È(ò&k l ¥ e s ¦ q%Ê'2...s-n data of cr-mo steel jis-scm435 5 10 15 200 400 600 800...

7

Upload: others

Post on 24-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: È(ò&k l ¥ E S ¦ q%Ê'2...S-N data of Cr-Mo steel JIS-SCM435 5 10 15 200 400 600 800 1000 0 Stroke displacement (mm) Nominal stress, (MPa) N 2 H 2 JIS-SCM435 at RT 115 MPa gas CHS
Page 2: È(ò&k l ¥ E S ¦ q%Ê'2...S-N data of Cr-Mo steel JIS-SCM435 5 10 15 200 400 600 800 1000 0 Stroke displacement (mm) Nominal stress, (MPa) N 2 H 2 JIS-SCM435 at RT 115 MPa gas CHS

2012.11

2012.12

20102007

2009.9

(2010.4

2015

H2

4

( from JHFC website)

3

( from Honda website)

6 5

Page 3: È(ò&k l ¥ E S ¦ q%Ê'2...S-N data of Cr-Mo steel JIS-SCM435 5 10 15 200 400 600 800 1000 0 Stroke displacement (mm) Nominal stress, (MPa) N 2 H 2 JIS-SCM435 at RT 115 MPa gas CHS

7

or LPGor LPG

8

10 9

国内外から研究者を結集し、水素と材料に関わる先端的な基礎研究を推進。

国内外か 研究者を結集国内外か 研究者を結集

12

HYDROGENIUS

H2

H2

H2

H2 diffusion, Combustion control.

Sensing, Incident analysis

and Education

11

Page 4: È(ò&k l ¥ E S ¦ q%Ê'2...S-N data of Cr-Mo steel JIS-SCM435 5 10 15 200 400 600 800 1000 0 Stroke displacement (mm) Nominal stress, (MPa) N 2 H 2 JIS-SCM435 at RT 115 MPa gas CHS

10 20 30 40 50

200

400

600

800

1000

0

Strain, [%]

Stress, [MPa]

SCM435(KC21)115MPa H2 at RT

B = 820MPa = 47%

A

B

C

Proposal of Design Method for Cr-Mo steels: Design by Rule

Slow strain rate tensile (SSRT) properties of Cr-Mo steel JIS-SCM435

S-N data of Cr-Mo steel JIS-SCM435

5 10 15

200

400

600

800

1000

0Stroke displacement (mm)

Nom

inal

str

ess,

(

MP

a)

N2

H2

JIS-SCM435 at RT115 MPa gasCHS = 0.002 mm/s

BN = 843 MPa

BH = 820 MPa

N = 73 %

H = 47 %RTS = 0.97RRA = 0.64

5 10 15

200

400

600

800

1000

0Stroke displacement (mm)

No

min

al s

tres

s,

(M

Pa)

JIS-SCM435 at 233 K115 MPa gasCHS = 0.002 mm/s

BN = 898 MPa

BH = 886 MPa

N = 70 %

H = 36 %RTS = 0.99RRA = 0.51

N2

H2

5 10 15

200

400

600

800

1000

0Stroke displacement (mm)

No

min

al s

tres

s,

(M

Pa)

N2

H2JIS-SCM435 at 393 K115 MPa gasCHS = 0.002 mm/s

BN = 842 MPa

BH = 835 MPa

N = 72 %

H = 47 %RTS = 0.99RRA = 0.65

(a) 233 K (b) RT (c) 393 K

250

300

350

400

450

500

550

600

102

103

104

105

106

107

108

Stress am

plitude,

a (M

Pa)

Number of cycles to failure, Nf (cycles)

:In air, f = 1 Hz

:In 115MPa H2 , f = 1 Hz

In 115MPa H2, f = 0.1 Hz

In 115MPa H2, f = 0.01 Hz

JIS-SCM 435 at RT

R = 1

HV 256Proposed criteria for safety factor-based infinite-life design (Fatigue limit design)

There is no degradation in tensile strength during SSRT testing. There is no degradation in fatigue limit.

S = B

allowable = 3.5 ~ 4 Safety factor:

B: Tensile strength, allowable: Allowable stress

HISCG

HYDROGENIUS

HYDROGENIUS DATA BASE (Tentative)

Hydrogen Transport Properties

No. A34

Data Base on Hydrogen Transport Properties of

SUS 316 (type 316, over 12 mass % Ni) Austenitic Stainless Steel

May, 2011

Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS),

National Institute of Advanced Industrial Science and Technology (AIST)

Kyushu University

HDFF-A34-1

Copying is prohibited

HYDROGENIUS DATA BASE (Tentative)

Hydrogen Transport Properties

No. A34

Data Base on Hydrogen Transport Properties of

SUS 316 (type 316, over 12 mass % Ni) Austenitic Stainless Steel

May, 2011

Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS),

National Institute of Advanced Industrial Science and Technology (AIST)

Kyushu University

HDFF-A34-1

Copying is prohibited

水素構造材料

1642 , 1221 2015.10.27

18

10 10020 30 40 50 60 70809010-10

10-9

10-8

10-7

10-6

10-5

Crack growth rate

da

/dN(m

/cycle)

Stress intensity factor range K(MPa m)

H 0.47ppm

H 0.3ppm

H 0.47ppm

H 0.3ppm

H 0.49ppmH 0.49ppm

(f=0.2Hz) 0.58 0.49ppm

(f=2Hz) 0.58 0.49ppm

Hydrogen-charged

Uncharged0.01ppm

(f=20Hz) 0.49 0.24ppm

(f=20Hz) 0.53 0.27ppm

(f=0.2Hz) 0.58 0.49ppm

(f=2Hz) 0.58 0.49ppm

Hydrogen-charged

Uncharged0.01ppm

(f=20Hz) 0.49 0.24ppm

(f=20Hz) 0.53 0.27ppm

H 0.49ppmH 0.49ppm

H

da

H

HH

H

HH

H

H

H

H

H

a

H

dddadadaaaa

HHH

HHHHHHHHHHHH

HHHHHH

HHHHHH

HHHHH

HHHHHHHHa

HHH

ddaa

HHHHH

H

da

H

HH

H

HH

H

H

H

H

H

a

Schematic image of the mechanism of effect of hydrogen and test frequency on fatigue crack growth.

Uncharged specimen

Hydrogen-charged (0.56ppm) (0.56ppm)

(0.54ppm)

mMPa17K

JIS-SCM435

SCM435R = -1

A 75-736(200712)pp1358-1365

Page 5: È(ò&k l ¥ E S ¦ q%Ê'2...S-N data of Cr-Mo steel JIS-SCM435 5 10 15 200 400 600 800 1000 0 Stroke displacement (mm) Nominal stress, (MPa) N 2 H 2 JIS-SCM435 at RT 115 MPa gas CHS

蓄ガス器 Accumulator

ディスペンサー Dispenser

圧縮機 Compressor

燃料電池車 Fuel Cell Vehicle

90MPa 70MPa 圧力差で充填

水素ガス製造設備 Hydrogen Generator

水素ステーション Hydrogen Station

水素エネルギーシステムではゴム・樹脂製水素シールが使用される.Rubber or polymeric materials are used as hydrogen gas seals in hydrogen energy system.

配管/バルブ Piping System/Valves

緊急離脱カップリング Breakaway Device

ノズル/レセプタクル Nozzle/Receptacle

高圧水素ホース Flexible Hydrogen Hose

20

22

8 7 6 5 4 3 2 1 0Chemical shift ( in ppm)

Unexpo

35H

23H

14H1H

CrudeNBR

g)

b)

f)

a)

e)

g)

d) h)

c)c)

c)

55H

NOK

, F, MPa

10M

Pa

(ppm

)

ブリスタ発生せず

EPDM–CB25

EPDM–CB50

NBR–CB50

EPDM–SC60

NBR–SC60

ブリスタ発生

NBR–CB25

EPDM–WC95 EPDM ( )

NBR ( )

0 2 4 6 8 100

200

400

600

800

1000

1200

1400

H d1AOR

AG=H LL

破壊モード 原因 対策 高圧水素曝露時にゴム材料中に溶解した水素が減圧に伴い気化することにより気泡発生からき裂進展に至る.

(Oリング用ゴム材料の対策) ・水素溶解量の低いゴム配合の開発 ・硬度が高く,破壊強度が大きい  ゴム配合の開発 ・充填材のカーボンブラックは補強効果  が高いが水素吸着によりゴムの水素  溶解量が増大する.補強効果が高く,  水素吸着が小さい充填材を探索

水素による膨潤のため,ゴム材料の常態値で設計されたOリング溝の断面積を越える体積増加によりはみ出し破壊に至る.

(Oリング用ゴム材料の対策) ・水素溶解量の低いゴム配合の開発 ・膨潤による体積増加率の低いゴム  配合の開発 ・水素溶解量が低いゴム材料の探索 (Oリング溝設計の対策) ・使用環境(温度,水素圧力など)に  おけるゴム材料の体積増加を前提と   した充填率設計 ・使用環境(温度,水素圧力など)に  おけるゴム材料のはみ出し破壊,  座屈破壊の限界値を把握

水素による膨潤のため,Oリングの円周方向に体積膨張が発生し,座屈発生に至る.

EPDM(Hs70):H2 35MPa 100℃ 15hrs.

EPDM(Hs70):H2 70MPa 100℃ 3hrs.

はみ出し破壊

座屈破壊

EPDM(Hs70):H2 35MPa 100℃ 15hrs. 1 mm

ブリスタ破壊

0.5mm

拡大

10 mm

1 mm 1 mm 10 mm

高圧水素シールに用いたOリングの破壊状況を調査・解析し,Oリングの破壊はブリスタ破壊,はみ出し破壊,座屈破壊の3種類の破壊モードに分類することが出来た.それぞれの破壊モードの原因を追求し対策を検討した.

NEDO技術開発機構の水素先端科学基礎研究事業(平成18年度 平成24年度)

23

Relationship between H2 content and volume

0

50

100

150

200

250

0 1000 2000 3000 4000

Exposure H2 pressure 90MPa

70MPa

50MPa

30MPa

10MPa

Un

filled

Hydrogen Content after H2 exposure (mass.ppm)

Vo

lum

e C

ha

ng

e a

fte

r H

2 e

xp

osu

re (

%)

0MP

Pa

sure MPa

Pa

Unn

Pa Sulfur vulcanized NBR :unfilled

:filled with silica 30phr :filled with silica 60phr

:filled with carbon black 25phr :filled with carbon black 50phr

phr: weight parts per hundred weight parts of rubber

According to the results of model compounds, volume change ratio is proportional to its H2 content. Carbon black can reduce the volume change of the compounds nevertheless their H2 contents are high.

Design of Rubber composition for high pressure H2

Page 6: È(ò&k l ¥ E S ¦ q%Ê'2...S-N data of Cr-Mo steel JIS-SCM435 5 10 15 200 400 600 800 1000 0 Stroke displacement (mm) Nominal stress, (MPa) N 2 H 2 JIS-SCM435 at RT 115 MPa gas CHS

Solid surfaces

“God created the solids, the devil their surfaces”.

Wolfgang E. Pauli

contaminant adsorbed layer oxide layer deformed layer metal substrate

26

Sliding tests in highly controlled gas environment

(Fukuda et al., 2010)

Variation of specific wear rate of 316L with water concentration in hydrogen: pin-on-disk tests, 10N, 0.063 m/s, 126 m

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

0.1 1 10 100

, ppm

, m

m^2

/N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

COF

wear

Co

eff

icie

nt

of

fric

tio

n

Sp

ecific

we

ar

Water concentration, ppm

27

Air

Surfacelayers Solid

SolidO2

H2O

Hydrogen

Solid

Solid

H2

Air

Freshsurface

Solid

Solid O2

H2O

Solid

SolidO2

H2O

Hydrogen

H2

Proper operation and lives of hydrogen systems relies greatly on

friction and wear of components such as valves, bearings, dynamic

seals (packing) and ring/liners.

Tribo-design for hydrogen

Friction and wear of materials are not their intrinsic properties but depend on surrounding gas

Loss of boundary film Surface degradation

Trace oxygen and water Generation of hydrogen

Tribology in hydrogen gas

Friction and wear of pure PTFE slid against AISI316L in various gas; 50 N (1.8 MPa), 100 mm/s, 4000 m, 323 K

(Sawae et al., 2010) 29

Page 7: È(ò&k l ¥ E S ¦ q%Ê'2...S-N data of Cr-Mo steel JIS-SCM435 5 10 15 200 400 600 800 1000 0 Stroke displacement (mm) Nominal stress, (MPa) N 2 H 2 JIS-SCM435 at RT 115 MPa gas CHS

EOSHYDROGENIUS

(EOS)

All in 1 CD MS-EXCEL

PVT

32

 水素物性

IEA AFCIA / 2012.10.31

2016.2.3~4

~

34

PVT ( 100MPa, 200 C)

PVT ( 100MPa, 500 C)

( 100MPa, 500 C)

20 40 60 80 100 [MPa]

-100°C

PVT

5050 100100100 150150 200200

14

16

18

200

Pressure, P MPaP

ity,

µPas

HYHYDRDROROGEN ExperimentalROGT:29696.15K15KK5K

NabNabizadzadeadeh (1999)adehT:298.15KK

Michels (s (19595353)953) Gracki (1969)69)) Barua (1964) Golubev (1953) Kuss(1952)

T:299.15K Rudenko (1968) Present correlation

REFPRO

PP

McCartyty ( 72))(1972)(1972)

Hanley (1972)

Michels (1953)

953)

( 100MPa, 250 C)

1 5 10 50 100-0.4-0.2

00.20.4

400 - 500 K

433.15 K

473.15 K

P , MPa

1 5 10 50 100-0.4-0.2

00.20.4

220 - 350 K

300 K250 K

1 5 10 50 100-0.4-0.2

00.20.4

350 - 400 K

393.15 K

353.15 K

100( -

virial EOS) /

virial EOS

33