josef stefan (1835-1893) - inside minesinside.mines.edu/~lwiencke/ph300/f12/quanta/l10-post.pdf ·...

42

Upload: others

Post on 22-Feb-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 2: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Josef Stefan (1835-1893) • Total energy radiated proportional to T4

Question: Suppose temperature raised from 300K (room temp) to 6000K (sun) By what factor does the energy radiated increase?

A. 16 B. 16,000 C. 90,000 D. 160,000

Page 3: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Josef Stefan (1835-1893) • Total energy radiated proportional to T4

Question: Suppose temperature raised from 300K (room temp) to 6000K (sun) By what factor does the energy radiated increase?

A. 16 B. 16,000 C. 90,000 D. 160,000 Answer: (6000/300)4 = 204=160,000

Page 4: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Question: Wavelength of emitted radiation (light) changes as objects get hotter.

• 1. Hotter -> Longer Wavelength • 2. Hotter -> Shorter Wavelength

Page 5: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Question: Wavelength of emitted radiation (light) changes as objects get hotter.

• 1. Hotter -> Longer Wavelength • 2. Hotter -> Shorter Wavelength

Page 6: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Steam Radiator 400K IR Very Hot Stove 900K Dull Red (transition to visable) Lava ~2000K Glowing (most radiation still in IR) Sun 6000K Most radiation visable

Page 7: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Wilhelm Wien

Wilhelm Wien (18643-1928) Nobel Prize 1911

Page 8: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 9: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Example of Black Body Spectra for different temperatures

Page 10: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

© 2007 W.W. Norton & Company, Inc. Physics for Engineers and Scientists 10

Below is a photo of three stars. The light emitted by these stars is thermal radiation. Which of these stars is the hottest? The coolest?

A. Red, yellow

B. Red, blue

C. Yellow, blue

D.Blue, red

E. Blue, yellow

Page 11: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

© 2007 W.W. Norton & Company, Inc. Physics for Engineers and Scientists 11

Below is a photo of three stars. The light emitted by these stars is thermal radiation. Which of these stars is the hottest? The coolest?

A. Red, yellow

B. Red, blue

C. Yellow, blue

D.Blue, red

E. Blue, yellow

Page 12: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 13: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Spectrum of high energy particle radiation from space does not follow a black body spectrum

Above 1020 eV Very low flux ~ 1 particle per km2/sr/century

GeV TeV PeV EeV ZeV 109 1012 1015 1018 1021 1 Joule

Cosmic Ray Flux

Page 14: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

What is the best known example of a black body source?

Page 15: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

What is the best known example of a black body source? Hint Temperature = 2.7 K

Page 16: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Astrophysical Journal, 473, 576

Cosmic Microwave Background (Radiation from Big Bang! T=2.725K. The theoretical curve obscures the data points and the error bars.

Page 17: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Black Body Radiation and

the experimental basis for Quantum Theory

Page 18: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

What is the energy of a “quanta” of RED light? 660 nm wavelength in units of electron volts?

E=hν h=6.62x10-34 Js

Page 19: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

What is the energy of a “quanta” of RED light? 660 nm wavelength in units of electron volts?

E=hν h=6.62x10-34 Js ν=c/λ=3x108m/s/660x10-9m =4.54x1014 s-1 E= 6.62x10-34Js x 4.54x1014 s-1 E= 3.01 x 10-19 J 1eV= 1.602 x10-19 J E=3.01x10-19J/1.602x10-19J/eV E=1.88 eV

Page 20: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

What is the energy of a “quanta” of RED light? 660 nm wavelength in units of electron volts?

E=hν h=6.62x10-34 Js ν=c/λ=3x108m/s/660x10-9m =4.54x1014 s-1 E= 6.62x10-34Js x 4.54x1014 s-1 E= 3.01 x 10-19 J 1eV= 1.602 x10-19 J E=3.01x10-19J/1.602x10-19J/eV E=1.88 eV

Page 21: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

What is the energy of a “quanta” of RED light? 660 nm wavelength in units of electron Volts

Easier Way to Solve this E=hc/λ hc=1240 eV nm (useful constant to remember) E=(1240/660)eV E= 1.88 eV

Page 22: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Question: What is the energy quantization of a grandfather clock?

Hint:

Page 23: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Question: What is the energy quantization of a grandfather clock?

Hint:

Page 24: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

Question: What is the energy quantization of a grandfather clock?

Hint:

E=nhν for n=1, ν=1Hz=1s-1 E= 6.6x10-34J

Page 25: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

How is the quantization realized?

E=nhν for n=1, ν=1Hz=1s-1 E= 6.6x10-34J

Page 26: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

How does this quantization translate into quantization of the pendulum displacement (height)?

E=nhν for n=1, ν=1Hz=1s-1 E= 6.6x10-34J

Page 27: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to

How does this quantization translate into quantization of the pendulum displacement (height)?

E=nhν for n=1, ν=1Hz=1s-1 E= 6.6x10-34J

E=mgH=6.6x10-34J H=6.6x10-34J/(1kg 10m/s2)=6.6x10-35m

H

Too small to measure (size of an atom is about 10-8 m)

Page 28: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 29: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 30: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 31: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 32: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 33: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 34: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 35: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 36: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 37: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 38: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 39: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 40: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 41: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to
Page 42: Josef Stefan (1835-1893) - Inside Minesinside.mines.edu/~lwiencke/PH300/F12/quanta/L10-post.pdf · 2012-09-17 · Josef Stefan (1835-1893) • Total energy radiated proportional to