kinematics ernel

Upload: jaalobiano

Post on 08-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 KINEMATICS ernel

    1/26

    KINEMATICS

    University of Southeastern Philippines

    General Physics Lec

    Ernel D !a"#a"

  • 8/19/2019 KINEMATICS ernel

    2/26

    Kine$atics % &uantitative 'escription of $o

    reference to its physical causes

    Scalar )no 'irection* Vector )(+ 'irection*

    Distance )'* Displacement ) d*

    Speed )s* Velocity )v)

    Acceleration )a*

    ,o( far you travelChan"e in position

    ),o( far you travel in a "iven

    'irection*

    ,o( fast you travel ,o( fast you travel )in a "iven

    'irection*

    -ate of chan"e of velocity

    )'escri#in" how thin"s $ove*

  • 8/19/2019 KINEMATICS ernel

    3/26

    Reference frame and Position

    . -eference fra$e is the physical entity to$otion or position of an o#/ect is #ein" refe

    . Position refers to the location of an o#/erespect to so$e reference fra$e

  • 8/19/2019 KINEMATICS ernel

    4/26

    Describing Motion

    There are lots of 'ifferent (ays to '

    $otion0

    1 2or's

    3 S4etches

    5 Ti$e elapse' photo"raphs6 Physical E7pressions )E8uations*

    9 Graphical -epresentation

  • 8/19/2019 KINEMATICS ernel

    5/26

    Kinematics E!ations

     Average speed: sav ; ' + chan"e in t

    sav

     " d # $t " d # tf 

     % ti

    Average velocity&  vav ; $d + $t S

    vav " 'df  % di) # t

    Average acceleration&  aav ; $v + $t SI unit: $

    aav ; )vf  % vi) + ∆t

    df  ; di < vav ∆t

    vf  " vi < aav ∆t

    Note: if the ti$e intervals are very s$all (e call these 8uantities ins

  • 8/19/2019 KINEMATICS ernel

    6/26

    Sa$ple pro#le$ 1: Spee' an' =elo

    . Every $ornin"> you /o" aroun' a 39? $ trac4 four ti$e$inutes 2hat is your )a* avera"e spee' an' )#* averavelocity@

    a Total 'istance you /o""e' is : 6 39? $ ; 1>??? $> t

    ave spee' ; '+ t > 1>??? + 1B?? s

    ; ? $+s

    # ou have no resultant 'isplace$ent since you are #ac

    (here you starte' Therefore> your avera"e velocity is ;

  • 8/19/2019 KINEMATICS ernel

    7/26

    Sa$ple pro#le$ 3

    . A car $ovin" at constant spee' travels 5? $ in 9 s )a* (hat spee' of the car@ )#* ,o( far (ill the o#/ect $ove in 1? s@

    Solution:

    "iven: t ; 9 s> '; 5? $ at constant spee'

    )a* s ; '+t > 5?+9 ; $+s

    )#* s; '+t> $+s ; ' + 1? s

    ' ; ) $+s*)1?s*

      ; ? $

  • 8/19/2019 KINEMATICS ernel

    8/26

     Acceleration

    . Chan"e in velocity over ti$e

    . 2hen 'oes an o#/ect is acceleratin"@

    % 2hen it is $ovin" (ith chan"in" spee'

    % 2hen $ovin" (ith constant spee' #ut (ith ch

    'irection% 2hen $ovin" (ith chan"in" spee' as (ell as c

    'irection

  • 8/19/2019 KINEMATICS ernel

    9/26

    Sa$ple pro#le$ 1: Acceleration

    . A Nissan Sentra is stoppe' at a traffic li"ht 2hen the "reen> the 'river accelerates so that the carFs spe

    rea's 1? $+s after 9 s 2hat is the carFs acceleration

    it is constant@

    Solution:

    "iven: =i ; ? > =f  ; 1? $+s at t ; 9 s>

    a ; =f   =i + t > 1? $+s ? $+s + 9

    ; 3 $+s3 

  • 8/19/2019 KINEMATICS ernel

    10/26

    (sing Split imes*

    Position 'm) ?%9 9%1? 1?%19 19%3?

    3?%3

    Split ime 's) 1 36 5? 59 6?Av+ Velocity'm#s)

    51 31 1H 16 13

    Deter$ine the avera"e velocity for each 'istance inte

    Deter$ine avera"e velocity of the o#/ect over the ti$e

    Deter$ine the avera"e acceleration over the ti$e rec

    vav ; df  % di + ∆t ; 39$ % ?$ + 169 s ; ,+- m # s

    a ; vf  % vi + ∆t ; )139 $+s % 51$+s* + 169 s ;

    Note: the a is ne"ative #ecause the change in v is ne"at

  • 8/19/2019 KINEMATICS ernel

    11/26

    More e7a$ples Practice $a4es perfect r

    . An'y Green in the carThrustSSC   set a (orl' recor'

    of 5611 $+s in 1JJH To

    esta#lish such a recor'> the

    'river $a4es t(o runs throu"h

    the course> one in each

    'irection> to nullify (in'effects ro$ the 'ata>

    'eter$ine the avera"e velocity

    for each run

     

     Ans

     Ans(

  • 8/19/2019 KINEMATICS ernel

    12/26

    Deter$ine the avera"e acceleration of the plane

    v ; 3? 4$+h t ; 3Js

    aav ; )vf  % vi* + )tf   ti*

    aav ; )3? 4$+h ? 4$+h* + )3Js ?s*

    aav ; J? 4$+h +s

  • 8/19/2019 KINEMATICS ernel

    13/26

    1raphical Representation of Motion

    Kinematics Relationships hro!gh 1raphing&

    1 The slope of a '%t "raph at any ti$e tells you theavera"e velocity of the o#/ect

    3 The slope of a v%t "raph at any ti$e tells you th

    avera"e acceleration of the o#/ect

    5 The area un'er a v%t "raph tells you the'isplace$ent of the o#/ect 'urin" that ti$e

    6 The area un'er a a%t "raph tells you the

    chan"e in velocity of the o#/ect 'urin"

    that ti$e

  • 8/19/2019 KINEMATICS ernel

    14/26

    Constant Motion

    n the '%t "raph at any point in

    ti$e 0 vav ; $d + $t 

    vav ; )2. % .)m + '2 % .)s

    vav ; ,. m#s

    The slope is constant on this "raph

    so the velocity is constant

    n the v%t "raph at any point in

    ti$e0 aav ; vf  % vi + ∆t

    aav ; ),. % ,.)m#s + '2 % .)s

    aav ; . m#s0

    Loo4in" at the area #et(een the

    line an' the 7%a7is0

     Area of rectan"le ; # 7 h

     Area ; 9s 7 1? $+s ; 2. m

    2hich is of course 'isplace$ent

    n the a%t "raph the area #et(e

    the line an' the 7%a7is is0

     Area of rectan"le ; # 7 h

     Area ; 9s 7 ? $+s3 ; . m#s

    The area thus represents0

    $v ;  aav $t

    Chan"e in velocity

    0

    10

    20

    30

    40

    50

    60

    0 1 2 3 4 5 6

    time (s)

     

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    0 1 2 3 4 5 6

    time (s)

     

    0

    2

    4

    6

    8

    10

    0 1 2 3 4 5

    time (s)

     

  • 8/19/2019 KINEMATICS ernel

    15/26

    Chan"in" Motion

    n the '%t "raph at any point inti$e 0 vav ; $d + $t 

    The slope is constantly increasin"

    on this "raph so the velocity is

    increasin" at a constant rate

    The slope of a tan"ent line 'ra(n

    at a point on the curve (ill tell you

    the instantaneous velocity at this

    position

    n the v%t "raph at any point inti$e0 aav ; vf  % vi + ∆t

    aav ; )0. % .)m#s + '2 % .)s

    aav ; 3 m#s0

    Loo4in" at the area #et(een the

    line an' the 7%a7is0

     Area of trian"le ; 1+3 )# 7 h*

     Area ; 1+3 )9s 7 3? $+s* ; 2. m2hich is of course 'isplace$ent

    n the a%t "raph the area #etthe line an' the 7%a7is is0

     Area of rectan"le ; # 7 h

     Area ; 9s 7 6 $+s3 ; 0. m#s

    The area thus represents0

    Chan"e in velocity

    0

    10

    20

    30

    40

    50

    60

    0 1 2 3 4 5 6

    time (s)

     

    -10

    0

    10

    20

    30

    40

    50

    60

    0 1 2 3 4 5 6

    time (s)

     

    0

    5

    10

    15

    20

    25

    0 1 2 3 4 5 6

    time (s)

     

    0

    5

    10

    15

    20

    25

    0 1 2 3 4 5 6

    time (s)

     

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 1 2 3 4

    time (s)

     

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 1 2 3 4

    time (s)

     

  • 8/19/2019 KINEMATICS ernel

    16/26

    To 'eter$ine the velocity at any point in t

    nee' to fin' the slope of the 'istance%ti$e

  • 8/19/2019 KINEMATICS ernel

    17/26

    Slope #et(een 1s an' 5s

    sho(s the velocity at 3s

    The velocity at 3s is ∆p+∆t ; )1B$ % 3$*+

    The acceleration is "iven #y

    velocity%ti$e "raph Therefo

    a ; ∆v # ∆t ; 3?$+s + 9s ; 3m

    -10

    0

    10

    20

    30

    40

    50

    60

    0 1 2 3 4 5 6

    time (s)

    0

    5

    10

    15

    20

    25

    0 1 2 3

    time (s)

  • 8/19/2019 KINEMATICS ernel

    18/26

    E4ample Problem

    A 0nd year 5S Economics st!dent is late for the P

    r!ns east down the road at / m#s for /.s7 then thi

    she has dropped her calc!lator so stops for ,.s toShe 9ogs bac8 west at 0 m#s for ,.s7 stops for 2

    accelerates !niformly from rest to 3 m#s east ov

    second period+ 

    a* S4etch the velocity%ti$e "raph of the stu'entFs $otion

    #* Deter$ine the total 'istance an' 'isplace$ent of the

    'urin" this ti$e

    c* Deter$ine the stu'entFs avera"e velocity 'urin" this ti

  • 8/19/2019 KINEMATICS ernel

    19/26

    Velocity%ime 1raph of the St!dent:s Mo

  • 8/19/2019 KINEMATICS ernel

    20/26

    otal distance traveled by the st!dent is;+

    dtotal = d1 + d2 + d3 + d4 + d5

    dtotal = s1∆t1 + s2∆ t2+ s3∆ t3 + s4∆ t4 + s5∆ t5

    dtotal = (3m/s)(30s) + (0m/s)(10s) + (2m/s)(10s) + ………

    (0m/s)(5s) + (1/2(4m/s)(10s)

    dtotal = 130 m

    otal displacement by the st!dent is;+

     dtotal = d1 + d2 + d3 + d4 + d5

     dtotal = v1∆t1 + v2 ∆ t2+ v3∆ t3 + v4∆ t4 + v5∆ t5

     dtotal = (3m/s)(30s) + (0m/s)(10s) + (-2m/s)(10s) +

    ………(0m/s)(5s) + (1/2(4m/s)(10s)

     dtotal = 90 m (East)

    + east -

  • 8/19/2019 KINEMATICS ernel

    21/26

    Average velocity of the st!dent is;++

    vav = dtotal / ∆ttotal = + 90m East / 65s

    vav = 1.4 m/s East

     90 m

    - 20 m

     20 m

  • 8/19/2019 KINEMATICS ernel

    22/26

    'f  ; 'i < vav ∆t

    'f  ; 'i < )vi < vf * +3  ∆t #ut vf  ; vi < aav ∆t

    'f  ; 'i < )vi < )vi < aav∆t* +3  ∆t

    df  " di < vi t < ,#0 aav t0 

    'f  ; 'i < )vi < vf * +3  ∆t #ut ∆t ; )vf  % vi * + aav

    'f  ; 'i < )vi < vf * +3  )vf  % vi* +aav

    ∆' ; )vi < vf * +3  )vf  % vi* +aav So0 ∆' ; )vf 3 % vi

    3 * +3aav

    an'0 vf 0 " vi

    0 < 0aav d

     d " vi t < ,#0 aav t0 or0

    #ut vav " 'vi < vf ) # 0

    or0 0 aav  d " vf 0 % vi

  • 8/19/2019 KINEMATICS ernel

    23/26

    A = HB

    A=1/2HB

    vt t vd d 

    tt at vd d 

    t at vd d 

    ii f  

    avii f  

    avii f  

    ∆+∆+=

    +∆+=

    ∆+∆+=

    2

    1

    21

    21   2

  • 8/19/2019 KINEMATICS ernel

    24/26

    Sa$ple pro#le$

    . A racer accelerates from rest at a constant rate m/s/s. How fast will the racer be going at the ens! "b# How far has the racer tra$elle %ring this

    &ol%tion'

    gi$en' $i = 0 $f  = !

    t = 6.0 s f  = !

  • 8/19/2019 KINEMATICS ernel

    25/26

    . "a# (sing e)%ation a = *f  + *i / t, 2.0 m/s/s = *f  +s

    *f  = 0 - "2.0 m/s/s#"6.0 s#

      = 12 m/s

    . "b# f  = $i t - at2, f  = 0"6.0# - "2.0m/s/s #

    = 36 m

  • 8/19/2019 KINEMATICS ernel

    26/26

    . A car has %niforml accelerate from rest to a s25 m/s after tra$elling 5 m. hat is its accelera

    &ol%tion'

    gi$en' *i = 0, *f  = 25 m/s, f  = 5 m

    2a = vf 3 % vi

    3  > 3a)H9$* ; 39 )$+s*3  ?

    a ; 63 $+s3