k.lackner*) max-planck institut für plasmaphysik, d-85748 garching

39
K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching *) based largely on work of EFDA and the EU DEMO-Working Group Technology and Plasma Physics Developments Needed for DEMO DEMO: implicitely defined by FAST TRACK discussion: single interme diate step between ITER and a (potentially) first of a kind fus i on power plant EFDA (D. Campbell, D. Maisonnier, P. Sardain) + M.Q. Tran; G. Janeschitz, K. Lackner, G. Marbach, M. Ravnik, B. Saotic, D. Stork, D. Ward; A.Kallenbach, A. Sips

Upload: cherie

Post on 09-Feb-2016

54 views

Category:

Documents


5 download

DESCRIPTION

Technology and Plasma Physics Developments Needed for DEMO. K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching *) based largely on work of EFDA and the EU DEMO-Working Group. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

K.Lackner*)Max-Planck Institut für Plasmaphysik, D-85748 Garching

*) based largely on work of EFDA and the EU DEMO-Working Group

Technology and Plasma Physics Developments Needed for DEMO

DEMO: implicitely defined by FAST TRACK

discussion:single intermediate step between ITER and

a (potentially) first of a kind fusion power plant

EFDA (D. Campbell, D. Maisonnier, P. Sardain) + M.Q. Tran; G. Janeschitz, K. Lackner, G. Marbach, M. Ravnik, B. Saotic, D. Stork, D. Ward;

A.Kallenbach, A. Sips

Page 2: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

ROOTS:

FAST TRACK discussion

Power Plant Conceptual Studies

Page 3: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

a Fast Track version 2002

Page 4: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

DEMO Working Group

following completion of PPCS

•identical or scalable with high confidence to a first generation power plant (physics technology AB↔C)

•physics and technology demands – except availability – similar to PP

•for DEMO (vs. PP): construction costs rather than COE decisive → Pel ≤ 1.0 GW

Page 5: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

can a DEMO be based on a (largely) demonstrated physics scenario?

Page 6: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

DEMO base-line assumptions

2 basic physics operation modes considered

0

1

2

3

4

5

0 0.5 1r/a

strong

weak q

Standard H-mode

~ zero shear

Reversedshear ITER standard

operating scenario

„improved H-mode“ a.k.a. „hybrid mode“

„internal transport barrier“: ITB -modes

  ITER- baseline

ITER-steady

1st generation reactor designs

“advanced” reactor designs

n 1.8 3.1 3.5 - 4 > 4

<> [%]

2.5 2.9 2.2 - 3 3 - 5

Page 7: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

why “hybride” mode considered

•much broader physics base •originally considered for pulsed scenarios

Page 8: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

a pulsed DEMO/PP option?

known objections

•pulsed loads

•need for continuous power output (energy storage requirements)

•power supplies for rapid restart

considered in the expectation:

• could be designed largely on demonstrated physics base

• inductive current drive energetically favourable 210O

PUI

CD

loopp

preliminary conclusions (D.Ward et al., based on PROCESS-Code):

•same physics basis as pulsed device, allows also (more favourable) DC device

Page 9: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

why “hybrid mode” considered

a 1 GWel DEMO(Process-Code )

achieved parameter sets start overlapping with DEMO, PPCS assumptions

even an established physics scenario needs

extrapolations (to be verified)

development into an integrated scenario

Page 10: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

PROs and CONs of more “advanced” scenarios

Page 11: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

what are the “PROs” of ITB scenarios?

cause: suppression of turbulence in a layer in core (analogy to H-mode)

precondition: weak or reversed shear

efficient use of bootstrap current (high fraction & distribution)

good confinement (H-factor)

Page 12: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

intrinsic problem of ITB scenarios

pressure and current profiles (li..internal inductance) unfavourable for stability

→ only weak barriers, at large radius stable

1

2

3

4

N

2 4 6Pressure peaking: p0/<p>

unstable

ConventionalH-mode

apl

asm

a pr

essu

re0

ITB H-mode

a

plas

ma

pres

sure

0

ITB

H-mode

AUGDIII-DJT-60UJET

?

Page 13: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

extrapolations: to be verified (or based) on ITER

Page 14: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

confinement

confirm assumptions for H and “hybrid” H-modes

establish a scaling for ITB - modes

at constant n*, for ITER98(y,2)

AUG

JET

ITER

device operating regimes in dimensionless

“engineering” variables

222

222

/108

/10/*

)/(0032.0/

tet

emfp

tii

BTn

TqRnRq

RBTR

t

heat

tt

Bnan

aPP

aBB

4/3

4/3

4/5

*

*

*

dimensionless physics parameters only known after experiment

close to Greenwald

extrapolation to ITER/DEMO

small in β

large in ρ*, and particularly! in ν*

ρ*

ν*

β

Page 15: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

current drive: efficiency and controllability

“hybrid”:

efficiency very important (small fbootstrap) . γ ≈ = 0.5-0.6 needed

modest control requirements, central current drive o.k.

“ITB scenarios”:

high control requirements

off-axis c.d. probably needed

controllability : differingcross-diffusion of fast particles

excitation of AE modesNBI 0.35-0.4 *)

LH 0.3-0.35

ICRF 0.3-0.4 *)

ECCD 0.15 *)

ITER-estimates

*) extrapolated to ITER-temperatures – to be demonstrated!

figure of merit of efficiency

RICDP

n1020 (m 2AW 1)

discrepancy between predicted and observed distribution of NBI driven current on ASDEX Upgrade

Page 16: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

(largely) new territory entered with ITER

Page 17: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

α-particle behaviour (fusion heating)

fast particles (due to NBI or ICRH) cause range of resonant interactions, potentially leading to their loss

fusion-αs different through isotropy

figures of merit:

further increase in

reactor

Page 18: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

α-particle behaviour (fusion heating)

again more serious issue for ITB-scenarioes thermal ion orbits in an

extreme ITB (“current hole”) discharge on JT60U

Page 19: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

needs of significant quantitative progress

(new concepts)

Page 20: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

achievable β-values: limits depend on discharge duration

wall stabilization

NTMs

nonstationarity of current (i.e. q) - distribution

ARIES -AT

PPCD - D

PPCD - A

ITER-FEAT, reference

type of intervention:

external current drive

feedback by localized current drive (ECCD)

magnetic feedback + resistiv wall

most demanding (least demonstrated): control of

resistive wall modes

needed for ITER

needed for DEMO

Page 21: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

achievable β-values: resistive wall mode control important for ITB-scenarioes

for high li (hybrid H-mode) modest need and gain

for low li (“ITB-scenarios”) strong need and significant gain

Page 22: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

achievable β-values: resistive wall mode control

method: similar to vertical position control, but on a helical perturbation:

DIII-D

Page 23: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

integrated physics/engineering issues

Page 24: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

physics/technology interface: plasma wall interaction

tritium retention and material erosion → full high-Z (tungsten) pfc solution:not in ITER starting configuration → to be added – at latest – in phase 2 of operation

divertor load issue more severe on DEMO/PP than ITER•higher power & power density

•divertor cooling (He; high duty cycle) not more efficient

P fu s

[G W ]

R o

[m ] P r a d / P h e a t1 ) Q q d iv , n o m 2 )

[M W / m 2 ] q d e s ig n

[M W / m 2 ] IT E R - re f. 0 . 5 6 . 2 0 . 8 1 0 5 1 0 IT E R - S S 0 . 3 6 6 . 2 0 . 8 5 5 1 0 P P C S - B 3 . 4 7 . 5 0 . 8 1 5 2 2 1 0 P P C S - D 2 . 5 6 . 1 0 . 8 3 5 2 0 5

A R IE S - A T 2 . 2 5 . 5 0 . 8 5 1 1 0 - 2 0 3 ) 5

1 ) P h e a t = ( P f u s ( 1 / 5 + 1 / Q ) ) 2 ) q d iv , n o m = ( P h e a t- P r a d ) / ( 4 R o F ) w ith g e o m e tr y f a c to r F = 1 0 a n d m id p l a n e h e a t fl u x w id th s c a l in g l ik e 5.0003.0 oR 3 ) d e p e n d in g o n d o u b le n u l l c r e d it

Page 25: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

reduction of divertor load by radiation:

higher fraction of radiative losses than ITERlimits to edge radiation? → higher-Z radiators

•less dilution & Zeff

•more core losses effect on H-mode pedestalbenefit from profile stiffness

ITER´s power handling limit, and scaling of problem with size

→ no direct test of solution possible DEMO solution will have to be an extrapolation based on quantitative understanding of carefully chosen experiments on ITER & elsewhere

Page 26: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

pulsed loads and anomalous events

cyclic pulsed loads (ELMs) .. DEMO constraints even more severe than ITER (because of duty cycle and availability requirements)

anomalous events: specification 0.1 – 1*) disruption /year

•multifaceted nature of disruptions •dedicated campaign phase on ITER to demonstrate achievability (during stage 2 with tungsten)..discharge number rather than time counts*) depending on mitigation success

successive elimination of causes of disruptions: analogy to radioactive decay characteristics of realistic materials

→ when disruption control is improved, previously hidden causes (isotopes) dominate

improved control measures

disr

uptio

n ra

te

Page 27: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

Development of

Integrated & Controlled Scenario

Page 28: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

plasma control: a multifacted issue requiring a highly integrated approach

example: control of divertor load and tungsten concentration

dangers: mitigation (actuators):

high heat load to divertors

high radiation losses supress ELMs, absence of ELMs reduces W-impurity screening

central electron heating by ECRH,ICRH causes impurity pump-out

flat heating profile or peaked density causes W-accumulation at center

impurity and gas puffing increases radiation losses

artificial triggering of ELMs (pacemaking) by pellets screens impurities

show on ITER:

how does α-particle heating work?

peaked density profiles on ITER/DEMO?

scaling of needed central heating power?

Page 29: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

proof of the working of individual actuators

effect of a missing pellet on edge impuríty density

effect of switching on ECRH on central tungsten concentration

Page 30: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

example: control of divertor load and tungsten concentration

Page 31: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

top-level requirements on technology

Page 32: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

DEMO technology: credible 1st generation PP

•from day1 of DT operation: self-sufficiency of tritium

•satisfy same high levels of safety and environmental compatibility as demanded in EU PPCS (requiring, among others, use of low activiation materials)

•aim at a high availability:

•to produce the neutron fluences needed for testing

•(during later stage) to extrapolate to an attractive reactor

•technology requirements similar to 1st generation PP (also not beyond)

•exception: operational experience

•in this regard: DEMO an experiment

Page 33: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

technology develoment needs

Page 34: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

DEMO technology: progress beyond ITER

•use of low activation structural and functional materials (operating temperature window critical) – IFMIF tested including joining (to 80 dpa for first wall/blanket components

•RAFM (EUROFER, possibly modified by ODS)

•divertor materials t.b.d. (tungsten based)

•ITER-like magnet technology – or HTSC?

•tritium breeding and handling

•as base-line for first stage a blanket validated in modules on ITER phase 1 in thermo-mechanics, thermohydraulics

•helium cooled (DC, if SiC-SiC timely available)

•full fuel self-sufficiency

•tritium accountability O(100) more demanding than in ITER

*)classification as established predates Ciacynski-presentation

Page 35: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

DEMO technology: progress beyond ITER

•divertor and first wall

•material tested on ITER

•divertor cooling concept compatible with blanket (development of He-cooling)

•heating and current drive systems

•reduce to 2 out of the 4 systems included or options for ITER

•raise plug efficiency

•possibly push to higher performance (NBI →2MeV ?)

•demonstrate the long-pulse, long-term reliability (testing)

NBI ≤ 0.6

LH ≤ 0.6

ICRF ≤ 0.5

ECCD ≤ 0.45

plug efficiencies expected*)

*) conclusions of EFPW 2005

Page 36: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

Availability: where DEMO is in a different category from ITER

•remote maintenance and repair

•segmentation driver of effort

•compromise between modularity (use testing on ITER) & limited number of elements

T. Ihli et al., this conference

•design target for availability:

•testing of internal components to 50dpa before start of design of FPP -> availability ≥ 33 %

•second stage: make credible that if operated in a routine fashion an availability >75% could be achieved

Page 37: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

Conclusions: how do requirements map to

“broader approach”

Page 38: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

DEMO requirements consistent with „broader-approach“?

IFMIF

Tokamaks

ITER + TBM

temperature

density

Modelling

Page 39: K.Lackner*) Max-Planck Institut für Plasmaphysik, D-85748 Garching

ITER (scaled)

50 Years of Fusion Power Plant Studies