james degnan university of canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfjames degnan...

41
James Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks to

Upload: others

Post on 17-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

JamesDegnanUniversityofCanterbury11/1/11

(JointworkwithElizabethAllmanandJohnRhodes)

Thanksto

Page 2: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

1.BackgroundA.genetreesvs.speciestreesB.coalescenceandincompletelineagesorting

2.Rootedgenetreeprobabilitiesaspolynomials

3.Unrootedgenetreeprobabilities

Page 3: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks
Page 4: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

Populationgenetics:traditionallyusedtoanalyzesinglepopulations.

Phylogenetics:Whatisthebestwaytoinferrelationshipsbetweenpopulations/species?

Graphic by Mark A. Klinger, Carnegie Museum of Natural History, Pittsburgh

Page 5: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

Past

Present

Page 6: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks
Page 7: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

Present

Past

Page 8: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks
Page 9: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

Incompletelineagesorting

Page 10: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

ABCDThegenetreeisarandomvariable.Thegenetreedistributionisparameterizedbythespeciestreetopologyandinternalbranchlengths.

Page 11: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks
Page 12: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks
Page 13: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

Usingtransformedbranchlengths,

genetreeprobabilitiescanbewrittenaslinearcombinationsofmonomials

wherenisthenumberoftips.€

X1 = e−t1 , X2 = e− t2 , etc.

X1α1X2

α2Xn−2αn−2

Page 14: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

x

y

Probability:

19 p2,2(x)p3,2(y) = 1

6 XY − 16 XY

3

Page 15: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

History Probabilityh1:(1,2,3) h2:(1,3,3)h3:(2,2,3)h4:(2,3,3)h5:(3,3,3)

Total

(1− X)(1−Y )

13 (1− X)Y

13 X(1− 3

2Y + 12Y

3)€

16 XY − 1

6 XY3

118 XY

3

1− 23 X − 2

3Y + 13 XY + 1

18 XY3

Page 16: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

  Giventhesetofgenetreeprobabilities,canthespeciestreeberecovered?

  Inmanycases,thehighestprobabilitygenetreehasthesametopologyasthespeciestree,butnotalways.

  Themostlikelytripleforanysetofthreetaxaisarootedtripleonthespeciestree,sothespeciestreecanberecoveredbymarginalizinggenetreestotheirrootedtriples.

Page 17: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks
Page 18: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

  Toinferrootedgenetrees,youneedmolecularclockoroutgroup;otherwiseonlyunrootedgenetreescanbeinferred

  Speciestreemethodsusingthecoalescentcurrentlyassumerootedtrees–canspeciestreesbeinferredusingunrootedgenetrees?

Page 19: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

  Theprobabilityofanunrootedgenetreeisthesumoftheprobabilitiesofallgenetreeswiththesameunrootedtopology

  Pr[]=P[(((AB)C)D)] +P[(((AB)D)C)]

+P[(((CD)A)B)]+P[(((CD)B)A)]+P[((AB)(CD))]

AB D

C

Page 20: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

  Probabilitiesofunrootedgenetreesarelinearcombinationsofprobabilitiesofrootedgenetrees.

  Expressionsforprobabilitiesofunrootedgenetreesareoftensimplerthanrootedgenetreeprobabilitiesforthesamenumberofspecies.

Page 21: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

UnrootedGeneTreesProbability

AB

AC

B

A BD

CD

D

C€

1− 23 X

13 X

13 X

Page 22: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

UnrootedGeneTreesProbability

AB

AC

B

A BD

CD

D

C€

1− 23 XY

13 XY

13 XY

Page 23: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

  Ifthespeciestreetopologyisknown,theunrootedgenetreedistributiononlyhasinformationaboutoneinternaledge(orsumofedges).

  Ifthespeciestreeisunknown,theunrootedgenetreedistributiononlyidentifiestheunrootedspeciestreetopology.Thefollowingspeciestreesinducethesameunrootedgenetreedistribution:

Page 24: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

  15unrootedtopologies  3rootedspeciestreesshapes

Caterpillar Balanced Pseudocaterpillar

Page 25: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

Whathappenswithfivetaxa?

•  15unrootedtopologies•  3rootedspeciestreesshapes

Caterpillar Balanced Pseudocaterpillar

Givenadistributionof155‐taxonunrootedgenetreeprobabilities,whatinformationcanwerecoveraboutthespeciestree?(1)  Unrootedspeciestreetopology?(2)  Rootedspeciestreetopology?(3)  Branchlengths?

Page 26: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

A

B C

D

E

T1

probability

Page 27: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

A

AB

B

CC

D

D

E

E

T1

T2

probability

A

B

C

DE

T3

Page 28: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

A

A

A

A

A

B

B

BB

B

CC

C

C

D

D

DD

D

E

E

E

E

E

C

T1

T2

T4

T5

T7

probability

A

B

C

DE

T3

T13

T6

T9

T12

5others

Page 29: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks
Page 30: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

(1)Puttingunrootedgenetreesthataretiedinprobabilityintoequivalenceclasses,thesizeoftheseclassesdependsontheunlabeled,rootedspeciestreetopologyonfivetaxa:

Caterpillarclasssizes:1,1,1,2,2,2,6Balancedclasssizes:1,2,2,4,6Pseudocaterpillarsizes:1,2,2,2,8

(2)Theunlabeled,rootedspeciestreetopologycanthereforebedeterminedfromtheclasssizes.

Page 31: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

(3)Fromthethefour‐taxonresults,theunrootedspeciestreetopologycanbeidentifiedbydeterminingthemostprobablequartetforeachsubsetoffourspecies

Thereforeweknow(forfivetaxa):(i)labeled,unrootedspeciestreetopology(ii)unlabeled,rootedspeciestreetopology

Page 32: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

(4)Thelabeled,rootedspeciestreetopologycanbedeterminedbyfurtherconsideringinvariantsorinequalitiesinunrootedgenetreeprobabilities.

Example:Giventheunrootedspeciestreeandgiventhatthespeciestreeisbalanced,Therootedspeciestreeisoneof:

A

BC

D

E

T1

A B C D E A B C D E

R1

R2

Page 33: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

andimplydifferentinvariantsandinequalitiesfortheunrootedgenetreeprobabilities.

Under,isinthe6‐elementclass,and

Under,isinthe4‐elementclass,and

R1

R2

R1

T7

Pr(T7) < Pr(T5)

R2

T7

Pr(T7) > Pr(T5)

Page 34: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

  Similarargumentscanbeusedtoidentifythecaterpillarandpseudocaterpillar.Thusfive‐taxonrootedspeciestreesareidentifiablefromfive‐taxonunrootedgenetreeprobabilities.

  Theresultsgeneralizeimmediatelytolargertrees:theunrootedgenetreedistributionforeachsubset

offivetaxacanbeobtainedbysummingovertreesthatdisplaythefive‐taxontree.

  Thusallrootedquintetsonthespeciestreeareidentifiable.Therootedspeciestreetopologycanbeconstructedfromtherootedquintets.

Page 35: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

  Allbranchlengthsonfive‐taxonspeciestreescanberecovered.Example,(((a,b):x,c):y,(d,e):z)

Page 36: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

Theorem.

(i)Theunrootedgenetreedistributiondeterminestherootedspeciestreeandbranchlengthswhenthereare5ormoretaxa.

(ii)Theunrootedgenetreedistributiongivenafour‐taxonspeciestreedeterminestheunrootedspeciestree,butnottherootedspecies.

Page 37: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

(((AB)C)(DE))

((((AB)C)D)E)

(((AB)(CD))E)

Page 38: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

‐‐Agenetreedistributionhasonlyn‐2parameters(speciestreebranchlengths)

‐‐Butthereare(2n‐3)!!genetreeprobabilities

‐‐Therearemanytiesingenetreeprobabilitiesamongstdifferentgenetrees

‐‐Thereareotherlinearconstraints.Forthespeciestree(((AB)C)D),wehave

Pr[((AB)(CD))]–Pr[(((AB)D)C)]–Pr[(((AD)B)C)]=0

‐‐Howmanylinearconstraintsarethere?Howdoesthenumberoflinearconstraintsdependonthenumberoftaxaandspeciestreetopology?

‐‐Whataresomenonlinearconstraints?

Page 39: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks

Probabilitiesofcoalescenthistories,andthereforeofgenetrees,arepolynomialsinthetransformedbranchlengths.Anexamplepolynomialconstraint:

Page 40: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks
Page 41: James Degnan University of Canterbury 11/1/11 …folk.uio.no/ranestad/degnan.pdfJames Degnan University of Canterbury 11/1/11 (Joint work with Elizabeth Allman and John Rhodes) Thanks