jose granjo set2013

Upload: shoemakerlevy9

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Jose Granjo Set2013

    1/53

    BIOFUEL PRODUCTIONPROCESSES BASED ON

    SYSTEMATIC OPTIMIZATION

    METHODOLOGIES

    September 18th, 2013

    Coimbra, Portugal

  • 8/12/2019 Jose Granjo Set2013

    2/53

    Jos F.O. [email protected]

    GEPSI PSE Group, CIEPQPF

    Chemical Engineering DepartmentUniversity of Coimbra, Portugal

    Nuno M.C. Oliveira

    [email protected]

  • 8/12/2019 Jose Granjo Set2013

    3/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    Presentation outline

    Motivations

    Project framework

    Some work developed

    Modelling & parameter estimation of LLE and VLE systems

    Sodium methylate production process. Simulation and analysis

    Optimal design of solid-liquid extraction units

    End notes

  • 8/12/2019 Jose Granjo Set2013

    4/53

    (4/53)

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    MOTIVATIONS

  • 8/12/2019 Jose Granjo Set2013

    5/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    5/53

    Economy based on fossil resources

    MOTIVATIONS

    RAW MAT E RIAL S INT E RMEDIATES PRODUCTS/

    U S E SC O M M O D I TI E S

    S E C O N D A R Y

    COMM ODITIE S

    UPSTREAM REFINERY DEPLOYMENT&

    DISTRIBUTIONFigure 1. Fossil-based refinery concept.

    Highly cost-efficient industries since the

    upstream to the downstream steps.

    Broad number of products and uses.

    Well stablished technologies.

    Oil & gas combined global market value of

    $2.6 trillion of dollars in 2010.

    Coal, gas & oil combined annual volume of

    77 billion BOE spent in 2012.

    Coal market value is $600 billion of dollars

    in 2010, more 14.5% than 2007.

  • 8/12/2019 Jose Granjo Set2013

    6/53INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    6/53 MOTIVATIONS

    RAW MATERIALS

    Petroleum

    Natural gas

    Coal

    Tar sa nds bit umin ous

    Oil shales

    COMMODITIES

    Benzene

    Gasoline

    Diesel

    Xylene

    Toluen e

    Butanes

    Ethane/Ethylene

    Chlorine

    CO / H2

    O2/N2

    SO2

    SECONDARYCOMMODITIES

    Ethylene benzene

    Cyclohexane

    Cumene

    P-Xylene

    Iso-butylene

    Butadiene

    Ethylene oxide

    Propylene

    Ethylene Dichloride

    Methanol

    Ammonia

    Sulphuric acid

    Styrene

    Adipic acid

    Caprolactam

    Phenol

    Acetone

    Tereph tha lic acid

    Ethylene glycol

    Propylene oxide

    Acrylonitrile

    Vinyl Chloride

    Formaldehyde

    MTBE

    Acetic acid

    Nitric acid

    INTERMEDIATES

    Polystyrene

    Nylon 6,6, polyurethanes

    Nylon 6

    Phenol-formaldehyde resins, B isphenol A,Caprolactam, Dalicylic acid

    Methyl methacrylate, Solvents, Bisphenol A,Pharmaceuticals

    Toluen e di isoc yana te, foam poly ure than es

    MTBE

    Polybutadiene, neoprene, styrenebutadiene rubber

    Polypropylene, polypropylene glycol,propylene glycol

    adiponitrile, acrylamide

    Polyvinyl chloride

    Urea-formaldehyde resins,phenol-formaldehyde resins

    Oxygenated gasoline additive

    Vinyl acetatePolyvinyl acetatePolyvinyl alcoholPolyvinyl butyral

    Ammonium nitrate, adipic acid,fertilizers, explosives

    Phosphate fertilizer, ammonium

    PRODUCTS/USES

    TEXTI LS

    coatings, foam cushions, upholstery,

    drapes, lycra, spandex

    SAFE FOOD SUPPLY

    Food packaging, preservatives,

    fertilizers, pesticides, beveragebottles, appliances, beverage can

    coatings, vitamins

    TRANS PORTATION

    Fuels, oxygenates, anti-freeze, wiper

    belts hoses, bumpers, corrosion

    inhibitors

    CONSTRUCTION

    Paints, resins, siding, insulation,

    retardents, adhesives, carpeting

    RECREATION

    Footgear, protective equipment,

    tires, wet suits, tapes- CDs-DVDs,

    golf equipment, camping gear,

    Rboats

    COMMUNICATION

    Molded plastics, computer casings,

    displays, pens, pencils, inks, dyes,

    paper products

    HEALTH & HYGIENE

    Plastics eyeglasses, cosmetics,

    detergents, pharmaceuticals, suntan

    lotions, medical- dental products,

    disinfectants, aspirin

    Figure 2. A product flow-chart from petroleum feedstocks.

  • 8/12/2019 Jose Granjo Set2013

    7/53INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    7/53 MOTIVATIONS

    Figure 3. World total proved reserves of oil (BP, 2013).

    Geographic concentration of resources.

    10.000 +

    8.000 - 9.999

    6.000 - 7.999

    4.000 - 5.999

    2.000 - 3.999

    0 - 1.99 9

    NO DAT A

    (mtoe)

    PROVEDRESERVES

    Economy based on fossil resources

  • 8/12/2019 Jose Granjo Set2013

    8/53INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    8/53 MOTIVATIONS

    0

    50

    100

    150

    200

    250

    1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

    Priceindexes(index2005

    =

    100)

    Year

    Non-fuel

    Industrial

    inputs

    Fuel

    Food

    OPEC production

    Asian l crisis

    9/11

    Iraq war

    PDVSA strike

    Weaker dollar

    ArabSpring

    Subprime

    mortgage crisis

    Low spare

    production

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

    R/P(

    yr

    )

    Year

    Coal

    Gas

    Oil

    Figure 4. Price indexes adjusted to inflation. Data from BP (2013). Figure 5. Reserves-to-production ratio of coal, gas and oil. Data from BP (2013).

    Geographic concentration of resources.

    Energy security and prices instabilities.

    Long-term supply shortcomings.

    Contributes to global-warming.

    Economy based on fossil resources

    CO2 levels surpassed 400 ppm for the first time in

    3 to 5 million years, a time where climate

    was considerably warmer than it is today. (BBC

    News, May 10th, 2013).

  • 8/12/2019 Jose Granjo Set2013

    9/53INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    9/53 MOTIVATIONS

    Figure 6. Bio-economy concept.

    Bio-economy

    B I O MA S S

    BIOREFINERIES

    BIO-ENERGY

    PRODUCT, FUEL AND ENERGY MARKETS

    BIO-ECONOMY

    BIO-PRODUCTS BIO-FUELS

    Market valorises bio-products.

    Global market value for bio-productsincreased from 2001 to 2012 from $20 billion to$200+ billion of dollars.

    Biofuels global market was $83+ billion in2011 and is forecasted $185 billion of dollars for

    2021.

    BI OMAS S P R ECUR SOR S SEC ONDARY

    C H EM IC ALS I N T E R M E D I A T E S

    PRODUCT S

    U S E S

    INTER MEDIAT E

    P LAT F ORM S

    BUILDIN G

    B L O C K S

    Develop bio-products mimicking

    functionalities of petroleum-based or improved.

    Valorise biomass regarded as waste.

    Figure 7. Bio-economy concept.

    DEPLOYMENTBIOREFINERYHARVESTING

  • 8/12/2019 Jose Granjo Set2013

    10/53

  • 8/12/2019 Jose Granjo Set2013

    11/53INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    11/53 MOTIVATIONS

    Bio-economy

    High spatial distribution of biomass resources and intermittent availability.

    Technological hindrances in the conversion of cheap feedstock (e.g. forest and agro

    wastes).

    Biomass morphology and chemical composition are highly variable.

    Intensification of biomass usage increases water demand.

    High uncertainty in the prediction of thermodynamic properties.

    Identification of the adequate product portfolio for the biorefinery.

    Main challenges

    PSE tools and know-how are being use to tackle above issues in

    biorefinery context.

  • 8/12/2019 Jose Granjo Set2013

    12/53INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    12/53

    * Scope of this work.

    *

    MOTIVATIONS

    Figure 9. Decisions hierarchy in PSE (Grossmann, 2010).

    More focus on process synthesis & analysis.

    Decision-making with PSE tools

  • 8/12/2019 Jose Granjo Set2013

    13/53INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    13/53

    Figure 10. Academic & Industry perspectives

    (adapted from Neves, 2007).Major concerns in biofuel industry at single-site level are feedstockcosts, equipment cost, and energy and water consumptions.

    MOTIVATIONS

    Modelling(complexity)

    Simulation

    Optimisation(poor solutions)

    Energy(costs )

    Separation(efficiency )

    Reaction(production )

    PSE

    Academic view(difficulties to overcome)

    Industrial view(benefits to accomplish)

    (large-scale)

    Decision-making with PSE tools

  • 8/12/2019 Jose Granjo Set2013

    14/53

    (14/53)

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    PROJECT

    OVERVIEW

  • 8/12/2019 Jose Granjo Set2013

    15/53

    15/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    PROJECT OVERVIEW

    TR AN SP OR T& HAR V E S TIN G STOR AGE SUR GE B IN

    & SCALED ES TONI NG DR YI NG

    CRACKING,ASPIRATION& DEHULLING

    HULLS &MILL FEED

    CONDITIONINGFLAKI NG MILL

    SOLVENT

    SOLVENTMAR C

    F L AS HDESOLVEN-

    TI ZI NG

    BAG AS S E

    EXTRACTION

    SOLVENTMAKE U P

    YE AS T

    ENZYMES

    SOLVENTMAKE U P

    FLASH

    EVAPORATORF L AS H

    YE AS TRECYCLE

    GLYCEROL

    PROTEINCONCENTRATE

    BIOETHANOL

    WATER

    WATER

    2SEEDSPREPARATION

    1COLLECTING& TRANSPORTING

    3SOLVENTEXTRACTION

    4BIOETHANOLPROCESS

    5BIODIESELPROCESS

    MISCELLA

    VEG. OIL

    SACCHARIFICATION

    METHANOL

    LLEXTRACTIONREACTION

    FERMENTATION

    FLOUR

    WORTFERMENTEDWORT

    SEPARATION

    OIL RECYCLE

    BIODIESEL

    SEPARATION

    SEPARATION

    WATER+ GLYCEROL

    BIODIESEL+ OIL

    FIBERS

    SOY BEANS

    Biorefinery based on whole-crop biomassFigure 11. Whole-crop biorefinery

    based upon soy bean.

  • 8/12/2019 Jose Granjo Set2013

    16/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    16/53 PROJECT OVERVIEW

    Work performed within the project

    Modelling & parameter estimation of LLE and VLE systems.

    Kinetic studies of transesterification reaction for biodiesel production.

    Sodium methylate production process. Simulation and analysis.

    Optimal design of industrial solid-liquid extraction units.

  • 8/12/2019 Jose Granjo Set2013

    17/53

    (17/53)

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    MODELLING & PARAMETER

    ESTIMATION OF LLE AND VLESYSTEMS

  • 8/12/2019 Jose Granjo Set2013

    18/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    18/53 MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    Study of water ethanol IL LLE ternary systems.

    Application to ethanol purification.

    Modelling and parameter regression of VLE data for IL-water and IL-

    ethanol binary pairs.

    Solubilities of ILs in water (ongoing).

    Parameter regression for single strong aqueous electrolytes.

    Tasks accomplished

  • 8/12/2019 Jose Granjo Set2013

    19/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    19/53

    Development of an alternative process to purify ethanol based on L-L extraction.

    7 phosphonium-based ionic liquids were tested as potential solvents.

    Experimental data of water ethanol IL ternary systems was gathered. LLE modelling and parameter regression with NRTL model.

    LLE predictions with COSMO-RS.

    P+

    N-

    S

    O

    O

    F

    F

    F

    S

    O

    O

    F

    F

    F

    O O-

    P

    O

    -O

    -

    N

    N N

    SO

    O

    O-

    [TDTHP]+

    Cl- Br-

    [Deca]-

    [Phosph]-[CH3SO3]

    -

    [N(CN)2]-

    [NTf2]-

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    * Join collaboration with PATh-CICECO

    group, University of Aveiro.

    Study of water ethanol IL ternary systems

    Figure 12. Molecular structures of all IL studied.

    Detailed description of this work inNeves et al. (2011).

  • 8/12/2019 Jose Granjo Set2013

    20/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    20/53

    Figure 13. Local molecular clusters.

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    Study of water ethanol IL ternary systems Modelling

    Necessary condition for liquid-liquid equilibria.

    2

    11

    2

    1

    2

    1

    21

    2

    2

    1

    Molecule 1

    in centre

    Molecule 2

    in centre

    g21

    g11

    g12

    g22

    NRTL

    1, 2, ...,I IIi i i N

    = 1, 2, ...,

    I II

    i i

    I II

    i i

    i i i

    f f

    a a

    a x i N

    NRTL model (Renon, 1968) used to describe non-ideality.

    lnc cE n n

    i ii i

    i i i

    x Lg xRT M

    lncn

    j ij jii ij

    ji j j

    x G LL

    M M M

    cn

    i k ki ki

    k

    L x G

    cn

    i k ki

    k

    M x G

    i j i j

    ijG e

    ( ) , and 0,ij i i ij

    ij ij g g g i j i j

    RT RT

  • 8/12/2019 Jose Granjo Set2013

    21/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    21/53 MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    Study of water ethanol IL ternary systems

    NRTL parameters regression

    3 adjustable parameters per binary pair , , .ij j i ij ji

    Problem easy to formulate and small, but can be hard to tackle due to its high

    non-linearity and non-convex nature.

    NLP1

    2

    2exp modmin = ( )

    . . ( , ) 0

    1 0 1,2,... ; 1,2

    0, 1,2,... ; 1,2,... ; 1,2

    t cn n

    ijk ijk ijk z

    i j k

    ijk t

    j

    L U

    ij ij ij

    ijk t c

    w w

    s t NRTL x

    x i n k

    x i n j n k

    NLP 1 implemented in GAMS and solved with CONOPT, OQNLP and BARON.

    Regression problem formulation:

  • 8/12/2019 Jose Granjo Set2013

    22/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    22/53 MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    Study of water ethanol IL ternary systems NRTL parameters regression

    4th law of thermodynamics: "Anything that can go wrong, will go wrong."

    Figure 14. Excess Gibbs energy curve of abinary mixture system. LLE example.

    After regression, stability tests must be done to avoid meaningless parameter values.

    00 1.0

    m G

    R T

    X1

    X1

    L1X1

    L2

    1L1

    1L2

    00 1.0

    m G

    R T

    X1

    X1

    L1X1

    L3X1

    L2

    F(y)

    1L1

    1L3

    1L2

    Figure 15. Excess Gibbs energy curve of abinary mixture system. 3 phase LLE example.

  • 8/12/2019 Jose Granjo Set2013

    23/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    23/53 MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    Study of water ethanol IL ternary systems Stability test problem formulation

    Minimization of F(y):

    NLP2

    min ( )=. . (y; ) 0

    1 0

    0, 1,2, ...

    cnF

    i i iy

    i

    i

    i

    i c

    F y y y

    s t NRTL

    y

    y i n

    Phases are stable if and only if 0

    for all space of candidate phase with compositiony.

    1) Solve NLP1 with OQNLP.

    2) Generate a pool of all local solutions found.

    3) Test stability solving NLP2 for each experiment.

    4) If all stable finish. Else, go to 3) with the 2nd best solution, etc.

    Numerical procedure adopted

  • 8/12/2019 Jose Granjo Set2013

    24/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    24/53

    Figure 17.Ternary phase diagram [TDTHP][Deca] + EtOH + H2Oat 298 K (mass fraction units).

    NRTL parameters for seven water(1) etanol(2) Ionic liquid(3) ternary systems were obtained.

    Figure 16.Ternary phase diagram [TDTHP][Phosph] + EtOH + H2Oat 298 K (mass fraction units).

    [TDTHP][Phosph]0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    EtOH

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    H2O

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    [TDTHP][Deca]0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    EtOH

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    H2O

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    Study of water ethanol IL ternary systems Results

    A commercial package of COSMO-RS model is used to predict LLE. It uses quantumcalculations coupled with statistical thermodynamic approaches.

  • 8/12/2019 Jose Granjo Set2013

    25/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    25/53

    Figure 19.Ternary phase diagram [TDTHP][CH3SO3] + EtOH + H2Oat 298 K (mass fraction units).

    Figure 18.Ternary phase diagram [TDTHP][Cl] + EtOH + H2Oat 298 K (mass fraction units).

    [TDTHP]Cl0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    EtOH

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    H2O

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    [TDTHP][CH3SO3]0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    EtOH

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    H2O

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    Parameters 13, 31, 23 , 32 are adjusted while:

    12 13 23 12 210 3031 0 2 0 3 670 4 55 2. , . , . , . / , . /T T

    are fixed as suggested by Song and Chen (2009).

    Results

    Study of water ethanol IL ternary systems

  • 8/12/2019 Jose Granjo Set2013

    26/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    26/53

    Figure 21.Ternary phase diagram [TDTHP][N(CN)2] + EtOH + H2Oat 298 K (mass fraction units).

    All systems are type I.

    Figure 20.Ternary phase diagram [TDTHP][Br] + EtOH + H2Oat 298 K (mass fraction units).

    [TDTHP]Br0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    EtOH

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    H2O

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    [TDTHP][N(CN)2]0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    EtOH

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    H2O

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    Study of water ethanol IL ternary systems Results

  • 8/12/2019 Jose Granjo Set2013

    27/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    27/53

    Figure 22.Ternary phase diagram [TDTHP][NTf2] + EtOH + H2Oat 298 K (mass fraction units).

    [TDTHP][NTf2]0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    EtOH

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    H2O

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    System D SMaximum EtOH

    extraction (%)

    [TDTHP]Cl 0.82 6.6 72

    [TDTHP]Br 0.68 7.9 78

    [TDTHP][NTf2] 0.07 22 87

    [TDTHP][Phosph] 0.85 5.7 72

    [TDTHP][Deca] 0.81 5.3 70

    [TDTHP][N(CN)2] 0.51 7.8 82

    [TDTHP][CH3SO3] 0.89 6.7 65

    [TDTHP][B(CN)4] - - 91a

    [TDTHP][C(CN)3

    ] - - 80a

    Table 1. Distribution coefficients and ethanol selectivities for each systemat the lowest tie-line, and maximum ethanol concentration obtainable(mass basis).

    a Predicted by COSMO-RS.

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    Results

    Study of water ethanol IL ternary systems

    Concentrations of up to 65% wt in ethanol can

    be achieved from 2% wt ethanol feed, using a

    single LL extraction stage.

  • 8/12/2019 Jose Granjo Set2013

    28/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    28/53

    Values of at the optimum varied

    between 0.710-3

    and 710-3

    for systemsBr- and [N(CN)2]- , respectively. Ionic liquid

    NRTL binary interaction parameters

    13 31 23 32

    [TDTHP]Cl 11.14 -2.555 5.230 -3.181

    [TDTHP]Br 21.09 6.265 4.688 -2.760

    [TDTHP][NTf2] 11.36 4.674 4.798 -1.520

    [TDTHP][Phosph] 25.25 -1.450 6.064 -3.917

    [TDTHP][Deca] 23.82 -1.169 5.487 -3.559

    [TDTHP][N(CN)2] 14.82 1.313 4.865 -2.873

    [TDTHP][CH3SO3] 11.09 -3. 487 5.998 -3.318

    Table 2. NRTL binary interaction parameters for eachsystem at 298.15 K.

    Results

    Study of water ethanol IL ternary systems

    Number of local optima varied

    between 5 and 77 for the systems[NTf2]

    - and [Br]-, respectively.

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    F(y) varied between -110-10 and 0.

    Therefore all data points were

    considered stable for the best NRTL

    parameter set found.

  • 8/12/2019 Jose Granjo Set2013

    29/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    29/53

    Pervaporation

    VaporizerCooling

    LL

    extractor

    Fermenter

    Feed

    Water

    makeup

    Broth

    Recycle

    Residue Solvent

    Purge IL

    makeup

    Extract

    Hydrated

    ethanol

    Anhydrous

    ethanol

    Water

    residue

    Figure 23. Block diagram for ethanol purificationbased on liquid-liquid extraction and pervaporation.

    A LL extraction stage coupled to an extractive fermentation.

    IL is continuously recycled to the fermentator.

    Further ethanol concentration is carried out by pervaporation.

    This design applicable in other contexts, where ethanol is to be separated.

    Study of water ethanol IL ternary systems Alternative process for bioethanol purification

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

  • 8/12/2019 Jose Granjo Set2013

    30/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    30/53

    Characteristics of electrolyte solutions

    Modelling (single strong electrolyte)

    Complete or partial speciation of some molecular species.

    Possible salt precipitation and salting-out effect.

    Possible presence of complexing compounds.

    Simultaneous phase and solution equilibrium.

    Mean activity coefficient of a salt completely dissolved.

    CA C (sol.)

    - ln

    c a

    ca c c a a

    o

    ca ca

    A

    RT m

    1/

    1/

    where

    c a

    c a

    c a

    c a

    c a

    m m m

    eNRTL model (Chen, 1980)was used to estimate

    Single strong electrolyte solutions

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

  • 8/12/2019 Jose Granjo Set2013

    31/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    31/53

    * *, *, *,ln ln ln lnPDH Born lc i i i i

    2 2*, 21 1ln 10

    2

    Born e ii

    s w i

    Q z

    kT r

    1/2

    2 2 1/2 3/2*, 1/2

    1/2

    2 2 21000ln ln 1

    1

    PDH i i x x i x

    s x

    z z I IA I

    M I

    1/21/2 221

    3 1000A s e

    s

    N d QA

    kT

    21

    2x i i

    i

    I x z

    ,i c a

    Long-range interaction contribution

    eNRTL model

    Born term correction (only in mixed-solvent solutions)

    * denotes unsymmetricreference state: 1wx Detailed model derivation inChen and Song (2004).

    ,i c a

    Figure 24. Molecule and ions clusters.

    c

    a

    a

    a

    c

    c

    c

    m

    a

    gac gmc

    gma

    gca

    gcm

    gmm

    gam

    eNRTLCation in

    centre

    Anion

    in centre

    Moleculein centre

    m

    m

    m

    mm

    m

    m

    m

    m

    eNRTL accounts contributions of local and electrostatic interactions.

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

  • 8/12/2019 Jose Granjo Set2013

    32/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    32/53

    , ,

    ,

    , ' , '

    ' , ' , '' , ' , '

    1ln

    k kc ac kc ac k km kmlc m cmk kc a cm

    a mc k kc ac k km k km

    k k k

    k ka c a ka c a

    c a ca c a kca c a

    a c k ka c a k ka c a

    k k

    X G X GX GY

    z X G X G X G

    X GY X G

    X G X G

    ' ' , ,,m' '

    ' ,' ' ' , ,

    , ,,

    ,

    , ,

    lnj jm jm k km km k kc ac kc ac

    jlc a c mc ac mm k k m mm mc ac

    m c ak km k km k km k kc ac k kc ac

    k k k k k

    k ka ca ka cac a Ba ca k

    mc ca

    k ka ca k ka ca

    k k

    X G X G X GY X GX G

    X G X G X G X G X G

    X GY X G

    X G X G

    a c

    Short-range interaction contribution

    ,

    ln

    lc

    m wm mw mw G

    ,

    ,

    1

    ln

    lc

    c a wc ac cw cw ac Y Gz

    ,

    ,ca

    1ln lc

    a c wa aw aw ca

    Y Gz

    *,ln ln lnlc lc i i i

    , , , ,i j k m c a

    eNRTL model

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

  • 8/12/2019 Jose Granjo Set2013

    33/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    33/53

    , ,

    ,

    , ' , '' , '

    , '

    ' , ' , '

    1ln

    k ka ca ka ca k km kmlc m amk ka c am

    c ma k ka ca k km k km

    k k k

    k kc a c kc a c a c ac a c k

    ac a c

    c a k kc a c k kc a c

    k k

    X G X GX G

    Yz X G X G X G

    X GY X G

    X G X G

    ,mcm a ca

    a

    G Y G ,mam a ac a

    G Y G

    '

    '

    cc

    c

    c

    XY

    X

    a'

    '

    aa

    a

    XY

    X

    ,mc cm a m caa

    Y ,ma am c m cac

    Y

    , , ,ma ca am ca m m ca

    ,ac , ,mc cm ca m m ca

    Adjustable parameters:

    Molecule molecule

    Ion-pair molecule

    Ion-pair ion-pair

    ' ' ' ', ,mm m m mm m m

    , , , ,, ,ca m m ca m ca ca m

    , ' ',ca , ' ' ,

    , ' ', , ' ' ,

    , , , ,

    ,ca ca ca ca c a c a ca

    ca ca ca ca ca c a c a ca

    In practice, valuesare fixed to 0.2 or 0.3.

    Mixing rules:

    eNRTL model

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

  • 8/12/2019 Jose Granjo Set2013

    34/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    34/53

    Case studies

    Single strong electrolyte solutions

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    Used to test eNRTL implementation in GAMS .

    eNRTL model was regressed to experimental data of mean activitycoefficient from NaCl and KCl aqueous solutions.

    eNRTL parameters regression problem formulation:

    NLP3

    2

    exp modmin = ( )

    . . e ( ) 0

    1,2, ... ; 1,2, ...

    tn

    kz

    j

    L U

    ij ij ij c c

    s t NRTL

    i n j n

    Parameter ca,m = 0.2. ,and ,

    are adjusted.

  • 8/12/2019 Jose Granjo Set2013

    35/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    35/53

    Table 3. Results of NRTL parameter regression for NaCl and KCl aqueoussolutions.

    Single strong electrolyte solutions Results for case studies NaCl and KCl aqueous solutions

    MODELLING & PARAMETER ESTIMATION OF LLE AND VLE SYSTEMS

    NaCl KCl

    , ,

    , ,

    GAMS -4.572 8.949 -4.132 8.126

    ASPENTECH DB -4.550 8.888 -4.131 8.122

    Zemaitis Jr., (1986) -4.549 8.885 -4.107 8.064

    Figure 25. Experimental and predicted mean activitycoefficient versus molality for NaCl aqueous solution.

    Figure 26. Experimental and predicted mean activitycoefficient versus molality for KCl aqueous solution.

    AAD%(

    NaCl) ~ 0.007.

    AAD%(

    KCl) ~ 0.001.

  • 8/12/2019 Jose Granjo Set2013

    36/53

    (36/53)

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    SODIUM METHYLATE

    PRODUCTION PROCESS.SIMULATION AND ANALYSIS

    37/53 SODIUM METHYLATE PRODUCTION PROCESS SIMULATION AND ANALYSIS

  • 8/12/2019 Jose Granjo Set2013

    37/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    37/53

    Sodium methylate production process

    Traditional production process (Tse, 1997) simply consists upon mixing of Na(s) with

    MeOH.

    SODIUM METHYLATE PRODUCTION PROCESS. SIMULATION AND ANALYSIS.

    High cost of Na(s) limits the selling price of sodium methylate.

    Alternative process based on RD (Guth, 2004) uses more cheap 50% NaOH (aq.) as raw

    material.

    Both these processes are simulated in Aspen Plus and their preliminar economical potentials

    estimated.

    Base of production considered for NaOCH3 is 3000 ton per year (dry basis).

    38/53 SODIUM METHYLATE PRODUCTION PROCESS SIMULATION AND ANALYSIS

  • 8/12/2019 Jose Granjo Set2013

    38/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    38/53

    Figure 27. Process for the production of methanolicsolution of sodium methoxide from metallic sodium.

    H2(g)

    Na(s)

    D=1.31m

    H=2.19m

    T ~ 80 C

    H-601R-601

    F-601

    25% NaOCH3in

    methanol

    CH3OH (g)

    recycle

    Methanol

    make-up

    SODIUM METHYLATE PRODUCTION PROCESS. SIMULATION AND ANALYSIS.

    3 3 2

    0 -1

    rx

    1Na+CH OH NaOCH + H

    2

    ( H 200.96 kJ mol , Chandran et al. (2007))

    Sodium methylate production process

    Traditional production process (Tse, 1997)

    1508 kg/h

    Hydrogen is produced as by product.

    Reaction highly exothermic.

    1355 kg/h

    MeOH

    160 kg/h

    39/53 SODIUM METHYLATE PRODUCTION PROCESS SIMULATION AND ANALYSIS

  • 8/12/2019 Jose Granjo Set2013

    39/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    39/53

    Sodium methylate production process Alternative process based on RD (Guth, 2004)

    + -

    2 3

    + -

    (aq.) (aq.) (aq.)

    +

    3(MeOH) (MeOH) 3(MeOH)

    2H O H O + OHNaOH Na + OH

    NaOCH Na +OCH

    Solution reactions

    3 3 2

    0 1

    rx

    CH OH+NaOH NaOCH +H O

    ( H 58.3 kJ mol , Chandran et al. (2007))

    Chemical equilibria

    14.41, 7012 K (estimation)A B ln xB

    K AT

    Missing parameters of eNRTL model ,3, 3,

    were

    estimated using methanol activity data in solution with NaOCH3 ofFreeguard (1965).

    SODIUM METHYLATE PRODUCTION PROCESS. SIMULATION AND ANALYSIS.

    40/53 SODIUM METHYLATE PRODUCTION PROCESS SIMULATION AND ANALYSIS

  • 8/12/2019 Jose Granjo Set2013

    40/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    40/53

    Sodium methylate production process Alternative process based on RD (Guth, 2004)

    ,3, 3,

    estimation:

    NLP4 2

    exp *, , , ,min = ( ( ) ( ))x

    . . e ( , ) 0

    tn

    i MeOH i MeOH i MeOH i MeOH z

    i

    L U

    ij ij ij

    a

    s t NRTL x

    SODIUM METHYLATE PRODUCTION PROCESS. SIMULATION AND ANALYSIS.

    Figure 28. Experimental and predicted metanolactivity versus molality of sodium methylate.

    ,% ~ 0.002.i MeOHAAD a

    , 3

    3,

    3, , 3

    1.1802.856

    0.2

    MeOH NaOCH

    NaOCH MeOH

    NaOCH MeOH MeOH NaOCH

    41/53 SODIUM METHYLATE PRODUCTION PROCESS SIMULATION AND ANALYSIS

  • 8/12/2019 Jose Granjo Set2013

    41/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    41/53 SODIUM METHYLATE PRODUCTION PROCESS. SIMULATION AND ANALYSIS.

    Figure 29. Process for the production of methanolic solution of sodium methoxide from sodium hydroxide.

    H = 14 m

    T ~ 71 CP = 1 bar

    50% wt

    NaOH (aq.)

    T-602

    H = 28 m

    T ~ [65;100] C

    P = 1 bar

    T-601

    H2O

    < 0.1 % wt methanol

    30% wt NaOCH3

    in methanol

    CH3OH

    recycle

    TK-601

    CH3OH (g)

    Methanolmake-up

    H-601

    H-602

    H-603

    R-601

    R-602

    C-601

    Sodium methylate production process Alternative process based on RD (Guth, 2004)

    42/53 SODIUM METHYLATE PRODUCTION PROCESS SIMULATION AND ANALYSIS

  • 8/12/2019 Jose Granjo Set2013

    42/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    42/53

    Alternative

    Fixed capital Waste treatment

    Utilities Raw materials

    Tradicional

    Fixed capital Waste treatment

    Utilities Raw materials

    Total Costs : 4.7 Myr-1

    Revenue : 7 Myr-1

    Economical Potential: 2.3 Myr-1

    Total Costs : 6 Myr-1

    Revenue : 6.8 Myr-1

    Economical Potential: 863 kyr-1

    SODIUM METHYLATE PRODUCTION PROCESS. SIMULATION AND ANALYSIS.

    Sodium methylate production process Summary

  • 8/12/2019 Jose Granjo Set2013

    43/53

    (43/53)

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    OPTIMAL DESIGN OF S-L

    EXTRACTION UNITS

    44/53 OPTIMAL DESIGN OF S-L EXTRACTION UNITS

  • 8/12/2019 Jose Granjo Set2013

    44/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    44/53 OPTIMAL DESIGN OF S-L EXTRACTION UNITS

    Figure 31. Rotocel extractor.Figure 30. Crown Model extractor.

    Figure 32. DeSmetextractor.

    Can extract large mass flows of oil (2000 ton/day).

    Counter-current cross flow patterns. All share the same flow pattern in the extraction

    area.

    45/53 OPTIMAL DESIGN OF S-L EXTRACTION UNITS

  • 8/12/2019 Jose Granjo Set2013

    45/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    45/53 OPTIMAL DESIGN OF S L EXTRACTION UNITS

    Mathematical model of a DeSmetextractor

    Figure 33. DeSmetextraction area scheme.

    2 2

    2 2

    (1 )= ( )bm f p p h

    b

    C C C C C V Es K a C C u

    z x z x

    Bulk phase equation is

    ( )=

    (1 )

    p f p p p

    v

    p p d

    C K a C C C u

    E x

    Pore phase equation is

    Diffusion and mass transfer with

    spatial distribution of concentrations in

    the extraction section are incorporated.

    ( , , ) ( )=

    kmb m s T

    Xm n

    b

    XHV C x L dx C Q

    dC

    d V

    Conservation balance in each tray volume

    The section dimensions, componentsvelocities, and porous media porositiesare accounted.

    = oil concentration

    = flakes bed thickness [m]

    = horizontal coordinate [m]

    = vertical coordinate [m]

    C

    H

    x

    z

    46/53 OPTIMAL DESIGN OF S-L EXTRACTION UNITS

  • 8/12/2019 Jose Granjo Set2013

    46/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    46/53

    Figure 34. Loading section

    scheme.

    Figure 35. Particles filling scheme.

    OPTIMAL DESIGN OF S L EXTRACTION UNITS

    2

    1= (1 )

    1

    in

    p

    p s h b b p

    CQ HL u u

    C

    Average exit concentration isdetermined by the equation:

    uC

    1

    01

    1= ( , , )

    X

    u rC C x L dx

    X

    2

    2

    2

    2

    1=

    (1 )1

    p

    s

    inp

    p v

    p d p

    CC

    CCC

    EC

    Mathematical model of a DeSmetextractor The flow into the loading zone isdetermined by the equation:

    ( )PQ

    Pore phase concentraction in the loadingzone:

    1

    1 1

    where, 0,..., ; if 1 and

    = ( ( 2) ), ,( ( 1) )

    if = 2, ,( 1)

    s s

    s

    x X m

    x X m X X m X

    m m

    47/53 OPTIMAL DESIGN OF S-L EXTRACTION UNITS

  • 8/12/2019 Jose Granjo Set2013

    47/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    / OPTIMAL DESIGN OF S L EXTRACTION UNITS

    Figure 36. Drainage section scheme.

    0( , , ) ( , , ) ( )=

    Lskmb m s h f T

    Xms n

    b

    XH V C x L dx u C X Z dz C Q

    dC

    d V

    = =T q D q s h bQ Q Q Q HL u

    0( ) = (1 ) (1 ) ( , , )Lsv

    f b p p d p f Q Hu E C X Z dz

    2(0, , ) = ( ) = 0, , ; > 0sC z C z L

    from sections =1, ..., ( 1) :sm m 1( , 0, ) = ( ) > 0mC x C

    Miscella vertical flow rate:

    Mathematical model of a DeSmetextractor Average concentration in the last tray:

    Volume of oil losses:

    Initial & Boundary conditions

    ( , , ) / = 0 = 0, , ; > 0f sC X z x z L for the drainage zone:

    for section ms : ( ,0, ) = = ( ), ,in f ms f C x C x X X X

    ( , , ) / = 0 = 0, , ; > 0s fC x L z x X bottom boundary:

    (0, , ) = ( ) = 0, , ; > 0p p

    in sC z C z L

    0 0( , ,0) = ( , ) and ( , ,0) = ( , )p pC x z C x z C x z C x z

    loading zone:Initial values:

    = 0, , fx X = 0, , sz L

    48/53 OPTIMAL DESIGN OF S-L EXTRACTION UNITS

  • 8/12/2019 Jose Granjo Set2013

    48/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    Optimal design of a S-L extraction unit

    Xs / m X1 / m Ls / m H / m Xms / m ms u / (m/s)

    2.0 1.4 2.0 2.4 1.4 6 0.005

    Mn / (kg/s) Qq (dm3/s) Cin

    he / % Nt / % uh / (m/s) gfe / % ap / (1/m)

    9.3 8.8 0.1 21.3 0.002 0.65 72

    ol / (kg/m3) he / (kg/m

    3)Mn /

    (kg/m3)s / (kg/m

    3) / (Pa s) b p

    910 680 520 1180 3.2E-4 0.4 0.24

    Experimental data fom an industrial DeSmet extractor unit was retrieved

    from Veloso (2003).

    PDE system was implemented in GAMS in a discretized form. Model was validated against experimental data at S.S.

    Table 4. Extrator parameters.

    49/53 OPTIMAL DESIGN OF S-L EXTRACTION UNITS

  • 8/12/2019 Jose Granjo Set2013

    49/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    , , ,= mins.t S.S. model eqs. (discretized FE)

    ,

    ,

    V H L um op cap

    s d L U

    u

    L U L U

    m m m

    L U

    Z C C

    C C L L L

    u u u V V V H H H

    Optimal design of a S-L extraction unit

    NLP for operating and capital cost minimization.

    Capital costs ( Ccap ) L H

    Operating costs ( Cop ) QT and power for pumps.

    CONOPT solver was used.

    NLP5

    50/53 OPTIMAL DESIGN OF S-L EXTRACTION UNITS

  • 8/12/2019 Jose Granjo Set2013

    50/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    Figure 37. Steady state bulk concentration in De Smetextractor. Figure 37. Average concentration in De Smetextractor.

    Total costs

    ResultsParameter Reference OptimalVm / (m/h) 36 37.54

    H /m 2.0 1.946

    L / m 10.8 6.943

    u / (m/h) 72 54Z / (/day ) 319.421 224.150

    Oil conc. miscella

    30% 20%

    Table 5. Numerical results summary.

  • 8/12/2019 Jose Granjo Set2013

    51/53

    (51/53)

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    END NOTES

    52/53 END NOTES

  • 8/12/2019 Jose Granjo Set2013

    52/53

    INTEGRATED BIOFUEL PRODUCTION PROCESSES BASED ON SYSTEMATIC OPTIMIZATION METHODOLOGIES / JOS F.O. GRANJO / NUNO M.C. OLIVEIRA / UC / SEPTEMBER 2013

    Some Future Work

    Process simulation of the whole soy bean-based biorefinery.

    Perform sensibility analysis of the whole process.

    Identify key variables and bottlenecks.

  • 8/12/2019 Jose Granjo Set2013

    53/53

    (53/53)

    Thank you

    for yourattention!

    Fundao para a Cincia e Tecnologia

    Ministrio da Cincia, Tecnologia e Ensino Superior

    Ph.D grant SFRH/BD/64338/2009

    Acknowledgements:

    Nuno M.C. Oliveira

    Joo A.P. Coutinho

    Belmiro P.D. Duarte