jason lewis

Upload: nokme-donotcare

Post on 07-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/4/2019 Jason Lewis

    1/17

    ECE994:AntennasPatchAntennaImplantedInsideofaHumanBody

    JasonLewis

  • 8/4/2019 Jason Lewis

    2/17

    2

    TableofContents

    1.Introduction..........................................................................................................................31.1OverviewofImplantableMedicalSystems........................................................................3

    F1.1MaterialCharacteristicsat403.5MHz..........................................................................................3F1.2PenetrationDepthofTissuesat403.5MHz ..............................................................................4

    1.2UsesofImplantableCommunicationSystems..................................................................41.3RadioFrequenciesofInterestforImplantableMedicalSystems ..............................41.4ImplantCommunicationSystemSpecifications ..............................................................5

    2.AntennaDesignforISMBand .........................................................................................52.1DesignConsiderations..............................................................................................................5

    F2.1CalculationsforRectangularPatchAntenna.............................................................................5F2.2LayoutofthePatchAntennausedfortheISMBand..............................................................6F2.3EquivalentCircuitModelandEquations.....................................................................................7

    2.2AnalysisofISMBandAntenna ...............................................................................................7F2.4ElectricFieldPatterninFreeSpace...............................................................................................8F2.5AntennaGainvs.Angle........................................................................................................................8F2.6ImpedancePlots.....................................................................................................................................9F2.7ElectricFieldStrengthInsideofPhantom...............................................................................10F2.8GainvsAngleInsideofPhantom.................................................................................................10

    3.AntennaDesignforMICSBand.................................................................................... 113.1DesignConsiderations...........................................................................................................11

    F3.1PIFASchematic....................................................................................................................................11F3.2XFDTDLayoutofPIFA......................................................................................................................11

    3.2AnalysisofMICSBandAntenna.......................................................................................... 12

    F3.3ElectricFieldPatterninFreeSpace............................................................................................12F2.4AntennaGainvs.Angle.....................................................................................................................13F3.5ImpedancePlots..................................................................................................................................13F3.6ElectricFieldStrengthInsideofPhantom...............................................................................14F3.7GainvsAngleInsideofPhantom.................................................................................................15

    Conclusion............................................................................................................................... 15

    WorksCited............................................................................................................................ 17

  • 8/4/2019 Jason Lewis

    3/17

    3

    1.Introduction

    1.1OverviewofImplantableMedicalSystems

    Thepurposeofthispaperistoinvestigatethevariousaspectspertainingtotheuseofimplantablemedicaldevices,specificallytheantennaportionofthedevice.The

    examplesthatarepresentedwithinthispaperareverifiedusingtheFDTDapproach

    viaRemconsXFTDsoftware.Asourpopulationisagingandpeoplearewishingto

    liveontheirownatolderagesaneedforremotemonitoringofindividualsarises.Devicesarebeingimplantedintothetissuesofhumanbeingstomonitorvitalsigns

    andtocontrolotherimplanteddevices.

    Typical implantedcommunication systems involvethreemaincomponents.These

    componentsareatransceiver,anantenna,andapowersupply.Thetransceiverismadeupof the circuitry thatwill send,receiveandprocessdata toand fromthe

    antenna. The power supply will be a battery that is generally encased withinproximitytothetransceiver.Thetransceiverandtheantennawillneedtoconsume

    as small of an amount of power as possible during the data transfer cycles to

    prolongtheuseofthedevice.Toreplacea batterythat ispowering animplanted

    medicaldevicewillrequireinvasivesurgery.

    Designingantennasthataretobeimplantedwithinthehumanbodyarechallenging.

    Sizelimitationsandtheharshenvironmentofthehumanbodycreateextraworkfor

    theantennadesigner.Precisionneedstobepresentatsuchsmalldevicesizes.Body

    tissueshaveamuchhigherrelativepermittivitythantheair.Thisinturnwillleadtoaslowerpropagationvelocityandthereforeasmallerwavelength.F1.1showsthe

    differencesinpermittivityandwavelengthfordifferentbodilytissuesoperatingat403.5MHz(Richerd).

    F1.1MaterialCharacteristicsat403.5MHz

  • 8/4/2019 Jason Lewis

    4/17

    4

    Thistableleadstoaninterestingconclusion,thehighrelativepermittivityofbodily

    tissues will create shorter wavelengths and antennas can be designed for these

    shorter wavelengths. In other words the antenna implanted within the body is

    electrically larger. This will help designers create the antenna to be implanted

    withinthebody,butthisalsomeansthatanantennadesignedinforimplantusewill

    notoperatethesameinthefreespacerealm.Thepenetrationdepthofawaveisalsoeffectivethroughthebodytissues.Lower

    frequencieswillpenetratefurtherthanthehigherones,aswouldbeexpected.For

    the 403.5MHz the penetrationdepth for various tissues are summarized inF1.2(Yazdandoost).

    F1.2PenetrationDepthofTissuesat403.5MHz

    Tissue PenetrationDepthIncm

    DrySkin 5.51

    WetSkin 5.81

    Fat 30.85Muscle 5.25

    1.2UsesofImplantableCommunicationSystems

    As statedabove implantable communication systems can beused for biomedical

    applications.Inthispaperwewillassumethatthisistheprimaryfocus.Someofthe

    otherapplicationsforimplantablecommunicationsystemswillbepresentedinthissection.Implantablecommunicationsystemscanbeusedfortrackingbothhuman

    andanimals.Thisiscurrentlydoneonsomesmallpets.RFIDtaggingisbecominga

    popularwaytocontroltheflowofpeoplesegressanddeegressinabuilding.The

    sameproximitydevicesusedtoaccessdoorscanbeimplantedintohumantissue.Although this is not used currently it will be interesting to see if implantedcommunicationsystemswillbeutilizedinbuildingsecurityandautomation.

    1.3RadioFrequenciesofInterestforImplantableMedicalSystems

    There are two main bands of interest with implantablemedical communicationsystems.ThesebandsareknowastheIndustrial,ScientificandMedical(ISM)band,

    and theMedical ImplantCommunicationService (MICS)band.This ISMbandhas

    typicallyusedthe2.42.5GHzregionforoperatingmedicalequipment.Thebandis

    limitedto1Wradiatedpower.Thisisaneasierbandtodesignantennasatdueto

    thehigherfrequencyofoperation(ISMBand).

    ThesecondbandutilizedforimplantedmedicalcommunicationsiscalledtheMICS

    band. This band has typically used the frequency rage of 402 405 MHz. The

    maximumbandwidthforcommunicationsis300kHz.TheMICSbandisalsolimits

    theEffectiveRadiatedPower(EFP)to25Woutsideofthebody.Thislimitationwill

    hinder other equipment from interferingwhile operating on the same frequency

    band(Medical ImplantCommunicationService).Thisbandis sharedwithweather

    balloonsand satellite telemetry.Methods such asultrasound communication and

  • 8/4/2019 Jason Lewis

    5/17

    5

    opticalcommunicationhavealsobeenpurposedfortheMICSband.Theselatertwo

    methodswillrequirethereceivertobeveryclosetosurfaceoftheimplantlocation.

    SincethispaperisbasedonantennatheorytheRFcommunicationwillbeobserved.

    Thesetwobandswillbepracticalinthispaperandtwosubsequentantennaswillbe

    designedaroundthem.

    1.4ImplantCommunicationSystemSpecifications

    Antennasthatwillpotentiallybeusedinsideofimplantedcommunicationsystems

    willneedtoconsumeverysmallamountsofpower.Systemswilltypicallyonlybe

    consumingpowerduringdatatransmissionandperiodicpollingforsignalsfroma

    transmittingunit.Tofacilitatethisthesystemwillsleepwhenitisnottransferring

    datatoremotestations.Awakeupsignalwillbesentfromtheremotetransceiver

    when it needs to communicate with the implanted device. To further conserve

    powerdataissentinshortbursts.Theseshortburstswillconsumelesspowerthanasteadydataflow.

    Remote stations that will receive data from the implanted medical device arecapableofreceivingdatafromveryweaksignals.Typicalreceiverscanoperateat

    99dBm(.1pW)(dBm).Therangeoftheremotestationsislimited;thisismostlikely

    duetothefactthattheyarecapableofoperatingataverylowpower.Typicalranges

    areapproximatelyaround2mfromtheimplantedantenna(Bradley).

    2.AntennaDesignforISMBand

    2.1DesignConsiderations

    FortheISMbandarectangularpatchantennawascreated.Thistypeofantennais

    attractive because the bandwidth is very narrow. For the ISM band a centerfrequency of 2.45 GHz was chosen. The design was created using the following

    equationsshowninfigureF2.1(Balanis).Fromtheseequationsslightmodificationswerecreatedtomaximizeperformance.

    F2.1CalculationsforRectangularPatchAntenna

  • 8/4/2019 Jason Lewis

    6/17

    6

    Initially titania was used to construct the substrate of the patch antenna. Thisseemed like a relatively good idea because the relative permittivity of titania is

    around50. This isveryclosetothe relativepermittivitymuscle and blood. Some

    researchshows thatmaterialswith a relativepermittivity ofaround 10are veryusefulwhenusedasthesubstrateofapatchantenna.Forthisreasonaluminawas

    usedtocreatethesubstrate.Thefeedforthepatchantennawasalsooffsetfromthecenterofthepatchantenna.

    Theactualconstructionoftheantennaincludesagroundplaneatthebottomlayerandaconductingplane(microstrip)atthetoplayer.Thetoplayeroftheantenna

    hasdimensionsof19.2mmby32mm.Thegroundplaneandtheconductingplane

    areseparatedbyanaluminasubstratewithathicknessof2mm.Thevolumeofthe

    antennais1.3cm3.Thisisacompactdesignthatwillbeeasilyimplantedwithinthe

    tissue of the patient. The simple geometry of this design allows for easy

    manufacturing of the equipment. The feed placement of the antenna can be fed

    using a 25 coaxial cable connected through a via in the ground plane to the

    microstrip.

    Thisdesignwentthroughmanydifferentrevisions throughout thesimulations to

    increase the effectiveness of the antenna. Most of these revisions were done assmallmodificationstothedesignbasedonworkperformedbyotherengineers.The

    antennacreatedisverydifferentfromthemathematicalmodel.F2.2showsthefinal

    layoutofthepatchantennausedfortheISMband.Adjustmentstotheterminating

    resistanceweremadeusingtheImpedancemeasurementtoolinXFDTD.F2.3showstheequivalentcircuitmodelandequations.

    F2.2LayoutofthePatchAntennausedfortheISMBand

  • 8/4/2019 Jason Lewis

    7/17

    7

    F2.3EquivalentCircuitModelandEquations

    where

    2.2AnalysisofISMBandAntenna

    ThepatchantennausedtooperateontheISMbandwasanalyzedusingtheXFDTD

    software. The antennawas placed insideofaphantomtosimulatehumantissue.

    Thephantomwascomposedofamaterialmixturethatsimulatesskinandmuscle

    components.Theelectricalpropertiesofthephantomareanelectricpermittivityof45.2 and a conductivity of .61S/m. This material makeup was taken from the

    researchperformedbyC.M.Leeandassociates(Lee,YoandLuo).Theantennawas

    implanted4mmbelowthesurfaceofthephantom.Simulationswereperformedin

    theXFDTDenvironmentbothinsideandoutsideofthephantom.

    Theinitialsimulationswereperformedoutsideofthephantom.Theantennasystem

    wasdesignedtoworkinsideofhumantissuesothefreespaceenvironmentisnot

    the ideal test bed for the system. F2.4 shows the electric field pattern for the

    antennasysteminfreespace.

    Theantennahasaboresightof90andradiates27.8W.F2.5showsthegainoftheantennasysteminfreespace.Theantennahasamaximumgainof11.5dBiat90.

    This is relatively good for considering that the antennawas designed tooperatewithinthebody.Thebeamwidthorthe3dBmeasurementoftheantennais160.

  • 8/4/2019 Jason Lewis

    8/17

    8

    F2.4ElectricFieldPatterninFreeSpace

    F2.5AntennaGainvs.Angle

    Aftertheseinitialfreespacesimulationswereperformedtheantennasystemwas

    placedinaphantom4mmbelowthesurface.Thefirstparameterthatwasobserved

    was the input impedance. F2.6 shows the magnitude of the impedance and the

    compleximpedanceplots.Thecompleximpedanceisveryconstantoverthebandof

    interest(2.4to2.5GHz).Fromtheinformationthevoltagesourcewasterminated

    witha25 resistance.Thereforewehaveamatchedsystem.Thiswillreduce the

    amountofpowerthatisreflectedbackintothesource.Tuningtheimpedanceofthe

  • 8/4/2019 Jason Lewis

    9/17

    9

    sourcefortheantennaisaveryimportantprocessthatwillensurethattheantenna

    willoutputthecorrectelectricfieldradiation.

    F2.6ImpedancePlots

    The Electric Field Strength pattern can be seen in F2.7. The bore sight of theantennaisat180andtheantennaisradiating27.7Wofpower.Thisisclosetothe

    amount ofpower that should beradiated for the implant device.Within the ISM

    bandthepowerlimitationoutsideofthebodyis1W.Theradiatedpowerinthiscase

    is very close to the limits on the MICS band. The radiated power is more than

    sufficientforwirelesscommunicationwithareceiverthatiswithin2metersofthe

    subject.(Remotestationsarecapableofdatatransmissionoperationsat.1pW).

  • 8/4/2019 Jason Lewis

    10/17

    10

    F2.7ElectricFieldStrengthInsideofPhantom

    The gain of the antenna is the next portion of the simulation that will be

    investigated. With an antenna so small, made electrically larger via the high

    permittivityoftheimplantedtissue,devicessuchastheinputfeedcanhamperthe

    measurementofgain(Sivard,BradleyandChadwick).WiththisinmindF2.8shows

    thegainfortheantennaimplantedwithinthephantom.Themaximumgainofthe

    antenna,whichisseenat180is20dBi.Whengoingforthefreespaceexampleto

    the implanted example the gain was lowered 8.5dBi. The beam width for the

    antennainsideofthephantomis72.5.

    F2.8GainvsAngleInsideofPhantom

  • 8/4/2019 Jason Lewis

    11/17

    11

    Aplanarsensorwasplacedontheantennafield.Thisallowedforthevisualization

    of the electric andmagnetic fields. Reflections that occurred at the source, feed

    point,wereminimalbecausetheimpedanceswerematched.

    3.AntennaDesignforMICSBand

    3.1DesignConsiderations

    For theMICS band a rectangular patch antenna would be too large, therefore aPlanarInverterFAntenna(PIFA)wasdesigned.Thistypeofantennaisavariantof

    thepatchantenna.FortheMICSbandacenterfrequencyof403.5MHzwaschosen.The design was created using the schematic created by Lee,Yo and Lau. This is

    shown in figure F3.1(Lee, Yo and Luo). Layouts for each of the three layers are

    showninF3.2.ThexsymbolizesthefeedandtheOsymbolizestheshortingpin.Thefirstlayeractsasagroundplanefortheantennaandthetwootherlayersarethe

    conductinglayers.ThisisaverycompactdesignastheradiusofthePIFAantennaisonly7mm.ThisfactalonemakesthePIFAantennaattractiveforimplantuse.The

    material Aluminawas again chosen for the substrate and the superstrate of the

    PIFA.

    F3.1PIFASchematic

    F3.2XFDTDLayoutofPIFA

  • 8/4/2019 Jason Lewis

    12/17

    12

    The ground plane and the two conducting plane are separated by an alumina

    substratewithathicknessof0.63mm.ThetotalthicknessofthePIFAis1.9mm.The

    antennaisfedusinga20coaxialcableconnectedthroughaviainthegroundplane

    to the conducting layers. This feed is in parallel to a 20 shorting pin. The

    combinationofthesetwocomponentsmeansthereisa10sourcetermination.Adjustments to the terminating resistance were made using the Impedance

    measurementtoolinXFDTD.

    3.2AnalysisofMICSBandAntenna

    ThePIFAusedtooperateontheMICSbandwasanalyzedusingtheXFDTDsoftware.

    Theantennawasplacedinsideofaphantomtosimulatehumantissue.Thephantom

    was composedofa materialmixture that simulates skinandmusclecomponents.

    Theelectricalpropertiesofthephantomareanelectricpermittivityof45.2anda

    conductivity of .61S/m. This material makeup was taken from the researchperformedbyC.M.Leeandassociates(Lee,YoandLuo).Theantennawasimplanted

    4mmbelowthesurfaceofthephantom.SimulationswereperformedintheXFDTDenvironmentinsideandoutsideofthephantom.

    Theinitialsimulationswereperformedoutsideofthephantom.Theantennasystemwasdesignedtoworkinsideofhumantissuesothefreespaceenvironmentisnot

    the ideal test bed for the system. F3.3 shows the electric field pattern for the

    antenna system in free space. The antenna has a bore sight of 30 and radiates

    22nW.F3.4showsthegainoftheantennasysteminfreespace.Theantennahasa

    maximumgainof52dBiat30.Thebeamwidthoftheantennainfreespaceis120.

    F3.3ElectricFieldPatterninFreeSpace

  • 8/4/2019 Jason Lewis

    13/17

    13

    F2.4AntennaGainvs.Angle

    After the initial free space simulationswere performed the antenna system was

    placedinaphantom4mmbelowthesurface.Thefirstparameterthatwasobserved

    was the input impedance. F3.5 shows the magnitude of the impedance and the

    compleximpedanceplots.Thecompleximpedanceisveryconstantoverthebandof

    interest(402to405MHz).Fromtheinformationthevoltagesourcewasterminated

    witha10resistance.Theimpedancesarematchedcreatingamatchednetwork.

    Thisreducestheamountofpowerthatisreflectedbackintothesource.Tuningthe

    impedanceofthesourcefortheantennaisaveryimportantprocessthatwillensure

    thattheantennawilloutputthecorrectelectricfieldradiation.Thisprocessisthesameasthetuningoftherectangularpatchantenna.

    F3.5ImpedancePlots

  • 8/4/2019 Jason Lewis

    14/17

    14

    The Electric Field Strength pattern can be seen in F3.6. The bore sight of the

    antennaisat30andtheantennaisradiating21nWofpower.TheMICSbandlimits

    thepowerradiatedoutsideofthebodyto25W.Theradiatedpowerismorethan

    sufficientforwirelesscommunicationwithareceiverthatiswithin2metersofthesubject.(Remotestationsarecapableofdatatransmissionoperationsat.1pW).

    F3.6ElectricFieldStrengthInsideofPhantom

    The gain of the antenna is the next portion of the simulation that will be

    investigated. With an antenna so small, made electrically larger via the high

  • 8/4/2019 Jason Lewis

    15/17

    15

    permittivityoftheimplantedtissue,devicessuchastheinputfeedcanhamperthe

    measurementofgain(Sivard,BradleyandChadwick).WiththisinmindF3.7shows

    the gain for the antenna implanted within the phantom.Themaximum gain of

    52dBi occurs around 30. The gain is the same for both the free space and the

    implantedexample.Thisplotalsoshowsthatthebeamwidthoftheantennais125.

    F3.7GainvsAngleInsideofPhantom

    Aplanarsensorwasplacedontheantennafield.Thisallowedforthevisualization

    of the electric and magnetic fields. Reflections that occurred at the source were

    minimalbecausetheimpedanceswerematched.

    ConclusionTheresultsfromeachoneoftheantennadesignsshowthattheycanbeutilizedfor

    implantedcommunicationsystem.Theresults areverypromising andrewarding.

    Initialdesignsfortheantennasweredifficultandagreatdealofreconfiguringwas

    neededtocreateanantennathatwouldbesuitableforimplantation.Ifmoretimewas present in the course work would be done to increase the efficiency of theantennas, both antennas were less than 1% efficient according to the XFDTD

    software.Thisisthemajorproblemthathasarisenwiththeantennadesignsthat

    were chosen. This is also an issue that is plaguing other companies that design

    antennas for implanted communication systems. There will always be tradeoffs

    betweensize,efficiencyandeffectiverange.

  • 8/4/2019 Jason Lewis

    16/17

    16

    The interesting portion of this paper is the investigation of the way that the

    antennasactwithinaphantom.TheISMbandrectangularpatchantennaiscapable

    ofradiating27.3Wandhasabeamwidthof72.5.TheMICSbandPIFAantenna

    radiates21nWwithabeamwidthof125 .Thoughthetwodesignsareoperatingat

    different frequencies there is a tradeoff between the beam width and radiated

    power.Thegainof theantennainbothcasesisverylow.This isdueto themanylossesthatoccurwithinhumantissue.

    ImplantedcommunicationsystemsutilizeeithertheMICSorISMbands.Designingantennasforimplantapplicationscanbedifficulttotheharshenvironmentofthe

    humanbody.Therearemanytradeoffsthatneedtobeconsideredwhendesigningfor implanted communication systems. These tradeoffs include radiated power,

    powerconsumption,efficiencyandsize.Ofthesesizeisthelimitingfactor;larger

    antennas are not easily implanted and will encounter different types of tissue.RemconsXFDTDsoftwareisauseful tool for the design and analysisofantenna

    systems.Throughtheprojectandwrittenreportaspectofthiscoursealotofnew

    informationinantennatheoryaswellasmodelingandsimulatingdevicesinXFDTD.

  • 8/4/2019 Jason Lewis

    17/17

    17

    WorksCitedBalanis,Constantine.AntennaTheoryAnalysisandDesign.Hoboken:JohnWileyand

    Sons,INC,2005.Bradley,Peter.ImplantableultralowpowerRadioChipFacilitatesInBody

    Communications.7June2007.23June2009.dBm.22July2009.23July2009.

    ISMBand.1July2009.23July2009.

    Lee,C.M.,etal."CompactBroadbandStackedImplantableAntennaforBiotelemetry

    WithMedicalDevices."7June2007.IEEEXplore.23July2009

    .

    MedicalImplantCommunicationService.17February2009.15June2009

    .

    Richerd,JeanDaniel."MedicalDesign:UnderMySkin."EmbeddedSystemsEurope

    (2009).Sivard,Ake,etal."TheChallengeofDesigningInBodyCommunications."November

    2004.EETimesIndia.23July2009.

    Yazdandoost,Kamya."IEEEP802.15WorkingGroupforWirelessPersonalArea

    NetworksMedicalImplantCommunicationSystem."July2006.IEEE.21July2009

    .