ku leuven - the behavioral approach to ...sistawww/smc/jwillems/...jan c. willems (k.u. leuven) –...

129
European Embedded Control Institute HYCON-EECI Graduate School on Control Spring 2009 - Module M4 THE BEHAVIORAL APPROACH TO MODELING AND CONTROL Lecturers Paolo Rapisarda (Un. of Southampton) and Jan C. Willems (K.U. Leuven) – p. 1/8

Upload: others

Post on 13-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

European Embedded Control Institute

HYCON-EECI Graduate School on Control

Spring 2009 - Module M4

THE BEHAVIORAL APPROACH

TO

MODELING AND CONTROL

LecturersPaolo Rapisarda (Un. of Southampton)

andJan C. Willems (K.U. Leuven)

– p. 1/82

Page 2: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Lecture 1

Monday 02-02-2009 14.00-17.30

Models and Behaviors

Lecturer: Jan C. Willems

– p. 2/82

Page 3: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Outline

1. Part I:

◮ Mathematical models◮ The universum◮ The behavior◮ A variety of examples

2. Part II:

◮ Dynamical systems◮ Systems described by ODEs◮ Linearity, time-invariance◮ Properties of dynamical systems◮ Other sets of independent variables

– p. 3/82

Page 4: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Mathematical models

A bit of mathematics & a bit of philosophy...

– p. 4/82

Page 5: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Mathematical models

Assume that we have a ‘real’ phenomenon.

(like a circuit with wires, or a moving object, or a chemicalsubstance with its attributes – we do not formalize the term‘phenomenon’ further, but we will give many examples).

The phenomenon produces‘events’, synonymously called‘outcomes’.

– p. 5/82

Page 6: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Mathematical models

Assume that we have a ‘real’ phenomenon. The phenomenonproduces‘events’, synonymously called‘outcomes’.

Phenomenon

event, outcome

– p. 5/82

Page 7: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Mathematical models

Assume that we have a ‘real’ phenomenon. The phenomenonproduces‘events’, synonymously called‘outcomes’.

Phenomenon

event, outcome

We view a deterministic model for a phenomenon as aprescription of which eventscanoccur, and whichcannot.

– p. 5/82

Page 8: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Mathematical models

Assume that we have a ‘real’ phenomenon. The phenomenonproduces‘events’, synonymously called‘outcomes’.

Phenomenon

event, outcome

We view a deterministic model for a phenomenon as aprescription of which eventscanoccur, and whichcannot.

‘Can’ means: ‘in principle possible’. Which event willactually occur in a particular ‘experiment’ depends on theenvironment to which the system is exposed.

– p. 5/82

Page 9: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Aim of this lecture

◮ In the first part of this lecture, we develop this point ofview into a mathematical formalism.

◮ In the second part, we apply this formalism to dynamicalsystems.

– p. 6/82

Page 10: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The universum

– p. 7/82

Page 11: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Mathematization

The events can be described in the language of mathematics,in terms of mathematical concepts, by answering:

To which universum do the (unmodelled) events belong?

– p. 8/82

Page 12: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Mathematization

The events can be described in the language of mathematics,in terms of mathematical concepts, by answering:

To which universum do the (unmodelled) events belong?

◮ Do the events belong to a discrete set?; discrete event phenomena.

◮ Are the events real numbers, or vectors of real numbers?; continuous phenomena.

◮ Are the events functions of time?; dynamical phenomena.

◮ Are the events functions of space, or time & space?; distributed phenomena.

– p. 8/82

Page 13: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Mathematization

The events can be described in the language of mathematics,in terms of mathematical concepts, by answering:

To which universum do the (unmodelled) events belong?

◮ Do the events belong to a discrete set?; discrete event phenomena.

◮ Are the events real numbers, or vectors of real numbers?; continuous phenomena.

◮ Are the events functions of time?; dynamical phenomena.

◮ Are the events functions of space, or time & space?; distributed phenomena.

The set where the events belong to is called theuniversumdenoted byU .

– p. 8/82

Page 14: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Discrete event phenomena

Examples:

◮ Words in a natural language(a word is thought of as an ‘event’)U = A

= all (finite) strings of letters fromthe alphabetA = {a,b,c, . . . ,x,y,z}

– p. 9/82

Page 15: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Discrete event phenomena

Examples:

◮ Words in a natural languageU = A

= all (finite) strings of letters fromthe alphabetA = {a,b,c, . . . ,x,y,z}

Sentences in a natural language

◮ DNA sequences

◮ Fortran codeLATEX code

◮ Error detecting and correcting codesISBN numbers

– p. 9/82

Page 16: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Continuous phenomena

Examples:

◮ The pressure, volume, quantity, and temperature of a gasin a vessel

Gas

(pressure, volume, quantity, temperature)

; U = (0,∞)× (0,∞)× (0,∞)× (0,∞)

– p. 10/82

Page 17: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Continuous phenomena

◮ A spring

F1 F2

L

Event = (forceF1, force F2, length L)

; U = R×R× (0,∞)

– p. 11/82

Page 18: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Continuous phenomena

◮ The gravitational attraction of two bodies

+

force

position1

position2

mass1

mass2

Event = mass1, mass2, position1, position2, force

; U = (0,∞)× (0,∞)×R3×R

3×R3

– p. 12/82

Page 19: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Continuous phenomena

◮ The voltage across and the current through a resistor

V

I

R+

Event = (voltage, current) ; U = R2

– p. 13/82

Page 20: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

Examples:

◮ The voltage across and the current through a capacitoror an inductor

V

I

+

−C

I

V+

−l

Event = (voltage, current): time→ R2

– p. 14/82

Page 21: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

Examples:

◮ The voltage across and the current through a capacitoror an inductor

V

I

+

−C

I

V+

−l

Event = (voltage, current): time→ R2 U =

(R

2)R

Recall the standard notation:AB := the set of maps from B to A = { f : B → A}

Dynamical phenomena; this course.– p. 14/82

Page 22: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

◮ The motion of a point mass

+

mass

positionforce

Event = (force, position): time→ R3×R

3 =(R

3)R

– p. 15/82

Page 23: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

◮ Planetary motion

SUN

PLANET

The events are maps fromR to R3

; U = {w : R → R3} =

(R

3)R

– p. 16/82

Page 24: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

◮ The voltage across and the current into an electrical portwith ‘dynamics’

V

I

+����

RL

C

C

LR ��

��

The events are maps fromR to R2

; U = {(V, I) : R → R2} =

(R

3)R

– p. 17/82

Page 25: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

◮ The input and the output of a signal processor

SYSTEM OUTPUTINPUT

Events: maps from Z to Rm×R

p

; U = {(u,y) : Z → Rm×R

p} = (Rm×Rp)Z

– p. 18/82

Page 26: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

◮ The input and the output of a signal processor

SYSTEM OUTPUTINPUT

Events: maps from Z to Rm×R

p

; U = {(u,y) : Z → Rm×R

p} = (Rm×Rp)Z

◮ Trajectories of variables associated with mechanicaldevices, electrical circuits, chemical reactions,multi-domain transducers, economic processes, ...phenomena with ‘memory’.

– p. 18/82

Page 27: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Distributed phenomena

◮ Temperature profile of, and heat absorbed by, a rod

�������������������������������������������������������������

���

q(x,t)

T(x,t)x

Events: maps from R×R to [0,∞)×R

; U = {(T,q) : R2 → [0,∞)×R} = ([0,∞)×R)R2

– p. 19/82

Page 28: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Distributed phenomena

◮ EM fields.

In each point of space & at each time, there is an

electric field ~E(t,x,y,z)magnetic field ~B(t,x,y,z)current density ~j(t,x,y,z)charge density ρ(t,x,y,z)

Events: maps from R×R3 to R3×R3×R3×R

; U = {(~E,~B,~j,ρ) : R4 → R

10} =(R

10)R4

– p. 20/82

Page 29: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Distributed phenomena

◮ EM fields.

In each point of space & at each time, there is an

electric field ~E(t,x,y,z)magnetic field ~B(t,x,y,z)current density ~j(t,x,y,z)charge density ρ(t,x,y,z)

Events: maps from R×R3 to R3×R3×R3×R

; U = {(~E,~B,~j,ρ) : R4 → R

10} =(R

10)R4

◮ Images

◮ Phenomena in which related things happen at differentpoints in space

– p. 20/82

Page 30: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

A model is a subset: the ‘behavior’

– p. 21/82

Page 31: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The behavior

Given is a phenomenon with event universumU .Without further scrutiny, any event in U is possible.

After studying the situation, the conclusion is reached that theevents are constrained, that some laws are in force.

– p. 22/82

Page 32: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The behavior

Given is a phenomenon with event universumU .Without further scrutiny, any event in U is possible.

After studying the situation, the conclusion is reached that theevents are constrained, that some laws are in force.

Modeling means that certain events are declared to beimpossible, that they cannot occur.

The possibilities that remain constitute what we call the‘behavior’ of the model.

– p. 22/82

Page 33: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The behavior

Given is a phenomenon with event universumU .Without further scrutiny, any event in U is possible.

After studying the situation, the conclusion is reached that theevents are constrained, that some laws are in force.

A mathematical model:⇔ a pair (U ,B), with

U the universum of events

B a subset of U , called the behavior of the model

Notation: Mathematical model (U ,B)

– p. 22/82

Page 34: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The behavior

B

U

possible

allowed

forbidden

– p. 23/82

Page 35: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The behavior

Every “good” scientific theory is prohibition:it forbids certain things to happen...The more a theory forbids, the better it is.

Karl PopperConjectures and Refutations:The Growth of Scientific KnowledgeRouthledge, 1963

Karl Popper(1902-1994)

– p. 24/82

Page 36: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Examples

– p. 25/82

Page 37: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Discrete event phenomena

Examples:

◮ Words in a natural languageU = A

= all (finite) strings of letters fromthe alphabetA = {a,b,c, . . . ,x,y,z}

B = all words recognized by the spelling checker.For example, SPQR/∈ B.

B is basically defined by enumeration, by listing itselements.

– p. 26/82

Page 38: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Discrete event phenomena

Examples:

◮ Words in a natural languageU = A

= all (finite) strings of letters fromthe alphabetA = {a,b,c, . . . ,x,y,z}

B = all words recognized by the spelling checker.For example, SPQR/∈ B.

B is basically defined by enumeration, by listing itselements.

Sentences in a natural language.B = all ‘legal’ sentences.SpecifyingB is a complicated issue.Usually determined using grammars.

– p. 26/82

Page 39: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Discrete event phenomena

Examples:

◮ Words in a natural languageU = A

= all (finite) strings of letters fromthe alphabetA = {a,b,c, . . . ,x,y,z}

B = all words recognized by the spelling checker.For example, SPQR/∈ B.

B is basically defined by enumeration, by listing itselements.

Sentences in a natural language.B = all ‘legal’ sentences.

◮ DNA sequences.B =???

◮ LATEX code.B = all LATEX files that ‘run’.

– p. 26/82

Page 40: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Discrete event phenomena

◮ 32-bit binary strings with a parity check.

U = {0,1}32

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32(mod 2)

=31

∑k=1

ak

}

– p. 27/82

Page 41: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Discrete event phenomena

◮ 32-bit binary strings with a parity check.

U = {0,1}32

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32(mod 2)

=31

∑k=1

ak

}

B can be expressed in other ways. For example,

B = {a1a2 · · ·a31a32 | ak ∈{0,1} and32

∑k=1

ak(mod 2)

= 0}

B =

a1a2...

a31a32

| ∃

b1b2...

b30b31

s.t.

a1a2...

a31a32

(mod 2)=

1 0 0 ··· 01 1 0 ··· 0... ... ... ...... ... ... ...0 0 ··· 1 10 0 ··· 0 1

b1b2...

b30b31

– p. 27/82

Page 42: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Discrete event phenomena

◮ 32-bit binary strings with a parity check.

U = {0,1}32

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32(mod 2)

=31

∑k=1

ak

}

B can be expressed in other ways. For example,

B = {a1a2 · · ·a31a32 | ak ∈{0,1} and32

∑k=1

ak(mod 2)

= 0}

B =

a1a2...

a31a32

| ∃

b1b2...

b30b31

s.t.

a1a2...

a31a32

(mod 2)=

1 0 0 ··· 01 1 0 ··· 0... ... ... ...... ... ... ...0 0 ··· 1 10 0 ··· 0 1

b1b2...

b30b31

input/output representation

kernel representation

image representation– p. 27/82

Page 43: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Continuous phenomena

Examples:

◮ The pressure, volume, quantity, and temperature of a gasin a vessel

Gas

(pressure, volume, quantity, temperature)

U = (0,∞)× (0,∞)× (0,∞)× (0,∞)

Gas law: B = {(P,V,N,T ) ∈ U | PV = NT }

– p. 28/82

Page 44: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Continuous phenomena

◮ A massless spring

F1 F2

L

Event = (forceF1, force F2, length L)

U = R×R× (0,∞)

B ={

F1 = F2 L = ρ(F1)}

– p. 29/82

Page 45: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Continuous phenomena

◮ The gravitational attraction of two bodies

1

+

position q mass M 1 2force F

position q 2

mass M

; U = (0,∞)× (0,∞)×R3×R

3×R3

B =

{

~F =M1M2~1M2→M1||~q1−~q2||2

}

‘inverse square law’Isaac Newton, 1642-1727

– p. 30/82

Page 46: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Continuous phenomena

◮ The voltage across and the current through a resistor

V

I

R+

Event = (voltage, current) ; U = R2

‘Ohm’s law’ B = {(V, I) | V = RI }

Georg Ohm, 1789 – 1854

– p. 31/82

Page 47: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

◮ The voltage across and the current through a capacitor

V

I

+

−C

Event = (voltage, current) as a function of time

; U =(R2

)R

B = {(V, I) : R → R2 | C d

dtV = I }

– p. 32/82

Page 48: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

◮ The voltage across and the current through a capacitoror an inductor

V

I

+

−C

I

V+

−l

Event = (voltage, current) as a function of time

; U =(R2

)R

B = {(V, I) : R → R2 | C d

dtV = I }

B = {(V, I) : R → R2 | V = L d

dt I }– p. 32/82

Page 49: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

◮ Planetary motion U =(R3

)R

PLANET

SUN

DC

B

A 1 year

34 months

Kepler’s laws ; B

– p. 33/82

Page 50: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

◮ Planetary motion U =(R3

)R

PLANET

SUN

DC

B

A 1 year

34 months

Kepler’s laws ; B = the orbits R → R3 with:

K.1 periodic, ellipses, with the sun in one of the foci;K.2 the vector from sun to planet sweeps out equal areas

in equal times;K.3 the square of the period

divided by the third powerof the major axis is thesame for all the planets

– p. 33/82

Page 51: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

◮ Newton’s second law

Isaac Newtonby William Blake

+

massM

position~qforce ~F

U =(R

3×R3)R

B =

{

(~F,~q) : R → R3×R

3 | ~F = M d2

dt2~q

}

– p. 34/82

Page 52: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Static versus dynamic

For the pointmass, we could have chosen

event = (force, acceleration)

; U = R3×R

3B = { ~F = M~a }.

– p. 35/82

Page 53: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Static versus dynamic

For the pointmass, we could have chosen

event = (force, acceleration)

; U = R3×R

3B = { ~F = M~a }.

For the capacitor and for the inductor, we could have chosen

event = (voltage, charge); U = R×R B = { Q = CV }

event = (current, flux) ; U = R×R B = { NΦ = LI }with N = number of turns

Michael Faraday1791 – 1867

– p. 35/82

Page 54: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Static versus dynamic

For the pointmass, we could have chosen

event = (force, acceleration)

; U = R3×R

3B = { ~F = M~a }.

For the capacitor and for the inductor, we could have chosen

event = (voltage, charge); U = R×R B = { Q = CV }

event = (current, flux) ; U = R×R B = { NΦ = LI }with N = number of turns

Michael Faraday1791 – 1867

Combining with

~a = d2

dt2~q, I = ddt Q, V = N d

dt Φ,

recovers the dynamical equations.

– p. 35/82

Page 55: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Static versus dynamic

Which of these descriptions is most appropriate depends onthe application.

But if we think in terms of ‘observable’ variables, or, better,in terms of the variables by which a device interacts with itsenvironment, it is most logical to choose

(~F,~q)

and(V, I)

as the phenomenological variables.

– p. 36/82

Page 56: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

◮ The input and the output of a signal processor

System outputs inputs

Events: maps fromZ toRm×R

p; U = {(u,y) : Z → R

m+p}

– p. 37/82

Page 57: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical phenomena

◮ The input and the output of a signal processor

System outputs inputs

Events: maps fromZ toRm×R

p; U = {(u,y) : Z → R

m+p}

For an MA system

B ={

(u,y) : Z → R2 | y(t) = 12T+1 ∑t+T

t′=t−Tu(t ′)

}

many variations.– p. 37/82

Page 58: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Distributed phenomena

◮ The temperature profile of, and heat absorbed by, a rod

�������������������������������������������������������������

���

q(x,t)

T(x,t)x

Events: maps fromR×R to [0,∞)×R

U = {(T,q) : R2 → [0,∞)×R}

B ={

(T,q) : R2 → [0,∞)×R | ∂

∂ t T = ∂ 2

∂ x2 T +q}

‘the diffusion equation’– p. 38/82

Page 59: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Distributed phenomena

◮ Maxwell’s equations for EM fields in free space

∇ ·~E =1ε0

ρ ,

∇×~E = −∂∂ t

~B,

∇ ·~B = 0 ,

c2∇×~B =1ε0

~j +∂∂ t

~E.

B = maps fromthe independent variables:(t,x,y,z) time and spaceto the dependent variables:(~E,~B,~j,ρ)

electric & magnetic field, current & charge densitythat satisfy Maxwell’s equations.

James Clerk Maxwell1831 – 1879

– p. 39/82

Page 60: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Behavioral models

Behavioral models fit the tradition of modeling, but have notbeen approached or formalized as such in a deterministicsetting.The behavior captures the essence of what a model is.

– p. 40/82

Page 61: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Behavioral models

Behavioral models fit the tradition of modeling, but have notbeen approached or formalized as such in a deterministicsetting.The behavior captures the essence of what a model is.

The behavior is all there is.Equivalence of models, properties of models,

symmetries, system identification, etc.,must all refer to the behavior.

– p. 40/82

Page 62: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Behavioral models

Behavioral models fit the tradition of modeling, but have notbeen approached or formalized as such in a deterministicsetting.The behavior captures the essence of what a model is.

The behavior is all there is.Equivalence of models, properties of models,

symmetries, system identification, etc.,must all refer to the behavior.

Every ‘good’ scientific theory is prohibition: it forbidscertain things to happen...The more a theory forbids, the better it is.

Replace ‘scientific theory’ by ‘mathematical model’ !– p. 40/82

Page 63: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Recapitulation

◮ A phenomenon produces ‘events’, ‘outcomes’.; the event universumU

◮ A mathematical model specifies a subsetB of U .B is the behavior of the model.

◮ A mathematical model is a pair(U ,B).

– p. 41/82

Page 64: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

End of Part I

– p. 42/82

Page 65: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Part II

– p. 43/82

Page 66: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Outline

1. Part I:

◮ Mathematical models◮ The universum◮ The behavior◮ A variety of examples

2. Part II:

◮ Dynamical systems

◮ Systems described by ODEs◮ Linearity, time-invariance◮ Properties of dynamical systems◮ Other sets of independent variables

– p. 44/82

Page 67: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Dynamical systems

– p. 45/82

Page 68: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The dynamic behavior

In dynamical systems, the ‘events’ are maps, with thetime-axis as domain, hence events are functions of time.

Phenomenon

eventsignal space

time

– p. 46/82

Page 69: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The dynamic behavior

In dynamical systems, the ‘events’ are maps, with thetime-axis as domain, hence events are functions of time.

Phenomenon

eventsignal space

time

It is convenient to distinguish in the very notation

the domain of the maps, thetime setand the codomain, thesignal space

the set where the functions take on their values.

– p. 46/82

Page 70: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The dynamic behavior

In dynamical systems, the ‘events’ are maps, with thetime-axis as domain, hence events are functions of time.

It is convenient to distinguish in the very notation

the domain of the maps, thetime setand the codomain, thesignal space

the set where the functions take on their values.

The behavior of a dynamical system, hence a family oftime-trajectories, is often described by a system of ordinarydifferential equations (ODEs) or difference equations.

– p. 46/82

Page 71: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The dynamic behavior

Formal definition: A dynamical system:⇔ (T,W,B)

T ⊆ R time setW signal space

B ⊆ WT the behavior

a family of trajectories T → W

w : T → Rw ∈ B ⇔ w is compatible with the modelw : T → Rw /∈ B ⇔ the model forbids w

– p. 47/82

Page 72: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The dynamic behavior

Formal definition: A dynamical system:⇔ (T,W,B)

T ⊆ R time setW signal space

B ⊆ WT the behavior

a family of trajectories T → W

w : T → Rw ∈ B ⇔ w is compatible with the modelw : T → Rw /∈ B ⇔ the model forbids w

mostly, T = R,R+,Z, or N (= {0,1,2, . . .}),and, in this course,W = Rw, for somew ∈ N

B is a family of time trajectoriestaking values in a (finite-dimensional) vector space.

T = R or R+ ; ‘continuous-time’ systems and ODEsT = Z or N ; ‘discrete-time’ systems and difference eqn’sWe mainly deal with the caseT = R.

– p. 47/82

Page 73: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

ODEs as dynamical systems

– p. 48/82

Page 74: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

ODEs as models for dynamical systems

Consider the ODE

f

(

w,ddt

w,d2

dt2w, . . . ,dn

dtnw

)

= 0

withf : W×R

w×·· ·×Rw

︸ ︷︷ ︸

n times

→ R•

W ⊆ Rw

Notational purists may prefer to write

f ◦

(

w,ddt

w,d2

dt2w, . . . ,dn

dtnw

)

= 0

But we leave this to puritans.

– p. 49/82

Page 75: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

ODEs as models for dynamical systems

Consider the ODE

f

(

w,ddt

w,d2

dt2w, . . . ,dn

dtnw

)

= 0

withf : W×R

w×·· ·×Rw

︸ ︷︷ ︸

n times

→ R•

W ⊆ Rw

Defines the dynamical system(R,W,B) with

B = {w : R → W, sufficiently smooth|

f

(

w(t),dwdt

(t),d2wdt2 (t), . . . ,

dnwdtn

(t)

)

= 0 ∀ t ∈ R}

other solution concepts may be appropriate as well ...

– p. 49/82

Page 76: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Examples

◮ Newton’s second law

Isaac Newtonby William Blake

+

massM

position~qforce ~F

~F = M d2

dt2~q w =

[

~F~q

]

W = R3×R

3

f : (~F,ddt

~F,d2

dt2~F ,~q,

ddt

~q,d2

dt2~q) 7→ ~F −Md2

dt2~q

– p. 50/82

Page 77: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Examples

◮ A pointmass in a gravitational field

~q

SUN

PLANET

inverse square law

d2~qdt2 + k

~1~q

||~q||2= 0 (∗)

f : (~q,ddt

~q,d2

dt2~q) 7→d2

dt2~q+ k~1~q

||~q||2

– p. 51/82

Page 78: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Examples

◮ A pointmass in a gravitational field

~q

SUN

PLANET

inverse square law

d2~qdt2 + k

~1~q

||~q||2= 0 (∗)

All orbits satisfying K1, K2, and K3 are solutions.

PLANET

SUN

DC

B

A 1 year

34 months

Is (∗) a ‘representation’ of K1, K2, and K3?Do K1, K2, and K3 give all the solutions of(∗)?

– p. 51/82

Page 79: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Examples

The convolution

y(t) =

∫ t

0e(t−t ′)u(t ′)dt ′ w(t) =

[

u(t)y(t)

]

can be represented by

ddt

y = y+u

f : (u,ddt

u,y,ddt

y) 7→ddt

y− y−u

Note advantages/disdavantages of each of theserepresentations.

– p. 52/82

Page 80: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Linear time-invariant differential systems

LTIDSs

– p. 53/82

Page 81: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

LTIDSs

The dynamical system(R,Rw,B) ; B is said to be

[[ linear ]] :⇔ [[ [[w1,w2 ∈ B,α ∈ R]] ⇒ [[αw1 +w2 ∈ B]] ]]

– p. 54/82

Page 82: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

LTIDSs

The dynamical system(R,Rw,B) ; B is said to be

[[ linear ]] :⇔ [[ [[w1,w2 ∈ B,α ∈ R]] ⇒ [[αw1 +w2 ∈ B]] ]]

[[ time-invariant ]] :⇔ [[ [[w ∈ B, σ t the t-shift]] ⇒ [[σ t(w) ∈ B]] ]]

σ t( f )(t ′) := f (t ′ + t)

σ

t−shift

f

map

t f

t

– p. 54/82

Page 83: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

LTIDSs

The dynamical system(R,Rw,B) ; B is said to be

[[ linear ]] :⇔ [[ [[w1,w2 ∈ B,α ∈ R]] ⇒ [[αw1 +w2 ∈ B]] ]]

[[ time-invariant ]] :⇔ [[ [[w ∈ B, σ t the t-shift]] ⇒ [[σ t(w) ∈ B]] ]]

σ t( f )(t ′) := f (t ′ + t)

σ

t−shift

f

map

t f

t

[[ differential ]] :⇔ [[B can be ‘described’ by an ODE]].

– p. 54/82

Page 84: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Linearity

In many examples,B is the graph of a map

u 7→ y = F(u) w =

[

uy

]

with F a map: u ∈ a space of inputs7→ y ∈ a space of outputs.

Then B = {w =

[

uy

]

| y = F(u)} = the ‘graph’ of F

When F is a linear map, the resulting system is linear.Def. of linear system has the classical one as a special case.

– p. 55/82

Page 85: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Linearity

In many examples,B is the graph of a map

u 7→ y = F(u) w =

[

uy

]

with F a map: u ∈ a space of inputs7→ y ∈ a space of outputs.

Then B = {w =

[

uy

]

| y = F(u)} = the ‘graph’ of F

When F is a linear map, the resulting system is linear.Def. of linear system has the classical one as a special case.

But a dynamical system, even in input/output form(say p( d

dt )y = q( ddt )u) is seldom a map !

y depends onu and on the initial conditions.– p. 55/82

Page 86: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

LTIDSs

The dynamical system(R,Rw,B) is

a linear time-invariant differential system (LTIDS) :⇔the behavior consists of the set of solutions of a system oflinear constant coefficient ODEs

R0w+R1ddt

w+ · · ·+Rn

dn

dtnw = 0.

R0,R1, · · · ,Rn ∈ R•×w real matrices that parametrize thesystem, andw : R → Rw.

– p. 56/82

Page 87: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

LTIDSs

The dynamical system(R,Rw,B) is

a linear time-invariant differential system (LTIDS) :⇔the behavior consists of the set of solutions of a system oflinear constant coefficient ODEs

R0w+R1ddt

w+ · · ·+Rn

dn

dtnw = 0.

R0,R1, · · · ,Rn ∈ R•×w real matrices that parametrize thesystem, andw : R → Rw. In polynomial matrix notation

; R(

ddt

)w = 0

with R(ξ ) = R0 +R1ξ + · · ·+Rnξ n ∈ R [ξ ]•×w

a polynomial matrix , usually ‘wide’ or square.

– p. 56/82

Page 88: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Examples

Examples:

◮d2

dt2~q = ~F ,w =

[

~F~q

]

; R(ξ ) =[

I3×3... −I3×3ξ 2

]

– p. 57/82

Page 89: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Examples

Examples:

◮d2

dt2~q = ~F ,w =

[

~F~q

]

; R(ξ ) =[

I3×3... −I3×3ξ 2

]

◮ddt x = Ax+Bu, y = Cx+Du, w =

xuy

;

R(ξ ) =

[

−ξ In×n +A B 0C D −Ip×p

]

◮ p0w+ p1ddt w+ · · ·+ pn dn

dtn w = 0; R(ξ ) = p(ξ ) with p(ξ ) = p0 + p1ξ + · · ·+ pnξ n.

– p. 57/82

Page 90: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

LTIDSs

We should define what we mean by a solution of

R(

ddt

)w = 0

For ease of exposition, we takeC ∞ (R,Rw) solutions.Hence the behavior defined is

B =

{

w ∈ C∞ (R,Rw) | R

(ddt

)

w = 0

}

– p. 58/82

Page 91: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

LTIDSs

We should define what we mean by a solution of

R(

ddt

)w = 0

For ease of exposition, we takeC ∞ (R,Rw) solutions.Hence the behavior defined is

B =

{

w ∈ C∞ (R,Rw) | R

(ddt

)

w = 0

}

B = kernel(R

(ddt

))‘kernel representation’ of this B.

LTIDS B ↔ kernel(R

(ddt

))

The theory of LTIDSs is basically the study of real polynomialmatrices, matrices over the ringR [ξ ].

– p. 58/82

Page 92: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

LTIDSs

B = kernel(R

(ddt

))‘kernel representation’ of this B.

LTIDS B ↔ kernel(R

(ddt

))

The theory of LTIDSs is basically the study of real polynomialmatrices, matrices over the ringR [ξ ].

The theory of LTIDSs is the topic of lectures 2 and 3.

– p. 58/82

Page 93: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Properties of dynamical systems

– p. 59/82

Page 94: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Controllability

Assume thatΣ = (R,W,B) is time-invariant(to avoid irrelevant complications)

and T = R (for the sake of concreteness)

Σ is said to be controllable :⇔for all w1,w2 ∈ B, there existsT ≥ 0 and w ∈ B such that

w(t) =

{

w1(t) for t < 0w2(t −T ) for t ≥ T

– p. 60/82

Page 95: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

A picture is worth a thousand words

1

w2

w

time

W

2w

1

w

w

time

W W

controllability ⇔ concatenability of trajectories after a delay

– p. 61/82

Page 96: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Stabilizability

Assume thatΣ = (R,Rw,B)T = R,W = Rw (for the sake of concreteness)

Σ is said to be stabilizable :⇔for all w ∈ B, there existsw′ ∈ B such that

w′(t) = w(t) for t < 0

andw′(t) → ∞ for t → ∞

– p. 62/82

Page 97: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

In pictures

w’

w

0

time

Rw

stabilizability ⇔ trajectories can be steered to0

– p. 63/82

Page 98: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Autonomous systems

Assume thatΣ = (R,W,B)T = R (for the sake of concreteness)

Σ is said to be autonomous :⇔

w1,w2 ∈ B and w1(t) = w2(t) for t < 0 ⇒ w1 = w2.

– p. 64/82

Page 99: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

In pictures

time

time

FUTURE

PAST

W

W

In an autonomous system, the past determines the future.

– p. 65/82

Page 100: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Autonomous systems

Assume thatΣ = (R,W,B)T = R (for the sake of concreteness)

Σ is said to be autonomous :⇔

w1,w2 ∈ B and w1(t) = w2(t) for t < 0 ⇒ w1 = w2.

Equivalently, there is a map

F : W(−∞,0) → W

[0,+∞)

such that

w ∈ B ⇒ w|[0,+∞)= F

(

w|(−∞,0)

)

– p. 66/82

Page 101: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Autonomous systems

Assume thatΣ = (R,Rw,B)T = R,W = Rw (for the sake of concreteness)

Σ is said to be autonomous :⇔

w1,w2 ∈ B and w1(t) = w2(t) for t < 0 ⇒ w1 = w2.

Examples:

◮ Kepler’s laws.

◮dndtnw = f

(

w, ddt w, . . . , dn−1

dtn−1w)

◮ In particular, ddt x = f (x)

– p. 67/82

Page 102: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Autonomous systems

Assume thatΣ = (R,Rw,B)T = R,W = Rw (for the sake of concreteness)

Σ is said to be autonomous :⇔

w1,w2 ∈ B and w1(t) = w2(t) for t < 0 ⇒ w1 = w2.

Examples:

◮ Kepler’s laws.

◮dndtnw = f

(

w, ddt w, . . . , dn−1

dtn−1w)

◮ In particular, ddt x = f (x)

Autonomous models aim at‘closed’ systems.Our aim is principally ‘open’ systems.

– p. 67/82

Page 103: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Observability

Consider Σ = (T,W1×W2,B).

w2 is said to be observable fromw1 in Σ :⇔

(w1,w′2),(w1,w

′′2) ∈ B ⇒ w′

2 = w′′2

– p. 68/82

Page 104: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

In pictures

observed w2to−be−deduced SYSTEMw1variables variables

– p. 69/82

Page 105: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

In pictures

observed w2to−be−deduced SYSTEMw1variables variables

observability ⇔ unobserved can be deduced from observed

Note: knowing the laws that govern the system !!

– p. 69/82

Page 106: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Observability

Consider Σ = (T,W1×W2,B).

w2 is said to be observable fromw1 in Σ :⇔

(w1,w′2),(w1,w

′′2) ∈ B ⇒ w′

2 = w′′2

Equivalently, iff there exists a mapF : WT1 → W

T2 such that

(w1,w2) ∈ B ⇒ w2 = F (w1)

– p. 70/82

Page 107: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Observability

Consider Σ = (T,W1×W2,B).

w2 is said to be observable fromw1 in Σ :⇔

(w1,w′2),(w1,w

′′2) ∈ B ⇒ w′

2 = w′′2

Equivalently, iff there exists a mapF : WT1 → W

T2 such that

(w1,w2) ∈ B ⇒ w2 = F (w1)

In applications, often‘observed’ = manifest, ‘to-be-deduced’ = latent (see lecture 2).In this case we can speak about‘an observable model’But in general observability depends on the partitionW = W1×W2.

– p. 70/82

Page 108: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Detectability

Consider Σ = (T,Rw1 ×Rw2,B).

w2 is said to be detectable fromw1 in Σ :⇔

(w1,w′2),(w1,w

′′2) ∈ B ⇒ w′

2(t)−w′′2(t) →t→∞ 0

w2 can be asymptotically deduced fromw1 (knowing the lawsof the system).

– p. 71/82

Page 109: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Controllability versus observability

In our setting, controllability is an intrinsic property of asystem.

Observability depends on the variable partition.

There is no ‘duality’ - we need more structure for that.

– p. 72/82

Page 110: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

LTIDSs

Controllability, observability, stabilizability, auton omy, etc.will be studied in great detail for LTIDSs in lecture 2.

– p. 73/82

Page 111: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

State controllability and observability

Consider classical Kalman definitions for

x = f (x,u) y = f (x,u)state spaceX, input spaceU, output spaceY

– p. 74/82

Page 112: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

State controllability and observability

Consider classical Kalman definitions for

x = f (x,u) y = f (x,u)state spaceX, input spaceU, output spaceY

state controllability :⇔∀ x1,x2 ∈ X,∃ T ≥ 0 and u : [0,T ] → U

such that x(0) = x1 yields x(T ) = x2.

1

x2X2

x

This is aspecial caseof our controllability:variables: w = x = stateor w = (x,u) = (input, state)

– p. 74/82

Page 113: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

State controllability and observability

Consider classical Kalman definitions for

x = f (x,u) y = f (x,u)state spaceX, input spaceU, output spaceY

Similar for state observabilityKalman definition: observed (u,y); to-be-deducedx.

– p. 74/82

Page 114: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

State controllability and observability

Consider classical Kalman definitions for

x = f (x,u) y = f (x,u)state spaceX, input spaceU, output spaceY

Why should we be so concerned with the state?

If a system is not (state) controllable, what is it caused by?insufficient influence of the control?bad choice of the state?not properly editing of the equations?

Kalman’s definitions address a rather special situation.

– p. 74/82

Page 115: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Other sets of independent variables

– p. 75/82

Page 116: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Other time sets

The setting is identical for LTIDSs with time set

[0,∞),(−∞,0] or [t1, t2] .

– p. 76/82

Page 117: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Other time sets

The setting is identical for LTIDSs with time set

[0,∞),(−∞,0] or [t1, t2] .

For discrete-time systems with time-axisN := {0,1,2, . . .},the differential operator should be replaced by the shiftσ ,σ( f )(t) := f (t +1).Only non-negative powers ofσ make sense.

– p. 76/82

Page 118: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Other time sets

The setting is identical for LTIDSs with time set

[0,∞),(−∞,0] or [t1, t2] .

For discrete-time systems with time-axisN := {0,1,2, . . .},the differential operator should be replaced by the shiftσ ,σ( f )(t) := f (t +1).Only non-negative powers ofσ make sense.

For discrete-time systems with time-axisZ, the differentialoperator should be replaced by the shiftσσ( f )(t) := f (t +1).Both positive and negative powers ofσ make sense.σ−1( f )(t) := f (t −1).

– p. 76/82

Page 119: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Distributed phenomena

In distributed systems, ‘events’ are maps from a set ofindependent variables to a set ofdependent variables .Usually the independent variables are time and space.

���������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

event

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Phenomenon

t

spacex

w

time

– p. 77/82

Page 120: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Distributed phenomena

In distributed systems, ‘events’ are maps from a set ofindependent variables to a set ofdependent variables .Usually the independent variables are time and space.

The behavior of a distributed system is usually described bya system of partial differential equations (PDEs).

– p. 77/82

Page 121: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Example: heat diffusion

�������������������������������������������������������������

���

q(x,t)

T(x,t)x

Events: maps fromR×R to R×R

B ={

(T,q) : R2 → [0,∞)×R | ∂∂ t T = ∂ 2

∂ x2 T +q}

set of independent variables:R2 or R+×R, time and space.set of dependent variables:R2 or R+×R,

temperature and heat flow.

– p. 78/82

Page 122: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Example: Maxwell’s equations

∇ ·~E =1ε0

ρ ,

∇×~E = −∂∂ t

~B,

∇ ·~B = 0 ,

c2∇×~B =1ε0

~j +∂∂ t

~E.

independent variables:(t,x,y,z) time and space ; R4

dependent variables:(~E,~B,~j,ρ)

electric & magnetic field, current & charge density ; R10.

James Clerk Maxwell1831 – 1879

– p. 79/82

Page 123: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

Summary of Lecture 1

– p. 80/82

Page 124: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The main points

◮ A model is a subsetB of a universumU .B is the behavior of the model.

– p. 81/82

Page 125: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The main points

◮ A model is a subsetB of a universumU .B is the behavior of the model.

◮ Dynamical systems: events are time trajectories.

– p. 81/82

Page 126: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The main points

◮ A model is a subsetB of a universumU .B is the behavior of the model.

◮ Dynamical systems: events are time trajectories.

◮ Important system properties: controllability,stabilizability, observability, detectability, autonomy.

– p. 81/82

Page 127: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The main points

◮ A model is a subsetB of a universumU .B is the behavior of the model.

◮ Dynamical systems: events are time trajectories.

◮ Important system properties: controllability,stabilizability, observability, detectability, autonomy.

◮ Controllability and observability generalize theirclassical counterparts in a meaningful way.

– p. 81/82

Page 128: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

The main points

◮ A model is a subsetB of a universumU .B is the behavior of the model.

◮ Dynamical systems: events are time trajectories.

◮ Important system properties: controllability,stabilizability, observability, detectability, autonomy.

◮ Controllability and observability generalize theirclassical counterparts in a meaningful way.

◮ Distributed phenomena fit well in this setting by taking amore general set of independent variables than just time.

– p. 81/82

Page 129: KU Leuven - THE BEHAVIORAL APPROACH TO ...sistawww/smc/jwillems/...Jan C. Willems (K.U. Leuven) – p. 1/82 Lecture 1 Monday 02-02-2009 14.00-17.30 Models and Behaviors Lecturer: Jan

End of Lecture 1

– p. 82/82