j.p. koutchouk, l. rossi, e. todesco parametric studies for a phase-one lhc upgrade based on nb-ti...

47
J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats and Superconductors Group Accelerator Technology Department, CERN CERN, 30 th March 2007 MCS Seminar

Upload: madilyn-dungey

Post on 14-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

J.P. Koutchouk, L. Rossi, E. Todesco

Parametric studies for a phase-one LHC upgrade based on Nb-Ti

J.P. Koutchouk, L. Rossi, E. TodescoMagnets, Cryostats and Superconductors Group

Accelerator Technology Department, CERN

CERN, 30th March 2007MCS Seminar

Page 2: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 2J.P. Koutchouk, L. Rossi, E. Todesco

CONTENTS

Goals of a phase one

A flow-chart for determining triplet parameters

Limits to long (and large) triplets

Geometric aberrations

Issues in magnet design

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

Page 3: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 3J.P. Koutchouk, L. Rossi, E. Todesco

GOALS OF A PHASE-ONE UPGRADE

Staging the LHC luminosity upgrade in two phasesPhase one (asap)

Aim: not more than ultimate luminosity (~2.51034 cm-2 s-1), or ways to recover nominal in case that some parameters are not metNo modification of detectors – minimal lay-out modificationsLarger aperture to reduce part of the limit on intensity due to collimators (presently 40% of nominal)Larger aperture to have stronger focusing (*~0.25 m, L~1.51034 cm-2 s-1 )Fast: use Nb-Ti quadrupoles with available cable

Phase two (the ‘real’ upgrade)Aim at 101034 cm-2 s-1

Upgrade of detectors to tolerate it (6-12 months shut-down ?)Use Nb3Sn if available to better manage energy deposition and have shorter tripletCrab cavities or D0 to reduce effect of crossing angle … all other possibilities analysed up to now in CARE-HHH and LARP

15 m

41° 49’ 55” N – 88 ° 15’ 07” W

Page 4: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 4J.P. Koutchouk, L. Rossi, E. Todesco

GOALS OF A PHASE-ONE UPGRADE

Tentative summary of previous optics lay-outs to go to * = 0.25 m

Nb-Ti: black Nb3Sn: red

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W40° 53’ 02” N – 72 ° 52’ 32” W

0

100

200

300

400

0 50 100 150 200 250

Magnet aperture f (mm)

Gra

dien

t (T

/m)

80% of Nb-Ti at 1.9 K

80% of Nb3Sn

at 1.9 K

LARP TQ

Ostojic Pac05

De Maria Arci05, EPAC06 (dipole first)

Bruning Vale06 De Maria EPAC06

Strait PAC03

Ruggiero Epac04

T. Sen, Arci05

Page 5: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 5J.P. Koutchouk, L. Rossi, E. Todesco

GOALS OF A PHASE-ONE UPGRADE

We will explore the region between 100 and 150 mm, at the limit of Nb-Ti

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W40° 53’ 02” N – 72 ° 52’ 32” W

0

100

200

300

400

0 50 100 150 200 250

Magnet aperture f (mm)

Gra

dien

t (T

/m)

80% of Nb-Ti at 1.9 K

80% of Nb3Sn

at 1.9 K

LARP TQ

Ostojic Pac05

De Maria Arci05, EPAC06 (dipole first)

Bruning Vale06 De Maria EPAC06

Strait PAC03

Ruggiero Epac04

T. Sen, Arci05

Page 6: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 6J.P. Koutchouk, L. Rossi, E. Todesco

CONTENTS

Goals

A flow-chart for determining triplet parameters

Limits to long (and large) triplets

Geometric aberrations

Issues in magnet design

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

Page 7: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 7J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart for triplet parameters

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

46° 14’ 15” N – 6 ° 02’ 51” E

Matching condition in Q4

Equal beta max in the triplet

Limit of the technology,design choices

1. Relative lengths of Q1-3/Q2

2. Gradient vs Lt

Aperture vs Gradient3. Possible aperture

vs Lt

Triplet length Lt

Beta funct. in IP

4. Beta function in triplet

5. Required aperture vs Lt

Page 8: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 8J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart for triplet parameters

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

[F. Zimmermann, HB2006]

Page 9: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 9J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: optics requirements

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

46° 14’ 15” N – 6 ° 02’ 51” E

Matching condition in Q4

Equal beta max in the triplet

Limit of the technology,design choices

1. Relative lengths of Q1-3/Q2

2. Gradient vs Lt

Aperture vs Gradient3. Possible aperture

vs Lt

Triplet length Lt

Beta funct. in IP

4. Beta function in triplet

5. Required aperture vs Lt

Page 10: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 10J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: optics requirements

Triplet structureWe fix the distance to the IP to nominal value of 23 mWe fix the gaps between magnets to nominal valuesWe keep the same gradient in all magnetsTwo magnet lengths as free parameters: Q1-Q3 and Q2We explore triplet lengths from 25 m to 40 m

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

0 25 50Distance from IP (m)

Q1

Q2A Q2B

Q3l *

l 1

l 2

Page 11: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 11J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: optics requirements

How to fix the relative lengths of Q1-Q3 and Q2For each total quadrupole length there is a combination of lengths that gives equal beta function in the two planesWe compute four cases, and then we fit [E. Todesco, J. P. Koutchouk, Valencia06]

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

5

6

7

8

9

10

20 25 30 35 40Total quadrupole length (m)

Qua

drup

ole

leng

th (

m)

Q1-Q3

Q2

Baseline

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200Distance from IP (m)

(

m)

0

0

0

0

0

0

0

Betax

Betay

Q1Q2

Q3l *

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200Distance from IP (m)

(

m)

0

0

0

0

0

0

0

Betax

Betay

Q1Q2

Q3l *

Nominal triplet l1=5.50 m l2=6.37 m

Triplet l1=5.64 m l2=6.22 m

Page 12: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 12J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: optics requirements

How to fix the gradientThis depends on matching conditionsWe require to have in Q4 “similar” beta functions to the nominalWe find an empirical fit of the four cases

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

50

100

150

200

250

20 25 30 35 40Total quadrupole length (m)

Gra

dien

t (T

/m) Baseline

qq hlflG

2

1

Page 13: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 13J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: optics requirements

How the integrated gradient depends on the triplet length

For larger lengths, the integrated gradient becomes smaller since the triplet baricentre is moving away from the IP15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

3500

4000

4500

5000

20 25 30 35 40Total quadrupole length (m)

Inte

grat

ed g

radi

ent (

T)

Baseline

Page 14: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 14J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: technology limits

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

46° 14’ 15” N – 6 ° 02’ 51” E

Matching condition in Q4

Equal beta max in the triplet

Limit of the technology,design choices

1. Relative lengths of Q1-3/Q2

2. Gradient vs Lt

Aperture vs Gradient3. Possible aperture

vs Lt

Triplet length Lt

Beta funct. in IP

4. Beta function in triplet

5. Required aperture vs Lt

Page 15: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 15J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: technology limits

The technology imposes a relation gradient-apertureValues for some LHC quadrupoles

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

0

100

200

300

400

0 50 100 150 200 250

Magnet aperture f (mm)

Gra

dien

t (T

/m)

LHC MQ, operational

LHC MQX, operational

Page 16: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 16J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: technology limits

Nb-Ti lay-outs for apertures 90 to 110 mm (MQY cable)[R. Ostojic, et al, PAC05]

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

0

100

200

300

400

0 50 100 150 200 250

Magnet aperture f (mm)

Gra

dien

t (T

/m)

LHC MQ, operational

LHC MQX, operational

Ostojic,et al PAC05 - MQY

Page 17: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 17J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: technology limits

First scaling laws estimates date back to the 90’s[L. Rossi, et al, INFN-TC 112 (1994)]

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

Page 18: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 18J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: technology limits

A semi-analytical formula has been proposed for Nb3Sn and Nb-Ti[L. Rossi, E. Todesco, Phys. Rev. STAB 9 (2006) 102401]

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

0

100

200

300

400

0 50 100 150 200 250

Magnet aperture f (mm)

Gra

dien

t (T

/m)

LHC MQ, operational

LHC MQX, operational

Ostojic,et al PAC05 - MQY

Rossi Todesco, Wamdo06

80% of Nb-Ti at 1.9 K

Page 19: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 19J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: technology limits

Assumption for low gradient, very long triplet [O. Bruning, R. De Maria, Valencia workshop 2006]

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

0

100

200

300

400

0 50 100 150 200 250

Magnet aperture f (mm)

Gra

dien

t (T

/m)

LHC MQ, operational

LHC MQX, operational

Ostojic,et al PAC05 - MQY

Rossi Todesco, Wamdo06

(Bruning, Vale06)

80% of Nb-Ti at 1.9 K

Page 20: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 20J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: technology limits

We computed three lay-outs with LHC MB cable, of apertures 100, 120, 140 mm – still at the max of what can be obtained

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

0

100

200

300

400

0 50 100 150 200 250

Magnet aperture f (mm)

Gra

dien

t (T

/m)

LHC MQ, operational

LHC MQX, operational

Ostojic,et al PAC05 - MQY

Rossi Todesco, Wamdo06

(Bruning, Vale06)

LHC cable, 2 layers

80% of Nb-Ti at 1.9 K

Page 21: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 21J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: technology limits

What can be done with the LHC cable beyond 110 mm ?

Simple 3 block designbased on the [24°,30°,36°] coil

b6 b10 less than 1 unit at Rref=f/380% of critical gradientIron at 25 mm from outer layer

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W40° 53’ 02” N – 72 ° 52’ 32” W

0

20

40

60

0 20 40 60 80 100 120x (mm)

y (m

m)

0

20

40

60

0 20 40 60 80 100 120x (mm)

y (m

m)

0

20

40

60

0 20 40 60 80 100 120x (mm)

y (m

m)

Page 22: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 22J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: technology limits

We give the detail of what can be obtained a bit better than previous computations since we used the cable measurements (better than specifications of around 10%)

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

50

100

150

200

90 100 110 120 130 140 150Magnet aperture f (mm)

Gra

dien

t (T

/m)

Analytical estimate (no iron)one layertwo layersOstojic et al., MQYOstojic et al., MB-MQ

Page 23: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 23J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: technology limits

We can now have aperture vs quadrupole lengthWith two layers Nb-Ti we can build focusing triplet of 30 m, 110 mm aperture – or 34 m, 130 mm aperture

With one layer (half cable), 15% longer … but cables are there 15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

50

100

150

200

20 25 30 35 40 45 50Total quadrupole length (m)

Ape

rtur

e (m

)

two layers

one layer

Baseline

Linear (onelayer)

50

100

150

200

250

20 25 30 35 40Total quadrupole length (m)

Gra

dien

t (T

/m) Baseline

50

100

150

200

90 100 110 120 130 140 150Magnet aperture f (mm)

Gra

dien

t (T

/m)

Analytical estimate (no iron)one layertwo layersOstojic et al., MQYOstojic et al., MB-MQ

Page 24: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 24J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: aperture requirements

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

46° 14’ 15” N – 6 ° 02’ 51” E

Matching condition in Q4

Equal beta max in the triplet

Limit of the technology,design choices

1. Relative lengths of Q1-3/Q2

2. Gradient vs Lt

Aperture vs Gradient3. Possible aperture

vs Lt

Triplet length Lt

Beta funct. in IP

4. Beta function in triplet

5. Required aperture vs Lt

Page 25: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 25J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: aperture requirements

Longer triplet will give larger beta functions !Larger, but not terribly larger … we find a fit as

a~77.5 m (where * is the beta in the IP)[E. Todesco, J. P. Koutchouk, Valencia06] 15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

*

2*

max qall

0

5000

10000

15000

20000

20 25 30 35 40Total quadrupole length (m)

Max

imum

bet

a fu

ncti

on (

m) beta*=55 cm beta*=37 cm

beta*=25 cm beta*=20 cm

Page 26: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 26J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: aperture requirements

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

46° 14’ 15” N – 6 ° 02’ 51” E

Matching condition in Q4

Equal beta max in the triplet

Limit of the technology,design choices

1. Relative lengths of Q1-3/Q2

2. Gradient vs Lt

Aperture vs Gradient3. Possible aperture

vs Lt

Triplet length Lt

Beta funct. in IP

4. Beta function in triplet

5. Required aperture vs Lt

Page 27: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 27J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: aperture requirements

*, max and the triplet length determine the aperture

needs10 : the nominal13 : reduces the collimator impedance, and allowing a nominal beam intensity [E. Metral, ‘07] – 16 gives additional clearanceExample: a 28 m triplet with 95 mm aperture would leave 6 for collimation at *=0.55 m

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

*=0.55 m

0.050

0.100

0.150

0.200

20 25 30 35 40 45 50Total quadrupole length (m)

Ape

rtur

e (m

)

Nb-Ti, 2 layers

10 sigma13 sigma

16 sigma

bbtt kNllll

*

2/3*

3*

*

2max10

)(

f

ffff

Page 28: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 28J.P. Koutchouk, L. Rossi, E. Todesco

A flowchart: aperture requirements

Going at *=0.25 m the aperture needs become larger

Example: a 34 m triplet with 130 mm aperture would leave 3 for collimation at *=0.25 mNice game … where to stop ?

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

*=0.25 m

0.050

0.100

0.150

0.200

20 25 30 35 40 45 50Total quadrupole length (m)

Ape

rtur

e (m

)

Nb-Ti, 2 layers10 sigma13 sigma16 sigma

Page 29: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 29J.P. Koutchouk, L. Rossi, E. Todesco

CONTENTS

Goals

A flow-chart for determining triplet parameters

Limits to long (and large) triplets

Geometric aberrations

Issues in magnet design

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

Page 30: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 30J.P. Koutchouk, L. Rossi, E. Todesco

Limits to long triplets

Limits to long triplets: space ?Present kicks in D1, D2 26 TmSeparation dipole D2 is 9.45 m with 3.8 T – can go up to 36 TmD1 has a margin of 18% - could be pushed 15 m, if aperture is enough

Otherwise, change D1 – in general, easy to recover space

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

0 50 100 150 200distance to the IP (m)

D1 D2

Q1 Q3

Q2 Q4

Page 31: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 31J.P. Koutchouk, L. Rossi, E. Todesco

Limits to long triplets

Limits to long triplets: chromaticity ?Hypothesis: two IP strong focusing, one IP at 1 m, the other at 0.5 mThe linear correction is saturated for *0.20-0.18 m limit of 90 per IP deduced from [S. Fartoukh, LHC Project Report 308]

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

20

40

60

80

100

120

20 25 30 35 40Total quadrupole length (m)

Q'

beta*=0.55 m beta*=0.37 mbeta*=0.25 m beta*=0.20 mbeta*=0.18 m

Page 32: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 32J.P. Koutchouk, L. Rossi, E. Todesco

Limits to long triplets

Limits to long triplets: forces ?Lorentz forces at operational field induce large stressesSemi-analytical law [P. Fessia, F. Regis, E. Todesco, ASC 2006] gives values smaller than 150 MPa for apertures up to 250 mm – should not be a problem

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

0

50

100

150

200

0 100 200 300 400 500Critical gradient [T/m]

Stre

ss [

MPa

]

2r=40 mm 2r=80 mm

2r=120 mm 2r=160 mm

2r=200 mm 2r=240 mm

Nb-Ti 1.9 K - 80% margin

f f

f f

f f

Page 33: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 33J.P. Koutchouk, L. Rossi, E. Todesco

Limits to long triplets

Limits to long triplets: energy deposition ?Larger and longer triplet could have a much higher energy deposition, for the same luminosity

Preliminary comparison of the baseline with a 10 m longer and twice larger triplet has been done [C. Hoa, F. Broggi, 2007]

The larger and longer triplet has a smaller (~-30%) impinging power in W/m (energy per meter of triplet)

Longer triplets will not give additional energy depositionStudy on scaling laws for energy deposition is ongoing

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

Page 34: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 34J.P. Koutchouk, L. Rossi, E. Todesco

Limits to long triplets

We propose aperture for *=0.25 m with 3 for collimation

This would go up to *0.18 m without collimation clearance

This would give the following parametersTotal quadrupole length 34 m (+10 m w.r.t. baseline)Triplet length (with gaps) 40.5 mOperational gradient 122 T/m (20% safety factor on short sample)Beta function in the triplet of 12600 m at * =0.25 m

15 m

1.9 Km

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

0

100

200

300

400

0 50 100 150 200 250

Magnet aperture f (mm)

Gra

dien

t (T

/m)

80% of Nb-Ti at 1.9 K

80% of Nb3Sn

at 1.9 K

LARP TQ

Ostojic Pac05

De Maria Arci05, EPAC06 (dipole first)

Bruning Vale06 De Maria EPAC06

Strait PAC03

Ruggiero Epac04

This proposal

Page 35: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 35J.P. Koutchouk, L. Rossi, E. Todesco

CONTENTS

Goals

A flow-chart for determining triplet parameters

Limits to long (and large) triplets

Geometric aberrations

Issues in magnet design

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

Page 36: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 36J.P. Koutchouk, L. Rossi, E. Todesco

Geometric aberrations and large apertures

In it has been observed that large beta functions in the triplet may lead to insufficient dynamic aperture[R. De Maria, O. Bruning, EPAC06]

Estimates based on tracking showed that there was a very strong reduction for an extreme case with max=20000 m

The large in the triplet is the cause of this effect – for instance first order terms in multipoles scale as

and larger beta functions are amplified by the exponent …

A crucial ingredient is the estimate of the field errors bn

ds

R

ssGsbT

nref

nn

n 2

2/ )()()( 2

2/max

nref

nIn

nR

GbT

Page 37: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 37J.P. Koutchouk, L. Rossi, E. Todesco

Geometric aberrations and large apertures

Scaling law for field errors [B. Bellesia, et al, submitted to Phys. Rev. STAB]

The hypothesis: field errors only due to cable positioningCable positioning independent of the aperture, based on LHC and RHIC data

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

n

nn

bbb

refrefref RRR fff

0.00

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200

Aperture (mm)

d 0 (

mm

)

RHIC MQ RHIC Q1-Q3

LHC MQ LHC MQM-C-L

LHC MQY LHC MQXA

LHC MQXB

Precision in coil positioning reconstructed from measurements

Page 38: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 38J.P. Koutchouk, L. Rossi, E. Todesco

Geometric aberrations and large apertures

Using the scaling for field errors, we evaluated the aberrations at *=0.25 m as a function of the triplet apertureWe normalized them to the values of the baseline at *=0.55 mA triplet of 90 mm aperture has significantly larger aberrationsA triplet of 130 mm has only 30% more

Cross-check: solution of [R. De Maria, O. Bruning, EPAC06] would give a factor 3-7 larger aberrations

0

1

2

3

4

5

6

70 90 110 130 150 170

Magnet aperture f (mm)

Non

line

ar te

rms

w.r

.t. n

omin

al a

t

* =0.

55 m

(ad

im)

b3 b4

b5 b6

b3^2

*=0.25 m

Page 39: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 39J.P. Koutchouk, L. Rossi, E. Todesco

CONTENTS

Goals

A flow-chart for determining triplet parameters

Limits to long (and large) triplets

Geometric aberrations

Issues in magnet design

15 m

1.9 Km

41° 49’ 55” N – 88 ° 15’ 07” W

1 Km

40° 53’ 02” N – 72 ° 52’ 32” W

Page 40: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 40J.P. Koutchouk, L. Rossi, E. Todesco

ISSUES IN MAGNET DESIGN – main features

Main parameters compared to other LHC quadrupoles

Large aperture ? RHIC MQX: 130 mm aperture, 50 T/m at 4.2 K, 12 mm width coil

Cable needed to wind one dipole unit length is enough

Margin GradingMagnet Aperture Length Coil Gradient Current Peak field (%)

(mm) (m) (mm2) (T/m) (A) (T)MQ 56 3.10 5014 223 11870 6.9 0.80 0

MQY 56 3.40 5674 160 3610 6.1 0.82 43MQXA 70 6.37 8496 215 7149 8.6 0.80 10MQXB 70 5.50 5395 215 11950 7.7 0.84 24MQXC 130 7.8/9.2 10145 121 11400 8.4 0.79 27

Operational

length n turns pole length n turns length(m) (per pole) (m) (per pole) (m)

MQXC 9.2 18 331 26 478MQXC 7.8 18 281 26 406

MB 14.3 15 429 25 715

Inner layer Outer layer0

20

40

0 20 40 60 80x (mm)

y (m

m)

RHIC large aperture quadrupole

Page 41: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 41J.P. Koutchouk, L. Rossi, E. Todesco

ISSUES IN MAGNET DESIGN – field quality

Field quality is critical at nominal field – optimization should include iron saturation, persistent currents not an issueCoil designed on the [24°,30°,36°] lay-out – 25 mm thick collarsA first iteration will be needed to fine tune field quality

Mid-plane shims should be included from the beginning, so that can be varied in both directions

At least three identical models should be built to assess the random components

Are critical !!

0

20

40

60

0 20 40 60 80 100 120x (mm)

y (m

m)

Page 42: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 42J.P. Koutchouk, L. Rossi, E. Todesco

ISSUES IN MAGNET DESIGN – PROTECTION

This MQXC is longer and larger than the previous onesInductance similar to MQY, MB, MQXAOperating current similar to MB, MQ, MQXBStored energy is 5 MJ: twice MQXA – 50% larger than one aperture of an MB

Preliminary hot spot temperature evaluations show that the order of magnitudes are similar to the MB

Time for firing quench heaters to avoid hot spot larger than 300 K must be not larger than 0.1 s [M. Sorbi, Qlasa code] challenging, but feasible

Magnet Current Inductance Energy

(A) (mH) (MJ)

LHC MB 11850 99 6.93LHC MQ 11870 6 0.39

LHC MQY 3610 74 0.48

LHC MQXA 7150 90 2.30LHC MQXB 11950 19 1.36LHC MQXC 11400 76 4.93

Page 43: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 43J.P. Koutchouk, L. Rossi, E. Todesco

ISSUES IN MAGNET DESIGN – FORCES

According to analytical modelLorentz forces induce a stress in the coil of 70 MPa, i.e. 40% more than for the MQXA-B (50 MPa)Does not look so critical, but mechanical structure should be carefully designed

0

50

100

150

0 100 200 300Critical gradient [T/m]

Stre

ss [

MPa

]

2r=70 mm

2r=130 mm

Nb-Ti 1.9 K

f

fMQXC

MQXA-B

Page 44: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 44J.P. Koutchouk, L. Rossi, E. Todesco

ISSUES IN MAGNET DESIGN – FORCES

Computations using FEM model [F. Borgnolutti]

MQXC: 80 MPaMQXA: 70 MPa, MQXB: 50 MPA

Page 45: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 45J.P. Koutchouk, L. Rossi, E. Todesco

Other options

Shorter Q1 ?The beta function in Q1 is half of max one can have at most 30% smaller aperture 30% shorter Q1 7% shorter triplet

The gain in length is marginal, but one has two different designs (lengths, apertures, and cross-sections) – not a good bargain in my opinion

Same lengths for Q1-3 and Q2 ?One can make an optics with same lengths – triplet must be 4 m longer, but different gradients (up to 20%) – is it worth ?

4-plet ?A 4-plet allows 20% smaller max

But the gradient is 30% moreIn absence of technology constraints, it would be better

3-plet is more efficient

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200Distance from IP (m)

(

m)

0

0

0

0

0

0

betax

betay

l *

Page 46: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 46J.P. Koutchouk, L. Rossi, E. Todesco

CONCLUSIONS

Proposed lay-out aims at*=0.25 m with 3 clearance for collimation*0.18-0.20 m without clearance, reaching the linear chromaticity correction limitThe clearance should allow keeping geometric aberrations under control (we have a max =12600 m)

The lay-out is simpleOne aperture: 130 mmOne gradient: 122 T/mOne power supply – operational current 11400 AOne cross-section: two layers with LHC MB cableTwo lengths: 7.8, 9.2 m – moderate increase of triplet length w.r.t. baseline (+30%, i.e. from 30 to 40 m)

Page 47: J.P. Koutchouk, L. Rossi, E. Todesco Parametric studies for a phase-one LHC upgrade based on Nb-Ti J.P. Koutchouk, L. Rossi, E. Todesco Magnets, Cryostats

30th March 2007 – LHC phase-one upgrade based on Nb-Ti - 47J.P. Koutchouk, L. Rossi, E. Todesco

CONCLUSIONS

Some issues to addressHaving a matched solution, looking at Q4-Q11 strengthsTracking to verify the scaling on aberrationsD1 displacement and/or upgrade Design a simple and reliable a mechanical structure (vertical or horizontal assembly) making use of existing toolingTolerances very important since we aim at very good field quality

Phase-one upgrade vs. LARP and Nb3Sn r&d

Phase two upgrade (the ‘real’ one) goals and schedule are not changedNb3Sn r&d should be pursued with all efforts

The proof of a long prototype is fundamentalIf we had available Nb3Sn magnets today, we would use them

Moving D1 the goal of 200 T/m becomes less stringentHQ should aim at apertures much larger than 90 mm