keck north slope alaska project

1
Geochemical Analysis of the Torok Formation at Slope Mountain Evan LEWIS Grant SHIMER Carol DE WET Stanley MERTZMAN Abstract Research Area Methods Correla=ons Results Interpreta=ons Acknowledgments The purpose of this project is to u=lize XRD and XRF geochemical analy=cs to determine the chemostra=graphy and track the changing deposi=onal condi=ons of a prodelta environment in North Slope Alaska. Understanding deposi=onal regimes is extremely important to understanding sedimentary environments, however, this is typically performed using sedimentary structures and fossil assemblages as regime indicators. The process becomes more difficult with siltstones lacking fossil assemblages hence the applica=on of XRF and XRF analy=cs to determine changing deposi=onal condi=ons. Slope Mountain Study Area North of Brooks Range Southeast of Colville foreland basin Sampling performed within Mid Cretaceous Torok forma=on Literature suggests collected samples were deposited in a marine slope/ basin floor regime Samples are grey siltyshales, mudstones and clay shales Samples were collected from SM1, and SM2 locali=es Sampling was performed up sec=on at a resolu=on of 2m Crushing XRD Techniques Loss on igni=on techniques XRF techniques XRF major & trace element techniques Ef Values were calculated by conver=ng normalized weight percents into ppm. These ppm values were then normalized with Ni and used in the following equa=on Enrichment Factor Jaw crusher Mullite grinder Spex sha[er box 80 mesh Sieve PANaly=cal X'Pert PRO Xray diffractometer 15posi=on sample changer Ceramic Cu Xray tube Thermo analy=c muffle furnace 900°C 950°C DHAUS analy=cal electric balance PANanaly=cal 2404 Xray fluorescence vacuum spectrometer PW2540 XY sample handler 4kW Rh super sharp Xray tube Pt crucible and lid Lil solu=on mixture Sample fusion into disks Hydraulic press Copolywax compression into brique[es “Where do SM1 and SM2 overlap?” Field Rela=onships Field rela=ons uncertain between sample site SM1 and SM2 SM1 es=mated at 30 meters eleva=on in SM2 Two pieces of evidence suggest precise correla=ons between SM1 and SM2 Uranium enrichment peaks Organic material (LOI) peaks Geochemical evidence suggests correla=on between SM126 and SM214. EF Stra=graphic varia=on Conclusions 0 0.5 1 1.5 2 2.5 3 3.5 4 10 5 0 5 10 15 20 0 10 20 30 40 50 60 ∆EF U vs Ni LOI Weight % ∆EF U vs Ni LOI y = 0.6062x + 0.3644 R² = 0.69229 y = 0.9483x + 0.2041 R² = 0.75009 y = 0.7964x 0.3863 R² = 0.09551 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Enrichment Factor Enrichment Factor Ni Enrichments vs. Cu, V & U Enrichments Ni v Cu Ni v V Ni v U It can also be inferred from these cross plots that uranium and vanadium enrichment rates increased linearly with Ni enrichment rates. This suggests both uranium and vanadium accumulated at similar rates to nickel. This behavior is typically indica=ve of an oxicsuboxic deposi=onal environment. Ni Cross plots Because Ni and Cu rates of enrichment have trends with slopes close to 1, it can be inferred the two trace elements accumulated at similar rates at similar =mes (possibly due to influx of organic material). When ∆ EF of U and Ni is plo[ed with LOI results, the 32.5 layer shows a dras=c increase in both LOI and ∆ EF. Correla=on between ∆ EF and LOI can oqen be a[ributed to an increase in organic material into the deposi=onal environment. Similarly, enrichment of Ni appear to correlate well with LOI data, increasing and decreasing at similar eleva=ons. This suggests, in most cases, minor element enrichment can be correlated with LOI. Li[le to no varia=on between trace elemental abundance/ enrichment and TOC is typical of oxicsuboxic deposi=onal environments whereas in anoxic deposi=onal regimes, correla=on is possible because minor element enrichment is limited by the availability of organic substrates in the environment Chemostra=graphy shows great promise as a method of interpre=ng deposi=onal environmental condi=ons from within the Torok Forma=on Geochemical analysis suggests the mid Cretaceous Torok forma=on was deposited in an OxicSuboxic deposi=onal environment. However some evidence suggests possible anoxia Chemostra=graphy can be used for unit correla=on over several kilometers of distance A very special thanks to the KECK, ExxonMobil, the Na=onal Science Founda=on and Franklin and Marshall college for allowing me to conduct this research. Also to my advisors Grant Shimer, Carol de Wet and Stanley Mertzman as well as Paul McCarthy at the University of Alaska Fairbanks SM2 (ID) SiO2 TiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O Ba Ce Co Cr Cu Ga Ni Pb Sr Th U V Y Zn Zr 50 49.5 0.6 9.0 36.8 1.1 0.1 0.4 1.4 570 67 33 70 35 17 69 19 164 34 3 137 47 122 232 46 65.0 1.0 17.6 7.9 2.1 0.8 1.4 2.8 787 72 35 68 40 20 80 26 123 39 2 134 37 152 242 44 72.5 0.8 13.2 7.6 1.6 1.1 1.1 1.8 725 75 37 58 59 22 94 30 125 40 1 157 41 166 244 43 70.2 1.0 15.5 6.9 1.9 0.8 1.0 2.4 642 76 38 48 54 24 84 35 129 46 2 166 39 164 245 40 68.0 0.9 16.6 7.6 2.0 0.8 1.3 2.5 715 78 35 63 50 25 82 38 140 42 2 174 38 153 258 38 66.8 1.0 17.8 7.5 2.0 0.6 1.3 2.7 609 71 33 68 46 23 81 32 140 40 3 158 35 147 246 36 69.2 0.9 16.0 6.5 2.2 1.0 1.5 2.4 586 69 31 64 39 20 73 39 121 37 2 145 36 132 261 34 72.8 0.8 14.0 6.4 1.7 0.8 1.3 2.0 689 73 32 58 44 19 73 15 135 36 1 145 34 140 233 32.75 71.3 0.8 13.3 7.4 1.9 2.2 1.0 2.0 6519 59 10 8 0 0 10 85 714 26 1 31 10 11 56 32.5 3.8 0.0 2.5 3.2 0.6 89.1 0.2 0.1 2109 99 15 0 19 22 43 89 231 92 9 95 30 116 474 32.25 52.4 0.9 36.7 3.3 1.2 2.5 0.5 2.3 4455 8 0 9 5 6 24 65 918 0 4 78 8 39 195 32 22.7 0.3 16.5 4.8 0.9 53.3 0.4 0.6 763 86 29 63 44 23 67 14 165 40 4 150 34 128 254 30 71.9 0.8 15.1 5.8 1.7 0.8 1.5 2.2 595 73 32 50 45 23 75 34 147 45 3 157 34 138 257 28 69.7 0.9 15.8 6.3 2.1 1.0 1.6 2.4 854 88 36 52 50 26 85 29 148 43 1 176 37 155 253 26 69.0 0.9 16.8 6.6 1.9 0.6 1.4 2.6 777 81 34 55 47 23 80 30 148 44 2 161 36 148 247 24 70.1 0.9 16.2 6.6 1.8 0.5 1.3 2.4 766 75 35 58 48 23 83 34 148 42 2 169 37 148 267 22 69.6 1.0 16.6 6.5 1.8 0.4 1.4 2.4 649 75 31 71 41 23 78 18 129 39 4 164 33 143 262 20 70.7 0.9 16.1 6.0 1.7 0.5 1.5 2.4 770 73 38 68 48 21 87 38 144 37 3 155 35 146 234 18(2) 70.3 0.9 15.3 7.3 1.8 0.7 1.2 2.3 590 62 35 48 45 19 80 21 118 42 2 138 32 141 220 18(1) 73.8 0.8 13.2 6.4 1.7 0.8 1.1 2.0 663 73 33 57 42 23 77 28 152 41 1 155 35 148 241 16 69.7 0.9 16.1 6.4 2.0 0.7 1.6 2.4 705 78 40 67 49 22 85 39 128 38 1 151 34 149 230 14(2) 70.0 0.9 15.8 6.7 1.9 0.6 1.5 2.3 786 76 31 59 41 20 74 36 125 38 1 135 37 145 242 14(1) 73.0 0.8 13.8 6.1 1.7 1.1 1.2 2.0 31 122 43 54 64 10 39 11 182 52 12 216 32 99 89 12 34.7 0.7 11.8 40.6 5.0 3.5 0.7 2.2 723 73 38 50 54 25 88 23 129 45 2 177 36 172 237 10 67.9 1.0 17.1 7.0 2.2 0.7 1.2 2.7 835 79 37 57 56 23 88 25 144 44 4 175 37 165 261 8(2) 68.0 1.0 16.8 7.0 2.2 0.8 1.3 2.6 626 77 35 89 36 20 77 33 154 34 3 136 54 150 242 8(1) 69.8 0.8 14.3 7.2 1.7 2.2 1.2 2.1 101 112 42 54 58 11 36 18 216 47 0 211 32 98 112 6(2) 35.3 0.7 12.0 37.9 4.9 5.1 0.8 2.2 802 98 40 59 56 23 88 34 156 49 3 167 41 161 388 6(1) 68.8 1.0 16.7 7.3 1.7 0.4 1.3 2.5 678 74 29 73 37 22 62 44 120 41 2 155 27 111 245 5.4 72.8 0.9 14.8 6.4 1.3 0.2 1.3 2.2 734 89 22 95 30 19 36 34 133 42 2 161 27 65 243 4 72.3 0.9 13.4 8.3 0.9 0.7 1.3 2.2 515 71 43 63 37 19 90 33 107 40 1 128 34 163 229 2 73.4 0.8 13.4 6.3 1.6 1.0 1.3 1.9 661 65 33 62 35 19 79 16 104 37 1 131 34 146 256 1 75.1 0.8 13.0 5.8 1.5 0.6 1.2 1.8 783 86 37 62 51 24 84 40 113 40 1 171 38 173 228 Fig) 1 Fig) 2 Fig) 3 Bird, K. J., and Cornelius M. Molenaar, 1992, The North Slope Foreland Basin, Alaska: American Associa=on of Petroleum Geologists: p. 36393. Calvert, S. E., T. F. Pederson, 1993, Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implica=ons for the Geological Record: Marine Geology 113, p. 6788. Houseknecht, D. W., and C. J. Schenk, 2004, Sedimentology and Sequence Stra=graphy of the Cretaceous Nanushuk, Seabee, and Tuluvak Forma=ons Exposed on Umiat Mountain, NorthCentral Alaska: United States Geological Survey in Alaska 1709, p. 118. LePain, D. L., et al, 2009, Sedimentology, Stacking pa[erns, and Deposi=onal Systems in the Middle Albian, Cenomanian Nanushuk Frma=on in Outcrop, Central North Slope, Alaska: State of Alaska, Department of Natural Resources, Division of Geological and Geophysical Surveys, 1, p. 178. Moore, T. E., et al, 1994, Geology of northern Alaska: The Geological Society of America G.1, p. 4992. Print. Mull, C.G, et al, 2003, Revised Cretaceous and Ter=ary Stra=graphic Nomenclature in the Colville Basin, Northern Alaska: United States Geological Survey, 1 p. 151. Print. Shimer, G. T., et al, 2016, Ar/Ar ages and geochemical characteriza=on of Cretaceous bentonites in the Nanushuk, Seabee, Tuluvak, and Schrader Bluff forma=ons, North Slope, Alaska: Cretaceous Research, 57, p. 32541. Śliwiński, M.G., et al, 2011, Stable Isotope (δ13Ccarb & org, δ15Norg) and Trace Element Anomalies during the Late Devonian ‘punctata Event’ in the Western Canada Sedimentary Basin: Palaeogeography, Palaeoclimatology, Palaeoecology, 307, p. 245271. Tribovillard, Nicolas, et al, 2006, Trace metals as paleoredox and paleoproduc=vity proxies: An update: Chemical geology, 232, p. 1232. Wright, A. M, et al, 2010, Applica=on of Inorganic Whole Rock Geochemistry to Shale Resource Plays: Canadian Society for Unconven=onal Gas, p. 118.

Upload: evan-lewis

Post on 12-Apr-2017

20 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: KECK North Slope Alaska Project

Geochemical Analysis of the Torok Formation at Slope Mountain

 Evan  LEWIS  Grant  SHIMER  Carol  DE  WET  

Stanley  MERTZMAN          

Abstract  

Research  Area  

Methods   Correla=ons  

Results  

Interpreta=ons  

Acknowledgments  

The  purpose  of  this  project  is  to  u=lize  XRD  and  XRF  geochemical  analy=cs  to  determine  the  chemo-­‐stra=graphy  and  track  the  changing  deposi=onal  condi=ons  of  a  pro-­‐delta  environment  in  North  Slope  Alaska.  Understanding  deposi=onal  regimes  is  extremely  important  to  understanding  sedimentary  environments,  however,  this  is  typically  performed  using  sedimentary  structures  and  fossil  assemblages  as  regime  indicators.  The  process    becomes  more  difficult  with  siltstones  lacking  fossil  assemblages  hence  the  applica=on  of  XRF  and  XRF  analy=cs  to  determine  changing  deposi=onal  condi=ons.  

•  Slope  Mountain  Study  Area  •  North  of  Brooks  Range  •  Southeast  of  Colville  foreland  basin  

•  Sampling  performed  within  Mid  Cretaceous  Torok  forma=on  

•  Literature  suggests  collected  samples  were  deposited  in  a  marine  slope/basin  floor  regime  

•  Samples  are  grey  silty-­‐shales,  mudstones  and  clay  shales  

•  Samples  were  collected  from  SM1,  and  SM2  locali=es  

•  Sampling  was  performed  up  sec=on  at  a  resolu=on  of  2m    

 Crushing                XRD  Techniques                    Loss  on  igni=on  techniques                XRF  techniques                      XRF  major  &  trace  element  techniques              

Ef  Values  were  calculated  by  conver=ng  normalized  weight  percents  into  ppm.  These  ppm  values  were  then  normalized  with  Ni  and  used  in  the  following  equa=on  

Enrichment  Factor  

•  Jaw  crusher  •  Mullite  grinder  •  Spex  sha[er  box  •  80  mesh  Sieve  

•  PANaly=cal  X'Pert  PRO  X-­‐ray  diffractometer  

•  15-­‐posi=on  sample  changer  

•  Ceramic  Cu  X-­‐ray  tube  

•  Thermo  analy=c  muffle  furnace  

•  900°C  -­‐  950°C  •  DHAUS  analy=cal  

electric  balance  

•  PANanaly=cal  2404  X-­‐ray  fluorescence  vacuum  spectrometer  

•  PW2540  X-­‐Y  sample  handler  

•  4kW  Rh  super  sharp  X-­‐ray  tube  

•  Pt  crucible  and  lid    

•  Lil  solu=on  mixture  

•  Sample  fusion  into  disks  

•  Hydraulic  press  •  Copolywax  

compression  into  brique[es  

“Where  do  SM1  and  SM2  overlap?”    Field  Rela=onships  

•  Field  rela=ons  uncertain  between  sample  site  SM1  and  SM2  

•  SM1  es=mated  at  30  meters  eleva=on  in  SM2  

Two  pieces  of  evidence  suggest  precise  correla=ons  between  SM1  and  SM2  •  Uranium  enrichment  peaks    •  Organic  material  (LOI)  peaks  •  Geochemical  evidence  suggests  correla=on  

between  SM1-­‐26  and  SM2-­‐14.  

EF  Stra=graphic  varia=on  

Conclusions  

0  

0.5  

1  

1.5  

2  

2.5  

3  

3.5  

4  

-­‐10  

-­‐5  

0  

5  

10  

15  

20  

0   10   20   30   40   50   60  

∆EF  U  vs  N

i  

LOI  W

eight  %

 

∆EF  U  vs  Ni   LOI  

y  =  0.6062x  +  0.3644  R²  =  0.69229  

y  =  0.9483x  +  0.2041  R²  =  0.75009  

y  =  0.7964x  -­‐  0.3863  R²  =  0.09551  

0.0  

0.5  

1.0  

1.5  

2.0  

2.5  

3.0  

3.5  

4.0  

4.5  

5.0  

0.0   0.5   1.0   1.5   2.0   2.5   3.0   3.5   4.0   4.5   5.0  

Enric

hmen

t  Factor  

Enrichment  Factor  

Ni  Enrichments  vs.  Cu,  V  &  U  Enrichments  

Ni  v  Cu  

Ni  v  V  

Ni  v  U  

It  can  also  be  inferred  from  these  cross  plots  that  uranium  and  vanadium  enrichment  rates  increased  linearly  with  Ni  enrichment  rates.    This  suggests  both  uranium  and  vanadium  accumulated  at  similar  rates  to  nickel.  This  behavior  is  typically  indica=ve  of  an  oxic-­‐suboxic  deposi=onal  environment.  

Ni  Cross  plots    •  Because  Ni  and  Cu  

rates  of  enrichment  have  trends  with  slopes  close  to  1,  it  can  be  inferred  the  two  trace  elements  accumulated  at  similar  rates  at  similar  =mes  (possibly  due  to  influx  of  organic  material).  

When  ∆  EF  of  U  and  Ni  is  plo[ed  with  LOI  results,  the  32.5  layer  shows  a  dras=c  increase  in  both  LOI  and  ∆  EF.  Correla=on  between  ∆  EF  and  LOI  can  oqen  be  a[ributed  to  an  increase  in  organic  material  into  the  deposi=onal  environment.    Similarly,  enrichment  of  Ni  appear  to  correlate  well  with  LOI  data,  increasing  and  decreasing  at  similar  eleva=ons.    This  suggests,  in  most  cases,  minor  element  enrichment  can  be  correlated  with  LOI.  Li[le  to  no  varia=on  between  trace  elemental  abundance/enrichment  and  TOC  is  typical  of  oxic-­‐suboxic  deposi=onal  environments  whereas  in  anoxic  deposi=onal  regimes,  correla=on  is  possible  because  minor  element  enrichment  is  limited  by  the  availability  of  organic  substrates  in  the  environment  

•  Chemo-­‐stra=graphy  shows  great  promise  as  a  method  of  interpre=ng  deposi=onal  environmental  condi=ons  from  within  the  Torok  Forma=on  

•  Geochemical  analysis  suggests  the  mid  Cretaceous  Torok  forma=on  was  deposited  in  an  Oxic-­‐Suboxic  deposi=onal  environment.  However  some  evidence  suggests  possible  anoxia  

•  Chemo-­‐stra=graphy  can  be  used  for  unit  correla=on  over  several  kilometers  of  distance  

A  very  special  thanks  to  the  KECK,  ExxonMobil,  the  Na=onal  Science  Founda=on  and  Franklin  and  Marshall  college  for  allowing  me  to  conduct  this  research.  Also  to  my  advisors  Grant  Shimer,  Carol  de  Wet  and  Stanley  Mertzman  as  well  as  Paul  McCarthy  at  the  University  of  Alaska  Fairbanks  

SM2  (ID)   SiO2   TiO2   Al2O3 Fe2O3 MgO CaO Na2O K2O Ba Ce Co Cr Cu Ga Ni Pb Sr Th U V Y Zn Zr50   49.5   0.6   9.0   36.8   1.1   0.1   0.4   1.4   570   67   33   70   35   17   69   19   164   34   3   137   47   122   232  46   65.0   1.0   17.6   7.9   2.1   0.8   1.4   2.8   787   72   35   68   40   20   80   26   123   39   2   134   37   152   242  44   72.5   0.8   13.2   7.6   1.6   1.1   1.1   1.8   725   75   37   58   59   22   94   30   125   40   1   157   41   166   244  43   70.2   1.0   15.5   6.9   1.9   0.8   1.0   2.4   642   76   38   48   54   24   84   35   129   46   2   166   39   164   245  40   68.0   0.9   16.6   7.6   2.0   0.8   1.3   2.5   715   78   35   63   50   25   82   38   140   42   2   174   38   153   258  38   66.8   1.0   17.8   7.5   2.0   0.6   1.3   2.7   609   71   33   68   46   23   81   32   140   40   3   158   35   147   246  36   69.2   0.9   16.0   6.5   2.2   1.0   1.5   2.4   586   69   31   64   39   20   73   39   121   37   2   145   36   132   261  34   72.8   0.8   14.0   6.4   1.7   0.8   1.3   2.0   689   73   32   58   44   19   73   15   135   36   1   145   34   140   233  32.75   71.3   0.8   13.3   7.4   1.9   2.2   1.0   2.0   6519   -­‐59   -­‐10   8   0   0   10   85   714   -­‐26   1   31   10   11   56  32.5   3.8   0.0   2.5   3.2   0.6   89.1   0.2   0.1   2109   99   15   0   19   22   43   89   231   92   9   95   30   116   474  32.25   52.4   0.9   36.7   3.3   1.2   2.5   0.5   2.3   4455   8   0   9   5   6   24   65   918   0   4   78   8   39   195  32   22.7   0.3   16.5   4.8   0.9   53.3   0.4   0.6   763   86   29   63   44   23   67   14   165   40   4   150   34   128   254  30   71.9   0.8   15.1   5.8   1.7   0.8   1.5   2.2   595   73   32   50   45   23   75   34   147   45   3   157   34   138   257  28   69.7   0.9   15.8   6.3   2.1   1.0   1.6   2.4   854   88   36   52   50   26   85   29   148   43   1   176   37   155   253  26   69.0   0.9   16.8   6.6   1.9   0.6   1.4   2.6   777   81   34   55   47   23   80   30   148   44   2   161   36   148   247  24   70.1   0.9   16.2   6.6   1.8   0.5   1.3   2.4   766   75   35   58   48   23   83   34   148   42   2   169   37   148   267  22   69.6   1.0   16.6   6.5   1.8   0.4   1.4   2.4   649   75   31   71   41   23   78   18   129   39   4   164   33   143   262  20   70.7   0.9   16.1   6.0   1.7   0.5   1.5   2.4   770   73   38   68   48   21   87   38   144   37   3   155   35   146   234  18(2)   70.3   0.9   15.3   7.3   1.8   0.7   1.2   2.3   590   62   35   48   45   19   80   21   118   42   2   138   32   141   220  18(1)   73.8   0.8   13.2   6.4   1.7   0.8   1.1   2.0   663   73   33   57   42   23   77   28   152   41   1   155   35   148   241  16   69.7   0.9   16.1   6.4   2.0   0.7   1.6   2.4   705   78   40   67   49   22   85   39   128   38   1   151   34   149   230  14(2)   70.0   0.9   15.8   6.7   1.9   0.6   1.5   2.3   786   76   31   59   41   20   74   36   125   38   1   135   37   145   242  14(1)   73.0   0.8   13.8   6.1   1.7   1.1   1.2   2.0   -­‐31   122   43   54   64   10   39   11   182   52   -­‐12   216   32   99   89  12   34.7   0.7   11.8   40.6   5.0   3.5   0.7   2.2   723   73   38   50   54   25   88   23   129   45   2   177   36   172   237  10   67.9   1.0   17.1   7.0   2.2   0.7   1.2   2.7   835   79   37   57   56   23   88   25   144   44   4   175   37   165   261  8(2)   68.0   1.0   16.8   7.0   2.2   0.8   1.3   2.6   626   77   35   89   36   20   77   33   154   34   3   136   54   150   242  8(1)   69.8   0.8   14.3   7.2   1.7   2.2   1.2   2.1   101   112   42   54   58   11   36   18   216   47   0   211   32   98   112  6(2)   35.3   0.7   12.0   37.9   4.9   5.1   0.8   2.2   802   98   40   59   56   23   88   34   156   49   3   167   41   161   388  6(1)   68.8   1.0   16.7   7.3   1.7   0.4   1.3   2.5   678   74   29   73   37   22   62   44   120   41   2   155   27   111   245  5.4   72.8   0.9   14.8   6.4   1.3   0.2   1.3   2.2   734   89   22   95   30   19   36   34   133   42   2   161   27   65   243  4   72.3   0.9   13.4   8.3   0.9   0.7   1.3   2.2   515   71   43   63   37   19   90   33   107   40   1   128   34   163   229  2   73.4   0.8   13.4   6.3   1.6   1.0   1.3   1.9   661   65   33   62   35   19   79   16   104   37   1   131   34   146   256  1   75.1   0.8   13.0   5.8   1.5   0.6   1.2   1.8   783   86   37   62   51   24   84   40   113   40   1   171   38   173   228  

Fig)  1  

Fig)  2  

Fig)  3  

Ø  Bird,  K.  J.,  and  Cornelius  M.  Molenaar,  1992,  The  North  Slope  Foreland  Basin,  Alaska:  American  Associa=on  of  Petroleum  Geologists:  p.  363-­‐93.    Ø  Calvert,  S.  E.,  T.  F.  Pederson,  1993,  Geochemistry  of  Recent  Oxic  and  Anoxic  Marine  Sediments:  Implica=ons  for  the  Geological  Record:  Marine  Geology  113,  p.  67-­‐88.    Ø  Houseknecht,  D.  W.,  and  C.  J.  Schenk,  2004,  Sedimentology  and  Sequence  Stra=graphy  of  the  Cretaceous  Nanushuk,  Seabee,  and  Tuluvak  Forma=ons  Exposed  on  Umiat  Mountain,  North-­‐Central  

Alaska:  United  States  Geological  Survey  in  Alaska  1709,  p.  1-­‐18.    Ø  LePain,  D.  L.,  et  al,  2009,  Sedimentology,  Stacking  pa[erns,  and  Deposi=onal  Systems  in  the  Middle  Albian,  Cenomanian  Nanushuk  Frma=on  in  Outcrop,  Central  North  Slope,  Alaska:  State  of  

Alaska,  Department  of  Natural  Resources,  Division  of  Geological  and  Geophysical  Surveys,  1,  p.  1-­‐78.    Ø  Moore,  T.  E.,  et  al,  1994,  Geology  of  northern  Alaska:  The  Geological  Society  of  America  G.1,  p.  49-­‐92.  Print.    Ø  Mull,  C.G,  et  al,  2003,  Revised  Cretaceous  and  Ter=ary  Stra=graphic  Nomenclature  in  the  Colville  Basin,  Northern  Alaska:  United  States  Geological  Survey,  1  p.  1-­‐51.  Print.  Ø  Shimer,  G.  T.,  et  al,  2016,  Ar/Ar  ages  and  geochemical  characteriza=on  of  Cretaceous  bentonites  in  the  Nanushuk,  Seabee,  Tuluvak,  and  Schrader  Bluff  forma=ons,  North  Slope,  Alaska:  Cretaceous  

Research,  57,  p.  325-­‐41.  Ø  Śliwiński,  M.G.,    et  al,  2011,  Stable  Isotope  (δ13Ccarb  &  org,  δ15Norg)  and  Trace  Element  Anomalies  during  the  Late  Devonian  ‘punctata  Event’  in  the  Western  Canada  Sedimentary  

Basin:  Palaeogeography,  Palaeoclimatology,  Palaeoecology,  307,  p.  245-­‐271.  Ø  Tribovillard,  Nicolas,  et  al,  2006,  Trace  metals  as  paleoredox  and  paleoproduc=vity  proxies:  An  update:  Chemical  geology,  232,  p.  12-­‐32.    Ø  Wright,  A.  M,  et  al,  2010,  Applica=on  of  Inorganic  Whole  Rock  Geochemistry  to  Shale  Resource  Plays:  Canadian  Society  for  Unconven=onal  Gas,  p.  1-­‐18.