jönåthán påtrîck døwlîng quantum optical computing, imaging, and metrology...

29
Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science and Technologies Group Louisiana State University Baton Rouge, Louisiana USA PQE 05 JAN 2011, Snowbird, UT QuickTime™ a decompresso are needed to se QuickTime™ and a decompressor are needed to see this picture. Dowling JP, “Quantum Optical Metrology — The Lowdown On High-N00N States,” Contemporary Physics 49 (2): 125-143 (2008). Ionatán Pádraig O’Dúnlaing

Upload: melinda-christiana-morris

Post on 29-Jan-2016

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Jönåthán Påtrîck Døwlîng

Quantum Optical Computing, Imaging, and

Metrology

quantum.phys.lsu.edu

Hearne Institute for Theoretical PhysicsQuantum Science and Technologies Group

Louisiana State UniversityBaton Rouge, Louisiana USA

PQE 05 JAN 2011, Snowbird, UT

QuickTime™ and a decompressor

are needed to see this picture.

QuickTime™ and a decompressor

are needed to see this picture.

Dowling JP, “Quantum Optical Metrology — The Lowdown On High-N00N States,” Contemporary Physics 49 (2): 125-143 (2008).

Ionatán Pádraig O’Dúnlaing

Page 2: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Quantum (Optical) SensorsBallroom I: WED 12:00N & 8:50PM

12:20 Petr M. AnisimovLouisiana State University‘‘Squeezing the Vacuum and beating Heisenberg: Limits? Where we’re going we do not need any limits!’’

12:00 Christoph Wildfeuer & A. MigdallNIST & Louisiana State University ‘‘Techniques for enhancing the precision of measurements with photon number resolving detectors’’

12:40 E. E. Mikhailov & I. NovikovaCollege of William and Mary‘‘Generation of squeezed vacuum with hot and ultra-cold Rb atoms’’

20:50 Geoff PrydeGriffith University, AUS‘‘Optimal multiphoton phasesensing and measurement’’

21:10 J. C. F. Matthews & J. L. O’Brien University of Bristol, UK‘‘Entangled Multi-Photon States in Waveguide for Quantum Metrology’’21:30 Kevin McCusker & Paul Kwiat University of Illinois‘‘Efficient Quantum Optical State Engineering’’21:50 Xi WangTexas A&M University‘‘Self-Implemented Heterodyne CARS by Using Its Intrinsic Background’’

Page 3: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Photo: H.Cable, C.Wildfeuer, H.Lee, S.D.Huver, W.N.Plick, G.Deng, R.Glasser, S.Vinjanampathy, K.Jacobs, D.Uskov, J.P.Dowling, P.Lougovski, N.M.VanMeter,

M.Wilde, G.Selvaraj, A.DaSilvaTop Inset: P.M.Anisimov, B.R.Bardhan, A.Chiruvelli, L.Florescu, M.Florescu, Y.Gao,

K.Jiang, K.T.Kapale, T.W.Lee, S.B.McCracken, C.J.Min, S.J.Olsen, R.Singh, K.P.Seshadreesan, S.Thanvanthri, G.Veronis.

Bottom Inset C. Brignac, R.Cross, B.Gard, D.J.Lum, Keith Motes, G.M.Raterman, C.Sabottke,

Hearne Institute for Theoretical PhysicsQuantum Science & Technologies Group

QuickTime™ and a decompressor

are needed to see this picture.

QuickTime™ and a decompressorare needed to see this picture.QuickTime™ and a

decompressorare needed to see this picture.

QuickTime™ and a decompressorare needed to see this picture.QuickTime™ and a decompressorare needed to see this picture.

QuickTime™ and a decompressorare needed to see this picture.QuickTime™ and a decompressorare needed to see this picture.

QuickTime™ and a decompressorare needed to see this picture.QuickTime™ and a decompressorare needed to see this picture.

Page 4: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Quantum Metrology

QuantumSensing

QuantumImaging

Quantum Computing

You Are Here!

Page 5: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Outline

1.1. Nonlinear Optics vs. Projective Nonlinear Optics vs. Projective

MeasurementsMeasurements

2.2. Quantum Imaging vs. Precision Quantum Imaging vs. Precision

MeasurementsMeasurements

3.3. Showdown at High N00N!Showdown at High N00N!

4.4. Mitigating Photon LossMitigating Photon Loss

6. Super Resolution with Classical Light6. Super Resolution with Classical Light

7. Super-Duper Sensitivity Beats 7. Super-Duper Sensitivity Beats

Heisenberg! Heisenberg!

8. A Parody on Parity8. A Parody on Parity

Page 6: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Optical Quantum Computing:Two-Photon CNOT with Kerr

NonlinearityThe Controlled-NOT can be implemented using a Kerr medium:

Unfortunately, the interaction (3) is extremely weak*: 10-22 at the single photon level — This is not practical!

*R.W. Boyd, J. Mod. Opt. 46, 367 (1999).

R is a /2 polarization rotation,followed by a polarization dependentphase shift .

R is a /2 polarization rotation,followed by a polarization dependentphase shift .

(3)

Rpol

PBS

z

|0= |H Polarization|1= |V Qubits|0= |H Polarization|1= |V Qubits

Page 7: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Two Roads to Optical Quantum

Computing

Cavity QED

I. Enhance Nonlinear Interaction with a Cavity or EIT — Kimble, Walther, Lukin, et al.

I. Enhance Nonlinear Interaction with a Cavity or EIT — Kimble, Walther, Lukin, et al.

II. Exploit Nonlinearity of Measurement — Knill, LaFlamme, Milburn, Nemoto, et al.

II. Exploit Nonlinearity of Measurement — Knill, LaFlamme, Milburn, Nemoto, et al.

Page 8: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

210 γβα ++ 210 γβα −+

Linear Optical Quantum Computing

Linear Optics can be Used to Construct 2 X CSIGN = CNOT Gate and a Quantum Computer:

Knill E, Laflamme R, Milburn GJNATURE 409 (6816): 46-52 JAN 4 2001

Knill E, Laflamme R, Milburn GJNATURE 409 (6816): 46-52 JAN 4 2001

Franson JD, Donegan MM, Fitch MJ, et al.PRL 89 (13): Art. No. 137901 SEP 23 2002

Franson JD, Donegan MM, Fitch MJ, et al.PRL 89 (13): Art. No. 137901 SEP 23 2002

Milburn

Page 9: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Photon-PhotonXOR Gate

Photon-PhotonNonlinearity

Kerr Material

Cavity QEDEIT

Cavity QEDEIT

ProjectiveMeasurement

  LOQC  KLM

  LOQC  KLM

WHY IS A KERR NONLINEARITY LIKE A PROJECTIVE MEASUREMENT?

Page 10: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

G. G. Lapaire, P. Kok, JPD, J. E. Sipe, PRA 68 (2003) 042314

G. G. Lapaire, P. Kok, JPD, J. E. Sipe, PRA 68 (2003) 042314

KLM CSIGN: Self Kerr Franson CNOT: Cross Kerr

NON-Unitary Gates Effective Nonlinear GatesNON-Unitary Gates Effective Nonlinear Gates

A Revolution in Nonlinear Optics at the Few Photon Level:No Longer Limited by the Nonlinearities We Find in Nature! 

A Revolution in Nonlinear Optics at the Few Photon Level:No Longer Limited by the Nonlinearities We Find in Nature! 

Projective Measurement Yields Effective Nonlinearity!

Page 11: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

+NA0BeiNϕ0ANB

1 + cos N ϕ

2

1 + cos ϕ

2

ABϕ|N⟩A |0⟩B N Photons

N-PhotonDetector

ϕ = kxΔϕ: 1/√N →1/ΝuncorrelatedcorrelatedOscillates N times as fast!N-XOR GatesN-XOR Gatesmagic BSMACH-ZEHNDER INTERFEROMETERApply the Quantum Rosetta Stone!

Quantum MetrologyH.Lee, P.Kok, JPD, J Mod Opt 49, (2002) 2325

H.Lee, P.Kok, JPD, J Mod Opt 49, (2002) 2325

Shot noise

Heisenberg

Page 12: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Sub-Shot-Noise Interferometric Measurements With Two-Photon N00N States

A Kuzmich and L Mandel; Quantum Semiclass. Opt. 10 (1998) 493–500.

QuickTime™ and a decompressor

are needed to see this picture.

QuickTime™ and a decompressor

are needed to see this picture.

Low N00N

2 0 + ei2ϕ 0 2

Low N00N

2 0 + ei2ϕ 0 2

SNL

HL

Page 13: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

N Photons

N-PhotonDetector

ϕ = kx+NA0BeiNϕ0ANB

1 + cos N ϕ

2

1 + cos ϕ

2

uncorrelatedcorrelatedOscillates in REAL Space!N-XOR Gatesmagic BSFROM QUANTUM INTERFEROMETRYTO QUANTUM LITHOGRAPHY

Mirror

N

2A

N

2B

LithographicResist

ϕ →Νϕ λ →λ/Ν

ψ a†

a†

aa ψa† N a N

AN Boto, DS Abrams, CP Williams, JPD, PRL 85 (2000) 2733

AN Boto, DS Abrams, CP Williams, JPD, PRL 85 (2000) 2733

Super-Resolution

Sub-Rayleigh

Page 14: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Quantum Lithography Experiment

|20>+|02>

|10>+|01>

Low N00N

2 0 + ei2ϕ 0 2

Low N00N

2 0 + ei2ϕ 0 2

Page 15: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Quantum Imaging: Super-Resolution

N=1 (classical)N=5 (N00N)

Page 16: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Quantum Metrology: Super-Sensitivity

dP1/d

dPN/dΔϕ =

ΔP̂

d P̂ / dϕ

N=1 (classical)N=5 (N00N)

ShotnoiseLimit:Δ1 = 1/√N

HeisenbergLimit:ΔN = 1/N

Page 17: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Showdown at High-N00N!

|N,0 + |0,NHow do we make High-N00N!?

*C Gerry, and RA Campos, Phys. Rev. A 64, 063814 (2001).

With a large cross-Kerr nonlinearity!* H =  a†a b†b

This is not practical! — need  =  but  = 10–22 !

|1

|N

|0

|0

|N,0 + |0,N

Page 18: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

FIRST LINEAR-OPTICS BASED HIGH-N00N GENERATOR PROPOSAL

Success probability approximately 5% for 4-photon output.

e.g. component

oflight from an

optical parametric oscillator

Scheme conditions on the detection of one photon at each detector

mode a

mode b

H. Lee, P. Kok, N. J. Cerf and J. P. Dowling, PRA 65, 030101 (2002).J.C.F.Matthews, A.Politi, Damien Bonneau, J.L.O'Brien, arXiv:1005.5119

Page 19: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

N00N State Experiments

Rarity, (1990) Ou, et al. (1990)

Shih (1990)Kuzmich (1998)

Shih (2001)

6-photon Super-

resolutionOnly!

Resch,…,WhitePRL (2007)Queensland

1990’s2-photon

Nagata,…,Takeuchi,

Science (04 MAY)Hokkaido &

Bristol;J.C.F.Matthews, A.Politi, Damien

Bonneau, J.L.O'Brien,

arXiv:1005.5119

2007–20104-photon

Super-sensitivity&

Super-resolution

Mitchell,…,Steinberg

Nature (13 MAY)Toronto

20043, 4-photon

Super-resolution

only

Walther,…,Zeilinger

Nature (13 MAY)Vienna

Page 20: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Quantum LIDAR

Ψin =

c i N − i, ii= 0

N

δ

forward problem solver

δ= f ( Ψin , φ ; loss A, loss B)

INPUT

“find min( )“

δ

FEEDBACK LOOP:Genetic Algorithm

inverse problem solver

OUTPUT

min(δφ) ; Ψin(OPT ) = c i

(OPT ) N − i, i , φOPT

i= 0

N

N: photon number

loss A

loss B

NonclassicalLight

Source

DelayLine

Detection

Target

Noise

“DARPA Eyes Quantum Mechanics

for Sensor Applications”

— Jane’s Defence Weekly

“DARPA Eyes Quantum Mechanics

for Sensor Applications”

— Jane’s Defence Weekly

Winning LSU Proposal

Page 21: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

04/22/23 21

Loss in Quantum SensorsSD Huver, CF Wildfeuer, JP Dowling, Phys. Rev. A 78 # 063828 DEC 2008

ψN00N

Generator

Detector

Lost photons

Lost photons

La

Lb

Visibility:

Sensitivity:

ψ =(10,0 + 0,10 ) 2

ψ =(10,0 + 0,10 ) 2

ϕ

SNL---

HL—

N00N NoLoss —

N00N 3dB Loss ---

Page 22: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Super-LossitivityGilbert, G; Hamrick, M; Weinstein, YS; JOSA B 25 (8): 1336-1340 AUG 2008

Δϕ =ΔP̂

d P̂ / dϕ

3dB Loss, Visibility & Slope — Super Beer’s Law!

N=1 (classical)N=5 (N00N)

dP1 /dϕ

dPN /dϕ

eiϕ → eiNϕ

e−α L → e−Nα L

QuickTime™ and a decompressor

are needed to see this picture.

Page 23: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Loss in Quantum SensorsS. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # 063828 DEC 2008

ψN00N

Generator

Detector

Lost photons

Lost photons

La

Lb

ϕ

Q: Why do N00N States “Suck” in the Presence of Loss?A: Single Photon Loss = Complete “Which Path” Information!

N A 0 B + e iNϕ 0 A N B → 0 A N −1 B

A

B

Gremlin

Page 24: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Towards A Realistic Quantum Sensor

S. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # 063828 DEC 2008Try other detection scheme and states!

M&M Visibility

ψM&M

Generator

Detector

Lost photons

Lost photons

La

Lb

ψ =( m,m' + m',m ) 2M&M state:

ψ =( 20,10 + 10,20 ) 2

ψ =(10,0 + 0,10 ) 2

ϕ

N00N Visibility

0.05

0.3

M&M’ Adds Decoy Photons

Page 25: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

ψM&M

Generator

Detector

Lost photons

Lost photons

La

Lb

ψ =( m,m' + m',m ) 2M&M state:

ϕ

M&M State —

N00N State ---

N00N HL —

M&M HL —

M&M SNL ---

N00N SNL ---

A FewPhotons

LostDoes Not

GiveComplete

“Which Path”

Towards A Realistic Quantum SensorS. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # 063828 DEC 2008

Page 26: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Super-Resolution at the Shot-Noise Limit with Coherent States and Photon-Number-Resolving Detectors

J. Opt. Soc. Am. B/Vol. 27, No. 6/June 2010

Y. Gao, C.F. Wildfeuer, P.M. Anisimov, H. Lee, J.P. Dowling

We show that coherent light coupled with photon number resolving detectors — implementing parity detection — produces super-resolution much below the Rayleigh diffraction limit, with sensitivity at the shot-noise limit.

QuickTime™ and a decompressor

are needed to see this picture.QuickTime™ and a

decompressorare needed to see this picture.

Classical

Quantum

ParityDetector!

Page 27: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit

PRL 104, 103602 (2010)PM Anisimov, GM Raterman, A Chiruvelli, WN Plick, SD Huver, H Lee, JP

Dowling

We show that super-resolution and sub-Heisenberg sensitivity is obtained with parity detection. In particular, in our setup, dependence of the signal on the phase evolves <n> times faster than in traditional schemes, and uncertainty in the phase estimation is better than 1/<n>.

QuickTime™ and a decompressor

are needed to see this picture.

SNL HL

TMSV& QCRB

HofL

SNL ≡1/ n̂ HL ≡1/ n̂ TMSV ≡1/ n̂ n̂+ 2 HofL ≡1/ n̂2

Page 28: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

QuickTime™ and a decompressor

are needed to see this picture.

Parity detection in quantum optical metrologywithout number-resolving detectors

New Journal of Physics 12 (2010) 113025, 1367-2630/10/113025+12$30.00

William N Plick, Petr M Anisimov, Jönåthán P Døwlîng, Hwang Lee, and Girish S Agarwal

Abstract. We present a method for directly obtaining the parity of a Gaussian state of light without recourse to photon-number counting. The scheme uses only a simple balanced homodyne technique and intensity correlation. Thus interferometric schemes utilizing coherent or squeezed light and parity detection may be practically implemented for an arbitrary photon flux.

QuickTime™ and a decompressor

are needed to see this picture.

Page 29: Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science

Outline

1.1. Nonlinear Optics vs. Projective Nonlinear Optics vs. Projective

MeasurementsMeasurements

2.2. Quantum Imaging vs. Precision Quantum Imaging vs. Precision

MeasurementsMeasurements

3.3. Showdown at High N00N!Showdown at High N00N!

4.4. Mitigating Photon LossMitigating Photon Loss

6. Super Resolution with Classical Light6. Super Resolution with Classical Light

7. Super-Duper Sensitivity Beats 7. Super-Duper Sensitivity Beats

Heisenberg! Heisenberg!

8. A Parody on Parity8. A Parody on Parity