kaplan turbines (1)

28
Kaplan turbine

Upload: filip-mlinaric

Post on 30-Sep-2014

65 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Kaplan Turbines (1)

Kaplan turbine

Page 2: Kaplan Turbines (1)
Page 3: Kaplan Turbines (1)

Jebba, Nigeria

*Q = 376 m3/s

*H = 27,6 m

*P = 96 MW

D0 = 8,5 m

De = 7,1 m

Di = 3,1 m

B0 = 2,8 m

Page 4: Kaplan Turbines (1)

Machicura, CHILE

*Q = 144 m3/s

*H = 36,7 m

*P = 48 MW

D0 = 7,2 m

De = 4,2 m

Di = 1,9 m

B0 = 1,3 m

Page 5: Kaplan Turbines (1)

Outlet

draft tube

Outlet

runner

Inlet

runner

Outlet

guide vane Inlet

guide vane

Page 6: Kaplan Turbines (1)

Flow rate Q

Runner blade angle

f = constant

Hydraulic efficiency

Page 7: Kaplan Turbines (1)
Page 8: Kaplan Turbines (1)

Hill chart

Page 9: Kaplan Turbines (1)

c1

v1

u1

c2 v2

u2

Hg

cucu 2u21u1h

Page 10: Kaplan Turbines (1)

Pressure distribution and

torque

Lift

Drag

Torque

Arm

L

D

c

Page 11: Kaplan Turbines (1)

LChord

4

a

FLift

FDrag

v

AVCF

AVCF

DD

LL

2

2

2

1

2

1

Page 12: Kaplan Turbines (1)

Blade profile data

L

D

C

C

Angle of attack

Angle of attack

Average relative

velocity

d

v

Page 13: Kaplan Turbines (1)

Pressure distribution and

torque

Pressure side

Suction side

Cord length, l 0,24 · l

Single profile

Cascade

The pressure at the outlet is lower for a cascade than

for a single profile. The cavitation performance will

therefore be reduced in a cascade.

Page 14: Kaplan Turbines (1)

Radial distribution of the

blade profile

CL =Lift coefficient for a cascade

CL1 =Lift coefficient for a single profile

The ratio t/l influences the lift coefficient in a

cascade. The cord length for a blade will therefore

increase when the radius becomes increase

Page 15: Kaplan Turbines (1)

Radial distribution of the

blade profile

Page 16: Kaplan Turbines (1)

Flow in the axial plane

The figure shows blades with two different design of

the blade in radial direction. This is because it will

influence the secondary flow in the radial direction

Page 17: Kaplan Turbines (1)

Main dimension of a

Kaplan turbine

Page 18: Kaplan Turbines (1)

n

o Q

1.5

Cml =0.12 + 0.18 0

Cm

l

2.0

0

0

0.5

(tilnærmet)

1.0

2.5 3.0

m1

n

m1

22

n

c

4QD

c4

dDQ

Diameter of the runner

Page 19: Kaplan Turbines (1)

Height of the guide vanes

and runner diameter

0.4

0.3

300 400

ns

B /D0

d/D

d/D

, B

/D0

500 700600 800 900

0.5

0.6

0.7

45

n

sH

Pnn

Page 20: Kaplan Turbines (1)

Gap between hub and ring

and the runner blades

Gap between the

blade and hub

Gap between the

blade and ring

Spalteåpning x =1000s/D

Vir

kn

ingsg

rad

0

0.80

0.85

0.90

1

s = x 10 d-3

2 3 4 5 6

Eff

icie

ncy

Gap

Page 21: Kaplan Turbines (1)

Runaway speed

kavitasjonskoeffisient

Rusn

ingst

all/

norm

alt

urt

all

Voit h

Cavitation coefficient

Runaw

ay s

pee

d

H

H10 S

The figure shows different runaway speed at

different runner blade openings. The runaway speed

is dependent of the cavitation as shown in the figure

Page 22: Kaplan Turbines (1)

Hill chart

Page 23: Kaplan Turbines (1)

Example

• Find the dimensions D, d and Bo

• Given data:

Page 24: Kaplan Turbines (1)

93,178,674,0Qn

o

sm7,171682,92Hg2

srad1,13

60

2125

60

2n

1m74,0

sm7,17

srad1,13

Hg2

2

3

nm78,6

sm7,17

sm120

Hg2

QQ

Speed number:

Page 25: Kaplan Turbines (1)

Diameter, D:

467,018,012,01 o

mc

mc

QD

m

n 3,4467,0

478,64

1

Page 26: Kaplan Turbines (1)

Diameter, d:

59016

22826125

4545

m

Hprpm

H

Pnn

n

s

0.4

0.3

300 400

ns

B /D0

d/D

d/D

, B

/D0

500 700600 800 900

0.5

0.6

0.7

m9,145,0Dd45,0D

d

Page 27: Kaplan Turbines (1)

Height, B:

0.4

0.3

300 400

ns

B /D0

d/D

d/D

, B

/D0

500 700600 800 900

0.5

0.6

0.7

m76,141,0DB41,0D

BO

O

Page 28: Kaplan Turbines (1)

Number of vanes, z:

95,0t

l

5z

Num

ber

of

bla

des

z