july 2013 doc.: ieee 802.15- 15-13-0406-00-0thz …...doc.: ieee 802.15- 15-13-0406-00-0thz...

20
doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Sebastian Rey, TU Braunschweig Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Link Level Simulations of THz-Communications Date Submitted: 15 July, 2013 Source: Sebastian Rey, Technische Universität Braunschweig Address: Schleinitzstr. 22, D-31806 Braunschweig, Germany Voice: +49-531-391-2439, FAX: +49-531-391-5192, E-Mail: [email protected] Abstract: A link level simulation environment for THz communications is presented based on broadband ray tracing channel modeling. Since THz indoor channels suffer from high free space path losses and inter symbol interference the impact of antennas is investigated with respect to system performance. Furthermore, some forward error techniques and the impact of phase noise are illustrated. Purpose: Investigation of system aspects as input for THz system design Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Upload: others

Post on 18-Aug-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 1

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Link Level Simulations of THz-Communications

Date Submitted: 15 July, 2013

Source: Sebastian Rey, Technische Universität Braunschweig

Address: Schleinitzstr. 22, D-31806 Braunschweig, Germany

Voice: +49-531-391-2439, FAX: +49-531-391-5192, E-Mail: [email protected]

Abstract: A link level simulation environment for THz communications is presented based on broadband

ray tracing channel modeling. Since THz indoor channels suffer from high free space path losses and inter

symbol interference the impact of antennas is investigated with respect to system performance.

Furthermore, some forward error techniques and the impact of phase noise are illustrated.

Purpose: Investigation of system aspects as input for THz system design

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for

discussion and is not binding on the contributing individual(s) or organization(s). The material in this

document is subject to change in form and content after further study. The contributor(s) reserve(s) the right

to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE

and may be made publicly available by P802.15.

Page 2: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

Sebastian Rey1, Sebastian Priebe1, Thomas Kürner1

1 Institut für Nachrichtentechnik, Technische Universität Braunschweig, Germany

July 2013

Sebastian Rey, TU BraunschweigSlide 2

Link Level Simulations of THz-

Communications

Page 3: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 3

Outline

1. Introduction

2. Broadband ray tracing and link level simulation

• Simulation environment

• Scenario

3. System aspects and simulation results

• Directive Antennas

• Forward Error Correction

• Phase Noise

4. Summary

Page 4: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 4

Introduction

– Previous work:investigation of system performancebased on channel propagation properties only

– Open issues:How does the THz channel influencethe performance of a THz-communications system?

Which requirements arise fromsystem aspects as e.g. modulationschemes?

What is the impact of RF impairments?

Feasibility

studies

THz Systems

Development

RF channel

modeling

System

Simulations

Final

THz System

Page 5: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 5

Outline

1. Introduction

2. Broadband ray tracing and link level simulation

• Simulation environment

• Scenario

3. System aspects and simulation results

• Directive Antennas

• Forward Error Correction

• Phase Noise

4. Summary

Page 6: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

Tra

nsm

issio

n C

hannel

July 2013

Sebastian Rey, TU BraunschweigSlide 6

Link level simulation environment

Ray Tracing

Propagation

Model

Random Data FEC Encoder Modulator

DemodulatorFEC DecoderBit Error Rate

Channel

(FIR Filter)

RF

Impairments

AWGN

Scenario Data

Material

Parameters

Antenna

Diagram

• Equivalent baseband model

Page 7: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 7

• Empty room

6 m x 4 m x 2.5 m

• Height:

Transmitter (TX) 2.3 m

Receiver (RX) 0.8 m

• 25 propagation paths

1 direct path

4 with 1 reflection

8 with 2 reflections

12 with 3 reflections

Scenario for simulations

TX

RX

Page 8: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 8

SNR = 10 dBm transmitter power (baseband)

- 7.4 dB conversion loss

+ Gtx dBi antenna gain (transmitter)

- LFSL dB free space loss

+ Grx dBi antenna gain (receiver)

- 7.6 dB noise figure

- Pn dBm thermal noise

Link budget for direct path

TX

RX

For the direct path only:

98.2 dB free space loss

46.4 dBi antenna gains

for a SNR = 10 dB

Carrier frequency: 325 GHz

Bandwidth: 50 GHz

Page 9: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 9

Channel Impulse Response (CIR)

1. Calculate the CTF of

each propagation path

2. Calculate the CTF of

each path (ifft)

e.g. direct path e.g. direct path

Page 10: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 10

Channel Impulse Response (CIR)

3. Sum all CIR of the

propagation paths

4. Extract peaks; sync and

normalize (not shown)

direct path echo paths

Page 11: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 11

Outline

1. Introduction

2. Broadband ray tracing and link level simulation

• Simulation environment

• Scenario

3. System aspects and simulation results

• Directive Antennas

• Forward Error Correction

• Phase Noise

4. Summary

Page 12: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 12

Directive antennas – shapes and gain

– Antenna gain of 46.4 dBi required

– Assumption of Gaussian beam shape(azimuth and elevation) with thesame Half Power Beam Width (HPBW), c.f. IEEE 802.15-15-12-0102-00-0thz.

– Examples, same antenna for thetransmitter and the receiver:

HPBW gain

1,5° 84.2 dBi

10° 51.2 dBi

15° 44.2 dBi

45° 12.8 dBi

HPBW

-3dB

Transmitter

direct

path

Receiver

BUT: Inter Symbol Interference ?

Page 13: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 13

Directive antennas – spatial filtering

a HPBW of 20° sufficiently

suppresses ISI

but the antenna gain is to low

(only SNR not absolute power

in the simulations)

a HPBW of 10° is suitable

(gain and ISI suppression)

Problem: Inter symbol interference (ISI) resulting from multipath components (MPC)

Question: Necessary HPBW to cancel out ISI?

16 QAM

Page 14: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 14

Directive antennas – misalignment

a misalignment of almost 30°

can be tolerated in terms of

suppressed ISI

but the absolute antenna gain

is to low (normalized CIR)

a misalignment of 7.5° means

-3 dB in SNR

Problem: Perfect alignment of the antennas to a (direct) propagation path is impractical.

Question: How much misalignment can be tolerated (receiver, azimuth, HPBW=15°)?

16 QAM

Page 15: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 15

Forward error correction (FEC)

QPSK– Error free transmission

requires approx. a

BER<10-9

– Convolutional code

• very efficient (regarding

code rate and SNR)

• data rate (QPSK) 50 Gbit/s

• decoder is (too?) complex

– Hamming Code

• needs higher SNR

• data rate (QPSK) 57 Gbit/s

• very easy to decode

(lookup table)

– Quasi error free definition

for simulations without FEC:

BER<10-4

Mod. BPSK QPSK 8 PSK 16 QAM

SNR

(QEF)8.5 dB 11.6 dB 16.5 dB 18.3 dB

error free

Page 16: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 16

Phase noise – current components

What is the maximum phase noise for a quasi error free transmission?

1. SNR as determined for

QEF without phase noise

for each modulation

2. Max. phase noise for

QEF for each mod.

3. Comparison with a

commercialy available

oscillator with a multiplier

Only BPSK and QPSK work with this oscillator

Page 17: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 17

Phase noise – BER and SNR

A small increase of the phase noise (@10Hz)…

• … increases the bit error rate if the SNR is kept constant.

• … can be „compensated“ by increasing the SNR slightly (BER<10-4).

Page 18: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 18

Outline

1. Introduction

2. Broadband ray tracing and link level simulation

• Simulation environment

• Scenario

3. System aspects and simulation results

• Directive Antennas

• Forward Error Correction

• Phase Noise

4. Summary

Page 19: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 19

Summary

– Physical layer simulation environment

• incorporating realistic THz channels

• obtained by broadband ray tracing

– Exemplary results

• highly directive antennas (10° HPBW)

needed (ISI suppression and antenna gain)

• fec

• phase noise is a limiting factor for

modulations schemes (only simple ones)

– Future steps:

• other scenarios

• more RF impairments

Page 20: July 2013 doc.: IEEE 802.15- 15-13-0406-00-0thz …...doc.: IEEE 802.15- 15-13-0406-00-0thz Submission July 2013 Slide 7 Sebastian Rey, TU Braunschweig • Empty room 6 m x 4 m x 2.5

doc.: IEEE 802.15- 15-13-0406-00-0thz

Submission

July 2013

Sebastian Rey, TU BraunschweigSlide 20

Thank you for paying attention.

Dipl.-Ing. Sebastian [email protected]