jonathan p. dowling

31
Jonathan P. Dowling Quantum Optical Metrology, Imaging, and Computing quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science and Technologies Group Louisiana State University Baton Rouge, Louisiana USA Frontiers of Nonlinear Physics, 19 July 2010 The «Georgy Zhukov» Between Valaam and St. Petersburg, Russi QuickTime™ a decompresso are needed to se QuickTime™ and a decompressor are needed to see this picture.

Upload: mckenzie-joyce

Post on 30-Dec-2015

64 views

Category:

Documents


2 download

DESCRIPTION

Quantum Optical Metrology, Imaging, and Computing. Jonathan P. Dowling. Hearne Institute for Theoretical Physics Quantum Science and Technologies Group Louisiana State University Baton Rouge, Louisiana USA. quantum.phys.lsu.edu. Frontiers of Nonlinear Physics, 19 July 2010 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Jonathan P. Dowling

Jonathan P. Dowling

Quantum Optical Metrology, Imaging, and

Computing

quantum.phys.lsu.edu

Hearne Institute for Theoretical PhysicsQuantum Science and Technologies Group

Louisiana State UniversityBaton Rouge, Louisiana USA

Frontiers of Nonlinear Physics, 19 July 2010On The «Georgy Zhukov» Between Valaam and St. Petersburg, Russia

QuickTime™ and a decompressor

are needed to see this picture.

QuickTime™ and a decompressor

are needed to see this picture.

Page 2: Jonathan P. Dowling

Dowling JP, “Quantum Metrology,” Contemporary Physics 49 (2): 125-143 (2008)

hl

Page 3: Jonathan P. Dowling

H.Cable, C.Wildfeuer, H.Lee, S.D.Huver, W.N.Plick, G.Deng, R.Glasser, S.Vinjanampathy, K.Jacobs, D.Uskov, J.P.Dowling, P.Lougovski, N.M.VanMeter,

M.Wilde, G.Selvaraj, A.DaSilvaNot Shown: P.M.Anisimov, B.R.Bardhan, A.Chiruvelli, R.Cross, G.A.Durkin, M.Florescu,

Y.Gao, B.Gard, K.Jiang, K.T.Kapale, T.W.Lee, D.J.Lum, S.B.McCracken, C.J.Min, S.J.Olsen, G.M.Raterman, C.Sabottke, R.Singh, K.P.Seshadreesan, S.Thanvanthri,

G.Veronis

Hearne Institute for Theoretical PhysicsQuantum Science & Technologies Group

Page 4: Jonathan P. Dowling

Outline

1.1. Nonlinear Optics vs. Projective Nonlinear Optics vs. Projective

MeasurementsMeasurements

2.2. Quantum Imaging vs. Precision Quantum Imaging vs. Precision

MeasurementsMeasurements

3.3. Showdown at High N00N!Showdown at High N00N!

4.4. Mitigating Photon LossMitigating Photon Loss

6. Super Resolution with Classical Light6. Super Resolution with Classical Light

7. Super-Duper Sensitivity Beats 7. Super-Duper Sensitivity Beats

Heisenberg! Heisenberg!

Page 5: Jonathan P. Dowling

Optical Quantum Computing:Two-Photon CNOT with Kerr

NonlinearityThe Controlled-NOT can be implemented using a Kerr medium:

Unfortunately, the interaction (3) is extremely weak*: 10-22 at the single photon level — This is not practical!

*R.W. Boyd, J. Mod. Opt. 46, 367 (1999).

R is a /2 polarization rotation,followed by a polarization dependentphase shift .

R is a /2 polarization rotation,followed by a polarization dependentphase shift .

(3)

Rpol

PBS

z

|0= |H Polarization|1= |V Qubits|0= |H Polarization|1= |V Qubits

Page 6: Jonathan P. Dowling

Two Roads to Optical Quantum

Computing

Cavity QED

I. Enhance Nonlinear Interaction with a Cavity or EIT — Kimble, Walther, Lukin, et al.

I. Enhance Nonlinear Interaction with a Cavity or EIT — Kimble, Walther, Lukin, et al.

II. Exploit Nonlinearity of Measurement — Knill, LaFlamme, Milburn, Franson, et al.

II. Exploit Nonlinearity of Measurement — Knill, LaFlamme, Milburn, Franson, et al.

Page 7: Jonathan P. Dowling

210 γβα ++ 210 γβα −+

Linear Optical Quantum Computing

Linear Optics can be Used to Construct 2 X CSIGN = CNOT Gate and a Quantum Computer:

Knill E, Laflamme R, Milburn GJNATURE 409 (6816): 46-52 JAN 4 2001

Knill E, Laflamme R, Milburn GJNATURE 409 (6816): 46-52 JAN 4 2001

Franson JD, Donegan MM, Fitch MJ, et al.PRL 89 (13): Art. No. 137901 SEP 23 2002

Franson JD, Donegan MM, Fitch MJ, et al.PRL 89 (13): Art. No. 137901 SEP 23 2002

Milburn

Page 8: Jonathan P. Dowling

Photon-PhotonXOR Gate

Photon-PhotonNonlinearity

Kerr Material

Cavity QEDEIT

Cavity QEDEIT

ProjectiveMeasurement

  LOQC  KLM

  LOQC  KLM

WHY IS A KERR NONLINEARITY LIKE A PROJECTIVE MEASUREMENT?

Page 9: Jonathan P. Dowling

G. G. Lapaire, P. Kok, JPD, J. E. Sipe, PRA 68 (2003) 042314

G. G. Lapaire, P. Kok, JPD, J. E. Sipe, PRA 68 (2003) 042314

KLM CSIGN: Self Kerr Franson CNOT: Cross Kerr

NON-Unitary Gates Effective Nonlinear GatesNON-Unitary Gates Effective Nonlinear Gates

A Revolution in Nonlinear Optics at the Few Photon Level:No Longer Limited by the Nonlinearities We Find in Nature! 

A Revolution in Nonlinear Optics at the Few Photon Level:No Longer Limited by the Nonlinearities We Find in Nature! 

Projective Measurement Yields Effective Nonlinearity!

Page 10: Jonathan P. Dowling

+NA0BeiNϕ0ANB

1 + cos N ϕ

2

1 + cos ϕ

2

ABϕ|N⟩A |0⟩B N Photons

N-PhotonDetector

ϕ = kxΔϕ: 1/√N →1/ΝuncorrelatedcorrelatedOscillates N times as fast!N-XOR GatesN-XOR Gatesmagic BSMACH-ZEHNDER INTERFEROMETERApply the Quantum Rosetta Stone!

Quantum MetrologyH.Lee, P.Kok, JPD, J Mod Opt 49, (2002) 2325

H.Lee, P.Kok, JPD, J Mod Opt 49, (2002) 2325

Shot noise

Heisenberg

Page 11: Jonathan P. Dowling

Sub-Shot-Noise Interferometric Measurements With Two-Photon N00N States

A Kuzmich and L Mandel; Quantum Semiclass. Opt. 10 (1998) 493–500.

QuickTime™ and a decompressor

are needed to see this picture.

QuickTime™ and a decompressor

are needed to see this picture.

Low N00N

2 0 + ei2ϕ 0 2

Low N00N

2 0 + ei2ϕ 0 2

SNL

HL

Page 12: Jonathan P. Dowling

N Photons

N-PhotonDetector

ϕ = kx+NA0BeiNϕ0ANB

1 + cos N ϕ

2

1 + cos ϕ

2

uncorrelatedcorrelatedOscillates in REAL Space!N-XOR Gatesmagic BSFROM QUANTUM INTERFEROMETRYTO QUANTUM LITHOGRAPHY

Mirror

N

2A

N

2B

LithographicResist

ϕ →Νϕ λ →λ/Ν

ψ a†

a†

aa ψa† N a N

AN Boto, DS Abrams, CP Williams, JPD, PRL 85 (2000) 2733

AN Boto, DS Abrams, CP Williams, JPD, PRL 85 (2000) 2733

Super-Resolution

Sub-Rayleigh

Page 13: Jonathan P. Dowling

New York Times

Discovery Could Mean Faster Computer Chips

Page 14: Jonathan P. Dowling

Quantum Lithography Experiment

|20>+|02>

|10>+|01>

Low N00N

2 0 + ei2ϕ 0 2

Low N00N

2 0 + ei2ϕ 0 2

Page 15: Jonathan P. Dowling

Quantum Imaging: Super-Resolution

N=1 (classical)N=5 (N00N)

Page 16: Jonathan P. Dowling

Quantum Metrology: Super-Sensitivity

dP1/d

dPN/dΔϕ =

ΔP̂

d P̂ / dϕ

N=1 (classical)N=5 (N00N)

ShotnoiseLimit:Δ1 = 1/√N

HeisenbergLimit:ΔN = 1/N

Page 17: Jonathan P. Dowling

Showdown at High-N00N!

|N,0 + |0,NHow do we make High-N00N!?

*C Gerry, and RA Campos, Phys. Rev. A 64, 063814 (2001).

With a large cross-Kerr nonlinearity!* H =  a†a b†b

This is not practical! — need  =  but  = 10–22 !

|1

|N

|0

|0

|N,0 + |0,N

Page 18: Jonathan P. Dowling

FIRST LINEAR-OPTICS BASED HIGH-N00N GENERATOR PROPOSAL

Success probability approximately 5% for 4-photon output.

e.g. component

oflight from an

optical parametric oscillator

Scheme conditions on the detection of one photon at each detector

mode a

mode b

H. Lee, P. Kok, N. J. Cerf and J. P. Dowling, PRA 65, 030101 (2002).

Page 19: Jonathan P. Dowling

Implemented in Experiments!

Page 20: Jonathan P. Dowling

N00N State Experiments

Rarity, (1990) Ou, et al. (1990)

Shih (1990)Kuzmich (1998)

Shih (2001)

6-photon Super-

resolutionOnly!

Resch,…,WhitePRL (2007)Queensland

1990’s2-photon

Nagata,…,Takeuchi,

Science (04 MAY)Hokkaido & Bristol

20074-photon

Super-sensitivity&

Super-resolution

Mitchell,…,Steinberg

Nature (13 MAY)Toronto

20043, 4-photon

Super-resolution

only

Walther,…,Zeilinger

Nature (13 MAY)Vienna

Page 21: Jonathan P. Dowling

Quantum LIDAR

Ψin =

c i N − i, ii= 0

N

δ

forward problem solver

δ= f ( Ψin , φ ; loss A, loss B)

INPUT

“find min( )“

δ

FEEDBACK LOOP:Genetic Algorithm

inverse problem solver

OUTPUT

min(δφ) ; Ψin(OPT ) = c i

(OPT ) N − i, i , φOPT

i= 0

N

N: photon number

loss A

loss B

NonclassicalLight

Source

DelayLine

Detection

Target

Noise

“DARPA Eyes Quantum Mechanics

for Sensor Applications”

— Jane’s Defence Weekly

“DARPA Eyes Quantum Mechanics

for Sensor Applications”

— Jane’s Defence Weekly

Winning LSU Proposal

Page 22: Jonathan P. Dowling

04/19/23 22

Loss in Quantum SensorsSD Huver, CF Wildfeuer, JP Dowling, Phys. Rev. A 78 # 063828 DEC 2008

ψN00N

Generator

Detector

Lost photons

Lost photons

La

Lb

Visibility:

Sensitivity:

ψ =(10,0 + 0,10 ) 2

ψ =(10,0 + 0,10 ) 2

ϕ

SNL---

HL—

N00N NoLoss —

N00N 3dB Loss ---

Page 23: Jonathan P. Dowling

Super-LossitivityGilbert, G; Hamrick, M; Weinstein, YS; JOSA B 25 (8): 1336-1340 AUG 2008

Δϕ =ΔP̂

d P̂ / dϕ

3dB Loss, Visibility & Slope — Super Beer’s Law!

N=1 (classical)N=5 (N00N)

dP1 /dϕ

dPN /dϕ

eiϕ → eiNϕ

e−α L → e−Nα L

Page 24: Jonathan P. Dowling

Loss in Quantum SensorsS. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # 063828 DEC 2008

ψN00N

Generator

Detector

Lost photons

Lost photons

La

Lb

ϕ

Q: Why do N00N States Do Poorly in the Presence of Loss?A: Single Photon Loss = Complete “Which Path” Information!

N A 0 B + e iNϕ 0 A N B → 0 A N −1 B

A

B

Gremlin

Page 25: Jonathan P. Dowling

Towards A Realistic Quantum Sensor

S. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # 063828 DEC 2008Try other detection scheme and states!

M&M Visibility

ψM&M

Generator

Detector

Lost photons

Lost photons

La

Lb

ψ =( m,m' + m',m ) 2M&M state:

ψ =( 20,10 + 10,20 ) 2

ψ =(10,0 + 0,10 ) 2

ϕ

N00N Visibility

0.05

0.3

M&M’ Adds Decoy Photons

Page 26: Jonathan P. Dowling

ψM&M

Generator

Detector

Lost photons

Lost photons

La

Lb

ψ =( m,m' + m',m ) 2M&M state:

ϕ

M&M State —

N00N State ---

M&M HL —

M&M HL —

M&M SNL ---

N00N SNL ---

A FewPhotons

LostDoes Not

GiveComplete

“Which Path”

Towards A Realistic Quantum SensorS. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # 063828 DEC 2008

Page 27: Jonathan P. Dowling

Optimization of Quantum Interferometric Metrological Sensors In the Presence of Photon Loss

PHYSICAL REVIEW A, 80 (6): Art. No. 063803 DEC 2009

Tae-Woo Lee, Sean D. Huver, Hwang Lee, Lev Kaplan, Steven B. McCracken, Changjun Min, Dmitry B. Uskov, Christoph F. Wildfeuer, Georgios Veronis,

Jonathan P. Dowling

We optimize two-mode, entangled, number states of light in the presence of loss in order to maximize the extraction of the available phase information in an interferometer. Our approach optimizes over the entire available input Hilbert space with no constraints, other than fixed total initial photon number.

QuickTime™ and a decompressor

are needed to see this picture.

QuickTime™ and a decompressor

are needed to see this picture.

QuickTime™ and a decompressor

are needed to see this picture.

Page 28: Jonathan P. Dowling

Lossy State ComparisonPHYSICAL REVIEW A, 80 (6): Art. No. 063803 DEC 2009

Here we take the optimal state, outputted by the code, at each loss level and project it on to one of three know states, NOON, M&M, and “Spin” Coherent.

The conclusion from this plot is that the optimal states found by the computer code are N00N states for very low loss, M&M states for intermediate loss, and “spin” coherent states for high loss.

Page 29: Jonathan P. Dowling

Super-Resolution at the Shot-Noise Limit with Coherent States and Photon-Number-Resolving Detectors

J. Opt. Soc. Am. B/Vol. 27, No. 6/June 2010

Y. Gao, C.F. Wildfeuer, P.M. Anisimov, H. Lee, J.P. Dowling

We show that coherent light coupled with photon number resolving detectors — implementing parity detection — produces super-resolution much below the Rayleigh diffraction limit, with sensitivity at the shot-noise limit.

QuickTime™ and a decompressor

are needed to see this picture.QuickTime™ and a

decompressorare needed to see this picture.

Classical

Quantum

ParityDetector!

Page 30: Jonathan P. Dowling

Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit

PRL 104, 103602 (2010)PM Anisimov, GM Raterman, A Chiruvelli, WN Plick, SD Huver, H Lee, JP

Dowling

We show that super-resolution and sub-Heisenberg sensitivity is obtained with parity detection. In particular, in our setup, dependence of the signal on the phase evolves <n> times faster than in traditional schemes, and uncertainty in the phase estimation is better than 1/<n>.

QuickTime™ and a decompressor

are needed to see this picture.

SNL HL

TMSV& QCRB

HofL

SNL ≡1/ n̂ HL ≡1/ n̂ TMSV ≡1/ n̂ n̂+ 2 HofL ≡1/ n̂2

Page 31: Jonathan P. Dowling

Outline

1.1. Nonlinear Optics vs. Projective Nonlinear Optics vs. Projective

MeasurementsMeasurements

2.2. Quantum Imaging vs. Precision Quantum Imaging vs. Precision

MeasurementsMeasurements

3.3. Showdown at High N00N!Showdown at High N00N!

4.4. Mitigating Photon LossMitigating Photon Loss

6. Super Resolution with Classical Light6. Super Resolution with Classical Light

7. Super-Duper Sensitivity Beats 7. Super-Duper Sensitivity Beats

Heisenberg! Heisenberg!