation• Ferromagnetic semiconductor materials:

– (Ga,Mn)As - general picture– Growth and physical limits on Tc

– Related FS materials• Ferromagnetic semiconductors & spintronics

– Tunneling anisotropic magnetoresistive device– Transistors

Page 16: Jairo Sinova  ( TAMU )

AMRAMR~ 1% MR effect~ 1% MR effect

TMRTMR~ 100% MR effect~ 100% MR effect

TAMRTAMR

) vs.( ~ IMvgExchange split & SO-coupled bands:

Exchange split bands:

)()(~ TDOSTDOS

)(~ MTDOS

Au

discovered in (Ga,Mn)As Gold et al. PRL’04

Page 17: Jairo Sinova  ( TAMU )

As-p-like holes

Strong exchange splitting & SO coupling in (Ga,Mn)As

Standard MBE techniques for high-quality tunneling structures

MnGa

As

Mn

Page 18: Jairo Sinova  ( TAMU )

ab intio theory Shick, et al, PRB '06, Park, et al, PRL '08

TAMR in metal structures

experiment Park, et al, PRL '08

Also studied by Parkin et al., Weiss et al., etc.

Page 19: Jairo Sinova  ( TAMU )

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

2

4

6

8

10

0V 3V 5V 10V

carr

ier

dens

ity

[ 10

19 c

m-3

]

GaMnAs layer thickness [nm]

Gating of highly doped (Ga,Mn)As: p-n junction FET

p-n junction depletion estimates

Olejnik et al., ‘08

~25% depletion feasible at low voltages

(Ga,Mn)As/AlOx FET with large gate voltages, Chiba et al. ‘06

Page 20: Jairo Sinova  ( TAMU )

20 22 24 26 28 30 32 34

18.6

18.8

19.0

19.2

19.4

[10

-3c

m]

T [K]

Vg = 0V

22.5

23.0

23.5

24.0

24.5 Vg = 3V

20 22 24 26 28 30 32 34

-200

-100

0

100

d/d

T [1

0-6

T [K]

-300

-200

-100

0

AM

RIncreasing and decreasing AMR and Tc with depletion

Tc Tc

Page 21: Jairo Sinova  ( TAMU )

30 40 50 60 70 80 90 100

100

200

65K62K

dR/d

T

T (K)

depletion accumulation

Persistent variations of magnetic properties with ferroelectric

gates

Stolichnov et al., Nat. Mat.‘08

Page 22: Jairo Sinova  ( TAMU )

exy = 0.1%

exy = 0%

Electro-mechanical gating with piezo-stressors

Rushforth et al., ‘08

Strain & SO

Electrically controlled magnetic anisotropies via strain

Page 23: Jairo Sinova  ( TAMU )

Single-electron transistor

Two "gates": electric and magnetic

(Ga,Mn)As spintronic single-electron transistor

Huge, gatable, and hysteretic MR

Wunderlich et al. PRL ‘06

Page 24: Jairo Sinova  ( TAMU )

AMR nature of the effect

normal AMR Coulomb blockade AMR

Page 25: Jairo Sinova  ( TAMU )

GMMGG C

C

e

MVMVVCQ

C

QQU

)(&)]([&

2

)(0

20

electric && magneticmagneticcontrol of Coulomb blockade oscillations

n-1 n n+1 n+2n-1 n n+1 n+2

EC

QQindind = = nnee

QQindind = (= (n+1/2)n+1/2)eeQ0

Q0

e2/2C

Q

D e

MQQVdQU

0

'' )()(

[010]

M[110]

[100]

[110][010]

SO-coupling (M)

Source Drain

GateVG

VDQ

Single-electron charging energy controlled by Vg and M

Page 26: Jairo Sinova  ( TAMU )

•CBAMR if change of |CBAMR if change of |((MM)| ~ )| ~ ee22//22CC

•In our (Ga,Mn)As ~ meV (~ 10 In our (Ga,Mn)As ~ meV (~ 10 Kelvin)Kelvin)

•In room-T ferromagnet change of |In room-T ferromagnet change of |((MM)|~100K )|~100K

•Room-T conventional SET (e2/2C >300K) possible

Theory confirms chemical potential anisotropies in (Ga,Mn)As& predicts CBAMR in SO-coupled room-Tc metal FMs

Page 27: Jairo Sinova  ( TAMU )

Variant p- or n-type FET-like transistor in one single nano-sized CBAMR device

0

ONONOFFOFF

1

0

ONON OFFOFF

1

VDD

VA VB

VA

VB

Vout

0

0

0

OFFOFFONON

ONON

OFFOFF

0

0

1

1

ONONOFFOFF

A B Vout0 0 01 0 10 1 11 1 1

0

01

ONON

OFFOFF

0

0

OFFOFF

1

ONON

1

1

1

1

OFFOFF

ONON

1

1

ONON

OFFOFF

1

“OR”

Nonvolatile programmable logic

Page 28: Jairo Sinova  ( TAMU )

VDD

VA VB

VA

VB

Vout

Variant p- or n-type FET-like transistor in one single nano-sized CBAMR device

0

ONONOFFOFF

1

0

ONON OFFOFF

1

A B Vout0 0 01 0 10 1 11 1 1

“OR”

Nonvolatile programmable logicNonvolatile programmable logic

Page 29: Jairo Sinova  ( TAMU )

Physics of SO & exchange

SET

Resistor

Tunneling device

Chemical potential CBAMR

Tunneling DOS TAMR

Group velocity & lifetime AMR

Device design

Materials

metal FMs

FSs

FSs and metal FS with strong SO

Page 30: Jairo Sinova  ( TAMU )

Allan MacDonald U of Texas

Tomas JungwirthInst. of Phys. ASCRU. of Nottingham

Joerg WunderlichCambridge-Hitachi

Laurens MolenkampWuerzburg

Mario BorundaTexas A&M U.

Other collaborators: Bernd Kästner, Satofumi Souma, Liviu Zarbo, Dimitri Culcer , Qian Niu, S-Q Shen, Brian Gallagher, Tom Fox, Richard

Campton

Alexey KovalevTexas A&M U.

Liviu ZarboTexas A&M U.

Matching TAMU funds

Xin LiuTexas A&M U.

Bryan GallagherU. Of Nottingham

Sankar Das SarmaU. of Maryland

30

Page 31: Jairo Sinova  ( TAMU )

Conclusion (checks of theory)

In the metallic optimally doped regime GaMnAs is well described by a disordered-valence band picture: both dc-data and ac-data are consistent with this scenario.

The effective Hamiltonian (MF) and weak scattering theory (no free parameters) describe (III,Mn)V metallic DMSs very well in the optimally annealed regime:

• Ferromagnetic transition temperatures Magneto-crystalline anisotropy and coercively Domain structure Anisotropic magneto-resistance Anomalous Hall effect MO in the visible range Non-Drude peak in longitudinal ac-conductivity • Ferromagnetic resonance • Domain wall resistance • TAMR

TB+CPA and LDA+U/SIC-LSDA calculations describe well chemical trends, impurity formation energies, lattice constant variations upon doping