jeff turner dr. scanlon college

24
Jeff Turner Dr Scanlon Dr . Scanlon Ripon College

Upload: others

Post on 03-Feb-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jeff Turner Dr. Scanlon College

Jeff TurnerDr  ScanlonDr. Scanlon

Ripon College

Page 2: Jeff Turner Dr. Scanlon College

Importance of Nitrene Insertion Carbon‐Nitrogen bonds are useful in a chemical synthesis.‐BiomoleculesPh i l‐Pharmaceuticals‐Specialized materials

Formation of these bonds has been astaple of chemical research

Nitrenestaple of chemical research

Page 3: Jeff Turner Dr. Scanlon College

Use of Gold in Formation of C‐N Bonds He group has investigated the use of AuCl3 in formation of C‐N bonds in wide variety of systems.D i i   h   h i   f C H b d   C N  Determining the mechanism of C‐H bond to C‐N bond conversion will allow for the design of better catalystscatalysts.

Historically the use of gold catalysts in the formation of carbon‐nitrogen bonds has not been as developed as g pother metals.

Page 4: Jeff Turner Dr. Scanlon College

Experimental BackgroundExperimental Background

Reaction was attempted by He group variety of catalysts, solvents,and conditions.

High yields with AuCl3 and dichloromethane as solvent  Functional group chemoselectivity favors insertion at

aromatic position instead of usual benzylic position

1

aromatic position instead of usual benzylic position.

1

Page 5: Jeff Turner Dr. Scanlon College

Experimental Background Use of 1,3,5 tri‐isopropyl benzene yielded insertions at aromatic and benzylic positions.

Page 6: Jeff Turner Dr. Scanlon College

Experimental Background Very weak benzylic C‐H bonds encourages formation of carbon‐gold(III) bond.

Deuterium replacement on hydrogen indicated AuCl3 inserted into benzylic and aromatic positions.

Kinetic isotope effect indicates that C‐H bond breaking is not rate determining stepbreaking is not rate determining step.

Page 7: Jeff Turner Dr. Scanlon College

Experimental Background Mechanism of nitrene insertion not determined by He group, but 

catalytic cycle and reaction pathway was proposed.

Page 8: Jeff Turner Dr. Scanlon College

Research Goal Determine the mechanism of nitrene insertion onto aromatic position on mesitylene.D i   h   h i   f  i i i     Determine the mechanism of nitrene insertion onto benzylic and aromatic positions of 1,3,5 tri‐isopropyl benzenebenzene.

Determine how AuCl3 can catalyze reactions at 2 positions and its behavior throughout the cycle.p g y

Page 9: Jeff Turner Dr. Scanlon College

C t ti l th d dComputational methods used  Gaussian Theory: M06-2X Basis Sets: midi! (non‐metallic atoms and iodine*), sdd (gold),  6‐Basis Sets: midi! (non metallic atoms and iodine ), sdd (gold),  6

311G(d,p) (non‐metallic atoms except iodine) ECP: sdd (Gold) Solvation model: SMD Solvation model: SMD

‐Dichloromethane Auto method used to speed up calculations.

Page 10: Jeff Turner Dr. Scanlon College

Possible Mechanism of Reaction‐Aromatic InsertionPossible Mechanism of Reaction Aromatic Insertion

PhINNs =N-(p-nitrophenylsulfonyl)imino]phenyliodinane

≠Reactants Aryl gold intermediateHydrogen transfer PhINNs Complex

‐HCl+

PhINNs

≠≠

Nitrene inserted product Catalyst regeneration Nitrene insertion

Nitrene inserted intermediate

HCl‐AuCl3

Page 11: Jeff Turner Dr. Scanlon College

E ti f f ti G ld C l tiEnergetics of formation ‐ Gold ComplexationSpecies Relative Gas Phase Energy 

(Kcal/mol)Relative Solvation Energy 

(Kcal/mol)Relative 6‐311G(d,p) Gas Phase Energy (Kcal/mol)

Reactants 0 0 0Reactants 0 0 0AuCl3 complexation -50.13 -52.26 -42.23

Hydrogen transfer -21.33 -24.09 -16.72

HCl ejection -26.95 -31.07 -25.45

Aryl gold intermediate -25.38 -30.37 -35.28

Dissociation of chlorine‐hydrogen to form HCl. Axial displacement of aromatic C‐H bond to incoming gold species.

Th  f i   f A l ld   i di  h  b   i l   The formation of Aryl‐gold type intermediates has been previously shown experimentally1

Reactants AuCl3 Complexation Hydrogen Transfer Aryl gold intermediateEjection of HCl

+

Page 12: Jeff Turner Dr. Scanlon College

Formation of Mes‐AuCl ‐NNs‐StepwiseFormation of Mes AuCl2 NNs Stepwise 

Species Relative Gas Phase Energy  Relative Solvation Energy  Relative 6‐311G(d,p) Gas Species (Kcal/mole) (Kcal/mole) Phase Energy (Kcal/mole)

Aryl gold intermediate -25.38 -30.37 -35.28

PhINNs Complex -79.70 -78.62 -83.44

PhINNs directly complexes to gold. This refutes our original hypothesis of a transition state where we have a concerted dissociation of 

phenyl‐iodide and formation of gold‐nitrogen bond.

Aryl Gold Intermediate PhINNs Complex

Page 13: Jeff Turner Dr. Scanlon College

Formation of the Bridging NitreneFormation of the Bridging NitreneSpecies Relative Gas Phase 

Energy (Kcal/mol)Relative Solvation  Energy (Kcal/mol)

Relative Gas Phase 6‐311G(d,p) Energy (Kcal/mol)

PhINNs Complex -79.70 -78.62 -83.44

TS-Nitrene insertion -41.59 -46.07 -45.69

Insertion of Nitrene -87.72 -81.47 -113.67

.

Phenyl‐Iodide behavior strongly supported that it is still associated through insertion, then dissociate after transition state.

This is due to an inability to find a nitrene inserted intermediate with phenyl‐iodide still complexedto the system  along with a transition state showing dissociation through the process

≠≠

PhINNs Complex TS – Nitrene Insertion Inserted Nitrene

to the system, along with a transition state showing dissociation through the process.

≠≠

4.192 A

Page 14: Jeff Turner Dr. Scanlon College

Formation of the productSpecies Relative Gas Phase Energy 

(Kcal/mol)Relative Solvation Energy 

(Kcal/mol)Relative gas phase 6‐311G(d,p) 

Energy (Kcal/mol)p (Kcal/mol) (Kcal/mol) Energy (Kcal/mol)

Bridging Nitrene -87.72 -81.47 -113.67HCL complexation -102.80 -87.09 -99.87TS-Hydrogen transfer to nitrene -100.85 -93.51 -93.03

Intermediate prior to catalyst di i ti -131.70 -128.21 -122.60

Bridging Nitrene

HCL

dissociation 131.70 128.21 122.60

Final Product -68.19 -62.25 -83.72

Transition StateHCl ComplexationIntermediate

HCl

HCL complexation

Final Product

Hydrogen TransferIntermediate prior to

catalyst dissociation

Catalyst Regeneration

catalyst dissociation

-AuCl3

Page 15: Jeff Turner Dr. Scanlon College

Reaction Pathway‐MesityleneReaction Pathway MesityleneSpecies Relative Energy 

(Kcal/mol)Relative Solvation Energy (Kcal/mol)

Relative 6‐311G(d,p) Gas Phase Energy 

(kcal/mole)

Reactants 0.00 0.00 0.00

Catalyst complexation -50.13 -52.26 -42.23TS-Hydrogen transfer -21.33 -24.09 -16.72HCl ejection -26.95 -31.07 -25.45Aryl Gold intermediate -25.38 -30.37 -35.28PhINNs Complex -79.70 -78.62 -83.44TS-Nitrene insertion -41.59 -46.07 -45.69TS Nitrene insertion 41.59 46.07 45.69

Inserted nitrene -87.72 -81.47 -113.67Mes-NNs-AuCl2(HCl) -102.80 -87.09 -99.87TS-Hydrogen transfer to nitrene -100.85 -93.51 -93.03

Mes-NHNs-AuCl3 -131.70 -128.21 -122.60Mes NHNs 68 19 62 25 83 72Mes-NHNs -68.19 -62.25 -83.72

Thermodynamic behavior is fairly extreme in certain cases, with up to 50 kcal/mol energy gains (Aryl gold to PhINNs complex), and 60 kcal/mol energy difference to the product from the catalytic regeneration process (Mes‐NHNs‐AuCl2 to Mes‐NHNs)

Data implies stability of the Mes‐NHNs‐AuCl3 complex before the catalyst is regenerated, thus suggesting that it does not reform. 

Reaction was completed by He group within one day, leading us to believe that the energy barriers in reality are not as high as they are computationally predictedbarriers in reality are not as high as they are computationally predicted.

Use of 6‐311G(d,p) reduces, but does not eliminate anomalous behavior (see well‐barrier flip between inserted nitrene and Mes‐NNs‐AuCl2(HCL).

Page 16: Jeff Turner Dr. Scanlon College

Benzylic Insertion of Nitrene Reaction that occurs in addition to aromatic insertion onto 1,3,5 tri‐isopropyl benzene 

when treated with same reagents. For the reaction to occur, a weak C‐H bond on the benzylic and neighboring aromatic C‐

H position was found to be required by He group1.H position was found to be required by He group . Reaction hypothesized to follow general pathway of aromatic insertion following gold 

complexation.

AuCl3

PhINNs+ PhI

Page 17: Jeff Turner Dr. Scanlon College

Proposed Mechanism of Benzylic InsertionProposed Mechanism of Benzylic Insertion

≠Reactants TS-Gold Transfer Aryl Gold Specie

-HCl

PhINNs

Page 18: Jeff Turner Dr. Scanlon College

Proposed Mechanism of Benzylic Insertion‐ContinuedContinued

Nit i t d I t di tTS Nit i tiPhINN C l≠

‐PhI

Nitrene inserted IntermediateTS-Nitrene insertionPhINNs Complex

≠HCl

-AuCl3

Page 19: Jeff Turner Dr. Scanlon College

Gold Transfer Transition State Search Mechanism currently unknown

h h f l l l h h b h The most promising path of catalyst complexation involves attachment to the aromatic carbon, then transferring to the benzylic position by either of these two methods.

• Direct Swing - HCl dissociation and direct movement of gold from aromatic to benzylicposition

• “Riding the pi-way” – HCldissociation and movement of gold species along benzene pi≠

≠position. gold species along benzene pi

orbitals to benzylic position

• Alternatively, the catalyst could complex onto the carbon bonded to isopropyl group, and attack either the aromatic hydrogens or the benzylicaromatic hydrogens, or the benzylichydrogen, then migrate to either of these positions.

Page 20: Jeff Turner Dr. Scanlon College

1 3 5 tri isopropyl benzene aromatic insertion of nitrene1,3,5 tri‐isopropyl benzene aromatic insertion of nitrene.

A mechanism has been found and it is the same as the mesitylene pathway. Key difference in potential energy surface from mesitylene is that HCl complexation to 

i t d  it i  th t th    T i i l b    h   l t     inserted nitrene is that the 1,3,5 Tri‐isopropyl benzene group has almost no energy barrier, while it is significant in mesitylene (6‐311G(d,p) calculations)

Species Gas Phase (Kcal/mol)

Solvation(Kcal/mol)

AuCl2 ComplexedIntermediate

(Kcal/mol) (Kcal/mol)Reactants 0.00 0

Gold Complexed Intermediate -56.87

Hydrogen transfer to chlorine -22 62 -24 70Hydrogen transfer to chlorine 22.62 24.70

HCL ejection intermediate -9.31

AuCl2 Complexed Intermediate -25.65 -30.25

PhINNs complex -86 51 -84 04 ProductPhINNs complex 86.51 84.04

Nitrene insertion -50.29 -50.86

Nitrene inserted intermediate -100.85 -98.24

HCL complexation -106.57 -98.35

Product

Hydrogen transfer to nitrogen -100.85 -92.64

Catalyst regen intermediate -133.87 -126.26

Products -71.93 -65.98

Page 21: Jeff Turner Dr. Scanlon College

Concluding remarks Mechanism of nitrene insertion determined for aromatic mesitylene

and 1,3,5 tri‐isopropyl benzene. Our understanding of gold catalytic behavior is not complete in the g g y p

benzylic system, open to shifts in hypothesized mechanistic pathway based on data acquired.  We suggest three possible mechanistic pathways.

Thermodynamic anomalies (high energy difference in regards to experimental data) exist on minimal basis set use in mesitylene and aromatic 1,3,5 insertions, particularly during nitrene insertion and 

( )catalytic reformation.  With mesitylene, use of 6‐311G(d,p) reduced some, but not completely eliminate these.  The most alarming was the switch from a well to a barrier in the complexation of HCl to the it i   it lnitrene in mesitylene.

Page 22: Jeff Turner Dr. Scanlon College

Future Plansutu e a s

Determine exact mechanism of benzylic migration of gold catalyst, either through direct swing, pi‐way, or complexationcomplexation.

Complete large basis set calculations for other projects. Obtain hypothesized transition states for benzylic Obtain hypothesized transition states for benzylicpathway.

Page 23: Jeff Turner Dr. Scanlon College

Acknowledgements Dr. Scanlon Ripon College Chemistry Department MU3C Trustee Grant: Ripon College

Page 24: Jeff Turner Dr. Scanlon College

References Gold(III)‐Catalyzed Nitrene Insertion into Aromatic and Benzylic C‐H groups; 

Li Zigang; Cappretto, David A.; Rahaman, Ronald O.; He, Chuan;  Journal of the American Chemical Society; Volume 129; Issue 40; Pages 12058‐12059; Journal; 2007Journal; 2007

Ring Expansions in the Reactions of Transition Metal‐Carbon Bonded Chelate Complexes; Bennett, M.A.; Hitchcock, P.B.; Hoskins, Kathleen; Kneen, W.R.; Mason, R.;  Nyholm, R.S.; Robertson, G.B.; Towl, A.D.C.; Journal of the , ; y , ; , ; , ; JAmerican Chemical Society; Volume 93; Issue 18; Pages 4592‐4594; Journal; 1971

The Chemistry of Organic Gold Compounds. III.  Direct Introduction of Gold i   h  A i  N l   M S  Kh h  H  I b ll  J l  f  h  into the Aromatic Nucleus;  M.S., Kharasch; Horace, Isbell; Journal of the American Chemical Society; Volume 53; Pages 3053‐3059; Journal; 1931